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Abstract

The subject of diffraction of waves by sharp boundaries has been studied intensively
for well over a century, initiated by groundbreaking mathematicians and physicists
including Sommerfeld, Macdonald and Poincaré. The significance of such canonical
diffraction models, and their analytical solutions, was recognised much more broadly
thanks to Keller, who introduced a geometrical theory of diffraction (GTD) in the
middle of the last century, and other important mathematicians such as Fock and
Babich. This has led to a very wide variety of approaches to be developed in order to
tackle such two and three dimensional diffraction problems, with the purpose of ob-
taining elegant and compact analytic solutions capable of easy numerical evaluation.

The purpose of this review article is to showcase the disparate mathematical tech-
niques that have been proposed. For ease of exposition, mathematical brevity, and for
the broadest interest to the reader, all approaches are aimed at one canonical model,
namely diffraction of a monochromatic scalar plane wave by a two-dimensional wedge
with perfect Dirichlet or Neumann boundaries. The first three approaches offered are
those most commonly used today in diffraction theory, although not necessarily in
the context of wedge diffraction. These are the Sommerfeld-Malyuzhinets method,
the Wiener-Hopf technique, and the Kontorovich-Lebedev transform approach. Then
follows three less well-known and somewhat novel methods, which would be of inter-
est even to specialists in the field, namely the embedding method, a random walk
approach, and the technique of functionally-invariant solutions.

Having offered the exact solution of this problem in a variety of forms, a numerical
comparison between the exact solution and several powerful approximations such as
GTD is performed and critically assessed.
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1. Introduction and formulation

At the close of the 19th century, wedge diffraction became a core problem in math-
ematical physics when renowned mathematicians Poincaré and Sommerfeld studied
the diffraction of wave fields in angular domains (Poincaré, 1892, 1897; Sommerfeld,
1896, 1901). Sommerfeld made the first breakthrough when he solved his famous
half-plane problem (Sommerfeld, 1896), during which he introduced the contour inte-
gral representation that we now know as the Sommerfeld integral. This work has now
been translated to English in Sommerfeld (2003), with additional insightful comments.
Sommerfeld would later be the first to solve problems of wedge diffraction (Sommer-
feld, 1901) where the wedge has an interior angle equal to mπ/n (m < n ∈ N).

For wedges with arbitrary interior angles, the solution was first obtained by Mac-
donald (1902). He did this by considering a line source incident wave and used
separation of variables to get a series solution. The solution was rewritten in Som-
merfeld integral form and he then provided the solution for an incident plane wave.
We discuss this line source approach and provide an alternative way to obtain the
plane wave solution in Appendix A.

In the 1950s, Malyuzhinets released a series of papers that culminated in the
solution to the problem with impedance boundary conditions, (Malyuzhinets, 1955a,b,
1958b,c,a). This result created the first method that we discuss here in Section 2, the
Sommerfeld-Malyuzhinets technique (S-M). Other authors who solved the impedance
wedge problem independently were Senior (1959) and Williams (1959) but for more
details on Malyuzhinets’ method, see the review paper (Osipov and Norris, 1999) or
the books (Budaev, 1995; Babich et al., 2007; Lyalinov and Zhu, 2013).

One of the most popular methods in diffraction theory is the Wiener-Hopf (W-H)
technique, invented by Wiener and Hopf (1931) as a means to solve a special type
of integral equation. It was soon discovered to be a useful method for diffraction
problems and has appeared in a number of classic articles such as (Copson, 1946)
and (Jones, 1952). Since then, applications of the technique have appeared in a wide
array of research areas including diffraction, waveguides and flow problems.

The well-known textbook (Noble, 1958) provides an excellent tutorial for various
aspects and extensions of the W-H technique. In 2007, the Journal of Engineering
Mathematics published a W-H special issue led by a historical overview (Lawrie and
Abrahams, 2007) along with a collection of articles applying the W-H technique to
various problems. For wedge problems, the technique was thought to be ineffective
due to the two boundaries not being parallel, however (see e.g. (Shanin, 1996; Daniele,
2003b)) this can be overcome as discussed later in Section 3.

Another key method is based on the Kontorovich-Lebedev (K-L) transform. First
introduced by Kontorovich and Lebedev (1939), this transform is an effective tool
when dealing with a radial coordinate. This makes it useful for wedge diffraction
problems as evidenced by Abrahams (1986, 1987), since obtaining the general solution
in that way is a very natural process. We shall discuss this further in Section 4, but
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for more details on the transform and its applications, see (Lebedev, 1965), (Jones,
1964, 1980, 1986) and (Felsen and Marcuvitz, 1994).

In Section 5, we will focus on the asymptotic technique created by the classic
paper (Keller, 1962), called the Geometrical Theory of Diffraction (GTD), see also
the book by Borovikov and Kinber (1994). We will also follow the uniform GTD
extension detailed in literature such as (Kouyoumjian and Pathak, 1974; James, 1986;
Mcnamara et al., 1990) and (Babich et al., 2007).

Even though we will not use it in this review, for completeness, it is important to
mention an alternative asymptotic technique applied to diffraction problems that is
the Physical Theory of Diffraction (PTD) (Ufimtsev, 1971). This development was
made possible in part thanks to Macdonald’s work on Kirchhoff’s approximation (see
e.g. Ufimtsev (2014)). A useful paper that compares the GTD and PTD asymptotic
techniques as well as the exact solution in series and integral form is (Hacivelioglu
et al., 2011). Similar methods, describing creeping waves in diffraction by smooth
obstacle, have also been developed in Fock (1965) for example.

Section 6 contains a number of alternative methods that are effective but less well-
known for wedge diffraction. The first of these alternative methods is based on the
very powerful concept of embedding formula. This reasonably recent approach con-
sists in expressing the diffraction coefficient (which depends on both the incident and
observer angles) of the diffracted field resulting from an incident plane wave in terms
of the directivities (depending on one angle only) of simpler problems. These simpler
problems are directly related to edge Green’s functions. These are Green’s functions
for which the source is sent towards the geometric singularities of the obstacle. This
method was primarily used for planar cracks and slits, and parallel combinations of
these (see e.g. (Williams, 1982; Gautesen, 1983; Martin and Wickham, 1983; Biggs,
2001, 2002)). In (Craster and Shanin, 2005) it was shown that the method can be
successfully adapted to wedges, as we will discuss later.

The second of these alternative methods is the so-called random walk approach.
It is based on the known link between deterministic PDEs and stochastic differential
equations (SDEs) given by the Feynman-Kac theorem. It allows to express the so-
lution of a diffraction problem as the mean of a set of solutions to given SDEs with
carefully chosen initial and final conditions. The method was developed through a
series of papers by Budaev and Bogy (2001, 2002a,b, 2003), the latter being dedicated
to wedge diffraction.

The last of these is the method of functionally-invariant solutions also known as the
Sobolev-Smirnov method which has been used for a number of plane wave diffraction
problems from half-planes (Sobolev, 1935; Smirnov, 1964) to wedges (Filippov, 1964;
Komech et al., 2015; Babich, 2015). A very similar method that develops Busemann’s
“conical flow method” (Busemann, 1947) was also considered in Keller and Blank
(1951) and Miles (1952) for example.

In this review (apart from Macdonald’s approach discussed in Appendix A), we
will focus primarily on plane wave incidence rather than line sources. It has to be
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noted, however, that a broad range of work (Bromwich, 1915; Oberhettinger, 1954;
Rawlins, 1987, 1989) has also been carried out for both acoustic and electromagnetic
sources. For other reviews of some of the methods used for various types of incident
waves (plane, cylindrical, spherical, dipole and pulse), see Oberhettinger (1958) and
Bowman et al. (1987).

The elastic wedge problem has equally received a lot of attention. Knopoff (1969)
wrote an interesting review of possible approaches to tackle this (still unsolved) prob-
lem, it includes attempts using the method of images, the W-H technique, the K-L
transform and the conical flow method. More recent approaches by Croisille and
Lebeau (1999) or Budaev and Bogy (1995, 1996, 1998) are also worth mentioning.

In Section 3.1, in the spirit of Wegert (2012), we will visualise complex functions
using phase portraits in order to show domains of analyticity, locations of singularities
and orientations of branch cuts. These portraits assign the argument of a complex
function to a HSV colour model. For example, Figure 1 (left) shows the phase portrait
of f(z) = z which we use as a colour reference.

Wedge diffraction has a number of physical applications such as the scattering
of acoustic pressure fields or electromagnetic fields by sharp structures, scattering of
the Sun’s radiation by cloud ice crystals and seismology. We shall study this from a
more mathematical perspective. From here onward, we will assume that the problem
is time-harmonic with time factor e−iωt, which is henceforth suppressed, and we will
consider solutions to the homogeneous Helmholtz equation,

∇2Φ + k2Φ = 0. (1.1)

inside a wedge-shaped region described in polar coordinates by {0 < r <∞, −θw <
θ < θw} (see Figure 1 (right)). The complementary region, {0 < r < ∞, |θ| > θw}
is considered to be the wedge scatterer. Defining θ̄w = π − θw, the interior angle
of the wedge scatterer is 2θ̄w. Throughout this paper, we will consider two cases of
homogeneous boundary conditions (BCs), Dirichlet and Neumann, on both faces of
the wedge,

Dirichlet BCs: Φ(θ = ±θw) = 0, (1.2)

Neumann BCs:
1

r

∂Φ

∂θ
(θ = ±θw) = 0. (1.3)

For acoustics, (1.2) and (1.3) are called sound-soft and sound-hard BCs respectively.
For electromagnetic scattering by an electric (resp. magnetic) polarized plane wave,
the solution to the perfect electric conducting (PEC) problem can be expressed in
terms of a potential satisfying (1.2) (resp. (1.3)).

We define the incident plane wave as, ΦI = e−ikr cos(θ−θI) with wavenumber k > 0
and incident angle θI. Due to the symmetry of the problem, we restrict the incident
angle to θI ∈ [0, θw]. Figure 1 (right) illustrates the geometry of the problem.

An initial approximation is found using classical Geometrical Optics (GO). The
GO part of the solution consists of the incident wave and any reflected waves pro-
duced. The latter are all outgoing in the sense that they cannot bring energy into the
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Figure 1: The left figure is a phase portrait of f(z) = z which assigns colours to the complex
argument of f (left). For example arg(f) = 0 is indicated as red and arg(f) = π is indicated as
cyan. The right figure is the geometry of the problem.

wedge domain from infinity. The remaining part of the solution is the diffracted field,
ΦDiff, which must be included to make the total field continuous and which satisfies
a two-dimensional radiation condition (see (Schot, 1992) for a good review on this),
written in integral form:

lim
r→∞

∫ θw

−θw

∣∣∣∣∂ΦDiff

∂r
− ikΦDiff

∣∣∣∣2 r dθ = 0. (1.4)

Lastly, there will be an edge (or Meixner) condition as r becomes small.

Φ ∼ A+O
(
rmin(δ,2)

)
, where δ =

π

2θw

, (1.5)

and A = 0 for the case of Dirichlet BCs. Typically, the edge conditions can be derived
using the Frobenius method (Bender and Orszag, 1999) while ensuring that the energy
remains finite in any neighbourhood of the wedge edge. With the outgoing property
of the diffracted and reflected waves, a finite-energy constraint, and specification of
the incident wave, the Neumann or Dirichlet wedge diffraction problem has a unique
solution.

2. The Sommerfeld-Malyuzhinets technique

The first method to be reviewed is the Sommerfeld-Malyuzhinets (S-M) technique.
Here we will show briefly how to obtain the solution to the perfect wedge problem
(1.1)-(1.5). For a more thorough explanation, consult Sections 1-4 of (Babich et al.,
2007). This technique is based on the general solution of diffraction problems in
angular domains being represented as the Sommerfeld integral

Φ(r, θ) =
1

2πi

∫
γ+

e−ikr cos(z) [s(θ + z)− s(θ − z)] dz =
1

2πi

∫
γ++γ−

e−ikr cos(z)s(θ + z)dz,

(2.1)
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where γ± are contours defined in Figure 2 (left) and s(z) is an unknown function to be
determined. This representation ensures that the Helmholtz equation is automatically
satisfied1. The form of the spectral part, s(θ + z) − s(θ − z), is necessary for the
radiation conditions to be satisfied. This can be proven by using the method of
steepest descent to approximate the integral as kr → ∞ (see section 3.7 of Babich
et al. (2007)). The function s(z), referred to as the spectral function, is assumed to
be meromorphic in the domain

{−π − θw − ε1 < Re {z} < θw + ε1, Im {z} > −ε2}∪
{−θw − ε1 < Re {z} < π + θw + ε1, Im {z} < ε2} , (2.2)

for some ε1,2 > 0 and analytic in the same domain with ε1,2 = 0+, see Figure 2 (right).
The poles of s(z) will be seen to correspond to the geometrical optics part of the wave
field. The structure of (2.1) means that s(z) is defined up to an additive constant.
Using the edge conditions, we can assume that s(z) has the following behaviour as
|Im {z} | → ∞,

s(z) = ±A+O(e−δ|Im{z}|), (2.3)

where A = 0 for the Dirichlet case.2 It is also important to note that e−ikr cos(z) is an
entire 2π-periodic function of z, which decays rapidly as |Im {z} | → ∞ only in the
set of half-strips,

{z : (2m− 1)π < Re {z} < 2mπ, Im {z} < 0, m ∈ Z}∪
{z : 2mπ < Re {z} < (2m+ 1)π, Im {z} > 0, m ∈ Z}, (2.4)

displayed in Figure 2 (left), and grows rapidly in the complementary set. The Som-
merfeld contours γ± are defined so that the integrand is analytic and decays as
|Im {z} | → ∞ along these contours.3

A crucial part to the S-M technique is Malyuzhinets’ Theorem or the Sommerfeld
Nullification Theorem. This is an important theorem because it allows us to obtain a
functional equation satisfied by the spectral function. The theorem and its proof are
presented by Malyuzhinets in (Malyuzhinets, 1958b) and more recently in Section 3.4
of (Babich et al., 2007).

Theorem 1 (Malyuzhinets’ Theorem or Sommerfeld Nullification Theorem)
Let the function Υ(z) be analytic and single-valued inside the half-strip,

{z : −π − ε1 ≤ Re{z} ≤ ε1, Im{z} ≥ ε2 > 0}, ε1, ε2 > 0. (2.5)

1This is proven using integration by parts and noting that e−ikr cos(z) satisfies the Helmholtz
equation with polar coordinates (r, z).

2We assume (2.3) for convenience later. Say we assumed s(z) → A± as Im {z} → ±∞ where
A+ +A− 6= 0 instead. Then a later step will require us to redefine s(z) using the additive constant
property such that A+ +A− = 0 implying (2.3).

3Note that the Sommerfeld contours are contained in the domain (2.2) with ε1 = ε2 = 0+.
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Figure 2: The Sommerfeld contours γ± and the grey half-strips of exponential decay (left), and
regions where s(z) is analytic or meromorphic (right)

If for some constant D, the function has the following behaviour as Im {z} → ∞ in
this half-strip,

|Υ(z)| ≤ constant eDIm{z}, (2.6)

and for any R > 0,

1

2πi

∫
γ+

e−iR cos(z)Υ(z)dz = 0, (2.7)

then,

Υ(z) ≡ 0 if D < 1, (2.8)

Υ(z) = sin(z)

[
d−1∑
j=0

cj(cos(z))j

]
if D ≥ 1, (2.9)

where d is the integer part of D and the coefficients cj are constants.

With Malyuzhinets’ theorem, we have all the tools required to determine the
spectral function s(z). Recall that it was assumed to be meromorphic in the domain
(2.2), moreover it has only one simple pole with unit residue at z = θI within the
strip |Re {z} | < θw corresponding to the incident wave ΦI.

2.1. Dirichlet boundary condition

Applying the Dirichlet BCs (1.2) to the general solution (2.1) implies that

1

2πi

∫
γ+

e−ikr cos(z) [s(±θw + z)− s(±θw − z)] dz = 0. (2.10)

Due to (2.3), we can apply Malyuzhinets’ theorem to (2.10) to produce a pair of
functional equations for s(z),

s(±θw + z)− s(±θw − z) = 0. (2.11)
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These equations imply that s(z) is symmetric about z = ±θw and as a consequence
is 4θw periodic. Because the pole at z = θI produces the incident wave, its residue
should be 1, i.e.

lim
z→θI

[(z − θI)s(z)] = 1.

Because this pole is the only singularity in the strip |Re {z} | ≤ θw, then by the
determined symmetry, we also have poles at z = 2θw− θI and −2θw− θI with residue
−1. These two poles correspond to the top and bottom reflected waves respectively.
The periodicity implies that each of the poles are repeated every 4θw with the same
residue. We can therefore express s(z) as a sum of poles,

s(z) =
∞∑

n=−∞

1

z − θI − 4θwn
−

∞∑
n=−∞

1

z + θI − 2θw − 4θwn
. (2.12)

Using the definition δ = π
2θw

and pole expansion of cot(z),

cot(z) =
∞∑

n=−∞

1

z − nπ
,

we rewrite s(z) as follows,

s(z) =
δ

2

[
cot

(
(z − θI)δ

2

)
− cot

(
(z − 2θw + θI)δ

2

)]
=

δ cos(δθI)

sin(δz)− sin(δθI)
. (2.13)

It is easy to check that (2.13) satisfies the functional equations (2.11), satisfies the
estimate O(e−δ|Im{z}|) as |Im {z} | → ∞, and has a single pole with unit residue in
the strip |Re {z} | ≤ θw. This means that the solution to the exterior wedge problem
with Dirichlet BCs is,

Φ(r, θ) =
1

2πi

∫
γ++γ−

e−ikr cos(z) δ cos(δθI)

sin(δ(θ + z))− sin(δθI)
dz. (2.14)

2.2. Neumann boundary condition

Solving for the Neumann case is done in a very similar way. Applying the Neumann
BCs (1.3) to the general solution (2.1) implies that

1

2πi

∫
γ+

e−ikr cos(z) [s′(±θw + z)− s′(±θw − z)] dz = 0. (2.15)

We integrate by parts and apply the Malyuzhinets’ theorem to (2.15) to obtain the
following pair of functional equations for s(z),

s(±θw + z) + s(±θw − z) = c±. (2.16)
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Applying (2.3) determines that c± = 0. Then the functional equations become,

s(±θw + z) + s(±θw − z) = 0. (2.17)

These equations imply that s(z) is antisymmetric about z = ±θw. This symmetry
also shows that s(z) is a 4θw periodic function. Because θI is the only pole of s(z)
in the strip |Re {z} | ≤ θw and has unit residue, then due to the antisymmetry and
periodicity of s(z), there are more poles located at z = θI + 4θwn and z = 2θw − θI +
4θwn for n ∈ Z, all with unit residue. We can therefore express s(z) as a sum of poles,

s(z) =
∞∑

n=−∞

1

z − θI − 4θwn
+

∞∑
n=−∞

1

z + θI − 2θw − 4θwn

=
δ

2

[
cot

(
(z − θI)δ

2

)
+ cot

(
(z − 2θw + θI)δ

2

)]
=

δ cos(δz)

sin(δz)− sin(δθI)
. (2.18)

It is easy to check that (2.18) satisfies the functional equations (2.17), satisfies
the estimate (2.3) as |Im {z} | → ∞, and has one simple pole with unit residue in
the strip |Re {z} | ≤ θw. Finally, the solution to the exterior wedge problem with
Neumann BCs is,

Φ(r, θ) =
1

2πi

∫
γ++γ−

e−ikr cos(z) δ cos(δ(θ + z))

sin(δ(θ + z))− sin(δθI)
dz. (2.19)

Critical analysis. The main advantage of the S-M technique is its ease of implemen-
tation. Once in the right form, a natural deformation to the steepest descent contour
can transform it into a very simple and fast converging integral (see Section 5). This
aspect clearly makes it the gold standard representation of the general solution to
the perfect wedge problem. Moreover, because of the form of the integrand, one can
somehow think of the solution as a weighted superposition of plane waves.

Another advantage of such method is its flexibility. It is indeed possible to use it
for more complicated problems such as the impedance wedge (Malyuzhinets, 1958a)
or with various types of incident waves (Bowman et al., 1987). It has also been em-
ployed on the quarter-plane problem to infer some results about the far-field structure
(Lyalinov, 2013).

A disadvantage of the method is that it is not particularly constructive. In fact,
it often starts with a form of the solution being posed and shown a posteriori to
satisfy all the required conditions in a non-straightforward manner. The Appendix
B addresses this issue by showing that the two-contour representation of the solution
comes naturally from Green’s identity.
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3. The Wiener-Hopf technique

The second method to be reviewed is the Wiener-Hopf (W-H) technique. Before
authors such as Shanin and Daniele used the W-H technique for wedge problems, it
was mostly used for waveguide problems or more complicated half-plane problems.
In the two papers (Shanin, 1996, 1998), Shanin looks at solving wedge problems with
inhomogeneous impedance BCs via the W-H technique. In a series of papers and
internal reports (Daniele, 2000, 2001, 2003a,b), Daniele develops several aspects of
his method for impenetrable wedge problems.

In this section, we will combine elements from both (Shanin, 1996) and (Daniele,
2003b) to rederive (2.14) and (2.19) using the W-H technique. The idea is to Laplace
transform Φ and its θ derivative on the two wedge faces, θ = ±θw, and the line of
symmetry θ = 0. These transforms are used to produce the W-H equations. After
the BCs are considered, a mapping to a new complex plane is introduced so that
the W-H technique can be applied to produce a solution that will match (2.14) and
(2.19). We will start by studying this mapping.

3.1. A useful mapping

As we will see later, when the W-H equations are derived, they cannot be easily
factorised using standard methods. To counter this issue, we will need to map these
equations onto a new complex plane so that they can be reduced to classical W-H
equations like those in (Noble, 1958). In order to do that, Shanin and Daniele use
slightly different mappings,

Shanin’s mapping: η(α) = cos

(
2θw

π
cos−1(

√
α)

)
= cos

(
θw

π
cos−1(2α− 1)

)
,

Daniele’s mapping:4 η(α) = k cos

(
θw

π
cos−1

(α
k

))
,

where η and α are the old and new complex variables. Though the two mappings
are conceptually equivalent, we will study Daniele’s mapping in what follows. Note
though that in his work, Daniele has assumed that k has a small imaginary part in
order to have a strip of analyticity for the W-H equations. However this is not strictly
necessary, and here we will consider k ∈ R+, essentially reducing the W-H problem
to a Riemann-Hilbert problem (see e.g. (Kisil, 2015)). This means that k does not
need to appear explicitly in the mapping, and we can simply use

η(α) = cos

(
θw

π
cos−1(α)

)
, (3.1)

4In Daniele’s papers, the mapping has −k in place of k because he uses eiωt as time factor.
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with the corresponding inverse,

α(η) = cos

(
π

θw

cos−1(η)

)
. (3.2)

We also consider the intermediate mapping and corresponding inverse,

z(α) =
θw

π
cos−1(α), α(z) = cos

(
π

θw

z

)
. (3.3)

The mapping (3.1) has a single branch cut along the real line segment α ∈ (−∞,−1]
where the local argument of the chosen branch is (−π, π]. This is done by choosing the
branch of the inverse cosine such that π−cos−1(x) = cos−1(−x), which is standard for
programs such as Mathematica and MATLAB. Note that the intermediate mapping
limits z to belong to the strip Re {z} ∈ [0, θw].

One of the most important features of the mapping (3.1) is that the upper half
plane (UHP) Im {α} ≥ 0 is mapped to a subset of the UHP Im {η} ≥ 0 as shown in
Figures 3a and 3b. This implies in particular that if a function f(η) is analytic in
the η UHP, then the function f(η(α)) is analytic in the α UHP. Another noteworthy
property is that if a function g(α) has no branch point at α = 1 (or −1), then the
function g(α(z)) will be symmetric with respect to z = 0 (or z = θw) in the z-plane.

The mapping (3.1) is designed specifically for manipulation of the following func-
tions,

f1(η) =
√

1− η2, f2(η) = η cos(θw) +
√

1− η2 sin(θw),

f3(η) = η sin(θw)−
√

1− η2 cos(θw), (3.4)

where the branch for the square root is chosen such that f1(0) = 1. For context, f2

is used to identify domains of analyticity whereas, f1 and f3 are kernel functions that
need to be factorised. Noting that η and z have the relation η = cos(z), we map f1

to the z and α planes.

f1(cos(z)) = sin(z), f1(η(α)) = sin

(
θw

π
cos−1(α)

)
. (3.5)

In the α plane, f1(η(α)) has branch cuts on the segments α ∈ (−∞,−1] and α ∈
[1,∞) (see Figure 4b which is a phase plot of f1 on the α-plane).

Similarly we can map f2 in the z and α planes.

f2(cos(z)) = cos(θw − z), f2(η(α)) = cos

(
θw

π
cos−1(−α)

)
= η(−α). (3.6)

In the α plane, f2(η(α)) has a single branch cut on the segment α ∈ [1,∞) and is
related to η(α) by the identity f2(η(α)) = η(−α), as shown by comparing the phase
portraits in Figures 4a and 4c. The consequence is that the lower half plane (LHP)
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Im {α} ≤ 0 is mapped to a subset of the region Im {f2(η)} ≥ 0 as can be seen from
comparing Figures 3c and 3d. This also implies, in particular, that if a function f(f2)
is analytic in the f2 UHP, then the function f(f2(η(α))) is analytic in the α LHP.

Lastly, we study the effect of the mapping on f3,

f3(cos(z)) = sin(θw − z), f3(η(α)) = sin

(
θw

π
cos−1(−α)

)
= f1(η(−α)), (3.7)

showing that f1 and f3 are closely related in the α-plane, in the sense that f3(η(α)) and
f1(η(α)) have the same branch cuts but their phase plots are the symmetric images of
each other about z = 0, as illustrated in Figures 4b and 4d. This relationship means
that factorising f3 in the α plane is analogous to factorising f1.
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Figure 3: With θw = 7π/8, these are pictures of characteristic domains showing that an upper half
α-plane (a) is mapped onto an upper half η-plane (b) and a lower half α-plane (c) is mapped onto
an upper half f2-plane (d).

(a) η(α) (b) f1(η(α)) (c) f2(η(α)) (d) f3(η(α))

Figure 4: Phase plots of η, f1, f2 and f3 after being mapped onto the α-plane. These illustrate
any branch cuts and show the relationships between the four functions with θw = 7π/8

Before performing such factorisation, let us define the domains R± on which this
factorisation will be done:

R+ = {α : Im {α} > 0} ∪ {α : Re {α} > −1, Im {α} = 0} (3.8)

R− = {α : Im {α} < 0} ∪ {α : Re {α} < 1, Im {α} = 0} (3.9)

Note that R+ ∪R− = C and R+ ∩R− = (−1, 1). Factorising f1, requires to write

f1(η(α)) = f1+(α)f1−(α), (3.10)
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where f1+ is analytic in R+ and f1− is analytic in R−. We expect that f1+ will
have a branch cut starting at α = −1 and f1− a branch cut starting at α = 1.
Hence f1+(α(z)) and f1−(α(z)) will be symmetric about the points z = 0 and θw

respectively. We can realise this factorisation by using the fact that both the leading
order behaviour of f1 as α → 1 and the jump across the cut are consistent with the
function

√
1− α. This means that we can define f1− and f1+ by,

f1−(α) =

√
1− α

2
, f1+(α) =

sin
(
θw
π

cos−1(α)
)√

1−α
2

. (3.11)

Clearly f1− has a branch cut on the segment α ∈ [1,∞) and is analytic at α = −1.
While f1+ retains the branch cut on the segment α ∈ (−∞,−1], and dividing by√

1− α has made α = 1 become a removable singularity and cancelled out the cut
discontinuity. Hence we can assign the limiting value to α = 1 and make f1+ analytic
at that point. Recalling the definition δ = π

2θw
, we also map f1− and f1+ to the

z-plane as follows:

f1−(α(z)) = sin(δz), f1+(α(z)) =
sin(z)

sin(δz)
. (3.12)

As anticipated, due to the absence of the branch point at α = −1, f1−(α(z)) is
symmetric about z = θw. Similarly, due to the absence of the branch point at α = 1,
f1+(α(z)) is symmetric about z = 0. Figure 5 illustrates this factorisation by the
relationship (3.10).

(a) f1−(α)

×

(b) f1+(α)

=

(c) f1(η(α))

Figure 5: Various phase plots helping to illustrate the factorisation (3.10) by displaying each of
the parts of f1 in the α plane for θw = 7π/8.

Now we factorise f3 using the established relation f3(η(α)) = f1(η(−α)) (see (3.7))
to find that f3+(α) = f1−(−α) and f3−(α) = f1+(−α). It can be shown that f3+ has
a branch cut on the segment α ∈ (−∞,−1], is analytic at α = 1 and f3+(α(z)) is
symmetric about z = 0, while f3− has a branch cut on the segment α ∈ [1,∞), can
be made analytic at α = −1 and f3−(α(z)) is symmetric about z = θw.

13



3.2. Derivation of the Wiener-Hopf equations

Daniele derives the W-H equations by rewriting the Helmholtz equation in terms
of an oblique Cartesian coordinate system and uses a Laplace transformation in each
of the new coordinates (Daniele, 2003b). However this process can be time-consuming
and we will show a different method here.

(Shanin, 1996) tackles an interior wedge problem with inhomogeneous impedance
BCs. In this geometry, only one W-H equation is derived, which is obtained via
Green’s second identity. However we will need to split the exterior wedge region into
two halves to obtain two W-H equations. Take Green’s second identity for functions
u, v, twice continuously differentiable on domain Ω ∈ R2 with boundary ∂Ω,∫

Ω

(
v∇2u− u∇2v

)
dΩ =

∫
∂Ω

(
v
∂u

∂n
− u ∂v

∂n

)
dS, (3.13)

where ∂
∂n

is the normal derivative. Here u is the unknown solution Φ and we choose a
suitable test function for v that satisfies the Helmholtz equation (1.1). Then the left
hand side of (3.13) is automatically zero. We do this for two wedge regions θ ∈ [0, θw]
and θ ∈ [−θw, 0] which require different test functions. The right hand side of (3.13)
has two parts, the wedge boundary at θ = ±θw and an imaginary boundary at θ = 0.
For the upper region, we choose the test function v = eikr cos(θ−z), leading (3.13) to
become ∫ ∞

0

[
1

ikr

∂Φ

∂θ

∣∣∣∣
θ=0

− sin(z) Φ|θ=0

]
eikr cos(z)dr

=

∫ ∞
0

[
1

ikr

∂Φ

∂θ

∣∣∣∣
θ=θw

+ sin(θw − z) Φ|θ=θw

]
eikr cos(θw−z)dr. (3.14)

For the lower region, θ ∈ [−θw, 0], we choose the slightly modified test function
v = eikr cos(θ+z), leading (3.13) to become∫ ∞

0

[
1

ikr

∂Φ

∂θ

∣∣∣∣
θ=0

+ sin(z) Φ|θ=0

]
eikr cos(z)dr

=

∫ ∞
0

[
1

ikr

∂Φ

∂θ

∣∣∣∣
θ=−θw
− sin(θw − z) Φ|θ=−θw

]
eikr cos(θw−z)dr. (3.15)

Define the Laplace transform with the following inverse,

F (η) =

∫ ∞
0

f(r)eikrηdr, f(r) =
k

2π

∫ ∞
−∞

F (η)e−ikrηdη, (3.16)

where F (η) is analytic in the half-plane Im {η} > 0, then we define the transforms of
Φ and 1

ikr
∂Φ
∂θ

,

U(η, θ) =

∫ ∞
0

Φ(r, θ)eikrηdr, V (η, θ) =

∫ ∞
0

1

ikr

∂Φ

∂θ
(r, θ)eikrηdr. (3.17)
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These transforms are applied to both (3.14) and (3.15) which produces the W-H
equations,

V (cos(z), 0)− sin(z)U(cos(z), 0)

= V (cos(θw − z), θw) + sin(θw − z)U(cos(θw − z), θw),

V (cos(z), 0) + sin(z)U(cos(z), 0)

= V (cos(θw − z),−θw)− sin(θw − z)U(cos(θw − z),−θw). (3.18)

Adding and subtracting these two equations leads to,

2V (cos(z), 0) = V (cos(θw − z),−θw) + V (cos(θw − z), θw)

+ sin(θw − z) [U(cos(θw − z), θw)− U(cos(θw − z),−θw)] ,

2 sin(z)U(cos(z), 0) = V (cos(θw − z),−θw)− V (cos(θw − z), θw)

− sin(θw − z) [U(cos(θw − z), θw) + U(cos(θw − z),−θw)] .
(3.19)

These are the so-called generalised W-H equations. In this system, the functions
U(·, θ) and V (·, θ) are analytic in a region containing the upper half plane regardless
of the value of θ. We solve the system (3.19) for U(cos(z), 0) and V (cos(z), 0) using
the boundary data on the right hand side. Noting that cos(R) is equal to γ+ with
the opposite orientation, the inverse transform of U(cos(z), θ) is,

Φ(r, θ) =
1

2πi

∫
γ+

e−ikr cos(z)U(cos(z), θ) (ik sin(z)) dz, (3.20)

which is clearly very similar to the Sommerfeld integral. Applying Malyuzhinets’
theorem, we find that,

ik sin(z)U(cos(z), θ) = s(θ + z)− s(θ − z). (3.21)

We can derive a second formula by comparing the inverse transform of V (cos(z), θ)
with the following,

1

ikr

∂Φ

∂θ
(r, θ) =− 1

2πi

∫
γ+

e−ikr cos(z) sin(z) [s(θ + z) + s(θ − z)] dz, (3.22)

which is obtained by differentiating (2.1) with respect to θ and integration by parts.
Applying Malyuzhinets’ theorem, we find that,

−ikV (cos(z), θ) = s(θ + z) + s(θ − z). (3.23)

Adding (3.21) to (3.23) and setting θ = 0 implies that for all z,

s(z) =
ik

2
[sin(z)U(cos(z), 0)− V (cos(z), 0)] , (3.24)

establishing a link between the spectral function and the W-H unknowns. We will
now apply the BCs to solve the W-H system (3.19).

15



3.3. Dirichlet boundary condition

The transformed Dirichlet BCs are U(cos(θw − z),±θw) = 0 which simplify (3.19)
to,

2V (cos(z), 0) = V (cos(θw − z),−θw) + V (cos(θw − z), θw),

2 sin(z)U(cos(z), 0) = V (cos(θw − z),−θw)− V (cos(θw − z), θw). (3.25)

In this form the W-H technique cannot be applied, so (3.3) and (3.6) (discussed in
Section 3.1) are used here,

2V (cos(z(α)), 0) = V (cos(z(−α)),−θw) + V (cos(z(−α)), θw), (3.26)

2 sin(z(α))U(cos(z(α)), 0) = V (cos(z(−α)),−θw)− V (cos(z(−α)), θw). (3.27)

In the α-plane, U(cos(z(α)), 0) and V (cos(z(α)), 0) are analytic in R+, except for
some potential poles on the real line segmentR+∩R−. Similarly, V (cos(z(−α)),±θw)
are analytic in R−, except for some potential poles on R+ ∩ R−. We have already
factorised sin(z(α)) = f1(η(α)) in (3.11), leading (3.27) to become,

2f1+(α)U(cos(z(α)), 0) =
1

f1−(α)
[V (cos(z(−α)),−θw)− V (cos(z(−α)), θw)] .

(3.28)

For both equations, (3.26) and (3.28), the left sides are meromorphic in R+ and
the right sides are meromorphic in R−, however due to the potential poles, these
equations cannot be used to create an entire function. To counteract this we remove
the poles on the right side using the knowledge of the GO component of the solution.
Assuming that θw > π/2, the GO components of V (cos(z(−α)),±θw) are,

V (GO)(cos(z(−α)), θw) =
2i sin(θw − θI)

k cos(z(−α))− k cos(θw − θI)
,

V (GO)(cos(z(−α)),−θw) = −2i sin(θw + θI)H(π − θw − θI)

k cos(z(−α))− k cos(θw + θI)
,

where H is the Heaviside function. The two poles correspond to z(−α) = ±(θw− θI),
i.e. to z(α) = ±θI. However there is no α in the chosen branch of inverse cosine that
satisfies z(α) = −θI. This means that the only pole that needs to be removed is that
of V (GO)(cos(z(−α)), θw) at z(α) = θI, corresponding to α = α0 = cos (2δθI). The
residue at this pole is,

lim
α→α0

[
(α− α0)V (GO)(cos(z(−α)), θw)

]
=

4δ sin (2δθI)

ik
. (3.29)
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With this residue, we remove the pole from equations (3.26) and (3.28),

V (cos(z(α)), 0)− 2δ sin (2δθI)

ik (α− cos (2δθI))

=
1

2
[V (cos(z(−α)),−θw) + V (cos(z(−α)), θw)]− 2δ sin (2δθI)

ik (α− cos (2δθI))
, (3.30)

f1+(α)U(cos(z(α)), 0) +
2δ sin (2δθI)

ikf1−(α0) (α− cos (2δθI))

=
1

2f1−(α)
[V (cos(z(−α)),−θw)− V (cos(z(−α)), θw)] +

2δ sin (2δθI)

ikf1−(α0) (α− cos (2δθI))
.

(3.31)

In both equations (3.30) and (3.31), the left sides are now analytic inR+ and the right
sides are analytic inR−. In order to apply Liouville’s theorem, we must determine the
behaviour of each part in equations (3.30) and (3.31) as |α| → ∞. The edge condition
(1.5) for the Dirichlet case implies that Φ = O(rδ) and 1

r
∂Φ
∂θ

= O(rδ−1). Using the well-
known fact that for any function f(r) behaving like rδ as r → 0, its Laplace transform
F (η), as defined by (3.16), behaves like |η|−δ−1 as |η| → ∞, and noting that η(α) =

O(|α| θwπ ) as |α| → ∞, we can show that as |α| → ∞, U(cos(z(α)), 0) = O(|α|− 1
2
− θw

π ),

and V (cos(z(α)), 0) = O(|α|− 1
2 ) within R+, while V (cos(z(−α)),±θw) = O(|α|− 1

2 )

within R−. We can also determine that f1−(α) = O(|α| 12 ) and f1+(α) = O(|α| θwπ − 1
2 )

as |α| → ∞. This means that all parts of equations (3.30) and (3.31) are decaying as
|α| → ∞ in the appropriate half plane. Construct the two functions,

Ψ1(α) =


LHS(3.30) in R+,

RHS(3.30) in R−,
(3.30) in R+ ∩R−,

Ψ2(α) =


LHS(3.31) in R+,

RHS(3.31) in R−,
(3.31) in R+ ∩R−.

(3.32)

Both Ψ1 and Ψ2 are entire and decaying at infinity, therefore Liouville’s theorem can
be applied to show that Ψ1,Ψ2 ≡ 0. It is hence possible to determine V (cos(z), 0)
and U(cos(z), 0),

V (cos(z), 0) =
2δ sin(2δθI)

ik(cos(2δz)− cos(2δθI))
, (3.33)

sin(z)U(cos(z), 0) = − 4δ cos(δθI) sin(δz)

ik(cos(2δz)− cos(2δθI))
. (3.34)

Equations (3.33) and (3.34) can be substituted into (3.24) to obtain,

s(z) =
ik

2
[sin(z)U(cos(z), 0)− V (cos(z), 0)] =

δ cos(δθI)

sin (δz)− sin(δθI)
, (3.35)

which is the exact spectral function (2.13) obtained using the S-M technique.
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3.4. Neumann boundary condition

The Neumann problem is solved in a similar way to the Dirichlet problem. The
transformed Neumann BCs are V (cos(θw − z),±θw) = 0, leading to a simplification
of (3.19). Again, in the resulting form, the W-H technique cannot be applied directly
and we need the useful mapping of Section 3.1 together with the factorisation of
f1(η(α)) = sin(z(α)) and f3(η(α)) = sin(z(−α)) given in the same section. This
leads to

1

f3+(α)
V (cos(z(α)), 0) =

f3−(α)

2
[U(cos(z(−α)), θw)− U(cos(z(−α)),−θw)] ,

f1+(α)

f3+(α)
U(cos(z(α)), 0) = − f3−(α)

2f1−(α)
[U(cos(z(−α)), θw) + U(cos(z(−α)),−θw)] .

(3.36)

The left (resp. right) sides of (3.36) are meromorphic in R+ (resp. R−) but as for the
Dirichlet case, there are potential poles on R+ ∩ R−. To counteract this we remove
the poles on the right side using the knowledge of the GO component of the solution.
Assuming that θw > π/2, the GO components of U(cos(z(−α)),±θw) are,

U (GO)(cos(z(−α)), θw) =
2i

k(cos(z(−α))− cos(θw − θI))
,

U (GO)(cos(z(−α)),−θw) =
2iH(π − θw − θI)

k(cos(z(−α))− cos(θw + θI))
.

As in the Dirichlet case, we only need to remove the pole of U (GO)(cos(z(−α)), θw) at
α = α0 = cos (2δθI) with residue,

lim
α→α0

[
(α− α0)U (GO)(cos(z(−α)), θw)

]
=

4δ sin(2δθI)

ik sin(θw − θI)
. (3.37)

Using this residue, and the fact that f1−(α0) = sin(δθI) and f3−(α0) = sin(θw−θI)
cos(δθI)

, we

can remove this pole from the W-H system (3.36) to get

1

f3+(α)
V (cos(z(α)), 0)− 4δ sin(δθI)

ik(α− cos(2δθI))

=
f3−(α)

2
[U(cos(z(−α)), θw)− U(cos(z(−α)),−θw)]− 4δ sin(δθI)

ik(α− cos(2δθI))
,

(3.38)

f1+(α)

f3+(α)
U(cos(z(α)), 0) +

4δ

ik(α− cos(2δθI)

= − f3−(α)

2f1−(α)
[U(cos(z(−α)), θw) + U(cos(z(−α)),−θw)] +

4δ

ik(α− cos(2δθI)
.

(3.39)
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In both equations (3.38) and (3.39), the left (resp. right) sides are now an-
alytic in R+ (resp. R−). As before, in order to apply Liouville’s theorem, we
must determine the behaviour of each part in equations (3.38) and (3.39) as |α| →
∞. Using the edge conditions (1.5) for the Neumann case, and the reasoning de-
veloped in the Dirichlet case, we can show that, as |α| → ∞, U(cos(z(α)), 0) =

O(|α|− θwπ ) and V (cos(z(α)), 0) = O(|α|− 1
2 ) within R+, while U(cos(z(−α)),±θw) =

O(|α|− θwπ ) within R−. We can also determine that f1−(α), f3+(α) = O(|α| 12 ) and

f1+(α), f3−(α) = O(|α| θwπ − 1
2 ) as |α| → ∞. As before we can hence construct two

decaying entire functions and apply Liouville’s theorem to obtain

V (cos(z), 0) =
4δ sin(δθI) cos(δz)

ik(cos(2δz)− cos(2δθI))
, (3.40)

sin(z)U(cos(z), 0) = − 2δ sin(2δz)

ik(cos(2δz)− cos(2δθI)
. (3.41)

Equations (3.40) and (3.41) can be substituted into (3.24) to get,

s(z) =
ik

2
[sin(z)U(cos(z), 0)− V (cos(z), 0)] =

δ cos(δz)

sin (δz)− sin(δθI)
, (3.42)

which is the exact spectral function (2.18) obtained using the S-M technique.

Critical analysis. The main disadvantage of this method is that, as our derivation
shows, it is not naturally designed to tackle the wedge problem. As a result, we
do not directly obtain a usual W-H equation, and have to rely on a sophisticated
mapping in order to get back to the usual framework.

The advantage of this section, however, is to show the flexibility of the W-H
method, and that it can work, even in non-flat/parallel geometries. As for the S-
M technique it is possible to adapt such method to more complicated cases such as
inhomogeneous impedance (Shanin, 1998), skew incidence (Daniele and Lombardi,
2006) or even the penetrable wedge (Daniele and Lombardi, 2011).

Moreover, in usual flat geometries, it is known that the W-H technique can be
adapted to handle finite structures. It generally results in matrix W-H problems.
This is encouraging in our case since there is a chance of tackling geometries such as
the truncated wedge (tip removed) with such method. It is perhaps surprising that
this problem can be recast in an analytical continuation problem of the W-H problem
type. This may give insight to the solution of a broader class of diffraction problems
(Daniele and Zich, 2014).

4. The Kontorovich-Lebedev transform method

The third method to be reviewed relies on the Kontorovich-Lebedev (K-L) trans-
form. Introduced in (Kontorovich and Lebedev, 1939), this transform is useful because
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the resulting transformed Helmholtz equation is easy to solve. However, the inverse
transform is known to have convergence issues, but there are alternative versions in-
volving a convergence factor that can help with this (see e.g. (Jones, 1980)). For
any function f(r), define the K-L transform and its inverse (which can have many
variations from numerous sources such as (Lebedev, 1965), (Abrahams, 1986) and
(Jones, 1986)) as

F (ν) =

∫ ∞
0

f(r)

r
H(1)
ν (kr)dr, f(r) =

1

2

∫ i∞

−i∞
νJν(kr)F (ν)dν, (4.1)

where Jν and H
(1)
ν are the Bessel and Hankel functions of the first kind. The transform

is valid if, ∣∣∣∣∫ ∞
c

f(r)e−ikr

r
3
2

dr

∣∣∣∣ <∞, and

∫ ε

0

∣∣∣∣f(r) ln(kr)

r

∣∣∣∣ dr <∞, (4.2)

for all c > 0 and 0 < ε � 1. Alternatively, if the second integral condition is not
satisfied because f(r) tends to a constant as r → 0, then F (ν) contains a pole at
ν = 0 on the integration contour of the inverse transform. This pole is interpreted
as,

1

ν
=

1

2
lim
ε→0

[
1

ν − ε
+

1

ν + ε

]
. (4.3)

If the integrand of the inverse transform fails to converge as ν → ±i∞, an alternative
version with a convergence factor (proposed by Jones (1980)), should be used:

f(r) =
1

2
lim
ε→0

[∫ i∞

−i∞
eεν

2

νJν(kr)F (ν)dν

]
. (4.4)

To adapt this to our problem, we first split the total wave field Φ into its incident
and scattered parts Φ(r, θ) = e−ikr cos(θ−θI) + ΦS(r, θ), where the scattered part ΦS

satisfies Helmholtz’s equation (1.1) and two types of BCs,

Dirichlet BCs: ΦS(r,±θw) = −e−ikr cos(θw∓θI), (4.5)

Neumann BCs:
1

r

∂ΦS

∂θ
(r,±θw) = ∓ik sin(θw ∓ θI)e

−ikr cos(θw∓θI). (4.6)

For our problem, the K-L transform and the associated inverse are given below,

Ψ(ν, θ) =

∫ ∞
0

ΦS(r, θ)

r
H(1)
ν (kr)dr, ΦS(r, θ) =

1

2

∫ i∞

−i∞
νJν(kr)Ψ(ν, θ)dν, (4.7)

where the first integral condition (4.2) is satisfied due to the radiation condition (1.4).
The edge condition (1.5) implies that Ψ(ν, θ) will have a pole at ν = 0. Using (4.7),
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we find the transformed boundary data,

Dirichlet: Ψ±(ν) = Ψ(ν,±θw) = −
∫ ∞

0

1

r
e−ikr cos(θw∓θI)H(1)

ν (kr)dr, (4.8)

Neumann: Ψ±θ (ν) =
∂Ψ

∂θ
(ν,±θw) = ∓ik sin(θw ∓ θI)

∫ ∞
0

e−ikr cos(θw∓θI)H(1)
ν (kr)dr.

(4.9)

From equation 6.611.5 of (Gradshteyn and Ryzhik, 2014), for Re {ν} ∈ (−1, 1),
we know that∫ ∞

0

e−aRH(1)
ν (R)dR =

i
(√

a2 + 1 + a
)−ν

sin(πν)
√
a2 + 1

[
e−iπν −

(√
a2 + 1 + a

)2ν
]
, (4.10)

and integrating (4.10) with respect to a, we obtain

−
∫ ∞

0

e−aR

R
H(1)
ν (R)dR = −

i
(√

a2 + 1 + a
)−ν

ν sin(πν)

[
e−iπν +

(√
a2 + 1 + a

)2ν
]
. (4.11)

Now, let R = kr and a = i cos(θw ∓ θI), then use (4.11) (resp. (4.10)) to evaluate
(4.8) (resp. (4.9)) explicitly to get

Dirichlet: Ψ±(ν) =
2(−i)1+ν

ν sin(πν)
cos((θw ∓ θI − π)ν), (4.12)

Neumann: Ψ±θ (ν) = ∓2(−i)1+ν

sin(πν)
sin((θw ∓ θI − π)ν). (4.13)

The advantage of the K-L transform is that if Ψ satisfies the following governing
equation,

∂2Ψ

∂θ2
+ ν2Ψ = 0, (4.14)

then ΦS satisfies Helmholtz’s equation. For the Dirichlet case, the solution of (4.14)
is,

Ψ(ν, θ) =
1

sin(2θwν)

[
Ψ−(ν) sin((θw − θ)ν) + Ψ+(ν) sin((θw + θ)ν)

]
. (4.15)

This means that the exact solution with Dirichlet BCs is

Φ(r, θ) =

∫ i∞

−i∞

Jν(kr)

i1+ν sin(πν) sin(2θwν)

[
cos((θw + θI − π)ν) sin((θw − θ)ν)

+ cos((θw − θI − π)ν) sin((θw + θ)ν)
]
dν + e−ikr cos(θ−θI). (4.16)
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For the Neumann case, the solution of (4.14) is,

Ψ(ν, θ) =
1

ν sin(2θwν)

[
Ψ−θ (ν) cos((θw − θ)ν)−Ψ+

θ (ν) cos((θw + θ)ν)
]
. (4.17)

This means that the exact solution with Neumann BCs is

Φ(r, θ) =

∫ i∞

−i∞

Jν(kr)

i1+ν sin(πν) sin(2θwν)

[
sin((θw + θI − π)ν) cos((θw − θ)ν)

+ sin((θw − θI − π)ν) cos((θw + θ)ν)
]
dν + e−ikr cos(θ−θI). (4.18)

While it is difficult to see it by inspection, these integral solutions (4.16) and
(4.18) are equivalent to the Sommerfeld integral solutions (2.14) and (2.19). As we
discuss in Appendix B, the connection between the Sommerfeld inverse formula (2.1)
and the K-L inverse transform (4.1) was made in (Malyuzhinets, 1958c) by using the
Sommerfeld integral form of Bessel functions. Here, we shall show equivalence by
first rewriting the integrals (4.16) and (4.18) as series, then convert the result into
Sommerfeld integrals.

The solutions (4.16) and (4.18) are evaluated by deforming the contour to the
right and summing the residues of the poles crossed in the process. The double pole
at ν = 0 is interpreted using (4.3). We can simplify the result using the Jacobi-Anger
expansion of the incident wave to obtain the following series solutions for Dirichlet
and Neumann BCs respectively,

Φ(r, θ) = 2δ
∞∑
n=1

(−i)δnJδn(kr) [cos((θ − θI)δn)− cos((θ − 2θw + θI)δn)] , (4.19)

Φ(r, θ) = 2δJ0(kr) + 2δ
∞∑
n=1

(−i)δnJδn(kr) [cos((θ − θI)δn) + cos((θ − 2θw + θI)δn)] ,

(4.20)

where, as before, δ = π
2θw

. These series solutions can be matched with classical series
solutions obtained by Macdonald (1902) (see Appendix A for more details).

Finally, we need to transform (4.19) and (4.20) into Sommerfeld integrals. We do
this by using the Sommerfeld integral formula for the Bessel function of the first kind,

Jv(R) = − 1

2π

∫
γ+

e−iR cos(z)+ivz+iv π
2 dz, (4.21)

and equation 1.461.2 from (Gradshteyn and Ryzhik, 2014)

1 + 2
∞∑
n=1

eina cos(nb) =
i sin(a)

cos(b)− cos(a)
, (4.22)
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which converges if Im {a} > 0. This means that (4.19) and (4.20) can be written in
Sommerfeld integral form as

Φ(r, θ) =
1

2πi

∫
γ+

e−ikr cos(z)

[
δ sin(δz)

cos(δ(θ − θI))− cos(δz)
± δ sin(δz)

cos(δ(θ + θI)) + cos(δz)

]
dz,

(4.23)

where the plus and minus signs denote the Dirichlet and Neumann solutions respec-
tively. Using standard trigonometric identities, it is trivial to show that the square
brackets in (4.23) are an alternate form of s(θ+z)−s(θ−z). Hence the Kontorovich-
Lebedev solutions (4.16) and (4.18) match with the Sommerfeld integrals (2.14) and
(2.19) respectively.

Critical analysis. The main advantage of such transform is that it is a very natural
way to tackle the wedge problem. It hence leads to a constructive proof of the form
of the solution in the K-L space, see e.g. (4.15). In addition, it leads easily to a
near-field expansion of the solution.

The clear disadvantage of such method lies in the convergence issues of the in-
verse K-L transform. It does require some regularisation in order to be evaluated
numerically, and even in this case, the computation of inverse K-L transform remains
cumbersome. To evaluate the far-field it is usually necessary to convert it into a
Sommerfeld type integral.

5. Solution analysis and evaluation

We shall now compare the exact integral and series solutions with some GTD
approximations and evaluate them for some representative values of θw. Note that
the K-L integrals do not need to be plotted since we have already shown that they
are equivalent to the Sommerfeld integrals (2.14) and (2.19). Numerical computation
of the Sommerfeld integrals can be slow if kr � 1 because e−ikr cos(z) will oscillate
rapidly along the Sommerfeld contours.

Another way to evaluate these integrals is to deform the Sommerfeld contours
to the steepest descent contours shown on the left side of Figure 6. During this
deformation, all poles on the real line segment |Re {z} | ≤ π are crossed. Their
contribution, which can be calculated exactly using residues, correspond to the GO
component of the field, ΦGO, leaving behind the diffracted part ΦDiff. The steepest
descent contour SDC0 is repeated twice in opposite directions so is cancelled out and
the other two contours are translations of each other. The exponential term e−ikr cos(z)

does not oscillate along these contours so computation time is significantly reduced,
even for large kr. This means that the S-M integrals (2.14)-(2.19) are equivalent to,

Φ = ΦGO + ΦDiff = ΦGO +
1

2πi

∫
SDC−π+SDCπ

e−ikr cos(z)s(θ + z)dz. (5.1)

23



Figure 6: The Sommerfeld contours γ±, the steepest descent contours SDC−π, SDC0, SDCπ and,
shown as dots, possible poles on the real line (left) and the Γ contour (right)

Since they are translations of each other, we can transform SDC−π and SDCπ
onto the Γ contour which is illustrated on the right side of Figure 6,

ΦDiff =
1

2πi

∫
Γ

eikr cos(z) [s(θ + z + π)− s(θ + z − π)] dz. (5.2)

By the method of steepest descent, Γ satisfies,

Γ(τ) = cosh−1

(
1

cos(τ)

)
, and sin(τ) sinh(Γ(τ)) ≤ 0, (5.3)

where Re {z} = τ ∈ (−π
2
, π

2
). This is rewritten in terms of the Gudermannian function

gd(x),

Γ(τ) = igd(iτ) = ln |sec(τ)− tan(τ)| . (5.4)

Using the following parametrisation, z = τ + iΓ(τ), and noting these identities,

sinh(Γ(τ)) = − tan(τ),
dΓ

dτ
= − sec(τ),

the diffracted part is written as a simple integral:

ΦDiff =
eikr

2πi

∫ π
2

−π
2

e−kr sin(τ) tan(τ)
[
s(θ + π + τ + iΓ(τ))− s(θ − π + τ + iΓ(τ))

]
(1− i sec(τ)) dτ.

(5.5)

As stated earlier, this integral will be much faster to evaluate numerically than
the S-M integrals (2.14)-(2.19). However, difficulties can arise when θ is in a small
neighbourhood of the GO discontinuities because one of the poles will be very close
to the contour of integration, which will cause numerical issues.
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5.1. Comparison with simpler problems

In this subsection we will show that the solution is consistent with the simple case
when the wedge opens up to form a half-space or closes to make a half-plane. First,
we look at the case where θw = π/2 to form a half-space problem. The solution is
easily obtainable via the method of images,

Φ(r, θ) = ΦI ∓ ΦR. (5.6)

Here the upper and lower signs denote the Dirichlet and Neumann solutions respec-
tively. Obviously (5.6) is equal to the GO component so we need to show that the
diffracted part (5.2) is identically zero. Expressing s(z) in terms of the cotangent, we
find that,

s(z + π)− s(z − π) =
1

2

[
cot

(
1

2
(z − θI + π)

)
∓ cot

(
1

2
(z + θI)

)]
− 1

2

[
cot

(
1

2
(z − θI − π)

)
∓ cot

(
1

2
(z + θI − 2π)

)]
, (5.7)

which is identically zero due to the periodicity of cotangent. This implies that ΦDiff ≡
0, as required.

For another comparison, we look at the case where the wedge closes to form a
half-plane. Hence we let θw = π and match the S-M integrals (2.14)-(2.19) with the
known solution to the half-plane problem in terms of Fresnel integrals,

Φ(r, θ) = ΦI

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
1

2
(θ − θI)

))]
∓ ΦR

[
1

2
− π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
1

2
(θ + θI)

))]
, (5.8)

where the upper and lower signs correspond to the Dirichlet and Neumann solution
respectively, ΦR = e−ikr cos(θ+θI) is the reflected wave and F(v) is the Fresnel integral
defined5 by

F(v) =

∫ v

0

eiu
2

du. (5.9)

Having θw = π implies that δ = 1/2 and,

s(z) =
1

4

[
cot

(
1

4
(z − θI)

)
∓ cot

(
1

4
(z + θI − 2π)

)]
. (5.10)

5Fresnel integrals can be written in many different ways, see for example (Abramowitz and Stegun,
1964; Noble, 1958; Assier and Peake, 2012b) and references therein.
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Hence, we can rewrite the S-M integrals (2.14)-(2.19) in the following form,

Φ(r, θ) = ΦF(r, θ − θI)∓ ΦF(r, θ + θI − 2π), (5.11)

where

ΦF(r, λ) =
1

8πi

∫
γ++γ−

e−ikr cos(z) cot

(
1

4
(z + λ)

)
dz. (5.12)

It is possible to express (5.12) in terms of a Fresnel integral (a procedure to do this
can be found in section 5.3 in (Babich et al., 2007)), leading to

ΦF(r, λ) = e−ikr cos(λ)

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
λ

2

))]
. (5.13)

Using this, we recover exactly (5.8) from (5.11), as expected. Now that the solution
matches with that of the half-space and half-plane problems, we shall focus on deriving
the GTD approximation for non-degenerate wedges.

5.2. Geometrical Theory of Diffraction (GTD)

Keller (1962) defined the Geometrical Theory of Diffraction to be an extension of
classic Geometrical Optics including diffraction terms. The GTD approximation is
simply an asymptotic approximation of the total wave field as kr → ∞, creating a
high-frequency or far-field approximation. To derive the GTD approximation of the
case presented here, we continue with the method of steepest descent applied to (5.2)
as kr →∞. Equation (5.2) is of the form ΦDiff =

∫
Γ
g(z)e−krψ(z) dz, where kr is a big

parameter, g(z) = (s(θ+z+π)−s(θ+z−π))
2πi

and ψ(z) = −i cos(z). The latter has a saddle
point at z = 0 and is such that ψ′′(0) = i 6= 0. Since g(0) is also not zero, we can
apply the method of steepest descent in its simplest form (see e.g. (Bleistein and
Handelsman, 2010)) to get

ΦDiff ∼
kr→∞

√
2π

krψ′′(0)
g(0)e−krψ(0) =

eikr+iπ/4√
2πkr

(s(θ − π)− s(θ + π)) (5.14)

Hence we can write

Φ(r, θ) ∼
kr→∞

ΦGO +
eikr+

iπ
4

√
2πkr

[s(θ − π)− s(θ + π)] . (5.15)

In this GTD approximation, the term,

D(θ, θI) =
e
iπ
4

√
2π

[s(θ − π)− s(θ + π)] , (5.16)
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is known as the diffraction coefficient. Unfortunately, this GTD approximation is
singular for certain values of θ, for example in the case where θw > π/2, the GTD
is invalid at θI − π, 2θw − θI − π and π − 2θw − θI, which correspond to the GO
discontinuities. This is the main issue with GTD: while it is a much more accurate
approximation than the Geometrical Optics, it becomes invalid at the GO disconti-
nuities. The pursuit of an approximation that is uniformly valid for all θ has led to
the improved Uniform Geometrical Theory of Diffraction (Kouyoumjian and Pathak,
1974). We follow section 5.5 in (Babich et al., 2007) to find the uniform GTD ap-
proximation (UTD).

Restricting ourselves to the specific case where θw > π/2 and |θI| < θ̄w = π − θw,
there are only two values where the standard GTD is invalid, θ = π − 2θw − θI and
2θw − π − θI. To produce the uniform approximation, we first construct a function
that is a linear combination of Φ and ΦF defined by (5.12). The idea is to remove the
poles causing the singularities in (5.15) and then use the method of steepest descent.
Consider the following,

Ξ(r, θ) = Φ(r, θ)± ΦF(r, θ + θI − 2θw)± ΦF(r, θ + θI + 2θw), (5.17)

where ΦF is defined in (5.12). The upper and lower signs denote the Dirichlet and
Neumann solutions respectively. The combination of Φ and ΦF has effectively re-
moved the poles at 2θw− θI− θ and −2θw− θI− θ, but the pole at θI− θ remains for
all values of θ. We use the method of steepest descent to approximate Ξ,

Ξ(r, θ) ∼ ΦI +
eikr+

iπ
4

√
2πkr

[
s(θ − π)− s(θ + π)∓ 1

2
sec

(
1

2
(θ + θI − 2θw)

)
∓ 1

2
sec

(
1

2
(θ + θI + 2θw)

)]
. (5.18)

We rearrange (5.17) and use (5.13) and (5.18) to find the UTD approximation.

Φ(r, θ) ∼ ΦI ∓ ΦR1

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
θ + θI − 2θw

2

))]
∓ ΦR2

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
θ + θI + 2θw

2

))]
(5.19)

+
eikr+

iπ
4

√
2πkr

[
s(θ − π)− s(θ + π)∓ 1

2
sec

(
1

2
(θ + θI − 2θw)

)
∓ 1

2
sec

(
1

2
(θ + θI + 2θw)

)]
where ΦR1 = e−ikr cos(θ−2θw+θI) and ΦR2 = e−ikr cos(θ+2θw+θI) are the reflections of the
incident wave from the top and bottom face respectively. If we restricted the incident
angle to θI > π − θw instead, we would need to use the following function,

Ξ(r, θ) = Φ(r, θ)− ΦF(r, θ − θI)± ΦF(r, θ + θI − 2θw), (5.20)
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where the same method as the first case will produce another UTD approximation
for Φ

Φ(r, θ) ∼ ΦI

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
θ − θI

2

))]
∓ ΦR1

[
1

2
+ π−

1
2 e−

iπ
4 F
(

(2kr)
1
2 cos

(
θ + θI − 2θw

2

))]
(5.21)

+
eikr+

iπ
4

√
2πkr

[
s(θ − π)− s(θ + π) +

1

2
sec

(
1

2
(θ − θI)

)
∓ 1

2
sec

(
1

2
(θ + θI − 2θw)

)]
.

These two approximations are uniformly valid for −θw < θ < θw, however the BCs
are only satisfied in the limit kr →∞. Another potential accuracy issue occurs when
θI approaches θ̄w. This situation corresponds to a transition in the GO field, from a
case when only one reflected wave is present to a case when two reflected waves occur.
Finally, note that using the asymptotic expansions for large argument for the Fresnel
integrals will simplify the above formulas to produce the GTD approximation (5.15)
again.

5.3. Graphical comparison of evaluation methods

The exact solution to the perfect wedge problem has been written as a Sommer-
feld integral on the usual Sommerfeld contour as in (2.14)-(2.19) or on its steepest
descent contour as in (5.5). Both formulations are exact and equivalent, but the
latter is much easier to evaluate numerically. We have also presented three different
approximations, a truncated infinite series (4.19), a GTD approximation (5.15) and a
UTD approximation (5.19) or (5.21). In this subsection, we will plot the exact solu-
tion and each of the approximations and compare their accuracy and computational
speed. For the series solutions we shall truncate at 100 terms, which is enough for
the wavenumbers considered here.

In Figure 7, we will consider the wedge defined by 2θ̄w = π/4 for zero incidence
angle, θI = 0. This corresponds to a case where the GO part of the field exhibits two
reflected waves. In Figure 8, we consider the same wedge, but with an incident angle
θI = π/2, corresponding to a GO field with a single reflected wave. In both cases, we
will plot the real part of the total field Φ against θ for different values of kr and differ-
ent BCs. In both figures, the thick plain line represents the exact Sommerfeld solution
(SI/SDC), the thick dashed line is the truncated series approximation, the dotted line
and the thin line represent the UTD and GTD approximations respectively.

In both Figures 7 and 8, we confirm that,

• The series solution is very accurate despite the truncation. However if we want
to consider larger values of kr, more terms will be required to remain accurate,
which will slow down its computation.
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Figure 7: Comparison between the real part of the exact solution (SI/SDC) and various approxima-
tions for Dirichlet and Neumann BCs, for kr = 1, 5, 10 and for a wedge characterised by θw = 7π/8
and an incident angle θI = 0.

• The GTD approximation has the least overall accuracy and becomes invalid
when θ is close to any GO discontinuities θI−π, 2θw−θI−π and −2θw−θI +π.
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Figure 8: Comparison between the real part of the exact solution (SI/SDC) and various approxima-
tions for Dirichlet and Neumann BCs, for kr = 1, 5, 10 and for a wedge characterised by θw = 7π/8
and an incident angle θI = π/2.

It does however satisfy the correct BCs.

• The UTD approximation is a clear improvement to the standard GTD approx-
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imation away from the boundaries, in particular it does not have any singular-
ities, but fails to satisfy the BCs.

Both the GTD and UTD approximations appear to improve their accuracy as
kr gets larger. To show this, we take the Dirichlet case with θI = 0 and look at
the quantities GTD Error = |(2.14) − (5.15)| and UTD Error = |(2.14) − (5.19)|
against θ for kr = 1, 5, 10, 25. Figure 9 (left) illustrates the GTD error and shows
that it is a good approximation, provided that kr is large enough and θ is not too
close to one of the singular angles θ = 2θw − θI − π and −2θw − θI + π (which are
indicated by a thin vertical dashed line). In Figure 9 (right), it is clear that the UTD
error at the boundary decreases significantly as kr increases, rendering it a very good
approximation everywhere if kr is large enough. We also reconfirm that the UTD
approximation is a large improvement in comparison to the GTD approximation.

Figure 9: Comparison of the GTD (left) and UTD (right) error for Dirichlet BCs, incident angle
θI = 0 and increasing values of kr, in the case of a wedge characterised by θw = 7π/8.

Finally, for completeness, we replicate some plots from existing literature using
the UTD approximation. Specifically, we replicate the first and last plots of figure
5 in (Hacivelioglu et al., 2011) which is a comparison of an alternate definition for
(5.5), the series solution with 100 terms and a similar UTD approximation. In order
to replicate these plots, we need to adapt to their geometric configuration by making
the substitutions θ = θw − θ̂ and θI = θw − θ̂I. We use (5.21) with θ̄w = π/36 and
kr = 10π. Figure 10 (left) is the Dirichlet case with θ̂I = π/2. Figure 10 (right) is
the Neumann case with θ̂I = 2π/3.

6. Alternative methods

Sections 2, 3 and 4 cover methods that are most commonly used in diffraction
theory. In this section, we will briefly present three alternative methods that have
been tailored to tackle the perfect wedge problem.
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Figure 10: Replication of the top left and bottom right plots of figure 5 in (Hacivelioglu et al.,
2011) using (5.21).

6.1. Embedding Formula technique

The first method to be reviewed is based on the idea of embedding. This idea
is relatively new in diffraction theory (Williams, 1982), and has mainly been used
for planar cracks and slits, as well as parallel combinations of these (Gautesen, 1983;
Martin and Wickham, 1983; Biggs, 2001, 2002). Though, recently, in (Craster and
Shanin, 2005) it was adapted to wedges with a rational angle. We will here attempt to
summarise this method and consider again our wedge region characterised by θw. We
seek the total field Φ satisfying the Helmholtz equation (1.1), subjected to Dirichlet
(1.2) or Neumann (1.3) BCs, as well as radiation and edge conditions (1.4) and (1.5)
for a plane wave incidence ΦI = e−ikr cos(θ−θI), with incident angle θI. The aim of the
method is to recover the diffraction coefficient of the diffracted field ΦDiff.

The diffraction coefficient. Using classical separation of variables in the polar coor-
dinates (r, θ) and the edge conditions, it can be shown that the total field Φ has an
eigenfunction expansion of the form

Φ(r, θ) =
∞∑
m=0

(2/k)νmΓ(1 + νm)Km(θI)um(r, θ), (6.1)

where νm = mδ = mπ/ (2θw) and um is a product of Bessel functions Jνm(kr) and
some trigonometric functions of θ satisfying the BCs6. In the Dirichlet case, the
m = 0 term in the sum is equal to zero. Note that using the series results (4.19) and
(4.20) of Macdonald type, we can recover Km exactly, but we will not use this here.

6The multiplicative factor (2/k)νmΓ(1 + νm) is just here to compensate the near-field behaviour
of the Bessel functions, and, doing so, somehow normalise the expansion.
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The aim is to determine the diffraction coefficient D(θ, θI), already defined in (5.16),
that is such that

ΦDiff(r, θ) ∼
r→∞

D(θ, θI)
eikr√
kr

(6.2)

The edge Green’s functions. In order to do this, as is customary with embedding, we
need to introduce an auxiliary problem7. In fact here, we will introduce infinitely
many of them. Let m ∈ N\{0}, and consider the function ûm,ε that is the tailored
Green’s function (i.e. that satisfies the BCs) for the Helmholtz equation resulting
from m point sources given by zj = εei(ϕj−θw), j = 1, . . . ,m, where ϕj = (2j−1)θw/m
for Dirichlet BC and ϕj = 2jθw/m for Neumann BC. The strength Aj of each source
is given by Aj = (−1)jπε−νm , as illustrated in Figure 11.

Figure 11: Position of the sources in Dirichlet and Neumann cases for m = 10

The mth edge Green’s function is then defined by

ûm = lim
ε→0

ûm,ε (6.3)

The near field behaviour of the edge Green’s function can be studied by considering
ûm,ε for fixed ε, close to the wedge edge. In that vicinity, we can scale the space
variables to show that ûm,ε behaves locally like ûinner

m,ε , which is the exact same Green’s
function, but for Laplace’s equation instead of Helmholtz. Using the method of images
in a half-space, and the mapping z = w1/δ, it is possible to find ûinner

m,ε explicitly8 as

ûinner
m,ε = −ε

−νm

2
Re

{
ln

(
Zνm − aενm
Zνm + aενm

)}
with

{
a = i for Dirichlet BC
a = 1 for Neumann BC

7Here the auxiliary problems will be constructed from point sources. However, another type
of embedding formulae can be obtained with plane wave auxiliary problems, see (Biggs, 2006) for
example.

8Note that in (Craster and Shanin, 2005), only the Dirichlet formula is given, and is slightly
different from this one (the factors i are missing), which we think is a typographical error.
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where Z = reiϕ, ϕ being the angle measured from the bottom face of the wedge, so
that we have ϕ = θ + θw. Looking at the leading order of ûinner

m,ε as ε → 0, using the
fact that ln(z) ∼

z→1
1− 1/z, we get

ûinner
m,ε ∼

ε→0
r−νm

{
sin(νmϕ) for Dirichlet BC
cos(νmϕ) for Neumann BC

, (6.4)

which by construction, is also the local behaviour of ûm near the wedge edge. Note
that the edge Green’s function is singular on the wedge edge and does not satisfy the
edge condition, we say that it is oversingular . It does however satisfy the Helmholtz
equation everywhere outside the wedge. This leads to the exact representation of ûm
as:

ûm(r, θ) =
πi

Γ(νm)
(k/2)νmH(1)

νm (k0r)

{
sin (νm (θ + θw)) for Dirichlet BC
cos (νm (θ + θw)) for Neumann BC

, (6.5)

since it is clear that the above expression has the right type of singularity, and satisfies
the boundary and radiation conditions, as well as the Helmholtz equation.

It is also natural to define the directivity D̂m(θ) for each edge Green’s function by

ûm(r, θ) ∼
r→∞

D̂m(θ)
eikr√
kr
, (6.6)

and using the asymptotic behaviour of the Hankel function for large argument, (6.5)
and (6.6) imply that

D̂m(θ) =

√
2π(k/2)νme−

iνmπ
2

Γ(νm)

{
sin (νm (θ + θw)) for Dirichlet BC
cos (νm (θ + θw)) for Neumann BC

. (6.7)

It is important to note the main difference between the directivities D̂m(θ) and the
diffraction coefficient D(θ, θI): the former only depends on one angular variable, while
the latter depends on two. Remarkably, using the reciprocity principle, it is possible to
relate the far-field of the edge Green’s functions to the near-field of each components
of the eigenfunction expansion (6.1) as follows:

D̂m(θI) =
mπ

2
Km(θI) (6.8)

The operator Hp. As mentioned above, this method can only be applied to rational
angles9, so let us set 2θw = qπ

p
for some positive integers p and q. Now define, the

9Shanin and Craster (2010) have extended this work by considering a pseudo-differential operator
Kµ instead of the differential operator Hp. Note that for an integer n, Kn reduces to CnTn

(
i
k
∂
∂x

)
for

some constant Cn, which establishes the link with the theory developed here. This new operator can
however be used when µ 6∈ N to produce an embedding formula valid for wedges with non-rational
angles, though it cannot be used for polygons.
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operator Hp as follows:

Hp = (−ik)p
[
Tp

(
i

k

∂

∂x

)
− Tp(cos(θI))

]
,

where Tp is the pth Chebyshev polynomial, and it is understood that for some integer
n,
(
a ∂
∂x

)n
= an ∂n

∂xn
. From now on, for brevity, we will focus solely on the Dirichlet

case. It is relatively easy to show that for every m ∈ N\{0}, Hp[um] satisfies the
Helmholtz equation, the correct boundary conditions and the radiation condition,
and that Hp[ΦI] = 0. It is also possible to prove (though it is more difficult) that

Hp[Φ] ∼
r→0

2p−1(−1)q−p+1

q−1∑
m=1

Km(θI)νm(νm − 1) . . . (νm − p+ 1)r−νq−m sin(νq−mϕ)

+ terms that satisfy the edge conditions (6.9)

We refer to (Craster and Shanin, 2005) for the details of the proof, but it relies on a
careful analysis of the near-field and far-field behaviour of Hp[um]. It also uses the
identity νm ± p = νm±q, which explains how q enters the scene.

Embedding formula. Note now that the behaviour of each term in (6.9) reminds of that
of the (q −m)th edge Green’s function (see (6.4)). This motivates the introduction
of the auxiliary function

W = Hp[Φ]− 2p−1(−1)q−p+1

q−1∑
m=1

Km(θI)νm(νm − 1) . . . (νm − p+ 1)ûq−m.

By construction, W satisfies the edge condition, and it is also clear from what has
been done above, that it satisfies the Helmholtz equation, the boundary and the
radiation conditions. Hence, by uniqueness, we conclude that W ≡ 0, and we obtain
the weak form of the embedding formula

Hp[Φ] = 2p−1(−1)q−p+1

q−1∑
m=1

Km(θI)νm(νm − 1) . . . (νm − p+ 1)ûq−m, (6.10)

valid everywhere, that relates the total field Φ to the edge Green’s functions. Focus-
ing now on the far-field, (6.10) makes it possible to express the diffraction coefficient
D(θ, θI) in terms of the directivities of some of the edge Green’s functions, as sum-
marised in the equation below:

D(θ, θI) =

q−1∑
m=1

(−1)q−p+1νm(νm − 1) . . . (νm − p+ 1)

mπ(ik/2)p(cos(pθ)− (−1)p cos(pθI))
D̂m(θI)D̂q−m(θ) (6.11)

The formula (6.11) is the main result of (Craster and Shanin, 2005) and is referred
to as the Embedding formula. It is remarkable in the sense that it allows to express
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the diffraction coefficient, depending on two angular variables, in terms of a sum of
products of simpler directivities depending on one angular variable only. Moreover, in
that case, thanks to (6.7), we know the directivities exactly and we can then recover
a new analytical expression for the diffraction coefficient. For a given rational angle,
it is possible to show that it is indeed equal to that given in (5.16).

Critical analysis. The concept of embedding is very general in diffraction theory,
which makes this method very adaptable to all kinds of geometries such as slits,
wedges, plane sectors, cubes (Skelton et al., 2010) and curved geometries (Moran
et al., 2016). In that respect, instead of being seen as a method, one can consider the
embedding structure as an inherent property of diffraction problems.

Its main advantage is that once derived explicitly, the embedding formula of a
given diffraction problem allows one to obtain a very efficient way of computing the
diffraction coefficient resulting from a incident plane wave for all observation and
incident angles.

Even though the weak embedding formulae of the type (6.10) are valid everywhere,
the power of embedding formulae only becomes apparent in the far-field, where it can
be written in its strong form (see (6.11) for the present case). In that sense, such
formula is not particularly helpful to shed some light on the near field behaviour
of diffraction problems. Though because of this emphasis on the far-field, one can
consider structures with multiple diffracting parts such as polygons for example.

6.2. Random Walk method

This method, developed in a series of papers (Budaev and Bogy, 2001, 2002a,b),
and applied to the wedge problem in (Budaev and Bogy, 2003), is based on the
Feynman-Kac formula (see e.g. (Feynman, 1948), (Kac, 1949) and (Freidlin, 1985)).
This formula implies, in particular, that the solution u of a deterministic PDE on a
domain Ω with Dirichlet condition u|

∂Ω
= f(r, θ) on the boundary ∂Ω

σ2
1(r, θ)

2

∂2u

∂r2
+
σ2

2(r, θ)

2

∂2u

∂θ2
+ A1(r, θ)

∂u

∂r
+ A2(r, θ)

∂u

∂θ
+B(r, θ)u = 0 (6.12)

with real-valued coefficients σ1,2, A1,2 and B, can be written as

u(r, θ) = E
{
f(ξ1

τ , ξ
2
τ )e

∫ τ
0 B(ξ1

s ,ξ
2
s)ds
}
, (6.13)

where E represents the mean operator, and ξ1,2
t are random motions governed by

the two coupled stochastic differential equations (SDE) with drift coefficient A1,2 and
diffusion coefficient σ1,2

dξ1
t = A1(ξ1

t , ξ
2
t )dt+ σ1(ξ1

t , ξ
2
t )dW

1
t and dξ2

t = A2(ξ1
t , ξ

2
t )dt+ σ2(ξ1

t , ξ
2
t )dW

2
t , (6.14)
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with initial conditions (ICs) ξ1
0 = r and ξ2

0 = θ, whereW 1,2
t are Brownian motions (also

known as Wiener processes)10. The exit time τ is the time when each computation
should be stopped and it corresponds to the first time t such that (ξ1

t , ξ
2
t ) ∈ ∂Ω.

If the coefficients in (6.12) and (6.14) are complex-valued (which as we will see
will be the case for the problem at hand), then the Feynman-Kac representation is
still valid, but it becomes difficult to determine and define the exit time τ . In fact if
the coefficients are complex, then so will be the random motions ξ1,2

t , and since the
points of ∂Ω belong to R2, we cannot easily characterise the fact that (ξ1

t , ξ
2
t ) hits this

boundary. This can be addressed by considering the “continuation” of the boundary
∂Ω into a manifold of real dimension 2 within the space C2 and by multiplying (6.12)
by q2(r, θ), where q is a complex-valued function. For a suitable function q, it becomes
possible to define an exit time τ , and the solution to the PDE is given by

u(r, θ) = E
{
f(ξ1

τ , ξ
2
τ )e

∫ τ
0 q2(ξ1

s ,ξ
2
s)B(ξ1

s ,ξ
2
s)ds
}
, (6.15)

where ξ1,2
t are random motions governed by the two coupled stochastic differential

equations (SDE)

dξ1,2
t = q2(ξ1

t , ξ
2
t )A1,2(ξ1

t , ξ
2
t )dt+ q(ξ1

t , ξ
2
t )σ1,2(ξ1

t , ξ
2
t )dW

1,2
t

with ICs ξ1
0 = r and ξ2

0 = θ.
In order to fit within this framework, for the wedge problem in (Budaev and Bogy,

2003), the authors aim to solve the Helmholtz equation (1.1), subject to the radiation
condition and to Dirichlet BCs of the type Φ (r,±θw) = F (r,±θw). They seek a
solution of the form Φ = ueiS for some unknown functions u and S. The Helmholtz
equation becomes

∆u+ 2i∇u · ∇S + iu∆S + u(k2 −∇S · ∇S) = 0 (6.16)

If the solution is in the Liouville form, we choose S(r, θ) = kr. In this case, S
automatically satisfies the eikonal equation ∇S · ∇S = k2 and, after multiplication
by i

2k
, (6.16) becomes

i

2k

(
∂2u

∂r2
+

1

r2

∂2u

∂θ2

)
+

(
i

2kr
− 1

)
∂u

∂r
− 1

2r
u = 0

and we can write the BCs u (r,±θw) = e−ikrF (r,±θw) = f(r,±θw). This fits exactly
within the realm of (6.12), but with complex coefficients. It is shown in (Budaev and

10We do not intend to insist on the rigorous mathematical definitions of these objects here, however
we refer the interested reader to general textbooks on the topic, such as (Voss, 2013, Chapter 6)
for example, where Brownian motions, SDEs (and their resolution via the Euler-Maruyama scheme)
and Itô calculus are introduced.
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Bogy, 2003) that a suitable choice of the function q is q2(r, θ) = −ikr2. The manifold
extending the boundary is chosen as ∂G, where

G =
{

(r, θ) ∈ C2, r ∈ C,−θw < Re{θ} < θw

}
.

In this particular case, the two SDEs to consider become

dξ1
t = ξ1

t

(
ikξ1

t +
1

2

)
dt+ ξ1

t dW
1
t and dξ2

t = dW 2
t (6.17)

with ICs ξ1
0 = r and ξ2

0 = θ and exit time τ defined such that ξ2
τ = ±θw, which now

makes sense since the random process ξ2
t is now real for all times. Using (6.15), we

can hence write the solution11 as

u(r, θ) = E
{
f(ξ1

τ , ξ
2
τ )e

ik
2

∫ τ
0 ξ1

sds
}

or u(r, θ) =
1√
r
E
{
f(ξ1

τ , ξ
2
τ )
√
ξ1
τe
− 1

2
W 1
τ

}
, (6.18)

where the second part of (6.18) is derived from the first using Itô calculus. Note that
for this to be valid, f should be chosen such that it can be analytically continued for
r ∈ C. The second arguments in (6.18) do not pose any problem since by definition
ξ2
τ = ±θw. The two SDEs (6.17) are reasonably straightforward to solve numerically

(see Figure 12, left) using Euler-Maruyama with time step ∆t = 0.01. If the solution
we are trying to find is continuous everywhere, the solution (6.18) can be implemented
and works well. To illustrate this point we use the same example as in (Budaev and

Bogy, 2003) and apply this method to reproduce the function H
(1)
0 (kr), which is well

known to satisfy the Helmholtz equation and the radiation condition. In order to do
so we tailored the BCs to be f(r,±θw) = e−ikrH

(1)
0 (kr) and plotted an illustration of

the result in Figure 12.
If the solution we are seeking has some discontinuities, then the method should

be adapted slightly. We are interested in this since what we want to compute is
the diffracted field ΦDiff(r, θ) resulting from an incident plane wave with incident
angle θI, which satisfies homogeneous Dirichlet BCs and the radiation condition. In
what follows, we choose θI such that both wedge faces are illuminated. As shown
in Section 5, the field ΦDiff has GO discontinuities12 at θ = θ1 = 2θw − θI − π and
θ = θ2 = −2θw − θI + π, and the knowledge of the GO field allows us to derive the
following jump conditions across θ1,2:

[u]θ1 = 1, [u]θ2 = −1, [∂u/∂θ]θ1,2 = 0,

11Note that in (Budaev and Bogy, 2003), in their equivalent of the second part of (6.18) (their
equation (26)), the argument of the exponential is − 1

2dW 1
τ . We believe it to be a typographical

error.
12Note that in (Budaev and Bogy, 2003), the convention to choose the index of θ1 or θ2 is different,

but we have made that choice in order to be consistent with the rest of the review.
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Figure 12: (Left) 2000 realisations of the SDE governing ξ1
t and their mean, plotted in the complex

plane with initial condition ξ1
0 = r = 1. (right) The ongoing mean computed by (6.18) for the Hankel

function up to 2000 realisations for θ = π/4, r = 1 and k = 5.

where u is defined such that ΦDiff(r, θ) = u(r, θ)eikr, and the bracket [u]θ1,2 = u(r, θ1,2+
0) − u(r, θ1,2 − 0). Using these jump conditions, it can be shown that (6.18) can be
rewritten as

u(r, θ) = E

{∑
τν<τ

(−1)mνδνe
ik
2

∫ τν
0 ξ1

sds

}
or u(r, θ) =

1√
r
E

{∑
τν<τ

(−1)mνδν

√
ξ1
τνe
− 1

2
W 1
τν

}
,

(6.19)

where for each simulation, the τν represent the times of crossings between ξ2
t and

the discontinuous lines θ1,2. If θ1 (resp. θ2) is crossed, then mν = 2 (resp. 1). If
the crossing is from above (resp. below), then δν = 1 (resp. −1). As illustrated
in Figure 13 (left), many such crossings can occur before the exit time τ is reached.
The method has been implemented for a wedge characterised by θw = 7π/8, and the
results, obtained for 2000 realisations (simulated by Euler-Maruyama with time step
∆t = 0.01), are shown at an observation point r = 1, θ = π/4 for k = 5. Note that if
the method was described in (Budaev and Bogy, 2003), it was only implemented for
a half-plane, and not for a wedge. Though, as predicted in (Budaev and Bogy, 2003)
the error is of the order of 0.01 and the method works well13.

Critical analysis. This method has the advantage of being very adaptable to all sorts
of geometries since it is based on the Feynman-Kac theorem that is a very general
result (both in terms of geometry and in terms of equation). This adaptability is
confirmed by the fact that it has been used in the context of cones (Budaev and
Bogy, 2003), quarter-plane (Budaev and Bogy, 2005) and other geometries.

13Note that in (Budaev and Bogy, 2003), there is a factor 1
2 in front of E in the formulae (6.19).

This was a typographical error.
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Figure 13: (Left) Illustration of one realisation of ξ2
t , its crossings with θ1,2 and its exit time τ .

(Right) The ongoing mean up to 2000 realisations computed by (6.19) for a plane wave incident at
an angle θI = 0 on a wedge characterised by θw = 7π/8 for θ = π/4, r = 1 and k = 5.

It has to be said however, that for the Helmholtz equation, the PDE and SDE
coefficients become complex. This renders the determination of the end time rather
more complicated than the real coefficient case. It necessitates to find a convenient
complex coefficient to multiply our equations by, and also to find a way of somehow
extending the real geometries in a higher dimension complex space.

This method can also become very computational very quickly. Indeed, if one
would like for example to recreate a heat map similar to those presented in Figure
15, one would need about 2000 simulations of the SDE system per point, which for a
good resolution may lead to a very long computational time.

Another comment that can be made about this method, is that it stands out
from all the other methods presented here in terms of the type of mathematics used.
This can be considered as an advantage for researchers open to exploring many areas
of mathematics, though, this also means that for the usual specialists in diffraction
theory, this may result in a steep learning curve.

6.3. The method of functionally-invariant solutions

The third and final alternative method to be reviewed is also known as the Sobolev-
Smirnov method. Some recent publications using this method include (Komech et al.,
2015; Babich, 2015). The former studies wedge diffraction with a number of different
combinations of Dirichlet and Neumann BCs, while the latter studies the impedance
wedge problem.

The idea behind this method is to identify the time-harmonic problem with an
elementary time-dependent problem where the incident plane wave is replaced with
a Heaviside step function such that no diffraction occurs before the time t = 0. This
means that the solution to this elementary problem (call it u(r, θ, t)) satisfies the
following conditions,

• The governing equation is the linear wave equation ∇2u− 1
c2
∂2u
∂t2

= 0.
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• Dirichlet or Neumann BCs at θ = ±θw.

• u can be linearly decomposed into incident and scattered parts, u = uI + uS,
where uI(r, θ, t) = H

(
t+ r

c
cos(θ − θI)

)
.

For simplicity, we shall restrict values of the incident angle and the wedge angle
such that, π − θw < θI < θw − π

2
. This restriction means that for t < 0, the incident

wave does not reach the wedge until t = 0 when it first touches the wedge at its corner.
For t > 0, the incident wave has passed the wedge corner and reflected and diffracted
waves have appeared. Figure 14 describes this configuration and gives known values
of u outside the diffraction circle which are found by Geometrical Optics.

A
rc

 1

A
rc

 2

Arc
 3

Line 1

Line 2

Figure 14: Physical diagram and images of the diffraction disc in the z and ξ planes.

The radius of the diffraction circle is ct and we call the unknown solution inside,
i.e. within the diffraction disc, U(r, θ, t). We need to look at a particular class of
solutions to the wave equation and express U in terms of a complex variable. Noting
that a real solution is required, we write

U(r, θ, t) = Re {V (z)} , where, z =
ct

r

(
1−

√
1−

( r
ct

)2
)
eiθ, (6.20)

ensuring that the wave equation is automatically satisfied. Sections 52-53 in (Smirnov,
1964) gives a detailed explanation as to why this is the case. Note also that within
the diffraction disc (i.e. 0 ≤ r ≤ ct), the pre-exponential factor in (6.20) is real and
positive, varying from 0 to 1. As a result, z(r, θ, t) maps the diffraction disc onto the
unit disc |z| ≤ 1. Therefore, we need to find a function V (z) that is analytic inside
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the unit disc and has the following boundary values,

Both: Re {V (z)} = 0 on Arc 3, Re {V (z)} = 1 on Arc 2,

Dirichlet: Re {V (z)} = 0 on Arc 1, Re {V (z)} = 0 on Lines 1 & 2,

Neumann: Re {V (z)} = 2 on Arc 1, Re {izV ′(z)} = 0 on Lines 1 & 2,

where the arc and line numbers are given in Figure 14.
We will now use a conformal mapping to transform this problem into a Riemann-

Hilbert problem. In order to do so, we define ξ = e
iπ
2 zδ, where as before δ = π

2θw
, which

transforms the indented unit disc of the z plane onto the unit upper-half semi-disc of
the ξ plane, as illustrated in Figure 14. The branch of the root is defined such that
the cut is on the negative real axis and ξ(z = 1) = e

iπ
2 . Let Ṽ (ξ) = V (z(ξ)), then

we analytically continue Ṽ into the unit lower-half semi-disc by Schwarz reflection
principle (see Figure 14) using anti-symmetry (Dirichlet case) or symmetry (Neumann

case). Let a = ei(
π
2
−δ(π−θI)) and b = ei(

3π
2
−δ(π+θI)) then Ṽ (ξ) has the following boundary

values for the Dirichlet and Neumann cases,

Dir:

{
Re{Ṽ (ξ)} = −1 on arc (b̄, ā), Re{Ṽ (ξ)} = 1 on arc (a, b),

Re{Ṽ (ξ)} = 0 on real line (−1, 1), Re{Ṽ (ξ)} = 0 on arcs (ā, a) and (b, b̄),

(6.21)

Neu:

{
Re{Ṽ (ξ)} = 0 on arc (ā, a), Re{Ṽ (ξ)} = 2 on arc (b, b̄),

Re{iξṼ ′(ξ)} = 0 on real line (−1, 1), Re{Ṽ (ξ)} = 1 on arcs (a, b) and (b̄, ā).

(6.22)

The method to solve these two Riemann-Hilbert problems is detailed in section
54 in (Smirnov, 1964). The respective solutions to (6.21) and (6.22) are,

Ṽ (ξ) =
1

πi
ln

(
b̄− ξ
a− ξ

)
− 1

πi
ln

(
ā− ξ
b− ξ

)
, (6.23)

Ṽ (ξ) =
1

πi
ln

(
b̄− ξ
a− ξ

)
+

1

πi
ln

(
ā− ξ
b− ξ

)
− 2δ, (6.24)

where the used logarithm ln(Z) has a branch point at Z = 0 with a branch cut
along the positive real axis. Using this solution, it is easy to recover the physical
solution U(r, θ, t) inside the diffraction disc, and hence the whole solution u(r, θ, t).
We will now see that using a simple Fourier transform, we can recover the sought-after
time-harmonic problem from this solution u(r, θ, t). Consider the evaluation to the
following integral, assuming that ω has a small positive imaginary increment so that
eiωt → 0 as t→∞,

−
∫ ∞
−∞

uI(r, θ, t)
d

dt

(
eiωt
)

dt =
[
eiωt
]− r

c
cos(θ−θI)

∞ = ΦI. (6.25)
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With this in mind, we can determine the total field Φ from u by using a similar
integral,

Φ(r, θ) = −
∫ ∞
−∞

u(r, θ, t)
d

dt

(
eiωt
)

dt, (6.26)

and thus, we have found the solution to the time-harmonic problem.

Critical analysis. All of the methods presented so far were tailored to the time-
harmonic problem, this means that if one is interested in a time-dependent problem,
using these methods would involve taking the inverse Fourier transform of our time-
harmonic solutions, which can be expensive computationally. This present method
however is tailored to the time dependent problem, which is great if one is interested
in the tracking of wave fronts in time for example. It means however that if one is in-
terested in the time-harmonic problem, one would have to take the Fourier transform
in time of the solution, as per (6.26), which can prove quite expensive numerically.
This method, though in essence designed for the wedge geometry, has been shown to
be adaptable to various BCs. One can refer to (Babich, 2015) for example for the
case of impedance BCs.

7. Final plots and conclusions

In this review article, we have discussed six different methods that have been ap-
plied to the problem of diffraction by wedges with perfect Dirichlet or Neumann
boundary conditions. The three main methods discussed were the Sommerfeld-
Malyuzhinets technique, the Wiener-Hopf technique and the Kontorovich-Lebedev
transform technique. The three alternative methods reviewed were the embedding
formula, the random walk method and the method of functionally-invariant solutions
(Sobolev-Smirnov). We also looked at two approximation methods, the Geometrical
Theory of Diffraction and the Uniform Geometrical Theory of Diffraction.

This list is by no means exhaustive and we should also mention Budaev’s method
for elastic wedge scattering (Budaev and Bogy, 1998), the Physical Theory of Diffrac-
tion (Ufimtsev, 2014) and an interesting method called the Wiener–Hopf–Hankel for-
mulation (Teixeira, 1991; Castro and Kapanadze, 2010). We note that (Israilov, 2013)
could also be applied to the wedge geometry.

We evaluated numerically the exact solution and the associated approximations
(series, GTD, UTD) for several configurations and studied their relative performances.
We found that the best way to evaluate the exact solution was to consider the inte-
gral defined on the steepest descent contour. As regard to the approximations, the
truncated series solutions performs very well with low wavenumbers, and we found
that while the UTD approximation takes longer to compute, it is a better approxi-
mation compared with the GTD because it is uniformly valid and more accurate at
lower values of kr. It has however two main disadvantages, the inaccuracy at the
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wedge boundary, and also the fact that (5.19) and (5.21) are not continuous across
the Geometrical Optics limit θI = π − θw.

As emphasised in the critical analysis of each section, the use of the six techniques
in this review is not limited to the perfect wedge problem. Examples of extensions
include for example impedance wedges (Malyuzhinets, 1958a; Babich, 2015), pen-
etrable wedges (Rawlins, 1999; Lyalinov, 1999; Daniele and Lombardi, 2011) and
quarter-plane diffraction (Shanin, 2005; Assier and Peake, 2012a; Budaev and Bogy,
2005; Lyalinov, 2013).

To conclude this review, using the UTD approximation, we produce some density
plots of the real part of the diffracted field ΦDiff and the total field Φ in Figure 15 for
a wedge defined by 2θ̄w = π/4 and two incident waves, θI = 0 and θI = π/2 and a
wavenumber k = 2. As expected, we see clear discontinuities in the diffracted wave,
which are due to GO discontinuities. For the total field, as expected, we see the GO
behaviour in the relevant regions, the boundary conditions, and a decaying diffracted
field.
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and θI = π/2.
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Poincaré, H., 1892. Sur la Polarisation par Diffraction. Acta Math. (in French) 16,
297–339.
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Appendix A. Macdonald’s series solution

In this section we shall briefly discuss the separation of variables method applied
by Macdonald (1902) to the wedge problem with line source incidence. After this,
departing slightly from Macdonald’s approach, we shall use a limiting procedure in
order to recover the series solutions (4.19) and (4.20) to the plane wave incidence
problem.

The wedge problem forced by a line source of strength A with polar coordinates
(rI, θI), has the following governing equation,

∇2Φ + k2Φ =
A
r
δ̂(r − rI)δ̂(θ − θI), (A.1)
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where δ̂ is the Dirac delta function. The total field, Φ, is decomposed into incident
and scattered parts Φ = ΦI + ΦS where the incident wave is given by

ΦI =
A
4i
H

(1)
0

(
k
√
r2 + r2

I − 2rrI cos(θ − θI)

)
, (A.2)

and is subjected to BCs, (1.2) or (1.3). Considering the ansatz Φ = R(r)Θ(θ), using
separation of variables and applying the BCs, we obtain the following series solutions:

Dirichlet case: Φ(r, θ) =
∞∑
n=1

AnRn(r) sin((θ − θw)δn), (A.3)

Neumann case: Φ(r, θ) =
∞∑
n=0

BnRn(r) cos((θ − θw)δn). (A.4)

Because of the source location at r = rI, and the need to satisfy both the edge and
the radiation conditions (satisfied by the Bessel and Hankel functions respectively),
we pose

Rn(r) =

{
CnJδn(kr) r < rI,

DnH
(1)
δn (kr) r > rI.

(A.5)

To ensure continuity across r = rI, we require Cn = H
(1)
δn (krI) and Dn = Jδn(krI). We

can determine the coefficients An and Bn by deriving and applying a jump condition
across r = rI.

In the Dirichlet case, substitute (A.3) into (A.1), and multiply the resulting equa-
tion by r sin((θ− θw)δm). Integrating w.r.t. θ from −θw to θw, and using the orthog-
onality of sine, we obtain

Am
∂

∂r
(rR′m(r)) + Am

(
k2 − δ2m2

r2

)
rRm(r) =

A
θw

δ̂(r − rI) sin((θI − θw)δm). (A.6)

Now integrating (A.6) from r = rI − ε to rI + ε and taking the limit ε → 0 leads to
the jump condition

AmrI [R′m(r)]
r+
I

r−I
=
A
θw

sin((θI − θw)δm). (A.7)

Lastly, we use (A.5) and the Wronskian result Jν(z)H
(1)′
ν (z) − J ′ν(z)H

(1)
ν (z) = 2i

πz

to determine that An = −iδA sin((θI − θw)δn). Hence, the series solution with line
source incidence and Dirichlet BCs is

Φ =
∞∑
n=1

iδA sin((θw − θI)δn) sin((θ − θw)δn)Jδn(kr<)H
(1)
δn (kr>), (A.8)
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where r< = min(r, rI) and r> = max(r, rI). This agrees with Macdonald’s solution14.
For the Neumann case, the coefficients Bn are found by the same method using

the orthogonality relation for cosine, leading to

Φ = −
∞∑
n=0

iεnδA cos((θw − θI)δn) cos((θ − θw)δn)Jδn(kr<)H
(1)
δn (kr>), (A.9)

where ε0 = 1/2 and εn = 1 for n ≥ 1.
To recover the plane wave solution, we send the source and its strength to infinity

in a way that ensures that ΦI (as defined in (A.2)) behaves like e−ikr cos(θ−θI) as rI →∞.

This can be done by choosing A =
√

8πkrIe
−ikrI+ 3πi

4 and leads to

lim
rI→∞

AnH
(1)
δn (krI) = 4δ(−i)δn sin((θI − θw)δn), (A.10)

lim
rI→∞

BnH
(1)
δn (krI) = 4εnδ(−i)δn cos((θw − θI)δn). (A.11)

Hence, for plane wave forcing with Dirichlet or Neumann BCs respectively, the series
solutions are

Φ(r, θ) = 4δ
∞∑
n=1

(−i)δnJδn(kr) sin((θ − θw)δn) sin((θI − θw)δn),

Φ(r, θ) = 2δJ0(kr) + 4δ
∞∑
n=1

(−i)δnJδn(kr) cos((θ − θw)δn) cos((θw − θI)δn),

which matches perfectly with (4.19) and (4.20) as required. Note that these exact
series solutions have a natural embedding structure (see Section 6.1) in the sense that
they are simply sums of products of functions of one variable only.

Appendix B. A link between the spectral function s(z) and Green’s inte-
gral operator

Appendix B.1. Preliminary definitions and Green’s function representation

Let us introduce the generic plane wave function wz by

wz(r, θ) = exp(ikr cos(z − θ)) (B.1)

It is important to note that for any Θ ∈ [−π, π], wz(r,Θ) is exponentially decaying
as r → ∞ as long as z ∈ ΩΘ = Ω0 + Θ, where both Ω0 and ΩΘ are understood as
open sets (do not contain their boundaries) and are illustrated in Figure B.16.

Using the notations of Section 5, the total, diffracted and geometrical optics fields
are denoted Φ, ΦDiff and ΦGO. For the exterior wedge, ΦGO consists of an incident

14Note that Macdonald (1902) uses the alternate time factor eiωt.
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Figure B.16: The domains Ω0 and ΩΘ

wave and one or two reflected waves and can hence be written in the form ΦGO(r, θ) =∑
i ai(θ)wzi(r, θ), where ai(θ) is either zero or a given constant. Typically in our

problem the incident wave corresponds to zi = θI + π, and the reflected waves to
either zi = 2θw − θI + π or zi = −2θw − θI + π or both depending on how many
reflections we have.

For a given function Ψ, let us now introduce the Green integral operator SΘ(z)[Ψ]
defined by

SΘ(z)[Ψ] =

∫ ∞
0

[
Ψ
∂wz
∂θ
− ∂Ψ

∂θ
wz

]
θ=Θ

dr

r
. (B.2)

In the contest of this review, Θ ∈ [−θw, θw]. Moreover, using standard integration,
one can show that SΘ(z)[wzi ] = tan

(
zi−z

2

)
, and hence we can write

SΘ(z)[Φ] = SΘ(z)[ΦDiff ] +
∑
i

ai(Θ) tan

(
zi − z

2

)
, (B.3)

which implies in particular that each of the zi + π are simple poles of SΘ(z)[Φ] with
residue−2. The objective of this appendix is to find a connection between the spectral
function s(z) and SΘ(z)[Φ]. In order to do that, we shall make use of the theory of
Green’s functions as follows.

Let us pick a point (r?, θ?), and pick two angles ϕa and ϕb (the subscripts a and
b stand for above and below) chosen such that −π/2 < ϕb < θ? < ϕa < π/2, and a
radius RA > r?. Now consider the domain Ω?(ϕb, ϕa, RA) to be the corresponding
sector described in Figure B.17. Let us further assume that ∂Ω? is oriented anti-
clockwise, and that the normals n to ∂Ω? are chosen to be outgoing.

Let G?(r, θ) be a short notation for G(r, θ; r?, θ?), the free-space Green’s func-
tion for the Helmholtz equation resulting from a point source at (r?, θ?). Using the
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Figure B.17: The angular domain Ω?

respective governing equations of Φ and G?, and the divergence theorem, we have∫∫
Ω?

(Φ∆G? −G?∆Φ)dA = Φ(r?, θ?) =

∮
∂Ω?

(Φ∇G? −G?∇Φ) · nds

Hence, using that on `b, n = −eθ, on A, n = er and on `a, n = eθ, we get

Φ(r?, θ?) = −
∫ RA

0

(
Φ
∂G?

∂θ
−G?

∂Φ

∂θ

)
θ=ϕb

dr

r︸ ︷︷ ︸
`b component: I`b [Φ]

+

∫ ϕa

ϕb

(
Φ
∂G?

∂r
−G?

∂Φ

∂r

)
r=RA

RAdθ︸ ︷︷ ︸
Arc A component: IA[Φ]

+

∫ RA

0

(
Φ
∂G?

∂θ
−G?

∂Φ

∂θ

)
θ=ϕa

dr

r︸ ︷︷ ︸
`a component: I`a [Φ]

. (B.4)

Using the Hankel representation of G?, its far-field asymptotics, and the method
of steepest descent, we can show that the only part of the far-field leading to any
contribution of the arc integral as RA → ∞ is an incident plane wave coming from
within the sector. More precisely, if θI ∈ (ϕb, ϕa),

lim
RA→∞

IA
[
e−ikr cos(θ−θI)

]
= e−ikr

? cos(θ?−θI) = ΦI(r
?, θ?).

All other components (reflected waves, diffracted field, incident waves from outside the
sector) can be shown to have zero contribution. Hence, taking the limit as RA →∞
in (B.4), we get

Φ(r?, θ?) = −
∫ ∞

0

(
Φ
∂G?

∂θ
−G?

∂Φ

∂θ

)
θ=ϕb

dr

r
+

∫ ∞
0

(
Φ
∂G?

∂θ
−G?

∂Φ

∂θ

)
θ=ϕa

dr

r
+ Φab

I (r?, θ?),

(B.5)

where Φab
I = ΦI if θI ∈ (ϕa, ϕb) and zero otherwise. Hence the knowledge of G? and

∂G?

∂θ
on oblique lines of constant θ is important. At this stage, it is important to

realise, at least informally, that if we could write them in terms of wz somehow, then
we have a chance to link Φ and the Green integral operator.
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Appendix B.2. Green’s functions on oblique lines

Before finding formulae for G?, we will focus on the Green’s function G0 corre-
sponding to a point source at the origin. First of all, it is well known (see e.g. Kythe

(2011)) that G0(r, θ) = −i
4
H

(1)
0 (kr). Moreover, the Hankel function has the following

integral representation15

H
(1)
0 (r) =

1

π

∫
Γ

eir cos(z)dz leading to G0(r, θ) =
+1

4πi

∫
Γ

eikr cos(z)dz, (B.6)

where Γ is described in Figure 6. We will now endeavour to find formulae for G0 valid
on an oblique half-space and hence on any line that crosses the x axis with an angle
ϕ ∈ (−π/2, π/2) say, and lies above (see Figure B.18 (left)) or below (see Figure B.18
(right)) the origin.

Figure B.18: The two half-spaces under consideration for a given ϕ: above (left) and below (right)

Oblique line above the origin. Let us consider the half-space ϕ < θ < π+ϕ, the grey
area of Figure B.18 (left) . Let us start from (B.6) and shift the contour Γ to the
contour Γ + π

2
− (θ − ϕ), where the new contour height is adjusted so that it goes

through the origin. Because of the restriction on θ, we can do that without leaving
Ω0, where our integrand is analytic and exponentially decaying, and so the value of
the integral and its convergence property remain unchanged. We can now perform
the substitution z′ ↔ z + θ to get

G0(r, θ) =
1

4πi

∫
γa(ϕ;θ)

wz′(r, θ)dz
′, (B.7)

where the contour γa(ϕ; θ) = Γ + π
2

+ ϕ goes through the point z = θ of the real
axis, as shown in Figure B.19 (left). This formula is valid (and the integral converges
exponentially) on any oblique line with angle ϕ that lies above the origin.

15See, e.g. Sommerfeld (2003) eq (6) p19, together with translators’ note 4 on p78, here we use
β = π

2 .
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Figure B.19: The contours γa(ϕ; θ) and γb(ϕ; θ)

Note that here r is finite, and the integrand is analytic, so we can in principle
deform all the contours γa(ϕ; θ) to γa(ϕ;ϕ), it is important to note that the latter
crosses the real axis at z = ϕ and is included (only just!) in Ωϕ. This contour will
just be referred to as γa(ϕ) thereafter, and we get

G0(r, θ) =
1

4πi

∫
γa(ϕ)

wz(r, θ)dz (B.8)

Oblique lines below the origin. In a very similar way, we can consider the half-space
ϕ− π < θ < ϕ and shift the contour Γ to a height adjusted Γ− π

2
+ (ϕ− θ) passing

through the origin. Upon performing the substitution z ↔ z+θ, we obtain an integral
over a contour γb(ϕ; θ) illustrated on Figure B.19 (right). Again by analyticity of the
integrand, such integral can safely be deformed to the contour ϕb(ϕ) ≡ ϕb(ϕ;ϕ) that
crosses the real axis at z = ϕ and lies within Ωϕ, to get

G0(r, θ) =
1

4πi

∫
γb(ϕ)

wz(r, θ)dz, (B.9)

Back to G?. In order to get back to G?, we just need to replace r by r′ and θ by θ′ in
(B.8) and (B.9), where r′ and θ′ are the polar coordinates centred at (r?, θ?). Upon
noting that r′eiθ

′
= reiθ − r?eiθ? , we find that

wz(r
′, θ′) = wz(r, θ)e

−ikr? cos(z−θ?) and G?(r, θ) =
1

4πi

∫
γs(ϕs)

wz(r, θ)e
−ikr? cos(z−θ?)dz,

where from now on, the subscript s is either a or b. Since γs(ϕs) is independent of θ,
we get a similar formula for ∂G?

∂θ
. In particular, in the configuration of Figure B.17,

since the oblique line `a (resp. `b) lies above (resp. below) the source (r?, θ?) and
make an angle ϕa (resp. ϕb) with the real axis, we have

G?|`s = G?(r, ϕs) and
∂G?

∂θ

∣∣∣∣
`s

=
1

4πi

∫
γs(ϕs)

∂wz
∂θ

(r, ϕs)e
−ikr? cos(z−θ?)dz. (B.10)

58



Appendix B.3. Connection formula between s(z) and S0(z)

Before making use of our results (B.5) and (B.10), we need to make use of some
properties of the Green integral operator:

Proposition 2

1. Apart from eventual poles on the real line, as a function of z, SΘ(z)[Φ] is analytic
for z ∈ ΩΘ = Ω0 + Θ.

2. If z ∈ ΩΘ1 ∩ ΩΘ2, then SΘ1(z)[Φ] = SΘ2(z)[Φ]. Note that by analytic contin-
uation, this allows to extend the natural domain of analyticity of SΘ1,2(z) to
ΩΘ1 ∪ ΩΘ2.

Now, we can input (B.10) into (B.5), and, since we made sure that γs(ϕs) ⊂ Ωϕs ,
we can exchange the order of integration. Let us furthermore assume that ϕb < 0 <
ϕa, then the formula can be evaluated at θ? = 0 to get

Φ(r?, 0) =
−1

4πi

∫
γb(ϕb)

e−ikr
? cos(z)Sϕb(z)[Φ]dz +

1

4πi

∫
γa(ϕa)

e−ikr
? cos(z)Sϕa(z)[Φ]dz + Φab

I (r?, 0),

(B.11)

where an illustration of the contour configuration is displayed in Figure B.20 (left).
Making use of point 2 of Proposition 2, the integrands of both integrals in (B.11) are
actually analytical continuations of each other, and hence we can write

Φ(r?, 0) =
1

4πi

∫
(γb(ϕb))c+γa(ϕa)

e−ikr
? cos(z)Sϕb(z)[Φ]dz + Φab

I (r?, 0),

where (γb(ϕb))
c is a notation for γb(ϕb) going in the other direction. Let us consider

the contours as angular (we can do that by analytic deformation), as depicted in
Figure B.20 (right). Let us also introduce a new contour R, that is rectangular, with
its centre at the origin and oriented anticlockwise, such that its left (resp. right)
lateral side coincides with a part of (γb(ϕb))

c (resp. γa(ϕa)), but in the opposite
direction.

We can always choose ϕa and ϕb close enough to zero, such that no poles related
to reflected waves exist within R. In this case, one can show that the only possible
singularity is a pole corresponding to the incident wave, and we have

1

4πi

∮
R
e−ikr

? cos(z)Sϕb(z)[Φ]dz = Φab
I (r?, 0). (B.12)

This ensures that we can write

Φ(r?, 0) =
1

4πi

∫
(γb(ϕb))c+γa(ϕa)+R

e−ikr
? cos(z)Sϕb(z)[Φ]dz. (B.13)
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Figure B.20: The two contours γb(ϕb) and γa(ϕa) for −π < ϕb < 0 < ϕa < π (left), their angular
counterparts and the contour R (right)

Now, the coinciding lateral parts cancel each other, and the remaining contour is
simply γ+ + γ− (see Figure 2 (left)). Now taking the limit as ϕb → 0, or using the
fact that Sϕb(z) is an analytic continuation of S0(z) by Proposition 2, we get

Φ(r?, 0) =
1

4πi

∫
γ++γ−

e−ikr
? cos(z)S0(z)[Φ]dz

=
1

2πi

∫
γ+

e−ikr
? cos(z)

(
S0(z)[Φ]− S0(−z)[Φ]

2

)
dz (B.14)

Everything that has been done in this subsection can be used to get a similar formula
for ∂Φ

∂θ
to get

− 1

ikr?
∂Φ

∂θ
(r?, 0) =

1

2πi

∫
γ+

e−ikr
? cos(z) sin(z)

(
S0(z)[Φ] + S0(−z)[Φ]

2

)
dz (B.15)

Now, comparing (B.14) and (B.15) to equations (2.1) and (3.22), it is clear that we
can apply Theorem 1 to find that

1

2
(S0(z)[Φ]∓ S0(−z)[Φ]) = s(z)∓ s(−z) (B.16)

leading to the sought-after formula

s(z) =
1

2
S0(z)[Φ], (B.17)

linking the spectral function s(z) to the Green’s operator S0(z)[Φ]. Note that this
formula could have been recovered from what was done at the end of the Wiener-Hopf
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section (Section 3) in particular it is a consequence of (3.24), but this appendix is
showing this link from Green’s identity only. This can also be seen as a constructive
way of getting to the form of the Sommerfeld integral. We can also follow the paper
(Malyuzhinets, 1958c) to directly link the spectral function s(z) with the Kontorovich-
Lebedev transform of the scattered wave Ψ,

Ψ(ν, θ) =
1

πiν

∫ i∞

−i∞
e−iν(z+π/2) [s(θ + z)− s(θ − z)] dz

+
2(−i)1+ν

ν sin(πν)
cos ((|θ − θI| − π) ν) (B.18)

Note that the work done in this appendix is very general and can possibly be applied
to geometries other than the wedge.

61


	Introduction and formulation
	The Sommerfeld-Malyuzhinets technique
	Dirichlet boundary condition
	Neumann boundary condition

	The Wiener-Hopf technique
	A useful mapping
	Derivation of the Wiener-Hopf equations
	Dirichlet boundary condition
	Neumann boundary condition

	The Kontorovich-Lebedev transform method
	Solution analysis and evaluation
	Comparison with simpler problems
	Geometrical Theory of Diffraction (GTD)
	Graphical comparison of evaluation methods

	Alternative methods
	Embedding Formula technique
	Random Walk method
	The method of functionally-invariant solutions

	Final plots and conclusions
	Macdonald's series solution
	A link between the spectral function s(z) and Green's integral operator
	Preliminary definitions and Green's function representation
	Green's functions on oblique lines
	Connection formula between s(z) and S0(z)


