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Abstract 49 

Breast cancer is the most common cancer among American women and a major cause 50 

of mortality. To identify metabolic pathways as potential targets to treat metastatic 51 

breast cancer, we performed metabolomics profiling on breast cancer cell line MDA-MB-52 

231 and its tissue-tropic metastatic subclones. Here, we report that these subclones 53 

with increased metastatic potential display an altered metabolic profile compared to the 54 

parental population. In particular, the mitochondrial serine and one-carbon (1C) unit 55 

pathway is upregulated in metastatic subclones. Mechanistically, the mitochondrial 56 

serine and 1C unit pathway drives the faster proliferation of subclones through 57 

enhanced de novo purine biosynthesis. Inhibition of the first rate-limiting enzyme of the 58 

mitochondrial serine and 1C unit pathway, serine hydroxymethyltransferase (SHMT2), 59 

potently suppresses proliferation of metastatic subclones in culture and impairs growth 60 

of lung metastatic subclones at both primary and metastatic sites in mice. Some human 61 

breast cancers exhibit a significant association between the expression of genes in the 62 

mitochondrial serine and 1C unit pathway with disease outcome and higher expression 63 

of SHMT2 in metastatic tumor tissue compared to primary tumors. In addition to breast 64 

cancer, a few other cancer types, such as adrenocortical carcinoma (ACC) and kidney 65 

chromophobe cell carcinoma (KICH), also display increased SHMT2 expression during 66 

disease progression. Together, these results suggest that mitochondrial serine and 1C 67 

unit plays an important role in promoting cancer progression, particularly in late stage 68 

cancer.  69 
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Implications: This study identifies mitochondrial serine and 1C unit metabolism as an 70 

important pathway during the progression of a subset of human breast cancers. 71 

 72 

 73 

74 
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Introduction 75 

The majority of breast cancer patients die from metastatic disease. The process of 76 

cancer metastasis involves local invasion into surrounding tissue, dissemination into the 77 

bloodstream, extravasation, and eventual colonization of a new tissue. Following a 78 

period of dormancy, small numbers of micrometastases eventually proliferate into large 79 

macrometastases, or secondary tumors.  80 

Previous studies have illuminated several themes of metabolic reprogramming 81 

that occur during metastasis (1–8). However, the majority of these reported site-specific 82 

metabolic features of metastatic cancer cells. We reason that breast cancer cells that 83 

leave the primary tumor and successfully establish new lesions at distal sites would 84 

encounter similar metabolic stresses during metastasis. By performing comparative 85 

metabolomics on the MDA-MB-231 human breast cancer cell line and its tissue-tropic 86 

metastatic subclones, we uncovered that the catabolism of the non-essential amino acid 87 

serine through the mitochondrial one-carbon (1C) unit pathway is an important driver of 88 

proliferation in a subset of metastatic breast cancers that closely resembles the 89 

molecular features of MDA-MB-231 cells. Emerging evidence shows that the non-90 

essential amino acid serine is essential for cancer cell survival and proliferation. The 91 

genomic regions containing PHGDH are amplified in breast cancer and melanoma, 92 

diverting 3PG to serine synthesis (9,10). We also reported that PHGDH is upregulated 93 

upon amino acid starvation by the transcription factor ATF4 (11). On one hand, serine 94 

serves as a precursor for the synthesis of protein, lipids, nucleotides and other amino 95 

acids, which are necessary for cell division and growth. On the other hand, serine 96 

catabolism through the mitochondrial 1C unit pathway is critical for maintaining cellular 97 
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redox control under stress conditions (12,13). In mitochondria, serine catabolism is 98 

initiated by serine hydroxymethyltransferase 2 (SHMT2). SHMT2 catalyzes a reversible 99 

reaction converting serine to glycine, with concurrent generation of the 1C unit donor 100 

methylene-THF, which is further oxidized by downstream enzymes MTHFD2 and 101 

MTHFD1L to produce NAD(P)H and formate. Subsequent export of formate from the 102 

mitochondria can then be re-assimilated into the cytosolic folate pool to support 103 

anabolic reactions. All three mitochondrial serine and 1C unit pathway enzymes 104 

(SHMT2, MTHFD2 and MTHFD1L) are upregulated in breast tumor samples compared 105 

to normal tissues (13,14). However, due to lack of functional investigations targeting this 106 

pathway in in vitro and in vivo breast cancer models, it remains unclear whether the 107 

mitochondrial 1C unit pathway represents a good target for treating metastatic breast 108 

cancer. 109 

In this study, we report that enzymes in the mitochondrial serine and 1C unit 110 

pathway are even further upregulated specifically in subclones of the aggressive breast 111 

cancer cell line MDA-MB-231 that have been selected in vivo for the ability to 112 

preferentially metastasize to specific organs. We demonstrate that SHMT2 inhibition 113 

suppresses proliferation more strongly in these highly metastatic subclones compared 114 

to the parental population in vitro. Knockdown of SHMT2 also impairs breast cancer 115 

growth in vivo at both the primary and metastatic sites. In addition, we find that the 116 

expression of mitochondrial 1C unit pathway enzymes significantly associates with poor 117 

disease outcome in a subset of human breast cancer patients, potentiating its role as a 118 

therapeutic target or biomarker in advanced cancer. Finally, SHMT2 expression 119 

increases in breast invasive carcinoma, adrenocortical carcinoma, chromophobe 120 
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renal cell carcinoma and papillary renal cell carcinoma during tumor progression, 121 

particularly in late stage tumors, suggesting that inhibitors targeting SHMT2 may hold 122 

promise for treating these late stage cancers when other therapeutic options become 123 

limited. 124 

 125 

Materials and Methods 126 

Cell lines  127 

All of the paired parental and metastatic subclones were generated in Dr. Joan 128 

Massagué’s laboratory (Memorial Sloan-Kettering Cancer Center) (15–17). Cells were 129 

cultured in DMEM/F12 with 10% fetal bovine serum (Sigma) with 1% 130 

penicillin/streptomycin. All cells lines were tested every three to six months and found 131 

negative for mycoplasma (MycoAlert Mycoplasma Detection Kit; Lonza). These cell 132 

lines were not authenticated by the authors. All cell lines used in experiments were 133 

passaged no more than ten times from time of thawing. 134 

RNAi 135 

Stable 831-BrM,1833-BoM, and 4175-LM cell lines expressing shRNA against SHMT2, 136 

MTHFD2, and c-Myc were generated through infection with lentivirus and 1 μg/mL 137 

puromycin selection. shRNA-expressing virus was obtained using a previously 138 

published method (13). Pooled populations were tested for on-target knockdown by 139 

immunoblot.  140 

Immunoblot 141 

The following antibodies were used: SHMT1, SHMT2 (Sigma), MTHFD2, MTHFD1L, c-142 

Myc, Actin (Cell Signaling Technologies). 143 
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RNA Isolation, Reverse Transcription, and Real-Time PCR 144 

Total RNA was isolated from tissue culture plates according to the TRIzol Reagant 145 

(Invitrogen) protocol. 3 μg of total RNA was used in the reverse transcription reaction 146 

using the SuperScript III (Invitrogen) protocol. Quantitative PCR amplification was 147 

performed on the Prism 7900 Sequence Detection System (Applied Biosystems) using 148 

Taqman Gene Expression Assays (Applied Biosystems). Gene expression data were 149 

normalized to 18S rRNA.  150 

In vivo Tumor Growth Assays 151 

All procedures involving animals and their care were approved by the Institutional 152 

Animal Care and Use Committee of Stanford University in accordance with institutional 153 

and National Institutes of Health guidelines. For orthotopic growth studies, 4175-LM 154 

shNT and 4175-LM shSHMT2 cells (1 x 106 cells in 0.1 mL of PBS, n = 8 per group) 155 

were injected into the flanks of NU/J 10-week-old female mice (The Jackson 156 

Laboratory). Tumors were measured with calipers over a 50-day time course. Volumes 157 

were calculated using the formula width2 x length x 0.5. 158 

 For lung metastasis assays, 4175-LM shNT and 4175-LM shSHMT2 cells (0.2 x 159 

105 cells, n = 8 per group) were injected via tail vein into 6-8 week-old female NOD 160 

SCID mice. Mice were imaged weekly using the Xenogen IVIS 200 (PerkinElmer, 161 

Waltham, MA). Briefly, mice were injected intraperitoneally with 100 µg/g of D-luciferin 162 

(potassium salt; PerkinElmer) on the day of imaging. 8 min later, mice were 163 

anesthetized in an anesthesia-induction chamber using a mixture of 3% isoflurane 164 

(Fluriso, VetOne) in O2. Anesthesia was maintained with a mixture of 2% isoflurane in 165 

O2 inside the imaging chamber. Using Living Image (PerkinElmer, Waltham, MA), 166 
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images were acquired (Exposure time, auto; F stop. 1.2; Binning, medium) from both 167 

dorsal and ventral sides of mice and a total photon flux (p/sec/cm2/sr) per animal was 168 

calculated by averaging the signal acquired from the dorsal and ventral side. After 4 169 

weeks, surviving mice were sacrificed and lungs snap frozen in liquid N2 prior to 170 

homogenization in TRIzol for RNA extraction. 171 

Metabolite Profiling and Mass Spectrometry  172 

For total metabolite analysis, parental and metastatic cell lines were seeded in 60mm 173 

culture dishes in DMEM/F12 supplemented with 10% dialyzed fetal bovine serum. 174 

Media was refreshed 2 hours prior to harvesting by washing 3x with PBS before 175 

quenching with 800mL of -80 C 80:20 methanol:water. Extracts were spun down, 176 

supernatants collected, dried and resuspended in water before LC-MS analysis. 177 

Samples were analyzed by reversed-phase ion-pairing chromatography coupled with 178 

negative-mode electrospray-ionization high-resolution MS on a stand-alone 179 

ThermoElectron Exactive orbitrap mass spectrometer (18). Peak picking and 180 

quantification were conducted using MAVEN analysis software. Heatmap was 181 

generated in R. Multiple testing correction and q-value generation were performed in 182 

PRISM software (GraphPad). 183 

For [2,3,3-2H]serine labeling experiments, parental and metastatic cells were 184 

cultured in RPMI medium lacking glucose, serine, and glycine (TEKnova) supplemented 185 

with 2 g/L glucose and 0.03 g/L [2,3,3-2H]serine (Cambridge Isotope Laboratories) for 186 

up to 24 hours before harvesting. Cells were washed twice with ice-cold PBS prior to 187 

extraction with 400 μL of 80:20 acetonitrile:water over ice for 15 min. Cells were 188 

scraped off plates to be collected with supernatants, sonicated for 30s, then spun down 189 
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at 1.5 x 104 RPM for 10 min. 200 μL of supernatant was taken out for LC-MS/MS 190 

analysis immediately.  191 

Quantitative LC-ESI-MS/MS analysis of [2,3,3-2H]serine-labeled cell extracts was 192 

performed using an Agilent 1290 UHPLC system equipped with an Agilent 6545 Q-TOF 193 

mass spectrometer (Santa Clara, CA, US). A hydrophilic interaction chromatography 194 

method (HILIC) with an BEH amide column (100 x 2.1 mm i.d., 1.7 μm; Waters) was 195 

used for compound separation at 35 °C with a flow rate of 0.3ml/min. The mobile phase 196 

A consisted of 25 mM ammonium acetate and 25mM ammonium hydroxide in water and 197 

mobile phase B was acetonitrile. The gradient elution was 0–1 min, 85 % B; 1–12 min, 198 

85 % B → 65 % B; 12– 12.2 min, 65 % B-40%B; 12.2-15 min, 40%B. After the gradient, 199 

the column was re-equilibrated at 85%B for 5min. The overall runtime was 20 min and 200 

the injection volume was 5 μL. Agilent Q-TOF was operated in negative mode and the 201 

relevant parameters were as listed: ion spray voltage, 3500 V; nozzle voltage, 1000 V; 202 

fragmentor voltage, 125 V; drying gas flow, 11 L/min; capillary temperature, 325 °C, 203 

drying gas temperature, 350 °C; and nebulizer pressure, 40 psi. A full scan range was 204 

set at 50 to 1600 (m/z). The reference masses were 119.0363 and 980.0164. The 205 

acquisition rate was 2 spectra/s. Isotopologues extraction was performed in Agilent 206 

Profinder B.08.00 (Agilent Technologies). Retention time (RT) of each metabolite was 207 

determined by authentic standards (Supplementary Table S1). The mass tolerance was 208 

set to +/-15 ppm and RT tolerance was +/- 0.2 min. Natural isotope abundance was 209 

corrected using Agilent Profinder software (Agilent Technologies). 210 

Cell Line Classification 211 
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Cell line expression and copy number data were downloaded from the COSMIC cell line 212 

dataset (https://cancer.sanger.ac.uk/cell_lines), and all cell lines were classified using 213 

different cell line classifiers, including PAM50 and scmod2 using the package genefu 214 

from Bioconductor; and iC10 using package iC10 (19–22). The MDA-MB-231 parental 215 

and metastatic subclones were classified as Basal (posterior probability of 0.516), ER-216 

Her2- (posterior probability of 0.997), IC4 (posterior probability of 0.999). 217 

Outcome Analysis 218 

METABRIC clinical and expression data was downloaded from EGA 219 

(EGAS00000000083) (21). Outcome analysis was performed in IC4 samples only 220 

(N=342) in order to mimic the phenotype of the MDA-MB-231 breast cancer cell line. 221 

Survival analysis was performed over disease specific survival (DSS) censored to 20 222 

years. Gene high/low categorization was performed using the maxstat algorithm, which 223 

determines the optimal threshold for separating high and low expression (from the surv 224 

cutpoint function of package survminer). Cox Proportional Hazard multivariate models 225 

use continuous expression adjusted by age, grade, size, number of lymph nodes, ER, 226 

PR and Her2 status. Kaplan-Meier plots were generated using the package survcomp, 227 

and Cox Proportional Hazards were generated using the package rms.   228 

Immunohistochemical Staining and Quantification for SHMT2 229 

Human primary breast cancer tissue and paired lymph node metastases were obtained 230 

from Biomax.us. Tumors were graded by Biomax.us pathologists according to the 231 

Nottingham grading system with respect to degree of glandular duct formation, nuclear 232 

pleomorphism, and nuclear fission counting. Each feature was scored from 1-3, and the 233 

total score was used to determine the following grades: Grade 1 (total score 3-5; low 234 
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grade or well differentiated), Grade 2 (total score 6-7; intermediate grade or moderately 235 

differentiated), Grade 3 (total score 8-9; high grade or poorly differentiated). Standard 236 

immunohistochemical methods were performed as previously described (23). The 237 

primary anti-human SHMT2 antibody (Sigma) was used at a concentration of 1:3000. 238 

Images were acquired on a Leica DMi8 system (Leica Microsystems) and quantified for 239 

positive SHMT2 signal intensity by ImageJ software.  240 

SHMT2 Expression Analysis by Individual Cancer Stage 241 

SHMT2 expression data across every annotated TCGA cancer data set was queried 242 

and downloaded from the UALCAN database (http://ualcan.path.uab.edu/index.html) 243 

(24). 244 

Statistical Analyses 245 

All statistical tests were performed using the paired or unpaired Student’s t test by 246 

PRISM software. Values with a p value of < 0.05 were considered significant.  247 

Results 248 

Metastatic breast cancer cells exhibit altered metabolic profiles 249 

To identify common metabolic pathways reprogrammed in metastatic breast cancer 250 

cells during cancer progression, we performed metabolomic profiling of the human triple 251 

negative breast cancer cell line MDA-MB-231 and its metastatic subpopulations (Fig. 1A 252 

and B). This cell line was derived from the pleural effusion of a patient with widespread 253 

metastatic disease years after primary tumor removal (25), and the subclones of this 254 

cell line with higher metastasis rate and preference to the bone, lung, or brain were 255 

previously isolated by in vivo selection (15–17) (831-BrM: brain metastasis. 1833-BoM: 256 

bone metastasis. 4175-LM: lung metastasis).   257 

http://ualcan.path.uab.edu/index.html
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At the time of initial metabolomics comparison, the lung metastatic subclone 258 

4175-LM did not recover well in culture, so we profiled the 831-BrM and 1833-BoM 259 

metastatic subclones along with the parental population. We observed multiple 260 

metabolites involved in a plethora of metabolic pathways that were differentially 261 

enriched or depleted in the metastatic 831-BrM and 1833-BoM subclones compared to 262 

the parental population of MDA-MB-231 (231-Parental) cells (Fig. 1B). Following 263 

correction for false discovery rate, the levels of twenty-four metabolites were 264 

significantly altered in both 831-BrM and 1833-BoM cells compared to 231-Parental 265 

cells (Supplementary Table S2). Metabolites significantly enriched in metastatic 266 

subclones included the glycolytic intermediate dihydroxyacetone-phosphate (which is 267 

reversibly isomerized to glyceraldehyde-3-phosphate), the tricarboxylic acid (TCA) cycle 268 

intermediate succinate, amino acids such as proline and asparagine, and the pentose-269 

phosphate pathway product 5-phosphoribosyl-1-pyrophosphate. These observations 270 

are consistent with prior observations of perturbations in lower glycolysis and the TCA 271 

cycle observed in other cell line models (notably murine 4T1 cells), suggesting common 272 

metabolic developments during metastasis of breast cancers in both mice and humans 273 

(1–3,5,6). Additionally, enrichment of asparagine has been reported to promote 274 

metastatic cancer cell phenotypes by epithelial-to-mesenchymal transition (8). 275 

Nonetheless, the most significantly depleted class of metabolites in 831-BrM and 1833-276 

BoM cells compared to 231-Parental cells were free purine nucleotides, suggesting 277 

alterations in purine metabolism in metastatic cells (Fig. 1B).  278 

c-Myc is important for breast cancer cell proliferation 279 
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We wondered whether reduced levels of purines reflected decreased synthesis or 280 

higher consumption in the metastatic subclones. Because it was previously reported 281 

that the oncogenic transcription factor c-Myc induces the expression of nucleotide 282 

biosynthesis genes and that c-Myc amplification and overexpression is a common event 283 

in triple-negative breast cancer (26–28), we wondered if the relative differences in 284 

purine abundance could be explained by altered c-Myc protein levels in our cell line 285 

system. Indeed, 831-BrM, 1833-BoM, and 4175-LM cells overexpressed c-Myc 286 

compared to 231-Parental cells (Fig. 2A). Since sufficiency of free nucleotides can act 287 

as an important checkpoint for cell division (29), we then compared the proliferation 288 

rates of parental and metastatic subclones. Accordingly, 831-BrM, 1833-BoM, and 289 

4175-LM cells proliferated faster than 231-Parental cells in vitro (Fig. 2B), suggesting 290 

that the higher consumption rate is the cause of lower purine levels in the metastatic 291 

subclones. 292 

Because the role of c-Myc in metastasis is still unclear, with evidence suggesting 293 

it plays both pro-metastatic and anti-metastatic functions in breast cancer depending on 294 

the genetic context (30,31), we tested the sensitivity of parental and metastatic 295 

subclones to c-Myc inhibition. Small hairpin RNA (shRNA)–mediated knockdown of c-296 

Myc reduced cell proliferation in all four cell lines, although the degree of inhibition was 297 

stronger in 831-BrM and 1833-BoM cells (Fig. 2C, Supplementary Fig. S1). Parental 298 

cells expressing a non-targeting shRNA showed elevated c-Myc expression, possibly 299 

due to puromycin selection. These data suggest that c-Myc is an important mediator of 300 

cell proliferation, and c-Myc overexpression provided a proliferative advantage at least 301 

in brain and bone-metastatic subclones.  302 
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Identification of serine and one-carbon unit pathway elevation in metastatic 303 

subclones 304 

The products of several metabolic pathways feed into nucleotide synthesis, including 305 

ribulose-5-phosphate from the pentose phosphate pathway, and one-carbon (1C) units 306 

and glycine from the serine and 1C unit pathway. It is also known that c-Myc can 307 

promote the expression of serine and glycine metabolism genes in cancer cells (32,33). 308 

We performed expression analyses of the metastatic subclones and found elevated 309 

levels of the key mitochondrial enzymes serine hydroxymethyltransferase 2 (SHMT2), 310 

methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), and methylenetetrahydrofolate 311 

dehydrogenase 1-like (MTHFD1L), in contrast to the downregulated expression of the 312 

cytosolic isoenzyme serine hydroxymethyltransferase 1 (SHMT1) (Fig. 3A-C). 313 

Consistent with previous reports in other cell types, knockdown of c-Myc in parental and 314 

metastatic breast cancer subclones diminished MTHFD2 and MTHFD1L protein 315 

expression, suggesting these enzymes are c-Myc-regulated (Supplementary Fig. S1). 316 

SHMT2 expression did not reduce upon c-Myc knockdown, suggesting that SHMT2 317 

expression was regulated by other transcription factors. To determine whether c-Myc 318 

and mitochondrial 1C unit pathway enzyme overexpression was a common co-319 

occurrence in other cancer metastasis models, we checked protein expression levels in 320 

the parental and metastatic subpopulations of other human cell line systems derived 321 

from lung adenocarcinoma or ER+ breast carcinoma patients (34,35). There was a clear 322 

correlation of SHMT2, MTHFD2, and MTHFD1L expression with c-Myc expression 323 

among all the cell lines tested. The brain metastatic subclones of lung adnocacinoma 324 

cell lines PC9 and H2030 had increased MTHFD2 expression, though we could not find 325 
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another system that also displayed overexpression of c-Myc and all the three 326 

mitochondrial 1C unit pathway enzymes in metastatic subclones relative to their 327 

corresponding parental cells (Supplementary Fig. S2). Taken together with the 328 

observations of higher serine and glycine levels in 831-BrM and 1833-BoM cells 329 

compared to 231-Parental cells (Fig. 1B), these data suggest that the role of c-Myc in 330 

regulating mitochondrial serine and 1C unit metabolism in metastatic cancer may be 331 

tissue-specific. 332 

Metastatic subclones display increased mitochondrial serine and one-carbon unit 333 

pathway activity 334 

We next asked if higher expression of mitochondrial serine and 1C unit pathway 335 

enzymes might indeed reflect higher pathway activity. Serine can be catabolized in both 336 

the mitochondrial and cytosolic branch of the 1C unit pathway. Since cancer cells 337 

predominately express the mitochondrial serine catabolic enzymes over the cytosolic 338 

enzymes, serine is generally catabolized in the mitochondria in cancer cells (13,14,36). 339 

Serine hydroxyl-methyltransferase 2 (SHMT2) initiates this reaction by converting serine 340 

to glycine while donating a carbon group to tetrahydrafolate (THF) to generate 341 

methylene-THF. Subsequent oxidation of methylene-THF by MTHFD2 and MTHFD1L 342 

generates NAD(P)H and formate. Formate can cross the mitochondrial membrane to 343 

provide 1C units for anabolic reactions such as nucleotide synthesis (37).  344 

We hypothesized that the reason metastatic cells upregulate the serine and 1C 345 

unit pathway is to enhance nucleotide synthesis to fuel cell proliferation. Indeed, most 346 

cancer cells have been reported to utilize serine as the predominant source of 1C units 347 

for biosynthesis (38). We performed [2,3,3-2H]serine tracing to examine 1C unit pathway 348 
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flux to glycine and purine nucleotides. In cells grown in media containing [2,3,3-349 

2H]serine, the cytosolic pathway generates methylene-THF (me-THF) mass heavy by 2 350 

(M+2) and 10-formyl-THF mass heavy by 1 (M+1), while 10-formyl-THF derived from 351 

mitochondrial formate exchange to the cytosol is strictly M+1.  [2,3,3-2H]serine labeling 352 

onto the metabolites glycine and purine nucleotide triphosphates produced from the 353 

mitochondrial pathway thereby produces glycine M+1 and purines either M+1 or M+2 354 

(Fig. 3D). Time course experiments were performed in 4175-LM cells to determine the 355 

optimal steady state labeling conditions for glycine and ATP from serine: 2 hours and 24 356 

hours respectively (Supplementary Fig. S3). We observed higher SHMT flux in 357 

metastatic subclones, as the relative abundance of M+1 glycine was approximately 1.5-358 

fold higher in 4175-LM cells compared to 231-Parental cells, indicating that higher 359 

purine turnover in metastatic cells was fueled by higher SHMT flux (Fig. 3E). Importantly, 360 

while robust fractions of ATP and GTP were labeled in parental cells, the metastatic 361 

subclones displayed even higher labeling fractions from serine (Fig. 3F). These results 362 

demonstrate that upregulation of serine catabolism through the mitochondrial 1C unit 363 

pathway promotes de novo purine synthesis in metastatic breast cancer cells.  364 

Serine catabolism is necessary for metastatic cancer cell proliferation in vitro 365 

To address the extent to which mitochondrial serine catabolism is necessary for cell 366 

proliferation, 231-Parental, 831-BrM, 1833-BoM, and 4175-LM cells were infected with 367 

lentivirus expressing shRNAs against SHMT2 (shSHMT2) or a nontargeting control 368 

(shNT). Intriguingly, knockdown of SHMT2 protein expression with two different shRNAs 369 

drastically suppressed proliferation of the metastatic subclones significantly, with a 370 

reduced effect in 231-Parental cells (Fig. 4A and B). In contrast, knockdown of the 371 
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downstream enzyme of the mitochondrial serine and 1C unit pathway, MTHFD2, 372 

suppressed proliferation to a lesser extent (Supplementary Fig. S4A and B). To 373 

evaluate the therapeutic potential of targeting 1C unit metabolism to block metastatic 374 

growth, we treated cells with a small-molecule inhibitor of SHMT called SHIN1 (39). In 375 

vitro, metastatic subclones were sensitive to SHIN1 with an EC50 in the 100-500 nM 376 

range (Supplementary Fig. S5). There was no obvious enhancement of SHIN1 377 

sensitivity in 831-BrM, 1833-BoM, and 4175-LM cells compared to 231-Parental cells, 378 

possibly because SHIN1 inhibits both SHMT2 and SHMT1 (Fig. 4C). Importantly, 379 

inhibition of cell proliferation in the presence of SHIN1 could be rescued by the 380 

supplementation of formate (2 mM), a source of cellular 1C units (Fig. 4C). These 381 

results indicate that the major role of elevated mitochondrial serine catabolism is to 382 

generate 1C units for cytosolic purine biosynthesis in the metastatic subclones. Thus, 383 

targeting SHMT activity may be a promising way to restrict nucleotide availability to 384 

block metastatic breast cancer cell proliferation. 385 

SHMT2 knockdown impairs primary and metastatic growth in vivo 386 

We then interrogated the effect of reducing mitochondrial 1C unit pathway activity in two 387 

different models of cancer growth in vivo. 4175-LM cells were chosen due to the relative 388 

ease of monitoring, measuring, and collecting tissue from lung metastasis compared to 389 

brain and bone metastasis. For the first model, we monitored breast cancer growth at 390 

the primary tumor site. SHMT2 knockdown significantly impaired the growth of 4175-LM 391 

cells in the mammary fat pads of immunodeficient mice (Fig. 4D, Supplementary Fig. 392 

S6). For the second model, we induced breast cancer metastasis to the lung by 393 

intravenous tail vein injection. Because 4175-LM cells express firefly luciferase (16), we 394 
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tracked tumor growth in the lung by bioluminescence imaging (BLI). Both BLI and 395 

quantification of human GAPDH (hGAPDH) expression from resected mouse lungs 396 

revealed a roughly two-fold reduction of lung tumor burden in mice injected with 397 

shSHMT2 cells compared to shNT cells (Fig. 4E and F, Supplementary Fig. S7A). While 398 

on average, shSHMT2 tumors had reduced human SHMT2 (hSHMT2) expression 399 

compared to shNT tumors, some shSHMT2 tumors appeared to have reacquired 400 

hSHMT2 expression (Supplementary Fig. S7B and C). These data suggest that SHMT2 401 

is necessary for metastatic growth in vivo.  402 

Mitochondrial serine and 1C unit pathway genes are associated with more 403 

aggressive metastatic disease in some human breast cancer patients 404 

To further explore the relevancy of mitochondrial one-carbon unit metabolism in human 405 

breast cancer metastasis, we examined the expression of SHMT1, SHMT2, MTHFD2, 406 

and MTHFD1L in the METABRIC dataset of human breast cancer patients (21). We 407 

retrospectively inferred metastatic recurrence in patients by examining the frequency of 408 

disease-specific survival (DSS) up to 20 years. Patients were separated into two groups 409 

based on the maxstat algorithm (see Materials and Methods). Patients with high SHMT2 410 

expression were significantly more likely to succumb to metastatic recurrent disease, 411 

while patients with high expression of the cytosolic isozyme SHMT1 were significantly 412 

protected from metastatic relapse (Fig. 5A, Supplementary Fig. S8). Using three 413 

different breast cancer subtype clustering analyses based on gene expression (PAM50, 414 

IC10, SCMOD2), we classified the MDA-MB-231 cell line as basal, IC4 (copy number 415 

flat), and ER-Her2- (20,21). We have previously described IC4 as consisting of a mixture 416 

of ER- tumors with lymphocytic infiltration and ER+ tumors with abundant stroma. 417 
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Accordingly, further analysis of the IC4 patient subgroup following adjustment for 418 

covariates of age, grade, size, number of lymph nodes, ER, PR and Her2 status 419 

revealed a significant association of MTHFD1, MTHFD1L, MTHFD2, and SHMT2 420 

expression with worse survival and SHMT1 expression with better survival (Fig. 5B). 421 

Finally, we stained a tissue microarray panel of human breast invasive ductal carcinoma 422 

and matched lymph node metastases and found significantly higher expression of 423 

SHMT2 in metastatic cancer cells comparing to the primary tumors (Fig. 5C and D). 424 

Together, these data suggest that SHMT2 and other mitochondrial 1C unit pathway 425 

enzymes may be used as prognostic markers that indicate worse patient outcome, while 426 

cytosolic SHMT1 expression may indicate better survival rate in the IC4 patient 427 

subgroup. 428 

Relevance of SHMT2 expression in the progression and aggressiveness of other 429 

cancer types 430 

To evaluate the contribution of mitochondrial 1C unit metabolism to the progression of 431 

other cancer types, we queried SHMT2 expression in TCGA datasets through the 432 

UALCAN portal (24). In addition to breast invasive carcinoma (BRCA), we identified 433 

adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), 434 

kidney chromophobe cell carcinoma (KICH), and kidney renal papillary cell carcinoma 435 

(KIRP) as cancer types in which SHMT2 expression progressively increased as a 436 

function of stage (Fig. 6). Notably, gain of SHMT2 expression in BRCA and HNSC 437 

tended to occur early on in cancer progression, whereas in KICH, SHMT2 upregulation 438 

may occur only during the very late stage. A few cancer types such as mesothelioma 439 

(MESO) and ovarian serous cystadenocarcinoma (OV) showed the opposite trend: a 440 
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progressive loss of SHMT2 expression with increasing cancer stage (Supplementary 441 

Fig. 9). Collectively, these data present the possibility that there exist additional cancer 442 

types in which mitochondrial 1C unit metabolism promotes progression and 443 

aggressiveness. 444 

Discussion 445 

For breast cancer, common metastatic sites include the brain, bone, liver, and lung. At 446 

the cellular level, the original heterogeneous population of cancer cells from the primary 447 

tumor undergo a selection process whereby those clones with alterations (carrying both 448 

genetic lesions and epigenetic modifications) favoring fitness and plasticity are enriched. 449 

These adaptations, in turn, equip cells with the ability to withstand standard treatments 450 

such as chemotherapy and radiation therapy, ultimately leading to cancer progression 451 

and metastatic recurrence (40). While many previous studies have elucidated a role for 452 

molecular processes such as epithelial to mesenchymal transition and invasion and 453 

migration of cancer cells, our understanding of how metabolic pathway alterations 454 

shape metastatic growth is still limited. It is important to note that the MDA-MB-231 cells 455 

we studied were isolated from a pleural population that already metastasizes well in vivo. 456 

Our metabolomics profiling of the even more highly metastatic triple-negative breast 457 

cancer subclones suggested alterations in both glycolysis and the TCA cycle during the 458 

late stages of cancer progression, consistent with findings from other groups of 459 

heightened mitochondrial metabolism in metastatic cells (2,3,5,6). We further 460 

discovered elevated catabolism of serine in the mitochondria of our metastatic 461 

subclones. A previous study in isogenic murine 4T1 breast cancer cell lines found that 462 

transformed cells showed higher levels of nucleotides than nontransformed cells, and 463 
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that “more metastatic” lines had even more nucleotides than “less metastatic” ones (1). 464 

In contrast, we found lower levels of free purines in metastatic variants of human MDA-465 

MB-231 cell lines compared to the parental population (Fig. 1B).  This discrepancy may 466 

be attributed to different oncogenic contexts in 4T1 cells versus MDA-MB-231 cells or 467 

inherent differences in purine metabolism between murine and human cells. Due to the 468 

difficulty of obtaining pure metastatic tumor tissue from in vivo studies, the metabolomic 469 

analysis were performed using established cell lines in vitro. Microenvironmental factors 470 

from metastatic niche, such as hypoxia and nutrient starvation, also regulate cancer cell 471 

metabolism. Since mitochondrial 1C unit metabolism can utilize both NAD+ and NADP+, 472 

cancer cells with upregulation of mitochondrial 1C unit metabolism may gain metabolic 473 

flexibility to sustain proliferation under stress conditions. When cells engage active 474 

respiration, the mitochondrial 1C unit pathway can utilize NAD+ to generate 1C units; 475 

under hypoxia or starvation conditions, when the NAD+/NADH ratio decreases, elevated 476 

mitochondrial ROS leads to an increased NADP+/NADPH ratio, which can also drive the 477 

1C unit pathway and purine synthesis.  Further investigations comparing the metabolic 478 

profile changes under these stress conditions may provide more insight into potential 479 

links between metabolic stresses and the evolution of metastatic cancer cells. 480 

The role of serine in cancer growth has drawn increasing interest over the years 481 

ever since the identification of PHGDH amplifications in melanoma and breast cancer 482 

(9,10). A variety of mechanisms have been proposed to explain why increased serine 483 

synthesis and serine catabolism could promote tumorigenesis, including rerouting 484 

glucose carbon flux, maintenance of compartment-specific NAD(P)+/NAD(P)H ratios, 485 

and the control of metabolites such as acetyl-coA, α-ketoglutarate, or 2-486 
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hydroxyglutarate (12,41,42). Moreover, a previous study had implicated SHMT2 and a 487 

neutral amino acid importer of serine and glycine (ASCT2) as prognostic biomarkers for 488 

breast cancer (43). Our study is the first to directly evaluate the therapeutic potential of 489 

targeting SHMT2 in metastatic breast cancer using both genetic and pharmaceutical 490 

approaches. Intriguingly, genetic knockdown of SHMT2 strongly inhibited the 491 

proliferation of metastatic cells, while treatment with a dual SHMT1/SHMT2 inhibitor 492 

suppressed proliferation of both parental and metastatic subclones. This discrepancy 493 

may be explained by prior observations that while MDA-MB-231 cells preferentially 494 

utilize the mitochondrial pathway for 1C unit production, inhibition of individual 495 

mitochondrial enzymes can lead to a switch to the cytosolic pathway (36). We thus 496 

speculate that 231-Parental cells may be more adept at switching to cytosolic serine 497 

catabolism, and for reasons still unclear, the metastatic subclones are less flexible.  498 

Consistent with observations in colon cancer xenografts (36), SHMT2 knockdown in the 499 

lung metastatic subclone slowed, but not completely suppressed, tumor growth in the 500 

mammary fat pad and lung. In addition, we found that in the IC4 subset of human breast 501 

cancer patients, the expression of mitochondrial one-carbon unit enzymes is positively 502 

associated with more aggressive disease. Thus, interrogating the expression status of 503 

mitochondrial one-carbon unit enzymes through transcriptional or proteomic methods 504 

holds prognostic value in the metastatic setting, and warrants the need for further 505 

development of drugs that selectively inhibit serine catabolism for treating the 506 

metastasis of triple-negative breast cancer.   507 

 What causes the upregulation of mitochondrial serine catabolic flux in highly 508 

metastatic cancer cells? We provide evidence that a crucial oncogenic event promotes 509 
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the ability of metastatic breast cancer subclones to catabolize serine faster than 510 

parental cells: c-Myc activation. c-Myc overexpression is known to be associated with 511 

up to 40% of breast cancers, with hyperactive c-Myc enriched particularly in the basal-512 

like subtype (27,44). These observations are consistent with our findings of the MDA-513 

MB-231 cell line as basal-like and its metastatic subclones expressing even higher 514 

levels of c-Myc than the parental population (Fig. 2A). We found that c-Myc was 515 

required for the maintenance of the mitochondrial serine and 1C unit pathway genes 516 

MTHFD2 and MTHFD1L, consistent with previous reports that c-Myc supports 517 

serine/glycine metabolism at the transcriptional level in other cell types (32,33). These 518 

results suggest a model for breast cancer metastasis in which a small fraction of c-519 

Mychigh expressing cells from the primary tumor acquire the ability to upregulate serine 520 

catabolism to fuel growth in metastatic tissue sites. Alternatively, high c-Myc expression 521 

and the linked ability to upregulate serine catabolism may be intrinsic properties of 522 

stem-like metastasis-initiating cells that are enriched in breast cancer cell populations 523 

selected for high metastatic activity in mice. As one of the key oncogenic transcription 524 

factors, there is increasing evidence that c-Myc plays multiple roles during the 525 

metastatic process. c-Myc knockdown reduces invasion and migration of MDA-MB-231 526 

cells (30).  Moreover, a recent study corroborated our findings of elevated c-Myc levels 527 

in brain-metastatic derivatives of human breast cancer cells and demonstrated its 528 

necessity for the invasive growth of brain metastases (45). Our study highlights the role 529 

of c-Myc in enhancing 1C unit pathway activity and proliferation, which is also important 530 

for metastatic growth. Since SHMT2 expression was not reduced by c-Myc shRNA, it is 531 

likely that other tumor-promoting factors, such as ATF4 and NRF2, also play important 532 
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roles in late stage cancer progression by modulating 1C unit metabolism. Intriguingly, a 533 

recent report showed that TGF-β signaling induces the expression of SHMT2 (46). 534 

Given the critical role of TGF-β in promoting metastasis (47,48), it may be interesting to 535 

further investigate whether serine and 1C unit pathway metabolic reprogramming is 536 

controlled by TGF-ß signaling in metastatic subpopulations of human breast cancer 537 

cells.  538 
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Figure Legends 686 

Figure 1. Metastatic breast cancer subclones display an altered metabolic profile. (A) 687 

Schematic of targeted metabolomics workflow. Brain (831-BrM), bone (1833-BoM), and 688 

lung (4175-LM) metastatic subclones from tissue-tropic subpopulations were generated 689 

following IV injection of a parental population of MDA-MB-231 (231-Parental) cells into 690 

the tail vein or heart. Stable cell lines were passaged in culture prior to metabolite 691 

extraction for LC-MS/MS. (B) LC-MS profile of the 231-Parental, 831-BrM, and 1833-692 

BoM cell lines. Cell lines were plated in biological triplicates prior to metabolite 693 
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extraction. Signals were normalized to the mean signal of each metabolite across all 694 

samples, log2 transformed, and clustered.  695 

Figure 2. c-Myc drives proliferation in metastatic breast cancer cell subclones. (A) IB for 696 

c-Myc from whole-cell extracts of parental and metastatic subclones. (B) Proliferation of 697 

parental cells and metastatic subclones over 3 days (mean ± SD, n = 3). (C) 3 day 698 

proliferation of 231-Parental, 831-BrM, 1833-BoM, and 4175-LM cells expressing either 699 

a nontargeting (shNT) or c-Myc targeting (shMyc) vectors. (mean ± SD, n = 3). 700 

Figure 3. The mitochondrial serine and one-carbon unit pathway is upregulated in 701 

metastatic breast cancer subclones. (A) Schematic of the cytosolic and mitochondrial 702 

serine and one-carbon unit pathway. (B) qPCR for serine and one-carbon unit pathway 703 

genes (mean ± SD, n = 3, *P < 0.05 **P < 0.01 ***P < 0.001 ****P < 0.0001 by two-tailed 704 

Student’s t test, compared to expression in parental cells). (C) IB for serine and one-705 

carbon unit pathway enzymes from whole-cell extracts of parental cells and metastatic 706 

subclones. (D) Schematic diagram of incorporation of 2H (D) from [2,3,3-2H]serine onto 707 

glycine, one-carbon units, and purines. (E) SHMT flux estimated by relative abundance 708 

of labeled glycine from serine (mean ± SD, n = 3, **P < 0.01 by two-tailed Student’s t 709 

test). (F) Fractional labeling of [2,3,3-2H]serine onto GTP and ATP (mean ± SD, n = 3, 710 

*P < 0.05 **P < 0.01 ***P < 0.001 by two-tailed Student’s t test). 711 

Figure 4. Metastatic subclones are particularly sensitive to SHMT2 inhibition. (A) 3 day 712 

proliferation of 231-Parental, 831-BrM,1833-BoM, and 4175-LM cells expressing either 713 

a nontargeting (shNT) or SHMT2 targeting (shSHMT2) vectors. Relative proliferation 714 

was calculated relative to average proliferation of shNT cells (mean ± SD, n = 3). (B) IB 715 

for SHMT2 in parental and metastatic subclones. (C) 3 day proliferation of parental and 716 
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metastatic cells with 2 μM SHIN1, in RPMI with or without 2 mM formate and dialyzed 717 

FBS (mean ± SD, n = 3, ***P < 0.001 ****P < 0.0001 by two-tailed Student’s t test). 718 

Counts were normalized to the proliferation of 231-Parental cells in media without 719 

SHIN1 and formate treatment. (D) Growth of 4175-LM shNT and shSHMT2 tumors in 720 

the mammary fat pad of nude mice (mean ± SEM, n = 8, **P < 0.01 by two-tailed 721 

Student’s t test). (E) Quantification of luminescence signal in the lungs of mice 3 weeks 722 

post injection of either 4175-LM shNT or shSHMT2 cells (mean ± SEM, **P < 0.01 by 723 

two-tailed Student’s t test, shNT;n = 8 shSHMT2;n = 7). (F) qPCR analysis of hGAPDH 724 

expression in the lungs of mice 4 weeks post injection of either 4175-LM shNT or 725 

shSHMT2 cells (mean ± SEM, *P < 0.05 by two-tailed Student’s t test, shNT;n = 6 726 

shSHMT2;n = 7). 727 

Figure 5. Mitochondrial serine and one-carbon unit pathway enzyme expression 728 

correlates with poor survival in human breast cancer. (A) Kaplan-Meier plot for SHMT1 729 

(left) and SHMT2 (right) expression associated with disease-specific survival (DSS) in 730 

the human IC4 patient subgroup (METABRIC). (B) Forest plot for the hazard of 731 

individual 1C unit pathway genes adjusted for covariates (age, grade, size, number 732 

of lymph nodes, ER, PR and Her2 status) in the IC4 subgroup (n=343). (C) 733 

Representative SHMT2 staining (at 40x) of human breast invasive ductal carcinoma and 734 

matched metastatic carcinoma tissue samples (LN = lymph node). (D) Quantification of 735 

SHMT2 intensity by IHC in metastatic lesions compared to primary tumors (mean ± SD, 736 

n = 33 per group, *P < 0.05 by two-tailed Student’s t test).  737 

Figure 6. SHMT2 expression increases with stage in various cancers. Box plots 738 

depicting the average expression level (transcripts per million) of SHMT2 in normal 739 
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tissue (N) and as a function of cancer stage (stage 1 = S1; stage 2 = S2; stage 3 = S4; 740 

stage 4 = S4). Statistically significant differences between pairwise comparisons are 741 

highlighted in red. Abbreviations for cancer types are explained as follows: ACC 742 

(adrenocortical carcinoma), BRCA (breast invasive carcinoma), HNSCC (head and neck 743 

squamous cell carcinoma), KICH (kidney chromophobe carcinoma), KIRP (kidney renal 744 

papillary cell carcinoma).  745 

 746 
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Figure 2. c-Myc drives proliferation in metastatic breast cancer subclones. 
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Figure 3. The mitochondrial serine and one-carbon unit pathway is upregulated in metastatic 
breast cancer subclones.   
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Li et al., Figure 4   
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Figure 4. Metastatic subclones are particularly sensitive to SHMT2 inhibition.
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Li et al., Figure 6   
Figure 6. SHMT2 expression increases with stage in various cancers.
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