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1. Clustering with matching 
 
1.a Problem description 
 
• Given: 𝑛 sets of vectors, each set has 𝑘 vectors, for a total of 𝑘𝑛 vectors; 
• Objective: cluster the 𝑘𝑛 vectors into 𝑘 clusters such that the 𝑘 vectors from the same set all belong to 

different clusters. 
 
Think of this as: Let us say we have a problem that has no unique solution, and where a solution consists of a 
set of 𝑘 vectors. We can run an algorithm many times and each time we obtain a set of 𝑘 vectors as a solution. 
After 𝑛 runs, we have 𝑛 solutions, that is 𝑛 sets of 𝑘 vectors (Supplementary Fig. 1a). Clustering helps us find a 
consensus solution and tells us about robustness of the solutions. 
 
 
1.b Algorithm Description 
 
Intuition of how clustering with matching works: for each two sets, we can find a best match (i.e. a bijective 
function) pairing the 𝑘 vectors in each set (e.g. based on least distance) and obtain 𝑘 clusters with exactly two 
vectors in each cluster. We can then start grouping the matches starting from the best matches until we have 
clustered all the 𝑛 sets. 
 
Initialisation: compute a match between the vectors in one set and the ones in each of the other sets for a total 
of 𝑛(𝑛 − 1)/2 matches. Each match pairs one vector from a set to one and only one vector on the other set 
based on shortest distance (Supplementary Fig. 1b). Algorithms for solving the assignment problem or stable 
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matching can be used to compute these matches. We use the assignment problem as this ensures that the 
match will be optimal in the sense that the average of the distances between all matched vectors will be the 
minimum possible. 
 
After the 𝑛(𝑛 − 1)/2 matches have been computed, we build a symmetric matrix 𝐴 with the average distances 
obtained from each match 𝑀+,-  (Supplementary Fig. 1c). Intuitively, the lower the average of the distances, the 
better the match is. This allows us to construct an ordered list of matches 𝐿, with 𝑀+,- ∈ 𝐿, from best to worst 
(Supplementary Fig. 1d, Init. row). 
 
Algorithm core: starting from the best match (lowest sum of distances in the match), group and merge matches 
until all vectors from all sets are clustered (Supplementary Fig. 1d, Step 3 row). 
 
Assume there is: 

• A matrix  𝐴 of average distances obtained for the corresponding matches 𝑀 
• an ordered list 𝐿 of 𝑛(𝑛 − 1)/2 matches from best to worst (𝑀+,- ∈ 𝐿) 
• a pool 𝐺 of grouped matches, initially empty (𝐺 = ∅) 

 
Begin: remove the best match 𝑀+,-  (the one for which 𝐴+,-  is the lowest for all 𝑖 and 𝑗) from 𝐿 and add it to 𝐺 
Step: remove the best match 𝑀+,-  from 𝐿 and 

• if there are no matches with either 𝑖 or 𝑗 in 𝐺 then add the match 𝑀+,-  to 𝐺 
• if only 𝑖 (or 𝑗) but not 𝑗 (or 𝑖) is in a match 𝑀5,…,+,…,7 (or 𝑀5,…,-,…,7) in 𝐺 then combine 𝑀+,-	with  𝑀5,…,+,…,7 

(or 𝑀5,…,-,…,7), thus obtaining 𝑀5,…,+,…,-,…,7. (this is a simple merge of tables on the index 𝑖, or 𝑗) 
• if both 𝑖 and 𝑗 are in 𝐺 then 

o if 𝑖 and 𝑗 are in the same match 𝑀5,…,+,…,-,…,7 then do nothing (𝑖 and 𝑗 are already merged) 
o if 𝑖 and 𝑗 are in different matches 𝑀59,…,+,…,79 and 𝑀5:,…,-,…,7: then merge one match with 𝑀+,-   

and the result with the other match to obtain the match 𝑀59,5:,…,+,…,-,…,79,7: 
Stop: The algorithm stops when a single match with all 𝑛 runs is obtained 
 
 
1.c Example 
 
Let us assume that after the initialisation step we obtain the matrix 𝐴 and ordered list 𝐿 (Supplementary Fig. 1d, 
Init. row). In this example, 𝑛=5 and 𝑘=3. Notice that the size of the vectors is only relevant for the computation 
of the distances between vectors, which is done at the initialisation step. 
1. The first match in 𝐿, i.e. 𝑀9,:, is the match with the lowest average distance of the match and thus it is added 

to G at the base step (Supplementary Fig. 1d, Base row); 
2. At the following step, 𝑀;,< is also simply added to 𝐺 (Supplementary Fig. 1d, Step 1 row), because neither 

run 3 nor 4 is already in 𝐺; 
3. Then, 𝑀:,; is merged with 𝑀9,:, because they share run 2 and there are no other matches in 𝐺 with run 3, 

thus replacing 𝑀9,: with 𝑀9,:,; in 𝐺 (Supplementary Fig. 1d, Step 2 row); 
4. Finally, 𝑀;,= is merged with both 𝑀9,:,; and 𝑀<,=, because it shares run 3 and run 5 with each of them 

respectively. This replaces  𝑀9,:,; and 𝑀<,= with 𝑀9,:,;,<,=, which includes all 5 runs and terminates the 
algorithm (Supplementary Fig. 1d, Step 3 row).  

 
 
1.d Time performance 
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To evaluate how the time performance of clustering with matching scales for increasing number of vectors (and 
thus clusters) k, in each set n, we prepared a series of test problems with 𝑛=100 and 𝑘=2,…,16 (Supplementary 
Fig. 2a). Each of the 15 problems is generated using (k-1) normal distributions, and data points are generated so 
that batches of k vectors are known to come from different, though unknown distributions. 
 
We used an implementation in R of clustering with matching, which uses the R package lpSolve to solve the 
assignment problem. We also compared clustering with matching against constrained k-means, from the R 
package conclust. 
 
Examples of clustering results for both clustering with matching and constrained k-means can be seen in 
Supplementary Fig. 2b for the problems with 𝑘=14, 𝑘=15 and 𝑘=16. 
 
When considering the time required by the two algorithms to solve the problems using the considered 
implementations, it is clear that clustering with matching scales better than constrained k-means for increasing 
number of vectors 𝑘 (Supplementary Fig. 2c). 
 
 
2. Global signature extraction 
 
We performed a single global extraction of substitution signatures by pooling 2,486 samples (excluding sig10 
and sig7 hypermutated samples). The analysis of average silhouette width and reconstruction error suggested 
24 signatures, illustrated in Extended Data Fig. 2. 
 
First, there are signatures that are extracted well and clearly, and show high cosine similarities across all 
possible extraction exercises. However, if there were variations between tissues, these will not be detected. 
These signatures are (Extended Data Fig. 2): S18 (COSMIC1/Refsig1), S2 & S22 (COSMIC2/RefSig2 & 
COSMIC13/RefSig13), S20 (COSMIC11/RefSig11), S12 (COSMIC22/RefSig22), S24 (COSMIC16/RefSig16) and S13 
(COSMIC19/RefSig19). 
 
Second, there are signatures that resemble known signatures, but have a low cosine similarity with respect to 
known signatures or any of the organ specific signatures found in this study, which indicates a poor 
identification of these signatures. These signatures are: S7 (RefSig3/COSMIC3), S8 (RefSig4/COSMIC4), S5 
(RefSig8/COSMIC8), S14 (RefSig9/COSMIC9) 
 
Third, there are signatures where the global extract has caused ambiguity. For example, there seem to be 
several versions of MMR signatures (S6, S15, S16, S21), which may resemble organ specific signatures, but not 
necessarily any COSMIC signature or Reference Signatures (e.g. S15). 
 
Fourth, there are signatures likely artefactual, bearing no similarity to any signature identified in this or 
previous studies: S1, S6, S9, S10, S17, S23. 
 
While pooling together more samples could in principle improve the extraction of signatures shared across 
organs, in practice only few signatures are reliably obtained, while several artefactual signatures are also 
produced. The main reason for this is that that NMF extraction scales poorly with the number of signatures 
present in a set of samples (Alexandrov et. al 2012, Cell Reports). Given the relatively large number of 
signatures in the full dataset considered here (30-40), the extracted signatures are likely to be affected by the 
following issues: 
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1. Signatures that have flatter profiles are less likely to be obtained in an uncontaminated way 
2. Strong signatures with particular, dominant peaks and also very high levels of mutagenesis associated 

with these patterns (e.g. mismatch repair-related signatures) tend to dominate “global” analyses and 
end up over-splitting driven by the minor variation between samples that are heavily mutated 

3. Various efforts are often required such as excluding cohorts of samples and doing analyses separately 
for those highly mutated samples. In other words, there are pre-hoc adjustments and various post-hoc 
adjustments surrounding global analyses and fitting. 

 
While some organ specific extractions may also present the above issues, others will not be affected, and the 
lower number of signatures in each individual organ will make addressing these issues more manageable. 
 
 
3. SIGNAL: The Homepage of Mutational Signatures 
 
Signal is an online, open-access mutational signature reference site built using modern web technologies. 
Signal is divided into two distinct sections: Explore, which allows users to explore cancer-derived and 
experimentally-generated signature data, and Analyze, which allows users to upload their own data for 
analysis by our pipeline (Supplementary Figure 3).  

3.a Explore mutational signatures 

The Explore section is organized into three categories corresponding to the source of mutagenesis—in vivo 
mutational signatures derived from human cancers (Cancer)1-3as described in the main text; in vitro 
mutational signatures derived from experiments involving environmental mutagens (Environmental 
Mutagenesis)4 ; and in vitro mutational signatures derived from cell-based experiments involving CRISPR-Cas9 
knockouts of different genes (Gene-Edits)5. 

The Cancer section presents the most up-to-date analyses of more than 3,000 whole-genome-sequenced 
(WGS) tumors across 21 different cancer types2,3 as described in the main text. An interactive heatmap is the 
primary entry-point for accessing all cancer-derived mutational signature data 
(https://signal.mutationalsignatures.com/explore/cancer). Additionally, Signal provides an interactive 
signature network map (https://signal.mutationalsignatures.com/explore/cancer/network), allowing users to 
explore how signatures are related between organs. Users are also shown the similarities between reference 
signatures and the current set of 30 COSMIC mutational signatures1. 

The Environmental Mutagenesis section (https://signal.mutationalsignatures.com/explore/mutagens) is home 
to substitution and indel signatures (rearrangement numbers were insufficient to produce rearrangement 
signatures) derived from human induced pluripotent stem cells (iPSCs) that were exposed to 77 known or 
suspected environmental carcinogens (IARC Class I or IIa/IIb)4.  Links to IARC classification, CAS number, and 
additional information on PubChem6 are also provided. The Gene-Edits section 
https://signal.mutationalsignatures.com/explore/genes is home to substitution, rearrangement and indel 
signatures derived from a proof-of-principle study knocking out 9 genes related to DNA repair using CRISPR-
Cas9 technology in human HAP-1 cells5. Information such as gene name, symbol, function, chromosomal 
location and known pathway(s) is provided for each gene with links to additional information on the NCBI 
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website (https://www.ncbi.nlm.nih.gov/gene). The user can view mutation profiles for each individual sample 
used in these studies. 

3.b Analyze your data 

The Analyze interface (https://signal.mutationalsignatures.com/analyse) allows users to upload somatic 
mutation data (aligned to either GRCh37 or GRCh38 currently) of a single sample, or set of samples, to 
perform quick mutational signature analysis. It is not designed to perform new mutational signature 
extractions. Rather, it assesses potential contributions of Signal’s signatures to a sample’s mutational profile, 
while being capable of also highlighting novel patterns.  

As noted in the main manuscript, any given mutational profile can be theoretically modelled as a linear 
combination of mutational signatures. The larger the pool of mutational signatures used to derive a model, 
however, the more likely one is to discover, by chance, combinations not representative of the true biological 
history of a given sample (false positives). The accuracy of the signature fitting algorithm is therefore 
increased by selecting a biologically sensible subset of the available signatures for consideration in the model.  

The user can simply specify the originating organ of their cancer sample and Signal will automatically select 
the appropriate candidate signatures on their behalf, leveraging the organ-specificity of the signatures in its 
database. Alternatively, Signal enables experienced users to manually select candidate signatures of their 
choice from the pool of signatures available on Signal (including cancer-derived and experimentally-derived 
signatures). We have made signatures from external sources available, namely COSMIC7 and the Pan-Cancer 
Analysis Working Group on Mutational Signatures8.  

Signal returns the sample’s mutational profile and estimated signature contributions, along with a 
reconstructed profile. Advanced users can interrogate data in more detail to understand the robustness (or 
otherwise) of their result, as facilitated by the bootstrap resampling process. Various additional analyses are 
offered including: the detection of transcriptional strand bias; the filtering of localised hypermutation 
(kataegis); and the identification of similar cancer samples in the database.  

A note of caution: the fitting process is a purely mathematical procedure that will seek to fit whichever a priori 
signatures are selected. This does not mean that the biological process with which a given signature is 
associated is definitively present in the sample. Other means should be sought to formally confirm or refute 
the biological presence of a mutational process in any analysis. 

Any difference between the original sample profile and the reconstructed profile may simply be noise that is 
unaccounted for. It could also be indicative of signatures that are present in the user’s sample but were not 
selected for fitting, or were excluded by the sparsity filtering process. With this in mind, Signal may present 
the user with other potentially contributing signatures. If there is consistency in difference profiles between a 
subset or all of the user’s samples, but with no similarity to any of the signatures in the database, this could 
indicate that a previously undiscovered signature is contributing to the sample’s profile. The true biological 
process underpinning any unassigned or incorrectly assigned mutations would thus require further 
investigation. This specific functionality of our resource truly exploits the totality of knowledge that is present 
in this database. 
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Following a first release, this resource will be regularly updated, with the addition of more analyses, data and 
functionality. We welcome the contribution of experimental or cancer data by the community in order to 
enhance the database.  We hope that Signal serves as a valuable resource to the community. 

3.c Materials and methods 

Signal is a modular website running in the flexible cloud environment, OpenStack9. Along with the tools 
Packer10 and Terraform11, OpenStack allows us to quickly and dependably deploy complex infrastructure. The 
Javascript frontend of Signal utilises React12 and Redux13 to create the modern user interface, while employing 
server-side rendering to ensure fast loading of the website. Browser storage (in the form of IndexedDB) is 
used to ensure the persistence of analysis results—which are not stored long-term on our servers—between 
sessions. Charts are powered by D3 using the Plotly14 Javascript library. The Javascript frontend communicates 
with a RESTful API written using the Perl Dancer215 framework. These components are housed on multiple 
virtual machines within OpenStack and are served by a HAProxy16 load balancer, allowing the website to be 
scaled quickly to the required demand. 

Individual components of the analysis pipeline are written in Python and R and are managed by Workflow 
Runner17 (WR). WR allocates resources to individual components of the pipeline—booting new OpenStack 
instances if necessary—and manages task dependencies. Distributed storage available to all instances in the 
environment is handled by Ceph18. Reference genomes are held in-memory on dedicated machines and served 
with a RESTful API to enable rapid lookups. All components are containerised using Docker. 
 

3.d References 

1 Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415-421, 
doi:10.1038/nature12477 (2013). 

2 Campbell, P. J., Getz, G., Stuart, J. M., Korbel, J. O. & Stein, L. D. Pan-cancer analysis of whole genomes. 
bioRxiv, doi:10.1101/162784 (2017). 

3 Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. 
Nature 534, 47-54, doi:10.1038/nature17676 (2016). 

4 Kucab, J. E. et al. A Compendium of Mutational Signatures of Environmental Agents. Cell 177, 821-836 
e816, doi:10.1016/j.cell.2019.03.001 (2019). 

5 Zou, X. et al. Validating the concept of mutational signatures with isogenic cell models. Nature 
communications 9, 1744, doi:10.1038/s41467-018-04052-8 (2018). 

6 Kim, S. et al. PubChem 2019 update: improved access to chemical data. Nucleic acids research 47, 
D1102-D1109, doi:10.1093/nar/gky1033 (2019). 

7 Tate, J. G. et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic acids research 47, 
D941-D947, doi:10.1093/nar/gky1015 (2019). 

8 Alexandrov, L. et al. The Repertoire of Mutational Signatures in Human Cancer. bioRxiv, 
doi:10.1101/322859 (2018). 

9 Openstack, <https://www.openstack.org/software/> (2019). 
10 Packer, <https://packer.io> (2019). 
11 Terraform, <https://www.terraform.io> (2019). 
12 React, <https://reactjs.org> (2019). 
13 Redux, <https://redux.js.org> (2019). 
14 Plotly, <https://plot.ly> (2019). 



 7 

15 PerlDancer, <http://perldancer.org> (2019). 
16 HAProxy, <http://www.haproxy.org> (2019). 
17 Workflow Runner, <https://github.com/VertebrateResequencing/wr> (2019). 
18 Ceph, <https://ceph.com> (2019). 
 

 

  



 8 

4. Supplementary Figures 
 
Supplementary Figure 1. Clustering with matching. (a) Illustration of a matrix containing 𝑛𝑘 vectors to be 
clustered as columns. For each of 𝑛 runs there are 𝑘 vectors that should be clustered separately. (b) For each 
pair of runs, the distance between the k vectors in each run can be computed. This produces n(n-1)/2 distance 
matrices, and the figure illustrates one of them, i.e. the distance matrix for runs 1 and 2. (c) From each distance 
matrix in (b), a match between the vectors in each run can be computed based on the lowest overall distance 
average of the match distances. The figure illustrates the n-by-n matrix A with the average for all the possible 
matches. (d) Illustration of the clustering with matching algorithm with n=5 and k=3. The initialisation procedure 
produces an ordered list of matches L (Init. row), starting from the match with the overall lowest average 
distance (M_1,2). Finally, matches can be merged sequentially in the G set until only one match table including 
all the n runs is obtained (from Base to Step 3 rows). Clusters are then obtained from the final merged match 
table (Step 3). 
 
a 

 
 

b c 

  
d 
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Supplementary Figure 2. Performance of Clustering with Matching and constrained k-means. Clustering 
problems for the time performance evaluation. Each of the 15 problems has number of runs 𝑛 is 100, while the 
number of vectors (and clusters) 𝑘 is increasing from 2 to 16. Data points are generated so that batches of k 
vectors are known to come from different, though unknown clusters. (b) Examples of clustering solutions to 
some of the problems in(a), obtained using clustering with matching (top row) and constrained k-means (bottom 
row). (c) Time required to solve the problems in (a), using either clustering with matching or constrained k-
means. 
 
a 

 
 
 
b c 
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Supplementary Figure 3. Organization of the Signal web site. Two main sections are available: Explore and 
Analyze. In the Explore section, a database of mutational signatures of various types and from multiple 
sources can be explored interactively. In the Analyze section, users can upload mutational data and obtain 
estimates of mutational signatures activity.  
 

 


