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ABSTRACT

Protein trafficking plays a vital role in understanding many bi-
ological processes and disease. Automated tracking of protein
vesicles is challenging due to their erratic behaviour, chang-
ing appearance, and visual clutter. In this paper we present
a novel tracking approach which utilizes a two-step linking
process that exploits a probabilistic graphical model to pre-
dict tracklet linkage. The vesicles are initially detected with
help of a candidate selection process, where the candidates
are identified by a multi-scale spot enhancing filter. Subse-
quently, these candidates are pruned and selected by a light
weight convolutional neural network. At the linking stage,
the tracklets are formed based on the distance and the de-
tection assignment which is implemented via combinatorial
optimization algorithm. Each tracklet is described by a num-
ber of parameters used to evaluate the probability of tracklets
connection by the inference over the Bayesian network. The
tracking results are presented for confocal fluorescence mi-
croscopy data of protein trafficking in epithelial cells. The
proposed method achieves a root mean square error (RMSE)
of 1.39 for the vesicle localisation and α of 0.7 representing
the degree of track matching with ground truth. The presented
method is also evaluated against the state-of-the-art “Track-
mate“ framework.

Index Terms— tracking, probabilistic graphical models,
bayesian network, biomedical imaging, convolutional neural
network, tracklets, confocal microscopy, particle detection

1. INTRODUCTION

Biological particle tracking is essential in automated process-
ing of a time lapse microscopy data and therefore being a
subject of intense development. A vast number of tracking
approaches have been developed and demonstrate high track-
ing accuracy [1], [2]. Nevertheless, tracking performance
depends critically on the particular imaging conditions and
the experimental set-up. Furthermore, most existing tracking
approaches require tuning a large number of parameters or,
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in case of machine learning techniques, manually annotated
dataset with defined tracks. To address these drawbacks we
aim to reduce the number of adjustable parameters, and de-
velop a framework that enhances the interpretability of the
results. Our approach allows the user to adjust the computa-
tional model to specific experimental settings. Interpretability
involves understanding of the track formation and how spe-
cific parameter settings affect the final result. End-to-end ma-
chine learning based approaches, which heavily depend on
the training data and with a very large number of tunable hy-
perparameters, quite often do not satisfy this criteria.

Tracking approaches consist of two essential components:
detection, and frame-to-frame object association (linking).
Noisy data, signal loss due to photo-bleaching, presence of
background fluorescence and other structures in the image [3]
make the particle detection task in dynamic fluorescence mi-
croscopy challenging. Different approaches can be used for
the detection [4], including the H-Dome transform-based de-
tector [5], the spot-enhancing filter (SEF) [3] and the wavelet
multiscale product [6]. Performance of these methods in-
tensely declines when other structures appear on the image
(e.g. membrane, Golgi). Lately, convolutional neural net-
works (CNN) are successfully exploited for the task (e.g.
[7], [8], [9]). These approaches use a sliding window, UNet
architecture or a recurrent network for the accurate particle
detection.

The linking task can be approached by deterministic data
association, where detection and linking implemented as two
separate and independent processes (e.g. [10]). Probabilistic
approaches, on the other hand, take uncertainty of the par-
ticle position and perform spatial-temporal filtering into ac-
count. Stochastic filtering (e.g. Kalman filter, Particle filters)
requires prior knowledge of a suitable dynamic model and a
spatial-temporal parameters of the target [11]. Therefore a
priori assumptions on the dynamics of the particle movement
need to be made. These approaches often are used in bio-
logical particle tracking in combination with other techniques
(e.g. [12], [13], [14], [15]). Multiple Hypothesis Tracking
and its modifications [16] build a logic scheme of hypothe-
ses, updating them with each new measurement and therefore
require high computational power. To achieve high accuracy
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performance, a number of approaches use multi-stage link-
ing methods (e.g. [17] [13]), where different techniques are
combined to improve the linking task. Graphical models are
exploited for data association [13, 18, 19], where vertices rep-
resent the detected particles and edges denote possible link-
ing. An undirected grapchical model is used by Schiegg et
al. [19] to incorporate prior beliefs from multiple classifiers,
while in [18] authors use directed graphical model. Arasteh
and colleagues [20] approach data association using a Hy-
brid Dynamic Bayesian Network. Recently, deep learning
approaches are being used for data association. Recurrent
neural network are employed for the linking task in [21], [9].
Denoising autoencoder (DAE) and score matching are used
in [22] to solve the data association by learning dynamics of
the data. These approaches allow to eliminate parameter tun-
ing, however they require training data with known dynamics.
“Trackmate“ [23] provides a flexible solution to incorporate
both, the particle detection and linking algorithms, for differ-
ent type of data and commonly used for particle tracking.

This paper presents a particle tracking framework to sup-
port biological discovery of protein trafficking in epithelial
cells and aims to provide flexible framework for the interpre-
tation of estimated tracks. The protein trafficking data has
been acquired using confocal fluorescence microscopy imag-
ing which possess two main challenges for detection: 1) the
cell membrane can be present in the same channel confound-
ing protein vesicles detection; 2) multiple Golgi stacks can
appear within a single cell. The aim of the detection approach
is to provide a flexible solution, which would include both
cases. And for the later, the Golgi stacks can appear as reason-
ably small spots which can be confused with vesicles. Thus,
both membrane and Golgi stacks prohibit the efficient detec-
tion. To overcome these limitations, we propose to integrate
vesicle candidate selection with a CNN based pruning. Par-
ticularly, a multi-scale spot enhancing filter (MSSEF) is used
to detect a large number of candidate. Subsequently, a light
weight CNN is employed for candidate selection. The pro-
posed solution allows for performing candidate selection in
real time and only requires very little training data.

Protein vesicle movement is unpredictable and depends
on the particular experimental setting. Hence, the linking
approach should be designed such that it is sensitive to the
changes in vesicle movement without assuming any a pri-
ori knowledge of the dynamic model. The proposed linking
approach is implemented by two-step linking process: first,
short tracklets are being formed, then track linking is per-
formed. Parameters of the tracklets are used to find opti-
mal linking between them. We propose to use a probabilis-
tic graphical model (PGM) for the track linking step. This
approach allows us to model the probability of connecting a
given set of tracklet into a larger tracks. With the help of
PGMs we can create a flexible topology based on the pro-
vided parameter settings.

We would like to highlight the following contributions: 1)

Fig. 1. Outline of the proposed tracking approach.

a robust candidate selection approach, where the employment
of the light-weighted CNN allows reduction of tunable pa-
rameters providing state-of-the-art results; 2) application of
a Bayesian Network to support track linking; 3) flexibility
of the PGM topology facilitating an easy adaptation of the
method to different experimental settings; and 4) compara-
tive analysis with different topologies of PGMs. The paper
is organised as follows: the tracking approach is described in
Section 2, results and discussion are covered in Section 3, and
conclusion with future work are outlined in Section 4.

2. METHODOLOGY

The proposed tracking method can be described by two ma-
jor steps: vesicle detection and data association, as shown in
Figure 1.

2.1. Vesicle detection

Vesicle detection is challenging due to the variance in their
appearance, intensity and shape (see Figure 2 (e)). Moreover
the membrane can be present at the same channel with the
protein vesicles, and the Golgi stacks might look similar to
the protein vesicles. The proposed vesicle detection is exe-
cuted in three steps: (1) an pre-processing step is applied to
each frame; (2) candidate detection which exploits MSSEF;
(3) a candidate selection using a CNN classifier to eliminate
spurious detections, Figure 2 (a) - (d).

During pre-processing, the background is subtracted from
each frame. The background intensity is estimated from the
consecutive m frames with a processing frame at the center,
1. The intensity of the following frame is normalised after the
background subtraction.

I ′n = In − min
n−m

2 ...n+m
2

I (1)

For the candidate detection, the MSSEF [13] is applied to a
given image. This filter exploits a set of spot enhancing filters
(SEF). The spot enhancing filter intensifies spots by convolv-
ing the original image g(x, y) with a Laplacian-of-Gaussian
(LoG) kernel LoG(x, y, σk) and applying a basic threshold
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Fig. 2. Vesicle detection: (a) original frame; (b) frame af-
ter pre-processing step; (c) vesicle candidates; (d) detected
vesicles (candidates selected by CNN); (e) difference in the
vesicle appearance.

on the output image. In the multi-scale version, the SEF is
applied sequentially for a set of LoG kernels, while the binary
image from a previous step b(x, y, σk−1) masks the original
image, i.e.

f(x, y, σk) = LoG(x, y, σk) ∗ (b(x, y, σk−1)g(x, y)), (2)

where σ is a standard deviation of the LoG. The threshold for
each iteration T (k) is defined by the mean intensity of the im-
age µ(k)

intens, its standard deviation σ(k)
intens and a user defined

constant c:

T (k) = µ
(k)
intens + cσ

(k)
intens (3)

MSSEF allows to reduce the false detection related to the
noise levels and to improve detection of the particles of dif-
ferent sizes. The list of vesicle candidates is formed from the
local maxima coordinates of the MSSEF image. Parameter
tuning for candidate selection is reduced to a set of standard
deviations σ to define particle size and the threshold constant
c for the particle brightness.

The simplicity of the vesicle shape provides opportunity
to use a light weight CNN for the candidate selection with
ROI of 16×16 pixels for each candidate. The proposed archi-
tecture is chosen to decrease the number of parameters with-
out influencing the overall performance of the classifier. The
network consists of only two convolutional layers followed
by a max-pooling and a pair of fully connected layers at the
final stage, Figure 3. This light architecture allows to reduce
amount of training data to a number of hundred samples and
provides fast candidate selection process.

2.2. Linking algorithm

The data association of the detected vesicles is implemented
in two steps. Firstly, a set of short tracklets are formed, then
these are connected using a probabilistic graphical model.

Fig. 3. Architecture of the light weight CNN for candidate
selection

Fig. 4. Topology of the proposed BN for connectivity score
evaluation.

The tracklet formation takes distance between the detected
vesicles into account. The association of vesicles into track-
lets is obtained by Hungarian algorithm, which provides a
base for the data association. To create a reliable tracklets,
the number of the skipped frames should be very small. The
acceptable distance for the connection is also limited and the
assignments with a large distances are removed. The final
constraint on the tracklets is their length. Once the length of
a tracklet reaches the assigned limit, the tracklet is removed
from the active tracking. Short tracklets with reliable link-
ing distance and small time gaps provide a stable and reliable
fragments for track linking. This step requires three param-
eters: acceptable number of skipped frames (temporal gap),
distance limit and maximum tracklet length.

Track linking of the assembled tracklets is based on their
connectivity score. The score represents a probability of the
tracklet pair to be connected. It is defined by an inference
over a Bayesian network (BN). This probabilistic graphical
model with a directed acyclic graph structure displays a set
of discrete variables with their conditional dependencies. The
variables represent similarity of the tracklet pair for different
basis (parameters of the tracklets). The topology of the BN is
built based on the known protein behavior and takes into ac-
count spacial and temporal location of the tracklets in relation
to each other, their similarity in motion dynamics and particle
appearance, Figure 4.

The connectivity score is a binary variable, where True
relates to tracklets being connected. It has four parents: inten-



Fig. 5. Example of the tracks obtained by the proposed two-
step data association approach.

sity, movement, coordinates and position. The intensity node
represents the similarity in average intensity for the last frame
of the tracklet #1 and the first frame of the tracklet #2. As it
was mentioned earlier, intensity of the moving vesicles can
vary and therefore this parameter will not be given high prior-
ity in conditional probability table. The coordinate node eval-
uates similarity in location between the last frame of the track-
let #1 and the first frame of the tracklet #2. The Euclidean dis-
tance between the points is used as a reference for the node
outcome. This parameter is one of the most important and
has a large impact on the connectivity score. The movement
node defines similarity in the motion dynamic of the tracklet
pairs and has two parents - orientation of the movement and
its speed. The position node describes temporal location of
the tracklets with two parents, which define sequential com-
ponent and the temporal gap between them. The sequence
node has two parents - order of the tracklets and their pos-
sible overlap in temproal domain. This node is essential for
connecting tracklets in the right order. Gap between tracks
represents the number of frames between the tracks and al-
lows to priorities connections with a smaller time gap. The
inference over the BN finds probability of the tracklet pair to
be connected, Pc:

Pc = P (CS = true|I,Or, Sp,Od,Ov,G), (4)

where I is difference in intensity, Or - in orientation, Sp -
speed difference, Od - order of the tracklets, Ov - presence of
the overlap and G is a temporal gap between the tracklets.

The conditional probability table for each node can ei-
ther be assigned manually based on the acquired knowledge
about the vesicle movement, or trained with available data.
The tracklet pairs with connectivity score higher than a given
threshold will be accepted for consideration. For the conflict
cases, where there are more than one possible connections,
the pair with highest probability is selected. Figure 5 illus-
trates final tracks of a complex case and shows advantage of
the proposed technique. Tracks #2 and #4 appear at the simi-
lar position and timing of the same location in track #3. The
only difference between the tracklets is their orientation. The

(a) (b)

Fig. 6. Example of the original protein trafficking dataset:
(a) protein cargo channel of the spinning disc microscope, (b)
airyscan with a single channel containing both membrane and
protein cargo

topology of the network allows to prioritise the orientation
and build an appropriate association. On the other hand, track
#1 illustrates large changes in the vesicles orientation, which
where captured by the same BN and all the tracklets were
connected to a single track as there were no other candidates
with matching orientation.

The proposed Bayesian Network in implemented using
pgmpy package [24]. The topology of the network can be
adjusted based on the data dynamics and vesicle appearance.
There are parameters which can be tuned at the track link-
ing step. These include limits for temporal gap between the
tracklets, coordinates deference limit, speed and orientation
variation, intensity changes and a final threshold for tracklets
connection.

The proposed linking solution is not designed to be ex-
ecuted in real time as it includes two-step data association.
The run time heavily depends on the number of tracklets at
the track linking step. To reduce the computation, the number
of tracklets for comparison is limited by their spatial-temporal
location, i.e. only connection between the tracklets which are
close to each other is evaluated.

3. RESULTS AND DISCUSSION

Performance of the proposed tracking method is evaluated
on the original data from the confocal fluorescence mi-
croscopy imaging of protein trafficking in epithelial cells
of the drosophilae egg chamber. The tracking approach is
illustrated for two different set-ups: spinning disk confocal
microscope with two channels presenting membrane in one
channel and protein cargo in another; and airyscan confo-
cal microscope with a single channel which contains both,
membrane and protein cargo, Figure 6.

Training data for the CNN classifier is collected from
seven complete frames (each frame contains multiple cells)
and both microscopes(four from airyscan and three from



Table 1. Performance of the proposed tracker and ”Track-
mate” framework.

Topology RMSE α β JSC
proposed method 1.39 0.70 0.49 0.46
”Trackmate” 7.39 0.14 0.08 0.2

Table 2. Performance of the proposed tracker for the spinning
disk microscopy imaging with variation in BN topology.

Topology RMSE α β JSC
Full version 1.63 0.69 0.56 0.57
No speed 1.66 0.63 0.50 0.54
No orientation 1.63 0.69 0.56 0.55
No intensity 1.63 0.69 0.56 0.57
No time-gap 2.71 0.63 0.43 0.47

Table 3. Performance of the proposed tracker for the airyscan
microscopy imaging with variation in BN topology.

Topology RMSE α β JSC
complete version 1.16 0.68 0.39 0.33
without speed 1.16 0.69 0.39 0.28
without orientation 1.16 0.72 0.43 0.36
without intensity 1.16 0.68 0.39 0.33
without time-gap 1.83 0.66 0.30 0.30

spinning disk microscopes). The probabilities for the BN
are defined manually and therefore training is not required.
The tracker is tested on six image sequences, where three
sequences are obtained by the spinning disk microscope and
three by the airyscan microscope. Each sequence contains
50 frames and images protein trafficking in a single cell.
The tracker performance is compared with the performance
of ”Trackmate” [23] on the same data, where the detection
is based on LoG detection and linking is performed by the
[17], Table 1. The performance is quantified by the scores
proposed at the particle tracking challenge [2]. Localisation
of the vesicles is evaluated by the root mean square error
(RMSE), which represents the overall localisation accuracy
in the paired tracks. Performance of the linking method is
quantified by the Jaccard similarity coefficient JSC and by the
degree of matching between ground truth (GT) and estimated
tracks with α (without taking into account spurious tracks)
and β (penalising for the spurious tracks) [2]. The LoG based
particle detection is not sufficient for the challenging data
and causes low scores for the ”Trackmate” framework. The
results illustrate advantage of the proposed method.

The performance of the proposed tracker is also quantified
for different BN topologies. The coordinate similarity and se-
quential order of the pairing tracks are considered as essential

components and were not changed. Tables 2 and 3 illustrate
quantitative results of different BN topologies for spinning
disk and airyscan microscopy imaging respectively. It can be
concluded that the BN topology influences quality of the final
result and therefore its flexibility is beneficial for adaptation
of the approach for a different experimental settings.

Variation in the particle appearance and their similarity
with Golgi stacks results in a large number of spurious tracks.
It is well illustrated in Table 3 by the difference between α and
β scores, where the large number of spurious tracks is caused
by the cluttered and noisy background. The quantitative eval-
uation of the approach illustrates promising results and shows
benefits from the employment BN for track linking.

Interpretability of the detection result is achieved by the
candidate selection, where the candidates are obtained for a
range of particle sizes and intensities and the selection process
is based on the expected appearance of the particles. The data
association interpritability is based on the BN topology and its
relation to the particle movement. In total, there are two main
tunable parameters for the candidate detection and a trained
CNN network for the selection process. The first step of the
candidate selection involves three parameters, while the BN
topology and its variables can include up to six parameters.
The conditional probability tables can be defined manually or
obtained via BN training. The BN topology can be chosen
from the available variations. It allows adaptation of the so-
lution for different data, but keeps the number of the tunable
parameters at its minimum.

4. CONCLUSION

This work presents a novel tracking approach to support ex-
ploratory biological studies of protein trafficking in epithe-
lial cells. Targeting flexible framework, parameters reduction
and interpretability of the results, we have employed candi-
date selection process with MSSEF and CNN-based classifier
for the protein vesicle detection and two-step data association
approach, where track linking is based on the inference over
the Bayesian Network. This approach allows vesicle detec-
tion in a presence of other structures and provide robust data
association.

In future work, the proposed linking approach can benefit
from the CNN feature based similarity descriptor. It would al-
low improvement in the description of the vesicle appearance
and provide opportunity to extend the work to the cell track-
ing. Furthermore, at the step of tracklet formation, the combi-
natorial optimization algorithm can be replaced with a differ-
ent solution to incorporate more complex tracklet formation.
It would eliminate a potential error in data association which
can appear for a large tracklet length or a dense populated
environment. Finally, the modification of the BN topology
would benefit from an interactive interface, which provides an
easy network modification and will be implemented as part of
the vesicle tracking plug-in.
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