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Summary 

 

The tumour suppressor adenomatous polyposis coli (APC) is a multifunctional protein 

regulating a diverse array of effector pathways essential for cellular homeostasis. In most 

sporadic colon cancers, truncating mutations in APC lead to the loss of the Wnt pathway and 

microtubule regulatory domains. Studies have established key roles of mutant APC in 

malignant growth via deregulation of Wnt pathway activity. However, the consequence of the 

loss of the microtubule regulatory domains of APC in intestinal tumorigenesis has not been 

determined. In addition, it is widely believed that intestinal tumorigenesis is initiated from a 

stem cell, with limited studies addressing the potential for adenomas originating from non-

stem cells. I hypothesise that the stem cell supporting Paneth cells act as an intrinsic organising 

centre for the intestinal epithelia, thereby providing a barrier for tumorigenesis. 

 

I utilise intestinal tissue and generate various genetically modified 3-dimensional organoid 

models to study the role of APC in malignant transformation of the intestinal epithelia. I show 

that APC inactivation leads to alterations in tissue morphology. Intriguingly, my results reveal 

a novel phenotype upon loss of APC resulting in compromised intracellular organisation that 

is linked to the deregulation of microtubules. Sufficiency experiments suggest that the 

different effector roles of APC in the intestinal epithelia are domain-specific. The generation 

of a novel Paneth cell specific promoter allowed me to demonstrate that the loss of APC 

specifically in Paneth cells does not compromise intestinal epithelial tissue morphology, a key 

characteristic of intestinal tumorigenesis.  

 

The results presented in here demonstrate that solely the loss of APC in a Paneth cell is not 

sufficient to initiate intestinal tumorigenesis, suggesting that further insults could be 

necessary for this non-stem cell to acquire the potential to initiate tumorigenesis. My findings 

indicate that APC has distinct domain-specific roles in the intestinal epithelia and reveal its 

novel role in regulating intracellular organisation. I conclude that there are additional 

consequences for APC mutational inactivation in intestinal tumorigenesis beyond 

deregulation of the Wnt pathway activity.  

 

  



iii 
 

Presentations and publication relating to this thesis 

 

Conference presentations 

 

• Platform presentation: Gordon Research Conference, Wnt signalling, Vermont, USA, 
August 2019 

 

• Poster presentation: Gordon Research Seminar, Wnt signalling, Vermont, USA, August 
2019 

 

• Poster presentation: EMBO Symposium, Organoids: Modelling Organ Development 
and Disease in 3D Culture, Heidelberg, Germany, September 2018 

 

• Platform presentation:  AstraZeneca PhD Symposium, Cambridge, UK, September 2018  
 

• Poster presentation: Conference Young Scientists in Estonia and Abroad, Tallinn, 
Estonia, January 2018 

 

Conference attendance and travel was possible due to the generous funding from 

AstraZeneca travel fund, Cambridge Philosophical Society travel grant (x2), Sidney Sussex 

College Graduate fund (x2) and the Parry Dutton Student fund.    

 

 

Publication 

 

Manuela Urbischek, Helena Rannikmae, Thomas Foets, Katharina Ravn, Marko Hyvönen & 

Marc de la Roche. Organoid culture media formulated with growth factors of defined cellular 

activity. Scientific Reports 2019; 9 (6193) 

 

  



iv 
 

Acknowledgments 

 

First and foremost, I would like to thank my main supervisor Dr. Marc de la Roche for giving 

me the opportunity to undertake this research. I am very grateful for the teaching, extensive 

support and guidance you have provided me throughout the four years. Your enthusiasm and 

passion for science is something I hope I will be able to replicate in my future; from day one 

you welcomed dialogue, open discussion of ideas and encouraged me to think outside the 

box, allowing me to develop as a scientist. Thank you! 

 

I am also very grateful to my second supervisor Dr. Simon Barry for his support and for the 

valuable discussions about the project. I highly valued and learnt from your scientific 

reasoning and approach. 

 

I would like to thank Prof. Gerard Evan and Dr. Trevor Littlewood for the valuable guidance 

and insights. I am grateful for having been able to attend your lab meetings and learn from 

the way you conduct high-level science and apply critical thinking. Trevor, thank you for giving 

me the well-appreciated advice whenever I needed it.  

 

I would like to give my sincere thanks to Dr. Samantha Peel for all the microscope (and 

bureaucratic) help. Your genuine passion for high quality work was inspiring and your good 

chat made sitting by the microscope fun. 

 

My PhD studies would not have been the same without the MAD lab. Thomas, thank you for 

your friendship, help, advice and company, in and out of the lab. I hugely appreciate the chats 

we had over the years and this PhD would not have been the same without you. Manuela, 

thank you for being a fellow organised member of the lab and for the fun talks. I would also 

like to thank all the students we had during my time in the lab who made the atmosphere so 

entertaining, especially Heidi, Vicci, Bartek, Alice, Iris and Alissa. 

 

I had the pleasure of working side by side to the Evan and McCaughan laboratories alongside 

excellent scientists with genuine passion and commitment to meaningful, solid science. Luca, 

Tania, Roderick, Lindsey, Cathy, Nicole, Lucia, Frank —thank you for all the discussions, help 

and advice throughout the years. I would also like to give my appreciation to Deborah and 



v 
 

Michaela for keeping the lab up and running and to Teresa, Mekdes and Sylvia next door for 

scientific help and good lunch company. 

 

I would like to thank my PhD funder AstraZeneca for allowing me to undertake this PhD 

research and for giving me the opportunity to use their facilities for experiments. I am also 

grateful for the various facilities and expertise available within the Department of 

Biochemistry that have allowed me to carry out my daily experiments with ease. 

 

I am grateful to Dr. Maike de la Roche and Dr. Hung-Chang Chen for help with FACS, Yinhai 

Wang for carrying out computational modelling, Dr. Inderpreet Kaur Sur for help with mice 

and Dr. Yuu Kimata for assistance with the microscope.  

 

To my friends—old and new—I would like to give a huge thank you for the listening ear and 

distraction when I needed it. Each and every one of you has made my PhD time enjoyable and 

memorable: Aga, Cassie, Sushmitha, Carly, Chiara, Karola, Jessica, Sofia, Elen, Kristel, Phil, Ben.  

 

Stuart, thank you for your uplifting advice and genuine interest, it has been fun being in this 

PhD path with you.    

 

Johan, thank you for your unlimited support in the past months. Your encouragement and 

well-needed distraction came when I most required it.  

 

My PhD studies could not have been possible without the eternal support from my family, and 

I dedicate this thesis to them. Collectively, they have been an unshakable support system. I 

have been lucky enough to have the best sisters one could ask for. Hanna, the many trips we 

did, mountains we conquered—you have kept me motivated and enthusiastic throughout the 

years. Krissu, you have been my mentor, somebody who I look up to and whose advice I 

appreciate dearly. Jack, your positive view of life is something I try to follow, and I am forever 

grateful for your unconditional support throughout my education. Finally, Miia, a person I 

adore and admire more than anything, my biggest fan and rock. You have set an extremely 

high bar for success in life and work, and I can only attempt to meet that.   

 



 

Table of contents 

 

Preface ............................................................................................................................... i 

Summary ........................................................................................................................... ii 

Presentations and publication relating to this thesis ......................................................... iii 

Acknowledgments ............................................................................................................ iv 

List of Figures .................................................................................................................... 1 

List of Tables ..................................................................................................................... 3 

List of common abbreviations ............................................................................................ 4 

Chapter 1: ......................................................................................................................... 6 

Introduction ...................................................................................................................... 6 

1.1 Intestinal epithelia ............................................................................................................ 7 

1.1.1 The intestinal epithelial cells ...................................................................................... 8 

1.1.1.1 Paneth cells .......................................................................................................... 9 

1.2 Colon cancer .................................................................................................................... 11 

1.2.1 Mouse models of intestinal tumorigenesis .............................................................. 12 

1.2.1.1 ApcMin/+ mouse ................................................................................................... 12 

1.2.1.2 Apcfl/fl mouse ...................................................................................................... 13 

1.2.2 Organoids to model intestinal tumorigenesis .......................................................... 13 

1.3 Polarised epithelial cell ................................................................................................... 15 

1.3.1 The cytoskeleton ...................................................................................................... 16 

1.3.2 The microtubule cytoskeleton .................................................................................. 17 

1.3.3 Microtubule functions in polarised epithelial cells .................................................. 18 

1.4 The APC protein: structure and function ........................................................................ 20 

1.4.1 Structure ................................................................................................................... 20 

1.4.2 Functions .................................................................................................................. 21 

1.4.2.1 APC in Wnt signalling ......................................................................................... 21 

1.4.2.2 APC as a cytoskeletal regulator .......................................................................... 23 

1.4.2.3 APC interaction with actin cytoskeleton ............................................................ 24 

1.4.2.4 APC interaction with microtubule cytoskeleton ................................................ 24 

1.4.2.5 APC in chromosome segregation ....................................................................... 25 

1.4.2.6 APC interaction with microtubules in tumorigenesis ........................................ 25 

1.5 Aims of the thesis ............................................................................................................ 27 

Chapter 2: ....................................................................................................................... 28 

Materials and methods.................................................................................................... 28 

2.1 Organoid technology development ................................................................................ 29 



 

2.1.1 Derivation of organoids ............................................................................................ 29 

2.1.2 Derivation of tumoroids ........................................................................................... 30 

2.1.3 Passaging organoids and tumoroids ......................................................................... 33 

2.1.4 Freezing/thawing organoids and tumoroids ............................................................ 33 

2.1.5 Genetic manipulation of organoids and tumoroids ................................................. 34 

2.1.5.1 Transfection by electroporation ........................................................................ 34 

2.1.5.2 Lentiviral transduction ....................................................................................... 37 

2.1.5.3 Transfection with Lipofectamine 2000 .............................................................. 37 

2.1.5.4 Picking ................................................................................................................ 38 

2.1.5.5 Sorting using flow cytometry ............................................................................. 38 

2.1.6 Immunofluorescent labelling ................................................................................... 39 

2.1.7 Live imaging .............................................................................................................. 41 

2.1.8 Protein extraction and western blotting .................................................................. 41 

2.1.9 RT-qPCR .................................................................................................................... 42 

2.2 Materials & Methods ...................................................................................................... 43 

2.2.1 Cell lines, cell culture and Wnt3a conditioned media .............................................. 43 

2.2.2 Lentivirus production and cell transduction ............................................................ 44 

2.2.3 Protein extraction and western blotting .................................................................. 44 

2.2.4 RT-qPCR .................................................................................................................... 45 

2.2.5 Fluorescence activated cell sorting (FACS) ............................................................... 45 

2.2.6 TOP-Flash assay ........................................................................................................ 45 

2.2.7 Immunofluorescent labelling of tissue ..................................................................... 46 

2.2.8 Hematoxylin and eosin (H&E) staining ..................................................................... 47 

2.2.9 siRNA transfection and shRNA cloning ..................................................................... 47 

2.2.10 Molecular cloning ................................................................................................... 48 

Chapter 3: ....................................................................................................................... 51 

APC inactivation compromises intracellular organisation of intestinal epithelial cells ....... 51 

3.1 Introduction .................................................................................................................... 52 

3.2 Chapter methods ............................................................................................................ 52 

3.2.1 Imaging ..................................................................................................................... 52 

3.2.2 Imaging data analysis ............................................................................................... 53 

3.2.3 Validation of shApc for Apc depletion ...................................................................... 53 

3.2.4 Compounds and RT-qPCR ......................................................................................... 53 

3.3 Results ............................................................................................................................. 53 

3.3.1 APC inactivation leads to compromised cellular organisation ................................. 53 

3.3.2 Organoids recapitulate the consequences of APC inactivation in the intestinal 

epithelia ............................................................................................................................. 59 

3.3.3 Activated Wnt pathway activity does not lead to compromised cellular 

organisation ....................................................................................................................... 63 



 

3.3.4 An in vitro model of reversible tumorigenesis reveals that cellular disorganisation is 

the direct consequence of APC inactivation ..................................................................... 65 

3.3.5 Inhibition of microtubule polymerisation in organoids phenocopies APC deficiency

 ........................................................................................................................................... 71 

3.4 Discussion ........................................................................................................................ 74 

3.4.1 Advantages of the use of organoids to study cellular organisation ......................... 74 

3.4.2 Alterations on microtubule cytoskeleton in intestinal cells with APC deficiency .... 75 

3.4.3 Fragmentation of Golgi complex in APC deficiency ................................................. 75 

3.4.4 Centrosome mispositioning in APC deficiency ......................................................... 76 

3.4.5 Paneth cell vesicle mispositioning in APC deficiency ............................................... 77 

3.4.6 Implications of findings ............................................................................................ 78 

Chapter 4: ....................................................................................................................... 80 

Distinct protein interaction domains of APC control intestinal epithelial tissue morphology 

and intracellular organisation .......................................................................................... 80 

4.1 Introduction .................................................................................................................... 81 

4.2 Chapter methods ............................................................................................................ 81 

4.2.1 Sample processing for immunofluorescence and imaging ...................................... 81 

4.2.2 Cloning and transfection for APC sufficiency ........................................................... 81 

4.2.3 RT-qPCR .................................................................................................................... 82 

4.2.4 Treatment of organoids with chemicals and Wnt3a conditioned media ................ 82 

4.3 Results ............................................................................................................................. 82 

4.3.1 Independent protein interaction domains in APC specify different effector 

functions ............................................................................................................................ 82 

4.3.1.1 Validation of APC interaction domains in a cell line lacking functional APC ..... 83 

4.3.1.2 Expression of APC∆MT in tumoroids partially restores epithelial morphology but 

does not rescue cellular disorganisation ....................................................................... 86 

4.3.1.3 Model of full APC deficiency: Apcfl/fl /pB-Cre-ERT2 organoids ............................ 92 

4.3.2 The Wnt pathway target gene c-Myc does not mediate the regulation of epithelial 

morphology ....................................................................................................................... 94 

4.4 Discussion ........................................................................................................................ 97 

4.4.1 APC restoration in intestinal tumorigenesis ............................................................. 98 

4.4.2 APC domain-specific sufficiency for effector roles in the intestinal epithelia ......... 98 

4.4.2.1 Intracellular organisation ................................................................................... 99 

4.4.2.2 Tissue morphology ........................................................................................... 100 

4.4.3 Implications of findings .......................................................................................... 101 

Chapter 5: ..................................................................................................................... 102 

Paneth cells in intestinal tumorigenesis ......................................................................... 102 

5.1 Introduction .................................................................................................................. 103 



 

5.2 Chapter methods .......................................................................................................... 103 

5.2.1 Transduction and transfection of organoids .......................................................... 103 

5.2.2 Live imaging of organoids ....................................................................................... 104 

5.2.3 Compounds ............................................................................................................. 104 

5.3 Results ........................................................................................................................... 104 

5.3.1 Adenoma Paneth cells show defects in cellular organisation ................................ 104 

5.3.2 Human alpha defensin 5 (DEFA5) expression is exclusive to Paneth cells ............. 105 

5.3.3 Paneth cell specific silencing of APC does not trigger a tumoroid ......................... 107 

5.3.3.1 pLV-DEFA5-shAPC ............................................................................................ 107 

5.3.3.2 pB-DEFA5-shAPC .............................................................................................. 110 

5.3.3.3 Apcfl/fl -DEFA5-rtTA ........................................................................................... 113 

5.3.4 Dynamic imaging of Paneth cells to model epithelial organisation ....................... 114 

5.4 Discussion ...................................................................................................................... 116 

5.4.1 DEFA5 as a Paneth cell specific marker .................................................................. 117 

5.4.2 Paneth cells in the initiation of intestinal tumorigenesis ....................................... 118 

5.4.3 Use of DEFA5 promoter to track organoid budding as a phenotypic read-out...... 119 

5.4.4 Implications of findings .......................................................................................... 120 

Chapter 6: ..................................................................................................................... 121 

Conclusion and Future Perspectives ............................................................................... 121 

6.1 Conclusion ..................................................................................................................... 122 

6.2 Future perspectives ....................................................................................................... 122 

6.2.1 Why is APC loss not tolerated in Paneth cells? ...................................................... 122 

6.2.2 What are the relative contributions of the interaction domains of APC to its 

effector roles in intestinal tumorigenesis? ...................................................................... 123 

6.2.3 What is the role of compromised microtubule cytoskeleton in tumorigenesis? .. 123 

6.3 Concluding remarks ...................................................................................................... 124 

References .................................................................................................................... 125 

Appendix ....................................................................................................................... 139 

 

  



 
1 

 

List of Figures 

Figure 1. 1: The structure of the small intestine and colon ....................................................... 7 

Figure 1. 2: Paneth cells in the small intestine. ........................................................................ 10 

Figure 1. 3: Multistep genetic model of colon carcinogenesis. ................................................ 11 

Figure 1. 4: Small intestinal organoids recapitulate the cellular composition and tissue 

morphology of the intestinal epithelial monolayer. ................................................................ 14 

Figure 1. 5: Polarised epithelial cell. ......................................................................................... 16 

Figure 1. 6: The structure of a microtubule polymer ............................................................... 17 

Figure 1. 7: Arrangement of microtubules in non-polarised versus polarised cells. ............... 18 

Figure 1. 8: Primary structure of APC protein. ......................................................................... 21 

Figure 1. 9: Canonical Wnt signalling in normal and oncogenic setting. ................................. 23 

Figure 1. 10: APC truncation in various mouse models of intestinal epithelial tumorigenesis.

 .................................................................................................................................................. 26 

Figure 2. 1: Electroporation of organoids and tumoroids. ....................................................... 36 

Figure 3. 1: Loss of the crypt-villus axis and altered positioning of nuclei in ApcMin/- polyp. ... 54 

Figure 3. 2: Dispersed positioning of Paneth cell vesicles in ApcMin/- polyps. .......................... 55 

Figure 3. 3: Actin cytoskeleton remains intact in APC inactivation .......................................... 56 

Figure 3. 4: Loss of APC results in altered microtubule cytoskeleton ...................................... 57 

Figure 3. 5: Loss of APC results in mispositioning of the centrosome, Paneth cell vesicles and 

the Golgi complex. .................................................................................................................... 59 

Figure 3. 6: Organoids with inactive APC display intact actin cytoskeleton ............................ 60 

Figure 3. 7: Organoids with inactive APC display altered microtubule cytoskeleton .............. 61 

Figure 3. 8: APC inactivation in organoids results in mispositioning of the Golgi complex, the 

centrosome and Paneth cell vesicles. ...................................................................................... 62 

Figure 3. 9: Golgi fragmentation is not rescued by blocking ROCK in organoids with truncated 

APC. ........................................................................................................................................... 63 

Figure 3. 10: Activated Wnt pathway does not alter the positioning of the Golgi complex and 

centrosome. .............................................................................................................................. 64 

Figure 3. 11: Validation of the inducibility of lentiviral construct expressing shApc ............... 66 

Figure 3. 12: Lentivirally expressed shApc increases Wnt pathway activity. ........................... 67 

Figure 3. 13: PiggyBac transposon system for inducible shApc expression in organoids. ....... 68 

Figure 3. 14: Validation of the reversable organoid-induced tumoroid system. ..................... 69 



 
2 

 

Figure 3. 15: Organoid-induced tumoroid system as a model for inducible tumorigenesis and 

tumour regression .................................................................................................................... 70 

Figure 3. 16: Organoid-induced tumoroid model demonstrates that compromised cellular 

organisation is a direct consequence of APC inactivation ....................................................... 71 

Figure 3. 17: Microtubule destabilisation by nocodazole phenocopies APC deficiency. ......... 73 

Figure 4. 1: PiggyBac expression system for full length APC, APC∆MT and APC∆Wnt. ................. 83 

Figure 4. 2: SW480 cells expressing full length APC, APC∆MT and APC∆Wnt. .............................. 84 

Figure 4. 3: Validation of APC, APC∆MT and APC∆Wnt constructs in Wnt pathway regulation ... 86 

Figure 4. 4: Sorting strategy for tumoroids transfected with APC, APC∆MT and APC∆Wnt 

constructs. ................................................................................................................................ 88 

Figure 4. 5: Morhology of tumoroids expressing APC, APC∆MT and APC∆Wnt. ........................... 89 

Figure 4. 6: Integration of APC, APC∆MT and APC∆Wnt constructs in tumoroids. ....................... 90 

Figure 4. 7: The positioning of Golgi complex and centrosome in tumoroids expressing APC, 

APC∆MT and APC∆Wnt. ................................................................................................................. 91 

Figure 4. 8: Organoids from Apcfl/fl LSL tdTom mouse model. ................................................. 92 

Figure 4. 9: Apcfl/fl /pB-Cre-ERT2 organoids as a reliable organoid model for inducible Apc 

depletion ................................................................................................................................... 93 

Figure 4. 10: Myc is not the main regulator of epithelial morphology. ................................... 95 

Figure 4. 11: Decreased responsiveness to Myc does not affect cellular organisation. .......... 96 

Figure 4. 12: Organoids lacking Myc super-enhancer region do not grow in vitro.................. 97 

Figure 5. 1: Dispersed positioning of Paneth cell vesicles in APC inactivation. ..................... 105 

Figure 5. 2: Inducibility of the pLV-DEFA5-GFP construct. ..................................................... 106 

Figure 5. 3: DEFA5 promoter shows specificity to Paneth cells. ............................................ 107 

Figure 5. 4: Lentiviral system for inducible Paneth cell specific Apc silencing. ...................... 108 

Figure 5. 5: Paneth cell specific silencing of Apc using a lentiviral expression system. ......... 109 

Figure 5. 6: PiggyBac transposon system for inducible Paneth cell specific Apc silencing. ... 110 

Figure 5. 7. Paneth cells specific silencing of Apc does not alter tissue morphology. ........... 111 

Figure 5. 8: Long-term Apc silencing is not tolerated in Paneth cells. ................................... 112 

Figure 5. 9: Inducible Paneth cell specific Apc depletion. ...................................................... 113 

Figure 5. 10: Paneth cell specific depletion of Apc does not alter tissue morphology. ......... 114 

Figure 5. 11: Dynamic imaging of Paneth cells to study epithelial organisation. .................. 116 

 



 
3 

 

List of Tables 

Table 2. 1: Media components and reagents used for derivation and manipulation of organoids 

and tumoroids .......................................................................................................................... 33 

Table 2. 2: Antibodies used for immunofluorescent labelling of organoids ............................ 40 

Table 2. 3: Antibodies used in this study for western blotting. ............................................... 42 

Table 2. 4: RT-qPCR primers used in this study. ....................................................................... 43 

Table 2. 5: Cell lines used in this study. .................................................................................... 43 

Table 2. 6: Antibodies used for immunofluorescent labelling of tissue................................... 47 

Table 2. 7: siRNA and shRNA sequences used in this study ..................................................... 48 

Table 2. 8: Constructs cloned for this study ............................................................................. 50 

  



 
4 

 

List of common abbreviations 

μm 

4-OHT 

βDC 

γ-TURC 

APC  

AB polarity 

Asef 

ATOH1 

BMP 

CK1α 

CIN 

CRC 

Dox 

Dsh 

EDTA 

EGF 

ER 

FAP 

F-actin 

GSK3β 

h 

IQGAP1 

Lgr5 

 

LOH 

Min 

MCR 

ml 

MTOC 

nm 

nM 

micrometre 

4-hydroxytamoxifen 

β-catenin destruction complex 

γ-tubulin ring complex 

Adenomatous polyposis coli 

Apical-basolateral polarity 

APC-stimulated guanine nucleotide exchange factor 

Atonal homologue 1 

Bone morphogenic protein 

Casein Kinase 1 α 

Chromosomal instability 

Colorectal cancer 

Doxycycline 

Dishevelled 

Ethylenediaminetetraacetic acid 

Epidermal growth factor 

Endoplasmic reticulum 

Familial adenomatous polyposis 

Filamentous actin 

Glycogen Synthase Kinase 3 β 

hour 

IQ Motif Containing GTPase Activating Protein 1 

Leucine-rich-repeat-containing G-protein-coupled 

receptor 5 

Loss of heterozygosity 

Multiple intestinal neoplasia 

Mutation cluster region 

Millilitre 

Microtubule-organising centre 

Nanometre 

Nanomolar 



 
5 

 

PBS 

RCF 

TA cell                                                                           

tdTom 

Phosphate-buffered saline 

Relative centrifugal force 

Transit amplifying cell 

tandem dimer Tomato



 

 

 

 

 

 

 

 

 

 

Chapter 1: 

Introduction 

  



 
7 

 

1.1 Intestinal epithelia 

The intestinal tract, composed of the small intestine and colon, hosts the second largest 

epithelial tissue in the human body (after the skin). The intestinal epithelium is a single-layered 

columnar epithelium that has two main functions: uptake of metabolites and protection 

against environmental attacks like foreign bacteria 1. The basic units of the intestinal 

epithelium are adjacent invaginations, termed crypts of Lieberkühn, each of which serves as a 

semi-autonomous cell factory to replenish the intestinal (colon and small intestine) 

epithelium. The villi are structures present in the small intestine that contain differentiated, 

post-mitotic cells geared towards absorbing nutrients and lining the epithelia with protective 

mucus. The colon epithelium lacks villi and consists of a flat epithelial monolayer interspersed 

with  crypts 2. At the base of the crypt lie the self-renewing and continuously dividing stem 

cells that give rise to progenitor cells (termed transit-amplifying cells). The transit-amplifying 

cells proliferate rapidly and mature into one of the cell types present in the intestinal 

epithelium (Figure 1.1). As the cells mature, they move out of the crypt towards the villus 

where they are eventually shed by apoptosis 2.  

 

 

Figure 1. 1: The structure of the small intestine and colon. Left panel on both images: 

haematoxylin and eosin stain of the small intestine (SI) and colon. Right panel: representation 

of the cell types present in the SI and colon. 
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1.1.1 The intestinal epithelial cells  

At least two, physically distinct stem cell populations, have been identified in the intestinal 

epithelium: stem cells and reserve stem cells. The intestinal stem cell has been identified as 

the rapidly cycling crypt base columnar (CBC) cell that lies deep in the crypt and expresses a 

proto-typical stem cell marker Lgr5 (leucine-rich-repeat-containing G-protein-coupled 

receptor 5), a Wnt target gene 3. Lineage tracing studies demonstrate Lgr5-expressing CBCs 

that exhibit long-term self-renewal and the production of all the intestinal epithelial cell 

lineages, indicating it is the stem cell compartment. An additional stem cell compartment has 

been reported that resides at the +4 position in the crypt and represents a reserve for the 

stem cell pool 4,5. These so called label-retaining cells, a defined property of quiescent or 

slowly cycling stem-cells, are precursors to the secretory cell lineage, express Lgr5 and can be 

recalled to the stem-cell state 5.  

 

As the stem cells divide at the bottom of the crypt, one of the daughter cells may translocate, 

stochastically, away from the influence of growth factors that promote “stemness” 6. 

Displacement from the stem cell niche is believed to induce a differentiation programme to 

the highly proliferative transit-amplifying (TA) cells. The TA cells divide rapidly and 

differentiate into mucus secreting goblet cells, hormone secreting enteroendocrine cells, 

nutrient absorbing enterocytes, M cells and tuft cells, while moving upwards from the crypt 

compartment towards the villus 1. A sixth cell type, the Paneth cell escapes this upward flow 

and instead migrates downward to settle at the bottom of the crypt, intermingled between 

the stem cells (Figure 1.1) 6. While it has been previously thought that the differentiated cells 

are terminally differentiated, it is now understood that the cell fate status is dynamic and 

reversible with several studies showing plasticity of the mature intestinal cells to de-

differentiate into stem-like cells 1,7–9.  

 

The mechanism underpinning the translocation of cells from the base of crypts to the tip of 

villi is controversial. One accepted model, that epithelial cell migration is passive and driven 

by the forces originating from dividing stem cells 10 has recently been challenged  by the 

finding that cells in the intestine migrate collectively, using actin-based basal protrusions for 

active migration 11. Alternatively, migration along the crypt-villus axis may be a combination 

of both passive and active mechanisms. 



 
9 

 

1.1.1.1 Paneth cells 

One of the primary goals of my thesis work is to determine whether Paneth cell regulation of 

the stem cell niche acts as a barrier to intestinal tumorigenesis. Paneth cells are long-lived 

cells, approximately 6-8 weeks as opposed to other intestinal epithelial cells that persist for 

up to 5 days 12. Paneth cells have a characteristic pyramidal shape with a basal nucleus and 

apical cytoplasm that is filled with large secretory vesicles (Figure 1.2). These apically-localised 

vesicles contain antimicrobial peptides and proteins such as lysozyme and cryptdins/defensins 

for secretion into the lumen of the crypt, allowing protection against invading pathogens 13. 

Gene expressions studies have shown that Paneth cells express a number of growth factors, 

including epidermal growth factor (EGF), Wnt ligand and Notch ligand that are presented to 

stem cells as signals to maintain multipotency 14. Stem cells thereby compete for the growth-

factor rich Paneth cell surface 15. Alternatively, Paneth cells have recently been shown to 

attenuate Wnt pathway activity in stem cells in ageing, through expression of Notum, an 

extracellular Wnt ligand inhibitor 16. In addition, Paneth cells have been shown to be more 

rigid in shape compared to stem cells and anchor the crypt base to provide its shape 17. Taken 

together, Paneth cells functionally and physically support the environment that controls stem 

cell activity and maintenance, defined as the stem cell niche 13. The colon lacks Paneth cells; 

however, a deep crypt secretory cell type, marked by regenerating family member 4 (REG4), 

has been identified and is thought to serve as a surrogate Paneth cell in the colon, 

intermingling and supporting Lgr5+ colon epithelial stem cells at the crypt base 18.  
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Figure 1. 2: Paneth cells in the small intestine. Paneth cells release antimicrobials and produce 

EGF, Wnt and Notch ligand (A). Electron microscopy image of the large and abundant apical 

vesicles of Paneth cells. Image from 13 (B). 

 

The requirement of Paneth cells for intestinal homeostasis has been studied using various 

genetic-based methods for Paneth cell ablation. An in vivo study, utilising a mouse model for 

Paneth cell ablation (Sox9fl/fl), showed that loss of Paneth cells results in concomitant loss of 

stem cells 15. In this study, crypts that maintained Sox9 expression, retained Paneth cells, 

leading to the conclusion that Paneth cells are essential for stem cell maintenance. However, 

more recently, the requirement of Paneth cells for the maintenance of the stem cell niche was 

challenged by two studies, showing that Paneth cell depletion in vivo does not affect the 

intestinal stem cells 19,20. Both studies utilised a transcription factor important for determining 

the secretory cell fate, Atoh1 (atonal homologue 1), for genetic ablation of Paneth cells. The 

authors showed that in Atoh1fl/fl mice, upon Cre activation, complete loss of Paneth cells was 

apparent, however the intestinal stem cells were present and functional. The authors of the 

studies concluded that Paneth cells are dispensable for the survival and proliferation of stem 

cells in vivo. However, Atoh1 deletion mimics continuous activation of the Notch pathway, 
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removing stem cell dependence on Notch signalling, and it is therefore not an accurate 

approach to study the requirement of Paneth cells 1.  

1.2 Colon cancer  

The intestinal epithelium is tightly controlled, balancing rapid cellular proliferation, cell loss 

and organisation of the epithelial monolayer. Malignant transformation of the intestinal 

epithelium compromises tissue organisation and can be achieved through mutational 

inactivation of the tumour suppressor gene adenomatous polyposis coli (APC). In particular, 

oncogenic mutations in APC are sufficient to initiate intestinal epithelial tumorigenesis that, 

in the colon, precedes the acquisition of other driver mutation during the development of 

colon adenocarcinoma 21. In 1990, Fearon and Vogelstein first proposed a multistep genetic 

model of colorectal neoplasia progression that has remained as a paradigm for disease 

development 22. Colon cancer development proceeds with the acquisition of frequently 

occurring oncogenic mutations in KRAS and in three tumour suppressor genes: APC, SMAD4 

and TP53 (Figure 1.3). Somatic mutations in the APC gene are widely regarded as the initiating 

event of 80-90 % of sporadic colon cancers. Moreover, germline mutations in the APC gene 

result in the familial adenomatous polyposis (FAP) condition, which predisposes a person to 

colorectal cancer (CRC) 23. Germline and somatic APC mutations are typically nonsense 

mutations in a region termed the “mutation cluster region” (MCR), leading to the loss of the 

central and C-terminal domains of the protein 24. The significance of the loss of these regions 

defines the basis of my thesis and is discussed below in the section “APC protein”.  

 

 

Figure 1. 3: Multistep genetic model of colon carcinogenesis. Molecular events associated 

with the adenoma–carcinoma sequence first proposed by Fearon and Vogelstein 22,25.   
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The origin of CRC has long been discussed within the so called top-down versus bottom-up 

debate, where the cell of origin of cancer is thought to be located either at the top of the crypt 

or originate from stem cells at the bottom of the crypt, respectively 26,27. Using a Cre-lox mouse 

model of Apc, it has been postulated that the crypt stem cell is the origin of colorectal 

cancer 28. However, as more studies are showing plasticity within the intestinal epithelial cells, 

the paradigm has started to shift towards potentially other cells for origin of initiation of 

tumorigenesis 29.  

1.2.1 Mouse models of intestinal tumorigenesis 

Mouse models have remained as the principal model to study the onset and progression of 

colon cancer, with various mouse models baring different germline modifications. Most of the 

models allow studying early stage intestinal tumorigenesis. However, models that more 

closely mimic late-stage disease with metastasis have also started to emerge, though they are 

still lagging behind due to problems including the high tumour burden in mice before they 

have had the opportunity to metastasise  30,31.  

 

In my thesis work, I focus on understanding the onset of intestinal tumorigenesis and 

therefore only use models that inactivate Apc, to mimic the initiation of CRC. APC is well 

conserved between mouse and human with 92 % similarity on an amino acid level making 

mice deficient in APC relevant to human disease development 32. There are over 20 mouse 

models with different germline Apc mutations that differ in their phenotype 30. In this study I 

use a well characterized ApcMin/+ mouse due to its full loss of the central and C-terminal regions 

for APC domain specifications and the Apcfl/fl mouse to model acute depletion of the protein. 

1.2.1.1 ApcMin/+ mouse 

The first link between mutations in Apc gene and intestinal neoplasia originates from studying 

the ApcMin/+ mouse model 32–34. Min (multiple intestinal neoplasia) is a mutant allele of the 

murine Apc generated by random germline mutagenesis that encodes a nonsense mutation 

at codon 850, leading to the loss of the central and C-terminal domains of the protein 35. 

ApcMin/+ mice are heterozygous for Apc with loss of heterozygosity (LOH) of the other allele 

manifesting spontaneously during development. The ApcMin/+ mouse model is regarded as a 

model for the human FAP condition, due to the similarity in the localisation of polyps within 



 
13 

 

the intestine. Colon cancer patients develop tumours normally only in the colon, while human 

FAP patients develop hundreds of small adenomatous polyps throughout the colon that also 

present in the small intestine 36. ApcMin/+ mice in a C57BL/6J background develop more than 

40 tumours by 110 days of age, mostly throughout the small intestine, but with also some 

present in the colon 37. The tumours do not progress to adenocarcinoma, presumably due to 

the short lifespan of these mice 38. ApcMin/+ model has been used to characterise adenoma 

development in intestinal tumorigenesis, however due to the difference in localisation of 

polyps, care must be taken when extrapolating results to the human disease.   

1.2.1.2 Apcfl/fl mouse 

The advent of Cre-lox technology in the 1990s allowed researchers to delete genes in a tissue-

specific manner, on demand 39. A previous study describes the construction of a mouse model 

engineered so that loxP recombination sites flank exon 14 of the Apc gene. Excision of exon 

14 via Cre recombinase expression leads to a frameshift mutation at codon 580 (hereafter 

Apcfl/fl) and expression of a truncated protein 40. Depending on the promoter used to drive Cre 

expression, these mice develop adenomas in the colon and small intestine 40,41. In this work, I 

describe the use of the Apcfl/fl mouse model to determine the primary and direct consequence 

of loss of APC in an otherwise normal intestinal epithelium.     

1.2.2 Organoids to model intestinal tumorigenesis 

The use of fixed intestinal epithelial sample to study the initiation of tumorigenesis provides 

a snapshot of the tissue. However, this does not allow for monitoring changes taking place in 

real time. In addition, 2-dimensional colorectal cancer cell lines poorly maintain in vivo cell 

characteristics, failing to recapitulate tissue-specific architecture, mechanical and biochemical 

cues, and cell-cell communication. In 2009 Sato et al made a breakthrough achievement in 

establishing the minimal stem cell niche requirements in a media formulation to grow self-

organising miniguts from crypts, termed intestinal organoids 42. Organoids are grown in a 3-

dimensional collagen/laminin/fibronectin matrix and faithfully recapitulate the 3-dimensional 

(3D) architecture and cellular composition of the epithelial monolayer (Figure 1.4). They 

consist of an epithelium, complete with crypts harbouring a stem cell niche at their base 42. A 

key advantage over the use of in vivo models is that organoids can be genetically modified to 

monitor alterations dynamically. The growth of intestinal organoids requires three essential 
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stem cell niche promoting growth factors: R-spondin to potentiate Wnt signalling, epidermal 

growth factor (EGF) to stimulate mitogen signalling and noggin/gremlin, inhibitors of the 

differentiation cues driven by bone morphogenic protein (BMP) signalling 42. Intestinal 

epithelial organoids can be derived from whole crypts or individual Lgr5+ stem cells. Isolation 

of individual stem cells bound to a Paneth cell dramatically improves the efficiency of organoid 

derivation from Lgr5+ stem cells up to 7-fold, demonstrating the requirement of Paneth cells 

in supporting the stem cell niche 15. In this thesis, I use mouse small intestinal organoids 

derived from crypts from the later section of the intestine, the ileum. I also derive organoids 

from the polyps of ApcMin/+ mice (I term them tumoroids) which form cystic organoid 

structures that lack defined crypt structures as a model of in vitro tumours 43. 

 

 

Figure 1. 4: Small intestinal organoids recapitulate the cellular composition and tissue 

morphology of the intestinal epithelial monolayer. Time-line of a single crypt developing into 

a budding organoid in culture (A). Small intestinal organoids grow as budding structures where 

the bud is representative of a crypt in the tissue. Organoids made from the adenomas of an 

ApcMin/+ mouse (tumoroids) grow as spheres and show increased proliferative capacity (B).    
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1.3 Polarised epithelial cell 

Epithelial cells, like intestinal cells, exhibit apical-basolateral polarity (AB) polarity. AB polarity 

represents cellular polarity, where a distinct domain identity is present, allowing a cell to 

determine where is up (apical) and where is down (basolateral) 44. Functionally, AB polarity is 

important to regulate the asymmetrical distribution of components within a cell and maintain 

apically located intercellular junctional complexes 45. Epithelial cells must maintain stable 

polarity in order to preserve their differentiated states and carry out their functional roles in 

the digestive, respiratory, vascular, hormonal, reproductive, neural and sensory systems 46.  

 

There are three main polarity complexes that maintain and establish the apical, basal and 

lateral identity: apically localised Crumbs and Par complexes, and the laterally localised 

Scribble complex (Figure 1.5). Studies have linked the deregulation of core polarity proteins 

with cancer and many polarity proteins are regarded as either tumour suppressors or proto-

oncogenes 45.  

Apical junctional complexes comprised of tight and adherens junctions establish the apical 

and basolateral domains 44. The junctional complexes are composed of transmembrane 

proteins that interact with the neighbouring cell via homotypic protein-protein interactions; 

in addition, they include numerous cytoplasmic proteins that connect with the cytoskeletal 

network. The primary function of adherens junctions is to provide strong adhesion between 

neighbouring cells, while tight junctions create a seal between epithelial cells and produce a 

selectively permeable diffusion barrier for proteins, lipids and solutes. Importantly, defects in 

cell–cell adhesion and AB polarity have been linked to tumorigenesis 47. 
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Figure 1. 5: Polarised epithelial cell. Epithelial cells exhibit apical-basolateral polarity with 

the apical side facing the lumen and the basolateral domain facing the extracellular matrix. 

Apically localised tight and adherens junctions and Crumbs and Par complexes, and the 

laterally localised Scribble complex establish and maintain the polarisation of a cell.   

1.3.1 The cytoskeleton 

Polarised cells, like the intestinal epithelial cells, are highly dependent on the cytoskeleton to 

carry out their specialised functions. The cytoskeleton is responsible for the establishment and 

maintenance of the internal order within a polarised cell. It provides shape and structure for 

the cell to function properly 48. The three cytoskeletal filaments actin, microtubules and 

intermediate filaments, cooperate to regulate the cells’ spatial organisation and mechanical 

properties. Intermediate filaments offer mechanical strength, actin filaments determine the 

shape and movement of the cells, and microtubules regulate the positioning of organelles and 

direct intracellular transport 46. For the purpose of this thesis work, I focus on the microtubule 

cytoskeleton to describe its roles in a polarised epithelial cell and the significance of its correct 

functioning.  
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1.3.2 The microtubule cytoskeleton  

Microtubules are long hollow cylinders with an outer diameter of 25 nm and are formed of 13 

microtubule protofilaments, aligned laterally, each composed of alternating α- and β-tubulin 

subunits (Figure 1.6) 49. The two ends of microtubules polymerise at different rates with the 

faster growing end referred to as the plus end. Both microtubule ends exhibit dynamic 

instability, alternating between slow growth and rapid disassembly 50. Hydrolysis of the bound 

GTP nucleotide to GDP dictates the speed of depolymerisation—depolymerisation is 

approximately 100 times faster from a microtubule end containing GDP tubulin compared to 

an end containing GTP, favouring disassembly over growth of microtubules 48.  

 

 

Figure 1. 6: The structure of a microtubule polymer. Microtubules are composed of subunits 

made from tubulin. Each subunit of the microtubule is made of α- and β-tubulin which are 

bound together to form heterodimers. The subunits all point to the same direction to form 

parallel protofilaments giving the structure polarity, with only the α-tubulin proteins exposed 

at minus end and only β-tubulin proteins at the plus end. Microtubule-specific drugs bind to 

different sites on the microtubule polymer, affecting the inherent dynamic instability of 

microtubules. 

 

De novo formation of microtubules (nucleation) in non-polarised cells is coordinated by a 

microtubule-organising centre (MTOC). The primary MTOC in animal cells is the 

centrosome 51. There, the microtubules grow from a multi-protein complex localised at the 

centrosome, called γ-tubulin ring complex (γ-TURC), with their minus ends embedded in the 

centrosome and the plus ends emanating outward towards the cell periphery 49. However, in 

many differentiated cell types such as polarised epithelial cells, skeletal muscle and neurons, 

the function of MTOC is reassigned to non-centrosomal sites (ncMTOC), where microtubules 

are organised in non-radial arrays. Studies have suggested that the microtubules emanating 
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from ncMTOCs can instead be associated with adherens junctions 52. The correct assembly, 

positioning and preservation of these non-centrosomal microtubules, is vital for many of the 

cells’ specialised functions (Figure 1.7) 52–54.  

 

 

Figure 1. 7: Arrangement of microtubules in non-polarised versus polarised cells. In non-

polarised cells, the centrosome serves as the main MTOC from where the microtubules 

emanate. +TIPs like CLIP170 regulate microtubule dynamics 52 (A). In polarised cells, the 

microtubules are not anchored to the centrosome 55. It is thought that most microtubules 

anchor to the adherens junctions and involve proteins like CAMSAP3 which capture the minus 

ends of microtubules 56,57 (B). Centrosome is in red. The proposed localisation of APC and EB1 

is depicted 53,58–61.  

 

1.3.3 Microtubule functions in polarised epithelial cells 

In a polarised epithelial cell, like the intestinal epithelial cell, microtubules provide the 

structural basis for cell polarisation, and are vital for cell division by being the main constituent 

of the mitotic spindle. In a non-dividing polarised cell, microtubules run vertically from the 

apex to the base of the cell to form parallel arrays with the minus end of microtubules at the 

apex of the cell 48.  
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A key function of microtubules is to coordinate the localisation of intracellular components, 

including organelles such as the nucleus, the Golgi complex, mitochondrion, the endoplasmic 

reticulum (ER), endosome, lysosome and peroxisome 49. Microtubules also organise the 

membranous systems of the Golgi complex and ER 62. The Golgi complex consists of flattened, 

membrane enclosed compartments, called cisternae that are linked by microtubules into 

Golgi stacks 63. The ER also contains cisternae that are held together by microtubules 62. The 

trafficking of cargo along microtubules relies on the kinesin and dynein motor proteins; most 

kinesins move towards the plus end of microtubules and dynein in the opposite direction 46. 

Defects in microtubules can influence motor protein based transport in vitro 64. Thus, an intact 

microtubule cytoskeleton is vital for both the localisation and integrity of intracellular 

organelles.    

 

Post-translational modifications of microtubules are thought to play a role in coordinating 

functions of microtubules in the cells 65. These post-translational modifications include 

acetylation, polyglutamylation, polyglycylation, tyrosination/detyrosination, phosphorylation 

and palmitoylation. With the exception of acetylation, these modifications localise to the 

outer face of microtubules and can presumably affect interactions with binding proteins 66. 

Proteins that bind to the growing plus end of microtubules, called microtubule plus-end 

tracking proteins (+TIPS), further control the different aspects of microtubules by regulating 

their dynamics and their interactions with proteins 67. Proteins binding to the minus end of 

microtubules (-TIPs) like the CAMSAP/Patronin/Nezha family members have been shown to 

function in contributing to the non-centrosomal microtubule organisation, in cell division, 

migration and differentiation 68.   

 

Microtubule-specific drugs can be used to manipulate and study microtubule-dependent 

functions. Several anti-microtubule drugs have important medical uses, particularly 

colchicine, which is used to treat gout, and vinblastine and taxol, which are used as 

chemotherapeutic agents to treat cancer 69. The exact mechanism of action for many of the 

drugs is yet to be exactly defined, although they can be divided into two groups: microtubule 

stabilising and destabilising agents. Colchicine, vinblastine and nocodazole cause microtubule 

depolymerisation and destabilisation, while taxol binds to and stabilises microtubules, causing 

a net increase in polymerisation (Figure 1.6). The binding sites for the different drugs vary, 
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with vinblastine binding to the plus ends of microtubules, colchicine and nocodazole to soluble 

tubulin dimers and taxol to the interior surface of microtubules 70.  

1.4 The APC protein: structure and function 

The APC protein has crucial functions that impact homeostasis of polarised intestinal epithelial 

tissue—mutational inactivation of APC is the sole genetic lesion required to initiate intestinal 

epithelial tumorigenesis 21. Interestingly, in colon cancer, mutations invariably occur within a 

discrete region of the protein (termed the mutational cluster region or MCR), leading to the 

expression of a truncated protein encoded by at least one of the inactivated APC alleles. The 

truncated protein lacks the central and C-terminal domains of APC. Understanding the specific 

phenotypic and molecular consequences of truncated APC is the primary focus of my thesis 

work.  

1.4.1 Structure 

APC is a large, multi-functional protein harbouring several domains for interactions with 

various proteins. The N-terminal region of APC contains seven armadillo repeats through 

which it interacts with the actin cytoskeleton 71,72, as well as indirectly with the microtubules 

via Kap3, a linker protein for kinesins (Figure 1.8) 73. The central region of APC contains 

domains that interact with proteins regulating the Wnt signalling pathway (described below). 

The region is composed of (i) seven 20 amino acid repeats (20R) and three 15 amino acid 

repeats (15R) that, together, function to bind and promote the degradation of β-catenin 74, (ii) 

the so called β-catenin inhibitory domain (CID), located between the second and third 20R, 

that down-regulates the transcriptional activity and the levels of β-catenin 75; and (iii) three 

Ser-Ala-Met-Pro-rich repeats (SAMP repeats) that bind to Axin 76. The C-terminal region of APC 

contains domains for direct interaction with microtubules and for binding the microtubule 

plus end-binding protein 1, EB1 60,77. The final 15 amino acids of the C-terminus of APC has 

been shown, by a single study, to contain a binding site for PDZ domains and bind hDLG, the 

human homolog of the Drosophila discs large protein, implicated in cell junction structure and 

polarity 78.  

 

MCR mutations lead to the expression of a truncated protein that lacks 1-3 of the 20R domains 

involved in interaction with β-catenin, all SAMP repeats which are required for binding to Axin 
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and the interaction domains with the microtubule cytoskeleton. Therefore, APC’s functions in 

controlling Wnt pathway activity and interactions with the microtubule cytoskeleton are 

compromised.  

 

 

Figure 1. 8: Primary structure of APC protein. The majority of oncogenic mutations in APC are 

nonsense mutations in the MCR resulting in a truncated protein. The C-terminal portion of the 

protein is involved in binding to microtubules and to EB1. The central part of the protein has 

binding domains involved in regulating the Wnt pathway activity: the 15 amino acid β-catenin-

binding repeats are labelled a, b and c, the 20 amino acid β-catenin-binding repeats 1–7 and 

the Axin-binding repeats SAMP1–3. CID marks the β-catenin inhibitory domain. Interactions 

with the actin cytoskeleton occur in the N-terminal domain via the armadillo repeats. 

 

1.4.2 Functions 

APC is reported to be localised to the cytoplasm, but also to membrane pools and the 

nucleus 79–82. The distinct localisations and the multitude of interaction domains are 

responsible for the complexity and diversity of the biological functions of the APC protein 83. 

Given the breadth of binding partners that overlap in their interaction domains within APC, it 

is possible that the different functions of APC cooperate or compete against each other.  

However, the hierarchy or collaboration of the different APC functions remains largely 

unknown 2,83. Findings that APC is also able to self-associate and affect its functions 

complicates the stratification of its specific cellular functions even further 84,85.  

1.4.2.1 APC in Wnt signalling 

The most studied and well-known role of APC is in its regulation of the canonical Wnt pathway 

(Figure 1.9). Wnt pathway activity is required for the maintenance and regulation of intestinal 

epithelial stem cell proliferation and multipotency 86. Specifically, APC attenuates Wnt 



 
22 

 

pathway activity by participating in the destruction complex that earmarks β-catenin, the 

primary Wnt pathway effector, for proteasome-mediated degradation 87. In the presence of a 

Wnt ligand, the ligand binds to the cell-surface receptor Frizzled and low-density lipoprotein 

receptor-related protein (LRP) 5/6. The ligand-receptor complex triggers a series of events 

that result in the stabilisation of β-catenin. Stabilised β-catenin can then enter the nucleus to 

interact with LEF-TCF transcription factors and activate transcription of the Wnt target genes, 

including c-Myc, Axin2, Ephrins and many others 86,88. A key regulatory feature of the Wnt 

pathway is the β-catenin destruction complex (βDC), a multiprotein complex that targets β-

catenin to the proteasome 89. The βDC is composed of Glycogen Synthase Kinase 3 β (GSK3β), 

Casein Kinase 1 α (CK1α) and the scaffold proteins Axin and APC. In the absence of a Wnt 

ligand, Axin binds to β-catenin and bridges the kinases GSK3β and CK1α. This leads to the 

phosphorylation of β-catenin triggering the recruitment of E3 β-TrCP ubiquitin ligase 89. The 

ubiquitination of β-catenin results in its proteasomal degradation 87. In the presence of a Wnt 

signal, Dishevelled (Dsh) protein inactivates GSK3β, leading to a decrease in the kinase activity 

in the complex. This results in a decrease in the amount of β-catenin targeted for degradation 

and thus increases the availability of β-catenin to enter the nucleus and activate context-

specific Wnt target genes 90,91. Many of the Wnt target genes, including c-Myc, CD44, Axin2 

and Sox17, are involved in proliferation, differentiation and migration; thus their proper 

regulation is important for tissue homeostasis 41.  

 

 



 
23 

 

 

Figure 1. 9: Canonical Wnt signalling in normal and oncogenic setting. In the absence of a 
Wnt ligand, β-catenin is phosphorylated by the βDC leading to its proteasomal degradation. 
In the presence of a Wnt ligand, βDC is inhibited and β-catenin translocates to the nucleus to 
drive the transcription of Wnt target genes. Mutational inactivation of APC results in 
constitutively elevated β-catenin levels and uncontrolled expression of Wnt target genes. 
 
 
How, specifically, APC drives the destruction of β-catenin is still unclear. Studies have 

suggested that it may act as a de-repressor of the complex 92, enhancer of β-catenin binding 

to the complex 93, or be directly involved in gathering β-catenin from the nucleus and 

cytoplasm and deliver it to the complex 94. Consequently, mutational inactivation of APC leads 

to deregulated activation of the Wnt-dependent transcriptional program and drives 

uncontrolled proliferation and transformation of intestinal epithelia 95.  Importantly, it has 

been shown that the Wnt target gene c-Myc is the main mediator of murine intestinal 

epithelial tumorigenesis following inactivation of APC 96. 

1.4.2.2 APC as a cytoskeletal regulator  

Several studies have established that APC interacts with proteins associated with the 

microtubule and actin cytoskeletons and may play a key role in establishing AB cell polarity 97. 

The apical-basal domain identity and the function of cells is maintained by the establishment 

of specific cytoskeletal arrangements 47. Therefore, the correct functioning of proteins, like 

APC, which play a role in regulating the cytoskeletal network, is especially important for 

intestinal epithelia.  
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1.4.2.3 APC interaction with actin cytoskeleton 

The armadillo repeats at the N-terminal domain of APC have been shown to interact with and 

stimulate the activity of Asef (APC-stimulated guanine nucleotide exchange factor), an 

exchange factor for small GTPases 71. Small GTPases control cell shape and migration by 

regulating downstream effectors that influence the actin cytoskeleton 98. Truncated APC leads 

to constitutively active Asef resulting in increased migration and decreased cell adhesion 71. It 

has been recently shown that unregulated signalling of Asef leads to fragmentation of the 

Golgi complex 99. However, my results in Chapter 4 contradict this finding. In addition, another 

effector of small GTPases, IQGAP1 (IQ Motif Containing GTPase Activating Protein 1), has been 

shown to interact directly with the armadillo repeats in APC 72. This interaction is thought to 

be important for regulating actin dynamics in cell migration and polarisation 100. Finally, a 

study demonstrating the localisation of APC at the lateral plasma membrane suggests a close 

association of APC with filamentous actin (F-actin) 80. These findings show that the interactions 

between APC with the actin cytoskeleton regulate epithelial cell morphology, adhesion and 

migration. 

1.4.2.4 APC interaction with microtubule cytoskeleton 

APC interacts with the microtubule cytoskeleton directly and indirectly. APC is shown to bind 

to microtubules via its C-terminus 77. APC interacts with microtubules at the growing plus ends 

and thus falls into the category of +TIPs 67. The binding of APC to microtubules stabilises the 

microtubule ends 101. Specifically, the deletion of the microtubule binding domain does not 

eliminate APC’s binding to microtubules, but rather decreases the ability of APC to stabilise 

them. In addition, the interaction between microtubules and APC has been shown to be 

decreased by phosphorylation of APC by GSK3β 101. This finding is opposite to the effect of 

APC binding to β-catenin, suggesting that the binding of APC to microtubules and β-catenin is 

mutually exclusive. Further, APC regulates the microtubule cytoskeleton indirectly via EB1 60. 

APC-EB1 interaction is suggested to involve the C-termini of both proteins 102. EB1 is thought 

to recruit APC to the growing, plus ends of microtubules located at the base of the cell 59. The 

association of APC with the growing ends of microtubules supports the establishment of 

parallel arrays of microtubule bundles in a polarised cell 53. Studies on Drosophila neurons 

have implicated APC in the guidance of growing microtubules at their plus ends 103,104. It was 

proposed that the microtubule plus-end walking motor protein, kinesin-2, is recruited to the 
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plus ends of growing microtubules by EB1 through APC, where it steers growing microtubules 

to maintain polarised arrays of microtubules 103. APC has also been suggested to function in 

microtubule nucleation and growth 105. APC was shown to bind to the microtubule nucleation 

factor γ-tubulin through its N-terminal domain and suggested to help target APC to the 

centrosome. While not necessary for binding to γ-tubulin, the C-terminal domain of APC was 

shown to be required to stimulate and stabilise microtubule growth 105. APC has also been 

shown to accumulate in clusters near the plus ends of microtubules at the edges of migrating 

epithelial cells 106,107. Finally, via interactions with its N-terminal domain, APC has been linked 

to microtubules via Kap3, a linker protein for microtubule motor proteins, kinesins 73. 

However, this interaction is not sufficient for microtubule cluster formation. Therefore, APC 

has several ways of binding to microtubules, with the C-terminal domain of APC being 

essential for the functional interaction with the microtubule cytoskeleton. In the context of 

early intestinal tumorigenesis, the loss of the C-terminal domain of APC bearing interaction 

domains with the microtubule cytoskeleton could therefore alter this tightly regulated 

intracellular organisation. 

1.4.2.5 APC in chromosome segregation 

APC localises to kinetochores of metaphase chromosomes and to mitotic spindles of anaphase 

cells 108. Truncating mutations in APC and loss of the C-terminal domain have been linked to 

spindle aberrations and aneuploidy, providing evidence for the link between APC-microtubule 

interactions and chromosomal instability (CIN) 108–111. Indeed, 65 %-70 % of sporadic colorectal 

cancers exhibit CIN and previous reports have found evidence that this could be due to loss of 

APC’s C-terminal microtubule interaction domain 108,112.   

1.4.2.6 APC interaction with microtubules in tumorigenesis 

The consequence of the loss of the microtubule binding domain of APC on the intestinal 

epithelial homeostasis has been studied in vivo (Figure 1.10). A mouse model was developed 

that expresses a mutant form of Apc, truncated at codon 1638 (Apc1638T/+), resulting in the loss 

of  the four 20aa repeats, two SAMP repeats and the rest of the C-terminal domain including 

the microtubule interaction domains 113. Apc1638T/+ and Apc1638T/1638T mice are tumour free, 

and the authors of the study concluded that the C-terminus of APC is not required for tumour 

formation 113. βDC activity was only moderately affected in these mice owing to the retention 
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of one SAMP repeat in the truncated Apc 113. Another study showed that mice lacking six 20 

aa repeats, all SAMP repeats and the rest of the C-terminal domain of APC (Apc1322T/+) develop 

adenomas 114. These mice had increased nuclear β-catenin levels, indicative of the loss of 

APC’s down-regulating capacity of β-catenin. In addition, the authors developed a mouse 

model identical to Apc1322T/+ but with an intact C-terminus (ApcSAMP/+) and showed that these 

mice also developed adenomas, indistinguishable from Apc1322T/-. Taken together, the two 

studies indicate that the loss of the C-terminal microtubule interaction domain of APC is not 

sufficient to drive the formation of intestinal tumours. However, the cellular implications due 

to the loss of the C-terminal domain of APC beyond CIN have not been determined in the 

intestinal epithelia.  

 

Figure 1. 10: APC truncation in various mouse models of intestinal epithelial tumorigenesis. 

Different mouse models carrying mutations in the Apc gene have been developed to study 

intestinal tumorigenesis and APC domain specific roles.  
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1.5 Aims of the thesis 

The role of APC in the intestinal epithelia with regards to the Wnt signalling pathway has been 

extensively studied. However, the phenotypic and functional consequences of the loss of 

APC’s interaction with the microtubule cytoskeleton have not been determined. The aims of 

my thesis are as follows: 

 

• Phenotypically characterise the intracellular organisation and tissue morphology of 

intestinal epithelia upon APC inactivation 

 

• Determine the functional roles of the central and the C-terminal domain of APC that 

are lost upon APC inactivation leading to intestinal tumorigenesis 

 

• Investigate the specific consequence of APC loss in a stem cell supporting cell, 

identifiable by a distinct cellular morphology—the Paneth cell—on intestinal epithelial 

homeostasis



 

 

 

 

 

 

 

 

 

 

Chapter 2: 

Materials and methods 
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2.1 Organoid technology development 

The protocols to generate and manipulate organoids and tumoroids were developed from 

previously published guidelines. I have therefore provided detailed protocols describing each 

step.  

2.1.1 Derivation of organoids 

The small intestinal ileum from wild-type C57BL/6 mice was used to derive wild-type 

organoids. Organoids were generated from crypts following a published protocol with some 

modifications 42.  

 

I received the small intestine with cecum on ice in PBS with no Ca2+/Mg2+ (PBS). The following 

were carried out under non-sterile conditions, unless stated otherwise. The small intestine 

was cut into three equal parts with pre-sterilised scissors, keeping only the distal part of the 

small intestine (ileum) for organoid culture, using the position of cecum for orientation. The 

reason for using only ileal organoids was two-fold. Firstly, given differences within the small 

intestine 115, I decided to restrict experiments to only ileum as ApcMin/+ mice preferentially 

develop tumours there 116 allowing me to directly compare organoids to tumoroids. Secondly, 

the Paneth cell specific prompter developed in Chapter 5 was indicated to have highest 

expression in the ileum and therefore I decided to utilise only ileal organoids for highest 

control over Paneth cells.  

 

Using a 10 ml syringe with a 25-gauge needle ice-cold PBS was used to remove the faeces from 

the ileum. Tweezer were then used to remove the fatty tissue around the intestine. The 

intestine was opened longitudinally using scissors and spread by tweezers. The intestine was 

cut into 2-4 mm pieces and placed into a 50 ml falcon filled with 25 ml ice-cold PBS. The tube 

was shaken 50 times to remove the villi. The intestinal pieces were left to settle, and the tissue 

pieces transferred to a new 50 ml falcon tube with ice-cold PBS. The tube was shaken 50 times 

and again transferred to a new tube as before. This procedure, with the aim to remove villi 

and clean the tissue, was repeated total of 5 times. After the last wash, the tissue pieces were 

transferred to a 50 ml falcon containing 25 ml of 2 mM ethylenediaminetetraacetic acid 

(EDTA) in PBS and placed on a roller in 4°C for 30 minutes to release the crypts from the 

mesenchyme. The tube was shaken 3 times, the EDTA medium discarded and then 10ml of 
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ice-cold PBS added onto the settled tissue pieces. Using a 10 ml stripette, the tissue pieces 

were pipetted up and down in PBS, let to settle and then the supernatant removed to a new 

tube. This was fraction 1. This procedure was repeated five times, ie 5 fractions in total were 

collected, with the aim of enriching crypts with each fraction. 10 μl of each fraction was 

pipetted onto a petri dish to check for the presence of crypts under the microscope. All the 

fractions with crypts in them were pooled into a 50 ml falcon tube (usually fractions 2-4), 

topped up with ADF (Table 2.1) and passed through a 70 μm cell strainer into a new 50 ml 

falcon tube. The tube was centrifuged at 200 RCF for 5 minutes at 4°C. The supernatant was 

carefully removed, and the pellet was taken up in 10 ml ADF. The tube was then centrifuged 

at 450 RCF for 5 minutes at 4°C. 

 

All subsequent steps were carried out under sterile conditions in a tissue culture grade 

Laminar flow hood. The supernatant was removed with minimal disturbance to the pellet. 

When the whole ileum was used, the pellet that formed was taken up in 400 μl of 100 % 

phenol-red free Matrigel that had been thawed on ice (Table 2.1) and plated out 40 μl/well 

into a pre-heated 24-well plate (plate in 37°C for 24 h prior to use). This yielded on average 

100 crypts/40 μl Matrigel dome. The plate was placed into a 37°C incubator with 5% CO2 for 

10 minutes to allow the Matrigel to solidify. The plate was then taken out and 600 μl of pre-

warmed WENR media with 10 μm ROCK inhibitor was added per well (Table 2.1). The plate 

was placed back into the 37°C incubator. The media was switched to ENR (Table 2.1) on day 3 

and grown in this media unless genetic manipulation was to be carried out (see section 2.1.5). 

Media was changed every 3rd day and organoids passaged every 5-7 days (see section 2.1.3). 

2.1.2 Derivation of tumoroids  

Tumoroids were derived from the polyps of an 8-10-week-old ApcMin/+ mouse where the loss 

of heterozygosity causes adenomatous polyps to form preferentially in the ileum of the small 

intestine 116. Tumoroids were generated from the ileal polyps following a published protocol 

with several modifications 43. 

 

I received the small intestine with cecum on ice in PBS with no Ca2+/Mg2+ (PBS). The following 

were carried out under non-sterile conditions, unless stated otherwise. The intestine was laid 

longitudinally onto a Petri dish filled with ice-cold PBS and cut the intestine into three equal 
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parts with pre-sterilised scissors, keeping only the ileum. Tweezer were used to remove the 

fatty tissue around the intestine making it easier to spot the polyps. Using a 10 ml syringe with 

a 25-gauge needle ice-cold PBS was used to remove the faeces from the ileum. The intestine 

was then opened up longitudinally using scissors and spread by tweezers. The polyps (ranging 

from 5-20) were cut away from the small intestine using a scalpel while avoiding taking the 

surrounding tissue along. The polyps were pooled into a 1.5 ml Eppendorf tube with 1 ml of 

PBS+ 2 % BSA. Using scissors, the polyps were cut into small pieces inside the Eppendorf tube. 

The pieces were allowed to settle, supernatant removed and 1 ml of fresh PBS+ 2 % BSA added 

to wash the adenoma cells. This step was repeated three times. After the last wash, the pieces 

were let to settle, supernatant removed, and the pellet was taken up in 1 ml of 5 mM EDTA in 

PBS. The Eppendorf tube was placed on a roller in 4°C for 30 minutes to release the normal 

intestinal cells from the mesenchyme. The tube was then shaken, pieces let to settle, and the 

supernatant carefully removed. 1 mL of TrypLE Express (Table 2.1) was added to the pellet and 

incubated for 15 minutes at 37°C to release the adenoma fragments.  

 

All subsequent steps were carried out under sterile conditions in a tissue culture grade 

Laminar flow hood. The Eppendorf tube was shaken, the supernatant removed, and the 

adenoma fragments washed with 1 ml ADF + 100 μg/ml PrimocinTM (Table 2.1). The wash was 

repeated three times, each time transferring the supernatant to a 15 ml falcon tube. The 15 

ml falcon tube was centrifuged at 650 RCF for 5 minutes at 4°C. The supernatant was removed, 

and the pellet was again washed with 5 ml ADF + 100 μg/ml PrimocinTM followed by 

centrifugation at 650 RCF for 5 minutes at 4°C. To note, extensive washing in the presence of 

the antimicrobial/antifungal was necessary as not doing so resulted in contamination of the 

culture on day 2. The supernatant was carefully removed from the 15 ml falcon tube and the 

pellet taken up in 120 μl of Matrigel that had been thawed on ice. To note, this amount of 

Matrigel was suitable for when initially 10-20 adenomas were collected. The amount of 

Matrigel was lowered when the polyp collection was less efficient. Adenoma cells in Matrigel 

were plated out 40 μl/ well into a pre-heated 24-well plate (plate in 37°C for 24 h prior to use). 

The plate was placed into a 37°C incubator with 5% CO2 for 10 minutes to allow the Matrigel 

to solidify. The plate was then taken out and 600 μl of pre-warmed EN media with 10 μm ROCK 

inhibitor (Y-27632) and 100 μg/ml PrimocinTM was added per well (Table 2.1). The plate was 

placed back into the 37°C incubator. Upon successful tumoroid formation, small spheres were 
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apparent the next day. The media was switched to only EN on day 3. To note, R-spondin 1 

addition to tumoroids was dispensable because the loss of APC constitutively activates the 

Wnt pathway. Media was changed every 3rd day to EN and tumoroids passaged every 5-7 days 

(section 2.1.3). 

 

Advanced DMEM/F12 +++ (ADF) Final concentration Company  Catalogue nr 

Glutamax 100X 1X ThermoFisher 35050061 

Hepes 1 M 10 mM ThermoFisher 15630080 

Pen Strep 1X ThermoFisher 15140122 

Advanced DMEM/F12  ThermoFisher 12634028 

    
ENR medium    
Into ADF Final concentration Company  Catalogue nr 

N21-MAX (B27) 1X R&D AR008 

N2 1X ThermoFisher 17502048 

mouse EGF 50 ng/ml R&D 2028-EG 

R-spondin 1- MBP 25 nM de la Roche lab  
Gremlin 1 25 nM Hyvonen lab  
n-Acetylcysteine 1.25 mM Sigma A9165-5G 

    
WENR medium    
Into ADF Final concentration Company  Catalogue nr 

N21-MAX (B27) 1X ThermoFisher AR008 

N2 1X ThermoFisher 17502048 

mouse EGF 50 ng/ml R&D 2028-EG 

R-spondin 1- MBP 25 nM de la Roche lab  
Gremlin 1 25 nM Hyvonen lab  
n-Acetylcysteine 1.25 mM Sigma A9165-5G 

Nicotinamide 10 mM Sigma N3376 

Advanced DMEM/F12 50 % -additives ThermoFisher  
Wnt3A conditioned media 0.5 From L Wnt3A cells  
    
EN medium    
Into ADF Final concentration Company  Catalogue nr 

N21-MAX (B27) 1X ThermoFisher AR008 

N2 1X ThermoFisher 17502048 

mouse EGF 50 ng/ml R&D 2028-EG 

Gremlin 1 25 nM Hyvonen lab  
n-Acetylcysteine 1.25 mM Sigma A9165-5G 

Primocin 100 ug/ml InvivoGen ant-pm-1 
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Reagents Final concentration Company  Catalogue nr 

TrypLE Express 1X ThermoFisher 12604013 

Matrigel 1X Corning 356237 

ROCK inhibitor (Y-27632) 10 μM Sigma SCM075 

GSK3 inhibitor (CHIR99021) 5 μM Sigma SML1046 

Opti-MEM + GlutaMAX Reduced 
Serum Medium 1X ThermoFisher 11574506 

BTXpress electroporation buffer 1X BTX 45-0802 

Table 2. 1: Media components and reagents used for derivation and manipulation of 

organoids and tumoroids. R-spondin 1 and Gremlin in-house production described in 117. 

 

2.1.3 Passaging organoids and tumoroids 

Organoids and tumoroids were passaged identically, every 5-7 days, and kept in culture for no 

more than 10 passages. The media was removed, cold ADF added onto the Matrigel dome and 

the plate placed on ice for 2 minutes to dissolve the Matrigel. The dome was then released 

from the plate bottom by pipetting up and down using a p1000 pipette tip and the contents 

transferred to a 15 ml falcon tube. Using a p200 pipette tip, the organoids/tumoroids were 

broken up into chunks by pipetting up and down until there were visually no white “dots” 

(around 50 times). The tube was centrifuged at 600 RCF for 5 minutes at room temperature. 

The supernatant was removed, and the pellet taken up in an appropriate volume of Matrigel. 

Organoids/tumoroids were split 1:3 to 1:5, depending on their initial size. Cell clusters in 

Matrigel were plated out 40 μl/well into a pre-heated 24-well plate (plate in 37°C for 24 h 

prior to use). The plate was placed into a 37°C incubator with 5% CO2 for 10 minutes to allow 

the Matrigel to solidify. The plate was then taken out and 600 μl of pre-warmed 

WENR/ENR/EN media was added, depending on the application/genotype of the organoid. 

The plate was placed back into the 37°C incubator. 

2.1.4 Freezing/thawing organoids and tumoroids 

At a minimum of three days prior to freezing, organoids were grown in WENR media to enrich 

for stem-like cells that allowed for improved survival upon thawing. Tumoroids, given their 

APC status, were continued to be grown in EN before freezing. Organoids and tumoroids were 

frozen identically. The media was removed, cold ADF added onto the Matrigel dome and the 

plate placed on ice for 2 minutes do dissolve the Matrigel. The dome was then released from 
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the plate bottom by pipetting up and down using a p1000 pipette tip and the contents 

transferred to a 15 ml falcon tube. Using a p200 pipette tip, the organoids/tumoroids were 

broken up into chunks by pipetting up and down until there were visually no white “dots” 

(around 50 times). The tube was centrifuged at 600 RCF for 5 minutes at room temperature. 

The supernatant was removed, and the pellet taken up in an appropriate volume of freezing 

media containing 90 % fetal bovine serum (FBS; Sigma) and 10 % dimethyl sulphoxide (DMSO; 

Sigma). 1 ml of the freezing media was used to freeze 2 confluent wells of a 24-well plate and 

then placed into a 1.5 ml cryovial (Greiner Bio-One). The vial was placed into a cell freezing 

container (CoolCell; Sigma) and put into a -80°C freezer for 24 hours. The next day, the vial 

was transferred to a liquid nitrogen tank for short- and long-term storage. 

 

To thaw organoids/tumoroids, a 15 ml falcon tube was filled with 5 ml pre-warmed ADF. The 

cryovial was thawed in a 37°C water bath, not allowing the sample to warm-up. The contents 

of the cryovial were then pipetted into the ADF and the tube centrifuged 600 RCF for 5 minutes 

at room temperature. The supernatant was removed, the pellet taken up in 40 μl Matrigel and 

plated out to 1 well of a pre-heated 24-well plate (plate in 37°C for 24h prior to use). The plate 

was placed into a 37°C incubator with 5 % CO2 for 10 minutes to allow the Matrigel to solidify. 

The plate was then taken out and 600 μl of pre-warmed WENR or EN media with 10 μM ROCK 

inhibitor was added to organoids and tumoroids, respectively. The plate was placed back into 

the 37°C incubator. Media was changed to ENR for organoids and to EN for tumoroids after 

3 days and cultured as normally.  

2.1.5 Genetic manipulation of organoids and tumoroids 

2.1.5.1 Transfection by electroporation 

Electroporation of organoids/tumoroids was carried out using a published protocol with 

several modifications 118. Organoids and tumoroids were cultured in different media 

compositions before and after electroporation following the time-line shown in Figure 2.1A. 

The procedure for electroporation of organoids and tumoroids was identical. For a successful 

electroporation the following parameters are essential: cell count per reaction, DNA amount 

and incubation time after electroporation. 
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A minimum of three confluent wells of organoids/tumoroids of a 24-well plate were collected 

per electroporation. Cold ADF was added onto the wells and left on ice for 2 minutes to allow 

the Matrigel to dissolve. After pooling the contents of wells into a 15 ml falcon tube (maximum 

5 confluent wells of a 24-well plate/tube), the organoids/tumoroids were broken down using 

a p200 pipette tip until no white “dots” were apparent. The tube was then centrifuged 500 

RCF for 5 minutes at room temperature. The supernatant was removed, and the pellet 

resuspended in 1 ml TrypLE Express with 10 μM ROCK inhibitor. After pipetting up and down 

using a p200 pipette tip, the tube was placed into a 37°C water bath for 5 minutes. After 5 

minutes a small aliquot (10 μl) of the suspension was checked under the microscope for cell 

cluster size-ideally the organoids/tumoroids were in 3-6 cell clusters. If the clusters were 

bigger, the tube was placed back into the water bath, for maximum 10 more minutes. To note, 

when organoids/tumoroids were broken down to single cells, the survival of cells after 

electroporation was very low. Equally, if the cell clusters were bigger than 20 cells, the 

organoids/tumoroids that grew up after electroporation often expressed the gene in a mosaic 

pattern. 9 ml of ADF with 10 % FBS was added onto the cell suspension and centrifuged at 650 

RCF for 5 minutes at room temperature. The supernatant was removed, and the pellet taken 

up in 1 ml of Opti-MEM + GlutaMAX Reduced Serum Medium (Opti-MEM; ThermoFisher). The 

number of cells was then counted using Countess Automated Cell Counter (Invitrogen). 

Optimal cell count for a successful electroporation was approximately 500 000 cells/ reaction 

(minimum 250 000cells/ reaction). The cell suspension was pelleted down at 650 RCF for 5 

minutes at room temperature, supernatant carefully removed, and pellet taken up in 90 μl of 

Opti-MEM or 90 μl of BTXpress electroporation buffer (BTX). To note, survival of cells after 

electroporation was higher with BTXpress buffer, however due to cost Opti-MEM was used 

routinely. The 90 μl of cell suspension was transferred to a 1.5 ml Eppendorf tube and placed 

on ice. 10 μl of 14 μg of DNA in Opti-MEM or BTXpress buffer was added to the cell suspension 

on ice. NEPA21 electroporator (Nepagene) was used for electroporation. This electroporator 

allows for short duration poring and transfer pulses leading to high transfection and viability 

118. Electroporation was carried out at room temperature using published settings 118 (Figure 

2.1B) and following the manufacturer’s guidelines. Before electroporation, the impedance in 

the sample was checked to be in the range 30-55 Ω, adjusting it to the range with dilution or 

removal of cell suspension, as necessary. After electroporation was carried out, 400 μl of Opti-

MEM or BTXpress buffer with 10 μM ROCK inhibitor was added to the sample and incubated 
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at room temperature for 30 minutes. To note, incubation over 30 minutes showed a decrease 

in survival of cells. The tube was then centrifuged at 800 RCF for 3 minutes. The supernatant 

was very carefully removed, taking care not to disturb the lose pellet, and taken up in 40 μl 

Matrigel. The cell suspension in Matrigel was plated out as described in sections 2.1.1 and 

2.1.2 with media additions as depicted in Figure 2.1A. For constructs transferred via 

electroporation in this thesis, Hygromycin B (ThermoFisher) was the antibiotic used for 

selection for positive clones. The concentration of Hygromycin B used was 150 μg/ml for 

organoids and 100 μg/ml for tumoroids for 7 days. 

 

 

Figure 2. 1: Electroporation of organoids and tumoroids. Electroporation time-line with 

required media changes depicted for days before and after electroporation for organoids and 

tumoroids. Media components for WENR, EN and ENR are described in Table 2.1. (A). Settings 

for electroporation with NEPA21 (B). 

 



 
37 

 

2.1.5.2 Lentiviral transduction 

Lentiviral transduction of organoids/tumoroids was carried out using a published protocol 

with several modifications 119. Lentivirus was generated and pelleted by high-speed 

ultracentrifugation as described in section 2.2.2. Viral pellet was taken up in 250 μl of infection 

media: WENR for organoids and EN for tumoroids, supplemented with 10 μM ROCK inhibitor 

and 8 μg/ml Polybrene (Sigma). Viral suspension was stored at -80°C, if not used directly. Prior 

to transduction, organoids were grown in WENR media for one passage (5-7 days). Tumoroids 

were grown as usual in EN media. Transduction procedure was identical for organoids and 

tumoroids. Minimum one confluent well of organoids/tumoroids of a 24-well plate was 

required per reaction. Organoids and tumoroids were broken into 3-6 cell clusters with TrypLE 

as described in section 2.1.5.1. 9 ml of ADF with 10 % FBS was added onto the cell suspension, 

centrifuged at 650 RCF for 5 minutes at room temperature and the supernatant carefully 

removed. The cell pellet was taken up in 250 μl of the infection media containing lentivirus 

and transferred to a pre-warmed 48-well plate. The plate was centrifuged at 32°C for 1 hour 

at 650 RCF (spinoculation). The plate was then placed to 37°C 5 % CO2 incubator for 6 hours. 

Next, the cells were transferred into a 1.5 ml Eppendorf tube and spun down 800 RCF for 5 

minutes at room temperature. The supernatant was carefully removed, taken up in 40 μl 

Matrigel and plated out as described in sections 2.1.1 and 2.1.2. The Matrigel dome was laid 

over with infection media without Polybrene. 48 hours after transduction, the media was 

changed to WENR (for organoids) or EN (for tumoroids) containing the relevant antibiotic. The 

media was changed to normal media (ENR for organoids; EN for tumoroids) after the antibiotic 

selection was finished. The lentiviral constructs used in this thesis contained puromycin 

resistance gene. Puromycin (Sigma) selection of organoids and tumoroids was carried out at 

2 μg/ml for 7 days.    

2.1.5.3 Transfection with Lipofectamine 2000 

Transient transfection of organoids and tumoroids in this thesis was carried out to test if 

promoters in the constructs were expressed in the mouse system. Transfection was done 

following a published protocol with minor modifications 120. 

 

Organoids and tumoroids were grown and broken into 3-6 cell clusters following the same 

procedure as for lentiviral transduction (see section 2.1.5.2). Following TrypLE incubation and 
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subsequent centrifugation, the cell pellet was taken up in 450 μl of WENR (organoids) or EN 

(tumoroids) media supplemented with 10 μM ROCK inhibitor. The cell suspension was plated 

into one well of a 48-well plate. 4.5 μg of plasmid DNA and 12 μl of Lipofectamine 2000 were 

each diluted in 50 μl Opti-MEM and mixed together and incubated according to the 

manufacturer’s protocol. The DNA-reagent complex was then added to the cell suspension 

(50 μl) and the plate centrifuged at 650 RCF for 1 hour at 32°C. The plate was then incubated 

for a further 4 hours in the 37°C 5 % CO2 incubator. Cells were transferred into a 1.5 ml 

Eppendorf tube and spun down 800 RCF for 5 minutes at room temperature. The supernatant 

was carefully removed, taken up in 40 μl Matrigel and plated out as described in sections 2.1.1 

and 2.1.2. The Matrigel dome was laid over with WENR (organoids) or EN (tumoroids) media 

supplemented with 10 μM ROCK inhibitor. Successful transfection was evident 48 hours later.        

2.1.5.4 Picking 

Organoids and tumoroids that were electroporated went through a round of antibiotic 

selection to enrich for integrants. The piggyBac vector system used in this thesis contained 

three plasmids, including transposase-expressing plasmid (see  section 2.2.10 and Appendix). 

A negative selection marker was only carried by one of the plasmids. Therefore, antibiotic 

selection did not select for organoids/tumoroids that incorporated both constructs. Thus, 

organoid/tumoroid picking was carried out using the positive selection marker, mCherry 

fluorescence. Cold PBS was added to the appropriate well and left on ice for 2 minutes. Then, 

using a 1 ml pipette, the Matrigel dome with PBS was transferred to a small tissue culture dish 

(2 cm diameter). In order to not disrupt the organoids/tumoroids, it was important that 

pipetting was done very carefully and a tissue culture dish with a small surface area used for 

easier picking. The dish was then taken under a fluorescent microscope (EVOS fl) and positive 

organoids/tumoroids picked using a p20 pipette tip under appropriate fluorescence. It was 

important to pre-coat the pipette tip with FBS to avoid picked organoids/tumoroids from 

getting stuck inside the tip. Positive clones were pipetted into a pre-thawed Matrigel and 

plated out as described in sections 2.1.1 and 2.1.2.    

2.1.5.5 Sorting using flow cytometry 

Lentiviral transduction generated organoids that often expressed the positive fluorescent 

marker in a mosaic manner (see Chapter 5) or fluorescence that was expressed was too dim 
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for picking under the microscope (see Chapter 4). In order to overcome this, fluorescence-

activated cell sorting (FACS) was utilised. Three confluent wells of a 24-well plate were 

collected and organoids/tumoroids were made into single cells using TrypLE incubation for 10 

minutes, as described in section 2.1.5.3. The pellet was taken up in PBS + 5 % FBS and placed 

on ice. Up to 10 000 cells were collected by FACS ( BD Aria, BD Bioscience). The sorting was 

carried out by Dr. Hung-Chang Chen from Cancer Research UK Cambridge Institute. The tube 

with single cells was then centrifuged at 1000 RCF for 3 minutes. The supernatant was very 

carefully removed and taken up in 40 μl Matrigel containing 1 μM Jagged-1 (AnaSpec), a Notch 

ligand to support single-cell cultures in the absence of Notch signalling from adjacent 

supportive cells. The cells were then plated out as described in sections 2.1.1 and 2.1.2. Single 

organoid cells were grown in WENR for up to 14 days, single tumoroid cells were grown in EN. 

Growth media for both was supplemented with 10 μM ROCKi for the first three days only.      

2.1.6 Immunofluorescent labelling 

Organoids and tumoroids were seeded onto eight-well chamber slides (ThermoFisher; 

154526) 48 hours before immunofluorescent (IF) staining. IF staining was carried out directly 

within the slide, with the organoids/tumoroids in Matrigel. Depending on the antibody used, 

the fixative solution used was either 4 % paraformaldehyde or 92 % methanol plus 8 % 

formaldehyde (Table 2.2).  

 

Slides fixed with 4 % paraformaldehyde were stained following a published protocol with 

some modifications 121. Briefly, organoids/tumoroids were fixed in warm fixative containing 4 

% paraformaldehyde (pH 7.4) for 1 hour, permeabilised using permeabilisation buffer (PBS, 1 

% triton X-100) and blocked with blocking buffer (PBS, 1 % BSA, 3% normal goat serum, 0.2 % 

Triton X-100). Primary antibodies were diluted in working buffer (PBS, 0.1 % BSA, 0.3 % normal 

goat serum, 0.2 % Triton X-100) and incubated for 6 hours at room temperature. After three 

washes in working buffer, the secondary antibody diluted in working buffer was added onto 

the wells for 2 hours at room temperature, followed by three washes in PBS. Nuclei were 

stained and organoids/tumoroids mounted using DAPI Fluoromount-G (SouthernBiotech).  

 

Slides fixed with 92 % methanol plus 8 % formaldehyde (MeOH+F) were stained following a 

published protocol with some modifications 122. Briefly, organoids/tumoroids were fixed in 

mailto:Hung-Chang.Chen@cruk.cam.ac.uk
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ice-cold MeOH+F for 15 minutes in -20°C. The wells were then washed with washing solution 

(PBS, 0.1 % Triton X-100, 1 % normal goat serum) three times at room temperature and 

blocked in blocking buffer (PBS, 0.1 % Triton X-100, 10 % normal goat serum) for 1 hour at 

room temperature. Primary antibodies were diluted in washing solution and incubated at 4° 

C over night. The next day the slides were brought back to room temperature and left there 

for 1 hour in order to allow the Matrigel to harden. Wells were then washed in washing 

solution for three times, followed by incubation for 1 hour at room temperature in the 

secondary antibody diluted in washing solution. The wells were washed three times in washing 

solution and nuclei were stained and slides mounted as above. Imaging was done using Nikon 

C2 plus confocal microscope using the 20X and 40X objectives. Z-stacks were taken at 1 μm 

steps. Images were processed and published using ImageJ software. Staining for each antibody 

was repeated a minimum of three times. 

 

Target Conjugate Species Company Cat.no Dilution Fixative in IF 

Lysozyme    rabbit Dako A0099 1:200 PFA 

UEA-1 Rhodamine   Vector laboratories RL-1062  1:2000  PFA 

ZO-1   rat Millipore MABT11 1:200 MeOH+F 

Pericentrin   rabbit Abcam ab4448 1:200 MeOH+F 

ZFPL1 
(Golgi)   rabbit Sigma HPA014909 1:200 MeOH+F 

Phalloidin 
Alexa Fluor 
488   ThermoFisher 

A12379 
1:500 MeOH+F 

β4-integrin   rat Abcam ab25254  1:200 MeOH+F 

Total β-
catenin   mouse 

BD Transduction 
Laboratories 610153 1:200 PFA 

β-tubulin   rabbit CST 2128 1:200 MeOH+F 

Acetylated 
tubulin 

Alexa Fluor 
647 mouse 

clone C3B9, from 
Emmanuel Derivery   1:300 MeOH+F 

DAPI     SouthernBiotech 0100-20    PFA/MeOH+F 

Ki67   rabbit ThermoFisher MA5-14520 1:200 PFA 

PH3   mouse CST 9701 1:200 PFA 

Rat IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-11006, A-
21434 1:500 PFA/MeOH+F 

Rabbit IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-11008, A-
21428 1:500 PFA/MeOH+F 

Mouse IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-21422, A-
11001 1:500 PFA/MeOH+F 

Table 2. 2: Antibodies used for immunofluorescent labelling of organoids. Fixative used for 
an antibody is marked. PFA stands for 4 % paraformaldehyde and MeOH+F for 92% methanol 
plus 8 % formaldehyde. 
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2.1.7 Live imaging 

Live imaging of organoids was carried out in AstraZeneca (AZ) facilities. An automated spinning 

disc confocal microscope (YOKOGAWA Cell Voyager CV8000) was used for its high-speed 

image acquisition and minimal photo-bleaching and photo-toxicity. Dr. Samantha Peel from 

AZ handled the microscope and the settings. Organoids were grown in 10 μl Matrigel drops in 

a clear flat bottom black 96-well plate (Cell Carrier Ultra, Perkin Elmer). Organoids were 

seeded onto the plate 48 hours before imaging in ENR and 2 μg/ml doxycycline. Fresh media 

with doxycycline was replaced 1 hour prior to imaging. Confocal fluorescent and brightfield 

images of single organoids were captured using a 40X objective (Olympus, 1.0 NA) and a 

Hamamatsu SCMOS camera with a 2 x 2 bin.  Organoids were imaged under full environmental 

control (5 % CO2, 37°C) every hour over a 72-hour period.  Images were captured over a 50-

100 μm Z range at 2 μm spacing intervals.  GFP was imaged using a 488 nm excitation laser 

with a 525/50 nm band pass emission filter. DAPI was imaged using a 405 nm excitation laser 

with a 445/45 nm band pass emission filter. RFP was imaged using a 561 nm excitation laser 

with a 600/37 nm band pass emission filter and Far Red was imaged using a 640 nm excitation 

laser with a 676/37 nm band pass emission filter. Laser power and exposure settings were 

optimised to reduce phototoxicity. 3 dimensional reconstructions of single Paneth cells 

labelled with GFP was done by Yinhai Wang in AZ using computational modelling. The spinning 

disc confocal microscope was also used for quantification of Golgi complex, centrosome and 

Paneth cell vesicles in organoids and tumoroids fixed on slides using a 20X objective (Olympus, 

0.75 NA) and 1 μm stacks. 

2.1.8 Protein extraction and western blotting 

Two confluent wells of a 24-well plate of organoids/tumoroids were used for protein 

extraction. Organoids/tumoroids were recovered from Matrigel using several rinses of ice-

cold PBS (tube was spun down at 650 RCF for 5 minutes at 4°C between each wash). The pellet 

was then lysed with 50 μl 1X RIPA buffer (Millipore) containing protease (Sigma) and 

phosphatase inhibitors (Roche). The sample was sonicated for 15 minutes at cold followed by 

centrifugation at 20 000 RCF for 30 minutes at 4°C. The supernatant was collected, and the 

protein measured using Pierce BSA Protein Assay kit (ThermoFisher). Samples containing 5-10 

ng of protein, 100 nM DTT and 1:4 NuPage LDS sample buffer (ThermoFisher) were denatured 

at 95°C for 5 minutes and loaded onto NuPAGE 3-8 % Tris-Acetate gradient gel (ThermoFisher). 
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Wet electroblotting (Biorad Mini Transblot) was used to transfer proteins onto a PVDF 

membrane with 0.45 μm pore size for 1 hour at 100 V at 4°C. Pierce ECL substrate was used 

for development. The primary and secondary antibodies used are shown in Table 2.3.   

 

Target Conjugate Species Company Catalogue nr Dilution 

APC-H290   rabbit Santa Cruz sc-7930 1:1000 

Non-phosho-β-
catenin   rabbit CST 

8814 
1:1000 

HA   mouse Sigma H3663 1:2000 

AXIN2   rabbit CST 2151 1:1000 

c-MYC   rabbit Abcam ab32072 1:1000 

Vinculin   rabbit CST 4650 1:5000 

Rabbit IgG HRP goat Abcam ab6721 1:10 000 

Mouse IgG HRP goat Abcam ab6789 1:10 000 

Table 2. 3: Antibodies used in this study for western blotting.  
 

2.1.9 RT-qPCR 

RNA from organoids and tumoroids was isolated using ReliaPrep RNA Cell Miniprep System kit 

(Promega). Organoids and tumoroids were harvested by adding ice-cold PBS to the Matrigel 

dome (usually two wells of a confluent 24-well plate/reaction). The organoids/tumoroids in 

Matrigel were collected using a p1000 pipette tip, transferred to a 15 ml falcon and 

centrifuged at 400 RCF for 5 minutes at 4°C. The supernatant was carefully removed, and the 

pellet taken up in 100 μl of BL+TG Buffer. RNA isolation was carried out according to the 

manufacturer’s protocol with final elution of RNA in 15 μl of Nuclease-free water. RNA 

concentration and A260/280 and A260/230 ratios were determined. A ratio of 1.7-2.1 for 

A260/280 and 1.8-2.2 for A260/230 were considered acceptable limits for proceeding with 

cDNA synthesis. 

 

cDNA was prepared using the High Capacity cDNA Reverse Transcription kit (ThermoFisher) 

and RNase inhibitor (ThermoFisher). 500 ng-1 μg RNA was used per reaction. 20 μl of final mix 

was prepared on ice and transferred to a PCR machine. The following programme was used: 

25°C for 10 minutes, 37°C for 120 minutes, 85°C for 5 minutes. cDNA was kept at -20°C until 

use. Quantitative reverse transcription PCR (RT-qPCR) was done using Fast SYBR Green Master 

Mix (Applied Biosystems). The following mix was prepared per sample: 5 μl Fast SYBR Green 

Master Mix, 1 μl of forward and reverse primer at final concentration of 0.4 μM, 0.5-1 μl of 
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cDNA and RNase-free water to make a total volume of 10 μl. QuantStudio 5 Real-Time PCR 

System (Applied Biosystems) was used with amplification for 40 cycles at 95°C for 15 seconds 

and  60°C for 20 seconds. The specificity of the amplified products was confirmed by melting 

curve analysis. PCR threshold cycle (Ct) was automatically determined by the software. B2m 

was used as a housekeeping gene and the ∆∆CT method for calculating relative fold changes 

in expression. The list of primers used are in Table 2.4. 

 

RT PCR primers Forward (5') Reverse (5') 

Axin2 GCAGCTCAGCAAAAAGGGAAAT TACATGGGGAGCACTGTCTCGT 

Apc 1 AGCCATGCCAACAAAGTCATCACG TTCCTTGCCACAGGTGGAGGTAAT 

Apc 2 CCTCATCCAGCTTTTACATGGC GCCCGAGCCTCTTTACTGC 

mCherry CACGAGTTCGAGATCGAGGG CAAGTAGTCGGGGATGTCGG 

Gapdh AAGGTCATCCCAGAGCTGA CTGCTTCACCACCTTCTTG  

B2m ACCCCCACTGAGACTGATAC  ATCTTCAGAGCATCATGATG 

Table 2. 4: RT-qPCR primers used in this study. 
 

2.2 Materials & Methods 

2.2.1 Cell lines, cell culture and Wnt3a conditioned media 

Cell lines were maintained in DMEM (ThermoFisher) with 2 mM Glutamine, 10 % foetal bovine 

serum (FBS) and 1 % penicillin/streptomycin (ThermoFisher) (DMEM +Q +10 % FBS+ P/S). Cells 

were maintained at 37°C, 5 % CO2 and 95 % relative humidity (Table 2.5).  

 

Cell line  Origin 

SW480 human colorectal adenocarcinoma 

HEK293T human embryonic kidney, contains SV40 T-antigen 

NIH 3T3 murine embryonic fibroblast 

L Wnt3A cells murine fibroblast transfected with a Wnt3a expression vector  

Table 2. 5: Cell lines used in this study. 
 

Conditioned media from L-cells stably transfected with Wnt3a expression vector (ATCC, CRL-

2647, obtained from Mariann Bienz’ laboratory) was collected following a protocol by Nusse 

laboratory. Briefly, cells were cultured in DMEM+Q +10 % FBS. Cells were grown to confluency, 
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followed by a 1:10 split. The supernatant was collected after 4 days and the media 

replenished. After 3 days the supernatant was collected again, the two collections pooled and 

filtered through a 0.2 μm filter (Minisart, ThermoFisher). The medium was stored for up to 

two months at 4°C with no detectable loss of Wnt3a activity. 

2.2.2 Lentivirus production and cell transduction 

HEK293T cells were used to produce lentivirus. Lentivirus was generated using psPAX2 packing 

and pMD2.G envelope plasmids (both a gift from Dr. Frank McCaughan; Addgene plasmids 

#1226 and 12259). 12 million HEK293T cells were seeded onto a 150 mm dish 24 hours before 

transfection in media without Pen Strep. Transfections were performed using Lipofectamine 

2000 at a ratio of 3:1 to μg of DNA according to the manufacturer’s protocol (Life 

Technologies). 12 μg of vector DNA, 6 μg of psPAX2 and 6 μg of pMD2.G was added to the 

cells. After 16 hours, media was changed (media with no Pen Strep), and virus was collected, 

filtered using a 0.45 μm filter (Minisart, ThermoFisher) and pooled with collections at 48 h and 

72 h post-transfection. Viral supernatant was used either directly (for cells) or spun down at 

45 000 RCF for 16 hours at 4°C using SW32-Ti rotor in a LE-80K ultracentrifuge (for organoids). 

For organoid transductions, the lentiviral pellet was taken up in the specific infection media 119 

(section 2.1.5.2). Transductions were carried out using 8 μg/ml of Polybrene (Sigma). Virus 

aliquots were stored at -80°C.  

2.2.3 Protein extraction and western blotting 

Cells were lysed in RIPA buffer (Millipore) containing protease (Sigma) and phosphatase 

inhibitors (Roche), spun down at 20 00 RCF for 30 minutes at 4°C and protein was quantified 

using Pierce BSA protein quantification assay (ThermoFisher). Samples containing 30-50 μg of 

protein, 100 mM (dithiothreitol) DTT (Sigma) and 1:4 NuPage LDS sample buffer 

(ThermoFisher) were denatured at 95°C for 5 minutes. The samples were run on a NuPAGE 3-

10 % Tris-Acetate gradient gel (ThermoFisher) (for antibodies against APC and HA) or 10 % 

SDS-polyacrylamide gel. Wet electroblotting (Biorad Mini Transblot) was used to transfer 

proteins onto a PVDF membrane (Immobilon) with 0.45 µm pore size for 2 hours at 100 V at 

4°C. The membrane was blocked with 1XTBS, 0.1 % Tween-20 (TBST) containing 3 % BSA (GE 

Healthcare) or 5 % non-fat dry milk for 1 hour at room temperature. Primary antibodies were 

diluted in the blocking solution and incubated overnight at 4°C (Table 2.3). The membrane 
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was washed three times for 5 minutes each with 1XTBST followed by incubation with 

secondary antibodies diluted in blocking solution for 1 hour at room temperature. The 

membrane was washed again and incubated with ECL chemiluminescence (Pierce ECL 

substrate, ThermoFisher). The membrane was then exposed to X-ray film (Fuijifilm) and 

developed.  

2.2.4 RT-qPCR 

RNA was extracted from cells using the RNeasy Plus kit (Qiagen) according to the 

manufacturer’s protocol with final elution of RNA in 50 μl of Nuclease-free water. RNA 

concentration and A260/280 and A260/230 ratios were determined. A ratio of 1.7-2.1 for 

A260/280 and 1.8-2.2 for A260/230 was considered acceptable limits for proceeding to cDNA 

synthesis. 

 

cDNA synthesis and RT-qPCR was carried out as described in section 2.1.8. Gapdh was used as 

a housekeeping gene and the ∆∆CT method used for calculating the relative fold change in 

expression. The list of primers used are in Table 2.4. 

2.2.5 Fluorescence activated cell sorting (FACS) 

SW480 cells were made into single cells using TrypLE Express (ThermoFisher) and the pellet 

was taken up in PBS + 5 % FBS and placed on ice. Up to 10 000 cells were collected based on 

mCherry expression by FACS (MA900 Multi-Application Cell sorter, Sony). The sorting was 

carried out with Thomas Foets from the Department of Biochemistry, University of Cambridge. 

Sorted cells were grown and expanded in normal media including selection antibiotic. SW480 

cells transfected with piggyBac constructs were selected with 400 μg/ml Hygromycin B 

(ThermoFisher).  

2.2.6 TOP-Flash assay 

The TOP-Flash assay was used to determine the Wnt pathway activity in sorted SW480 cells. 

Cells were transfected with the plasmids Super16xTOPflash encoding TCF binding sites and 

firefly Luciferase (Moon R., University of Washington, USA) and pRL-CMV coding for Renilla 

Luciferase under control of the constitutive CMV promoter (Promega, Madison, USA) in a ratio 

of 10:1. Transfection was carried out using Lipofectamine 2000 according to the 

manufacturer’s protocol. 24 hours after transfection SW480 cells were treated with 2 μg/ml 
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doxycycline. After 48 hours of treatment the cells were harvested and resuspended in passive 

lysis buffer (Dual-Luciferase Reporter assay, Promega). Luciferase reporter activity was 

determined according to the manufacturer´s instructions (Dual-Luciferase Reporter assay, 

Promega) using PHERAstar FSX microplate reader (BMG Labtech). The relative activity of the 

Wnt pathway was measured as the ratio of firefly Luciferase activity over Renilla Luciferase 

activity. 

2.2.7 Immunofluorescent labelling of tissue 

The small intestine from C57BL/6 mice and 10-week old ApcMin/+ mice was used to prepare the 

so called “swiss role”—a method, where the intestine is opened longitudinally and rolled with 

the mucosa outwards, allowing for the examination of the entire length of the small intestine 

123. Tissue was fixed in either 4 % paraformaldehyde and embedded in paraffin or fixed-frozen 

in 10 % formalin and embedded in optimal cutting temperature (OCT) liquid, followed by snap 

freezing, depending on the antibody used (Table 2.6). Tissue sections were cut into 4 μm or 

20 μm thick sections for immunofluorescent staining (IF). 20 μm thick sections were cut onto 

poly-L-lysine coated slides and were used only for probing for microtubules and acetylated-

tubulin, for all other probes 4 μm sections were used, unless stated otherwise.  

 

Processing and staining of fixed-frozen tissue was carried out as described previously 124. 

Paraffin embedded tissue was deparaffinised using three consecutive incubations in xylene 

and hydrated using incubations in 100 %, 95 %, 70 % and 50 % ethanol washes. Epitope 

retrieval was performed using sodium citrate buffer (sodium citrate 10 mM, 0.05 % Tween-

20, pH 6.0). Primary antibody incubations were carried out at 4°C overnight and secondary 

antibody incubation for 2 hours at room temperature. DAPI Fluoromount-G (SouthernBiotech) 

was used for staining the nuclei and mounting. Staining for each antibody was repeated a 

minimum of three times. Fluorescent imaging was carried out using a Nikon C2 plus confocal 

microscope using 20X, 40X and 63X objective lens. Z-stacks were taken at 1 μm steps. Images 

were processed using ImageJ software.  
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Table 2. 6: Antibodies used for immunofluorescent labelling of tissue. Fixation method of 

tissue for an antibody is marked. PFA stands for 4 % paraformaldehyde and FF for fixed-frozen 

in 10 % formalin. 

 

2.2.8 Hematoxylin and eosin (H&E) staining 

4 μm sections were cut onto poly-L-lysine coated slides, followed by incubation overnight at 

37°C. The sections were then deparaffinised with xylene, hydrated with decreasing 

concentrations of ethanol and stained with hematoxylin and eosin. The slides were mounted 

in DPX Mountant (Sigma) and covered with a coverslip.  

2.2.9 siRNA transfection and shRNA cloning 

Small interfering RNA (siRNA) targeting mouse Apc was tested on NIH/3T3 cells by transfection 

(Table 2.7). Transient transfection of cells was carried out using Lipofectamine 2000 following 

manufacturer’s guidelines. shRNA targeting Apc was then designed using the siApc sequence 

Target Conjugate Species Company Catalogue nr. Dilution Fixation 

Lysozyme   rabbit Dako A0099 1:200 PFA 

UEA-1 Rhodamine   
Vector 
laboratories RL-1062  1: 10 000 PFA 

ZO-1   rat Millipore MABT11 1:200 PFA 

Pericentrin   rabbit Abcam ab4448 1:200 PFA 

ZFPL1 (Golgi)   rabbit Sigma HPA014909 1:200 PFA 

Phalloidin 
Alexa Fluor 
488   ThermoFisher 

A12379 
1:500 FF 

β4-integrin   rat Abcam ab25254  1:200 FF 

Total β-catenin   mouse 
BD Transduction 
Laboratories 610153 1:200 PFA 

β-tubulin   rabbit CST 2128 1:200 PFA 

Acetylated 
tubulin 

Alexa Fluor 
647 mouse 

clone C3B9, from 
Emmanuel 
Derivery   1:300 PFA 

DAPI     SouthernBiotech 0100-20    PFA/FF 

Ki67   rabbit ThermoFisher MA5-14520 1:200 PFA 

PH3   mouse CST 9701 1:200 PFA 

Rat IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-11006, A-
21434 1:500 PFA/FF 

Rabbit IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-11008, A-
21428 1:500 PFA/FF 

Mouse IgG 
Alexa Fluor 
488; 555 goat ThermoFisher 

A-21422, A-
11001 1:500 PFA/FF 
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following guidelines from a previously published protocol with some modifications 125. Briefly, 

the two long oligos (top and bottom) were reconstituted in nuclease free water to a 

concentration of 0.5 μg/ml. The following was mixed for the annealing reaction: 20 μl of each 

oligo and 10 μl of 5X annealing buffer (500 mM potassium acetate, 10 mM magnesium 

acetate, HEPES-potassium hydroxide to pH 7.4 (Sigma)). PCR was run with the following 

settings: 5 minutes at 95°C, 10 minutes at 80 °C, ramp from 80°C to 4°C with -0.5°C every 

150 seconds. The annealed oligos were amplified by PCR with cloning primers (30 cycles). The 

product was run on a 2 % agarose gel, excised and gel purified using QIAquick Gel Extraction-

Kit (Qiagen). Gibson cloning followed by transformation was carried out as described in 

section 2.2.10. 

 

siRNA/shRNA Oligo (5') 

siAPC (sense strand) CACCAAUAAAUUACAGUCUUA(dT)(dT) 

NT siRNA (sense strand) AAUUCUCCGAACGUGUCACGU[dT][dT] 

shApc top oligo 

AAGGTATATTGCTGTTGACAGTGAGCGCCACCAATAAATTACAGTCTTATA
GTGAAGCCACAGATGTATAAGACTGTAATTTATTGGTGTTGCCTACTGCCT
CGG 

shApc bottom oligo 

CCGAGGCAGTAGGCAACACCAATAAATTACAGTCTTATACATCTGTGGCTT
CACTATAAGACTGTAATTTATTGGTGGCGCTCACTGTCAACAGCAATATACC
TT 

Table 2. 7: siRNA and shRNA sequences used in this study. NT= non-targeting. Green 

annotates miR30 scaffold, red marks the stem sequence, blue labels loop sequence and brown 

marks the basal stem sequence of the shRNA targeting Apc.  

 

2.2.10 Molecular cloning 

The constructs cloned for this study are shown in Table 2.8. Plasmid maps of the constructs 

can be found in the Appendix. All cloning reactions were carried out using Gibson assembly 

126. Gibson primers were designed using the NEBuilder Assembly tool and tested in silico using 

SnapGene software.  

 

Phusion High Fidelity DNA polymerase (M0530, New England Biolabs) was used for PCR 

reactions and thermocycler conditions were tested out per cloning step. Restriction enzymes 

were purchased from New England Biolabs. Depending on the size, PCR products and vectors 

were run on a 1-2 % agarose gel in 1x Tris-Acetate-EDTA (TAE) buffer and purified from the gel 

using QIAquick Gel Extraction-Kit (Qiagen).  
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NEBuilder HiFi DNA Assembly Master Mix (E2621, New England Biolabs) was used to assemble 

Gibson fragment(s) and vector, according to manufacturer’s instructions. Briefly, the following 

was set up on ice: 10 μl of the 2X NEBuilder HiFi DNA Assembly Master Mix, DNA and deionised 

water to make up a total volume of 20 μl. A vector:insert ratio of 1:2 was used when 1-3 

fragments were assembled, and a ratio of 1:1 when 4-6 fragments were assembled. The mix 

was incubated at 50°C for 60 minutes followed by transformation into Stbl3 chemically 

competent E.coli. DNA was purified using QIAprep Spin Miniprep Kit or QIAGEN Plasmid Midi 

kit (Qiagen). Plasmid DNA was sequenced by the DNA Sequencing Facility at the Department 

of Biochemistry, University of Cambridge. DNA (100 ng/µl) was provided with 10 µM of 

oligonucleotide sequencing primer 127. 

 

Construct pLV-TRE-EGFP-PGK-RFP-DEFA5-rtTA 

Backbone pLV-Puro-TRE-DEFA5-rtTA (Vector Builder) (BamHI & EcoRV) 

Template pCMV-EGFP &  pSLIK-Neo (de la Roche lab) 

Primers  5' (EGFP FOR) TACAAAAAAGCAGGCTGGATCCATGGTGAGCAAGGGCGAG 

  (EGFP REV) CTCTATATTTGAATTCGATATCTTACTTGTACAGCTCGTCCATG 

  (PGK-RFP FOR) CTGTACAAGTAAGATTTAATTAAGGGTAGGGGAGGCGCTTT 

  (PGK-RFP REV) CTATATTTGAATTCGATGATATCTTATCTGTGCCCCAGTTTGC 

Construct pLV-TRE-EGFP-shApc-DEFA5-rtTA 

Backbone pLV-TRE-EGFP-DEFA5-rtTA (EcoRV) 

Template shApc 

Primers  5' (shApc FOR) CATGGACGAGCTGTACAAGTAAGATGATCCGAAGGTATATTGCTGTTGACAGTGAGC 

  (shApc REV) GAGAGTCTCTATATTTGAATTCGATATCATCCCGAGGCAGTAGGCAACACCA 

Construct pLV-TRE-shApc-UbC-rtTA 

Backbone pTRIPZ-Puro (XhoI & EcoRI) (from Evan lab; Dharmacon) 

Template shApc 

Primers  5' 
(shApc FOR) 
TCTTCAGGTTAACCCAACAGAAGGCTCGAGGATCCGAAGGTATATTGCTGTTGACAGTGAGCGCC 

  
(shApc REV) 
AATTGCTCCTAAAGTAGCCCCTTGAATTCATCCCGAGGCAGTAGGCAACACCAATAAATTACAG 

Construct pB-TRE-shApc-mCherry  

Backbone pB-TRE-mCherry (SpeI) (from Bon-Kyoung Koo) 

Template shApc 

Primers  5' (shApc FOR) CCTCGAGATCTCACGCGTGACTAGTCGAGGATCCGAAGGTATATTGCTGT 

  (shApc REV) CGTATGGGTAGGCCATGGCAACGCGTCCTAGGTAATACGACT 

Construct pB-TRE-CRE-IRES-GFP 

Backbone pB-TRE-mCherry (BsrGI & MluI) 

Template  pBABE-Cre-ERT2 (from Evan lab) 

Primers  5' (CRE FOR) CAAAGAATTCCTCGAGATCTCACGCGTACCATGGCCAATTTACTGACCG 

  (CRE REV) AGGGGCGGCCTAATCGCCATCTTCCAGCAG 

  (IRES FOR) GATTAGGCCGCCCCTCTCCCT 

  (IRES REV) CCCTTGCTCACCATGGATCCATTATCGTGTTTTTCAAAGGAAAACCACGTCCC 

  (EGFP FOR) TACAAAAAAGCAGGCTGGATCCATGGTGAGCAAGGGCGAG 

  (EGFP REV) GCGAGCTCTAGATCATCGGGCCGCTACTTTTTAATTAATTACTTGTACAGCTCG 
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Construct pB-TRE-CRE-ERT2-IRES-GFP 

Backbone pB-TRE-mCherry (BsrGI & MluI)  

Template  pBABE-Cre-ERT2  

Primers  5' (CRE-ERT2 FOR) CAAAGAATTCCTCGAGATCTCACGCGTATGGCCAATTTACTGACCGTACACC 

  (CRE-ERT2-REV) ATCGGGCCGCTACTTTTTAATTAATCATCAAGCTGTGGCAGGGAAAC 

  (IRES-GFP FOR) GTTTCCCTGCCACAGCTTGATGATTAATGCCGCCCCTCTC 

  (IRES-GFP-REV) GCGAGCTCTAGATCATCGGGCCGCTACTTTTTAATTAATTACTTGTACAGCTCG 

Construct pB-DEFA5-rtTA-CAG-GFP 

Backbone pB-CAG-rtTA (Xho & NotI) (from Bon-Kyoung Koo) 

Template  pLV-TRE-EGFP-shApc-DEFA5-rtTA 

Primers  5' (EGFP FOR) TCTCATCATTTTGGCAAAGAATTCCGGATCCATGGTGAGCAAGG 

  (EGFP REV) GAATTCGATATCAAGCTTATCGAGCGATATCTTACTTGTACAGCTCGTCC 

Template (SalI) 

Primers  5' 
(DEFA5-rtTA FOR) 
TCTTGTTATAGATATCGGATATCGAATTCAAATATAGAGACTCTCCAAGGGCCCAC 

  (DEFA5-rtTA REV) ATAACTAGCTAGTCAATAATCAATGTCGACGAAGCCATAGAGCCCACCG 

Construct pB-TRE-APC-mCherry (de la Roche lab) 

Backbone pB-TRE-mCherry (SpeI & NotI)  

Template XE68 APC-GFP in CS2+ (Addgene, #16687) 

Primers  5' (APC FOR) TCCTCGAGATCTCACGCGTGATGGCTGCAGCTTCATATG 

  (APC REV) CGTATGGGTAGGCCATGGCACTAGTAACAGATGTCACAAGGTAAG 

  PCR product digested with DpnI  

Construct pB-TRE-APC∆MT-mCherry 

Backbone pB-TRE-mCherry (SpeI & MluI) 

Template pB-APC-mCherry  

Primers  5' (APC∆MT FOR) AAGAATTCCTCGAGATCTCACGCGTATGGCTGCAGCTTCATATG 

  (APC∆MT REV) CGTATGGGTAGGCCATGGCACTAGTCATATTTCTGGGACTATGTTTTTC 

Construct pB-TRE-APC∆Wnt-mCherry 

Backbone pB-TRE-mCherry (SpeI & MluI)  

Template pB-APC-mCherry  

Primers  5' (APC∆Wnt 1 FOR) AAGAATTCCTCGAGATCTCACGCGTATGGCTGCAGCTTCATATG 

  (APC∆Wnt 1 REV) GACTATGTTTACTTCTATCTTTTTCAGAACGAG 

  (APC∆Wnt 2 FOR) AGATAGAAGTAAACATAGTCCCAGAAATATG 

  (APC∆Wnt 2 REV) CGTATGGGTAGGCCATGGCACTAGTAACAGATGTCACAAGGTAAG 

Table 2. 8: Constructs cloned for this study. Gibson primers and restriction enzymes used for 

cloning shown. pLV denotes lentiviral construct, pB stands for piggyBac construct. 



 

 

 

 

 

 

 

 

 

 

Chapter 3: 

APC inactivation compromises intracellular organisation of 

intestinal epithelial cells 
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3.1 Introduction 

APC is a large multi-domain protein regulating a plethora of effector pathways involved in 

cellular and tissue homeostasis. Its roles in the intestinal epithelia have largely been 

determined by experimentally defining the phenotypic consequences of inactivating APC 

mutations. Germline and somatic APC mutations that drive colon cancer lead to the 

expression of truncated forms of APC that compromise the ability of the protein to regulate 

the Wnt pathway activity and interact with the microtubule cytoskeleton 24,60,77. Extensive 

investigation of oncogenic Wnt pathway activity in APC-mutant cells has ascribed a key role in 

the regulation of intestinal epithelial cell proliferation through the Wnt target gene c-Myc 

128,129. However, the impact of truncating APC mutations on the microtubule cytoskeleton in 

intestinal epithelial cells has not been determined. I hypothesise that the loss of the C-terminal 

domain of APC results in altered functions of the microtubule cytoskeleton. APC has been 

shown to stabilise microtubules via its C-terminal domain and support the establishment of 

parallel arrays of microtubules in a polarised cell 53,101. Microtubule stabilisation and 

subsequent establishment of apical-basal microtubule arrays is vital for maintaining the shape 

of the cell and coordinate the localisation of intracellular components, including organelles 52. 

In this chapter, I identify a novel role of APC in maintaining microtubule-dependent 

intracellular organisation in the intestinal epithelium that is compromised in tumorigenesis.  

3.2 Chapter methods 

A detailed description of methods and materials used in this chapter is covered in depth in 

Chapter 2. Below is a brief overview of Materials and Methods specific to this chapter. 

3.2.1 Imaging 

Fluorescent imaging was carried out using a Nikon C2 plus confocal microscope. Z-stacks were 

taken at 1 μm steps at high resolution. For quantification of Golgi complex and centrosome in 

organoids and tumoroids AstraZeneca imaging facilities were utilised. In collaboration with 

Samantha Peel, the spinning disc confocal microscope was used to take Z-stacks at 1μm steps 

through the sample from 4 different locations within a well of a slide using a 20X objective.  
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3.2.2 Imaging data analysis 

All figures presented are representative images from a single plane within the Z-stack of the 

imaged specimen. For the quantification of organelle positioning within organoids and 

tumoroids, approximately 200 cells were counted per experiment manually, using the scoring 

criteria for apical and basal localisation shown in Figure 3.8 C. 

3.2.3 Validation of shApc for Apc depletion 

NIH/3T3 cells were transduced with a lentivirus expressing shApc or shNT following the virus 

production and transduction protocols described in Chapter 2. Cells transduced with the virus 

were selected for construct integration using 2 μg/ml puromycin for 7 days. Organoids were 

electroporated with piggyBac constructs as described in Chapter 2. Electroporated organoids 

were selected for integration of constructs using 150 μg/ml Hygromycin B for 7 days.  

3.2.4 Compounds and RT-qPCR 

In all the experiments, doxycycline was used at 2 μg/ml and ROCK inhibitor Y-27632 at 10 μM. 

RT-qPCR for Apc levels was detected using primer pair Apc 1 (Chapter 2). Nocodazole (Sigma) 

was tested at concentrations 100-1000 nM. Wnt3a conditioned media was collected from 

Wnt3a-expressing L-cells as described in Chapter 2. 

3.3 Results 

3.3.1 APC inactivation leads to compromised cellular organisation  

The ApcMin/+ (multiple intestinal neoplasia) mouse is a widely used model to study intestinal 

tumorigenesis. The mice have a single wild-type copy of Apc, the other harbouring a nonsense 

mutation in exon 14 of the Apc gene resulting in loss of the central and C-terminal domains in 

the truncated protein. ApcMin/+ mice develop up to 40 benign adenomas over the course of 

110 days of life in the small intestine due to the spontaneous loss of heterozygosity in the 

other Apc allele 32,35.  Apc is haplo-sufficient as a tumour suppressor 130; haematoxylin and 

eosin (H&E) staining of cross sections of the small intestine of a 100-day old ApcMin/+ mouse 

show the characteristic crypt and villus architecture of wild-type tissue adjacent to APC-

deficient intestinal polyps—the consequence of inactivation of the wild-type allele 

(Figure 3.1). ApcMin/- polyps are composed of glandular structures that lack the characteristic 

crypt-villus axis. Moreover, I consistently observe that, relative to APC-proficient tissue, nuclei 
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in polyp cells are of variable shapes and sizes and are not properly positioned within the plane 

of the monolayer. Therefore, the H&E stain shows that APC loss compromises tissue 

morphology and potentially intracellular organisation. 

 

 

Figure 3. 1: Loss of the crypt-villus axis and altered positioning of nuclei in ApcMin/- polyp. 

Haematoxylin and eosin stain of adjacent haplosufficient and polyp tissue in ApcMin/- mouse.  

  

 

To determine the extent to which cellular organisation is changed, I stained ApcMin/+ tissue for 

Paneth cell granules using the fluorescently-labelled agglutinin molecule—Ulex 

europaeus agglutinin I (UEA). UEA binds to fucose residues that are displayed, specifically, on 

secretory vesicles in Paneth and Goblet cells. Interestingly, the normally mechanically rigid 

Paneth cells 17,131 fail to adopt their characteristic pyramidal shape in polyps (Figure 3.2). 

Intracellular UEA-positive vesicles are no longer apically localised but instead tightly associate 

with the apical face of the cell and in some cases the lateral face. In the normal small intestine 

cycling stem cells are interspersed between Paneth cells 13. In the stained ApcMin/+ tissue, the 

adenoma Paneth cells are intermingled with Ki67 positive cells, similar to that in the wild-type 

tissue, suggesting that the stem cell niche is kept when APC is lost 132. My data establishes that 

ApcMin/- polyps are compromised for normal epithelial morphology. Moreover, the altered 

organisation of Paneth cell vesicles and the disposition of nuclei along the epithelial 

monolayer suggests an effect on intracellular organisation in the polyps.  
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Figure 3. 2: Dispersed positioning of Paneth cell vesicles in ApcMin/- polyps. Confocal optical 

sections from immunofluorescent stains of the small intestinal tissue from ApcMin/+ mouse 

displaying haplosufficient tissue (ApcMin/+; left panel) and polyps (ApcMin/-; right panel). Paneth 

cell vesicles are marked with UEA, Ki67 marking cycling cells including stem cells and transient-

amplifying cells and DAPI labelling nuclei. 

 

 

To determine, specifically, how APC loss affects intracellular organisation, I probed for 

differences in the cytoskeleton between cells in the intestinal epithelia and in the polyps. 

Cytoskeletal filamentous protein polymers such as filamentous actin (F-actin) and 

microtubules provide structural support for the shape and organisation of cells 97. Notably, 

APC has established roles in the regulation of F-actin and microtubule cytoskeleton 80,101. I first 

determined whether APC inactivation altered the localisation of components associated with 

the actin cytoskeleton. I used fluorescently labelled phalloidin to decorate F-actin in sections 

of ApcMin/+ tissue and polyps. Consistent with a previous study 121 , intestinal epithelial cells 

express F-actin, predominantly, at the apical face. Interestingly, F-actin localised to the apical 

face of epithelial cells within the polyp monolayer (Figure 3.3). Tight and adherens junctions 

bridge the actin cytoskeletons of two epithelial cells laterally, while integrins expressed at the 

base of epithelial cells anchor the actin cytoskeleton to the extracellular matrix 133. Indirect 

immunofluorescence using the antibody probes for the tight junction marker ZO-1, the 

adherens junction marker β-catenin and the basally-localised integrin β4-integrin indicated 
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the predicted apical- lateral- and basal localisation in all cells of the intestinal epithelial 

monolayer. Intriguingly, the localisation of all probes was consistent within cells of the APC 

deficient polyp. My results suggest that the molecular regulation of the actin cytoskeleton is 

not compromised upon APC inactivation.  

 

 

 

Figure 3. 3: Actin cytoskeleton remains intact in APC inactivation. Confocal optical sections 

from immunofluorescent stains of the small intestinal tissue from ApcMin/+ mouse displaying 

haplosufficient tissue (ApcMin/+; upper panel) and polyps (ApcMin/-; lower panel). F-actin is 

marked by phalloidin, adherens junctions by β-catenin and tight junctions by ZO-1. Nuclei are 

labelled by DAPI. 

 

 

Microtubules, a major component of the cytoskeleton, play a vital role in the control of the 

shape and internal arrangement of cells, and targeting of vesicles and signalling molecules 

within cells 48,63,97. I visualised the microtubule cytoskeleton in ApcMin/+ tissue using an 

antibody raised against β-tubulin. Within intestinal epithelial cells, microtubules are arranged 

in parallel arrays (Figure 1.7) 134. In comparison, microtubules in the adenoma cells were more 

disorganised compared to wild-type cells with microtubules that were not restricted to 

parallel positioning (Figure 3.4 A). Post-translational modifications of microtubules are 

thought to play a role in coordinating functions of microtubules in the cells 65. Using an 

antibody raised against the acetylated form of α-tubulin, I found that the signal was 

concentrated at the apical domain of cells in the intestinal epithelia. In contrast, I failed to 
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detect any apical concentration of acetylated α-tubulin in the tumour cells (Figure 3.4 B). 

Taken together, my molecular comparison of cytoskeletal-associated proteins between 

intestinal epithelial and tumour cells reveals no differences in F-actin or its associated 

components, yet differences in components of the microtubule cytoskeleton. 

 

 

Figure 3. 4: Loss of APC results in altered microtubule cytoskeleton. Confocal optical sections 

from immunofluorescent stains of the small intestinal tissue from ApcMin/+ mouse displaying 

haplosufficient tissue (ApcMin/+; left panel) and polyps (ApcMin/-; right panel). β-tubulin marking 

microtubules in white (A) Acetylated α-tubulin in white (B). Nuclei are labelled by DAPI. “A” 

marks the apical (top) domain of cells and “B” the basal (bottom) side.  
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A key role of the microtubule cytoskeleton is the directional transport of cargo mediated by 

the kinesin and dynein motor proteins 64,65. In this capacity, microtubules are required for the 

transport and positioning of organelles and membrane enclosed vesicles 135. Therefore, 

correct organelle positioning can be used as a surrogate for the correct regulation and function 

of the microtubule cytoskeleton. In intestinal epithelial cells, Paneth cell secretory vesicles, 

the centrosome and the Golgi complex are all positioned apical to the nucleus 44. I confirmed 

the positioning of the Golgi complex using an antibody raised against the cis-Golgi protein 

ZFPL1 and centrosome using an antibody raised against pericentrin. However, when I 

visualised the Golgi complex and the centrosome in ApcMin/- tumours, I observed 

mislocalisation of both organelles, with the Golgi complex fragmented and dispersed 

throughout the cell body and the centrosome not restricted to the apical domain (Figure 3.5). 

Golgi fragmentation has been observed during mitosis 135. To determine whether Golgi 

fragmentation in tumour cells was independent of mitosis, I used an antibody for the mitotic 

marker phosho-Histone 3 (PH3) and co-stained with the Golgi antibody (Figure 3.5). In most 

PH3 negative cells I observed Golgi fragmentation, suggesting that the fragmentation was not 

due to an increase of cells in mitosis. Consistent with my results from Figures 3.2 and 3.3, 

fluorescent UEA-binding vesicles, normally apically localised in Paneth cells, were instead 

tightly associated with the cell periphery in tumour cells. In contrast, ZO-1 maintained its 

apical association.  In summary, my findings demonstrate that intestinal epithelial cells with 

inactive APC are compromised for hallmarks of cellular organisation that are specified by the 

microtubule cytoskeleton. 
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Figure 3. 5: Loss of APC results in mispositioning of the centrosome, Paneth cell vesicles 

and the Golgi complex. Confocal optical sections from immunofluorescent stains of the 

small intestinal tissue from ApcMin/+ mouse displaying haplosufficient tissue (ApcMin/+; upper 

panel) and polyps (ApcMin/-; lower panel). UEA marks Paneth cell vesicles and PH3 marks 

mitotic cells. Nuclei are labelled by DAPI. ZO-1, labelling tight junctions, is used for 

orientation to mark the apical domain of cells. 

 

3.3.2 Organoids recapitulate the consequences of APC inactivation in the intestinal epithelia 

Studies using tissue sections yield visual snapshots of fixed samples and cannot be used to 

monitor dynamic changes in intracellular and tissue organisation and morphology. Further, 

the in vivo milieu of the epithelia contains secreted molecules that instruct the architecture of 

the intestinal epithelia, making it impossible to study solely epithelial autonomous alterations 

136–138. In vitro intestinal organoid culture systems have emerged as an experimentally 

tractable tool to study epithelial-autonomous behaviour 42. Organoids have the three-

dimensional (3D) organisation and cellular composition of intestinal epithelia in vivo, complete 

with crypt-like structures (buds) and villus zones. Organoids generated from the polyps of 

ApcMin/+ mice, termed tumoroids, are presumed isogenic to organoids, otherwise lacking 

functional APC, and form cystic structures without crypts 43. In this section of the thesis, I 

describe studies comparing small intestinal epithelial organoids from the isolated crypts from 

wild-type C57BL/6 mice and tumoroids from isolated cells from the polyps of ApcMin/+ mice. 
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To validate whether organoids and tumoroids accurately recapitulate the molecular 

differences between the intestinal epithelia and tumours, in vivo, I probed for markers whose 

localisation was dependent on the cytoskeleton. In agreement with previous studies 121 and 

my data derived from intestinal epithelial sections (Figure 3.3), F-actin and β4-integrin 

maintained their apical and basal distributions in organoids and tumoroids (Figure 3.6). In 

addition, adherens junctions (visualised using antibodies to β-catenin) and the tight junction 

protein, ZO-1 were indistinguishable from their localisation in intestinal epithelial tissue 

sections and were similarly localised in organoids and tumoroids (Figures 3.5 and 3.6). These 

findings show that the in vitro organoid system recapitulates what occurs in the in vivo setting 

with the regulation of the actin cytoskeleton intact upon loss of APC. 

 

 

Figure 3. 6: Organoids with inactive APC display intact actin cytoskeleton. Confocal optical 

sections from immunofluorescent stains of organoids (top panel) and tumoroids (bottom 

panel). F-actin is marked by phalloidin, adherens junctions by β-catenin and tight junctions by 

ZO-1. Nuclei are labelled by DAPI. 

 

I then probed the consequence of APC loss in organoids on proteins associated with the 

microtubule cytoskeleton using antibodies raised against β-tubulin and acetylated α-tubulin. 

Similar to what I observed in tissue sections of intestinal epithelial cells, I found that organoids 

demonstrated a similar alignment of microtubules along the AB axis and displayed a 

concentration of acetylated tubulin apical to the nucleus (Figure 3.7). In contrast, and similar 

to intestinal epithelial adenoma tissue, tumoroid cells harboured disordered tubulin polymers 
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compared to organoids, and acetylated tubulin was no longer concentrated at the cell apex 

(Figure 3.7).  

 

Figure 3. 7: Organoids with inactive APC display altered microtubule cytoskeleton. Confocal 

optical sections from immunofluorescent stains of organoids (left panel) and tumoroids (right 

panel). β-tubulin marking microtubules in white (A) Acetyl-tubulin labelling acetylated α-

tubulin in white (B). Nuclei are labelled by DAPI.  

 

 

I quantified the incidence of Golgi and centrosome mislocalisation in organoids and 

tumoroids. Whereas organoids demonstrated proper positioning of the organelles in 100 % of 

the cells examined, in around 55 % of the tumoroid cells, the Golgi complex was fragmented 

and appeared as dispersed stacks throughout the cell body. Similarly, in around 40 % of 
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tumoroid cells, I observed mislocalisation of the centrosome (Figure 3.8). Taken together, 

tumoroids recapitulate the defects in microtubule-dependent cellular organisation observed 

in adenoma tissue. These findings further reiterate the fact that APC inactivation leads to the 

molecular hallmarks of compromised microtubule cytoskeleton regulation. 

 

 

Figure 3. 8: APC inactivation in organoids results in mispositioning of the Golgi complex, the 

centrosome and Paneth cell vesicles. Representative images of confocal optical sections from 

immunofluorescent stains of organoids (left panel) and tumoroids (right panel). Nuclei are 

labelled by DAPI (A). Quantification of the positioning of the Golgi complex and the 

centrosome. A cumulative of >200 cells from three independent stainings were analysed 

manually to determine the positioning of either organelle. Error bars: ± SD (B). Criteria for the 

manual scoring of organelle positioning. ZO-1 that labels tight junctions or β4-integrin was 

used to mark the apical or basal domains of cells, respectively. Arrow heads represent the 

positioning of the organelle scored as apical (centrosome) or apically clustered (Golgi 

complex) (C).  
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A recent study found that in human colon cancer cell lines APC truncation leads to Golgi 

fragmentation 99. The authors of the paper determined that the mechanism was due to the 

interaction of the N-terminal domain of truncated APC with the APC-stimulated guanine 

nucleotide-exchange factor (Asef) leading to the activation of the Asef-ROCK-MLC2 pathway.  

The key experiment in this study was to demonstrate that treatment of the cell lines with the 

small molecule inhibitor against ROCK (Y27632) prevents Golgi fragmentation (Figure 3.9 A). 

However, when I repeated the experiment, treating tumoroids (expressing truncated APC) 

with Y27632, I it did not observe any intact Golgi structure (Figure 3.9 B). 

 

 

Figure 3. 9: Golgi fragmentation is not rescued by blocking ROCK in organoids with truncated 

APC. The proposed mechanism of Golgi fragmentation by Kim et al. 99 (A). Representative 

images of confocal optical sections from immunofluorescent stains of tumoroids treated with 

0.01 % DMSO (control) or 10 μM ROCK inhibitor (Y-27632) for 72 hours. F-actin is labelled by 

phalloidin to mark the apical domain. Images are representative of >100 cells analysed (B). 

 

3.3.3 Activated Wnt pathway activity does not lead to compromised cellular organisation  

It is well-established that APC loss deregulates the Wnt pathway activity (Figure 1.8) 95,139. In 

order to determine whether the observed intracellular disorganisation in tumoroids is due to 

Wnt target gene expression, I treated organoids with conditioned media containing the Wnt3a 

ligand. Organoids treated with Wnt3a adopt a cystic morphology, similar to tumoroids. I term 

these Wnt-oids. Interestingly, I find that the Golgi complex, the centrosome and Paneth cell 
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vesicles are all normally positioned in Wnt-oids (Figure 3.10). This finding demonstrates that 

the effect of increased Wnt pathway activity, and perhaps target gene expression, affects 

organoid epithelial morphology, but has no effect on intracellular organisation as determined 

via organelle positioning. Future experiments using a repressor for the Wnt target gene 

transcription, dominant negative TCF 140,141, will further validate this finding.  

 

Figure 3. 10: Activated Wnt pathway does not alter the positioning of the Golgi complex and 

centrosome. Representative images of confocal optical sections from immunofluorescent 

stains of organoids treated with Wnt3a-conditoned media (WENR) for 72 hours. ZO-1 that 

labels tight junctions or β4-integrin was used to mark the apical or basal domain of cells, 

respectively. (A) Quantification of the positioning of the Golgi complex and the centrosome. 

A cumulative of >200 cells from three independent stainings were analysed manually to 

determine the positioning of either organelle using criteria described in Figure 3.8 C. Error 

bars: ± SD (B).  
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3.3.4 An in vitro model of reversible tumorigenesis reveals that cellular disorganisation is 

the direct consequence of APC inactivation 

Based on the comparison of ApcMin/+ tissue and ApcMin/- polyps and organoids and APC 

deficient tumoroids, I hypothesised that APC inactivation leads to compromised function of 

the microtubule cytoskeleton. Implicit in this hypothesis is that APC loss is the sole genetic 

lesion associated with polyps or tumoroids. To determine whether the distinguishing 

phenotypes in the polyps and tumoroids directly reflect the immediate and direct 

consequences of APC inactivation, I created a genetically engineered organoid model of APC 

deficiency using a previously published short-hairpin RNA targeting Apc (shApc) 21. The shApc 

targets a region at the 5’ end of the mRNA (3062-3082bp) and in conditional transgenic mice, 

potently suppresses Apc expression leading to the upregulation of Wnt pathway target genes 

in the intestine 21.    

 

As a validation step, I used an inducible lentiviral vector to transduce mouse fibroblast cell line 

NIH/3T3 with shApc. The vector encodes the Tet-ON system for conditional and reversible 

modulation of Apc expression via the tetracycline response element (TRE)-regulated shApc 

(Figure 3.11 A). Upon cellular treatment of doxycycline (dox), the reverse tet-transactivator 

(rtTA) is expressed, binds to the TRE leading to Apc depletion detectable by RFP expression 

(Figure 3.11 B). Subsequent doxycycline withdrawal restores endogenous Apc expression.  
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Figure 3. 11: Validation of the inducibility of lentiviral construct expressing shApc. Lentiviral 

construct expressing doxycycline-inducible shApc (A). NIH/3T3 cells transduced with 2 μg/ml 

doxycycline for 24 hours showing inducibility of shApc detectable by RFP (B). 

 

 

Doxycycline treatment of the transduced NIH/3T3 cells led to the gene expression levels of 

Apc to progressively decrease and the Wnt pathway target gene Axin2 to increase more than 

10-fold after 72 hours of doxycycline induction relative to the non-induced control (Figure 3.12 

A). Moreover, Apc depletion led to an increase in the levels of phosphorylated β-catenin 

(Figure 3.12 B), another measure of increased pathway activity (Figure 1.8) 87. These data 

demonstrate that the shApc functionally increases the Wnt pathway activity through the 

silencing of Apc.   
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Figure 3. 12: Lentivirally expressed shApc increases Wnt pathway activity. RT-qPCR analysis 

of gene expression of Apc and Axin2 in transduced NIH/3T3 cells induced with 2 μg/ml 

doxycycline for 48 or 72 hours. Fold change shown as relative to doxycycline-induced NIH/3T3 

cells transduced with a lentivirus expressing shNT (non-targeting). Gapdh was used as a 

housekeeping gene; data is represented as mean of two independent experiments (±SD) (A). 

Western blot for APC and non-phosphorylated β-catenin (non-p- β-catenin) in transduced 

NIH/3T3 cells induced with 2 μg/ml doxycycline for 24 hours. Vinculin was used as loading 

control (B).  

 

 

In order to introduce the inducible shApc expression system into organoids, I used the 

piggyBac (pB) transposon-based expression vector system due to its reported stable and high 

integration efficiency (Bon-Kyoung Koo, personal communication) 118,142. The pB transposon 

is a mobile genetic element that uses the pB transposase enzyme to recognise the inverted 

terminal repeats (ITRs) located at both ends of the transposon vector and integrate them into 

TTAA chromosomal sites. I utilised a three-plasmid pB expression system: one plasmid 

encodes a TRE-driven shApc, followed by an IRES and the coding sequence for mCherry; the 

second plasmid contains the CAG promoter for constitutive expression for rtTA: and a 

transposase-encoding plasmid (Figure 3.13). 
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Figure 3. 13: PiggyBac transposon system for inducible shApc expression in organoids. The 

system is composed of three constructs; it is doxycyline inducible and shApc expression is 

detectable by mCherry.  

 

 

I introduced the plasmids into disaggregated organoid cells by electroporation followed by 7 

days of antibiotic selection (150 μg/ml Hygromycin B) (Chapter 2). Following the selection, 

organoids treated with doxycyline for 10 days demonstrated a decrease in Apc expression and 

high levels of mCherry expression (Figure 3.14 A). At 6 days of organoid culture post-removal 

of doxycyline I observed restoration of Apc expression and near complete loss of mCherry 

expression. Moreover, organoids re-expressing shApc showed increased levels of canonical 

Wnt target gene c-Myc (Figure 3.14 B). Differences in the expression of these genes 

demonstrates the reversibility of the system. 
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Figure 3. 14: Validation of the reversable organoid-induced tumoroid system. RT-qPCR 

analysis of gene expression of Apc and mCherry in organoids expressing pB-control or pB-

shApc. Organoids were treated with 2 μg/ml doxycycline for 10 days (On Dox) or analysed 6 

days post removal of doxycycline (D6 off Dox). Fold change shown as relative to non-induced 

electroporated organoids. B2m was used as a housekeeping gene; data is represented as 

mean of two independent experiments (±SD) (A). Western blot for c-MYC of organoids treated 

with 2 μg/ml doxycycline for 10 days (+) or 6 days post removal of doxycycline (off). Vinculin 

was used as loading control (B).  

 

 

Morphologically, doxycycline treatment of the organoids for 10 days led to the transition to 

hyperproliferative spheroids, reminiscent of tumoroids. Conversely, removal of doxycycline 

restored normal Apc expression and led to the conversion back to the organoid morphology 

(Figure 3.15). Approximately 70 % of spheroids had formed back into budding organoids 6 

days after dox removal. Taken together, the molecular and morphological characterisation of 
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the organoid-induced tumoroid system (OITS) indicates it is a model of inducible 

tumorigenesis and tumour regression. 

 

 

Figure 3. 15: Organoid-induced tumoroid system as a model for inducible tumorigenesis and 

tumour regression. Representative images of organoids expressing pb-shApc. Organoids were 

grown in culture for 5 days post split without treatment (No Dox), treated with doxycycline 

for 10 days (D10 On Dox), followed by removal of doxycyline for 6 days (D6 Off Dox). Organoids 

were imaged in brightfield (BF) or RFP channel (mCherry) using the EVOS imaging system (A). 

Quantification of the morphology of pB-shApc organoids treated with doxycyline for 10 days 

(On Dox) or after removal of doxycyline for up to 6 days. Morphology was scored as “spheroid” 

when no buds were apparent; organoid with ≥1 bud was scored as “organoid”. Graph 

represents >100 organoids analysed per group from two independent experiments (B).   

  
 

I used the OITS to analyse the direct effects of Apc depletion on cellular organisation, 

dynamically. In line with my previous results with ApcMin/+ intestinal epithelial sections and 

tumoroids (Figures 3.5 and 3.8 ), induced Apc depletion (via induction of shApc expression) in 

organoids led to fragmentation of the Golgi complex and dispersed positioning of the 

centrosome and Paneth cell secretory vesicles (Figure 3.16). All of these hallmarks of 

compromised cellular organisation were restored upon removal of doxycyline from the 

spheroids and re-expression of Apc. β4-integrin remained localised to the base of the cells 

upon induction of shApc, identical to that seen in ApcMin/- polyps and tumoroids, indicating 
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this localisation is not altered with APC loss. Importantly, these results demonstrate that the 

hallmarks of intracellular organisation associated with the microtubule cytoskeleton I observe 

are the immediate and direct consequence of functional APC loss.  

 

 

Figure 3. 16: Organoid-induced tumoroid model demonstrates that compromised cellular 

organisation is a direct consequence of APC inactivation. Representative images of confocal 

optical sections from immunofluorescent stains of pB-shApc organoids grown without 

treatment (No Dox), treated with doxycyline for 10 days (On Dox) or after removal of 

doxycyline for 6 days (D6 Off Dox). UEA marks Paneth cells and DAPI labels the nuclei.  

 

3.3.5 Inhibition of microtubule polymerisation in organoids phenocopies APC deficiency 

Microtubules are formed of tubulin subunits and exhibit dynamic instability whereby they can 

switch between stably growing and rapidly shrinking (termed dynamic instability). This 

polymerisation and depolymerisation control allows them to reorganize quickly, as required 

for cellular functions 48. Molecules that compromise microtubule dynamic instability have 
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proven to be excellent research tools for understanding microtubule-dependent processes. 

Nocodazole is a small molecule that inhibits tubulin polymerisation, thereby compromising 

microtubule functions 143.  

 

I hypothesised that I could phenocopy the consequence of APC inactivation on cellular 

organisation by affecting microtubule functions with nocodazole treatment. I treated 

organoids with 0-1000 nM of nocodazole in order to determine the optimal concentration for 

uncoupling direct effects on microtubules from toxic cellular side-effects. I chose a 48-hour 

treatment period as it is sufficient for the conversion of organoids to Wnt-oids with Wnt3A 

treatment (Figure 3.17). This time-point allows for the detection of any tissue morphology 

effects occurring when disrupting the microtubule cytoskeleton. Organoids treated with 

100nM nocodazole showed no change in tissue morphology, however, cells displayed the 

characteristic Golgi fragmentation of APC deficiency (Figure 3.17). Similarly, nocodazole 

treatment of Wnt-oids also led to the fragmentation of the Golgi complex. Importantly, 

nocodazole withdrawal led to the re-localisation of the Golgi complex to the apical domain 

after 24 hours, supporting the notion that disruption of organelle positioning is a direct effect 

of deregulating microtubule dynamics. As a control, nocodazole-treated tumoroids 

maintained the fragmented, mislocalised Golgi complex. Taken together, targeted 

deregulation of microtubule organisation phenocopies the consequence of APC deficiency.  
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Figure 3. 17: Microtubule destabilisation by nocodazole phenocopies APC deficiency. 

Organoids cultured in Wnt-conditioned media (WENR) for 48 hours convert into a spheroid 

morphology (A). Confocal optical sections from immunofluorescent stains of organoids, Wnt-

oids and tumoroids. Organoids, Wnt-oids and tumoroids were fixed (I), treated with 100nM 

nocodazole for 48 hours and fixed (II) or treated with 100nM nocodazole for 48 hours followed 

by removal of the drug from media for 24 hours and fixed (III). Images are representative of 

total of 50 organoids per condition per organoid line analysed from two independent 

experiments. F-actin is labelled by Phalloidin, DAPI marks nuclei (B).     
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3.4 Discussion 

Somatic inactivating mutations in the APC gene that result in a truncated protein are widely 

regarded as the initiating event of most sporadic colorectal tumours. Truncation of APC is 

known to lead to deregulated Wnt pathway activity, and this has been directly linked to the 

onset of tumorigenesis in the intestinal epithelia, requiring expression of the Wnt target gene 

c-Myc 41,96. However, the cellular effects of the inactivation of the protein have not been 

studied in detail. Using tissue and organoids generated from ApcMin/+ mice, I show that 

mutational inactivation of APC leads to compromised microtubule-dependent intracellular 

disorganisation with mispositioning of vesicles, the Golgi complex and the centrosome. Owing 

to the generation of an organoid model of controlled APC deficiency I developed, I can 

demonstrate that microtubule related cellular effects I observe in tumour tissue sections and 

tumoroids are the immediate and direct consequence of loss of functional APC. Destabilisation 

of the microtubule cytoskeleton phenocopied APC deficiency, supporting the notion that 

APC’s interaction with the microtubule cytoskeleton controls intracellular organisation.  

3.4.1 Advantages of the use of organoids to study cellular organisation  

Histological studies of mouse models with germline Apc mutations and models of APC 

deficiency have established that APC inactivation leads to intestinal adenomas and the loss of 

normal crypt-villus architecture 21,30,34,41. It is therefore evident that tissue morphology is 

altered in APC inactivation. However, I have determined that intracellular disorganisation of 

the microtubule cytoskeleton and associated organelles that accompany APC loss are a novel 

phenotype. The use of 3D intestinal organoids allows for detection of cellular structures 

dynamically with better resolution than with tissue sections. I probed for the localisation of F-

actin, β4-integrin, β-catenin, ZO-1, secretory vesicles, the Golgi complex and the centrosome 

in organoids and tumoroids and validated that the organoid system faithfully recapitulates 

what is present in the corresponding tissue. Moreover, in agreement with previous studies, I 

find that organoids contain crypt-like structures whereas tumoroids grow as round cysts, 

devoid of any characteristic morphologies of the intestinal epithelial monolayer 43. This 

suggests that the cystic appearance of tumoroids represents the compromised intestinal 

epithelial morphology observed in APC deficient tumours. In addition, the organoid-induced 

tumoroid system I developed portray the potential use of organoids for genetic studies. The 

model can be used to introduce further changes into genes responsible for adenocarcinoma 
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development, ie oncogene Kras and tumour suppressor genes Smad4 and Tp53, to determine 

the status of cellular organisation in cancer as well as be used for drug screening 144. 

3.4.2 Alterations on microtubule cytoskeleton in intestinal cells with APC deficiency   

A previous study compared wild-type organoids to organoids isolated from Apcfl/fl/Cre mice to 

demonstrate that while tissue morphology is altered, the loss of APC does not lead to changes 

in the AB cell polarity 121. I have confirmed the basic premise of this study in tumoroids, where 

actin-based cytoskeleton stays intact upon APC loss. However, a novel finding is that APC 

inactivation or depletion alters the microtubule structure in microtubule arrays and leads to a 

modification in their post-translational acetylation.  

 

Within the intestinal epithelia from both the ApcMin/+ and Apcfl/fl/Cre mouse lines , APC is 

expressed as a truncated version of the protein, lacking protein interaction domains that bind 

to components of the Wnt pathway and the microtubule cytoskeleton 60,101. Specifically, the 

loss of the C-terminal domain does not eliminate the binding of APC to microtubules, but 

decreases its capacity to stabilise the microtubule ends 101,107. Probing for β-tubulin shows that 

the microtubules in the microtubule arrays are more disorganised in adenomas and tumoroids 

compared to the haplosufficient tissue and wild-type organoids, suggestive of more dynamic 

microtubules 54. In addition, acetylation of α-tubulin is evidently affected in cells with inactive 

APC showing changes in signal location of this post-translational modification. While the direct 

cellular function of acetylation of tubulin is still unclear, studies have suggested acetylation to 

be a marker for stable, long-lived microtubules as well as regulator of microtubule functions 

65,66,145. These functions include regulation of cell motility, cell cycle, differentiation as well as 

intracellular trafficking and signalling 145. The number of microtubules is significantly reduced 

within the microtubule arrays of polarised epithelial cells from the inner ear of ApcMin/+ mouse 

53. However, the present study is the first to demonstrate direct alterations on microtubule 

cytoskeleton in intestinal cells upon APC deficiency.                  

3.4.3 Fragmentation of Golgi complex in APC deficiency  

Microtubules play a vital role in the control of cell shape and function. Importantly, they 

provide tracks along which organelles are positioned. In highly polarised cells, such as 

intestinal epithelial cells, proper spatial arrangement of organelles is critical for their function 
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146. My results indicate that the Golgi complex is fragmented and mispositioned with APC loss. 

Key roles of the Golgi complex are to modify, and sort proteins derived from the endoplasmic 

reticulum (ER). The structure of the Golgi complex is vital to ensure proper protein trafficking 

and defects in this organelle have been observed in many diseases, including Alzheimer’s 

disease, Parkinson’s disease and amyotrophic lateral sclerosis (AML) 147. Intact microtubules 

are required for the normal structure and function of the Golgi complex. Interestingly, 

previous studies have used anti-microtubular drugs to drive Golgi fragmentation and found 

that it only moderately affects protein secretion, suggesting that fragmented Golgi complex 

retains functionality 63. Moreover, in agreement with my data, a recent study has shown that 

in human colon cancer cell lines, truncating mutations of APC (similar to those found in colon 

cancer) lead to Golgi fragmentation 99. The mechanism was found to involve the N-terminal 

domain of truncated APC interacting with Asef and activating the Asef-ROCK-MLC2 pathway 

leading to Golgi fragmentation. However, in my system, this is not the case; Golgi 

fragmentation is also the consequence of Apc depletion. Moreover, treatment of tumoroids 

with a ROCK inhibitor does not restore intact Golgi structure. The discrepancy in these findings 

may be attributed to differences in the experimental systems—the previous study used colon 

cancer cell lines that harbour the many mutations acquired during carcinogenesis, whereas I 

used intestinal organoids. In addition, the dependence on the actin cytoskeleton regulation 

by Asef versus microtubule cytoskeleton may differ between growth in 2D versus 3D 71,148.  

 

A fragmented Golgi complex has been previously observed in colon cancer cell lines and has 

been termed onco-Golgi – the authors of these studies speculated that onco-Golgi drives 

cancer progression by modulating the activity of proapoptotic kinases149,150. Whether Golgi 

fragmentation is a cause or consequence of cancer progression is yet to be determined. Here 

I show that the Golgi complex is fragmented as a direct consequence of APC inactivation and 

is therefore an early event in malignant transformation.  

3.4.4 Centrosome mispositioning in APC deficiency  

In epithelial cells, the centrosome is located apically where it provides an organising centre 

for apical microtubules. However, the majority of microtubules are non-centrosomal and it is 

not fully understood where these microtubules are anchored 133,151. Correct centrosomal 

positioning is important for cell shape and polarity in mammalian cells 146,152. Centrosome 
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positioning is thought to be determined by intrinsic cues, such as signalling by the Par complex 

proteins and planar cell polarity, but also by extrinsic cues which can be both molecular as 

well as mechanical such as forces exerted by the actin and microtubule cytoskeleton 153.  

 

I show that proper positioning of the centrosome is compromised with depletion or 

inactivation of APC.  Centrosomal aberrations have been described before in tumour-derived 

cell lines, tumour models as well as primary and metastatic human tumours 154–156. The 

abnormalities include changes in centrosome numbers, size as well as compositional changes 

in the pericentriolar material 154,155,157. Intriguingly, centrosome amplification has been shown 

to have the potential to initiate tumorigenesis in flies 158. Because centrosomes play a major 

role in the formation of the mitotic-spindle, studies have shown correlative evidence between 

supernumerary centrosomes and chromosomal instability 154,159. Chromosomal instability is a 

hallmark of many colorectal cancers and importantly the loss of the C-terminal domain of APC 

has been shown to directly contribute to chromosomal instability in cell culture models 160,161. 

While in this study I do not address centrosome numbers nor size, I have found that the 

centrosome is not restrained to the apical position in cells with depleted or mutationally 

inactive APC. In agreement with my findings, multipolar mitotic-spindles that are 

characterised by centrosomes positioned at different angles have been shown to be present 

in organoids made from ApcMin/+ polyps 162. In addition to defects in mitoses and stability of 

the genome, centrosomal aberrations can cause alterations in cellular and tissue 

architecture 154.  

 

Given the multitude of roles of the centrosome in the cell and the functional alterations its 

aberrations cause, it will be interesting to study how the loss of APC results in centrosomal 

mispositioning. Based on the results of this study, I hypothesise that the loss of the 

microtubule interaction domain in APC truncation or deficiency contributes to the positioning 

of the centrosome.     

3.4.5 Paneth cell vesicle mispositioning in APC deficiency 

Paneth cells are specialised secretory cells found in the small intestine that defend against 

pathogens by releasing antimicrobial proteins, including lysozyme, into the lumen of the crypt 

(for a detailed description of Paneth cells and their function, see Chapter 5) 13. One class of 
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these vesicles contains lysozyme and can be visualised by the fluorescent agglutinin UEA. I 

have determined that the normal localisation of the apically-disposed UEA positive secretory 

vesicles in Paneth cells is dramatically altered upon depletion or mutational inactivation of 

APC. While still apically located, the vesicles are instead held in a compact position confined 

to the apical membrane in APC deficient Paneth cells. Another consequence of APC loss in 

Paneth cells is the loss of their normally rigid pyramidal shape.  

 

Vesicular trafficking to the apical membrane is a key step in the release of antimicrobials from 

Paneth cells 163. Microtubules and the kinesin and dynein motor proteins are essential for 

proper intracellular transport and positioning of these vesicles 164.  However, defects in 

microtubule positioning prevents proper vesicle trafficking, and my work supports the model 

that the loss of APC’s interactions with the microtubule cytoskeleton, either by mutational 

inactivation or through depletion, disrupts vesicle transport in tumour Paneth cells. It is 

important to note, however, that one cannot exclude the possibility that the altered vesicle 

positioning is due to changes in Paneth cell vesicle numbers. The antimicrobial granules are 

released upon bacterial attack on Paneth cells as shown in vivo and in isolated crypts 165,166. 

However, a study carried out on organoids has shown that degranulation in vitro in the 

organoid system is only achieved via IFN-γ or by muscarinergic stimulation, while insensitive 

to a range of microbes 167. Therefore, it is unlikely that the alteration in vesicle positioning 

seen in tumoroids and the pB-shApc organoid model reflects an increase in degranulation due 

to potential undetectable bacterial contamination of culture. 

 

Proper vesicular trafficking is vital for the communication between the cell and its 

environment. The results of this study demonstrate that the loss of APC results in defective 

vesicular transport, suggesting that this could result in altered homeostasis in the intestine, 

potentially contributing to the formation of a malignant phenotype. 

3.4.6 Implications of findings  

In this chapter, I detail how I have determined that mutational inactivation of APC is directly 

linked to compromised cellular organisation, revealing a vulnerability in APC-deficient cells 

with potential therapeutic implications. Except for familial adenomatous polyposis (FAP) 

patients, where individuals with germline mutation in APC develop tumours throughout the 
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intestinal epithelia, individuals with colon cancer develop tumour predominantly in the colon. 

The experiments which have been carried out in my study used tissue and organoids derived 

from the small intestine. Further studies investigating the cellular effects of loss of APC in the 

colon will reveal if the phenotypic findings seen in the small intestine, are also present in the 

colon. Defects in cellular organisation could be used as a biomarker for detection of early 

colorectal tumorigenesis. Current results show correlation between inactive APC, 

compromised cellular organisation and defective microtubule cytoskeleton. Future 

experiments into understanding if the relationships are also causative will tell if therapeutic 

interventions into restoring cellular organisation could be a novel avenue to treat early 

tumorigenesis of the intestine.  
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4.1 Introduction 

In Chapter 3, I have established that mutational inactivation or induced depletion of Apc leads 

to changes in intestinal epithelial morphology and compromises hallmarks of microtubule-

regulated intracellular organisation, including altered localisation of nuclei, the Golgi complex, 

centrosome and secretory vesicles in Paneth cells. In this chapter, I investigate the molecular 

basis by which APC effector pathways regulate epithelial morphology and intracellular 

organisation. My strategy is to express deletion constructs of APC that dissect out sufficiency 

for regulation of its respective effector pathways and phenotypic outputs.  

4.2 Chapter methods 

A detailed description of methods and materials used in this chapter is covered in depth in 

Chapter 2. Below is a brief overview of Materials and Methods specific to this chapter. 

4.2.1 Sample processing for immunofluorescence and imaging 

Organoids were derived from the ileum of Apcfl/fl LSL tdTom mice (Winton laboratory) and 

Myc-335-/- and Myc∆2-540/∆2-540 mice (Taipale laboratory). For the quantification of organelle 

positioning within tumoroids, more than 150 cells were counted manually, using the scoring 

criteria for apical and basal localisation shown in Figure 3.8 C. 

4.2.2 Cloning and transfection for APC sufficiency  

Full- length human APC and APC mutants lacking the microtubule binding domain (APC∆MT) 

and the binding domain for Wnt effectors (APC∆Wnt) were cloned into the piggyBac vector as 

described in Chapter 2. SW480 cells were transfected with the constructs, sorted based on 

mCherry expression using FACS and selected in 400 μg/ml Hygromycin B for 7 days. Tumoroids 

were electroporated with pB-APC, pB-APC∆MT and pB-APC∆Wnt as described in Chapter 2. 

Electroporated tumoroids were selected for integration of constructs using 100 μg/ml 

Hygromycin B for 7 days followed by sorting based on mCherry expression using FACS. Cre and 

Cre-ERT2 sequences were cloned into the piggyBac vector and electroporated into Apcfl/fl LSL 

tdTom organoids as described in Chapter 2.  
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4.2.3 RT-qPCR 

RT-qPCR for Apc levels was detected using primer pair Apc 2 that recognizes the human and 

mouse sequence.  

4.2.4 Treatment of organoids with chemicals and Wnt3a conditioned media  

In all the experiments, doxycycline was used at 2 μg/ml, unless otherwise stated, and 4- 

hydroxytamoxifen (4-OHT) was used at 1 μM. Organoids were treated with Wnt3a conditioned 

media diluted with ENR+ 10 % FBS to achieve the desired concentrations (0-100 %). 

4.3 Results 

4.3.1 Independent protein interaction domains in APC specify different effector functions 

APC is comprised of several protein interaction domains (see Figure 1.8). To precisely 

determine APC sufficiency in regulating microtubule-dependent cellular organisation and 

epithelial morphology, I generated domain-specific deletions of APC. I removed, individually, 

the central domain of APC involved in regulating Wnt signalling and the C-terminal 

microtubule interaction domain (Figure 4.1). 
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Figure 4. 1: PiggyBac expression system for full length APC, APC∆MT and APC∆Wnt. Protein 

domains present in the full-length APC, APC lacking the microtubule binding domain (APC∆MT) 

and APC lacking the domain for interactions with Wnt pathway effectors (APC∆Wnt) (A). APC 

and mutants are expressed in a piggyBac system composed of three constructs. The system is 

doxycycline inducible, APC/mutants are tagged with HA at the C-terminal domain and the 

expression of constructs is detectable by mCherry (B).  

 

4.3.1.1 Validation of APC interaction domains in a cell line lacking functional APC 

Whilst nocodazole treatment showed that targeted depolymerisation of microtubules results 

in changes in the positioning of organelles, the direct links between the APC’s C-terminal 

domains to effects on microtubule-dependent processes remain to be established.  To probe 

for sufficiency of protein interaction domains of APC on effector functions, I created a 

piggyBac transposon-based expression vector system for stable and inducible expression of 

human APC and two deletion constructs—one omitting the C-terminal microtubule and EB1 
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binding domains (APC∆MT), and the second omitting the central β-catenin and Axin binding 

domains (APC∆Wnt) (Figure 4.1 A).  

 

To validate the inducible expression system, I used the human colon adenocarcinoma cell line 

SW480, that expresses truncated APC 168, for stable integration of the deletion constructs. Due 

to the lack of reliable antibodies against APC, I tagged the APC constructs with a 

haemagglutinin (HA) epitope tag in the C-terminus and inserted mCherry as a fluorescent 

probe for transgene expression (Figure 4.1 B). Doxycycline (dox) treatment of transfected 

SW480 cells showed mCherry expression that was strongest in cells expressing APC∆Wnt and 

empty control (Figure 4.2). There were no obvious morphological alterations apparent for any 

of the expressed APC constructs after 48 hours of doxycycline treatment. Transfected cells 

were sorted in order to isolate the population of integrants.  

 

 

Figure 4. 2: SW480 cells expressing full length APC, APC∆MT and APC∆Wnt. SW480 cells were 

transfected with piggyBac (pB) constructs: pB-APC, pB-APC∆MT, pB-APC∆Wnt or empty construct 

expressing no APC/mutant transgene (empty control). Cells were induced for 48 hours with 2 

μg/ml doxycycline. Cells were imaged in brightfield (BF) or RFP channel (mCherry) using the 

EVOS imaging system. 
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Probing for HA showed that the cells were expressing the different APC constructs at their 

correct size (Figure 4.3 B). Western blot analysis of the Wnt target genes AXIN2 and c-MYC 

demonstrated a decrease in protein expression with induction of full-length APC and APC∆MT, 

whereas levels of the proteins remained unchanged with expression of the APC∆Wnt construct 

(Figure 4.3 B). Additionally, I used the TOP-Flash assay, a validated, widely-used luciferase-

based reporter system of β-catenin-mediated transcriptional activation to measure Wnt 

signalling. Cells expressing the full-length APC and APC∆MT upon doxycycline treatment showed 

4-5-fold reduction in Wnt pathway activity (Figure 4.3 C). As expected, the Wnt pathway 

activity in SW480 cells expressing APC∆Wnt was unchanged. These results validate the full-

length and the mutant APC constructs functionally from the Wnt pathway regulatory role. 

 

 

 

 



 
86 

 

Figure 4. 3: Validation of APC, APC∆MT and APC∆Wnt constructs in Wnt pathway regulation. 

Illustration depicting the role of APC in marking β-catenin for degradation. Truncated APC is 

unable to label  β-catenin for degradation leading to unregulated Wnt pathway activity (A). 

Western blot for HA, AXIN2 and c-MYC in SW480 cells expressing pB-APC, pB-APC∆MT, pB-

APC∆Wnt and empty construct (control). Cells were induced for 72 hours with 2 μg/ml 

doxycycline. Vinculin was used as a loading control (B). The TOP-Flash assay of SW480 cells 

expressing the constructs induced for 48 hours with 2 μg/ml dox. Data is represented as mean 

of two independent experiments (±SD) (C).  

 

4.3.1.2 Expression of APC∆MT in tumoroids partially restores epithelial morphology but does 

not rescue cellular disorganisation 

In order to study the domain specific functions of APC, I integrated the validated full-length 

APC, APC∆MT and APC∆Wnt into tumoroids for sufficiency experiments. As with the SW480 cell 
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lines I created (section 4.3.1.1), mCherry expression is a marker of successful integration of 

the constructs (Figure 4.1 B). I electroporated the constructs into tumoroids, followed by 

selection with 100 μg/ml Hygromycin B for 7 days and then checked for mCherry expression 

after 48 hours of doxycycline treatment. The transfected tumoroids were expressing mCherry 

to variable levels, with tumoroids electroporated with the full-length APC showing barely 

detectable fluorescence. The low mCherry expression in APC-tumoroids could be due to the 

length of APC upstream from the internal ribosome entry site (IRES) that regulates 

downstream mCherry expression (Figure 4.1 B). I therefore sorted the tumoroids, collecting 

all the mCherry positive cells using fluorescence activated cell sorting (FACS) and expanded 

the surviving clones (Figure 4.4). APC-tumoroids expressed mCherry, but at much lower levels 

compared to APC∆MT- and APC∆Wnt -expressing tumoroids. 
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Figure 4. 4: Sorting strategy for tumoroids transfected with APC, APC∆MT and APC∆Wnt 

constructs. Gating strategy (A). mCherry positive tumoroid cells sorted for expansion (B). 

 

Morphologically, full-length APC and APC∆Wnt -expressing tumoroids looked identical to non-

doxycycline treated controls (Figure 4.5 A). Tumoroids expressing APC∆MT were heterogeneous 

in morphology with most displaying spherical shape. However around 15 % showed a 

morphology closer to that of a budding organoid (Figure 4.5 A). Due to the small size of these 

budding-like tumoroids, I was not able to isolate them by picking. Titration of concentrations 

of doxycycline from 2-0 μg/ml led to progressively fewer budding-like tumoroids, suggesting 

that the morphological changes I observe is a function of APC∆MT-expression (Figure 4.5 B). 
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Figure 4. 5: Morphology of tumoroids expressing APC, APC∆MT and APC∆Wnt. Representative 

images of tumoroids expressing APC, APC∆MT or APC∆Wnt induced with 2 μg/ml doxycycline for 

5 days. Tumoroids were imaged in brightfield or RFP channel (mCherry; inset) using the EVOS 

imaging system (A). Quantification of budding-like structures in APC∆MT-tumoroids induced 

with doxycycline for 5 days. Data represents >30 tumoroids per condition. Scoring criteria for 

budding-like structures (red) and spheroids (blue) is depicted in the illustrative image (B).  

 
Using quantitative RT-qPCR (RT-qPCR) to determine expression levels of the constructs 

demonstrated detectable mCherry levels in all the tumoroid lines expressing the different APC 

constructs. However, tumoroids expressing the full-length APC showed much lower mCherry 

levels compared to APC∆MT- and APC∆Wnt -expressing tumoroids which correlated with the 

fluorescence signal viewed by fluorescence microscope (Figure 4.6). In addition, tumoroids 

expressing full-length APC had no increased levels of Apc compared to the non-doxycycline 

treated  control (Figure 4.6). The pool of APC∆MT- expressing tumoroids showed more than 8-
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fold increase in Apc, while APC∆Wnt -expressing tumoroids had over 4-fold increase Apc 

expression. 

 

 
Figure 4. 6: Integration of APC, APC∆MT and APC∆Wnt constructs in tumoroids. RT-qPCR 

analysis of gene expression of Apc and mCherry in tumoroids expressing APC/mutants induced 

with 2 μg/ml doxycycline for 5 days. Data is normalised to non-induced expressing tumoroids. 

B2m was used as a housekeeping gene. Data is represented as mean of two independent 

experiments (±SD). 

 

My results indicate that the expression of APC∆MT in tumoroids is at sufficient levels to induce 

a partial rescue of organoid morphology, whereas induction of APC expression either does not 

rescue morphology, or is expressed at insufficient levels to do so. APC∆Wnt protein is expressed 

at comparable levels to APC∆MT but has no effect on epithelial morphology. 

 

To determine if intracellular organisation was restored in tumoroids expressing the various 

deletion constructs I examined the localisation of the Golgi complex and the centrosome in 

the expressing tumoroid lines. The expression of APC, APC∆MT and APC∆Wnt in tumoroids did 

not rescue the positioning of either the Golgi complex or the centrosome (Figure 4.7). The 

analysis of the 15 % of APC∆MT-tumoroids that displayed a morphology change showed that 

while the tissue morphology was transformed to a more organoid-like, the Golgi complex and 

centrosome remained mislocalised (Figure 4.7). 
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Figure 4. 7: The positioning of Golgi complex and centrosome in tumoroids expressing APC, 

APC∆MT and APC∆Wnt. Representative images of confocal optical sections from 

immunofluorescent stains of tumoroids expressing APC, APC∆MT or APC∆Wnt induced with 

2 μg/ml doxycycline for 5 days. >150 cells per tumoroid line were analysed using criteria 

described in Figure 3.8C (A and B). Confocal optical sections from immunofluorescent stains 

of tumoroids expressing APC∆MT induced with 2 μg/ml doxycycline for 5 days that 

demonstrated a budding-like structure (C) DAPI labels nuclei.  
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4.3.1.3 Model of full APC deficiency: Apcfl/fl /pB-Cre-ERT2 organoids 

Studying the role of specific APC interaction domains in tumoroids has unfortunately several 

caveats. Firstly, at least one truncated Apc allele is always expressed in the mutational 

signature of tumoroids allowing for some control over effectors that interact with the N-

terminus of APC 32,130. A second consideration is the provenance of the tumoroids—these 

were derived from the small intestinal epithelia of 110-day old mice. I am unable to determine 

whether other mutations have incurred in the tumour cells that could influence the sufficiency 

experiments. To circumvent these issues, I decided to create a system that probed APC 

function upon immediate inactivation of both Apc alleles simultaneously in an organoid. The 

underlying reason for choosing an Apc deletion system rather than the previously developed 

Apc silencing model (pB-shApc, see Chapter 3) was to assure complete loss of functional APC.  

 

I derived organoids from Apcfl/fl LSL tdTom mice (the mouse intestine was a kind gift from the 

Winton laboratory 41). The mouse is homozygous for lox-flanked exon 14 of Apc and Cre 

recombinase expression induces a frameshift mutation at codon 580 leading to the expression 

of truncated APC. The lox-STOP-lox (LSL)-tdTomato at the Rosa26 locus serves as a reporter 

for recombination (Figure 4.8). 

 

 
Figure 4. 8: Organoids from Apcfl/fl LSL tdTom mouse model. Illustration showing the 

genotype of Apcfl/fl LSL tdTom mouse with homozygous loxP sites flanking exon 14 of Apc and 

lox-STOP-lox tdTomato inserted into Rosa26 locus.  

 

 

I cloned the Cre recombinase transgene into the piggyBac transposon-based expression vector 

system for inducible expression, marked with expression of GFP. I transfected Apcfl/fl LSL 

tdTom organoids with pB-Cre-GFP via electroporation to create the Apcfl/fl /pB-Cre organoid 
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line. However, organoids expressed both GFP and tdTomato 48 hours after electroporation 

without the addition of doxycycline (Figure 4.9 A) indicating that Cre recombinase expression 

was leaky and constitutive. To circumvent this problem, I generated a ‘double-lock’ system by 

using a transgenic fusion of the modified, tamoxifen-inducible estrogen receptor and Cre 

recombinase 169 (Cre-ERT2 recombinase) under the control of the Tet operator (Figure 4.10 B). 

The transgene expression system (pB-Cre-ERT2) enables tight control of Cre recombinase 

activity requiring combined treatment of doxycycline and 4-hydroxytamoxifen (4-OHT). pB-

Cre-ERT2 transfected Apcfl/fl LSL dTom (Apcfl/fl /pB-Cre-ERT2) organoids did not show any GFP 

expression without treatment (Figure 4.9 B). The addition of doxycycline and 4-OHT led to GFP 

and tdTomato expression, detectable 48 hours after treatment. As with tumoroids, floxed 

organoids were hyperproliferative and spherical in morphology. Therefore, Apcfl/fl /pB-Cre-

ERT2 organoids are a reliable organoid model for inducible depletion of APC. Ongoing 

experiments with the expression of the different APC interaction domains in the Apcfl/fl /pB-

Cre-ERT2 organoids will elucidate the contributions of the specific domains of APC on its 

effector roles.  

 
 
Figure 4. 9: Apcfl/fl /pB-Cre-ERT2 organoids as a reliable organoid model for inducible Apc 

depletion. Cre in piggyBac (pB) transposon-based expression system expressed in Apcfl/fl LSL 

tdTom organoids without doxycycline treatment shows leakiness of the system (A). pB 

construct with Cre-ERT2 shows expression only when doxycycline (2 μg/ml) and 4-OHT (1 μM) 

are added to the media (B). Organoids were imaged in brightfield, RFP channel (tdTomato; 

inset) or GFP channel (inset) using the EVOS imaging system. 
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4.3.2 The Wnt pathway target gene c-Myc does not mediate the regulation of epithelial 

morphology 

The floxing of Apc led to a tissue morphology change whereby a budding organoid was 

converted into a spheroid, demonstrating that APC regulates epithelial morphology. 

Moreover, the expression of APC∆MT in tumoroids showed that selectively rescuing the 

interaction domain of APC with Wnt effectors had the potential to alter epithelial morphology 

from a spheroid to a more organoid-like structure, while not rescuing compromised 

intracellular organisation. These findings suggest that the regulation of epithelial morphology 

by APC is via the Wnt pathway and target gene expression. The output of the Wnt pathway is 

carried out by its target genes. Based on its well-defined roles in mediating the malignant 

transformation of the intestinal epithelia in vivo 96,129, an obvious candidate controlling 

epithelial morphology is the proto oncogene Myc. 

 

To study the role of Myc in regulating epithelial morphology, I derived organoids from a mouse 

line deficient in a putative MYC regulatory element that decreases Myc expression to Wnt 

pathway activation by lacking a major Tcf7l2 binding site (Myc-335-/-; the mouse intestine was 

a kind gift from the Taipale laboratory) 170. Validation of the mouse line has been previously 

carried out by the Taipale laboratory—recombination with the ApcMin/+ allele (ApcMin/+; Myc-

335-/-) led to a mouse line that demonstrated a greatly reduced incidence of polyps in the 

intestine, indicating the requirement of  this MYC regulatory element for APC-inactivation-

driven tumorigenesis 170. In order to determine whether Myc mediates the control of intestinal 

epithelial morphology by APC, I treated the Myc-335-/- organoids with increasing 

concentrations of Wnt3a ligand for 7 days and monitored the formation of Wnt-oids. 

 

Interestingly, there was no change in the spheroid-formation potential between wild-type and 

Myc-335-/- organoids (Figure 4. 10). After 7 days of 100 % Wnt3a conditioned media, around 

80 % of wild-type organoids had become spherical Wnt-oids, with Myc-335-/- organoids 

showing identical behaviour. I conclude from this result that organoids with reduced 

responsiveness of Myc to Wnt pathway activation are still capable of epithelial morphology 

change, suggesting that Myc in the increased Wnt pathway context is not essential for the 

tissue morphology change in intestinal tumorigenesis.  
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Figure 4. 10: Myc is not the main regulator of epithelial morphology.  Representable images 

of wild-type and Myc-335-/- organoids grown in  different ratios of Wnt3a conditioned media 

for 7 days (A). Quantification of wild-type and Myc-335-/- organoids grown in  different ratios 

of Wnt3a conditioned media for 4 and 7 days. Data is represented as a mean of two 

independent experiments (±SD) (B).  

 

 

I probed the wild-type and Myc-335-/- organoids for Golgi complex to study whether cellular 

organisation was compromised. Golgi complex was localised apically for both organoid lines 

(Figure 4. 11), showing that decreased responsiveness to the Wnt pathway regulator Myc does 

not affect cellular organisation. 
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Figure 4. 11: Decreased responsiveness to Myc does not affect cellular organisation. 

Confocal optical sections from immunofluorescent stains of wild-type and Myc-335-/- 

organoids grown in  ENR (0 % Wnt3A) or 100 % Wnt3a conditioned media for 7 days. Phalloidin 

labels F-actin, DAPI label nuclei. 

 

 

Given that Myc-335-/- organoids represent a decreased response to Wnt pathway activity 

rather than complete ablation, I tested whether a stronger suppression of Wnt pathway-

dependant Myc activation would result in a difference in morphology change as a response to 

the Wnt pathway stimulation. I therefore decided to make organoids from a mouse line 

deficient in the so called Myc “super-enhancer region” that decreases c-Myc expression in 

tissues and lowers polyp numbers even more than Myc-335-/- in ApcMin/+ background         
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(Myc∆2-540/∆2-540 ; the mouse intestine was a kind gift from Taipale lab) 171. Unfortunately, crypts 

isolated from this mouse line did not grow in normal organoid culture conditions and I was 

unable to test the hypothesis (Figure 4. 12). The failure to grow organoids from                        

Myc∆2-540/∆2-540 intestines could be due to the fact that the levels of Myc, a known global 

regulator, were too low, and/or the media components could not support the growth of these 

organoids in culture.  

 
Figure 4. 12: Organoids lacking Myc super-enhancer region do not grow in vitro. Image of a 

Myc∆2-540/∆2-540 organoid not growing beyond a few cells after 7 days in culture.    

 

4.4 Discussion 

APC is a crucial signalling node controlling homeostasis in the intestinal epithelial tissue. The 

various interaction domains in APC are responsible for the diverse biological functions of this 

protein 83. In Chapter 3, I established that truncation or induced depletion of Apc unleashes 

control over intestinal epithelial morphology and intracellular organisation. To determine 

APC’s domain-specific sufficiency for the regulation of these phenotypic outputs, I expressed 

different deletion constructs of APC in tumoroids. I show that the expression of APC lacking 

the C-terminal domain (APC∆MT) can rescue epithelial morphology but not intracellular 

organisation, suggesting that the interaction domain of APC with Wnt pathway effectors 

regulates tissue morphology. Further, my findings suggest that the regulation of tissue 

morphology is not mediated solely via the Wnt target gene Myc.  
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4.4.1 APC restoration in intestinal tumorigenesis 

Acute loss of Apc in the murine small intestinal epithelium has been shown to activate Wnt 

signalling and alter intestinal cell differentiation, proliferation, migration and crypt 

architecture 41,172. Doxycycline-inducible shRNA-mediated Apc suppression in vivo 

demonstrated that Apc depletion phenocopies Apc loss 21. Importantly, it was shown that the 

restoration of endogenous Apc by removal of shApc expression recovers normal intestinal 

epithelial tissue morphology and function 21. I attempted to express APC in tumoroids, in order 

to restore normal intestinal epithelial morphology and intracellular organisation. However, I 

was unsuccessful, likely due to the inability to express APC to sufficient levels (Figure 4.6 and 

4.7). Achieving stable physiological levels of this potent cell regulator is vital to study the 

cellular role of APC. Of note, the restoration of APC with exogenous expression of the protein 

has only been successfully carried out in colon cancer cell lines 173,174. One of the studies 

showed that transient expression of full-length APC in colon carcinoma cell line HT29 results 

in inhibition of cell growth leading to cells undergoing apoptosis 173. However, in another 

study, the authors showed that stable expression of full-length APC in human colon carcinoma 

cell line SW480 does not lead to an increase in apoptosis but results in a decrease in 

proliferation 174. Notably, the authors showed that the relatively low expression levels of full-

length APC result in tighter cell-cell adhesion with consequent changes in cell morphology. 

These results show that the effect of ectopic APC is dependent on the level of expression, 

whereby the concentration of APC in a cell defines its response. The failure to express full-

length APC in tumoroids can be because of either too low levels of the transgene integration, 

or toxicity associated with too high levels of APC expression.  

4.4.2 APC domain-specific sufficiency for effector roles in the intestinal epithelia 

Truncating mutations in APC result in the loss of the central and C-terminal domain regulating 

the Wnt pathway activity and interacting with the microtubule cytoskeleton. The 

contributions of these domains to specific effector functions of APC and whether there is a 

functional link between them remains largely unknown 175. The pool of APC associated with 

the β-catenin destruction complex is distinct from the pool that binds to microtubules 176. 

Further, the phosphorylation of APC by GSK3β inhibits the interaction of APC with 

microtubules, a finding opposite to the effect on APC binding to β-catenin, suggesting that the 

binding of APC to microtubules and β-catenin is mutually exclusive 101. In addition to the 
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different pools of APC, whether there is an influence on an effector function by several 

domains within APC, is to be determined. 

4.4.2.1 Intracellular organisation 

In Chapter 3, I show that the destabilisation of microtubules by nocodazole phenocopies APC 

truncation leading to an alteration in intracellular organisation with fragmentation of the Golgi 

complex. Importantly, nocodazole treatment did not alter tissue morphology, suggesting that 

the destabilisation of microtubules only affects cellular organisation. APC is known to bind to 

and stabilise microtubules 60,77,101. I therefore hypothesised that the loss of the C-terminal 

microtubule binding domain in truncated APC contributes to the compromised intracellular 

organisation in APC inactivation. However, I show that the expression of APC containing the 

microtubule binding domain (APC∆Wnt) does not restore the positioning of the Golgi complex 

or the centrosome. In addition, the expression of APC lacking the microtubule binding domain 

(APC∆MT) does not rescue altered cellular organisation, but can restore tissue morphology. 

These results suggest that the loss of the C-terminal domain of APC is not the sole cause of 

compromised intracellular organisation, while the interaction of APC with Wnt pathway 

effectors is sufficient to regulate tissue morphology. The regulation of intracellular 

organisation could involve synergy between the roles of APC in Wnt signalling and microtubule 

regulation. Successful expression of full-length APC in tumoroids would allow me to test this 

possibility. Alternatively, the lack of response of APC∆Wnt could be due to the level of 

expression of the exogenous APC, a criteria not tested in this experiment. In addition, 

expression of APC∆Wnt in an Apc depletion model (Apcfl/fl LSL tdTom organoids) removes the 

uncertainty of whether other mutations or the truncated APC present in tumoroids 

confounded the results.        

 

The role of the microtubule-binding domain of APC has been previously studied in vivo. Two 

independent mouse models (Apc∆SAMP/+ and Apc1638T/1638T) (Figure 1.10) demonstrated that the 

C-terminal domain of APC does not influence the intestinal adenoma development or 

progression 113,114. The Apc∆SAMP/+ model also showed that the expression of the C-terminus of 

APC had no effect on the localisation of APC and EB1 on microtubules 114. The subcellular 

localisation of EB1 was also found unchanged in the Apc1638T/1638T mouse model. Using 

Apc1638T/1638T mouse embryonic fibroblasts, the authors further showed, that β-tubulin 
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distribution remains unchanged when the C-terminal domain of APC is missing 113. The binding 

of EB1 to microtubules independent of APC has been reported previously 61. In addition, it has 

been shown that APC can bind to microtubules upon the deletion of its microtubule binding 

domain, but this decreases its ability to stabilise the microtubules 101. In Chapter 3, I show 

differences in microtubule organisation in ApcMin/+ polyps and tumoroids compared to the 

haplosufficient tissue and wild-type organoids.  Elucidating results from probing for 

microtubules in Apc1638T/1638T fibroblasts needs to be interpreted cautiously owing to the fact 

that there is a difference in the dependence on actin and microtubule cytoskeleton between 

2D fibroblasts and 3D intestinal epithelial cells 177,178. Further, a previous study revealed 

numerical and structural chromosomal aberrations in Apc1638T/1638T embryonic stem (ES) cells 

108. Intriguingly, the authors of another study noted that tumours from Apc1322T/- mice (lacking 

β-catenin and C-terminal domains; Figure 1.10) and Apc∆SAMP/+ mice had no chromosomal 

aberrations indicative of CIN, arguing that the discrepancy in findings is due to blocking 

apoptosis to avoid the clearance of highly unstable ES cells in the  Apc1638T/1638T model 114. The 

authors therefore concluded that the loss of the C-terminal domain of APC could increase the 

tendency to CIN, but is not sufficient to cause it. 

 

Taken together, the role of the microtubule binding domain of APC in the intestinal epithelia 

remains to be fully elucidated. Further experiments with full-length APC and APC∆Wnt 

expression with controlled levels in Apcfl/fl LSL tdTom organoids will be required to determine 

the contribution of the microtubule binding domain to the internal organisation of the 

intestinal epithelial cell.   

4.4.2.2 Tissue morphology 

My results and previous reports establish that APC regulates intestinal epithelial 

morphology—inactivation of the protein or its depletion is sufficient to compromise tissue 

morphology leading to a tumour, or in the case of organoids, into a spheroid 21,41. I show that 

the expression of APC lacking the microtubule binding domain, but with an intact Wnt 

regulatory domain (APC∆MT), in tumoroids is sufficient to convert a spheroid into a budding-

like structure. Not all the tumoroids expressing APC∆MT demonstrated a change in tissue 

morphology, potentially due to the variability in expression levels and/or heterogeneity in the 

expression levels within cells in a tumoroid.  
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The finding that organoids treated with Wnt3a demonstrate compromised epithelial tissue 

morphology and not intracellular organisation suggests a specific role for Wnt pathway target 

gene expression in tissue morphology change. Importantly, I determined that the control of 

tissue morphology was unlikely to be mediated by the Wnt pathway target gene Myc. 

Although the identity of the responsible gene(s) is unknown, I have identified some promising 

candidates. One of these genes is epithelial membrane protein 2 gene (Emp2) that encodes 

for a protein regulating cell membrane composition. Interestingly, an in vitro study on 

polarised Madin-Darby Canine Kidney (MDCK) cells showed that APC regulates spheroid size 

through EMP2 179, suggesting that Emp2 could be a candidate gene for epithelial morphology 

regulation. Further, the Hippo pathway has been shown to be involved in the regulation of 

tissue morphology and there is growing evidence for crosstalk between Hippo and Wnt/β-

catenin signalling 180. 

 

In conclusion, my findings demonstrate that APC regulates tissue morphology via its Wnt 

regulatory domain, most probably involving Wnt pathway activity. Future work will focus on 

identifying the Wnt pathway target gene(s) regulating intestinal epithelial morphology.    

4.4.3 Implications of findings 

APC is commonly mutated in colon cancer, leading to the loss of the central and C-terminal 

domains, regulating the Wnt pathway activity and interacting with the microtubule 

cytoskeleton. As a result, deregulated Wnt pathway promotes uncontrolled proliferation and 

malignant transformation of intestinal epithelia 95, accompanied by altered tissue 

morphology. Defects in the regulation of microtubules by APC may contribute to mitotic 

spindle abnormalities leading to CIN, and potentially fuelling the development of 

adenocarcinoma 108,109,111,112,114,160.  I demonstrate here that the compromised intracellular 

organisation present in early intestinal tumorigenesis is potentially caused by the loss of both 

the central and the C-terminal domain of APC. The disruption of the diverse functions of APC 

may therefore synergistically contribute to tumour progression. Future studies determining 

the relative contributions of APC-Wnt effectors and APC-microtubule interactions to the 

alterations manifested in intestinal tumorigenesis will further unravel the extent to which 

APC’s interaction with the microtubule cytoskeleton acts as a barrier to malignant 

transformation of intestinal epithelia.     



 

 

 

 

 

 

 

 

 

 

Chapter 5: 

Paneth cells in intestinal tumorigenesis 

  



 
103 

 

5.1 Introduction 

Paneth cells of the small intestinal epithelia reside at the base of crypts in intimate contact 

with stem cells. They are distinguished by their pyramidal shape with the apex pointing into 

the lumen of the gut. Within the apical compartment of Paneth cells, vesicles are poised for 

secretion of their contents into the gut lumen. The vesicles are filled with antimicrobials that 

function in host-defence 13. Antibodies raised against lysozyme or fluorescently labelled 

agglutinin (UEA) that binds to the fucose residues on the vesicles, can be used for visualisation 

of these granules by fluorescent microscopy. In Chapters 3 and 4, I show that APC inactivation 

compromises microtubule-regulated cellular organisation; APC deficient Paneth cells lose 

their characteristic pyramidal shape and UEA positive vesicles, normally restricted apically, are 

mislocalised (Figure 3.2). In addition, APC inactivation results in altered tissue morphology 

with loss of the distinct crypt-villus structure in adenoma and tumoroids (Figures 3.1 and 3.6). 

Paneth cells are rigid cells, important for supporting and maintaining stem cells at the stem 

cell niche at the bottom of the crypt 17. It is tempting to speculate that changes to the 

intracellular structure of Paneth cells could alter their intimate interaction with stem cells and 

disrupt crypt homeostasis leading to changes in tissue morphology. There have been limited 

studies addressing the potential for adenomas originating from non-stem cells 29. Given 

changes in the shape and vesicle location in adenoma Paneth cells and their importance in 

maintaining the stem cell niche 15, I hypothesise that APC-dependent maintenance of Paneth 

cell organisation is a barrier to tumorigenesis. 

5.2 Chapter methods 

A detailed description of methods and materials used in this chapter is covered in depth in 

Chapter 2. Below is a brief overview of Materials and Methods specific to this chapter.  

5.2.1 Transduction and transfection of organoids 

Organoids transduced or transfected by electroporation with Paneth cell specific shApc 

constructs were selected with 2 μg/ml puromycin for 7 days or with 150 µg/ml Hygromycin B 

for 7 days, respectively.   
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5.2.2 Live imaging of organoids 

Live imaging of organoids was carried out within AstraZeneca facilities using the YOKOGAWA 

Cell Voyager CV8000 spinning disc confocal microscope in collaboration with Samantha Peel 

and Yinhai Wang. 

5.2.3 Compounds 

In all the experiments, doxycycline was used at 2 μg/ml, unless stated otherwise, and 4- 

hydroxytamoxifen (4-OHT) was used at 1 μM.  

5.3 Results 

5.3.1 Adenoma Paneth cells show defects in cellular organisation 

In addition to labelling the Paneth cell vesicles, Ulex europeus agglutinin-1 (UEA), also stains 

the fucose residues present on the vesicles of goblet cells 181. In order to validate that the 

disruptions in vesicles upon APC loss were specific to Paneth cell granules, I labelled organoids 

and ApcMin/+ tissue for lysozyme that is secreted exclusively by Paneth cells in the intestine 

14. Lysozyme staining of wild-type organoids and normal epithelia displayed the apically 

located vesicles that filled the cytoplasm of a pyramidally shaped cell (Figure 5.1). In tumoroids 

and adenoma tissue, lysozyme staining displayed vesicles that had lost their shape and normal 

positioning in a non-pyramidally-shaped cell (Figure 5. 1). Therefore, the lysozyme staining 

reiterated the pattern seen when UEA-labelling was used, suggesting that APC inactivation 

results in Paneth cell specific loss of shape and altered localisation of vesicles. 
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Figure 5. 1: Dispersed positioning of Paneth cell vesicles in APC inactivation. Confocal optical 

sections from immunofluorescent stains of organoids and tumoroids and the small intestinal 

tissue from ApcMin/+ mouse displaying haplosufficient tissue (ApcMin/+; upper panel) and polyps 

(ApcMin/-; lower panel). Paneth cell vesicles are marked with lysozyme, tight junctions are 

labelled by ZO-1 and DAPI labels nuclei. 

  
 

5.3.2 Human alpha defensin 5 (DEFA5) expression is exclusive to Paneth cells 

To test my hypothesis that APC-dependent maintenance of Paneth cell organisation is tumour 

suppressive, I required a system that allows for controlled transgene expression specific to 

Paneth cells. The 1402 proximal bases of the human defensin 5  gene (DEFA5) 182 has 

previously demonstrated activity in the intestinal epithelium specific to Paneth cells. Thus, I 

generated an inducible lentiviral Tet-On system that is under the control of the DEFA5 

promoter (pLV-DEFA5-GFP) (Figure 5.2 A). In order to determine whether the construct is 

inducible, I transduced human embryonic kidney cells (HEK293T cells) with the Paneth cell 

specific lentiviral construct (pLV-DEFA5-GFP). A low level of GFP expression in doxycycline 

(dox) induced HEK293T cells showed a low activity of the DEFA5 promoter in these cells (Figure 

5.2 B). I therefore carried out a control experiment in which HEK293T cells were transduced 

with both the pLV-DEFA5-GFP construct, as well as a doxycycline-inducible lentiviral construct 
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where the expression of reverse tetracycline-controlled transactivator (rtTA) is under the 

control of the ubiquitously expressed ubiquitin C promoter (pLV-UbC-RFP). UbC driven rtTA 

can thus act on the tetracycline response element (TRE) of the pLV-DEFA5-GFP construct. I 

observed high levels of GFP expression (over 10-fold higher than for pLV-DEFA5-GFP on its 

own) in cells transduced with both viruses upon doxycycline treatment, demonstrating the 

inducibility of the pLV-DEFA5-GFP construct (Figure 5. 2B).    

 

 

Figure 5. 2: Inducibility of the pLV-DEFA5-GFP construct. Paneth cell specific inducible 

lentiviral construct (pLV-DEFA5-GFP) and an inducible construct expressed ubiquitously (pLV-

UbC-RFP) used as a control (A). Transduced HEK293T cells were induced with 2 μg/ml of 

doxycycline for 72 hours (B).   
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Next, to validate the DEFA5 promoter specificity in Paneth cells, I transduced organoids with 

pLV-DEFA5-GFP construct and established a stable line using 2 μg/ml puromycin selection for 

7 days. At 48 hours post doxycycline treatment, organoids displayed GFP expression 

confirming the inducibility of the construct and activity of the human DEFA5 promoter in 

murine-derived organoids (Figure 5.3). To determine DEFA5 promoter specificity, I probed the 

transduced organoids for lysozyme. All GFP positive cells in the organoid crypt were lysozyme 

positive suggesting DEFA5 activity solely in Paneth cells (Figure 5.3).  

 

 

Figure 5. 3: DEFA5 promoter shows specificity to Paneth cells. Confocal optical sections from 

immunofluorescent stains of pLV-DEFA5-GFP organoids. The images are zoomed into the bud 

domain of the organoid. 

 

5.3.3 Paneth cell specific silencing of APC does not trigger a tumoroid  

5.3.3.1 pLV-DEFA5-shAPC 

To determine whether APC-dependent maintenance of Paneth cell organisation is a barrier to 

tumorigenesis, I inserted the functionally-validated shApc sequence (see Chapter 3, Figures 

3.14 and 3.15) into the dox inducible lentiviral pLV-DEFA5-GFP vector, where GFP is a marker 

of shApc expression (pLV-DEFA5-shApc) (Figure 5.5). In a parallel experiment, I cloned the 
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same shApc into an inducible lentiviral vector where the shRNA is under the control of a 

ubiquitously expressed promoter (UbC), detectable by RFP expression (pLV-UbC-shApc) 

(Figure 5.5). Ubiquitous depletion of Apc in organoids converts organoids to tumoroids (see 

Chapter 3, Figure 3.15). I transduced wild-type organoids with the lentiviral constructs, 

followed by antibiotic selection with 2 μg/ml puromycin for 7 days to generate stable lines.  

 

 

Figure 5. 4: Lentiviral system for inducible Paneth cell specific Apc silencing. Doxycyline- 

inducible lentiviral construct for ubiquitous (pLV-UbC-shApc) and Paneth cell specific (pLV-

DEFA5-shApc) Apc silencing. 

 

Doxycycline treatment of organoids stably expressing pLV-UbC-shApc resulted in organoids 

expressing RFP, confirming successful construct integration (Figure 5.5 A). However, the 

expression of RFP was heterogeneous and not all cells expressed RFP within the same 

organoid. In addition, the doxycycline treated pLV-UbC-shApc expressing organoids 

maintained their budding structure. The finding that the ubiquitous silencing of Apc did not 

generate a tumoroid suggests that either the lentiviral delivery of shApc did not lead to high 

enough levels of silencing of Apc, or that the heterogeneous shApc expression affected the 

organoid response. To note, the heterogeneous expression was not inherent to shApc 

induction, as transduction with an empty lentiviral construct lacking shApc (pLV-UbC-RFP) also 

led to organoids with mosaic expression of RFP (Figure 5.5 B). In addition, I tried fluorescence 

activated cell sorting (FACS) to derive ubiquitously expressing organoid lines. However, the 

sorting procedure resulted in low survival of cells and no organoid growth after one week.  

 

Doxycyline treatment of organoids stably expressing pLV-DEFA5-shApc resulted in the 

expression of shApc detectable by GFP. The GFP expressing cells fully overlapped with UEA+ 

cells, demonstrating that the induced shApc was expressed solely in Paneth cells (Figure 5.5 

A). Morphologically, the loss of APC only in Paneth cells did not alter the budding organoid 
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structure. However, owing to the lack of discernible phenotype with ubiquitous expression of 

shApc, the results of the Paneth cell specific silencing cannot be reliably interpreted. 

 

 

Figure 5. 5: Paneth cell specific silencing of Apc using a lentiviral expression system. Confocal 

optical sections from immunofluorescent stains of organoids transduced with pLV-UbC-shApc 

or pLV-DEFA5-shApc and induced with doxycycline for 10 days. UEA and lysozyme label Paneth 

cell vesicles. GFP and RFP signal is detected from endogenously expressed protein (A). 

Organoids transduced with pLV-UbC-RFP show heterogeneous RFP expression upon 

doxycycline addition (2 μg/ml). Organoids were imaged in brightfield (inset) or RFP channel 

using the EVOS imaging system (B). 



 
110 

 

5.3.3.2 pB-DEFA5-shAPC 

Based on my previous success with shApc expression using the piggyBac constructs (Figures 

3.14 and 3.15; pB-shApc, hereafter pB-CAG-shApc), I decided to opt for this system to drive 

Paneth cell specific loss of APC. In this system, the silencing of Apc efficiently leads to a 

tumoroid formation. The pB-DEFA5-shApc construct was designed for constitutive GFP 

expression in all transfected cells, and mCherry expression as a reporter of induced shApc 

expression in Paneth cells (Figure 5.6). 

 

 
Figure 5. 6: PiggyBac transposon system for inducible Paneth cell specific Apc silencing. The 

system is composed of three constructs (transposase not shown). Doxycyline addition induces 

shApc expression in all cells (pB-CAG-shApc) or solely in Paneth cells (pB-DEFA5-shApc), 

detectable by mCherry. In addition, pB-DEFA5-shApc construct expresses ubiquitously 

expressed constitutive GFP. 

  
 
Organoids integrated with pB-CAG-shApc formed spheres upon doxycycline treatment, 

reminiscent of tumoroids (Figure 5.7). In contrast, Paneth cell specific loss of APC in organoids 

integrated with pB-DEFA5-shApc did not alter their morphology upon shApc expression. These 

organoids continued to grow as budding structures upon doxycycline treatment over the 

course of 30 days and 4 passages.  

 

Intriguingly, while expression of mCherry was detectable after 30 days of dox induction in 

control pB-DEFA5-mCherry organoids, organoids transfected with pB-DEFA5-shApc lost the 

expression of mCherry in lysozyme+ cells (Figure 5.8). I conclude that while Paneth cell specific 

loss of APC does not immediately lead to a tumoroid formation, my results suggest that in the 

longer term Apc depletion in Paneth cells is detrimental to organoid growth, and is selected 

against.  
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Figure 5. 7. Paneth cells specific silencing of Apc does not alter tissue morphology. 

Representable images of organoids expressing pB-CAG-shApc or pB-DEFA5-shApc induced for 

10 days with doxycycline (2 μg/ml). Organoids were imaged in brightfield, GFP and RFP 

(mCherry) channel using the EVOS imaging system (A). Quantification of organoid 

morphology. Morphology was scored as “spheres” when no buds were apparent; organoid 

with ≥1 bud was scored as “buds”. Graph represents >60 organoids analysed per condition per 

day (B).    
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Figure 5. 8: Long-term Apc silencing is not tolerated in Paneth cells. Representable images of 

organoids expressing pB-DEFA5-mCherry or pB-DEFA5-shApc induced for 30 days with 

doxycycline (2 μg/ml). Organoids were imaged in brightfield, GFP (inset) and RFP (mCherry) 

channel using the EVOS imaging system (A). Confocal optical sections from 

immunofluorescent stains of the organoids expressing pB-DEFA5-mCherry or pB-DEFA5-shApc 

induced for 30 days with doxycycline (2 μg/ml). Lysozyme labels Paneth cell vesicles. GFP and 

mCherry signal is detected from endogenously expressed protein (B). 
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5.3.3.3 Apcfl/fl -DEFA5-rtTA 

Because shApc expression in Paneth cells was unstable, I designed a system to delete Apc 

specifically in Paneth cells. I used organoids derived from Apcfl/fl LSL tdTom mice that also 

contain the tdTomato fluorescent marker of Cre recombinase activity (Chapter 4, Figure 4.9). 

I created a Paneth cells specific expression system for Cre-ERT2 (pB-DEFA5-Cre-ERT2) and 

integrated it into the Apcfl/fl LSL tdTom organoids (Figure 5.9). I also integrated a construct for 

ubiquitous Cre-ERT2 expression (Chapter 4, Figure 4.10, pB-Cre-ERT2-GFP- hereafter pB-CAG-

Cre-ERT2) into the Apcfl/fl LSL tdTom organoids (Figure 5.9). 

 

 

Figure 5. 9: Inducible Paneth cell specific Apc depletion. PiggyBac constructs designed where 

the rtTA is driving Paneth cell specific Apc depletion (pB-DEFA5-Cre-ERT2), or depletion of Apc 

in all cells (pB-CAG-Cre-ERT2) in Apcfl/fl LSL tdTom organoids.  

 

 

As expected, doxycycline and 4-hydroxytamoxifen (4-OHT) treatment of Apcfl/fl /pB-CAG-Cre-

ERT2 organoids led to the formation of spheroids with dispersed lysozyme vesicles, identical 

to tumoroids, validating the system (Figure 5.10) (Chapter 4, Figure 4.10). The treatment of 

Apcfl/fl /pB-DEFA5-Cre-ERT2 organoids with doxycycline and 4-OHT showed Paneth cell 

specific depletion of APC with tdTomato expression overlapping with lysozyme staining. 

However, after 5 days of treatment there was no change in organoid morphology in          
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Apcfl/fl /pB-DEFA5-Cre-ERT2 organoids (Figure 5.10). Interestingly, the lysozyme vesicles in 

tdTomato+ Paneth cells looked similar to wild-type. These results indicate that APC 

inactivation in Paneth cells does not lead to the formation of a tumoroid. However, I cannot 

conclude that Paneth cells can tolerate APC loss, owing to the appearance of apically localised 

vesicles, a hallmark of functional APC (Chapter 3). 

 

 

Figure 5. 10: Paneth cell specific depletion of Apc does not alter tissue morphology. 

Representable images of confocal optical sections from immunofluorescent stains of Apcfl/fl 

/pB-CAG-Cre-ERT2 and Apcfl/fl /pB-DEFA5-Cre-ERT2 organoids treated for 5 days with 2 μg/ml 

doxycycline and 1 μM 4-OHT. Lysozyme labels Paneth cell vesicles. DAPI labels nuclei. GFP and 

tdTomato signal is detected from endogenously expressed protein.   

 

 

5.3.4 Dynamic imaging of Paneth cells to model epithelial organisation 

In addition to examining the tumour suppressive role of Paneth cells, the Paneth cell specific 

expression system I developed enables studying the formation of the crypt in an organoid. 
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Crypt formation or budding has been shown to initiate in regions with high Paneth cell density 

and Paneth cells are thought to be structurally important for crypt morphology 17,131,183. 

Paneth cell specific expression of GFP allows live tracking of morphological changes such as 

crypt formation or the conversion of organoids to tumoroids. In addition, Paneth cell tracking 

can be used to screen for small molecules or inhibitory RNAs that modulate organoid or 

tumoroid morphologies. 

 

I transduced organoids with the pLV-DEFA5-GFP lentiviral construct that led to constitutive 

GFP expression in Paneth cells. The imaging and analysis of the transduced organoids was 

carried out in collaboration with AstraZeneca (AZ). In collaboration with Samantha Peel in AZ 

imaging facility, I used a spinning disk confocal microscope for live-imaging of organoids for 

72 hours in a 96-well format and optimised it for detection while minimising light toxicity 

(Figure 5.11 A). In collaboration with Yinhai Wang from AZ, we were able to demonstrate that 

a 3-dimensional reconstruction of an organoid at a chosen time point could be used to 

measure the crypt size and shape by measuring the clustering of GFP+ Paneth cells (Figure 5.11 

A inset). Using the established imaging parameters, we were able to track organoids with 

three active lasers without fluorescent bleaching nor organoid death (Figure 5.11). In 

conclusion, the system established a tool for determining the consequence of altering gene 

expression in, or drug treatment of, organoids and tumoroids using cell shape, organisation 

and epithelial morphology as quantitative read-outs.   
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Figure 5. 11: Dynamic imaging of Paneth cells to study epithelial organisation. Snapshots 

from time-lapse imaging of organoids expressing pLV-DEFA5-GFP (A) or pB-DEFA5-mCherry-

CAG-GFP (B) using a spinning disc confocal microscope. An image was taken every hour for 72 

hours with 2 μm Z-stacks through an organoid. Single Paneth cells can be modelled for shape 

and intensity of fluorescence (A, inset). The formation of new buds in an organoid can be 

tracked over time (B, red circles).      

 
 

5.4 Discussion 

Mutational inactivation of APC is sufficient to initiate intestinal epithelial tumorigenesis. In 

Chapter 3, I show that APC loss compromises Paneth cell shape and intracellular organisation. 

I hypothesised that Paneth cells act as intrinsic organisational centres for the intestinal 



 
117 

 

epithelia. Based on my results that demonstrated that APC loss alters epithelial morphology, 

I tested whether Paneth cell specific APC loss was sufficient to initiate intestinal epithelial 

tumorigenesis. Using the DEFA5 proximal promoter, I developed a system for Paneth cell 

specific expression. I show that Paneth cell specific silencing or depletion of Apc does not 

result in tumoroid formation in my experimental systems. This finding suggests that Paneth 

cells are not capable of tumour initiation upon solely the loss of functional APC. In addition, I 

show that DEFA5 promoter can be used as a marker for crypt formation. Since the structure 

of a crypt is lost when APC is inactivated, dynamic imaging of DEFA5-GFP+ organoids can be 

used in the future for targeted drug screens and genetic studies using organoid morphology 

as a phenotypic read-out. 

 

5.4.1 DEFA5 as a Paneth cell specific marker 

I validate a sequence of  the DEFA5 gene 182 as a promoter specific to mouse Paneth cells in 

vitro. Previous studies have used different mouse knock-in lines to track or manipulate Paneth 

cells in vivo 7,184. Mouse Lyz1 locus that encodes a Paneth cell specific lysozyme was used to 

create a targeted allele replacing the coding region for Lyz1 with the coding region for Cre 

recombinase fused to estrogen receptor (ER) to generate the Lyz1CreER/+; Rosa26-EYFP 

(enhanced yellow fluorescent protein) mouse 184. Tamoxifen administration labelled Paneth 

cells with EYFP and it was shown that 100 % of EYFP+ cells were positive for endogenous 

lysozyme, suggesting the allele was Paneth cell specific. However, the authors reported that 

Cre activation led to recombination in only 9 % of Paneth cells, as detected by fluorescence, 

showing control of only a small proportion of Paneth cells. In addition, a mouse Paneth cell 

specific cryptidin-4 locus,  α-Defensin 4 (Defa4), was used to create a Defa4Cre; Rosa26-tdTom 

(tandem dimer Tomato) mouse where Paneth cells were labelled with tdTom 7. The authors 

showed that tdTom expression co-localised with lysozyme, validating Paneth cell specificity. 

While the knock-in mouse lines using Lyz1 and Defa4 loci for Paneth cell specificity are useful 

for in vivo studies and manipulation, the DEFA5 promoter sequence I have validated allows 

for unprecedented Paneth cell specific manipulation of transgene and gene expression in 

vitro.  
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5.4.2 Paneth cells in the initiation of intestinal tumorigenesis 

Transformed intestinal stem cells  have long been thought to be the origin of colorectal cancer 

28. However, as more studies are showing plasticity within the intestinal epithelial cells, the 

paradigm has started to shift towards potentially other sources of tumour initiating cells for 

origin of initiation of tumorigenesis 29,185. Paneth cells have long been considered as terminally 

differentiated 15; however, recent reports indicate that upon insult like an injury or 

inflammation, precursors to cells of the secretory lineage and mature Paneth cells can acquire 

stem-like features 5,7,9,184. While studies have looked at the potential of adenoma formation 

upon APC loss in differentiated villus cells and transit amplifying cells 29, no studies had 

investigated the role of Paneth cells as tumour initiating cells at the beginning of my study. 

The finding that Paneth cells are not able to initiate tumorigenesis upon solely the loss of APC 

was recently confirmed by a study using the Defa4Cre mouse (see above) for Paneth cell 

specific inactivation of APC 7. Using a mouse model of Paneth cell specific biallelic APC 

inactivation, Defa4Cre; Apcfl/fl, the authors showed that the mice were healthy with no 

apparent adenomas, and survived beyond 5 months. Intriguingly, the study demonstrated 

that global activation of Notch signalling in these mice was sufficient for the formation of 

severely dysplastic crypts and adenomas, concluding that Notch activation had transformed 

Defa4+ cells into stem/progenitor-like cells capable of forming an adenoma. The findings from 

my study and others therefore suggest that solely loss of APC in a Paneth cell is not enough to 

initiate tumorigenesis, however simultaneous activation of Notch pathway and subsequent 

de-differentiation of Paneth cells results in adenoma formation. Interestingly, it has been 

shown that radiation increases Notch pathway activity 184, suggesting that during radiation, 

when fast-cycling Lgr5+ stem cells are eliminated 186, APC deficient Paneth cells contribute to 

adenoma formation. 

 

While the loss of APC in Paneth cells does not initiate tumorigenesis, my results show that 

there is a selective advantage of maintaining APC expression in Paneth cells. Organoids 

expressing shApc exclusively in Paneth cells detectable by mCherry expression show a loss of 

mCherry expression within 30 days in culture. This finding is not the result of loss of stably 

expressing organoid clones, as constitutively expressed GFP in these organoids was still 

evident. In addition, organoids expressing a control construct lacking shApc maintained 

mCherry expression after 30 days in culture. Therefore, there appears to be a selective 
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disadvantage of activating the Wnt pathway with APC loss in Paneth cells. This is not without 

precedent, as a recent study has found that Paneth cell specific constitutive expression of β-

catenin leads to loss of fluorescence that marks the Paneth cells 184. The authors used the Lyz1 

locus for Paneth cell specificity and created a knock-in mouse line where β-catenin becomes 

constitutively active upon tamoxifen addition solely in Paneth cells detectable by tdTom 

(Lyz1CreER/+; Rosa26-tdTom; β-catenin ex3fl/fl). It was shown that while there was no detectable 

epithelial hyperplasia or adenoma, 3 months after tamoxifen administration there were no 

remaining tdTom+ Paneth cells in the mouse intestine. Together, the data indicates that 

Paneth cells cannot tolerate high levels of Wnt pathway activity and more moderate levels are 

critical for the normal functioning of Paneth cells. Future studies, titrating levels of Apc 

depletion by shApc will determine why high levels of Wnt pathway activity specifically ablate 

Paneth cells. 

5.4.3 Use of DEFA5 promoter to track organoid budding as a phenotypic read-out              

It is believed that Paneth cells are responsible for establishing a crypt. Organoid budding (crypt 

formation) has been modelled computationally and demonstrates that crypts form in areas 

rich in Paneth cells 131,183. Paneth cells are thought to be more stiff compared to neighbouring 

stem cells and therefore are suggested to be responsible for determining the site of the crypt 

formation 17. A recent study found that transient cell-to-cell variable intrinsic YAP1 expression 

and subsequent Notch signalling drives the localised formation of a Paneth cell leading to crypt 

formation 187. The crypt structure is lost in APC inactivation as seen in tumoroids lacking crypt-

like structures (buds) and in adenoma tissue. Therefore, variables around crypt formation (eg 

the time of formation; number, width and length of the crypt) can be used as a phenotypic 

read-out to test compounds that target intestinal tumorigenesis. I have developed assay 

parameters to track budding of organoids with fluorescently labelled Paneth cells to mark the 

crypt. The system builds on a previous study that used time-lapse imaging of organoids treated 

with various pharmacological inhibitors 188. In this study, resolution was limited to 

perturbation in the epithelial monolayer and individual cells or crypt structure were not 

reliably identifiable. The established assay can be useful in the future to interrogate a focussed 

library of compounds that target cytoskeletal components for their ability to attenuate the 

intraconversion of organoids to tumoroids.   
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5.4.4 Implications of findings  

In this study, I found that, while APC loss in the intestinal epithelia leads to tumoroids replete 

with APC-deficient Paneth cells, specific APC loss exclusive to Paneth cells is not tolerated. 

These two results are at odds with each other, and indicate added layers of complexity in the 

regulation of the intestinal epithelial stem cell niche—likely involving additional signalling 

pathways and cell-cell crosstalk. It will be important to establish novel ways in which to 

examine this phenomenon in detail, in order to fully understand intestinal epithelial 

homeostasis.    



 

 

 

 

 

 

 

 

 

 

Chapter 6: 

Conclusion and Future Perspectives 
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6.1 Conclusion 

APC is an important signalling node controlling homeostasis in the intestinal epithelium. The 

various interaction domains within APC mediate the diverse biological roles of this protein. In 

my study, I utilised tissue samples and organoids from different mouse models and developed 

various genetically modified organoid systems to study the consequence of the loss of APC’s 

C-terminal domains in intestinal tumorigenesis. I show that, via its binding domain to Wnt 

effectors, APC regulates epithelial tissue morphology. Intriguingly, I demonstrate that the Wnt 

target gene Myc is not the main mediator of this effector role of APC. Further, I reveal a novel 

role of APC in regulating intracellular organisation in the intestinal epithelia. I show that 

inhibition of microtubule polymerisation phenocopies the compromised intracellular 

organisation with APC deficiency, indicating a link between defective microtubule 

cytoskeleton and loss of APC. Future studies into sufficiency of the microtubule binding 

domain of APC in intracellular organisation will elucidate domain-specific roles of APC further. 

Finally, I demonstrate that the loss of APC in a stem cell supporting cell, identifiable by a 

distinct cellular morphology—the Paneth cell—does not compromise tissue morphology, a 

key characteristic of intestinal epithelial tumorigenesis.  

6.2 Future perspectives 

While the results of my study have expanded on the previous knowledge about the role of 

APC in the intestinal epithelial homeostasis, they have also created new questions:   

6.2.1 Why is APC loss not tolerated in Paneth cells? 

Using organoid to tumoroid intraconversion as a metric, I show that solely the loss of APC 

exclusively in Paneth cells does not initiate tumorigenesis. However, I demonstrate that over 

a course of 30 days Paneth cells lose the expression of shApc. Future experiments tracking 

Apcfl/fl /pB-DEFA5-Cre-ERT2 organoids over a longer time-point than 5 days currently studied 

will further validate whether there is a selective disadvantage for Paneth cells lacking APC. 

Uncovering the specific role(s) of APC in Paneth cells will be a critical first step. Given the 

findings in Chapter 3 and 4 showing that APC regulates intracellular organisation, it will be 

important to study the organisation of microtubules and localisation of organelles at early 

time-points in APC deficient Paneth cells.  
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6.2.2 What are the relative contributions of the interaction domains of APC to its effector 

roles in intestinal tumorigenesis? 

Most tumorigenic Apc mutations simultaneously abrogate the interaction of APC with Wnt 

effectors and the microtubule binding domain, making it difficult to separate these roles 

experimentally. I show that mutational inactivation or depletion of Apc in the intestine leads 

to altered tissue morphology and compromised intracellular organisation. My findings from 

the sufficiency experiments indicate that the interaction domains of APC with Wnt effectors 

regulate tissue morphology and this is uncoupled from the regulation of intracellular 

organisation. The failure to express full-length APC in tumoroids makes it difficult to reliably 

interpret data from the expression of the APC mutant constructs. Moreover, tumoroids may 

have been derived from cells that have incurred additional mutations that impact epithelial 

tissue morphology and intracellular organisation. I have therefore opted to make use of 

conditional Apc inactivation using Apc flox (Apcfl/fl LSL tdTom) organoids. The major limitation 

to this system is that the levels of expressed APC proteins may vary, and this may affect the 

phenotypic outcome. This limitation may be overcome using a CRISPR /Cas9 technology to 

precisely modify the Apc gene for the expression of the mutant constructs.   

6.2.3 What is the role of compromised microtubule cytoskeleton in tumorigenesis?  

The results of my study reveal a novel role of APC in the intestine in regulating the positioning 

of organelles such as the Golgi complex, centrosome and Paneth cell vesicles. Organelle 

positioning is specifically regulated by microtubules and nocodazole treatment to inhibit 

microtubule polymerisation results in altered positioning of the Golgi complex. It is therefore 

tempting to speculate that compromised intracellular organisation is a surrogate for 

misregulated microtubule cytoskeleton.  

 

My studies do not establish whether the compromised microtubule cytoskeleton is a 

bystander consequence of APC mutations or whether it contributes to tumorigenesis. Changes 

in microtubule stability and organisation affect cellular adhesion and migration and could thus 

promote epithelial-to-mesenchymal transition (EMT) present in many tumours and crucial for 

metastasis 189. Microtubules form the mitotic spindle and defects in microtubule regulation 

may impair chromosome segregation leading to chromosomal instability (CIN). While the role 

of APC loss in CIN and whether CIN is a cause or consequence of colon cancer remains 
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controversial 112,190, any alterations in microtubules would predictably lead to defects in the 

mitotic spindle affecting the normal functioning of the cell. Microtubules are involved in 

protein trafficking and defects in their stability and organisation could alter the trafficking of 

proteins involved in pro-survival and pro-apoptotic pathways in a cell. Intriguingly, a study has 

demonstrated the presence of a primary cilia in colon 191. Cilia are microtubule-based 

organelles involved in cell-cell communication, signalling and cell division and loss of cilia has 

been described in colon tumorigenesis 191,192. Therefore, given the multitude of roles for 

microtubules in homeostasis, functional defects in them could provide a cell an ability to 

survive and proliferate uncontrollably, and potentially invade into other tissues. 

 

In addition, it would be intriguing to examine tumours in other tissues to determine whether 

altered microtubule cytoskeleton could be a general hallmark of epithelial tumorigenesis. Loss 

of apical-basal (AB) polarity  in early stages of tumour progression in breast tissue has been 

reported 193. Given that microtubules play a key role in establishing AB polarity 97, it would be 

intriguing to examine the status of intracellular organisation in breast tumours. There are 

several tumour suppressor genes including RASFF1A (Ras association domain family 1 isoform 

A) and VHL (Von-Hippel-Lindau) that are associated with the development of various tumour 

types and have been reported to interact with microtubules 194. Studying the intracellular 

organisation of these tumours would further elucidate whether microtubule changes are a 

general characteristic of epithelial tumours.      

6.3 Concluding remarks 

The results of my study reveal a novel role for APC in the intestinal epithelia in the 

maintenance of the microtubule cytoskeleton, intracellular organisation and epithelial tissue 

morphology. Future experiments will reveal the domain(s) required for APC’s regulation of 

intracellular organisation and demonstrate to what extent the loss of its microtubule-binding 

domain contributes to the compromised intracellular organisation in intestinal tumorigenesis. 

Ultimately, it will be useful to determine whether molecular control over these APC functions 

can be exploited therapeutically or diagnostically to target intestinal epithelial cancers.   
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Appendix 

Plasmid maps as detailed in Table 2.8 and used in this study produced using SnapGene 

software.  
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