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Summary

Technological advances in the ability to read the human
genome have accelerated the speed of sequencing, such
that today we can perform whole genome sequencing
(WGS) in one day. Until recently, genomic studies have
largely been limited to seeking novel scientific discoveries.
The application of new insights gained through cancer
WGS into the clinical domain, have been relatively limited.
Looking ahead, a vast amount of data can be generated
by genomic studies. Of note, excellent organisation of ge-
nomic and clinical data permits the application of machine-
learning methods which can lead to the development of
clinical algorithms that could assist future clinicians and
genomicists in the analysis and interpretation of individual
cancer genomes. Here, we describe what can be gleaned
from holistic whole cancer genome profiling and argue that
we must build the infrastructure and educational frame-
works to support the modern clinical genomicist to prepare
for a future where WGS will be the norm.
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Introduction

The development of sequencing-by-synthesis [1] catapult-
ed the field of genomics into a new age. The ability to im-
mobilise each DNA molecule on the surface of a chip and
continuously read each nucleotide from every DNA mole-
cule as a result of novel “reversible” terminator chemistry
increased the speed and scale of sequencing by orders of
magnitude [1]. The term “massively parallel sequencing”
(MPS) was coined. Today, we can sequence a whole hu-
man genome in one day.

When studying cancer genomics of solid tumours, two
samples are required per cancer patient; a DNA sample
from the cancer (”tumour” DNA representative of the can-
cer clone) and a DNA sample extracted from peripheral
blood lymphocytes (”normal” DNA derived from a hetero-
geneous cellular population representative of the germline
genome). Sequencing tumour and normal DNA allows the
identification of “somatic mutations”, those which are ac-
quired and present only in the cancer and not the germline.
The two DNA samples from each patient are subjected to
fragmentation independently, each generating billions of
DNA fragments. Size-selection of a fragment size of inter-
est is performed, usually 400–600 base pairs for a whole

genome. Around 150 nucleotides at each end of the size-
selected fragments are sequenced using MPS technology.
The aim is for each of the 3,000,000,000 base pairs present
in the human genome to be re-sequenced at least 30 times
on average. This strategy, called paired-end high-cover-
age sequencing, is a general principle that can be adapt-
ed (e.g., single-ended sequencing, 75 or 100 base-pair read
lengths and/or variable fragment sizes). In a whole genome
sequencing (WGS) experiment, the entire human genome
is captured. In a whole exome sequencing (WES) exper-
iment, protein-coding sequences are captured (~1.5% of
the genome). Targeted sequencing experiments tend to en-
compass genes of interest and a raft of other loci that may
be informative (e.g., gene fusions and copy number alter-
ations) (~0.1% or less of the genome). In terms of sequenc-
ing costs, WGS is the most expensive and targeted ex-
periments are cheapest. There are also associated costs of
storage, computing and analysis to consider.

What we obtain in terms of genomics depends on the se-
quencing experiment. When a WGS is performed, one ob-
tains “driver” mutations –causally implicated mutations
of carcinogenesis, passenger variants, structural variants,
copy number aberrations and many other insights into the
noncoding genome [2, 3]. Other sequencing experiments
may be cheaper but limited to only driver mutations [4] or
selected patterns (table 1). Although there have been great
efforts to enhance these panels [5], one will only see what
one is looking for. Opportunities for new discoveries are
limited.

In this review, we highlight what else can be seen in the
whole human cancer genome and why it might be useful
clinically. As we look towards a future when genomics
may become a standard part of cancer diagnostics, we
highlight current issues and how we should tackle them go-
ing forward.

Whole cancer genomes

Driver mutations in cancer
Decades of cancer research were focused on discovery of
driver mutations, positively-selected genetic changes that
occur in “cancer genes”, because these became targets for
developing new therapeutic agents [6–9]. A key contribu-
tion of MPS, in the earlier part of the 21st century, was
the acceleration of novel cancer gene discovery [10]. Im-
proved sequencing affordability resulted in more cancers
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being sequenced per experiment. Thus, rare, low-frequen-
cy cancer genes present in common cancers [4, 10–15],
as well as common cancer genes present in rare cancers
[16, 17], were increasingly identified. These studies also
revealed that there was an enormous amount of inter-tu-
mour heterogeneity between patients, with most patients
having different combinations of a long list of drivers even
when they shared the same tumour type [4]. Hence, using
individual driver mutations or cancer genes as a strategy to
develop therapeutic targets is likely to be of limited suc-
cess. Given that there are many hundreds of driver muta-
tions / cancer genes and a mere handful of successfully de-
veloped targeted therapies that are clinically available after
four decades of cancer research, we need to find alternative
strategies to treat cancers more effectively.

Passenger mutations: a resource of historical informa-
tion
Notably, cancers contain far more than the handful of dri-
vers, estimated to be between one to ten per tumour [6,
8]. Each cancer carries thousands of “passenger” mutations
that have historically been thought of as unimportant, in-
consequential mutational noise [6]. However, they are in
fact a mine of information, reporting the biological history
of the tumour [2, 18, 19]. The catalogue of somatic mu-
tations that is revealed through cancer sequencing is the
final outcome of the mutational processes that have oc-
curred through malignant transformation [2, 18, 19]. Each
mutational process leaves its characteristic imprint or mu-
tational signature on the cancer genome, defined by the
mechanisms of DNA damage and DNA repair of which it
is comprised [2, 18, 19]. Whatever the nature of the mu-
tational process, the final set of mutations, be they sub-
stitutions, insertions/deletions or structural variation, is al-
so determined by the strength and duration of exposure to
each mutational process [2, 18, 19]. Some exposures may
be weak or moderate in intensity, whereas others may be
strong in their effect [19]. Similarly, some exposures might
be on-going through the entire lifetime of the patient, even
preceding the formation of the cancer, and some may start
late or become dominant later in tumorigenesis [19].

WGS experiments permitted us to use mathematical meth-
ods to distil the mutational signatures buried within these
cancers. In 2012, using WGS data from just 21 breast can-
cers, the first five mutational signatures were revealed [2].
Subsequently, similar approaches were used to unearth at
least 21 different mutation signatures across 30 different
cancer types [18]. This included signatures associated with
past exposure to environmental carcinogens, such as tobac-
co smoke in lung cancer and ultraviolet radiation in ma-
lignant melanoma, and endogenous sources of mutagene-

sis including ubiquitous deamination at methyl-cytosines
seen in nearly all human cancers and the activity of other
dysregulated proteins such as polymerase epsilon (POLE).
Numerous novel signatures have also been excavated. To-
day, there are many on-going efforts to experimentally val-
idate [20, 21] and fully characterise the aetiologies of these
mutational signatures in order to understand the sources of
mutagenesis in human cancer.

It should be noted that these are early days in this field. It
was initially focused almost exclusively on substitutions,
whereas today there are mutational signatures reported for
insertions/deletions (though not verified or widely taken
up so far) [22], structural variation [23] and copy number
aberrations [24]. Indeed, even the total tally of substitution
signatures is not static. In excess of 40 signatures have
been reported [22], although this is expected to change as
more cancers are sequenced in the future and as methods
and thinking evolve on these concepts.

Other angles
WGS also permits other findings to be revealed including
gene fusion events and retrotransposition-driven genetic
changes [25]. There remains much to learn about 3D com-
paction of the human genome [26, 27], enhancer [28] and
promoter mutations [29] and the consequences of complex
rearrangements in the genome [30], including the forma-
tion of micronuclei [31]. WGS data also contain informa-
tion about immunogenicity of the tumour, including human
leucocyte antigen (HLA) and T-cell receptor information
[32, 33].

Quite apart from the somatic cancer genome, there is a
germline genome, which reportedly sets our lifetime risk
of cancer [34], modifiable by the variety of lifestyle factors
that we are exposed to. Currently, we know very little
about how the germline genome interacts with or influ-
ences somatic mutation acquisition [28, 35]. Unlike ac-
quired mutations, there are well-known inherited predispo-
sition genes that have significant implications for relatives
if identified as a new finding in a cancer patient [23, 36].
There are also a variety of moderate-penetrance and low-
penetrance genetic alleles that when combined can provide
measures of cancer risk called polygenic risk scores [34,
37]. How these data from WGS can be used effectively
for clinical application remains unknown. It is likely to be-
come clearer with the increasing availability of WGS in the
near future.

Beyond the genome, there is the transcriptome and methy-
lome, presenting additional layers of data per patient. As
a scientific community, we are still learning how best to
integrate these data. The areas of metabolomics and pro-

Table 1: Data obtainable from various sequencing experiments.

Whole genome sequencing Whole exome sequencing Targeted sequencing

Drivers Substitutions and indels
Structural variation including gene fusions

Substitutions and indels Substitutions and indels limited to specific
genes on panel

Copy number drivers (amplifications
and homozygous deletions)

Comprehensive Semi-reliable Limited to genes on panel and not always
reliable

Mutational signatures Comprehensive Limited Not reliable

Complex rearrangements Comprehensive Not reliable Not detectable

Copy number aberrations Comprehensive Semi-reliable Not detectable

Germline variation Comprehensive High-penetrance alleles Limited

Phylogenetic trees Possible.
Limited branching unless very high-depth

Possible Limited
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teomics are also coming to the fore. We may look forward
to a future where these different modalities are available
across each cancer, providing very rich datasets from
which to learn.

Tumour phylogenies
Another area of particular growth has been the study of the
phylogenetic evolution of cancers [3]. Tumour evolution-
ary histories or phylogenies can be constructed by taking
multiple samples per patient, separated either by space [38,
39] (multiple primaries, or multiple sites per primary) or
by time [40] (e.g., primary and metastasis). The digital na-
ture of modern sequencing technology also permits estima-
tion of subpopulations of cells within a single cancer sam-
ple [3].

For a sample with sequence coverage of 40-fold, this im-
plies that sequence data from approximately 40 DNA mol-
ecules are available at any particular genomic coordinate,
on average. If the sample were representative of the
germline, a heterozygous variant of a diploid chromosome
would be expected to be present in approximately 50% of
reads (~20 reads), whereas a homozygous variant should
be present in 100% of reads. For a tumour sample, a frac-
tion of reads will come from normal cells such as lym-
phocytes or stromal tissue, but the remaining reads should
be representative of the tumour. A heterozygous variant in
a diploid chromosome in the tumour genome should be
present in half of the remaining reads, whatever that may
be. Thus, if there was an estimated 70% tumour cellulari-
ty, then a heterozygous mutation would be present at 35%
variant allele fraction. When collections of mutations do
not abide by this rule and are instead consistently present
in a subset of the expected fraction of reads, this can be
used to infer the presence of a subclonal populations in
a cancer [3]. Numerous mathematical methods have been
developed to identify such subpopulations [3, 41]. Phylo-
genetic trees of each primary cancer can therefore be con-
structed to a finite level of resolution.

What these studies have collectively shown us is that can-
cers may begin as a clonal outgrowth but inevitably evolve
under the pressure of environmental changes, with resul-
tant subclonal populations in due course. Intra-tumour het-
erogeneity is in fact the norm.

Insights from latest technology: adjustments to
a biological perspective

Recent advancements in sequencing technology, including
low-volume and single-cell sequencing, have led us to gain
some fascinating new insights [42, 43] that may require us
to reflect and adjust our understanding of cancer biology.

First, the concept of “driver mutations” requires re-think-
ing. In the past, we could see these drivers in cancers and
assumed that they were causally implicated in tumorige-
nesis because of observed enrichment of these mutations
in particular cancers, such as TP53 (tumour protein p53)
in breast cancer, APC (adenomatous polyposis coli) in col-
orectal cancer and KRAS (Ki-ras2 Kirsten rat sarcoma viral
oncogene homologue) in pancreatic cancer. The applica-
tion of MPS to normal, noncancerous tissues, however,
demonstrates that there are “drivers” in all normal tissues
too [42–45]. In some instances, some “driver” mutations

are more frequent in normal tissues than cancer tissues
[42].

Second, not only do normal tissues have these “drivers”,
they are present as clonal populations [42–45]. Having
multiple clones present in what is nonmalignant, healthy
tissue is now increasingly accepted as the norm. There
is current debate as to whether these numerous clones in
healthy tissues are arising through neutral drift or whether
they arise due to selective pressure, and this remains un-
resolved. Perhaps what we have thought of as “drivers” in
cancer are simply the genes that are most frequently mutat-
ed in certain tissues and do not confer any driver potential
at all. It is possible that some of these alleged driver mu-
tations could be relatively harmless and without effect ini-
tially, but as a tissue becomes more awry, it may assert in-
trinsic potential under selective pressure and become more
like a true driver – in other words, their physiological ef-
fects are dynamic [42–45]. It is known that some tumour
suppressor driver mutations can be reverted back to being
normal during tumour evolution [46]. It is thus not incon-
ceivable that in a complex, dynamic cell an alleged driver
mutation could evolve to increase the strength of its prop-
erties too. This reflection is not simply an academic one; it
has implications for clinical trials that rely on driver mu-
tations in a binary way, to stratify patients into respective
arms when they may in fact not be the sort of drivers that
we had initially believed them to be.

Third, it has also been observed that the burden of mutation
in normal tissues matches that of cancers [42–45]. Thou-
sands and tens of thousands of mutations can be present in
normal skin cells for example [43]. Statistical studies have
suggested that the majority of mutations arise before the
transformation into a frank malignancy [44]. For example,
exposure to ultraviolet light damage in skin, tobacco dam-
age in lung cells and deamination of methyl-cytosines – all
of these create mutational signatures and may even result
in heavy, widespread mutagenesis in normal cells.

Therefore, we arrive at a critical juncture: given what we
can see in normal cells, what are the drivers and mutational
signatures that are truly clinically important to recognise?

Identifying clinically useful genomic properties

We do not have all the answers at this point in time about
which are the clinically meaningful genomic features. That
is largely because we have not historically captured all the
necessary genomic information to be able to answer these
questions. The vast majority of genomics-informed clini-
cal trials have used either single driver events or target-
ed panels for stratification. Separately, large genomic stud-
ies like The Cancer Genome Atlas (TCGA) [11–15] and
International Cancer Genome Consortium (ICGC) [2, 23,
47, 48] endeavours have focused on either WES or WGS
with some additional modalities such as transcriptomics or
methylation studies, but well-annotated clinical data have
been lacking. Although it has been immensely valuable to
study these cohorts to gain biological understanding, what
we need to do for the future is to collect as much of the
most comprehensive genomic data as possible, to structure
and store the data in modern, intelligent ways, and to learn
and relearn from these extensive data as effectively as pos-
sible.
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Quite apart from identifying driver events, mutational sig-
natures, for example, will reveal a panoply of insults in-
cluding prior exposures to environmental genotoxins such
as tobacco smoke or ultraviolet light [18, 20]. Although
this is valuable to understand, for an individual patient the
signatures of these environmental agents report a past ex-
posure and there is little that we can do to remedy what has
already been acquired. Thus, although it is interesting, re-
vealing and has public-health implications, identifying sig-
natures of environmental agents is less clinically useful in
terms of intervention for the patient – at least for now.

What is more useful is to identify mutational signatures
from biological processes that are on-going, because they
may indicate a dysfunctional pathway that is potentially
targetable. Examples of defective DNA repair pathways
that are clinically informative are mismatch repair (MMR)
deficiency [49] and BRCA1/BRCA2 deficiency [36] (fig.
1). Tumours that have the former are treatable with check-
point inhibitors whereas tumours that have the latter have
been reported to be particularly sensitive to poly-ADP-ri-
bose inhibitors (PARPi) through synthetic lethal mecha-

nisms, where a tumour is fully-dependent on the normal
functioning of PARP because BRCA1 and BRCA2 are no
longer operational. Deficiencies in MMR and BRCA1/BR-
CA2 cause mutagenesis directly and their corresponding
signatures can be used as biomarkers to report those defi-
ciencies, making tumours that carry those signatures clini-
cally targetable.

Other endogenous mutational processes may also report bi-
ological abnormalities, even if in an indirect way. These
are a little more difficult to ascertain and require extensive
analytics in order to identify, to “train” using mathematical
methods and to apply across cancers in order to develop
into some form of biomarker. For example, the mutational
signatures associated with the activity of the APOBEC
(apolipoprotein B mRNA editing enzyme, catalytic
polypeptide-like) family of enzymes are characterised by a
C>T transition (signature 2) and/or C>G transversion (sig-
nature 13) at cytosines that are almost always preceded by
a thymine (otherwise described as a TpC sequence context)
[2, 18]. The first mechanistic step in generating this sig-
nature is the deamination of cytosines at TpC contexts to

Figure 1: Holistic cancer genome profiling. Whole cancer genome profiles of four breast cancer patients. Circos plots showing the chromo-
somal ideogram on the outermost ring, clockwise chr1-chr22,X,Y. Subsequent circles heading inwards: Substitutions as dots plotted on log
scale of intermutation distance, small insertions/deletions, copy number (pink = losses, green = gains), rearrangements = lines (green = tan-
dem duplications, pink = large deletions, blue = inversions, grey = translocations). Top right panel depicts substitution mutational signatures,
next one below showing indel classes, next one below showing rearrangements. Last panel bottom right shows curated driver mutations. (A)
Oestrogen receptor positive breast cancer with good outcome: a tumour with sparse mutagenesis, low numbers of substitutions, indels and re-
arrangements, mainly signatures 1 and 5. 1q gain and 16q loss are common. (B) Characteristic BRCA1 null tumour with high levels of substi-
tution signature 3, deletions with microhomology, multiple copy number losses and tandem duplications throughout the genome. (C) Mismatch
repair deficient tumour with high numbers of signatures 6 and 26, and a very large number of indels at polynucleotide repeat tracts. (D) Mixed
APOBEC-mutated and mismatch repair deficiency demonstrating that tumours can have multiple mutational processes.
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form uracils, which can only occur when DNA is single
stranded (ssDNA). The APOBEC signature tends to show
many mutations happening on the same strand (stranded-
ness) [50] for relatively long stretches in the genome (tens
of kilobases) suggesting that long spools of ssDNA are
available for APOBEC deamination during tumorigenesis.
This may perhaps be an indicator of replication stress for
the tumour. It consequently follows that tumours that have
a preponderance of APOBEC mutagenesis may be tumours
that are under a high level of replication stress and may be
selectively sensitive to drugs that have been developed for
this cause, including WEE1 G2 checkpoint kinase (WEE1)
and ATR serine/shreonine kinase (ATR) inhibitors.

The value of having a total genomic picture of each cancer
through WGS is that it can reveal all that is awry within
each tumour. A tumour is, after all, a biological entity that
rarely falls into binary categories. A tumour could have
a selection of “drivers” which impair diverse pathways in
different ways, as well as a selection of mutational signa-
tures occurring in unison such as signatures of APOBEC
and MMR deficiency (see fig. 1). Accordingly, to report on
such a tumour, and to learn and understand why any indi-
vidual tumour responds to a particular set of therapeutics
or otherwise, we need to be able to interpret whole cancer
genomes in a holistic way.

Moreover, to make interpretation of WGS cancers easier
and assist clinicians of the future in using WGS cancer data
more effectively, it is of enormous utility to develop algo-
rithms or predictors of biological abnormalities and to test
these in clinical populations. As an example, we have pi-
oneered the development of a mutational-signature-based
algorithm, capable of predicting BRCA1/BRCA2 deficien-
cy, called HRDetect [36]. Critically, it identified many ad-
ditional breast cancer patients with germline and somatic
mutations of BRCA1/BRCA2, promoter hypermethylation
of BRCA1, in patients not previously prioritised for BR-
CA1/BRCA2 screening [36]. Crucially, it also revealed a
cohort of women with clear BRCA1/BRCA2-like tumours,
but in whom we could not identify the underlying genetic
or epigenetic driver [36]. These patients would be missed
using current assays such as targeted BRCA1/BRCA2 se-
quencing and/or possibly the “genomic scars” test. There
are thus benefits to taking the mutational signatures ap-
proach in identifying these patients.

To convince the clinical research community that these
machine-learning-based algorithms are of value, algo-
rithms such as HRDetect must be validated in alternative
cohorts and their ability to relate to clinical outcome must
be evaluated. Indeed, HRDetect has been applied to a pop-
ulation-based study in Sweden, called SCAN-B [51], in
which all women in the south of Sweden with breast cancer
are invited to participate in the study without exception.
Focusing on a type of breast cancer associated with poor
outcomes called triple negative breast cancer (TNBC), all
available tumours between 2010–2015 have been whole
genome sequenced [51]. Because the SCAN-B project has
extraordinary supporting registries of clinical information,
it is possible to make a true assessment of the frequency of
BRCA1/BRCA2-deficient cancers in TNBC in the Swedish
population (~59%), and to be able to ascertain that HRDe-
tect has independent prognostic properties capable of dis-
cerning patients who will respond to standard-of-care from

those that do not seem to gain any benefit from current
treatments [51]. Furthermore, the WGS approach allows us
to “see” other abnormalities in these breast cancers, some
of which may be targetable with treatments that are other-
wise not offered to women with breast cancer.

The example we provide above is one where we have
reused large WGS datasets using machine-learning meth-
ods to develop a novel clinical algorithm, and then applied
it to a clinical cohort in order to understand its true clinical
value (fig. 2). Now rolled out into clinical trials, what we
aim to do through the Josef Steiner Award is to build the
infrastructure to allow us to perform these sorts of analyses
more efficiently, to develop new algorithms as a result of
having greater flexibility in exploring the data and to ac-
celerate the translation of whole cancer genomics into the
clinic.

Holistic genome interpretation
Today it is already possible to provide an individual WGS
report in a matter of days, providing all the drivers, muta-
tional signatures and even germline information for each
patient. Novel algorithms can already provide clear read-
outs of HR deficiency and MMR deficiency. In due course,
more exhaustive holistic WGS reports should provide ther-
apeutically relevant treatment strategies associated with
the genomic results too. Presently, what are the hurdles that
prevent using WGS reporting for cancer today?

One of the first concerns about WGS was the cost of se-
quencing. With the precipitous decline in sequencing costs
in the last decade, this is now something of a myth. The
cost of WGS is today less than that of a contrast-enhanced
computed tomography (CT) scan of the chest, abdomen

Figure 2: Developing and translating clinical computational
tools. Having genomic and clinical data that are well-structured
and organised is essential for the efficient development of novel
clinical algorithms. Once putative clinical algorithms are devel-
oped, the critical next steps towards fully translating the algorithm
is to apply it into retrospective and prospective clinical cohorts.
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and pelvis. Yet this radiological test is performed routine-
ly to gain the full anatomical picture of a patient’s disease
status. Healthcare providers and medical insurance com-
panies would not think twice about requesting or funding
these investigations. Yet there is hesitation regarding WGS
of solid tumours. There are admittedly additional costs as-
sociated with WGS, such as storage and backup of se-
quencing and intermediary files. Nevertheless, there is also
added value. WGS data that are stored intelligently could
serve as an ever-giving clinical research resource.

The second and more appropriate concern is the hurdle of
analysis and interpretation. In this domain, however, there
is substantial acceleration in how to perform WGS analy-
sis and interpretation. Awards such as Steiner will certain-
ly help our team to organise data and analyse it quickly to
build more tools to assist in WGS interpretation.

Conclusions and future directions

It is quite possible, or even likely, that having a WGS for
every (relevant) solid cancer will become a routine part
of the diagnostic process for every patient within the next
10–20 years, if not sooner. There are already several large
endeavours that have initiated WGS cancer sequencing re-
search projects, including the 100,000 genomes project in
the UK [52] and the Hartwig consortium in the Nether-
lands [53] among others. It is possible that these research
projects will lead the way in transitioning into clinical
practice. We should thus prepare for a future where WGS
(or some form of genomics/transcriptomics) may become
another assay like a set of bloods, an electrocardiogram,
a staging CT scan or positron emission tomography scan,
in the process of trying to comprehensively understand the
patient’s cancer clinical picture.

To achieve this vision, first we must provide the infrastruc-
ture and support to train the next generation of molecu-
lar genomic interpreters, whether they are pathologists, ge-
neticists or an altogether new breed of scientific/medical
experts. Apart from computational support, we need to de-
velop standard operating procedures for data handling and
analysis, statistical and academic frameworks to operate
from, and legal and/or ethical guidelines, to name a few ar-
eas of development. What they will learn to do is to read/
interpret a whole cancer genome, like a radiologist would
do for an X-ray or CT scan.

Second, clinical trials of chemotherapeutic agents that in-
corporate improved genomic profiling of tumours are re-
quired. This is not a trivial exercise and years of work are
ahead of us before we will be in a position to match thera-
pies to genomic status more effectively in the future.

Third, we must do the right thing by our future clinicians
and scientists, which is to build the best infrastructure to
support modern analytical methods. It is possible to struc-
ture data so that we maximise learning from every case
going forward. The human genome is so vast and there
is much that we do not yet understand. Genomic data are
perfect for exploration using machine-learning methods, to
develop artificial intelligence that will help the clinicians/
scientists of the future with diagnostics. We must build the
foundations to suit that future.
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