
A conceptual model for identifying the risk susceptibility of urban 
green spaces using geo-spatial techniques  

Abstract 

 

Urban green spaces are often regarded as the harbinger of sustainability in the rapidly urbanizing world. This study 

forwards a conceptual framework towards urban green space (UGS) management by the quantification of risk 

susceptibility of the UGs at a neighborhood level by using remote sensing data and geo-spatial techniques. Objective 

measure of the UGS was performed using weighted evaluation of NDVI data at a 20m x20 m grid over the city of 

Kolkata. The Normalized Green Index (NGI) was developed to quantify the implication of the built-up spaces in UGS 

risk susceptibility in the urban fabric. Both the satellite image data and the NGI values were spatially auto-correlated 

-up area and green spaces using LISA. It 

was observed that the low green-spaces were greatly influenced by the high built-up area around it.  This inference 

was extended had the most risk susceptible 

zones, whereas the area surrounded by wetlands were the most stable region bearing high resilience to urbanization. 

Hence, by determining the most risky zones for UGS degradation, planners and policy makers can efficiently allocate 

resources towards the sustainable development of the city by conserving and promoting UGS.  

 

Keywords: urban green spaces; geo-spatial; concept-model; environment; spatial -autocorrelation 

1. Introduction 

Sustainable Development Goals (SDG) no. 15, aims at protecting, restoring and promoting sustainable use of 

terrestrial ecosystems, sustainably manage forest and combat desertification by conserving land degradation and 

preventing bio-diversity loss by 2030 (United Nations, 2014). Rapid urbanization and population explosion is the 

biggest force that is irreversibly transforming terrestrial ecosystems. 11 out of 19 megacities of the world, with more 
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than 10 million inhabitants are in Asia, with India and China alone accommodates more than 1 billion population 

(Zhao et al., 2006). Here, more than 50% of the population lives in less than 3% of the urbanized terrestrial surface, 

creating tremendous pressure on the land,, triggering ecological consequences (Singh, et. al., 2010). Rapid 

urbanization in India is changing the dynamics between ecology, economy and the society. In the last 50 years, the 

urban population in India has grown five folds , where 60% of this growth is attributable to natural growth, and the 

remaining 40% is due to migration and spatial expansion (Sivaramakrishnan, Kundu, & Singh, 2005; Taubenböck et. 

al, 2009). The urban population in India is likely to grow to 500 million in the next 50 years, and will continue to have 

substantial impact on the ecology, economy and society at local, regional, and global scales (Singh et al., 2010). Hence, 

redesigning and optimizing urban systems to mitigate the impact of rapid urbanization and population expansion, 

while being carbon neutral, is an urgent necessity to combat climate change, and is a serious public policy and 

adaptation management challenge for India (Revi, 2008).  

In this purview, one of the effective policy instrument is the protection of green-areas within urban social-ecological 

systems to amend several problems of city-

comprises all urban parks, forests and related vegetation that add value to the urbanites (Gupta et al., 2012). The 

benefits of UGS are wide ranging that include enhancing of public health, social solidity, climate change mitigation, 

pollution reduction, biodiversity conservation and uplift the quality of ecosystem services (Singh et al., 2010). Apart 

from maintaining the quality and sustainability  , UGS functions as a visual screen and act as noise barriers and avoid 

too much spatial uniformity (Gupta et al., 2012). Hence in one word green spaces contribute in reducing urban 

vulnerabilities. 

Global UGS estimation suggests that developed countries have more green spaces compared to the cities in developing 

countries, which often fall below the minimum standards of 9 m2 green open space per city dweller by the World 

Health Organization  (WHO) (Singh et al., 2010).  The UGS coverage  in India are not well-studied, some studies on 

Bangalore (Nagendra & Gopal, 2011; Sudha & Ravindranath, 2000), Delhi (FSI, 2009) and Chandigarh (Chaudhry & 

Tewari, 2010), focus more on the subjective methods of   perceived, self-reported hedonism about green spaces involve 

the method of survey question audit by trained raters who apply specific criteria (e.g., presence/absence of various 

features) to assess natural environments. Such subjective measures are time consuming and expensive (Gupta et al., 

2012). With the advent of remote sensing (RS) and geographical information system (GIS), objective measures of 
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UGS have become more communicative, by virtue of its receptivity, synoptic view and larger area coverage. Forster 

(1983) showed the applicability of Landsat imagery for producing quality index for urban areas which included rating 

of green spaces (Gupta et al., 2012; K. Sivaramakrishnan et al., 2005; Sudha & Ravindranath, 2000). Liu & Liu (2008) 

estimated green spaces using the ecological niche modeling technique, but concluded that it should not be used for 

UGS construction, as it does not address spaces and human barrier conflicts. Image processing allows extraction of 

features of interest, based on reflectance characteristics, from satellite data in the form of indices through different 

algorithms and mathematical indices. The Normalized Difference Vegetation Index (NDVI)  is one such index that is 

used to highlight vegetation areas on a remote sensing data and is widely applied for studying global environmental 

and climate change(Gao, 1996). It is calculated as a ratio difference between measured canopy reflectance in the red 

and near infrared bands respectively (Bhandari, Kumar, & Singh, 2012). The use of GIS has proved useful in 

identifying vegetation cover, preparing urban green data inventory and mapping potential value of a green areas using 

various attribute and location-based queries and , data integration techniques. Assessing multi-attribute values like 

risk or vulnerability of such urban assets can also be performed in GIS using advanced spatial algorithms, like multi-

criteria mapping, spatial overlay, spatial auto-correlation and spatial regression. Such techniques enable in identifying 

spatial hot and cold spots of risks and vulnerability.  

In city planning, UGS are considered as a key element for reducing urban vulnerability from external stresses of 

urbanization, hence are often treated as homogeneous goods, whose loss can be quantified as a uniform value reduction 

in a continuum scale (Lee et al., 2015; McConnells & Walls, 2005). However, in reality it is more complex, they are 

actually heterogeneous goods having hierarchy of distinct values based on the functionality and services they provide. 

Thus create varied resistance towards urban vulnerability reduction.  

The efficiency of UGS are dependent on their own risk liability. Urban green assets has an inherent resiliency, which 

is a function of the intrinsic risk susceptibility of the green space, based on its regeneration and rejuvenation capability 

and contextual association to built-spaces. Therefore, to internalize the beneficiary role of UGS, not all green spaces 

need to be statutorily preserved at the same time. This innate risk of the UGS can be utilized to derive a hierarchical 

UGS risk function and only those greens that are at immediate threat to extinction or will collapse can be preserved. 

Currently there exists no standard methodology to identify the risk susceptibility of the UGS. Studies that deal with 

the quality of green spaces mostly focus on characterizing them based on multiple environmental attributes and rarely 
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address the issue of the intrinsic resilience. (Gupta et al., 2012; Sati, Uji, & Popoola, 2016).  Remote sensing and GIS 

techniques can be aptly used for this function.  

 In this study we forward a conceptual framework for identifying the risk susceptibility of UGS as an effect of 

urbanization. Here, the risk susceptibility of UGS is defined as a function of its greenness or the vegetation health and 

its exposure to stress from urbanization.  We use satellite imagery to capture the status of UGS in a rapidly urbanizing 

area, and generate a green space risk susceptibility map using Anselin's (1995) spatial dependence model of bivariate-

Local Index of Spatial Association (LISA).  

2. Conceptual framework 

Urban green spaces are an intrinsic part of a sustainable built environment. The importance of green spaces in the 

neighborhood transcends environmental, social and economic benefits. However, there are complex risks associated 

with the development and conservation of UGS. In this study, we forward a methodology that would not only help 

planners or policy makers to decide how much emphasis should be given to a particular spatial range of UGS, but also 

optimize resource allocation, in the preservation, protection and conservation of it. This work picks from the 

concluding remarks of Gupta et. al. 2012, where they derived a tool/technique to objectively measure the quality of 

green spaces in an urban neighborhood using RS and GIS technology. They concluded by converging their study 

towards the importance of such RS enabled tool at the household level for urban-environment sustainability. Here, we 

pick this end and put forward a conceptual framework for studying the risk susceptibility decision making of UGS 

from built-space interaction.  

The risk of a system can be defined as the combined function of exposure to stresses (which leads to vulnerability) 

and inherent resiliency (i.e. the ability to cope with the stress). Here the risk susceptibility of UGS is defined as the 

product of exposure to urbanization stresses (Eu) and the inherent resilience (IRg) of the green spaces based on its 

vegetation health. When Eu exceeds the value of IRg then the green space is at more risk and vice-versa. Conceptually, 

urban risk susceptibility can be categorized in to four basic stages namely: Stable, Rejuvenation, Fatigued, and 

Collapse. These four stages are depended on the combined effect of level of exposure to the stress and the inherent 

resiliency.  

Fig. 1 illustrates the conceptual framework of assessing the risk susceptibility of UGS.  
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Fig 1. Conceptual Framework for assessing risk of urban green spaces 

3. Methodology 

3.1  Data used 

To identify the various parameters for UGS vulnerability,  indices based classification of remotely sensed data from 

Indian Remote Sensing Satellite (IRS), Resourcesat-1 IRS P6 Linear Imaging Self Scanner (LISS-IV) (May, 2011) 

was used. It was then used to classify the UGS based on their greenness (vegetation health) into Very High (VH), 

High (H), and Low (L) values.  LISS-IV is a multispectral high resolution sensor with a spatial resolution of 5.8 m at 

nadir and operating in three spectral bands 0.52  0.62 green, red and near 
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infrared regions (NIR) of the electromagnetic field. NIR is extensively used for the characterization and identification 

of vegetation using the Normalized Difference Vegetation Index (NDVI)  (Gupta & Jain, 2005).  

ERDAS Imagine 2013 was used for extraction of the indices pertaining to green cover and built-up areas from LISS 

IV.  Spatial analysis and clustering was performed using, ArcGIS v10.2.2 and  GEODApackages .. A Grid cell of 20m 

x 20m was overlaid over the study area to capture the spatial arrangement of UGS with respect to built-up spaces and 

to derive two indices, namely: Normalized Build-up Index (NBI) and Normalized Green Index (NGI). The 20m X 

20m grid cell was chosen by considering the minimum mapping unit of LISS IV data of 3 pixel by 3 pixel, as derived 

by the experimental work of Knight & Lunetta (2003) and the premise that the average distance between buildings 

was 20m. These cells were assigned with the classified NDVI and built-up area values (refer Section 3.2). The detailed 

methodology is illustrated in Fig 2 

Fig 2. Adopted methodology 

3.2 Characterization of NDVI and extraction of built-up area 

NDVI of the UGS was characterized into Very High (VH), High (H), and Low (L) values. It was calculated from the 

LISS IV data set using eq. (1).  
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        (1) 

where,  

NIR = near-infrared bands (0.62  0.68 µm) of Band 3; R = red bands (0.52  0.59 µm) of Band 2. 
 
It should be noted that NDVI is a representation of the degree of greenness of a particular remote sensing scene and 

is equal to the chlorophyll concentration i.e. all observed areas having chlorophyll density. It varies with the degree 

of absorption of red light by plant chlorophyll and the subsequent reflection of infrared radiation by moisture in the 

leaf(Bhandari et al., 2012). Therefore, NDVI of an urban area depicts both accessible and non-accessible green spaces, 

however, the city green area in terms of land use only reports the accessible green spaces like parks, playgrounds, 

gardens, etc. Consequently, the total greenness reported by NDVI image will be much higher than the green cover of 

land use maps.   NDVI values range from +1 to -1, where values near to +1 denotes healthy vegetation, whereas values 

near to -1 denotes barren land. This range of +1 to -1 is dependent on the sensitivity of the NIR band of a specific 

sensor of the satellite (Carlson, Gillies, & Perry, 1994).  

In this study, we divide the NDVI threshold values into three segments: Very High (VH), High (H), and Low (L); 

which are the subjective representation of the density distribution of vegetation health, as illustrated in Table 1. The 

values less than 0.2 were not considered, as it represents non green features like water body.. The area of each class 

of the classified NDVI image was calculated using eq. (2). 

     (2) 

Table 1. Classification of NDVI data and its interpretation 

Segments NDVI threshold 
values 

Interpretation 

Very High (VH) > 0.6 very dense and highly vigorous vegetation 

High (H) 0.4-0.6 abundant and vigorous vegetation 

Low (L) 0.2-0.4 sparse and apathetic vegetation 

The next step involved the extraction of the built-up area from the  LISS IV data, by using the  parametric maximum 

likelihood approach based supervised classification method. Supervised classification is based on the idea that the 

user can select maximum training samples from the image that are the representative of a specific class and then 

process the training sets (signatures). These training sets were used as references for the classification of all other 
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pixels in the image. However, the accuracy of this classification is highly dependent on the number of the training sets 

that were used.  

In our classification, we have taken 50 signatures for both built-up and non-built up classes. Finally, the LISS-IV 

- an overall kappa accuracy of 96%. 

The raster output from NDVI and built-up areas were co-registered and subtracted from each other (i.e. built-up areas 

-NDVI). This was done to remove overlapping pixels , such that built-up areas do not have pixels that also represent 

green vegetation. The threshold for retaining the pixels in the NDVI image, in spite of overlap with built-up area 

image was set at 0.2.  

3.3 Development of the Normalized Green Index (NGI) and Normalized Built-up Index (NBI) 

In order to quantify the status of UGS based on the NDVI characterization (see Table 1), weights were allotted to each 

class of the NDVI image, within a range of 1 to 5. The weights provided are 5, 3 and 1 for Low (L), High (H) and 

Very High (VH) NDVI classes, respectively. These weights were provided based on the inherent reliance of urban 

greens i.e. more NDVI means healthy vegetation and hence more inherent resilience. In other words less is the risk 

susceptibility. However, no weights were allotted to built-up pixels.  

This weighing scheme was utilized for the calculation of the Normalized Green Index (NGI) and the Normalized 

Built-up Index (NBI), as represented in eq. (3) and eq. (4).  

      (3) 

         (4) 

3.4 Spatial relationship between NGI and NBI 

The spatial clustering status with respect to the hot and cold spots of the NGI and NBI within the urban fabric of the 

study area, was analyzed using univariate local Moran's I.  The local Moran's I index is one of the most popularly used 

method for hotspot or spatial cluster identification. It examines individual locations, enabling hotspots to be identified 

based on a comparison with the neighboring samples, was calculated using  eq. (5) (Zhang et al., 

2008).  
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         (5) 

where,  

represents the value of the variable  at location ;  is the average value of   with the sample number of ;  

representing the value of the variable  at all the other locations  (where ;);  is the variance of variable ;  

and  is a weight which can be defined as the inverse of the distance  among locations  and . The weight of 

can also be determined using a distance band; samples within a distance band are provided with the same weight, 

whereas samples outside the distance band are given the weight of 0. 

  -1 to + 1, where +1.0 indicates clustering while a value near 1.0 indicates dispersion. 

A high positive local Moran's I value infers that the location under study has similar high or low values as its neighbors, 

thus the locations are spatial clusters. The high high clusters where, high values are surrounded by high value 

neighborhoods, and low low clusters have low values surrounded by low value neighborhoods. In this study, high-

high NGI and NBI values depict hotspots of healthy UGS and high urbanization respectively.  

3.5 Calculating risk susceptibility of USG: 
 

To characterize the risk of a particular UGS we use the neighboring NBI values as its level of exposure from 

urbanization and the NGI values as the inherent resilience. The values of these two variables , the NGI and NBI were 

then spatially correlated using bivariate LISA to detect the clusters of local risk susceptibility of the USGs (L Anselin, 

Syabri, & Smirnov, 2002). Bivariate LISA enables in detecting exact location of spatial clusters of two variables that 

are spatially autocorrelated (i.e the extent to the value of one variable at a certain location associates to the value of 

the other variables in the neighboring locations).  The bivariate LISA can be defined as (see eq. (6)): 

           (6) 

where,  

xl and xk are the two variables. In this case, they were NBI and NGI. This statistic gives an indication of the degree of 

linear association (positive or negative) between the value of one variable at a given location i and the average of 

another variable, at the neighboring locations such as js, also known as spatial lag of j (Matkan, Shahri, & Mirzaie, 

2013). Statistically significant similarity (i.e. say CI- 95%) indicates spatially similar clusters in two variables. Here, 
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we considered NGI values as the  surrounded by the built-up pixels of NBI as the - . To understand the spatial 

distribution of UGS at risk, we categorized the risk zones into four categories based on their values and a corresponding 

weight was provided to indicate the USG-Urbanization risk susceptibility, as illustrated in the Table 2. 

Table 2. Risk susceptibility classification 

NGI (x) NBI (y-lag) Risk susceptibility of 
UGS 

Status of NGI Weight 

HIGH HIGH Moderate  Fatigued 5 
LOW LOW No Stable 3 
LOW HIGH high Collapse 7 
HIGH LOW low Rejuvenation 1 

 

This table should be read as following: if the 

greenness status of that particular green patch 

 risk susceptibility. That means the green patch has higher resilience, to cope with the high exposure 

from NBI, however, the green patch is fatigued i.e. with prolonged exposure it might collapse. Similarly, when NGI 

urbanization exceeds inherent resilience and hence will evidently lead to collapse of the green space.  

Since the risk susceptibility values were subjectively measure, for ease of calculation we convert them to objective 

values by assigning weights in accordance to their hierarchy of risk susceptibility.  

3.6 Identification of exposure quotient of USG and specific green assets under maximum risk: 

Deriving from the conceptual framework, we assume the risk of UGS as a scalable factor of exposure and inherent 

resilience. To identify the exposure of the green spaces from urbanization, which need immediate attention, we divided 

the risk susceptibility weights with the inherent resilience of USG (NDVI weights) to construct an exposure matrix. 

The premise of this identification process is based on the fact the 

highest risk susceptibility, the green space might survive, but will remain in a state of fatigue. Table 3 illustrates the 

exposure matrix:  
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Table 3. Exposure matrix 

  

Inherent resilience of USG 
(NDVI weights)  

7 5 3 1 

5 1.40 1.00 0.60 0.20 
3 2.33 1.60 1.00 0.33 
1 7.00 5.00 3.00 1.00 

These values were then spatially plotted to generate an exposure surface map of the USGs. 

Finally, to identify specific urban green assets like trees or small patches of green spaces at maximum risk at the grid 

level (20 x 20), we used the following step-wise algorithm. The algorithm first picks all the grids from NGI which has 

a value between 0.2  0.4, then from these selected grids only those grids that have a risk susceptibility of 7 were 

carefully chosen. Finally, from these selected grids only those grids that had NBI more than 0.5 were selected. These 

selected grids represent the micro-level green patches at highest risk.     

Fig 3 Process for identifying grid level UGS risks 

  

4. Study Area 

The megacity Kolkata, formerly known as Calcutta, is the densest city of the world. It has a population density of 

24,718 per sq km, accommodating 4.5 million inhabitants in 141 census wards (Census, 2011). The Kolkata 
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Longitude (KMDA, 2006). Once, the colonial capital of India, the impact of colonialism is deeply embedded in the 

-cultural realm. The current spatial structure includes high population density, a 

compact design, and a widespread network of public/intermediate public transport (IPT) with inadequate road 

infrastructure (6%) (Census, 2011). During 1950s to 70s, this city had beheld heavy working class migration, leading 

to a severe shortage of housing, food, sanitation and hygiene, and proper healthcare. As the countermeasure, the 

government sought of expanding city limits and design, -

-

-centres , in the 

, with the objective of ease the pressure of the high population 

density from the original CBD and create high-density green fields (Bardhan, Kurisu, & Hanaki, 2015). However, this 

- the Kolkata Metropolitan Planning Committee 

(KMPC) (KMDA, 2006). This study aims to be an aiding tool in designing UGSs to attract more people into the 

planned compact poly-centres, and cater to the overall inclusive development of the City of Joy: Kolkata (see Fig 4).  

Fig 4. Map of the study area. 

Source: Bardhan et al (2015) 

4.2 Land-use status (2008): 

Land-use map of Kolkata cityLocation of Kolkata 
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Nath & Acharjee (2013) estimated the land-use pattern of Kolkata Municipal Corporation (KMC) as 19411.08 hectares 

or 194.11 sq. km in 2008, from Google Earth high resolution satellite data. The percentage land use change in the 

KMC zone for the year 1900, 2000, 2004 and 2008 is illustrated in Fig 5.  

Fig 5. Land use status in percentage. (Source: Nath & Acharjee (2013)) 

Source:  (Bandyopadhyay, 2015) 
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Krishnendu Bandyopadhyay | TNN | Apr 14, 2015, 12.38 AM IST 

Kolkata's green cover has dipped to an extremely unhealthy 
4.79%... the minimum requirement for an Indian city is 15%.... 

 

vegetation area but a sharp drop in vegetation density increased environmental risks like pollution and global 
warming. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 

5. Results 

was the first step towards the identification of UGS which are the most and least resilient to urbanization. Fig 6 and 

Table 4 illustrates the NDVI based UGS classification which denotes the degree of greenness (vegetation health).  

Source: (Padmanaban, 2016) 

Box 2: How Indian cities are being shorn of trees 

Deepa Padmanaban | Mar 30, 2016, 03.32 PM IST 

-up area up 190%. By 2030, vegetation will 
 

Urban built-up area increased 190% between 1990 and 
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Table 4. Classification of UGS based on its vegetation health. 

NDVI values Area (km2) Percentage (%) Inferences1 

Low (L) 41.26 ( 44% Collapsing UGS 

High (H) 33.81 36% Fatigued UGS 

Very High (VH) 18.67 20% Rejuvenating UGS 

 

 

 

Fig 6. Classification of UGS based on NDVI values 

1 These inferences are in terms of the conceptual framework.  

1

2

3

Zone 1: a)NDVI map 
b) Google Earth image 

Zone 2: a)NDVI map 
b) Google Earth image 

Zone 3: a)NDVI map 
b) Google Earth image 

Reference map
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Table 5. Descriptive of different classes of UGS 

NDVI Value Normalized Green Index (NGI) 

 Mean Standard deviation 

Low (L) 0.29 0.07 

High (H) 0.50 0.06 

Very High (VH) 0.73 0.09 

 

In order to define the spatial clustering of NGI and NBI values,  

value was found to be 0.550 for NGI variables, indicating significantly high clustering. Whereas, 

NBI was 0.720 representing a high correlation between built-up clusters. Thus, supporting the high-density of Kolkata.  

The of NGI(x) and NBI (lag of y) was -0.393. The negative value implied an inverse relationship 

between NGI and NBI. This infers that the low green-spaces are surrounded by high built-up areas.   

6. Discussion 

In this study, a conceptual framework was forwarded to identify urban green spaces that are at high risks due to 

urbanization. This framework will be an essential tool to urban planners and policy makers to facilitate sustainable 

urban built environment bye-laws and guidelines. The risk susceptibility of the UGS was calculated using NDVI 

values, classified into three categories: Low (L), High (H) and Very High (VH). In order, to convert this subjective 

measure into an objective measure, weights were assigned. This objective measure was termed as NGI. This NDVI of 

Kolkata is illustrated in Fig.6. Following steps included, deriving the spatial relationships between NGI and NBI, and 

 

The risk susceptibility of the UGS in Kolkata is illustrated in Fig 7. The red and blue colors imply regions which need 

immediate attention in terms of UGS protection and conservation measures, whereas green and yellow areas represent 

the risk in a decreasing order of low to no risk. Based on the conceptual framework (see Fig 1), it can be inferred that 

the red and blue areas are the zone of UGS collapse and fatigued respectively, whereas the yellow zone are areas that 

have the potential to regenerate or rejuvenate. However, the green zones are the areas that are most stable, i.e. will 

survive from the stresses of rapid urbanization.  
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To precisely identify which trees or green patches need immediate attention, micro-scale green space analysis of UGS 

was carried out using the three-step algorithm (see Fig 3).  It is evident that the rapid urbanization poses high risk to 

the UGSs both at a macro and micro level. Although, the micro-level dynamics might tend to associate with the socio-

economic and urbanization speculation dimensions of the city. Fig 8 illustrates the micro-level risk UGSs.  

If we look at the spatial distribution of the green spaces at moderate to high risks, it can be seen that more risk inclined 

green spaces are concentrated in the North, West and the central part of the city, where the consolidation of built-up 

spaces are high, as illustrated in Fig 7. The Southern and the Eastern part of the city pose less risk on account of the 

wetlands. The highest susceptibility of UGS were found to cluster in the Northern part of the city, which are the older 

parts of the Kolkata city.  These areas have high sprawling due to heavy urbanization, thus, consequently manifesting 

in high risk susceptibility for the green spaces. 

Fig 7. Risk susceptibility of UGS 
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Fig 8. Micro-scale high risk susceptibility mapping of USGs 

7. Conclusion 

Uncontrolled urbanization in India is the biggest driver of rapid environmental and green space degradation.  (Maiti 

& Agrawal, 2005). The urban heat island effect is also another outcome of rapid green asset degradation, which is 

shrinking the scope and boundaries for energy and health sustainability. Green spaces are the most essential component 

of the built-environment. The presence of green spaces not only improves health, social well-being, but mitigates the 

ill-effects of climate change (Tu, Abildtrup, & Garcia, 2016).  Thus the green spaces cater to every normative layer 

of sustainable urban development. It is an utmost necessity to preserve and protect the green spaces in the city to foster 

inclusive growth. However, urban planners and policy makers, lacks appropriate tools to identify and solve the 

resource allocation problems associated with the UGS design.  This study demonstrated that remote sensing 

technology when coupled with GIS tools, can be a valuable technique towards identification and monitoring of green 

spaces that are at high risks. Future work lies in the refinement of the spatial data using LIDAR or other advanced 

high resolution satellite imagery systems, so that more realistic models can be analyzed at the neighborhood and 

individual level.  
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In diverse megacity like Kolkata, it is extremely difficult to find spaces for the development of UGS. Moreover, the 

current green spaces are at the brink of extinction due to rapid urbanization and population explosion. The 

methodology that is forwarded in this study, not only assess the state of UGS in the built environment of the city, but 

also pin-points high risk zones. This quarantine of high risk UGSs, can help in efficient resource allocation by the 

policy makers. This tool enables the planner to focus on green assets at a micro- level, thus, enabling a bottom up 

planning strategies. The conceptual framework which is devised in this study for the quantification of the green space 

can be applied to other Indian cities, where the process of urbanization is fast and urban greens is stressed. Due to its 

low resource intensity and ease of computation, this method can be easily adopted by planners and policy makers for 

sustainable development and rapid planning process for any developing nations. Therefore, fostering more community 

engagement and nurturing pro-environmental behavior among the habitants. Strengthening the green cover right from 

the household to the neighborhood to city level, which will not only stabilize the environmental degradation and 

climate change, but will also push the community and the country towards fulfilling the UN-Sustainable Development 

Goals.  

References 

Anselin, L. (1995). Local Indicators of Spatial Association LISA. Geographical Analysis, 27(2), 93 115. 
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x 

Anselin, L., Syabri, I., & Smirnov, O. (2002). Visualizing multivariate spatial correlation with dynamically linked 
windows. New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting, 1 20. Retrieved from 
http://geodacenter.asu.edu/pdf/multi_lisa.pdf 

Bardhan, R., Kurisu, K., & Hanaki, K. (2015). Does compact urban forms relate to good quality of life in high 
density cities of India? Case of Kolkata. Cities, 48, 55 65. http://doi.org/10.1016/j.cities.2015.06.005 

Bhandari, A. K., Kumar, A., & Singh, G. K. (2012). Feature Extraction using Normalized Difference Vegetation 
Index (NDVI): A Case Study of Jabalpur City. Procedia Technology, 6, 612 621. 
http://doi.org/10.1016/j.protcy.2012.10.074 

Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and 
NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing 
Reviews, 9(February 2015), 161 173. http://doi.org/10.1080/02757259409532220 

Census. (2011). Provisional population totals. New Delhi, India. Retrieved from http://censusindia.gov.in/ 

Chaudhry, P., & Tewari, V. P. (2010). Managing urban parks and gardens in developing countries: a case from an 
City. International Journal of Leisure and Tourism Marketing, 1(3), 248  256. 

Forster, B. (1983). Some urban measurements from Landsat data. Photogrammetric Engineering & Remote Sensing, 
(49), 17071 17716. 

FSI. (2009). State of Forest Report. Dehradun. 

Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



space. Remote Sensing of Environment, 58(3), 257 266. http://doi.org/10.1016/S0034-4257(96)00067-3 

Gupta, K., & Jain, S. (2005). Enhanced capabilities of IRS P6 LISS IV sensor for urban mapping. Current Science, 
89(11), 1805 1812. 

Gupta, K., Kumar, P., Pathan, S. K., & Sharma, K. P. (2012). Urban Neighborhood Green Index - A measure of 
green spaces in urban areas. Landscape and Urban Planning, 105(3), 325 335. 
http://doi.org/10.1016/j.landurbplan.2012.01.003 

K. Sivaramakrishnan, Kundu, A., & Singh, B. (2005). Handbook of Urbanization in India: An Analysis of Trends 
and Processes (2nd ed.). New Delhi, India: Oxford University Press. 

KMDA. (2006). Vision 2025, the perspective plan for Kolkata Metropolitan Area (KMA) Kolkata, India. Kolkata, 
India. 

Knight, J. F., & Lunetta, R. S. (2003). An experimental assessment of minimum mapping unit size. IEEE 
Transactions on Geoscience and Remote Sensing, 41(9 PART II), 2132 2134. 
http://doi.org/10.1109/TGRS.2003.816587 

Time of India. Kolkata, 
India. Retrieved from http://timesofindia.indiatimes.com/city/kolkata/Greying-Kolkatas-green-cover-in-free-
fall/articleshow/46912398.cms 

Lee, A. C. K., Jordan, H. C., & Horsley, J. (2015). Value of urban green spaces in promoting healthy living and 
wellbeing: prospects for planning. Risk Management and Healthcare Policy, 8, 131 137. 
http://doi.org/10.2147/RMHP.S61654 

Liu, S., & Liu, B. (2008). Using GIS to assess the ecological-niche for urban green Space planning in Wuxi City. 
Bernburg, Germany. Retrieved from www.kolleg.loel.hs-
anhalt.de/landschaftsinformatik/fileadmin/user_upload/_temp_/2008/2008_Beitraege/004/Buh_353-363.pdf 

on the Metropolitan Cities of India *. Journal of Human Ecology, 17(4), 277 287. 

Locations in Urban Areas. N-Aerus Xiv, (September), 1 12. 

McConnells, V., & Walls, M. (2005). Assessing the non-market value of open space: . Lincoln Institute for Land 
Policy. Washington, DC. Retrieved from /www.rff.org/files/sharepoint/WorkImages/Download/RFF-
REPORT-Open Spaces.pdf 

Nagendra, H., & Gopal, D. (2011). Tree diversity, distribution, history and change in urban parks: Studies in 
Bangalore, India. Urban Ecosystems, 14(2), 211 223. http://doi.org/10.1007/s11252-010-0148-1 

Nath, B., & Acharjee, S. (2013). Urban Municipal Growth and Landuse Change Monitoring Using High Resolution 
Satellite Imageries and Secondary Data A Geospatial Study on Kolkata- Municipal Corporation, India. Studies 
in Surveying and Mapping Science, 1(3), 43 54. 

Revi, A. (2008). Climate change risk: an adaptation and mitigation agenda for Indian cities. Environment and 
Urbanization, 20(1), 207 229. http://doi.org/10.1177/0956247808089157 

Sati, C., Uji, A. Z., & Popoola, O. J. (2016). Perceptible Attributes of Urban Greenspaces in the Architectural 
Characterization of Metropolitan Areas in Jos, Nigeria. Research on Humanities and Social Sciences, 6(4). 
Retrieved from irepos.unijos.edu.ng/jspui/bitstream/123456789/1324/1/CHANGLE.pdf 

Singh, V. S., Pandey, D. N., & Chaudhry, P. (2010). Urban forests and open green spaces: lessons for Jaipur, 
Rajasthan, India. RSPCB Occasional Paper, 23. Retrieved from 
http://dlc.dlib.indiana.edu/dlc/handle/10535/5458 

Sudha, P., & Ravindranath, N. H. (2000). A study of Bangalore urban forest. Landscape and Urban Planning, 47(1-
2), 47 63. http://doi.org/10.1016/S0169-2046(99)00067-5 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Taubenböck, H., Wegmann, M., Roth, A., Mehl, H., & Dech, S. (2009). Urbanization in India - Spatiotemporal 
analysis using remote sensing data. Computers, Environment and Urban Systems, 33(3), 179 188. 
http://doi.org/10.1016/j.compenvurbsys.2008.09.003 

Tu, G., Abildtrup, J., & Garcia, S. (2016). Preferences for urban green spaces and peri-urban forests: An analysis of 
stated residential choices. Landscape and Urban Planning, 148, 120 131. 
http://doi.org/10.1016/j.landurbplan.2015.12.013 

United Nations. (2014). Sustainable Development Goals, 24. http://doi.org/10.1017/CBO9781107415324.004 

Pb in urban soils of Galway, Ireland. Science of the Total Environment, 398(1-3), 212 221. 
http://doi.org/10.1016/j.scitotenv.2008.03.011 

Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological 
consequences. Ecological Research, 21(6), 890 896. http://doi.org/10.1007/s11284-006-0048-2 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Table 1. Classification of NDVI data and its interpretation 

Segments NDVI threshold 
values 

Interpretation 

Very High (VH) > 0.6 very dense and highly vigorous vegetation 

High (H) 0.4-0.6 abundant and vigorous vegetation 

Low (L) 0.2-0.4 sparse and apathetic vegetation 

Table 2. Risk susceptibility classification 

NGI (x) NBI (y-lag) Risk susceptibility of 
UGS 

Status of NGI Weight 

HIGH HIGH Moderate  Fatigued 5 
LOW LOW No Stable 3 
LOW HIGH high Collapse 7 
HIGH LOW low Rejuvenation 1 

Table 3. Exposure matrix 

  

Inherent resilience of USG 
 

7 5 3 1 

5 1.40 1.00 0.60 0.20 
3 2.33 1.60 1.00 0.33 
1 7.00 5.00 3.00 1.00 

These values were then spatially plotted to generate an exposure surface map of the USGs. 

Table 4. Classification of UGS based on its vegetation health. 

NDVI values Area (km2) Percentage (%) Inferences1 

Low (L) 41.26 ( 44% Collapsing UGS 

High (H) 33.81 36% Fatigued UGS 

Very High (VH) 18.67 20% Rejuvenating UGS 

1 These inferences are in terms of the conceptual framework.  



Table 5. Descriptive of different classes of UGS 

NDVI Value Normalized Green Index (NGI) 

 Mean Standard deviation 

Low (L) 0.29 0.07 

High (H) 0.50 0.06 

Very High (VH) 0.73 0.09 



Fig 1. Conceptual Framework for assessing risk of urban green spaces 
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Fig 2. Adopted methodology 

Fig 3 Process for identifying grid level UGS risks 
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Fig 4. Map of the study area. 

Source: Bardhan et al (2015) 

Fig 5. Land use status in percentage. (Source: Nath & Acharjee (2013)) 
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Source:  (Bandyopadhyay, 2015) 

 

Source: (Padmanaban, 2016) 

Box 2: How Indian cities are being shorn of trees 
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-up area up 190%. By 2030, vegetation will 
 

Urban built-up area increased 190% between 1990 and 
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cover has dipped to an extremely unhealthy 
4.79%... the minimum requirement for an Indian city is 15%.... 

 

vegetation area but a sharp drop in vegetation density increased environmental risks like pollution and global 
warming. 



 

 

Fig 6. Classification of UGS based on NDVI values 
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Fig 7. Risk susceptibility of UGS 

Fig 8. Micro-scale high risk susceptibility mapping of USGs


