
COMPARATIVE GENOMICS

One for all
Using a common analysis pipeline to compare data from three major

lineages of complex eukaryotes reveals that transcription seems to

evolve at a common rate.

DUNCAN T ODOM

T
here is an old saying in computational

circles that researchers in bioinformatics

would rather use someone else’s tooth-

brush than use someone else’s code. One exam-

ple of this adage being true can be seen in

previous attempts to compare the rates at which

differences in the mechanisms that control DNA

accumulate in different species and lineages.

The information contained in DNA is first

accessed by dedicated proteins called transcrip-

tion factors (TF) that bind to preferred sequence

of bases in the DNA. This sequence is typically

short, between 8 and 20 bases in length

(Vaquerizas et al., 2009), although some can be

as long as 35 bases (Filippova et al., 1996).

After transcription factor binding has taken

place, the basal transcription machinery and its

associated complexes open the region’s chro-

matin and begin transcribing DNA into RNA.

These crude transcripts must undergo extensive

processing and maturation before they can be

exported to the cytoplasm as mature messenger

RNA (mRNA). Understanding the rate at which

all these steps (notably transcription factor bind-

ing and the production of mRNA) change during

evolution is a long-standing goal in genetics

(Wray, 2007; Wittkopp and Kalay, 2012).

Technically, it is (relatively) easy to map all

the contacts between the transcription factors

and the DNA, and also to map all the mRNA

molecules, in a biological sample using high-

throughput sequencing technologies. A number

of research groups have compared the amount

of transcription factor binding in many species

of flies and mammals (He et al., 2011;

Paris et al., 2013; Schmidt et al., 2010;

Ballester et al., 2014). Based on this work it

seemed as if transcription factor binding

evolved rapidly in mammalian tissues

(Weirauch and Hughes, 2010), but only very

slowly in fruit flies (He et al., 2011). However, it

can be difficult to compare the first results gen-

erated in an entirely novel field of study because

different groups often use very different

approaches. And in this case this difficulty is fur-

ther compounded by the toothbrush issue.

Now, in eLife, Trey Ideker and colleagues at

the University of California San Diego – including

Anne-Ruxandra Carvunis, Tina Wang and Dylan

Skola as joint first authors – report that they

used a new analysis pipeline to study the raw

data for more than 25 species of complex eukar-

yotes across three animal lineages (mammals,

birds and insects) that previously had only been

studied in isolation (Carvunis et al., 2015). In

other words, they have cleaned everyone’s teeth

with the same toothbrush. Moreover, their pipe-

line could be tweaked to vary the analysis

parameters for all the datasets across three
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lineages at once, thus allowing them to make

like-with-like comparisons.

This intellectual scrubbing resulted in two

major insights. First, it appears that transcription

factor binding (which dictates the function of the

genome) and mRNA both evolve at a shared

(and perhaps even fundamental) rate in complex

eukaryotes. This result is somewhat surprising

since most evolutionary geneticists think that the

mechanisms that influence genome or functional

evolution for the lineages studied by Carvunis

et al. are radically different.

Second, particularly in mammals, the evolu-

tion of the genome sequence en masse is much

more rapid than the evolution of transcription

factor binding and transcription. This disconnect

may be linked to the instability of the large num-

ber largely-silent repeat elements in mammalian

genomes, and/or to the fact that insects and

birds have more stable genomes.

Moreover, Carvunis et al. have powerfully

demonstrated why it is important for all of us in

the functional genomics community to meticu-

lously curate our raw data and to make it readily

available for others to analyse. None of the

insights reported in this work would have been

possible without easy access to carefully anno-

tated sequencing reads from the original

studies.
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