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Abstract1

32% of the liquid metal used to make flat steel products in Europe does not end2

up in a final product. 60% of this material is instead scrapped during manufacturing3

and the remainder during fabrication of finished steel products. Although this scrap4

is collected and recycled, remelting this scrap requires approximately 2 MWh/t, but5

some of this material could instead be diverted for use in other applications without6

remelting. However, this diversion depends not just on the mass of the scrapped steel,7

but also on its material characteristics. To enhance our understanding of the potential8

for such scrap diversion, this paper presents a novel material flow analysis of flat steel9

produced in Europe in 2013. This analysis considers the flows of steel characterized not10

only by mass but, for the first time, also by grade, thickness and coating. The results11
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show that thin gauge galvanized drawing steel is the most commonly demanded steel12

grade across the industry and most scrap of this grade is generated by the automotive13

industry. There are thus potential opportunities for preventing and diverting scrap14

of this grade. We discuss the role of geometric compatibility of parts and propose15

tessellating blanks for various car manufacturers in the same coil of steel to increase16

utilisation rates of steel.17

Introduction18

With wide ranges of available strength, formability, weldability, toughness and hardness,19

there is a grade of steel suitable for most engineering applications. Combining this variety20

with abundant ores and a relatively cheap cost of production, steel has become ubiquitous21

across the globe. 1.63 billion tonnes of steel were produced in 2016,1 more than any other22

material apart from cement.2 This ubiquity has its price: According to Allwood et al. 3 steel23

accounts for 6% of global CO2 emissions, giving it the largest footprint of any material in24

use today. With the combined pressures of emission targets, overcapacity of blast furnaces25

and cheaper production in developing economies, it is pertinent to ask: is this a good time26

to change the way we use steel?27

Improvements in energy efficiency over the last 50 years have already substantially de-28

creased CO2 emissions from the steel industry to half of what they were per tonne in the29

1960s.4 However, over that same period demand for steel has quadrupled, leading to a net30

doubling in emissions, a trend that is likely to continue as global economies develop. As31

an alternative, Allwood et al.,5 Milford et al.,6 and Pauliuk and Müller 7 among others32

have shown that pursuing material efficiency strategies can substantially reduce the carbon33

footprint of the steel industry. However, not all steel is created equal. The World Steel34

Association estimates that there are approximately 3,500 grades in use today, each tailored35

for particular applications. Evaluation of material efficiency strategies such as process scrap36

diversion across different manufacturing sectors require an understanding of the physical37
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dimensions, mechanical properties and corrosion protection required by each sector. For38

this reason, more than just measuring mass flows of steel for each application, additional39

resolution on the grade, thickness and coating of steel uses would provide new insights on40

the most efficient uses of all steel products.41

Material Flow Analysis (MFA) applies conservation of mass within a well-defined system42

boundary to determine the flow of material between elements of that system.8 Over the43

past two decades MFA has been used to calculate trade flows of materials between nations,944

estimate material stocks,10 and project trends of steel scrap supply.11 MFA studies can be45

classified as top-down if they rely upon nationally-collected statistics to form their dataset,46

or bottom-up if the data is gathered by inventory of the stocks within a system.47

Top-down studies determine the flows in each time interval, from which stocks can be de-48

duced. Previous top-down studies have calculated flows of energy required during steelmak-49

ing,12 mapped global production and consumption of steel,13 and estimated future demand50

for steel and the availability of scrap. These studies have been applied to inform decisions51

including the requirement for new blast furnace or electric arc furnace capacity.7,11,14,1552

Conversely, bottom-up studies involve the determination of stocks within a system bound-53

ary, from which flows could in theory be determined. This would require knowledge of54

stock levels over consecutive time intervals, but in practice this has not yet been attempted.55

Bottom-up studies have calculated stocks of iron at the municipal,16 state17 and national1856

levels through direct inventory of iron containing goods, as well as at state and national57

levels using correlations with proxy measures such as night-time light intensity19–21 and58

GDP/capita.2259

A review of 50 MFA studies calculating stocks and flows of steel in the supporting in-60

formation reveals that methods to date provide compelling insights on both the aggregate61

flows of steel at the global and national scale as well as determinations of steel stocks at62

a remarkably fine level of spatial resolution. However, two major gaps were identified in63

this literature: steel flows have only been disaggregated into few types of steel, and where64
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this detail is provided, higher-resolution steel flows have been assessed into a small set of65

manufacturing industries.66

In most assessments, steel is treated as a single material type, where, because of the range67

of available grades, coatings and thicknesses, it is in reality a class of many different material68

types. A few studies have considered various steel grades. For example, Nakajima et al.2369

used input-output methods to assess the flows of three alloying elements of steel in Japan.70

More recently, Ohno et al.24 have assessed the flows of steel in vehicles with detail on the71

alloying elements present in steel to minimise their losses in steel recycling. However, for all72

previous studies, manufacturing with steel has been disaggregated into a small set of industry73

sectors, most of them only for the automotive industry. But yield losses vary considerably74

across manufacturing processes and grades of steel, and therefore the availability of prompt75

scrap varies substantially for different grades of steel. Lack of detail on the quantities of76

prompt scrap by grade have been preventing the identification of opportunities for scrap77

diversion as feedstock across different industries, and further opportunities for reducing the78

generation of prompt scrap. However, a higher resolution MFA, capable of tracking flows79

of steel by grade, but also other material characteristics, such as thickness and coating,80

in addition to mass, coupled with a detailed assessment of manufacturing processes across81

industries could enable the identification of novel opportunities to reduce steel production82

and to prevent unnecessary recycling, and consequent energy uses and emissions.83

In this paper, for the first time, an MFA is constructed from commercial, statistical and84

interview data, disaggregated by both material characteristics and manufacturing process85

for Europe. This assessment enables the identification of potential opportunities for scrap86

diversion of flat steel across European industries, and it provides new insights on novel87

opportunities to combine similar grades of steel in the same coils by tessellation across88

products.89
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Methods90

The following sections outline how adapting conventional MFA to allow for material charac-91

teristics can open the path to assessing the real potential for scrap diversion across manufac-92

turing sectors. Then the creation of a dataset detailed around material characteristics and93

production stages in both steelmaking and manufacturing is described, created from three94

main data sources.95

Allowing for Material Characteristics96

Conventional MFA considers flows described by four dimensions:97

1. Source: Where the flow originates,98

2. Target: Where the flow is sent,99

3. Time: When the flow occurred, and100

4. Measure: The quantity and units of the flow.101

However, a fifth dimension can be introduced to differentiate between multiple material102

types in the same study:103

5. Material: The composition of the flow.104

The material dimension could simply differentiate between a few different metals, or be105

as complex as tracking the elemental composition, microstructure and geometry of flows of106

steel moving through a system. In the framework devised by Lupton and Allwood 25 , the107

material dimension for each flow, along with the source, target and time dimensions, can be108

assigned an ID that describes the characteristics of that material within a ‘Dimension Table’.109

These four IDs when paired with a measure then form a flow within the ‘Fact Table’, with110

all the tables together constituting the MFA database.111
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For conservation of mass across all materials, MFA require the satisfaction of two equal-112

ities, which can therefore be adapted to include material characteristics as:113

∑
i

[fi,p,m,t − fp,i,m,t] + cp,m,t − dp,m,t + ∆Sp,m,t = 0 for all p,m, t (1)

Sp,m,t+1 = Sp,m,t + ∆Sp,m,t for all p,m, t (2)

where fi,p,m,t and fp,i,m,t are the quantities of material characteristic m, flowing to and from114

process p from and to process i,respectively during time t, cp,m,t and dp,m,t are the quantity115

of material created and destroyed respectively in p during t, and Sp,m,t is the total stock in116

p at time t.117

Data required for a disaggregated steel MFA118

To produce an MFA with dissagregation in material and manufacturing processes, three types119

of data were required. Firstly, a large European steelmaker provided shipment data for 2013120

that describes the physical dimensions, mechanical properties and surface quality of each121

order sold along with its mass. Secondly, top-down data from Eurofer, the European Steel122

Trade Association, describing the flows of each product category of steel into each industry123

sector was used to scale the commercial data to represent all European flat steel. Thirdly,124

models for the production of each type of intermediate steel product and each manufacturing125

sector were developed based on data gathered in industry interviews and site visits. These126

models, which we will call process maps, determine the sequence of processes required to127

produce each coil of steel and to convert each coil into final goods or scrap. Figure 1 shows128

examples of these process maps for (a) the production of a unit of galvanised steel and (b)129

the conversion of a unit of steel by the light vehicles sector.130

The following sections provide an overview of how the data was gathered and processed131

to produce the dataset and associated analyses in the results section. Full details of how this132
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Figure 1: Example process maps for (a) a backward-allocated order of hot dip galvanised
steel and (b) a forward-allocated order to the light vehicles sector.

MFA was constructed and supplementary information associated with each of the following133

sections are available in the supporting information.134

Shipment Data135

The shipment database acquired for this study comprises all orders of flat steel delivered by136

one European steelmaking company for the year 2013. Each order is associated with many137

pieces of information including the physical characteristics of the steel sold, such as its grade138

and thickness, as well as the mill of origin, the end user, and other commercially relevant139

data. To describe each order as a flow in equations 3 and 4, five classes of information were140

extracted from the database:141

• Source: Where the flow originates, determined by the product category of each or-142

der, one of seven types of intermediate steel products (see table 2) since this allows143

estimation of what steelmaking processes must have occurred to produce this order.144

• Target: The destinations of steel orders from the commercial data set were consolidated145

into 22 industry sectors within the broad classifications of Transport, Construction,146

Machinery and Goods. Some flows were shipped via distributors, providing stock147
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holding and coil processing services. Two interviews and three site visits to steel148

stockists and service centres were conducted to estimate the proportion of each sector149

served by distributors. It was assumed that orders sent directly to an end user and150

those sent via distribution would lead to the same levels of scrap.151

• Material: The physical dimensions of width and thickness, the grade and grade family152

of the steel and the types and thicknesses of metallic or organic coatings were used to153

classify the material.154

• Time: This study used data from 2013 only.155

• Measure: The mass of each order in tonnes was used as the measure of flow, written156

as fi,j,m,t where i, j, m, and t represent the source, target, material and timeframe of157

the flow respectively.158

Table 1: Estimates of shipments of flat steel products to different industry sectors in Europe
in 2013. All numbers in kt.

Steel Product

Category
Construction

Mechanical

Engineering
Automotive Electrical

Other

Transport
Tubes

Metal

Goods

Other

Sectors

Hot Rolled 6,550 4,910 5,130 580 480 9,900 4,060 760

Plate 3,530 3,260 220 20 1,240 1,700 1,150 230

Cold Rolled 2,050 2,270 3,690 1,790 250 970 3,800 360

Hot Dip Galvanized 5,170 1,230 9,950 640 220 780 2,060 390

Electro Coated 280 90 1,990 170 90 20 340 70

Organic Coated 3,080 210 240 340 30 0 250 140

Tin Plate 0 10 10 0 0 0 1,610 10

EU Flat Steel Production159

The shipment database describes the flat steel produced in Europe in 2013 by one European160

steelmaking company. Although data for only one company was used, their production vol-161

umes and the market share of this company is sought to provide insights about all European162

flat steel flows. Therefore, this data was scaled up to European levels using specific ratios163

of the steel company’s output to that of the EU, for each end user and product category.164
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Table 1 shows the mass of EU-produced steel for each of seven product categories consumed165

by each of eight manufacturing sectors. This table was produced by combining a linear166

interpolation of similar tables for 2010 and 2015 from Eurofer with other publicly reported167

data.26 The flows extracted from the commercial database were categorized into one of these168

56 product-sector pairs to allow scaling, with the total mass summing correctly to 88.4 Mt,169

the total output of the European flat steel industry in 2013.170

Modelling Steelmaking and Manufacturing Sectors171

The flows upstream and downstream of each order of steel were determined by process172

maps. Each flow in the scaled database was assigned an upstream process map based on its173

product category and a downstream process map based on its target location and material174

composition. The upstream maps describe the series of steelmaking processes from creating175

liquid metal through to rolling and coating. The downstream maps describe the series of176

manufacturing processes from blanking and stamping through to final assembly required to177

produce final goods. The upstream and downstream maps together tell the full production178

history of that order from iron ore and scrap inputs to the output of goods and new process179

scrap, allowing calculations of material efficiency at the process level and up to the whole180

system level.181

The steel industry process maps were developed from those of Llewellyn and Hudd 27 .182

Each process leads to yield losses (scrap) which was determined from values in the litera-183

ture13,28 and consultation with technicians during visits to an integrated steelmill in Belgium.184

The production outputs and associated losses for each process map are displayed in table 2.185

34 interviews, 12 of which included site visits, were conducted to develop the downstream186

manufacturing process maps. For some sectors, distinct production pathways were identified187

for material of different thicknesses, and thus some sectors are represented by multiple process188

maps. Table 3 summarises this research and lists the demand, output and scrap rate of each189

sector. The full details of these are provided in the supporting information.190
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Table 2: Production output and steel-making losses associated with each flat steel product
in Europe in 2013. All values in Mt.

Output

Product Category Losses
Coils
Out

Hot Rolled Non-Picked 1.0 7.0

Hot Rolled Pickled 3.9 26.6

Cold Rolled 2.1 13.5

Hot Dip Galvanised 3.0 18.8

Electro-Galvanised 0.5 2.9

Organic Coated 0.6 3.9

Tin Coated 0.5 3.4

Plate 1.5 10.8

Total 13.0 87.0

Results191

The procedure described in the previous section was followed to produce an MFA dataset of192

flat steel production and manufacturing in the EU for the year 2013. This dataset has been193

visualised as a Sankey diagram in figure 2 with no differentiation of steel characteristics and194

with all steelmaking processes shown in detail while manufacturing processes are aggregated195

at the sector level. Figure 2 demonstrates that the method employed in this study achieved196

the same level of detail as previous top-down studies for a single year like the one produced197

by Cullen et al.,13 albeit at European rather than global scale.198

Figure 2 shows that in 2013 a total input of 116.6 Mt of iron contained in ore, process199

scrap and home scrap was converted into 67.9 Mt of final products, an overall material200

efficiency of 58.3%. 19.1 Mt of process scrap was produced in manufacturing. Production201

of light vehicles created the most losses, with a yield of only 57%. Out of a total material202

demand of 16.5 Mt, 7.1 Mt of scrap was produced in this sector, most of which is galvanised203

and of relatively high value compared with other flat steel.204

Figure 3 shows alternate views of the dataset with flows separated into bundles defined205
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Table 3: The 22 manufacturing sectors considered in this study with the number of interviews
and site visits used to determine the process map for each sector. The calculated demand
for steel in each sector as well as the output of final goods and scrap are listed in thousands
of tonnes [kt] as well as the scrap rate for each sector.

Sector Subsector
Interviews and

Site Visits

Demand

[kt]

Output

[kt]

Scrap

[kt]
Scrap Rate

Transport Components 1 2,630 1,680 950 36%

Heavy Vehicles 1 1,190 760 430 36%

Light Vehicles 3 16,500 9,400 7,100 43%

Rail 1 250 200 50 20 %

Shipbuilding 1 730 560 170 23%

Construction Civil Engineering 3 2,120 1,890 230 11%

Exterior 2 10,200 9,690 490 5%

Interior 2 5,600 4,650 950 17%

Machinery Agricultural 1 4,990 3,790 1,190 24%

Domestic Appliances 1 3,930 2,870 1,060 27%

Electrical 2 6,640 4,190 2,460 37%

Other Machinery 1 4,020 2,810 1,210 30%

Yellow Goods 1 2,170 1,540 530 29%

Goods Packaging 3 5,570 4,990 580 10%

Profiles 1 1,540 1,450 90 6%

Containers 1 2,210 2,120 90 4%

Drums and Barrels 1 4,070 3,580 490 12%

Racking 2 3,130 2,970 160 5%

Tubes 2 8,980 8,620 360 4%

Boilers 2 720 630 90 13%

Pressure Vessels 1 640 560 80 13%

Radiators 1 590 560 30 4%
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Figure 2: Sankey diagram visualisation of the European steel flows for 2013. All values are
in million tonnes of iron.

by one material category. The left side of each diagram shows inputs of steel to each manu-206

facturing sector group, while the right side shows the products of each manufacturing sector207

and the scrap generated in processing. Figures 3a-d show flows divided by intermediate208

steel product category, thickness, grade family and coating respectively, while fig. 3e and 3f209

show the dataset with uncoated flows filtered out coloured by material and manufacturing210

sector respectively. From figs. 3b and 3c it is clear that steel with a thickness below 2mm211

or made of a drawing grade is required by all four manufacturing sectors, suggesting that212

there may be potential for substituting materials across different industries. Further details213

are provided in section 4 of the supplementary information file.214

Figure 4a is in the same format as figure 3 filtered for drawing-grade, thin-gauge gal-215

vanized steel, characteristics shown in figures 3b-f to be demanded across multiple sectors.216

Figure 4b shows the demand for this material in each manufacturing sector as well as the217

scrap produced. The highest demand and greatest scrap output of any sector for this mate-218

rial type is in the Light Vehicles sector, which creates more scrap than the total demand of219

most other sectors.220
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Figure 3: EU steel flows for 2013, divided by material characteristics. Each view shows
inputs of steel to manufacturing from steelmaking and outputs of end-use goods as well as
scrap from each of the four main manufacturing sectors: Transport, Construction, Machinery
and Goods. The views are differentiated by [a] product category, [b] thickness, [c] grade, and
[d] coating. Diagrams [e] and [f] show steel flows, excluding all uncoated material, coloured
by coatings [e] or by manufacturing sector [f].
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Figure 4: [a] European flows of galvanised drawing steel with a thickness of 1-2mm. [b]
Demand for galvanised drawing steel with a thickness of 1-2mm and scrap generated by
industry sector.

Discussion221

The results show that thin gauge galvanised drawing steel is the most common steel grade222

demanded across the European manufacturing sectors, and is thus the easiest grade of flat223

steel scrap that could be prevented or diverted as feedstock to other manufacturing industries.224

The European automotive industry produces 190 kt of this grade per year (Figure 4), as225

a result of 43% yield losses in their manufacturing processes. Various interventions can226

improve material utilisation rates in this sector, but even if only current best practices were227

implemented by all manufacturers,29 this would create savings of 32–42 Me and 125–171 kt228

CO2 in the EU every year, at e570–73030 and 2.2–3.0 t CO2 per tonne of flat steel.1229

The results show that 37% of manufacturing scrap is generated by light vehicle manufac-230

turers, even though this sector accounts for just 19% of demand. Approximately 30% of this231

scrap comes from blanking, where both the scrap and parts leaving the blanking dies remain232

flat, and thus with higher chances of having geometries compatible with other uses. Although233

there are opportunities for improving material utilisation in the automotive industry,29 part234
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of its high yield losses arises from the production of each component from a different coil of235

steel. Since automotive manufacturers are simultaneously the greatest producers and users236

of 1–2 mm hot dip galvanised drawing grade, there may be opportunities to reuse this scrap237

within this sector. However this is unlikely to take place, unless the steel industry tessellates238

blanks for various automotive manufacturers from the same coil.239

The potential improvements of tessellating components could be enhanced by relaxing240

specifications for steel grade for individual components across industry, which would allow241

for more components to be obtained from the same coil, and by matching component ge-242

ometries.31 Further opportunities may exist across industries, if other sectors using identical243

materials were able to communicate their part geometry to the steelmaker alongside the re-244

quirements of the vehicle manufacturer. Steelmakers could thus provide blanks rather than245

coils of steel, avoiding fabrication scrap downstream of the supply chain. In doing so, the246

same service to consumers could be provided with less metal production. This would reduce247

supply-side costs without reducing demand-side value, saving both emissions and resources248

in the process.249

The results shown in the previous section reveal a potential opportunity for diversion250

of thin gauge galvanised drawing steel, by assessing the compatibility of mass and mate-251

rial grade across the EU flat steel supply chain. The opportunities for scrap reuse depend252

on grade compatibility, but also on geometry and size. An assessment on automotive sheet253

metal components by Horton et al.32 shows that the excess material from blanking in the au-254

tomotive industry does not result in small fragments. Since this is one of the most abundant255

sources of flat steel scrap, blanking scrap can thus be used in other applications. However,256

real opportunities for scrap diversion would also require detailed information on the geometry257

of scrap parts produced. Although this information is not currently available, the method-258

ology demonstrated in this analysis could be used to estimate this opportunity by adding259

eventual data on geometry as a material dimension in the model described in equations 1260

and 2.261
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Steel scrap generated by all manufacturers is collected by scrap merchants and sold for262

remelting and recycling. Although steel recycling produces up to three times less emissions263

than primary steel production, this is still a very energy intensive process, requiring an264

average of 2 MWh/t of recycled steel.33 However, the method demonstrated in this article265

enables the identification of opportunities to divert fabrication scrap to be used as feedstock266

by other manufacturers, potentially avoiding unnecessary recycling. This is possible by the267

identification of the material grades with highest potential for scrap diversion, because they268

are widely used across various industries. Moreover, this identification provides important269

insights into material grade choice, since relaxing grade tolerances across many applications270

could increase uses of the most common grades and thus enhancing the opportunities for271

scrap diversion. For example, as shown in figure 4, galvanised drawing steel with a thickness272

of 1–2 mm is the most common grade of steel across most European manufacturing sectors,273

and therefore relaxing the thickness tolerances within this grade would create potential274

diversion opportunities.275

Manufacturing practices evolve as a result of changes in demand and progress in engi-276

neering and manufacturing technology. Consequently, the demand for material grades in277

each sector is equally likely to evolve, and thus the opportunities for scrap diversion depend278

on the dynamic of demand for different grades and quantities to steel products over time.279

The method described in this paper could be applied to update potential opportunities ac-280

cording to the dynamics of steel demand at each time. This method could also be applied281

to other material industries where significant differences in material characteristics could282

be exploited and large companies in possession of reliable commercial data could provide a283

similar starting database to the one used in this study. This might be of particular interest284

to aluminium suppliers.285

Rigorous data on national flows of steel, scraps arisings, and on the allocation of grades286

of steel to manufacturers is difficult to obtain, since there are no official statistics reporting287

them, and there is a lack of national studies quantifying these flows. The analysis presented288

16



here is thus subject to uncertainty. A shipment database of a big European steelmaking289

company was used to represent European flows and the material flow analysis required290

several assumptions described in detail in the Supplementary Information file. Despite these291

limitations, the data used in this paper is the best available data for the entire European flows292

of flat steel and it is sufficient to determine the scale of flows, since the market share of the293

company considered for this assessment is big enough to be representative of the European294

market, and the assumptions used here resulted from several interviews conducted across295

various European countries.296
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