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We present a simple model for geophysical systems involv-
ing sources of deformation, such as magmatic intrusions,
supraglacial lakes, and the subsurface storage of CO2. We
consider the idealised system of a uniform elastic layer over-
lying a localised region of constant pressure that is sur-
rounded by a Winkler foundation composed of springs. We
investigate the effect of source depth and foundation stiff-
ness on the resulting displacement profiles at both the sur-
face and the level of the source. The system is characterised
by three key features: the maximum uplift, the maximum sub-
sidence, and the distance to the point of zero displacement.
For each of these we determine asymptotic scaling behaviour
in the limits of a thin/thick layer and a soft/stiff foundation
and form composite curves that allow specific parameter val-
ues to be determined from field data. Both two-dimensional
and axisymmetric pressure patches are considered, and in
the thin-layer limit we derive analytical solutions.

1 Introduction
There is a wide range of geophysical settings (for ex-

ample volcanoes, glaciers, and geological CO2 storage in
aquifers) in which geodetic data can reveal details of the dy-
namical deformation of the subsurface environment and the
processes involved. The development of geodetic measure-
ment techniques such as InSAR and GPS has allowed the de-
formations associated with these geophysical processes to be
scrutinised in more detail, leading to a better understanding
of the source that causes these deformations [1, 2].
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These processes often produce a characteristic deforma-
tion profile that has a localised region of prominent uplift
followed by a region of subsidence (see Fig.1b) that is remi-
niscent of the deflection produced by a bending beam over a
soft medium, and distinct from the monotonic decay that is
typical of a beam deforming over a rigid surface. This char-
acteristic profile can be seen in the development of Uturuncu
volcano in Bolivia [3] and as a result of supraglacial lake
drainage in the Bindschadler Ice Stream in the West Antarc-
tic Ice Sheet [4], for example.

In these settings, the deformation is typically the result
of the build-up of pressure in some finite region below the
surface (for example magma chambers, subglacial lakes, and
injected CO2 plumes). In order to forecast the system’s fu-
ture development, as well as understand its historical devel-
opment, it is important to know the characteristics of this
pressurised region - its size, its shape, its strength, and its
depth - as well as the deformability of the surrounding ma-
terial, both the overlying elastic material and the substrate.
As direct interrogation of these regions is not possible, these
characteristics must be inferred from remote geodetic sens-
ing. We thus want to understand how each of these aspects
of the physical setting affects the deformation profiles that
result from these processes.

To do so, we use a simplified model of the material
above the pressure source as an elastic beam supported by
a Winkler foundation outside the pressurised region, from
which we can calculate the deformation produced at the free
surface above. In the ‘thin layer’ case, i.e. where the ra-
dius of the source is much larger than its depth and resulting
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deformations are small compared to the source depth, this
system can be approximated by a bending beam, with a well-
known analytical solution [5]. To be able to study a variety
of source types we extend our model beyond this to include
larger depth-to-radius ratios. In this paper, we focus on how
the deformation profile depends upon the relative depth of
the source and the ‘stiffness’ of the surrounding foundation.
This allows us to study how the characteristics of the defor-
mation profile depend on these parameters, and approximate
this dependence using simple polynomial expressions. This
significantly simplifies the inverse problem of determining
these parameter values from observational data, reducing it
from a complex PDE inversion to a simpler polynomial one.

Deformation due to isolated sources has previously been
investigated and modelled in a variety of different ways,
for example as an isolated source within an elastic halfs-
pace [6–9] or for subglacial lakes and floating ice shelves
using viscous or elastic ice rheologies [10–12]. The two
most relevant to our present study are: the ‘Penny-shaped
Crack’ model of Fialko et al. [6] for a similar finite pres-
sure patch within a uniform elastic halfspace, with which we
will directly compare our results; and the ‘free-soft’ ice-shelf
model of Sayag and Worster [11] in which the grounded por-
tion of the ice is modelled as a bending beam over a Winkler
foundation, with which qualitative and analytical analogies
can be drawn.

The outline of the paper is as follows. In §2 we con-
sider the response of a finite elastic sheet, resting on a Win-
kler foundation, to a localised pressure source, and then in
§3 discuss the mathematical analysis for this model and how
we numerically solve for the surface deformation. We dis-
cuss the results for the 2D problem in §4.1 and for the ax-
isymmetric problem in §4.2. In §5 we present the analytical
solution in the thin-layer, bending beam limit. In §6 we dis-
cuss the results of our model, and finally in §7 we draw our
conclusions.

2 Problem Setup
We consider the vertical displacement, w, within a two-

dimensional elastic layer under gravity due to a composite
pressure distribution applied at the base. We take the layer to
have thickness h in the z direction (in the direction of gravity)
and be infinite in the x direction (perpendicular to gravity);
in the three-dimensional, axisymmetric case, the horizontal
direction is described by the radial coordinate r. The layer
has density ρ, shear modulus µ, and Poisson’s ratio ν. The
pressure distribution p is applied at z = h, and consists of a
constant pressure patch around the centre of width 2R and
strength P, and a Winkler pressure condition outside this re-
gion with Winkler modulus K. This setup is shown in Fig.
1a.

3 Mathematical Model
We now derive the relationship between the displace-

ment u = (u,w) within the layer and the forces acting upon

(a)

(b)

max
{
ws

}

min
{
ws

}
x0
s

Fig. 1: The half-profile of the deformed elastic layer. (a) The
pressure distribution applied to the base of the layer, with the
colour denoting the amount of vertical displacement within
the layer from our COMSOL simulations (b) The character-
istic features of the displacement profile.

it. The analysis presented here can be readily extended from
two dimensions to three dimensions.

For our problem, the pressure in excess of that support-
ing the weight of the layer, pe = p−ρgh, can be expressed
as

pe =

{
Pe |x| ≤ R
Kwb |x|> R

= PeTR (x)+Kwb (x) [1−TR (x)] ,

(1)
where Pe = P− ρgh is the imposed excess pressure, wb is
the vertical displacement at the base (z = h), and TR (x) is the
top-hat function defined to be 1 for |x| < R and zero other-
wise. Our aim is to determine the vertical displacements of
the base, wb, and the surface, ws, as functions of x, h, and K.

On the base of the layer, at z = h, we impose the pres-
sure distribution described above as well as zero traction. On
the surface, at z = 0, we impose zero stress. As |x| → ∞ we
impose that all deformation of the elastic medium decays to
zero. Finally, at x = 0 the shear stress µ(∂w/∂x) is automati-
cally zero by symmetry.

To determine the relationship between pressure and dis-
placement for an elastic layer of finite thickness in the verti-
cal direction and infinite extent in the horizontal, we perform
a similar analysis to that of Lu et al. [13], who considered a
related problem but look for a solution that is axisymmetric
with a no-displacement boundary condition rather than one
of no-stress. The general theory of Boussinesq-Papkovich-
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Neuber potential functions comes from Mindlin [14].
When the elastic medium is in equilibrium, its stress ten-

sor σi j is related to the body forces Fi acting on the layer via
the momentum equation

σi j, j +Fi = 0 . (2)

The linear constitutive relation between the stress tensor σi j
and the strain tensor εi j = (ui, j + u j,i)/2 can be written in
terms of the displacement as

σi j = µ
(

2ν

1−2ν
δi juk,k +ui, j +u j, i

)
, (3)

where µ is the layer’s shear modulus and ν its Poisson’s ratio.
This allows us to express (2) in the form

∇
2u+

1
(1−2ν)

∇(∇ ·u) =−1
µ

F . (4)

By Helmholtz’s Theorem, u can be decomposed as u=∇φ+
∇∧H with ∇ ·H = 0.1

Equation (4) then becomes µ∇2B =−F, where

B = α∇φ+∇∧H , (5)

and α = 2(1−ν)/(1−2ν). By considering the divergence
of B, we can express φ as φ = (x ·B+β)/2α, where β obeys
µ∇2β = x ·F. Equation (4) can thus be rewritten in terms of
the potentials B and β as

µ∇
2B =−F , (6)

µ∇
2
β = x ·F , (7)

u = B− 1
4(1−ν)

∇(x ·B+β) . (8)

For the problem at hand, the only body force acting on
the elastic layer is gravity (F = ρgẑ), while the appropriate
boundary conditions are

σxz = σzz = 0 on z = 0 , (9)
σxz = 0 , σzz =−p(x) on z = h . (10)

Since there are no forces acting in the x direction, we set
Bx = 0. By writing Bz = B̂z−ρgz2/2µ and β = β̂+ρgz3/6µ
we can transform to an equivalent problem that is free from
body forces F,

∇
2B̂z = ∇

2
β̂ = 0 . (11)

1This is strictly applicable to three dimensions, i.e. u = (u,v,w). For our
two-dimensional problem there is no variation in the y-direction so we set
v = 0.

Here the only change to the boundary conditions (9) is that p
is replaced by the effective pressure pe = p−ρgh. We now
take w to be the vertical displacement of the layer measured
from its equilibrium state when compressed by gravity, and
h the thickness of the layer in this state.

We solve these Laplace equations by Fourier transform-
ing x 7→ kx,

f̃ (kx) =
∫

∞

−∞

f (x)e−ikxx dx , (12)

and expressing the transform of β̂ in the form

β̃(kx,z) = a0 (kx)sinh k̄z+b0 (kx)cosh k̄z , (13)

where k̄ =
√

k2
x = |kx| for real kx, with a similar expression

for B̃z in terms of coefficients a1 and b1. For variations in
two horizontal dimensions, x and y, β̃ and B̃z would instead
have coefficients that depend on both kx and ky, with k̄ now

given by k̄ =
√

k2
x + k2

y .
By imposing the appropriate boundary conditions at z =

0 and z= h, we ultimately find that in spectral space the basal
and surface displacements, wb and ws respectively, can be
expressed in terms of the imposed excess pressure as

w̃b =−
2h
(
1−ν2

)
E

sinhτcoshτ+ τ

τ
[
sinh2

τ− τ2
] p̃e (kx) , (14)

w̃s =−
2h
(
1−ν2

)
E

sinhτ+ τcoshτ

τ
[
sinh2

τ− τ2
] p̃e (kx) (15)

=
sinhτ+ τcoshτ

sinhτcoshτ+ τ
w̃b , (16)

where τ = hk̄, and E = 2µ(1+ν) is the Young’s modulus for
the layer.

We now apply this general analysis to our specific prob-
lem. The excess pressure acting on the base of the layer is
given by (1). By considering the asymptotic behaviour of the
kernel in (14) as τ→ 0 and τ→ ∞, it is prudent to rewrite
this pressure-displacement relation between pe and wb, (15),
as

p̃e (kx) = ς Λ̃(kx) ·
[
(ikx)

2 w̃b (kx)
]
, (17)

where p̃e and w̃b are the Fourier transforms of pe (x) and
wb (x) respectively, with the Fourier transform defined by
(12), and the elastic parameter ς and pressure-displacement
kernel Λ̃ are given by

ς =
Eh

2(1−ν2)
, Λ̃(kx) =

sinh2 (τ)− τ2

τ [sinh(τ)cosh(τ)+ τ]
. (18)

In physical space we thus have that

ς
(
Λ∗w′′b

)
(x) = PeTR (x)+Kwb (x)(1−TR (x)) , (19)
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where f ∗g is the convolution between f and g defined by

( f ∗g)(x) =
∫

∞

−∞

f (s)g(x− s) ds . (20)

We note here that since Λ̃ is nondimensional, Λ has dimen-
sions of inverse length while the convolution operator itself
has dimensions of length for dimensionless functions f and
g.

Following Fialko et al. [6], we nondimensionalise
lengths by the patch radius R and stresses by the shear mod-
ulus of the layer µ. This produces the non-dimensional pa-
rameters

E∗ =
E
µ
= 2(1+ν) , P∗ =

P
µ
, K∗ =

KR
µ

,

(x∗,z∗,w∗) =
1
R
(x,z,w) , h∗ =

h
R
, ς

∗ =
h/R

(1−ν)
. (21)

We immediately drop the ∗ diacritic in order to avoid our
equations becoming overly cluttered. Our nondimensional
pressure–displacement equation is thus

ς
(
Λ∗w′′b

)
(x) = PeT1 (x)+Kwb (x) [1−T1 (x)] . (22)

It is not straightforward to unravel (22) analytically; a
numerical approach is more tractable. Discretising the spa-
tial domain as x j = −l + j∆x for j = 0,1, . . . ,nx− 1, where
l is some artificial half-width for our numerical domain, ∆x
the grid spacing, and nx = 2l/∆x the number of grid points,
we can write (22) in the form

[C−Kdiag(1−T)]w = PeT . (23)

Here w and T are vectors corresponding to wb (xi) and T1 (xi),
C is the convolution matrix given by

Ci j =
ς

∆x
Λ(xi− xq)Dq j , (24)

and D is the second-order central-differences derivative ma-
trix

D =


−2 1 0
1 −2 1

. . . . . . . . .
1 −2 1

0 1 −2

 . (25)

The function Λ(x) is found by taking the inverse Fourier
transform of Λ̃(kx) numerically. Since Λ decays towards in-
finity, if (xi− xq) lies outside the appropriate range then we
take Λ(xi− xq) to be zero.

Table 1: Parameter values used for numerical simulations.
The first section lists the fixed dimensional values used,
while the second contains the corresponding nondimensional
values. In our calculations either h∗ or K∗ is varied while the
other remains fixed. For these we have listed both the val-
ues they take when held fixed and the ranges of values over
which they are varied.

Parameter Value Units

ρ 917 kg/m3

g 9.8 m/s2

ν 0.3 -

R 103 m

E 9×109 Pa

P 2×108 Pa

h 103 m

K 108 Pa/m

l 5×104 m

Nondimensional values

E∗ 2.6

P∗ 5.778×10−2

h∗ 1.0 [10−2–102]

K∗ 2.889×101 [10−3–108]

l∗ 5.000×101

We now have a linear matrix problem (23) that we can
invert to find wb (x) and pe (x). We could modify (23) in
order to explicitly impose the boundary conditions that the
solution tends to zero as |x| →∞ and that it has zero gradient
at x = 0, however this is unnecessary as the natural solutions
of this numerical system satisfy these automatically.

We are most interested in the deformation ws (x) at the
free surface (z = 0). Once wb has been determined, ws may
be found from the relation (16) between w̃s and w̃b.

We also calculate these displacements by solving the lin-
ear elastic equations (2) and (3) directly using the software
package COMSOL. In this approach we take one half of the
domain considered above (i.e. x ≥ 0), so the boundary con-
dition ∂w/∂x = 0 must be explicitly applied at x = 0. These
two distinct approaches allow us to verify our results in the
case of the 2D problem and then with confidence go on to
use COMSOL to tackle the axisymmetric problem, to which
the mathematical method described above could not readily
be extended.
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4 Numerical Results
The parameter values used for our numerical calcula-

tions are given in Tab. 1, including the default values of h
and K. Here we report calculations for which 10−2 < h< 102

and 10−3 <K < 108 to span the range of different asymptotic
behaviours. The default numerical domain has a half-width
of l∗ = l/R = 50, however in some simulations, e.g. for the
largest values of h or smallest values of K, this was extended
to as far as l∗ = 600 in order to avoid artificial boundary ef-
fects.

We characterise the displacement profiles by three key
properties:

1) the maximum displacement, max{ws}, which occurs
over the centre of the pressure patch,

2) the minimum displacement, min{ws}, i.e the minimum
uplift or maximum subsidence, which occurs outside the
pressure patch,

3) the location of zero displacement closest to the pressure
patch, x0

s .

The latter can also be substituted for the location at which the
minimum displacement occurs, which behaves in a similar
manner. These features are shown in Fig. 1b.

Below we demonstrate, for both the 2D and axisymmet-
ric problems, how the surface displacement and its three key
characteristics vary as either the layer thickness h or Win-
kler modulus K is varied while the other is held constant. As
we are primarily interested in the surface displacement, those
results are displayed here. The corresponding results for the
basal displacement are reported in the Appendix.

4.1 Two-dimensional results
We begin by detailing the functional form of the dis-

placement and the asymptotic scalings as a function of layer
thickness, h, and the strength of the Winkler foundation, K.
The results of our two-dimensional calculations are shown in
Fig. 2-7. In Fig. 2 we compare the surface displacement pro-
files in the four corners of our (h,K) parameter range. Each
has been rescaled by its respective maximum displacement
and location of zero displacement, and is shown against a
large-K bending-beam solution.

The behaviour of these characteristic features as h is var-
ied is shown in Fig. 3-6. In each case we find an asymptotic
power-law behaviour for either h � 1 or h � 1, with the
corresponding asymptotic scalings listed in Tab. 2. In the
thin-layer limit, h� 1, our system reduces to that of a bend-
ing beam, which can be solved analytically. We review this
solution in §5, and our numerical results agree well with the
bending-beam solution in the thin-layer limit.

In the case of varying h, we find that the maximum
and minimum displacements decrease monotonically with
increasing h, i.e. are largest for a thin layer; thinner layers
are more easily deformable. The location of zero displace-
ment, meanwhile, increases monotonically with h. Each of
Fig. 3-6 shows results for three different fixed values of K.
For a given value of h, the amount of displacement and its
horizontal extent increase with decreasing K, as expected;

Table 2: Surface displacement scaling behaviours for two-
dimensional deformations.

h� 1 h� 1 K� 1 K� 1

max{ws} h−3 h−1 K−3/4 K0

min{ws} h−3/2 h−1 K−3/4 K0

x0
s h0 h1 K−1/4 K0

softer foundations are more pliable. The corresponding re-
sults for our COMSOL calculations using the default value
of K are also displayed in each of the figures, and show ex-
cellent agreement between the two methods.

For the case of varying K, we restrict ourselves for
brevity to displaying only the variation of the maximum sur-
face displacement in Fig. 7 and otherwise quoting the appro-
priate scalings in Tab. 2. As discussed above, the vertical and
horizontal displacement features decrease with increasing K,
as expected. Importantly, each of these becomes insensitive
to K for K � 1, tending in this limit to constant values, the
precise values of which are dependent on h.

Outside of the h,K = O(1) region of our parameter
space, the solution takes on the asymptotic scaling behaviour
detailed in Tab. 2. For a thin layer, h� 1, we recover the
bending-beam solution discussed in §5. As h is increased,
we ultimately reach the deep elastic limit often considered
for this type of deformation model [6–9]. Similarly, as the
Winkler modulus K is varied there are two different asymp-
totic behaviours, corresponding to a soft foundation, K� 1,
or a stiff foundation, K � 1. From our numerical results
we find that these asymptotic regions are well established for
h < 10−1, h > 101, K < 10−2, and K > 102, respectively.

The behaviour of each of these displacement features
can be well approximated by composite curves for varying
h or K, built as simple power series based on these asymp-
totic scalings. These are shown by the dashed lines in the
figures and allow the parameter values of the system such
as h, K, and Pe to be inferred from measurements of these
displacement features. For each curve we have chosen the
coefficients and intermediate powers so that the relative er-
ror between the curves and the numerical data is less than
10%. For example, the maximum surface displacement as a
function of h is approximated by

max{ws} ∼ c0h−3 + c1h−5/2 + c2h−4/2 + c3h−3/2 + c4h−1 ,
(26)

where the coefficients for the three values of K shown in Fig.
3-6 are given in Tab. 3. The remaining composite curves are
discussed in the Supplementary Material.

4.2 Axisymmetric results
We now consider the axisymmetric case of a three-

dimensional elastic layer, forced on its lower face by a circu-
lar patch of radius R and constant excess pressure Pe, outside
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Fig. 2: Comparison of two-dimensional surface profiles for
different (h,K) values. The solid blue curves are for the pa-
rameter values quoted and the dashed curves are the bending-
beam solution (29) for h = 10−4, K = 108, shown for com-
parison. The dark-grey, obliquely hatched region shows the
section of the displacement overlying the pressure patch,
while the light-grey, vertically hatched region denotes the
Winkler foundation.
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Fig. 3: Maximum surface displacement versus layer thick-
ness h, rescaled to match Fig. 2 of Fialko et al. [6]. The
results of both methods used are shown for K = 28.9. The
dashed lines are composite curves formed from the scaling
behaviours for h� 1 and h� 1.

of which we have the Winkler pressure Kwb as before.
The approach detailed in Sec. 4.1 can not be readily ex-

tended to the axisymmetric problem, as the left-hand side of
the equivalent to (22) is not so easily discretised to form a
matrix equation. We thus only present the COMSOL simu-
lations for axisymmetric deformations, which we have veri-
fied for purely two-dimensional deformations by comparison
with the mathematical model in the previous section. The
asymptotic scalings for each feature are listed in Tab. 4.

Figure 8 shows the axisymmetric surface displacement
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Fig. 4: Minimum surface displacement versus layer thick-
ness h.
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Fig. 5: Location of minimum surface displacement versus
layer thickness h.
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Fig. 6: Horizontal location of zero surface displacement ver-
sus layer thickness h.
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Fig. 7: Maximum surface displacement versus Winkler Mod-
ulus K.

Table 3: Coefficients for the composite curves constructed
for max{ws} for two-dimensional deformations.

K = 2.89× 10−1 100 101

c0 0.014156 0.009578 0.009603

c1 −0.055806 0.008799 0.00625

c2 0.381111 0.043843 0.021327

c3 −0.491104 −0.034164 −0.011244

c4 0.501753 0.115059 0.066257

profiles that occur for the four combinations of small/large
h and small/large K, rescaled by their respective maximum
displacement values and zero displacement locations. These
profiles broadly mimic those seen for two-dimensional de-
formations as illustrated in Fig. 2. We see that h has a domi-
nant effect on the profile in the uplift region near the pressure
patch, while K affects the curvature within this region as well
as the depth of the region of subsidence.

The value of the maximum displacement as h is varied
is shown in Fig. 9, rescaled based on the h� 1 bending-
beam solution discussed in §5 in order to match Fialko et
al.’s Figure 2 [6]. Under this rescaling the limiting value for
h� 1 is (3/64)h−3, which is independent of K. Along with
our results, we have also plotted values calculated using the
method described in [6]. These agree well with our K =
28.89 curve throughout the range of values of h considered.
As can be seen from Fig. 7, this value of K lies in the stiff-
foundation, K� 1 region of our parameter space.

We again find that the maximum and minimum displace-
ments decrease monotonically with increasing h, while the
zero location increases with h. For h� 1 we recover the
same h−3 scalings as for the two-dimensional problem, how-
ever for h� 1 the maximum and minimum displacements

Table 4: Surface displacement scaling behaviours for ax-
isymmetric deformations.

h� 1 h� 1 K� 1 K� 1

max{ws} h−3 h−2 K−1/2 K0

min{ws} h−3/2 h−2 K−1/2 K0

r0
s h0 h1 K−1/4 K0

0.0

0.2

0.4

0.6
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1.0

w
s
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{ w
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}
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h� 1

h=10 K=10−3
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{
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}
=5. 02e− 02

x0
s =8. 63e+01

h≪ 1

K
�

1

0.0 0.5 1.0 1.5 2.0

x/x0
s
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0.4

0.6

0.8

1.0

w
s
/m
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s

} h=0. 01 K=108
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{
ws

}
=3. 86e+03

x0
s =1. 00e+00

0.0 0.5 1.0 1.5 2.0

x/x0
s

h=10 K=108

max
{
ws

}
=3. 85e− 04

x0
s =1. 56e+01

K
≪

1

Fig. 8: Comparison of axisymmetric surface profiles for dif-
ferent (h,K) values. The solid blue curves are for the param-
eter values quoted while the dashed curves are the bending-
beam solution (45) for h = 10−2, K = 104.

decrease at a faster rate (h−2) for the axisymmetric problem.
For varying K, each of the characteristic features now grows
with decreasing K and is again insensitive to large K, tend-
ing to constant values in this limit. The axisymmetric prob-
lem thus shows the same qualitative behaviour as the two-
dimensional problem, but differs quantitatively in terms of
specific scalings and coefficients.

The maximum surface displacement results are well ap-
proximated by the composite curve

max{ws} ∼ c0h−3+c1h−11/4+c2h−10/4+c3h−9/4+c4h−2 ,
(27)

where the coefficients for the three values of K shown in Fig.
9 are given in Tab. 5. The remaining composite curves are
discussed in the Supplementary Material.

5 Analytic solutions
5.1 Two-dimensional problem

For two-dimensional deformations we are able to solve
(22) analytically in the bending-beam limit, h� 1. By con-
sidering the small-h behaviour of the pressure–displacement
kernel in (14) we find that in this limit wb (x) =ws (x) =w(x)
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Fig. 9: Axisymmetric plot of the maximum displacement.
The red dots show the results from Fig. 2 of Fialko et al. [6].

Table 5: Coefficients for the composite curves constructed
for max{ws} for axisymmetric deformations.

K = 2.89× 10−1 100 101

c0 0.056587 −0.01107 −0.011976

c1 −0.452762 0.083362 0.100009

c2 1.426684 −0.1134 −0.196063

c3 −1.957016 −0.0446 0.107734

c4 1.041727 0.140847 0.036067

and (22) becomes

−B
d4

dx4 w(x) = PeT1 (x)+Kw(x) [1−T1 (x)] , (28)

where in our formulation the bending stiffness of the layer is
given by B = h3/6(1−ν).

By solving this equation in the two regions |x| < 1 and
|x| > 1 such that w(x) is even about x = 0 and the function
and its first three derivatives are continuous at |x| = 1, we
arrive at

w(x) =−Pe

B

{(
x4/4!+d2x2/2!+d0

)
|x|< 1

eκ(1−|x|) (A1 cosκ|x|+A2 sinκ|x|) |x|> 1
,

(29)

where κ−1 =
√

2(B/K)1/4 is the length scale of deforma-
tions outside the pressure patch. We note that because of
our choice of orientation for the z axis, surface uplift takes
negative values.

From the boundary conditions we find that the coeffi-

cients in (29) may be expressed as

d2 =−
1
6

(
κ2 +3κ+3

)
κ(κ+1)

, (30)

d0 =
1

24

(
κ4 +5κ3 +10κ2 +12κ+6

)
κ3 (κ+1)

, (31)

A1 =
1

12

(
2κ2 +6κ+3

)
cosκ+

(
2κ2−3

)
sinκ

κ3 (κ+1)
, (32)

A2 =
1

12

(
2κ2 +6κ+3

)
sinκ−

(
2κ2−3

)
cosκ

κ3 (κ+1)
. (33)

We are particularly interested in the limiting behaviour of
this solution as the length scale κ−1 ∝ h3/4K−1/4 becomes
either large or small. In particular, for K � 1 (such that
κ−1 � 1) we find that d2 ∼ (−1/6) + O

(
κ−1
)

and d0 ∼
(1/24) + O

(
κ−1
)
, and so at leading order we recover the

well-known bending-beam profile w ∝ (1− x2)2 for |x| < 1
[5].

Continuing this for the characteristic features of our dis-
placement profiles, we find that the maximum value of the
displacement, occurring at x = 0, is given by

w(0)∼

{
−
[ 3

2 (1−ν)
]1/4

Peh−3/4K−3/4 κ−1� 1
− 1

4 (1−ν)Peh−3K0 κ−1� 1
. (34)

As expected from the physical nature of the problem, the
minimum displacement must occur at a point xmin outside
the pressure patch, in the region |x| > 1. A local maximum
or minimum of the displacement can be shown to occur in
this region when

tan(κxmin) =
A2−A1

A2 +A1
, (35)

which can be manipulated to give

tan(κ [xmin−1]) =−κ(2κ+3)
3(κ+1)

. (36)

For κ−1� 1 we can expand this expression to find

κxmin ∼ nπ+
1
3

κ
2 +O

(
κ

3) . (37)

Because the displacement decays away from the pressure
patch, the minimum displacement corresponds to the first
stationary point outside of x = 1. We thus take n = 1 here.
As discussed in [11], in the κ−1 � 1 limit the distance be-
tween stationary points gives us information about the natu-
ral wavenumber of the system: (xn+1

stat − xn
stat)∼ κ/3.

For κ−1� 1 we instead consider the reciprocal of (36)
and, expanding in large κ, find that

κxmin ∼ κ+
π

2
+

3
2

κ
−1 +O

(
κ
−2) . (38)
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Thus in the two limits we have that

xmin ∼

{
π
[ 3

2 (1−ν)
]−1/4

h3/4K−1/4 κ−1� 1

1+ π

2

[ 3
2 (1−ν)

]−1/4
h3/4K−1/4 κ−1� 1

. (39)

Having determined xmin, we can now find the value of
the minimum displacement. After some algebra, we find that

w(xmin) =
Pe

B

√
4κ4 +12κ3 +18κ2 +18κ+9

12κ3 (κ+1)
e−κ(xmin−1) .

(40)
Using the above behaviours of xmin for large and small κ−1,
we find that

w(xmin)∼

{[ 3
2 (1−ν)

]1/4
e−πPe h−3/4K−3/4 κ−1� 1[ 2

3 (1−ν)
]1/2

e−π/2Pe h−3/2K−1/2 κ−1� 1
.

(41)
Finally, we can also determine the first zero crossing of

the deformation, x0. We can again see that this must occur
in the region |x| > 1, and from (29) we find that x0 satisfies
tan(κx0) =−A1/A2. This can similarly be manipulated into
the form

tan(κ [x0−1]) =
2κ2 +6κ+3

2κ2−3
, (42)

from which we extract the scalings for the first zero crossing

x0 ∼

{
3π

4

[ 3
2 (1−ν)

]−1/4
h3/4K−1/4 κ−1� 1

1+ π

4

[ 3
2 (1−ν)

]−1/4
h3/4K−1/4 κ−1� 1

. (43)

5.2 Axisymmetric Problem
In the previous section we considered the problem of

variation over one horizontal dimension in the bending-beam
limit. For two horizontal dimensions, we find that (22) re-
duces to a biharmonic equation, i.e. the left-hand side of (28)
changes to −B∇4w(x,y). For axisymmetric deformations in
the limit h� 1, the governing equation is then

−B
[

1
r

d
dr

(
r

d
dr

)]2

w(r) = PeT1 (r)+Kw(r) [1−T1 (r)] ,

(44)
where the differential operator within the square brackets is
applied twice. As before we solve this for the regions r < 1
and r > 1 and connect the two solutions by requiring that w
and its first three derivatives are continuous at r = 1. This
gives

w(r) =−Pe

B

{(
r4/64+ d̂2r2/2+ d̂0

)
r < 1(

2R
{

ÂH(1)
0 (ω̂r)

})
r > 1

, (45)

where R{z} denotes the real part of z, ω̂= eiπ/4κ̂ with κ̂−1 =

(B/K)1/4, and H(1)
0 (z) is the zeroth-order Hankel function

of the first kind. Our continuity conditions at the edge of the
pressure patch set the coefficients d̂2, d̂0, and Â to be

d̂2 = 2R
{

Â ω̂H(1) ′
0 (ω̂)

}
− 1

16
, (46)

d̂0 = 2R
{

ÂH(1)
0 (ω̂)

}
− 1

2
d̂2−

1
64

, (47)(
16iκ̂4ΨÂ

)
=
([

8ω̂− ω̂
3]H(1) ′

0 (ω̂)+4ω̂
2H(1)

0 (ω̂)
)
, (48)

with

Ψ =

[
I

{
e−iπ/4

κ̂H(1)
0 (ω̂)H(1) ′

0 (ω̂)

}
−2
∣∣∣H(1) ′

0 (ω̂)
∣∣∣2] ,

(49)

where I{z} denotes the imaginary part of z while z denotes
its complex conjugate.

Our main interest is how this solution behaves in the
limit of small h, i.e. in the small wavelength limit where
κ̂−1 = (B/K)1/4 � 1. In this limit the radius of curvature
of the pressure patch is much larger than the wavelength of
the induced displacement, and so at leading order the sys-
tem does not feel this curvature and shares the same limiting
behaviour as the two-dimensional solution, up to a constant
multiple for the vertical displacements. This constant is set
by matching the solution across r = 1, with the axisymmet-
ric and two-dimensional solutions differing over the pressure
patch due to volume considerations. By comparing the r < 1
quartic solutions in the two cases, we find that

waxi (1)∼ 3
8

w2D (1) for (B/K)
1
4 � 1 . (50)

Hence, for the axisymmetric case we have that in the limit
κ̂−1� 1:

w(0)∼− 3
32

(1−ν)Peh−3K0 , (51)

w(rmin)∼
[

3
32

(1−ν)

]1/2

e−π/2Peh−3/2K−1/2 , (52)

rmin ∼ 1+
π

2

[
3
2
(1−ν)

]−1/4

h3/4K−1/4 , (53)

r0 ∼ 1+
π

4

[
3
2
(1−ν)

]−1/4

h3/4K−1/4 . (54)

Conversely, in the long-wavelength limit the axisymmetric
solution departs from the two-dimensional case. Using the
asymptotic behaviour H(1)

0 (z) ∼ 1+(2i/π) logz for |z| � 1
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[15], we find that for κ̂−1� 1:

w(0)∼−π

[
3

32
(1−ν)

]1/2

Peh−3/2K−1/2 , (55)

w(rmin)∼ πχ

[
3
8
(1−ν)

]1/2

Peh−3/2K−1/2 , (56)

rmin ∼ η1 [6(1−ν)]−1/4 h3/4K−1/4 , (57)

r0 ∼ η0 [6(1−ν)]−1/4 h3/4K−1/4 . (58)

Here η0 ≈ 3.9147 and η1 ≈ 4.9318 are the first real zeros
of R{H(1)

0

(
eiπ/4z

)
} and R{eiπ/4H(1)

1

(
eiπ/4z

)
} respectively,

and χ =−R{H(1)
0

(
eiπ/4η1

)
}.

6 Discussions
The calculations in §4 have been performed for specific

parameter values of Pe, h, K, etc. In practice, however, it is
more common to want to determine the parameter values of
the system from the surface displacement profiles. This can
be done using the composite curves introduced in §4 and dis-
cussed in detail in the Supplementary Material. Comparing
the normalised displacement profile to Fig. 2 or Fig. 8 first
allows the appropriate region of the (h,K) parameter space to
be determined. The values of the three nondimensionalised
characteristic features can then be compared against the cor-
responding composite curves in the appropriate parameter
intervals in order to bound or approximate the desired pa-
rameter values. These composite curves thus simplify the
inverse problem significantly, converting it from a complex
PDE problem to a simple polynomial one. This could then
be used to substantially reduce the region of parameter space
considered in a more sophisticated model.

Our model has assumed a linear elastic rheology for
the layer with displacements only in the vertical direction.
If the resulting deformations become too large then the be-
haviour of the system would change: this linearity assump-
tion could fail; horizontal deformations, in-plane tensions,
and shear could become important; or fracturing may occur
within the layer, allowing cracks to form or further develop.
The strength of the pressure patch plays a crucial role in all
three of these, as the deformations are proportional to Pe (see
(22)). For large enough strains the constitutive relation be-
tween stress and strain will become nonlinear, with the pre-
cise threshold for ‘large enough’ dependent upon the partic-
ular constitutive relation for the material considered.

Fracturing is likely to first occur within the pressure
patch when Pe exceeds some threshold value dependent on
the material properties of the layer. Incorporating a finite
fracture toughness adds an energy penalty that impedes the
opening of a fracture. For a thin layer, this energy penalty
imposes a jump condition on the curvature at the fracture
tip [16]. For a thick layer, this penalty can instead be de-

scribed by the Griffith–Irwin model

σ f =

√
(1−ν2)

πlc
K , (59)

where σ f is the stress at the fracture tip; lc is the length of
the crack; ν is the Poisson ratio of the material; and K is
its Stress Intensity Factor, which is a function of the frac-
ture profile and the distribution of the applied stress [17].
Our model could be extended to include fracturing by de-
termining the stress at the base of the layer during the finite
element calculations discussed above and comparing this to
the Griffith-Irwin criterion (59) - if this criterion is met then
the patch size must be adjusted before the deformation cal-
culations are continued. For a study of the development of
such a fracture with zero fracture toughness in the case of in-
traglacial fluid channelisation, see Tsai & Rice [18]. Alterna-
tively, the porous nature of a poroelastic till may play a crit-
ical role in the development of a cavity during supraglacial
lake drainage. A representation of the fluid dynamics of this
process is described in Hewitt et al. [19].

In certain settings, such as supraglacial lakes near the
edge of a glacier, finite-length effects may also be important.
The geometrical constraint of a fixed, finite length changes
the behaviour of the layer as it deforms. The bending-beam
model of Sayag and Worster [11] gives the rough estimate
that these effects will be negligible for our layer if its half-
width is at least five times the elastic wavelength (B/K)1/4,
where B = h3/[6(1− ν)] is the bending stiffness defined in
§5.1. In a similar manner, the interaction between two such
pressure regions would become important if they are suffi-
ciently close together. Further work is required to determine
at what point these effects may play a significant role in the
pattern of deformation, in particular in cases when the layer
is not thin.

7 Conclusions
We have presented a simplified model that is applicable

to many systems of geophysical importance involving sur-
face deformation, treating the deforming material as a uni-
form elastic layer overlying a patch of constant pressure that
is surrounded by a Winkler foundation. Examples of such
systems include magmatic intrusions, supraglacial lakes, and
the subsurface storage of CO2.

The displacement is characterised by three key features:
the maximum uplift, the maximum subsidence, and the dis-
tance from the centre to the location of zero displacement.
We have determined asymptotic scalings for each of these
features in the limits of a thin/thick layer and a soft/stiff foun-
dation. In particular, we find that once the stiffness parameter
is large enough these features become insensitive to it. In the
limit of a thin layer, our results match well with the analytical
bending-beam solutions presented in §5.

Based on these scalings, we have presented composite
curves for each of these characteristic features, with which it
is possible to determine properties of the system such as the
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strength of the pressure patch, the depth of the patch relative
to its width, and the stiffness of the surrounding foundation.
These properties can then be used to better understand the
current or future behaviour of the subsurface processes that
have produced the deformation.

We find qualitative similarity between the two-
dimensional and axisymmetric problems, but there are dis-
tinct quantitative differences between the corresponding
scaling exponents and coefficients. In the axisymmetric
problem we recover the elastic-halfspace results of Fialko
et al. [6] for a stiff foundation. The corresponding displace-
ment profiles are different however, as our system allows for
a region of subsidence. We are thus able to reproduce their
‘penny-shaped crack’ results using a simpler mathematical
model and extend them to the case of a soft foundation.
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Nomenclature
B bending stiffness, h3/6(1−ν)
E Young’s modulus
f̃ (x) Fourier transform of f (x)
g gravitational acceleration
h layer thickness
kx horizontal wavenumber (corresponding to x)
K Winkler modulus
pe excess pressure, p−ρgh
R radius of pressure patch
w vertical displacement
wb, ws vertical displacement (at base, surface of layer)
x horizontal coordinate
z vertical coordinate (in direction of gravity)
εi j strain tensor
κ, κ̂ inverse length scales of bending-beam solutions (two-

dimensional, axisymmetric)
Λ pressure-displacement kernel
µ shear modulus
ν Poisson’s ratio
ρ density
ς elastic parameter, Eh/2(1−ν2)
σi j stress tensor
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A Basal Results
Here we present the corresponding results for the dis-

placement that occurs at the base of the layer, where the pres-
sure is applied. As expected, the basal and surface displace-
ments are very similar in the h� 1 limit, and agree well with
the bending-beam solutions discussed in §5. A comparison
of the two-dimensional basal profiles from the extremes of
our (h,K) parameter range is shown in Fig. 10. The vari-
ous scalings for the two-dimensional basal displacement are
listed in Tab. 6, and for the axisymmetric basal displacement
in Tab. 7. The normalised basal profiles are qualitatively
quite similar to the surface profiles shown in Fig. 2 for all
but the h� 1, K � 1 case, which feels the strength of the
foundation much more severely. Noticeably, outside of the
pressure patch the basal displacement is minimal as the layer
is held close to the foundation, but as h� 1 the point of zero
displacement still occurs some distance away from the patch.

While the corresponding normalised profiles may be
similar for a large portion of the parameter space, the charac-
teristic features of the basal displacement are quantitatively
quite different to those for the surface, however, as demon-
strated by their differing scalings behaviours and the com-
posite curves discussed in the Supplementary Material. Two
key differences are that the maximum displacement at the
base is insensitive to h for a thick layer, and that the maxi-
mum subsidence at the base is the only feature sensitive to K
for a stiff foundation.

Table 6: Basal displacement scaling behaviours for two-
dimensional deformations.

h� 1 h� 1 K� 1 K� 1

max{wb} h−3 h0 K−3/4 K0

min{wb} h−3/2 h−2 K−3/4 K−1

x0
b h0 h1 K−1/4 K0

Table 7: Basal displacement scaling behaviours for axisym-
metric deformations.

h� 1 h� 1 K� 1 K� 1

max{wb} h−3 h0 K−1/2 K0

min{wb} h−3/2 h−3 K−1/2 K−1

x0
b h0 h1 K−1/4 K0
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Fig. 10: Comparison of two-dimensional basal profiles for
different (h,K) values. The solid blue curves are for the
parameter values quoted while the dashed curves are the
bending-beam solution (29) for h = 10−4, K = 108. The
dark-grey, obliquely hatched region shows the section of the
displacement overlying the pressure patch, while the light-
grey, vertically hatched region denotes the Winkler founda-
tion.
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noting the amount of vertical displacement
within the layer from our COMSOL simu-
lations (b) The characteristic features of the
displacement profile. . . . . . . . . . . . . . 2
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