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MULTIPLE WAVES PROPAGATE IN RANDOM PARTICULATE
MATERIALS\ast 

ARTUR L. GOWER\dagger \ddagger , WILLIAM J. PARNELL\ddagger , AND I. DAVID ABRAHAMS\S 

Abstract. For over 70 years it has been assumed that scalar wave propagation in (ensemble-
averaged) random particulate materials can be characterized by a single effective wavenumber. Here,
however, we show that there exist many effective wavenumbers, each contributing to the effective
transmitted wave field. Most of these contributions rapidly attenuate away from boundaries, but they
make a significant contribution to the reflected and total transmitted field beyond the low-frequency
regime. In some cases at least two effective wavenumbers have the same order of attenuation. In
these cases a single effective wavenumber does not accurately describe wave propagation even far
away from boundaries. We develop an efficient method to calculate all of the contributions to the
wave field for the scalar wave equation in two spatial dimensions, and then compare results with
numerical finite-difference calculations. This new method is, to the best of the authors' knowledge,
the first of its kind to give such accurate predictions across a broad frequency range and for general
particle volume fractions.
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1. Introduction. Materials comprising small particles, inclusions or defects,
randomly distributed inside an otherwise uniform host medium, are ubiquitous. Com-
monly occurring examples include composites, emulsions, dense suspensions, complex
gases, polymers, and foods. Understanding how electromagnetic, elastic, or acous-
tic waves propagate through such media is crucial to characterize these materials and
also to design new materials that can control wave propagation. For example, we may
wish to use wave techniques to determine statistical information about the material,
e.g., volume fraction of particles, particle radius distribution, etc.

The exact positions of all particles are usually unknown. The common approach
to deal with this, which we adopt here, is to ensemble average over such unknowns.
In certain scenarios, such as light scattering [38], it is easier to measure the average
intensity of the wave, but these methods often need the ensemble-averaged field as a
first step [14, 54, 53].

1.1. Historical perspective. The seminal work in this field is Foldy's 1945 pa-
per [14], which introduced the Foldy closure approximation in order to deduce a single
``effective wavenumber"" k\ast in the form k\ast = k0  - \phi g, where \phi is the volume fraction
of particles and g is the scattering coefficient associated with a single particle. Foldy
introduced the notion of ensemble averaging the field, but the expression deduced
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for k\ast was restricted to dilute dispersions and isotropic scattering. Lax improved on
this by incorporating a higher-order closure approximation [25, 26], now known as
the quasi-crystalline approximation (QCA), and by including pair-correlation func-
tions, which represent particle distributions. Both QCA and pair-correlations have
now been extensively used in multiple scattering theory. The most commonly used
pair-correlation is hole-correction [13]. Both QCA and hole-correction are examples
of statistical closure approximations [2, 3], which are techniques widely used in sta-
tistical physics. For multiple scattering, the accuracy of these approximations has
been supported by theoretical [33, 34], numerical [9], and experimental [59, 67] ev-
idence. These approximations also make no explicit assumptions on the frequency
range, material properties, or particle volume fraction. We note, however, that to the
best of our knowledge, there are no rigorous bounds for the error introduced by these
approximations. For a brief discussion on these approximations see [21].

For an overview of the literature on multiple scattering in particulate materials,
making use of closure approximations, see the books [55, 31, 38]. We now briefly
summarize how calculating effective wavenumbers has evolved since the early work of
Foldy and Lax.

Over the last 60 years, corrections to the dilute limit have been sought, mainly
by expanding in the volume fraction \phi and then attempting to determine the O(\phi 2)
contribution to k\ast . Twersky [56] obtained an expression for this contribution as a
function of f(\pi  - 2\theta inc) and f(0), where \theta inc is the angle of incidence of an exciting
plane wave (see Figure 1), and f(\theta ) is the far field scattering pattern from one par-
ticle [28]. The dependence on \theta inc implies that k\ast depends on the angle of incidence,
which is counterintuitive. Waterman and Truell [63] obtained the same expression
as Twersky but with \theta inc = 0. However, [63] used a ``slab pair-correlation function""
that (theoretically) limits the validity of their approach to dilute dispersions (small
\phi ); see [27] for comparisons with experiments, and see [5] for a discussion in two
dimensions. Extensions that incorporate the hole-correction pair-correlation function
were described by Fikioris and Waterman [13]. The Waterman and Truell expressions
for three-dimensional elasticity are written down in [68, 45]. Work in two-dimensional
elasticity using QCA was reported by [8]. Lloyd and Berry [30] calculated the O(\phi 2)
contribution by including both QCA and hole-correction for the scalar wave equation,
although the language used stemmed from nuclear physics. More recently, [28, 29]
rederived the Lloyd and Berry formula for the effective wavenumber without appeal-
ing to the so-called extinction theorem used in many previous papers, such as [60],
and without recourse to ``resumming series."" The work was then extended in order to
calculate effective reflection and transmission in [32]. Gower et al. [21] subsequently
extended this result to model multispecies materials, i.e., to account for polydisperse
distributions.

Other related work on effective wavenumbers and attenuation include comparing
the properties of single realizations to those of effective waves [49, 6, 7, 40], and
effective waves in polycrystals [50, 64] such as steel and ceramics. The polycrystal
papers use a similar framework to waves in particulate materials, except they assume
weak scattering which excludes multiple scattering.

1.2. Overview of this paper. A common assumption used across the field of
random particulate materials, including those mentioned above, is to assume that
there exists a single, unique, complex effective wavenumber k\ast that characterizes the
material. For example, for an incident wave eikx - i\omega t, of fixed frequency \omega , excit-
ing a half-space (see Figure 1) filled with particles, the tacit assumption is that the
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ensemble-averaged wave \langle u(x)\rangle travelling inside the particulate material takes the
form

\langle u(x)\rangle = aeikx - i\omega t + b\ast e
ik\ast x - i\omega t.(1.1)

See [32] for a brief derivation. This assumption has been widely used in acous-
tics [28, 29, 31, 12], elasticity [61, 42, 43, 46, 10] (including thermo-viscous effects),
electromagnetism [58, 59, 52], and even quantum waves [51]. For example, it is a key
step in deducing radiative transfer equations from first principles [35, 37].

In this work, we show, however, that there does not exist a single, unique effective
wavenumber. Instead an infinite number of effective wavenumbers k1, k2, k3, . . . exist,
so that the average field inside the particulate material takes the form

\langle u(x)\rangle = aeikx - i\omega t +

\infty \sum 

p=1

bpe
ikpx - i\omega t.(1.2)

In many scenarios, the majority of these waves are highly attenuating, i.e., kp has a
large imaginary part for p > 1. In these cases, the least attenuating wavenumber k1
will dominate the transmitted field in \langle u(x)\rangle , and k1 will often be given by classical
multiple scattering theory, as discussed in subsection 1.1. However, these other ef-
fective waves can still have a significant contribution to the reflected (backscattered)
wave from a random particulate material, especially at higher frequencies and beyond
the low volume fraction limit. Furthermore, there are scenarios where there are at
least two effective wavenumbers, say k1 and k2, with the same order of attenuation. In
these cases using only one effective wavenumber, k1 or k2, is insufficient to accurately
calculate \langle u(x)\rangle , even for x far away from the interface between the homogeneous and
particular materials.

We examine the simplest case that exhibits these multiple waves---two spatial
dimensions (x, y) for the scalar wave equation---and consider particles placed in the
half-space x > 0, which reflects incoming waves. We not only demonstrate that
there are multiple effective wavenumbers, but we also use them to develop a highly
accurate method to calculate \langle u(x)\rangle and the reflection coefficient. This method agrees
extremely well with numerical solutions, calculated using a finite-difference method,
but is more efficient. We provide software [17] that implements the methods presented
and reproduce the results of this paper.

In a separate paper [18], we develop a proof that (1.2) is the analytical solution
for the ensemble-averaged wave. However, the proof in [18] is not constructive, in
contrast to the work presented here, where we present a method that determines all
effective waves (1.2).

We begin by deducing the governing equation for ensemble-averaged waves in
section 2. In section 3 we then show that multiple effective wavenumbers exist. To
calculate these effective wavenumbers, we need to match them to the field near the
interface at x = 0, which leads us to develop a discrete solution in section 4. The
discrete solution also serves as the basis for a numerical method, which we use later
as a benchmark. In section 5 we develop the matching method, which incorporates all
of the effective waves. In section 6 we summarize the fields and reflection coefficients
calculated by the matching method, the numerical method, and existing methods used
in the literature. We subsequently compare their results in section 7. In section 8 we
summarize the main results of the paper and discuss future work.

2. Ensemble-averaged multiple scattering. Consider a region \scrR filled with
N particles or inclusions that are uniformly distributed. The field u is governed by
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the scalar wave equations:

\nabla 2u+ k2u = 0 (in the background material),(2.1)

\nabla 2u+ k2ou = 0 (inside a particle),(2.2)

where k and ko are the real wavenumbers of the background and inclusion materials,
respectively. For the sake of simplicity, we assume all particles are the same, except
for their position and rotation about their center. For a distribution of particles, or
multi-species, see [21].

In two dimensions, any incident wave1 vj and scattered wave uj can be written
in the form

vj(rj , \theta j) =

\infty \sum 

n= - \infty 
vnjJn(krj)e

in\theta j ,(2.3)

uj(rj , \theta j) =

\infty \sum 

n= - \infty 
unjHn(krj)e

in\theta j ,(2.4)

with (rj , \theta j) being the polar coordinates of x  - xj , where xj = (xj , yj) is a vector
pointing to the center of the jth particle, from some suitable origin, and x is any
vector; see Figure 1. The Jn and Hn are, respectively, Bessel and Hankel functions of
the first kind. The representation (2.4) is valid when rj is large enough for (rj , \theta j) to
be outside of the jth particle for all \theta j . For example, in Figure 1 this distance would
be rj > ao.

ao

θj

x− xj
rj

O

xj

θinc

k

y

x

Fig. 1. Coordinates for particles with the origin O. The particles are only placed in x > 0,
that is, to the right of the dashed line. The vector k = k(cos \theta inc, sin \theta inc) shows the direction of the
incident plane wave.

The T-matrix is a linear operator, in the form of an infinite matrix, such that

(2.5) unj =

\infty \sum 

m= - \infty 
Tnm(\tau j)vmj for n =  - \infty , . . . ,\infty and j = 1, . . . , N,

1Equation (2.3) assumes that the incident wave originates outside of the jth particle, which is
normally the case.
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where we recall that N is the number of particles. The angle \tau j gives the particles'
rotation about their center \bfitx j . Allowing particles to have different rotations, and
assuming all \tau j \in [0, 2\pi ] to be equally likely, will lead to ensemble-averaged equations
that are equivalent to the equations for circular particles [39]. This matrix T exists
when scattering is a linear operation (elastic scattering), and can accommodate par-
ticles with a large variety of shapes and properties [15, 16, 62]; it is especially useful
for multiple scattering [61, 39, 19].

The T-matrix also accounts for the particles' boundary conditions. For instance,
if u represents pressure, \rho and c are the background density and wave speed, and the
particles are circular with density \rho o, sound-speed co, and radius ao, then continuity
of pressure and displacement across the particles' boundary [28, section IV A] yields

(2.6) Tnm =  - \delta nmZm
o , with Zm

o =
qoJ

\prime 
m(kao)Jm(koao) - Jm(kao)J

\prime 
m(koao)

qoH \prime 
m(kao)Jm(koao) - Hm(kao)J \prime 

m(koao)
,

where qo = (\rho oco)/(\rho c) and ko = \omega /co. In this case the T-matrix is independent of
the rotation \tau j .

In this paper we consider the incident plane wave

(2.7) uinc(x, y) = eik(x cos \theta inc+y sin \theta inc) for \theta inc \in ( - \pi /2, \pi /2),

which excites N particles, resulting in scattered waves of the form (2.4). See Figure 1
for an illustration. The total wave u, measured outside of all particles at x = (x, y),
is the sum of all scattered waves plus the incident wave:

(2.8) u(x, y) = uinc(x, y) +

N\sum 

j=1

uj(rj , \theta j).

To reach an equation for the coefficients unj we write the total wave field incident
on the jth particle vj (2.3) as a combination of the incident wave plus the waves
scattered by the other particles: vj(rj , \theta j) = uinc(x, y) +

\sum 
i\not =j ui(ri, \theta i). By then

applying the Jacobi--Anger expansion to uinc(x, y), using Graf's addition theorem [31,
1], multiplying both sides by Tqn, summing over n, and then using (2.5), we obtain

(2.9) uqj = uinc(xj , yj)

\infty \sum 

n= - \infty 
Tqn(\tau j)e

in(\pi /2 - \theta inc)

+
\sum 

i \not =j

\infty \sum 

m,n= - \infty 
umiTqn(\tau j)Fm - n(k\bfitx i  - k\bfitx j),

for all integers q and j = 1, 2, . . . , N , where

(2.10) Fn(X) = ( - 1)nein\Theta Hn(R),

and (R,\Theta ) are the polar coordinates of X.

2.1. Ensemble averaging. In practice the exact position of the particles is
unknown, so rather than determine the scattering from an exact configuration of
particles, we ensemble average the field u over all possible particle rotations and
positions in \scrR . Sensing devices naturally perform ensemble averaging due to their
size or from time averaging [36]. See [14, 45, 21] for an introduction to ensemble
averaging of multiple scattering.
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For simplicity, we assume the particle positions are independent of particle rota-
tions, so that the probability of the particles being centered at x1,x2, . . . ,xN is given
by the probability density function p(x1,x2, . . . ,xN ). Hence, it follows that

(2.11)

\int 
p(x1)dx1 =

\int \int 
p(x1,x2)dx1dx2 = \cdot \cdot \cdot = 1,

where each integral is taken over \scrR . Further, we have

(2.12) p(x1, . . . ,xN ) = p(xj)p(x1, . . . ,xN | xj),

where p(x1, . . . ,xN | xj) is the conditional probability density of having particles cen-
tered at x1, . . . ,��xj , . . . ,xN (not including xj), given that the jth particle is centered
at xj . Given some function F (x1, . . . ,xN ), we denote its ensemble average (over
particle positions) by

(2.13) \langle F \rangle =
\int 
. . .

\int 
F (x1, . . . ,xN )p(x1, . . . ,xN )dx1 . . . dxN .

If we fix the location of the jth particle, xj , and average over the positions of the
other particles, we obtain a conditional average of F given by

(2.14) \langle F \rangle \bfx j
=

\int 
. . .

\int 
F (x1, . . . ,xN )p(x1, . . . ,xN | xj)dx1 . . .�

�dxj . . . dxN .

We assume that one particle is equally likely to be centered anywhere in \scrR , when
the position of the other particles is unknown:

(2.15) p(xj) =
n

N
for xj \in \scrR ,

where we define the number density n = N/| \scrR | and the area of \scrR as | \scrR | .
Using the above we can express \langle u(x, y)\rangle , for (x, y) outside of the region \scrR , by

taking the ensemble average of both sides of (2.8) to obtain

\langle u(x, y)\rangle = uinc(x, y) +

N\sum 

j=1

\int 

\scrR 
\langle uj(rj , \theta j)\rangle \bfx j

p(xj)dxj(2.16)

= uinc(x, y) + n

\int 

\scrR 
\langle u1(r1, \theta 1)\rangle \bfx 1dx1 for x \not \in \scrR ,(2.17)

where we assumed that all particles are identical (apart from their position and ro-
tation). We also used equations (2.12), (2.15) and averaged both sides over particle
rotations. Using the scattered field (2.4), we then reach

(2.18) \langle u1(r1, \theta 1)\rangle \bfx 1
=

\infty \sum 

n= - \infty 
\langle un1\rangle \bfx 1

Hn(kr1)e
in\theta 1 .

The simplest scenario is the limit when the particles occupy the half-space x1 > 0 [28],
that is, \scrR = \{ (x, y)| x > 0\} . We focus on this case, although the method we present
can be adapted to any region \scrR . In the limit of \scrR tending to a half-space, we let
N \rightarrow \infty while n remains fixed. Due to the symmetry between the incident wave (2.7)
and the half-space x1 > 0, the field \langle un1\rangle \bfx 1 has a translational symmetry along y1,
which allows us to write [21]

(2.19) \langle un1\rangle \bfx 1
= \scrA n(kx1)e

iky1 sin \theta inc .
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For step-by-step details on deriving a governing equation for \scrA n(kx1), see [28,
10, 21]. Here we only give an overview. First multiply by p(\bfitx 2, . . . ,\bfitx N | \bfitx 1) on both
sides of (2.9), set j = 1, ensemble average over all particle rotations2 and particle
positions in x > 0, and then use the statistical assumptions hole-correction3 and the
quasicrystalline approximation to reach the system:

(2.20)

\infty \sum 

n= - \infty 
n

\int 
x2>0

\| \bfx 1 - \bfx 2\| >a12

Tm\scrA n(kx2)e
ik(y2 - y1) sin \theta incFn - m(kx2  - kx1)dx2

 - \scrA m(kx1) + eikx1 cos \theta incTmeim(\pi /2 - \theta inc) = 0 for x1 > 0,

where Tm\delta mq = (2\pi ) - 1
\int 2\pi 

0
Tmq(\tau )d\tau , \delta mq = 1 if m = q and 0 otherwise, and a12 is

the minimum allowed distance between the center of any two particles. That is, a12
is at least twice the radius for circular particles. For the case shown in Figure 1 we
could choose a12 = 2ao. This minimum distance a12 guarantees that particles do not
overlap.

When the T-matrix T is known, we can determine the field \scrA n from the sys-
tem (2.20). The aim of this paper is to efficiently solve for \scrA n and in the process
reveal that \scrA n is composed of a series of effective waves.

For the rest of the paper we employ the nondimensional variables

X1 = kx1, X2 = kx2, Ro\gamma = ka12, \phi = \pi n
R2

o

k2
= \pi n

a212
\gamma 2

,(2.21)

where Ro is the particles' nondimensional maximum radius (in Figure 1, Ro = kao),
\gamma \geq 2 is a chosen closeness constant, with \gamma = 2 implying that particles can touch,
and \phi is the particle volume fraction.4 Using nondimensional parameters helps to
formulate robust numerical methods and to explore the parameter space.

3. Effective waves. An elegant way to approximate \scrA n is to assume it is a
plane wave of the form [31]

(3.1) \scrA n(X) = ine - in\varphi Ane
iXK cos\varphi for X > \=X,

where K is the nondimensional effective wavenumber (kK is the dimensional effective
wavenumber), with Im K \geq 0 to be physically reasonable, the factor ine - in\varphi is for
later convenience, and \=X is a length-scale we will determine later. We also restrict
the complex angle \varphi by imposing that  - \pi /2 < Re\varphi < \pi /2 and using

(3.2) K sin\varphi = sin \theta inc,

which is due to the translational symmetry of equation (2.20) in y1; see [21, equation
(4.4)]. This relation is often called Snell's law.

As the material has been homogenized, it is tempting to make assumptions that
are valid for homogeneous materials, such as assuming that only one plane wave (3.1)

2We assume that every particle is equally and independently likely to be rotated by any angle
\tau j , which makes the ensemble-averaged T-matrix diagonal [57, 39].

3The assumption hole-correction is not appropriate for long and narrow particles. More generally,
the method we present can be applied to any pair correlations that depend only on interparticle
distance.

4For noncircular particles, \phi is slightly larger than the actual particle volume fraction because
we use the outer radius Ro (ao in Figure 1) instead of the appropriate average radius.
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is transmitted into the material. When the particles are very small in comparison to
the wavelength, this is asymptotically correct [44], but in all other regimes this is not
valid, especially close to the edge \=X = 0, as we show below.

By substituting the ansatz (3.1) into (2.20), using (2.21) (see section SM1 in the
supplementary material for details), and by restricting X1 > \=X + \gamma Ro, we obtain

\infty \sum 

n= - \infty 
Mmn(K)An = 0, Mmn(K) =  - R2

o\delta mn + 2\phi Tm
\scrN n - m(K)

1 - K2
,(3.3)

2\phi 

\infty \sum 

n= - \infty 
ein\theta incAne

 - in\varphi e
i(K cos\varphi  - cos \theta inc) \=X

K cos\varphi  - cos \theta inc
= i\pi R2

o cos \theta inc + g( \=X),(3.4)

g( \=X) = 2\phi 

\infty \sum 

n= - \infty 
ein\theta inc( - i)n - 1

\int \=X

0

\scrA n(X2)e
 - iX2 cos \theta incdX2,(3.5)

where

(3.6) \scrN n(K) = \gamma Ro(H
\prime 
n(\gamma Ro)Jn(\gamma KRo) - KHn(\gamma Ro)J

\prime 
n(\gamma KRo)),

and (3.4) is often called the extinction theorem, though we will refer to it as the
extinction equation.

Using (3.3) we can calculate K by solving

(3.7) det(Mmn(K)) = 0;

then the standard approach to calculate An is to use (3.3)1 and (3.4) and take \=X = 0,
which avoids the need to know \scrA n or to calculate g( \=X). It is commonly assumed
that there is only one viable K when fixing all the material parameters, including the
incident wavenumber k. However, in general (3.7) admits many solutions, which we
denote asK = K1, K2, . . . ; see Figure 2 for some examples. We order these wavenum-
bers so that Im Kp increases with p. There is no reason why these wavenumbers are
not physically viable. Therefore we write \scrA n as a sum of effective waves:

(3.8) \scrA n(X) = in
P\sum 

p=1

e - in\varphi pAp
ne

iXKp cos\varphi p for X > \=X,

where there are an infinite number of these effective wavenumbers [18], but to reach an
approximate method we need only a finite number P . Technically, (3.8) is a solution
to (2.20) for X > 0, that is, we could take \=X = 0. However, in this case, we found
that close to X = 0 a very large number of effective waves P would be required to
achieve an accurate solution. This is why we only use the sum of plane waves (3.8)
for X > \=X > 0.

One of these effective wavenumbers, in most cases the lowest attenuating K1,
can be calculated using an asymptotic expansion for low \phi [28] and assuming it is a
perturbation away from 1 (the background wavenumber).

Substituting (3.8) into (2.20) leads to the same dispersion equations (3.3) and (3.7),
but with K1 and A1

n replaced with Kp and Ap
n, which leads to

(3.9)

\infty \sum 

n= - \infty 
Mmn(Kp)A

p
n = 0 and det(Mmn(Kp)) = 0,
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Fig. 2. An example of the effective wavenumbers K1,K2, . . . that satisfy (3.9)2. The particles
chosen are moderately strong scatterers, with T-matrix (2.6), parameters k = 1, ko = 2.0, co =
\rho o = 0.5, c = \rho = 1.0, and the nondimensional radius Ro is 0.2 for the top two graphs and 1.2 for
the bottom two graphs. Note that the bottom right graph shows two wavenumbers, almost on top of
each other, both with imaginary part less than 0.5.

while for the extinction equation (3.4) we need to substitute K for Kp, \varphi for \varphi p, and
then sum over p only on the left-hand side to arrive at

2\phi 

P\sum 

p=1

\infty \sum 

n= - \infty 
Ap

ne
in(\theta inc - \varphi p)

ei(Kp cos\varphi p - cos \theta inc) \=X

Kp cos\varphi p  - cos \theta inc
= i\pi R2

o cos \theta inc + g( \=X);(3.10)

for details see section SM1. The question now arises: how do we calculate the un-
knowns Ap

n? Once each Kp and \varphi p are determined from (3.9)2 and (3.2), then (3.9)1
can be used to write the vector Ap = [. . . , Ap

 - n, A
p
1 - n, . . . , A

p
n - 1, A

p
n, . . .] in the form

(3.11) Ap = \alpha pap and \bfitalpha = [\alpha 1, \alpha 2, . . .],

where the ap are determined from (3.9)1. However, only (3.10) remains to determine
the vector \bfitalpha . As there is more than one effective wave, P > 1, (3.10) is not sufficient
to determine \bfitalpha . This is because satisfying (3.9) and (3.10) only implies that the
effective field (3.8) solves (2.20) for X1 > \=X + \gamma Ro. The missing information, needed
to determine \bfitalpha , will come from solving (2.20) for 0 \leq X1 < \=X + \gamma Ro. We choose
to do this by calculating a discrete solution for \scrA n within 0 \leq X1 < \=X + \gamma Ro, and
then matching the \scrA n with the effective waves (3.8). The final result will be a (small)
linear system (5.5).

4. A one-dimensional integral equation. Due to the symmetry between the
half-space and the incident wave, we can reduce (2.20) to a one-dimensional Wiener--



2578 A. L. GOWER, W. J. PARNELL, AND I. D. ABRAHAMS

Hopf integral equation:

(4.1)

\infty \sum 

n= - \infty 

\phi 

\pi R2
o

\int \infty 

0

Tm\scrA n(X2)\psi n - m(X2  - X1)dX2

 - \scrA m(X1) =  - eiX1 cos \theta incTmeim(\pi /2 - \theta inc) for X1 > 0,

where
\psi n(X) = Sn(X) + \chi \{ | X| <Ro\gamma \} (Bn(X) - Sn(X)),

with \chi \{ true\} = 1 and \chi \{ false\} = 0, Sn(X) is given by (A.2), and Bn(X) is given by
(A.6).

Kristensson [23] deduced a similar one-dimensional integral equation for electro-
magnetism, and in [18] we showed that the analytic solution to (4.1) is a sum of
effective plane waves.

We will use (4.1) to determine the effective waves (3.8) and to formulate a com-
pletely numerical solution to (2.20), which we use as a benchmark.

4.1. The discrete form. The simplest discrete solution of (4.1) is to use a
regular spaced finite-difference method and a finite-section approximation.5 A similar
finite-difference solution was used in [22].

Let \scrA j
n = \scrA n(X

j) for Xj = jh and j = 0, . . . , J , with analogous notation for the
other fields. We also define the vectors

\bfscrA n = [\scrA 0
n,\scrA 1

n, . . . ,\scrA J
n], \bfitb n =  - ein(\pi /2 - \theta inc)Tn[e

iX0 cos \theta inc , . . . , eiX
J cos \theta inc ].(4.2)

For implementation purposes, we consider all vectors to be column vectors. We also
use the block matrix \BbbA with components \BbbA n1 = \bfscrA n, that is,

(4.3) \BbbA = [. . . ,\bfscrA  - n ,\bfscrA 1 - n , . . . ,\bfscrA n ,\bfscrA n+1, . . .],

so \BbbA can be viewed as a one-column matrix. The goal is to solve for \BbbA .
To discretize the integrals in (4.1), we use

\int 
f(X)dX \approx \sum 

j f(X
j)\sigma j , which in

the simplest form is \sigma j = h for every j. Discretizing the integrals in (4.1), then

substituting (4.2), and letting Xj
1 = Xj

2 = jh for j = 0, 1, . . . , J leads to

(4.4)
\sum 

n

(\scrE \ell 
nm +\scrR \ell 

nm) - \scrA \ell 
m +

\sum 

n

J\sum 

j=0

Q\ell j
mn\scrA j

n = b\ell m for \ell = 0, 1, . . . , J,

where q = \lfloor Ro\gamma /h\rfloor ,

Q\ell j
mn =

\phi Tm
\pi R2

o

\sigma jS
j - \ell 
n - m +

\phi Tm
\pi R2

o

\sigma \ell j(B
j - \ell 
n - m  - Sj - \ell 

n - m)\chi \{ | j - \ell | \leq q\} ,(4.5)

\scrE \ell 
nm =

\phi Tm
\pi R2

o

\int 

X2\geq XJ

\scrA n(X2)Sn - m(X2  - X\ell )dX2,(4.6)

\scrR \ell 
nm = \chi \{ \ell >J - q\} 

\phi Tm
\pi R2

o

(4.7)

\times 
\int X\ell +Ro\gamma 

XJ

\scrA n(X2)(Bn - m(X2  - X\ell , k) - Sn - m(X2  - X\ell ))dX2.

5The kernel in (2.20) does not satisfy the technical requirements in [11], and we have been unable
to find convergence results for approximating equations of the form (2.20). See [4] for a review on
solvability.
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The \sigma \ell j depend on \ell because the discrete domain of integration | j  - \ell | \leq q changes
with \ell , though the simplest choice would still be \sigma \ell j = h.

If we did not include \scrE \ell 
nm and \scrR \ell 

nm, then the solution of (4.4) would represent
the average wave in the layer 0 \leq X \leq XJ . One method to calculate the solution for
the whole half-space X \geq 0 is to extend XJ until \scrA n(X

J) tends to zero. However, it
is more computationally efficient to calculate \scrE \ell 

nm and \scrR \ell 
nm by approximating \scrA n(X)

as a sum of plane waves, as shown below.

5. Matching the discrete form and effective waves. Here we formulate a
system to solve for the unknown effective wave amplitudes \alpha p (3.11) and \BbbA (4.3). To
do this, we substitute \scrA n(X2) for the effective waves (3.8) in \scrE \ell 

nm and \scrR \ell 
nm, (4.6)

and (4.7), and we calculate the integral g( \=X) in (3.10) by substituting \scrA n(X2) for the
discrete solution \scrA j

n (4.2). Finally, to determine the \alpha p, and therefore the effective
waves (3.8), we impose that (3.8) matches the discrete solution (4.2) in a thin layer
near the boundary \=X. For an illustration see Figure 3. Imposing this match acts
like a boundary condition for the effective waves. From here onwards we assume that
\=X = XL.

X0 X1 . . . XL . . . XJ−1XJ

A0
n

A1
n

AL
n

in
∑

p e
inθpAp

ne
iXKp cos θp

Fig. 3. An illustration of the discrete solution \scrA j
n (4.2) (blue circles) and the effective

waves (3.8) (black line). We restrict the coefficients Ap
n of the effective waves by imposing that the

black line passes close to the \scrA j
n (i.e., satisfying the matching condition (5.10)) for X = XL, . . . , XJ ,

where we chose \=X = XL. Increasing the number of effective waves will lead to a closer match be-
tween the discrete solution and effective waves.

5.1. Using the effective waves to calculate (4.6), (4.7). Substituting the
effective waves (3.8) into (4.6), then integrating and using (A.2), we arrive at

(5.1) \scrE \ell 
nm = =

\phi Tm
\pi R2

o

in+1SJ - \ell 
n - m

P\sum 

p=1

eiX
JKp cos\varphi pe - in\varphi p

Kp cos\varphi p + cos \theta inc
Ap

n,

where we used XJ  - X\ell = XJ - \ell \geq 0 for J \geq \ell , when substituting Sn - m(XJ  - X\ell )
with (A.2). Employing (3.11), we write (5.1) in matrix form

(5.2)
\sum 

n

\scrE \ell 
nm = (Em\bfitalpha )\ell , (Em)\ell p =

\phi Tm
\pi R2

o

\sum 

n

in+1SJ - \ell 
n - m

eiX
JKp cos\varphi pe - in\varphi p

Kp cos\varphi p + cos \theta inc
apn.

To calculate (4.7), we first discretize the integral then substitute the effective
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waves (3.8), leading to

(5.3) \scrR \ell 
nm = \chi \{ \ell >J - q\} 

\phi Tm
\pi R2

o

\ell +q\sum 

j=J

\scrA n(X
j)(Bj - \ell 

n - m  - Sj - \ell 
n - m)\sigma \ell j

= \chi \{ \ell >J - q\} 
\phi Tmin

\pi R2
o

\ell +q\sum 

j=J

P\sum 

p=1

Ap
ne

 - in\varphi peiX
jKp cos\varphi p(Bj - \ell 

n - m  - Sj - \ell 
n - m)\sigma \ell j ,

where \sigma \ell j represents the discrete integral in the domain [XJ , X\ell +q]. Using (3.11),
just as we did in (5.2), we can write the above in matrix form

(5.4)
\sum 

n

\scrR \ell 
nm = (Rm\bfitalpha )\ell .

We can now rewrite the integral equation (4.4), using the above equations, in the
compact form

(5.5) (Em +Rm)\bfitalpha  - \bfitI \bfscrA m +
\sum 

n

\bfitQ mn\bfscrA n = \bfitb m,

which is valid for all m. If \bfitalpha were known, then we could calculate the discrete solution
\bfscrA n from the above. However, the \bfitalpha also depends on the \bfscrA n, as we show below.

5.2. The effective waves in terms of the discrete form. The equations to
determine the effective waves, so far, are (3.9) and (3.10). To calculate the integral
in (3.10), we discretize and substitute (4.2), which leads to the discrete form of the
extinction equation (3.10):

(5.6) wT\bfitalpha = \BbbG T\BbbA + i\pi R2
o cos \theta inc,

where \cdot T denotes the transpose, we used (4.3), g( \=X) = \BbbG T\BbbA =
\sum 

n G
T
n\bfscrA n,

wp = 2\phi 

\infty \sum 

n= - \infty 
ein\theta ince - in\varphi p

ei(Kp cos\varphi p - cos \theta inc)X
L

Kp cos\varphi p  - cos \theta inc
apn,(5.7)

(Gn)j = 2\phi ein\theta inc( - i)n - 1e - iXj cos \theta inc\sigma j ,(5.8)

and as the domain of the integral in (3.10) is only up to XL = \=X \leq XJ , we set
(Gn)j = 0 for j > L.

When using P effective wavenumbers, there are P unknowns \alpha 1, . . . , \alpha P , with,
so far, only one scalar equation (5.6) to determine them. To determine the \alpha p, we
match the sum of effective waves (3.8) with the discrete form \scrA j

n in the interval:
XL < X < XJ , as shown in Figure 3. To do this we could enforce

(5.9) \scrA j
n = in

\sum 

p

e - in\varphi peiX
jKp cos\varphi papn\alpha 

p = \bfitalpha Tvj
n for j = L,L+ 1, . . . , J.

However, for n \not = 0 the coefficients \scrA j
n and apn can be very small, and the above would

not enforce the extinction equation (5.6). So rather than use (5.9) for every n, it is
more robust to minimize the difference:

(5.10)
1

J  - L
min
\bfitalpha 

\sum 

n

J\sum 

j=L

| \scrA j
n  - \bfitalpha Tvj

n| 2 subject to wT\bfitalpha = \BbbG T\BbbA + i\pi R2
o cos \theta inc,
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where the constraint enforces (5.6). For details on how to solve (5.10) see section SM2.
The solution to the above is

(5.11) \bfitalpha = \BbbL T\BbbA +
i\pi R2

o cos \theta inc
wTV - 1w

V - 1w,

where w is the conjugate of w, and the block matrix \BbbL = [. . . ,L - n,L1 - n, . . . ,Ln, . . .],
with

\BbbL T\BbbA =
\sum 

n

LT
n\bfscrA n, LT

n = ZT
n + w - 1V - 1w(GT

n  - wTZT
n ),(5.12)

V =
\sum 

n

J\sum 

j=L

vj
n(v

j
n)

T, ZT
n = [0 \cdot \cdot \cdot 0V - 1vL

n \cdot \cdot \cdot V - 1vJ
n].(5.13)

Finally, substituting \bfitalpha (5.11) into (5.5), we reach an equation which we can solve
for \BbbA :

(5.14) ((\BbbE + \BbbR )\BbbL T +\BbbM )\BbbA = \BbbB (matching method),

where \BbbE and \BbbR have components Em and Rm, given by (5.2) and (5.4), respectively,
while the components of the block matrices \BbbB and \BbbM are

Bm = bm  - i\pi R2
o cos \theta inc

wTV - 1w
(Em +Rm)V - 1w,(5.15)

Mmn =  - \delta mnI+Qmn.(5.16)

To summarize, the terms w, V, and \BbbL are given by (5.7), (5.13), and (5.12), Qmn

is given by (4.5), and both \BbbA and bm are given by (4.2). The angle \theta inc is the angle
of the incident plane wave (2.7), and Ro is a nondimensional particle radius (2.21)
which increases with the frequency. The block matrices \BbbG , \BbbB , \BbbA , \BbbE , \BbbR , \BbbL , and \BbbZ all
have only one column. The elements of these columns are either column vectors (Gm,
Bm, \bfscrA m) or matrices (Em, Rm, Lm, and Zm).

5.3. The matching algorithm. We can now understand how to truncate the
effective wave series (3.8): assume the wavenumbers Kp are ordered so that Im Kp

increases with p = 1, . . . , P . Then note that the larger Im (XJKp cos\varphi p) is, the
less the contribution this effective wave will make to the matching (5.10), w (5.6),
\scrR \ell 

nm (5.3), and \scrE \ell 
nm (5.2). That is, we can choose P such that Im (XJKP cos\varphi P ) is

large enough so that this wave will not affect the solution \BbbA .
To aid reproducibility, we explain how to solve (5.14), and determine \BbbA , by using

an algorithm in section SM3.

6. The resulting methods. Here we summarize the matching method and
other methods for solving (4.1). To differentiate between results for the different
methods we use the superscripts M , D, and O. That is, we denote the field \scrA n(X)
as

\scrA M
n (X) (matching method), \scrA D

n (X) (discrete method),(6.1)

\scrA O
n (X) (one-effective-wave method).(6.2)

For the matching method, we solve (5.14) to obtain
(6.3)

\scrA M
n (X) =

\Biggl\{ 
\scrA j

n = (\bfscrA n)j , X = Xj ,

in
\sum P

p=1 e
 - in\varphi peiXKp cos\varphi papn\alpha 

p, X > XJ
(matching method),
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where the \alpha p are given from (5.11), and \varphi p, Kp, and apn are solutions to (3.2, 3.9,
3.11). For details on the matching method, see Algorithm SM3.1 in the supplementary
material.

The one-effective-wave method is the typical method used in the literature. It
consists in using only one effective wavenumber K1, that is, (3.1) with p = 1. This
one wavenumber K1 is often given explicitly in terms of either a low-volume-fraction
or a low-frequency expansion. However, as we explore both moderate-frequency and
moderate volume fractions, we will instead numerically solve for K1, the least attenu-
ating wavenumber. To solve for K1 and A1

n we take \=X = 0 and numerically solve (3.9)
and (3.10) for P = p = 1. The Snell angle \varphi 1 is determined from (3.2), with K = K1

and \varphi = \varphi 1. The result is

(6.4) \scrA O
n (X) = ine - in\varphi 1eiXK1 cos\varphi 1A1

n (one-effective-wave method).

From subsection 4.1, we can devise a purely numerical method, which requires a
much larger meshed domain for X. The resulting field is

(6.5) \scrA D
n (Xj) =

\Biggl\{ 
(\BbbA D

n )j , j \leq J,

0, j > J
(discrete method).

This discrete method gives a solution for a material occupying the layer 0 < X < XJ

and Y \in \BbbR . If the layer is deep enough and the wave decays fast enough, then this
discrete method will be the solution for an infinite half-space. Algorithm SM3.1 in
the supplementary material can be used to calculate this discrete method by taking
P = 1, J = L instead of step 7, as there is no matching region, and replacing steps
9--15 with: solve for \BbbA by using \BbbM \BbbA D = \BbbB instead of (5.14).

6.1. Reflection coefficient. The reflection coefficient R is the key information
required for many measurement techniques. We can compare the different methods
for calculating the average wave by comparing their resulting reflection coefficient,
which is much simpler than comparing the resulting fields \scrA n(X).

Consider a particulate material occupying the region x > 0, and choose a point
(x, y) to measure the reflection, with x < 0; then the ensemble average reflection
coefficient R is such that

(6.6) \langle u(x, y)\rangle = uinc(x, y) +Reik( - x cos \theta inc+y sin \theta inc).

By combining (2.17)--(2.19), we conclude that

(6.7) R =
\phi 

\pi R2
o

eiX cos \theta inc

\sum 

n

\int \infty 

0

\scrA n(X1)

\int \infty 

 - \infty 
eiY0 sin \theta incFn(X0)dY0dX1,

where we used X0 = X1 - X and the nondimensional parameters (2.21). The integral
in Y0 is given by (A.2), which, noting that X0 > 0, leads to

(6.8) R =
2\phi 

\pi R2
o cos \theta inc

\sum 

n

ine - in\theta inc

\int \infty 

0

\scrA n(X1)e
iX1 cos \theta incdX1.
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Substituting the matching method field (6.3) into (6.8) leads to
(6.9)

RM =

\infty \sum 

n= - \infty 

2\phi 

\pi R2
o cos \theta inc

(matching method)

\times 

\left[ 
 in

J\sum 

j=0

\sigma j\scrA j
ne

iXj cos \theta inc - in\theta inc + i

P\sum 

p=1

\alpha papne
in\varphi p

ref
eiX

J (Kp cos\varphi p+cos \theta inc)

Kp cos\varphi p + cos \theta inc

\right] 
 ,

where \varphi p
ref = \pi  - \theta inc  - \varphi p. For an interpretation of the reflection angle \varphi p

ref , see [21,
Figure 7].

For the discrete method, we discretize (6.8), which leads to

(6.10) RD =

\infty \sum 

n= - \infty 

2\phi 

\pi R2
o cos \theta inc

in
J\sum 

j=0

\sigma j\scrA j
ne

iXj cos \theta inc - in\theta inc (discrete method).

Alternatively, to obtain the reflection coefficient for one effective wave (6.4), we set
J = 0 and P = 1 in (6.9) to reach

(6.11) RO =

\infty \sum 

n= - \infty 

2\phi 

\pi R2
o cos \theta inc

iA1
ne

in\varphi 1
ref

K1 cos\varphi 1 + cos \theta inc
(one-effective-wave method),

which agrees with equations (41) and (42) from [32], when expanding for low volume
fraction \phi .

7. Numerical experiments. For simplicity, we consider circular particles (2.6)
for all numerical experiments, in which case, the nondimensional radius (2.21) Ro =
aok, where ao is the particle radius.

For the material properties we use a background material filled with particles
which either strongly or weakly scatter the incident wave. These are given, respec-
tively, by

co
c

= 0.5,
\rho o
\rho 

= 0.5 (strong scatterers),(7.1)

co
c

= 1.1,
\rho o
\rho 

= 8.0 (weak scatterers),(7.2)

noting that \rho o \gg \rho leads to weaker scattering than \rho o \ll \rho . We will use a range of
angles of incidence \theta inc, particle volume fractions \phi , and particle radiuses Ro, which
is equivalent to varying the incident wavenumbers k.

7.1. Comparing the fields. Figure 4 shows several examples of \scrA M
n from (6.3).

As a comparison we have shown the one-effective-wave field \scrA O
n (6.4) as well. To not

clutter the figure, we have not shown the discrete field \scrA D
n (6.5), which would lie

exactly on top of \scrA M
n . Figure 4 reveals how the discrete and effective wave parts of

\scrA M
n very closely overlap in the matching region XL \leq X \leq XJ . This close overlap is

not due to overfitting, as there are more than double the number of equations than
unknowns.

We now look closely at a specific case: particle volume fraction \phi = 20\% and
nondimensional particle radius Ro = 0.4 for the strong scatterers (7.1). Figure 5
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Fig. 4. These graphs show the matching field (6.3) and the one-effective-wave field (6.4) for
a material with circular particles, incident wave angle \theta inc = 0, and properties (7.1). The nondi-
mensional radius Ro = kao and volume fraction \phi are shown on each graph. We used six effective
wavenumbers (P = 6) for the bottom two graphs, and four effective wavenumbers (P = 4) for the
top right graph. Note that the discrete and effective parts of the matching fields overlap in the match
region. The one-effective-wave field in general loses accuracy close to the interface X = 0, which is
why it gives inaccurate predictions for the reflection coefficient \scrR O (6.11).

shows the effective wavenumbers used and how the greater the attenuation Im Kp is,
the lower the resulting amplitude | \alpha P | of the effective wave is, and therefore the less it
contributes to the total transmitted wave. We also see in Figure 5(c) how increasing
the number of effective waves (while fixing everything else) results in a smaller differ-
ence between the fields of the matching and discrete methods. This clearly confirms
that the field \scrA n is composed of these multiple effective waves. Figure 6 shows how
the matching method (6.3) and the discrete method (6.5) closely overlap with

max
X,n

\| \scrA M
n (X) - \scrA D

n (X)\| = 4.5\times 10 - 4,

which is similar to the matching error 4.7\times 10 - 5 given by the sum (5.10)1. The dotted
and dashed curves in Figure 6 demonstrate how the matching method is only accurate
when using the effective wavenumbers that satisfy (3.9). This agreement between the
matching and discrete methods is not isolated to specific material properties and
frequencies; we have yet to find a case where the two methods do not show excellent
agreement.6 Further, when increasing the number of effective wavenumbers P and
lowering the tolerance tol in Algorithm SM3.1, the two methods converge to the same
solution, as indicated by Figure 5(c). In this paper we will not explore this convergence
in detail, but we will show that the two methods produce the same reflection coefficient
for a large parameter range.

6Naturally, when the truncation error of the discrete method is very large, we found that the
result did not agree with the matching method. Note that the truncation error of the discrete method
is large when \scrA n(X) is weakly attenuating as X increases.
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Fig. 5. These graphs show the influence of the effective wavenumbers for the strong scatter-
ers (7.1) with particle volume fraction \phi = 20\%, nondimensional radius Ro = 0.4, and incident wave
angle \theta inc = 0.4. The resulting field \scrA M

n is shown in Figure (6). (a) shows the effective wavenum-
bers, with each marker corresponding to one wavenumber KP whose color darkens as the amplitude
of its wave field \alpha P increases. Clearly the larger the attenuation Im Kp, the lower the amplitude \alpha P .
(b) reveals how the amplitude \alpha P decreases when the effective phase speed increases in magnitude.
(c) shows how the maximum error between the fields of the matching and discrete methods decreases
when increasing the number of effective waves used by the matching method. Note: if we had not
included the three lowest attenuating wavenumbers, the maximum error would be larger than 0.17.
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Fig. 6. This graph shows that the matching method (6.3) overlaps with the discrete method (6.5)
(a purely numerical method). The effective wavenumbers used are shown in Figure 5, and the
material properties are given by (7.1). The dashed and dotted curves also result from the matching
method but use the wrong effective waves: the dotted curve wrong match \scrA M

0 and \scrA M
1 use the

effective wavenumbers (3.9) multiplied by 1.2. The zero match fields zero all the effective wave
amplitudes apn = 0 and \scrA M

n (X) = 0 for X > 1.

7.2. Comparing reflection coefficients. The reflection coefficient R is a sim-
ple way to compare the different methods in section 6. Many scattering experiments
aim to estimate R [67, 66]. The accuracy of estimating R is also directly related to
the accuracy of calculating the transmitted waves.

In Figure 7 we compare the reflection coefficient for the discrete methodRD (6.10),
matching method RM (6.9), and two methods that use only one effective wavenum-
ber (6.11): the one effective RO uses a numerical solution for K1 (the wavenumber
with the smallest imaginary part), while the low vol. frac RO uses a low-volume-
fraction expansion for the wavenumber [32].

In Figure 7(a) we compare the reflection coefficients for strong scatterers (7.1)
when varying the particle radius Ro (or likewise varying the wavenumber k) with a
fixed volume fraction \phi = 20\%. We use at most 1600 points for the X mesh and fewer
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Fig. 7. The reflection coefficients from the methods in section 6 as a function of the nondi-
mensional particle radius Ro: (a) has strong scattering particles (7.1) with \phi = 20\% and \theta inc = 0.0,
while (b) has weak scattering particles (7.2) with \phi = 25\% and \theta inc = 0.4. Note that the one-
effective-wave fields almost overlap in this case. The real part of the curves in (b) are even closer
together, with maxRo | Re(RO  - RM )| = 0.0026 for the one effective RO.

than 100 points for the X mesh of the matching method, and aim for a tolerance of
10 - 5 for the fields.

We clearly see that RD and RM (6.9) overlap. For Ro > 0.03 the maximum
difference maxRo

| RM  - RD| < 0.0014. For Ro < 0.03 we have not shown RD be-
cause the numerical truncation error became too large (compared to our tolerance).
This occurs when the fields \scrA D(X) decay slowly, which occurs for small particles (or
low frequency). However, for low frequency the one effective RO is asymptotically
accurate [44], and we see that RM does converge to RO as Ro \rightarrow 0. However, for
larger Ro the error of the one effective RO is as much as 20\%, while the low vol. frac.
RO commits even larger errors. These larger errors are not unexpected, because the
accuracy of the low-volume-fraction expansion depends on the type of scatterers and
frequency [44], and can diverge in the limit Ro \rightarrow 0 [20].

Figure 7(b) compares the reflection coefficients for weak scatterers (7.2). We use
at most 2200 points for the X mesh and fewer than 100 points for the X mesh of the
matching method, and aim for a tolerance of 10 - 5 for the fields.

Again, as before, we do not show RD for values of Ro where the numerical trunca-
tion error become large (relative to our tolerance). For this case of weak scatterers we
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see that the difference between the methods is less, though the reflection coefficient is
also smaller with mean | RM | = 0.058. Still, the relative error of Im (RM - RO) \approx 10\%.
The imaginary part of the reflection coefficient, and where it changes sign, can be key
for characterizing random microstructure [48]. The real part of the reflection coeffi-
cients is not shown, as the relative errors for the real part are even smaller.

8. Conclusions. Our overriding message is that there is not one, but a series
of waves, with different effective wavenumbers, that propagate (with attenuation) in
an ensemble-averaged random particulate material. These waves must be included
to accurately calculate reflection and transmission. Figure 2 shows examples of these
effective wavenumbers.

Although there is an analytic proof [18] that there exist a series of effective waves,
which solve (2.20), this current paper shows how to calculate these by using a matching
method (6.3). In our numerical experiments in section 7, we show that the matching
method converges to a numerical solution (the discrete method) for a broad range of
wavenumbers k (or equivalently the nondimensional radius Ro), particle volume frac-
tions, and two sets of material properties. For example, Figure 6 compares the average
fields \scrA n(X), and Figure 7 the reflection coefficients R of the matching and discrete
methods. The drawback of the discrete method (6.5) is that it is computationally
intensive, especially for low wave attenuation, requiring a spatial mesh between 1600
and 2000 elements to reach the same tolerance as the matching method, which used
only 100 elements.

For small incident wavenumbers k, the matching method converges to a result
which assumes there exists only one effective wave for both strong and weak scatterers.
Qualitatively, the fields \scrA n(X) from the one-effective-wave (6.4) and matching (6.3)
methods agreed well when moving away from the material's interface; for example,
see Figure 4. However, as the fields are not the same near the interface, the resulting
reflection coefficients can significantly differ, as shown in Figure 7.

8.1. The next steps. Here we comment on a few directions for future work. One
important limit, which we did not investigate here, is the low volume fraction limit:
\phi \ll 1. In numerical experiments, not reported here, we found that the matching
method converges to the one-effective-wave method in the limit for low \phi . It appears
that as \phi decreases the Im Kp, for p > 2, tends to +\infty , implying that the boundary
layer \=X shrinks and makes all but K1 insignificant. This limit deserves a detailed
analytic investigation in a separate paper.

The consequences of this work have a direct impact on effective wave methods
used for acoustic, elastic, electromagnetic, and even quantum wave scattering. That
said, many of these fields use vector wave equations and require the average intensity.
So one challenge is to translate the results of this paper to vector wave equations and
the average intensity. Note that for electromagnetic waves, much of the groundwork
for the average fields has already been done [23, 24].

The radiative transfer equations are one outcome of properly deducing the aver-
aged intensity for waves in particulate materials. For example, for electromagnetic
waves, radiative transfer equations have been deduced under assumptions such as weak
scattering, sparse particle volume fractions, and one effective wavenumber K1 [37].
Within the confines of the assumptions used, radiative transfer methods (and mod-
ifications) are leading to accurate predictions of the reflected intensity [41, 65, 47].
We speculate that this work will eventually lead to accurate predictions for reflected
intensity for a broad range of frequencies and particle properties.
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Data and reproducibility. All results can be reproduced with the publicly
available software [17], which has examples on how to calculate the effective wavenum-
bers and the matching method, as well as the finite-difference method that we present.

Appendix A. Wiener--Hopf kernel. Here we reduce (2.20) to the Wiener--
Hopf equation (4.1). First we separate the double integral:

\int 
x2>0

\| \bfx 2 - \bfx 1\| >a12

\scrA n(kx2)e
i(y2 - y1)k sin \theta incFn - m(kx2  - kx1)dx2

=
1

k2

\int 

x2>0

\scrA n(X2)

\int 

Y 2>R2
o\gamma 

2 - X2

eiY sin \theta incFn - m(X)dY dX,

where we used X = kx2  - kx1 and the parameters (2.21). We can then rewrite

(A.1)

\int 

Y 2>R2
o\gamma 

2 - X2

eiY sin \theta incFn - m(X)dY

= \chi \{ | X| <Ro\gamma \} Bn - m(X) + \chi \{ | X| >Ro\gamma \} Sn - m(X),

where \chi \{ true\} = 1 and \chi \{ false\} = 0. From [32, eq. (37)] we have
(A.2)

Sn(X) =

\int \infty 

 - \infty 
eiY sin \theta incFn(X)dY =

2

cos \theta inc

\Biggl\{ 
ine - in\theta inceiX cos \theta inc , X \geq 0,

( - i)nein\theta ince - iX cos \theta inc , X < 0.

The Bn - m(X) in (A.1) only need to be evaluated for a small portion of the domain
of X, and are given by

(A.3) Bn(X) =

\int \infty 

 - \infty 
\chi \{ Y 2>R2

o\gamma 
2 - X2\} e

iY sin \theta incFn(X)dY

= 2( - 1)n
\int \infty 
\surd 

R2
o\gamma 

2 - X2

cos (Y sin \theta inc + n\Theta )Hn(R)dY.

Because the integrand tends to zero slowly as Y increases, we use an asymptotic
approximation to evaluate the integral, namely,

cos (Y sin \theta inc + n\Theta ) = cos((n\pi )/2 + Y sin(\theta inc)) +\scrO (X/Y ),(A.4)

Hn(R) =  - ( - 1)3/4e - in\pi /2

\sqrt{} 
2

\pi Y
+\scrO (X3/2/Y 3/2),(A.5)

to rewrite

(A.6) Bn(X) = 2( - 1)n
\int Y1

\surd 
R2

o\gamma 
2 - X2

cos (Y sin \theta inc + n\Theta )Hn(R)dY

+
(1 + i)eiY1(1 - sin \theta inc)

\surd 
\pi Y1 cos2 \theta inc

\bigl[ 
( - 1)ne2iY1 sin \theta inc(1 - sin \theta inc) + 1 + sin \theta inc

\bigr] 
+\scrO (X/Y1).

Then as X is bounded by | X| < Ro\gamma , we can choose Y1 such that X/Y1 is below a
prescribed tolerance.

Substituting (A.1), (A.2), (A.6) into (2.20) leads to the Wiener--Hopf integral
equation (4.1).

https://github.com/arturgower/EffectiveWaves.jl/tree/v0.2.0/examples/many_wavenumbers
https://github.com/arturgower/EffectiveWaves.jl/tree/v0.2.0/examples/many_wavenumbers
https://github.com/arturgower/EffectiveWaves.jl/tree/v0.2.0/examples/matched_method
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