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Abstract 50 

Background 51 

Goal-directed control guides optimal decision-making and it is an important cognitive 52 

faculty that protects against developing habits. Previous studies have found some 53 

evidence of goal-directed deficits when healthy individuals are stressed, and in 54 

psychiatric conditions characterized by compulsive behaviours and anxiety. Here, we 55 

tested if goal-directed control is affected by state anxiety, which might explain the 56 

former results.  57 

Methods 58 

We carried out a causal test of this hypothesis in two experiments (between-subject 59 

N=88; within-subject N=50) that used the inhalation of hypercapnic gas (7.5% CO2) 60 

to induce an acute state of anxiety in healthy volunteers.  61 

Results 62 

In both experiments, we induced a profoundly anxious state, both physiologically and 63 

psychologically, but this did not affect goal-directed performance. In a third 64 

experiment (N=1413), we used a correlational design to test if real-life anxiety-65 

provoking events (panic attacks, stressful events) are associated with impaired goal-66 

directed control. We found no evidence for this, over and above variance accounted 67 

for by trait differences in compulsivity.  68 

Conclusions 69 

In sum, three complementary experiments, two causal and one correlational, found 70 

no evidence that anxiety impairs goal-directed control. 71 

 72 

  73 
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Background 74 

 75 

Two well-established systems contribute to everyday decision making and behaviour, 76 

the goal-directed and the habitual system (Dickinson, 1985). Goal-directed behaviour 77 

is characterized by actions that are appropriate to the current desire for a given 78 

outcome and informed by the knowledge of the causal relationship between an action 79 

and the associated outcome (Dickinson & Balleine, 1994). More recently goal-80 

directed control has been formalized as model-based planning, within a 81 

reinforcement learning framework (Daw, Gershman, Seymour, Dayan, & Dolan, 82 

2011).  83 

 84 

Though no previous study has examined whether experimentally induced state 85 

anxiety impairs goal-directed planning, a related literature on stress-induction offers a 86 

basis for this suggestion. Specifically, acute stress has been shown to induce deficits 87 

in goal-directed planning (Park, Lee, & Chey, 2017; Schwabe & Wolf, 2009, 2010), 88 

albeit inconsistently (null results: Heller, Ezie, Otto, & Timpano, 2018; Otto, Raio, 89 

Chiang, Phelps, & Daw, 2013; Radenbach et al., 2015) in healthy individuals. Acute 90 

anxiety and stress manipulations produce similar cardiovascular changes, and induce 91 

negative affect, but anxiety induction differs from stress in terms of the specific 92 

psychological experience (e.g. increased vigilance, panic, fear) and other aspects of 93 

the physiological response (Bailey, Argyropoulos, Kendrick, & Nutt, 2005; Shin & 94 

Liberzon, 2010).  95 

 96 

Physiological and psychological stress has been likened to anxiety, and it is generally 97 

thought to impair several forms of deliberative and reflective processes, in favour of 98 

more automatic and reflexive ones (Shields, Sazma, & Yonelinas, 2016). From a 99 

neurobiological perspective, there is evidence that this mechanism is regulated by 100 

catecholamines, which act on prefrontal functioning under stress (Arnsten 1998). It 101 

has been suggested that reliance on faster, habitual mechanisms might be an 102 

evolutionary advantage in stressful situations (Arnsten 1998). Similarly, in the case of 103 

anxiety, the attentional control theory (Eysenck et al., 2007) suggests that anxiety 104 

impairs cognitive performance of top-down, executive tasks by giving greater 105 

influence to the bottom-up attentional system.  106 

 107 

In addition, anxiety is a prominent feature of pathological manifestations 108 

characterized by an impoverished goal-directed system.  For example,  a fragile goal-109 

directed system is hypothesized to lead one to get stuck in habits (C. M. Gillan, Otto, 110 

Phelps, & Daw, 2015) and typifies not only Obsessive-Compulsive Disorder (OCD) 111 

(C. M. Gillan et al., 2011; C. M. Gillan & Robbins, 2014; Vaghi et al., 2018) but also 112 

several other psychiatric conditions on the compulsivity spectrum such as eating 113 

disorder, drug abuse and alcohol addiction (Sjoerds et al., 2013; Voon et al., 2014). 114 

Accordingly, it has been suggested that goal-directed deficits constitute a trans-115 

diagnostic trait (C. Gillan, Kosinski, Whelan, Phelps, & Daw, 2016; Robbins, Gillan, 116 

Smith, de Wit, & Ersche, 2012). One potential issue with this model is its specificity. 117 

Compulsivity is highly comorbid with anxiety (Nestadt et al., 2009), which is 118 

unsurprising, as OCD has only recently moved out of the Diagnostic and Statistical 119 

Manual category of anxiety disorders into its own classification (Stein et al., 2010). 120 

Accordingly, this raises the possibility that elevated anxiety levels in OCD might 121 

account for failures in goal-directed planning and consequent overreliance on habits.  122 

 123 
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In support of this idea, social anxiety patients appear to show similar deficits in goal-124 

directed planning to OCD patients, despite the fact that they do not have a 125 

compulsive phenotype (Alvares, Balleine, & Guastella, 2014). Cross-sectional, 126 

correlational work has started to address this issue, finding that when a range of 127 

psychopathology measures are taken (and controlled for) within the same individuals, 128 

there is no meaningful contribution of trait anxiety to goal-directed deficits, while the 129 

association with compulsivity is robust (C. Gillan et al., 2016; Robbins et al., 2012). 130 

However, these studies are limited not just by their correlational nature, but because 131 

they assess trait anxiety, which does not speak to acute states of anxiety that are 132 

experienced by patients more transiently, often in association with their own 133 

symptoms (Mataix-Cols et al., 2003). 134 

 135 

Here, we aimed at characterizing the relationship between increased anxiety and the 136 

functioning of the goal-directed system. We used a combination of causal and 137 

correlational approaches to investigate the role of acute anxiety on goal-directed 138 

control, in three experiments spanning laboratory and real-life settings. 139 

 140 

Firstly, we used hypercapnic gas (i.e. with increased CO2 level) to experimentally 141 

induce state anxiety and test its impact on goal-directed control, operationalized as 142 

sensitivity to contingency degradation (Vaghi et al., 2018). Hypercapnic gas is a well-143 

validated method for experimentally inducing a transitory state of acute anxiety in 144 

healthy volunteers (Woods, Charney, Goodman, & Heninger, 1988). At very high 145 

doses (35% CO2) it generates symptoms similar to those of panic disorder, with 146 

increased blood pressure and bradycardia (Argyropoulos et al., 2002; Griez, 147 

Zandbergen, Pols, & de Loof, 1990; Perna, Barbini, Cocchi, Bertani, & Gasperini, 148 

1995), especially in subjects with panic disorder or susceptibility to it (Perna et al., 149 

1994; Perna, Bertani, Caldirola, & Bellodi, 1996). We used lower doses (7.5% CO2) 150 

which are reported to be sufficient to induce physiological and psychological 151 

symptoms of anxiety and sustained arousal associated with an anxiety state (Bailey 152 

et al., 2005). Subjects had profound physiological and subjective psychological 153 

responses to the anxiety induction procedure including changes in heart rate, blood 154 

pressure and self-reported anxiety, but it failed to induce deficits in goal-directed 155 

control over behaviour.  156 

 157 

Reasoning this might be associated with study design sensitivity, we repeated this 158 

experiment using a within-subjects design and a different measure of goal-directed 159 

control – a ‘model-based planning’ measure derived from the two-step reinforcement 160 

learning task described above (Daw et al., 2011). Again, the procedure had 161 

substantial physiological and psychological effects consistent with the induction of an 162 

acute state of anxiety, but this had no demonstrable detrimental effect on goal-163 

directed behaviour.  164 

 165 

In a third and final experiment, we tested this hypothesis in a naturalistic, real-world 166 

setting using a large-scale correlational design (N=1413) (C. Gillan et al., 2016). We 167 

investigated if goal-directed (model-based) control is impaired in individuals who 168 

suffered recent ‘real life’ acute anxiety, specifically known to be associated with the 169 

experience of a recent panic attack (Aronson & Logue, 1988) and/or major life-170 

stressors (Vyas, Pillai, & Chattarji, 2004). We found that the frequency of panic 171 

attacks in the past week and higher levels of stress in the past year were both 172 

modestly associated with deficits in goal-directed planning. Crucially, neither survived 173 

controlling for a correlated psychiatric trait, compulsive behaviour and intrusive 174 
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thought, which we previously showed has a strong association with goal-directed 175 

planning using these data (C. Gillan et al., 2016). 176 

 177 

 178 

 179 

 180 

 181 

METHODS 182 

 183 

Experiment 1 184 

 185 

Subjects. 88 participants were recruited through university mailing lists, 186 

departmental research panels and posted flyers within the University of Cambridge 187 

and the wider community. Participants were randomly assigned to either the CO2-188 

induced anxiety group (n= 43, 20 females; mean age = 27.55, SD = 11.04) or the 189 

normal air ‘placebo’ group (n= 45, 24 females; mean age = 27.40, SD = 10.03) 190 

(Supplementary Material for further details on recruitment and inclusion and 191 

exclusion criteria).  192 

Anxiety Manipulation. Participants were randomly assigned to two groups, one 193 

received the anxiety induction, which consisted of the inhalation of air enriched with 194 

7.5 % CO2 (7.5% CO2, 20% O2, 71.5% N2, pre-mixed, BOC Special Gases, 195 

Guildford, UK) and one served as the control group, inhaling normal air. As the 196 

experimenter had to manually switch a lever to activate the delivery of one of the two 197 

air preparation, CO2 was administered in a single-blind manner while measuring 198 

goal-directed/habit behaviour via controlled tasks, and was designed to induce a 199 

physiological state of acute anxiety in a reliable and controlled manner (Bailey et al., 200 

2005). Participants inhaled the assigned air preparation as long as they were doing 201 

the task. To measure the effectiveness of this procedure at inducing acute anxiety, 202 

we recorded physiological measurements comprising heart rate, diastolic and systolic 203 

blood pressure and psychological measurements comprising the 17-item Acute Panic 204 

Inventory (API: Liebowitz, Fyer, Gorman, & et al., 1984), 10-item Positive and 205 

Negative Affective Scale (PANAS(Watson, Clark, & Tellegen, 1988)), and three 206 

Visual Analogue Scales assessing anxiety, fear, and happiness. Physiological 207 

measures were collected 10 minutes before, during and 15 minutes after the 208 

experimental manipulation. Psychological measures of subjective feeling due to the 209 

experimental manipulation were concomitantly collected, the only difference being 210 

that they were not interrogated during the performance of the task but immediately 211 

after and retrospectively on how they were feeling.  212 

 213 

Contingency degradation paradigm. In a between-subjects design, subjects 214 

performed a contingency degradation task described previously and further detailed 215 

in the Supplementary Material (Vaghi et al., 2018) (Figure 1A). In short, the task 216 

was a free operant, self-paced procedure which allows testing of subjects’ ability to 217 

detect action-outcome instrumental contingencies (Vaghi et al., 2018), one of the 218 

earliest operationalisations of goal-directed learning from the animal literature 219 

(Dickinson, Nicholas, & Adams, 1983). 220 

 221 

Experienced contingency.  As expected, for normal and CO2-enriched air condition, 222 

experienced contingencies (based on experienced event frequencies, see 223 

Supplementary Material, Table S1) matched the a priori programmed ones (CO2: r = 224 
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1.00, p < .001; Air: r = 1.00, p < .001). Therefore, programmed contingencies were 225 

used for subsequent analysis. Our findings were not confounded by between-group 226 

differences in experienced contingencies, as no main effect of group (F(1, 63) = 0.80, p 227 

= .37, 2
G = 0.003) nor interaction between group and block (F(2.57, 161.61) = 0.17, p = 228 

.89, 2
G = 0.002) was found. 229 

 230 

Data analysis.  We first performed analyses of variance (ANOVA) to determine 231 

whether there was a between-group difference in sensitivity to instrumental 232 

contingency as measured by response rate and causality judgment. Response rate 233 

was computed by dividing the number of bins for which a response was made by the 234 

total number of bins within each block. For each dependent variable, programmed 235 

contingency was used as a within-subject factor, and group was used as a between-236 

subject factor. Analyses were conducted separately for the initial learning blocks and 237 

the test blocks. For the test blocks, we also investigated the relationship between 238 

response rate and contingency judgments, using a linear mixed-effects model. 239 

Specifically, we used contingency judgement and group as fixed effects, and we 240 

allowed the intercept and slope to vary between participants as random effects. We 241 

obtained p-values for the fixed effects using the Kenward-Roger method. Bayes 242 

factor analysis was used in case of failure to reject the null hypothesis, to examine 243 

the relative evidence for the null with default JZS priors for ANOVA (J. N. Rouder, 244 

Speckman, Sun, Morey, & Iverson, 2009) and (Rouder et al., 2012). Previous 245 

research (Schwaber et al., 2010) found a between-subjects effect size of stress on 246 

habitual performance for which default JSZ priors are suitable as specified in (J. N. 247 

Rouder et al., 2009) and (Rouder et al., 2012). Analyses were performed in R version 248 

3.4.3 (R Foundation for Statistical Computing, Vienna, Austria; http://www.r-249 

project.org/) using the ‘afex’ package for ANOVA and linear mixed models, the 250 

‘Bayes Factor’ and ‘brms’ package for Bayes factor analysis and the ‘tidyverse’ 251 

packages for data organization and visualization. 252 

 253 

Experiment 2  254 

 255 

Subjects. 61 healthy volunteers were recruited from the local community in the same 256 

manner as described in Experiment 1. Screening and exclusion criteria were identical 257 

to Experiment 1. Further exclusion criteria were applied contingent on the 258 

experimental task employed here (Supplementary Material). The final sample size for 259 

analysis was 50 (26 female) with ages ranging from 18-62.  260 

Reinforcement learning task (Daw, Niv, & Dayan, 2005). Participants completed a 261 

reinforcement-learning task that quantifies individual differences in goal-directed 262 

(‘model-based’) learning, which is operationalized as a parameter estimate from a 263 

logistic regression analysis predicting choices in the task. The task has been 264 

extensively used and described elsewhere (37) and further detailed in the 265 

Supplementary Material. 266 

 267 

Anxiety Induction. The anxiety induction procedure as well as collection of 268 

physiological and psychological measures was identical to Experiment 1, except for 269 

the within-subjects design. Participants attended a single test session during which 270 

they completed two versions of the Reinforcement Learning Task during 20min 271 

inhalation of air enriched with 7.5 % CO2 and normal air. Gas was administered in a 272 

single-blind manner and the order of CO2 versus air was counterbalanced.  273 

 274 
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Data Analysis. Data were analysed using mixed-effects logistic regression in the 275 

lme4 package in R 3.5.1 (http://cran.us.r-project.org). In line with previous studies 276 

(Daw et al., 2011), we tested the extent to which subjects in general tend to repeat 277 

actions performed on the previous trial or explore a new one (‘Stay’: coded switch= 0; 278 

stay= 1), and whether these choices were influenced by whether or not their previous 279 

action was rewarded (‘Reward’: coded as rewarded = 1; unrewarded = -1), was 280 

followed by a rare or common transition (‘Transition’: coded as common= 1, rare= -1), 281 

and their interaction (‘Reward x Transition’). The intercept reflects tendencies to 282 

repeat the same action from one trial to the next, the main effect of reward reflects 283 

the contribution of model-free learning to subjects’ choices, while an interaction 284 

between Reward and Transition is the hallmark of model-based (goal-directed) 285 

behaviour. We included the anxiety induction as a within-subjects factor (coded 286 

CO2=1, Air=-1). We used Bound Optimization by Quadratic Approximation (bobyqa) 287 

with 1e5 functional evaluations. The model was specified as follows: Stay ~ 288 

Reward*Transition*CO2 + (Reward* Transition*CO2 + 1|Subject). Bayes factor 289 

analysis was used in case of failure to reject the null hypothesis using the anovaBF 290 

function in the BayesFactor package in R, with default JZS priors for ANOVA from 291 

(J.N. Rouder, Morey, Speckman, & Province, 2012). To avoid the issues with nested 292 

interactions from the logistic model, we extracted estimates for model-based planning 293 

separately for each subject in each condition and used these to compare an ANOVA 294 

model with a within-subjects effect of gas to an intercept-only model.  295 

 296 

Computational Modelling. A more elaborated form of this analysis is presented in 297 

the online supplement. In brief, this method allows for analysis of a greater number of 298 

potential behavioural confounds, including separating the distinct role of learning rate 299 

and choice randomness from that of model-based, model-free and choice repetition 300 

estimates from the simpler analysis. These results largely recapitulate the main 301 

findings of the paper, with slight differences flagged as appropriate. 302 

 303 

Experiment 3. 304 

 305 

Participants. Data were collected online using Amazon’s Mechanical Turk. Details of 306 

the experimental procedure can be found elsewhere (Gillan et al., 2016), but in brief, 307 

data were analysed from 1,413 individuals (823 female) with ages ranging from 18 to 308 

76 (M=33, SD=11), who were based in the USA, had a history of good performance 309 

(i.e. being paid in full on at least 95% of their previous tasks) (Supplementary 310 

Material). 311 

 312 

Reinforcement learning task. The task employed in this study was the same as that 313 

described in Experiment 2. The only difference was that subjects completed it 314 

remotely, and that a more rigorous quality control procedure was implemented 315 

appropriate to online testing (detailed in Supplement).  316 

 317 

Panic Attacks and Life Stress. The occurrence of recent panic attacks was 318 

assessed using item 1 on the self-report version of the Panic Disorder Severity Scale 319 

(PDSS Shear et al., 1997). Life stress was assessed using the Social Readjustment 320 

Scale (Holmes & Rahe, 1967), which presents an inventory of common stressful life 321 

events to participants and asks them to select those that applied to them in the 322 

previous 12 months. The present sample had a mean score of 159 (SD=120). Scores 323 

lower than 150 are considered evidence of ‘no significant stress’ (N=775), while 324 

scores in excess of 300 are considered signs of major stress (N=179 in this sample) 325 

http://cran.us.r-project.org/
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(Figure 5B) (see also supplementary Material). Control Variables were also included 326 

as detailed in the Supplementary Material.  327 

 328 

Data Analysis. We performed the same analysis as in Experiment 2, but here we 329 

additionally controlled for variables that have been previously linked to model-based 330 

planning, namely: IQ, age, gender and a trans-diagnostic psychiatric trait 331 

“Compulsive Behaviour and Intrusive Thought”. This covariate was derived from 332 

previous published work (C. Gillan et al., 2016; Rouault, Seow, Gillan, & Fleming, 333 

2018) which applied factor analysis to a series of questionnaires linked to self-334 

reported measures of psychopathology. Factors were labelled based on items that 335 

loaded most strongly on each of the identified factors. Accordingly, items pertaining 336 

to the questionnaires related to ‘compulsive’ disorders most strongly loaded on the 337 

factor named “Compulsive Behaviour and Intrusive thought”. Scores of each subject 338 

on this factor were used as a covariate in the present analysis. Bayes factor analysis 339 

was conducted on a linear model where residuals for model-based planning was the 340 

dependent measure and life stress or panic symptoms were the experimental models 341 

compared to an intercept-only model. As in experiment 2, we complemented our 342 

regression analysis with a computational model, details of which are available in the 343 

online supplement. 344 

 345 

Results 346 

 347 

Anxiety induction and Contingency Degradation (Experiment 1). Here we tested 348 

if experimentally induced anxiety would affect subjects’ ability to detect action-349 

outcome instrumental contingencies. In a between-subjects design, one group was 350 

assigned to inhale hypercapnic gas (7.5% CO2) during the performance on the 351 

contingency degradation task, while the other inhaled normal air. Psychological and 352 

physiological measures confirmed that anxiety induction was successful and of a 353 

magnitude similar to that observed in prior studies (Cooper et al., 2013; Garner, 354 

Attwood, Baldwin, James, & Munafò, 2011; Garner, Attwood, Baldwin, & Munafò, 355 

2012): participants in the CO2 condition experienced greater self-reported anxiety 356 

(F(1.97, 159.61) = 35.57, p < .001) and had a higher heart rate (F(1.96, 152.92) = 36.64,  p < 357 

.001) than those assigned to the Air condition (Figure 1B and 1D; Supplementary 358 

materials).  359 

 360 

Participants learnt the contingencies in the training phase (F(1, 86) = 26.48, p < .001, 361 

2
G = 0.03). Experimentally-induced anxiety did not affect subjects’ behavioural 362 

sensitivity to instrumental contingency. Participants overall adjusted their response 363 

rate in line with the underlying contingency, as evidenced by a main effect of 364 

contingency on response rate in the test blocks (F(3.73, 320.59) = 29.95, p < .001, 2 
G = 365 

0.07). In the test blocks, there was no between-group difference (F(1, 86) = 0.22, p = 366 

.64, 2
G = 0.002) and no group by contingency interaction (F(3.73, 320.59) = 1.74, p = .15, 367 

2
G = 0.004) (Figure 2A). Bayes Factor analysis further confirmed these findings. 368 

Specifically, the null model was strongly preferred over the alternative model with a 369 

main effect of anxiety and interaction effect of anxiety by contingency (BF01 = 16.81 370 

and Figure S1 A).  371 

 372 

The same was true of participants’ subjective assessments of instrumental 373 

contingency (i.e. their explicit model of the environment). Subjects accurately tracked 374 

the underlying contingency of the task (training blocks, F(1, 86) = 30.46, p < .001, 2
G = 375 

0.12; test blocks, F(2.99, 256.89) = 26.22, p < .001, 2
G = 0.13) and the experimental 376 
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manipulation did not affect this. There was no between-group difference (F(1, 86) = 377 

0.16, p = .69, 2
G = 0.001) and no group by contingency interaction (F(2.99, 256.89) = 378 

0.33, p = .81, 2
G = 0.002) (Figure 2B) on causality judgements. Bayes Factor 379 

analysis further confirmed these findings. Specifically, the null model was strongly 380 

preferred over the alternative model with a main effect of anxiety and interaction 381 

effect of anxiety by contingency (BF01 = 386.15 and Figure S1 B). Mirroring the 382 

findings on choice responses, experimentally-induced anxiety did not affect 383 

subjective judgments of instrumental contingency – adding weight to the suggestion 384 

that state anxiety may not have an appreciable effect on goal-directed control over 385 

action.  386 

 387 

Individual Differences. Prior work showed that individual differences might be 388 

important in revealing the effect of stress on goal-directed behaviour (Heller et al., 389 

2018; Otto et al., 2013; Radenbach et al., 2015; Schwabe & Wolf, 2010). Therefore, 390 

we tested if the detrimental effect of CO2 on goal-directed behaviour might depend 391 

on individual differences in sensitivity to the CO2 manipulation, assessed in terms of 392 

change in both self-reported and physiological measures of anxiety. For the former, 393 

we ran the model explained above with programmed contingency as a within-subject 394 

factor, introducing change in self-report anxiety as a between-subject covariate. The 395 

change in self-report anxiety was computed as the difference between VAS-anxious 396 

before inhaling the gas and after inhaling the gas. As above, there was a significant 397 

effect of programmed contingency on response rate (F(3.73, 309.85) = 25.42, p< .001), 398 

but there was no main effect of subjectively reported change in self-report anxiety 399 

(F(1, 83)=0.28, p=.60) nor an interaction effect with programmed contingency (F(3.73, 400 

309.85) =0.20, p=.42). Similar findings were obtained on subjective causality ratings. 401 

Accordingly, programmed contingency significantly predicted causality ratings (F(3.18, 402 

264.24)=33.10, p<.001) , but there was not a main effect (F(1, 83)=0.00, p =.96) nor a 403 

significant interaction with subjectively reported change in self-report anxiety (F(3.18, 404 

264.24)=0.20, p =.90). Therefore, individual differences in anxiety, as self-reported by 405 

subjects upon CO2 challenge, did not affect goal-directed planning.  406 

 407 

We conducted the same analyses by using physiological changes in heart rate as a 408 

putatively more objective measure of change in anxiety arising from our manipulation. 409 

The physiological index for change in heart rate was computed as above, i.e. the 410 

difference between heart rate before inhaling the gas and after inhaling the gas. 411 

Changes in heart rate did not have a main effect on response rate (F(1, 80)=0.1, p 412 

=.75), but there was a trend for an interaction between changes in heart rate and 413 

programmed contingency (F(3.80, 303.94)=2.00, p =.10). Individuals with higher changes 414 

in heart rate tended to show slightly greater sensitivity to instrumental contingency, 415 

as their response rate depended more strongly on programmed contingency. Thus, if 416 

any moderating effect of anxiety sensitivity exists, it goes in the opposite direction to 417 

what has been shown in individual difference research with stress and goal-directed 418 

control (e.g. Otto et al., 2013; Radenbach et al., 2015). Changes in heart rate did not 419 

affect subjective causality ratings (F(1, 80)=0.08, p =.78). Similarly there was no a 420 

significant interaction between changes in heart rate and programmed contingency 421 

(F(3,29, 263.45)=0.44, p =.74) in predicting subjective causality ratings.  422 

 423 

Anxiety Induction and Model-Based Planning (Experiment 2).  We adopted a 424 

complementary approach to experiment 1 to test if anxiety induction would affect 425 

goal-directed planning. We employed a ‘model-based’ learning task (Figure 3) (Daw 426 

et al., 2011; Daw et al., 2005) in the context of a within-subjects design, which 427 
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overcomes the potential  problem that individual differences in goal-directed control 428 

(e.g. associated with compulsiveness, IQ, age (C. Gillan et al., 2016)) may have 429 

hindered our ability to detect changes resulting from anxiety-induction in Experiment 430 

1. 431 

As in Experiment 1, the CO2 manipulation was effective in inducing anxiety in 432 

subjects (Figure 3B and Figure 3C), with a significant increase in self-reported 433 

anxiety F(1,49)=57.47, p<.001 and heart-rate, F(1,49)=10.72, p=.002. However, as in 434 

Experiment 1, this did not alter goal-directed performance as CO2 had no effect on 435 

model-based planning (β=-0.03, SE=0.04, p=.44). Bayes factor analysis indicated 436 

that there was moderate evidence in favor of the null model over the alternative 437 

model that included the acute anxiety manipulation (BF01 = 3.5). 438 

The regression model overall fit subjects’ behaviour as expected; ‘model-free’ 439 

behaviour was evident in the sample (β =.55, SE=.08, p<.001) which refers to how 440 

much subjects tend to repeat actions that were recently rewarded. Model-based 441 

learning was also overall significant (β=.28, SE=.06, p<.001), such that subjects took 442 

environmental contingency into account when deciding whether or not to repeat a 443 

rewarded choice.  Finally, subjects showed an overall biased tendency to repeat 444 

choices from one trial to the next, regardless of reward or transition information 445 

(β=1.59, SE=.12, p<.001). Much like model-based learning, there was no effect of 446 

anxiety on model-free learning (β=-0.02, SE=0.03, p=.52), or action repetition (β=-447 

0.08, SE=0.04, p=.060; Figure 4, Supplementary Table S5). Although the latter 448 

approached significance such that subjects had a slight tendency to switch choices 449 

more while under CO2. These analyses were complemented with a full computational 450 

model (Supplementary Material), with the only difference being that the effect of CO2 451 

on choice switching was significant in this more comprehensive computational 452 

analysis (Supplementary Table S8). Thus, it appears there may be a modest 453 

association between acute anxiety and an increased tendency to explore new 454 

options from trial to trial. 455 

 456 

Individual Differences. Following the same logic as Experiment 1 - that individual 457 

differences in sensitivity to CO2 might be important in revealing the effect of stress on 458 

goal-directed behaviour and switching (Otto et al., 2013; Radenbach et al., 2015; 459 

Schwabe & Wolf, 2010) - we tested if the effects of CO2 on model-based planning 460 

might be detectible when we take into account how strongly subjects reacted to the 461 

CO2 manipulation. As we were not powered to construct a model with a 4-way 462 

interaction (and all subordinate interactions), we extracted individual coefficients for 463 

the effect of CO2 on model-based planning and switching and tested for correlation 464 

with subjects’ change in self-reported anxiety and heart rate under CO2. There was 465 

no significant correlation between the effect of CO2 on model-based planning and 466 

change in anxiety, r=-.20, p=.16, but there was a marginal association with change in 467 

heart rate under CO2, r=-.29, p=.05. The analogous analysis from the computational 468 

model provided less support, where the correlation between change in self-reported 469 

anxiety was not significant, r=-.20, p=.18, and nor was the correlation with change in 470 

heart rate, r=-.15, p=.30. Bayes factor indicated there was anecdotal evidence for the 471 

null with respect to the correlation between changes in self-reported anxiety and 472 

model-based planning (regression: BF01 = 1.3; computational model: BF01 = 1.4). For 473 

change in heart-rate, however, there was anecdotal evidence in favour of a 474 

relationship with change in model-based planning in the regression analysis 475 

(BF10=1.74), but anecdotal evidence in favour of the null from the computational 476 

analysis (BF01 = 1.9). Nonetheless, the direction of these trends, on the whole, 477 

suggested that those subjects whose model-based planning performance declined 478 
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the most during CO2 may have also had the biggest psychological and physiological 479 

reaction to the CO2. However, it is notable that (i) these results go in the opposite 480 

direction to those in Experiment 1 and (ii) if they exist, they are very small. To 481 

contextualise these findings in terms of effect size, a sample of N=258 would be 482 

needed for future studies to have 90% power to detect an association between 483 

change in anxiety and changes in model-based planning under CO2 using either the 484 

regression or computational model. For heart-rate, N=462 would be needed to have 485 

90% power to detect an association with change in the computational modelling 486 

parameterisation of model-based planning, and N=119 to detect changes in the 487 

regression-defined model-model-based planning. 488 

 489 

In contrast to model-based planning, there was a significant main effect of CO2 on 490 

switching. Though not the focus of the present study, we thus repeated the individual 491 

difference analysis for switching in an exploratory fashion. We found mixed evidence. 492 

There was an association with change in self-report anxiety, where those individuals 493 

who were most anxious under CO2 tended to switch more under CO2 (regression: r=-494 

.43, p=.001; computational model: r=-.29, p=.04). However, the same was not true for 495 

change in heart rate (regression: r=-.13, p=.37, computational model: r=-.09, p=.54). 496 

There was strong evidence that change in self-reported anxiety correlated with 497 

change in switching behaviour under CO2 in the regression (BF10=25.4), but only 498 

anecdotal evidence for this from the full computational model (BF10=2.17). For heart 499 

rate, there was anecdotal evidence in favour of the null from both analyses (BF01 = 500 

2.13 ; BF01 = 2.6).  501 

 502 

Real life anxiety (Experiment 3). In two independent studies (Experiment 1 and 2) 503 

we found no effect of an acute anxiety induction on goal-directed planning. In a final 504 

experiment, we tested if anxiety in a real-life, more ecologically valid, setting might be 505 

necessary to reveal the hypothesised detrimental effect of anxiety on goal-directed 506 

behaviour. We tested 1413 subjects online using Amazon’s Mechanical Turk on the 507 

model-based learning task described above. Findings relating to the association 508 

between compulsivity and model-based planning have been published elsewhere (C. 509 

Gillan et al., 2016), but in data not previously published, we enquired about whether 510 

subjects had a panic attack in the past week, which is known to induce a temporary 511 

state of acute anxiety. We chose to examine panic attacks, rather than using a 512 

questionnaire probing state anxiety, because state anxiety has an unacceptably high 513 

correlation with trait anxiety when measured in the absence of an acute stressor (e.g.  514 

r=.71 (Grös, Antony, Simms, & McCabe, 2007)). As our prior work has demonstrated 515 

that trait anxiety is not related to goal-directed planning (C. Gillan et al., 2016), we 516 

wanted to ensure that our measure of acute anxiety was not in large part confounded 517 

by trait anxiety. Measuring the occurrence of recent panic attacks is an attractive 518 

alternative (although not without limitation), because they represent an acute anxiety 519 

provoking event (Aronson & Logue, 1988) and as such is more comparable to our 520 

lab-based anxiety induction. Criteria for a panic attack were from item 1 of a validated 521 

instrument (Panic Disorder Severity Scale, PDSS (Shear et al., 1997)) and in brief 522 

required subjects to have experienced 4 of 17 symptoms (e.g. rapid or pounding 523 

heartbeat, feeling of choking, nausea, chills or hot flushes, fear of dying) and that the 524 

panic attack must have been a “sudden rush of fear or discomfort”, peaking within 10 525 

minutes. Episodes like panic attacks that have fewer than 4 symptoms were defined 526 

as limited symptom attacks, but also contributed to subjects’ score. Specifically, 527 

subjects indicated the frequency of panic or limited symptom attacks in the past week 528 

on item 1 of the PDSS and this served as our measure for subsequent analyses. 529 
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 530 

Consistent with other general population samples (Barrera, Wilson, & Norton, 2010), 531 

approximately a third (N=474) of our online sample indicated they had experienced a 532 

panic or limited symptom attack in the past week (Figure 5A). The frequency of panic 533 

attacks in the past week was correlated with reductions in model-based planning (β=-534 

.03, SE =.01, p=.012), but this did not survive controlling for “Compulsive Behaviour 535 

and Intrusive Thought”, a transdiagnostic psychiatric dimension that is negatively 536 

correlated with model-based planning (β=-.04, SE=.01, p<.001; note this finding was 537 

previously published(C. Gillan et al., 2016), which was positively correlated with 538 

frequency of panic attacks (r=.42, p<.001). Specifically, when compulsivity was 539 

accounted for, the effect of panic attacks on model-based planning was reduced to 540 

β=-.01, SE=.01, p=.33 (Figure 5C). Moreover, results from the more elaborate 541 

computational model showed that the effect of panic attacks on goal-directed 542 

planning approached zero and went in the opposite direction (β=.003, SE=.01, p=.81) 543 

after compulsivity was controlled for (Supplementary Table S9). 544 
 545 

We observed an association between frequency of panic attacks and choice 546 

switching (p=.012), mirroring our causal result from Experiment 2. However, the 547 

effect of panic attacks on increased switching did not survive inclusion of compulsivity 548 

in the model for the one-trial-back regression (p=.23), or in the computational model 549 

(Supplementary Table S9; p=.06). 550 

 551 

Finally, we tested if life stress in the past year was associated with deficits in model-552 

based planning. This was assessed using the Social Readjustment Scale (Holmes & 553 

Rahe, 1967), which presents an inventory of common stressful life events to 554 

participants and asks them to select those that applied to them in the previous 12 555 

months (e.g. death of a spouse, divorce) (Figure 5B). Much like a recent panic attack, 556 

we found that life stress scores were linked to failures in model-based planning (β=-557 

.02, SE=.01, p=.04). However, as was the case for panic attacks, life stress was also 558 

correlated with the compulsive factor (r=.29, p<.001), and indeed the relationship to 559 

model-based planning did not survive inclusion of the compulsive factor in the 560 

analysis. Specifically, the effect of life stress on model-based planning was reduced 561 

to β=-.01(SE=.01, p=.33; Figure 5D) in the regression analysis and β=-.01, SE=.01, 562 

p=.24 in the full computational model (Supplementary Table S10).  563 

 564 

 565 

Discussion 566 

 567 

Across three independent experiments, we found little or no evidence that anxiety 568 

has a detrimental effect on goal-directed planning. The first two studies employed an 569 

extensively validated causal manipulation for inducing an acute state of anxiety, 570 

inhalation of air enriched with CO2 (Argyropoulos et al., 2002; Bailey et al., 2005). 571 

Using both between- and within-subject designs, and two well-validated tests for 572 

goal-directed behaviour, neither study found evidence that the causal manipulation 573 

had an effect on model-based planning. A third study took a correlational, but larger 574 

scale (N=1413), approach and tested if frequency of panic attacks in the past week, 575 

which are associated with an increase in acute state anxiety (Aronson & Logue, 576 

1988), had poorer goal-directed performance. Unlike most clinical studies, this design 577 

incorporated a comprehensive range of clinical assessments and could thus control 578 

for clinical confounds such as trait differences in compulsivity. While we found that 579 

those who experienced more panic attacks in the past week had greater deficits in 580 
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goal-directed planning, this did not survive controlling for compulsivity, a correlated 581 

trait that has been extensively studied in the content of goal-directed control failures. 582 

Together, these data contribute to a larger literature suggesting that trait (C. Gillan et 583 

al., 2016), and now state, anxiety do not have a clear detrimental effect on goal-584 

directed planning.  585 

 586 

The most consistent cognitive changes that have been linked to trait anxiety are an 587 

increased attentional bias to threat or ‘hypervigilance’ (Mogg, Bradley, de Bono, & 588 

Painter, 1997) and the tendency to interpret ambiguous stimuli as threatening 589 

(Eysenck, Mogg, May, Richards, & Mathews, 1991). Results from studies using the 590 

7.5% CO2 challenge closely mirror these findings – with the manipulation increasing 591 

alerting and orienting (Garner et al., 2012), threat processing (e.g. hypervigilance) 592 

(Garner et al., 2011) and negative interpretations of neutral events (Cooper et al., 593 

2013), thus suggesting that 7.5% hypercapnic gas manipulation in the lab can mirror 594 

cognitive changes observed in association with anxiety. While the putative role that 595 

anxiety plays in more complex forms of decision-making is of broad interest (Paulus 596 

& Yu, 2012), there is a dearth of evidence suggesting it has effects that are not 597 

explained as knock-on effects of increases in threat-sensitivity and vigilance. For 598 

example, while there is some evidence to suggest that clinically anxious individuals 599 

tend to make better long-term choices e.g. on the Iowa Gambling Task (IGT), this 600 

appears to result from a bias to avoid losses, which in the context of this task is 601 

confounded with the choice of ‘advantageous’ decks  (Mueller, Nguyen, Ray, & 602 

Borkovec, 2010). Even this, however, has been inconsistently shown, with another 603 

study finding that high trait anxiety leads to impaired IGT performance (Miu, Heilman, 604 

& Houser, 2008). One potential explanation for inconsistent results in this area is that 605 

studies have been largely cross-sectional and correlational – something the design of 606 

the present investigation overcame. 607 

 608 

Prior studies have suggested that, in the absence of a main effect, individual 609 

differences reveal that stress has some effect on goal-directed behaviour, albeit in a 610 

manner dependent on individual differences in sensitivity to the stressor itself (Otto et 611 

al., 2013; Radenbach et al., 2015). We repeated this general analytic approach here 612 

to facilitate comparison across studies, but the data were equivocal. There was no 613 

evidence that physiological sensitivity (i.e. heart rate) to CO2 was associated with 614 

goal-directed behaviour in Experiment 1. Even if not significant the relationship 615 

showed, in contrast to previous studies, that physiological sensitivity (i.e. heart rate 616 

change) to CO2 was associated with enhanced performance. Data from Experiment 2 617 

hinted at an opposite trend - diminished performance in individuals that were most 618 

sensitive to the manipulation. But notably, evidence was anecdotal and often in 619 

favour of the null, depending on whether the measure was computational versus 620 

regression-based, and whether the individual difference measure was self-report or 621 

physiological. More generally, it is difficult to interpret these effects in any causal 622 

framework given the absence of a main effect, such that these associations are 623 

driven, in part, by individuals who actually performed nominally better under CO2 624 

(N=22/50 in Experiment 2). Moreover, individual differences in sensitivity to CO2 is a 625 

somewhat problematic measure because it is itself a marker of mental health 626 

difficulties (Perna et al., 1996), presenting a confound.  627 

 628 

Although no previous studies have examined the effect of acute experimentally-629 

induced state anxiety on goal-directed control, several studies examined the impact 630 

of stress (Dias-Ferreira et al., 2009; Heller et al., 2018; Otto et al., 2013; Radenbach 631 
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et al., 2015; Schwabe & Wolf, 2009, 2010) in healthy volunteers. Three studies found 632 

that stress induced goal-directed deficits (Park et al., 2017; Schwabe & Wolf, 2009, 633 

2010), mirroring findings in rodents following 21 days of unpredictable stress 634 

exposure (Dias-Ferreira et al., 2009). Three other studies, however, found no such 635 

effect (Heller et al., 2018; Otto et al., 2013; Radenbach et al., 2015). One key point of 636 

departure between studies that did and did not see an effect was the type of stressor 637 

used. Those that found significant effects used a socially-evaluated cold pressor test, 638 

and those that did not used either the cold pressor in isolation (Otto et al., 2013), or a 639 

social stress test in isolation (Heller et al., 2018; Radenbach et al., 2015). This 640 

distinction is important as the socially evaluated cold pressor test has been shown to 641 

induce a much stronger increase in cortisol, compared to cold pressor test alone 642 

(Schwabe, Haddad, & Schachinger, 2008), with the procedures otherwise eliciting 643 

similar cardiovascular and subjective stress responses. The notion that cortisol might 644 

mediate stress effects on goal-directed planning is supported by the observation that 645 

changes in cortisol were linked to deficits in performance in studies that failed to 646 

otherwise show a main effect of stress (Otto et al., 2013; Radenbach et al., 2015). In 647 

other words, the largest increases in cortisol were linked to the largest task deficits. 648 

This ties in with pharmacological evidence showing that decrements in goal-directed 649 

performance cannot be induced through noradrenergic manipulation alone; 650 

concurrent glucocorticoid stimulation is also necessary (although not sufficient) 651 

(Schwabe, Tegenthoff, Höffken, & Wolf, 2010, 2012). Differential involvement of 652 

cortisol might explain why acute stress appears to have an impact on goal-directed 653 

planning, but anxiety induction does not. While acute stress and anxiety induction 654 

result in similar cardiovascular effects (i.e. increases in heart rate and blood 655 

pressure) (Bailey et al., 2005; Schwabe et al., 2008) and noradrenergic activation 656 

(Allen, Kennedy, Cryan, Dinan, & Clarke, 2014; Bailey, Argyropoulos, Lightman, & 657 

Nutt, 2003), anxiety induction via 7.5% CO2 does not result in a reliable increase in 658 

cortisol (Oliveira, Chagas, Garcia, Crippa, & Zuardi, 2012; Woods et al., 1988). 659 

Hypercapnia causes more pronounced and specific increases in self-reported 660 

feelings of anxiousness, fear, panic and worry, which are reduced in response to 661 

common treatments for generalized anxiety, including anxiolytics (Bailey, Kendrick, 662 

Diaper, Potokar, & Nutt, 2007; Diaper et al., 2012). Therefore, importantly, it is 663 

possible that our results are specific to this type of experimental manipulation, mostly 664 

targeting anxiety rather than stress induction. 665 

 666 

The extent to which more chronic forms of real-life stress impair goal-directed control 667 

is an open question and has only been partially addressed in one prior study with a 668 

relatively small sample (N=39)(Radenbach et al., 2015). Subjects with high self-669 

reported chronic stress levels had a larger effect of acute stress on model-based 670 

planning performance, than their low stress counterparts (Radenbach et al., 2015). 671 

This might suggest that goal-directed learning is in some sense more fragile in 672 

individuals who have high levels of chronic life stress, but this is difficult to assess as 673 

the authors did not report any test for the direct association between life stress and 674 

model-based planning. We tested this using a large sample (N=1413) and did not 675 

find evidence for an association, after controlling for compulsivity. This suggests that 676 

the impact of real-life stress on goal-directed planning, if it exists, is certainly less 677 

pronounced than folk wisdom suggests. That said, here we studied goal-directed 678 

behaviour, rather than habit expression per se, which represents a point of departure 679 

from some of the prior research e.g. in rodents (Dias-Ferreira et al., 2009). Further 680 

work is needed in this direction as it is possible that any effect of anxiety is on habit 681 

expression, and not goal-directed control. 682 
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 683 

In experiments 2 and 3, there was a suggestion that subjects’ tendency to switch 684 

their choices from one trial to the next was increased following anxiety induction and 685 

the recent occurrence of a panic attack, respectively. These findings were not 686 

hypothesised and effect sizes were somewhat inconsistent across analysis methods, 687 

but given their consistency with a prior independent study (Radenbach et al., 2015), 688 

they warrant brief discussion. One possibility is that this increase in choice switching 689 

might reflect the enhanced uncertainty characteristic of anxious states (Grupe & 690 

Nitschke, 2013) and could arise as a result of activation of the noradrenergic system 691 

(Redmond & Huang, 1979; Yu & Dayan, 2005). Evidence for this comes from work 692 

suggesting that tonic noradrenaline release is linked to an increase in task irrelevant 693 

processing and a tendency to favour exploration over exploitation (Aston-Jones & 694 

Cohen, 2005), characterised by some as a network ‘reset’ (Bouret & Sara, 2005). 695 

This interpretation is limited by the absence of data on cortisol and noradrenaline 696 

response and the exploratory nature of the findings. Future research will be needed 697 

to test this more directly, using a cognitive test designed to explicitly separate 698 

exploration and exploitation. 699 

 700 

This study had limitations. Firstly, null results are difficult to draw firm conclusions 701 

from. However, the findings of Experiment 3, which benefit from the inclusion of a 702 

previously published clinical effect size comparator (the effect of compulsivity on 703 

model-based planning), help to place these null findings into a meaningful context. It 704 

is unlikely that our manipulation was not strong enough to induce a robust anxiogenic 705 

effect because previous studies have demonstrated that the 7.5% CO2 manipulation 706 

is powerful enough to elicit robust effects on behavioural performance relating to 707 

threat sensitivity and hyper-vigilance (Cooper et al., 2013; Garner et al., 2011; Garner 708 

et al., 2012), in addition to its well-documented physiological and psychological 709 

effects (Bailey et al., 2005; Bailey et al., 2007). The magnitude of self-report and 710 

physiological changes in the present study were on-par with those observed in prior 711 

studies (Cooper et al., 2013; Garner et al., 2011; Garner et al., 2012). Finally, 712 

Bayesian analyses detail the extent to which evidence was in favour of the null, and 713 

this was in most cases in the ‘very strong’ range. A second limitation is that using 714 

panic attacks to measure ‘real world’ state anxiety is an imperfect methodology. 715 

Although panic attacks are associated with an increase in state anxiety (Aronson & 716 

Logue, 1988), they are also associated with, and defined by, a much broader 717 

cascade of physical symptoms than the experience of state anxiety. However, this 718 

approach has two advantages over measuring self-reported state anxiety (e.g. using 719 

the STAI-state scale(Spielberger, Gorsuch, Lushene, Vagg, & Jacobs, 1983)). First, 720 

in the absence of an acute event (anxiety trigger), trait and state anxiety scores tend 721 

to be highly correlated (e.g.  r=.71 (Grös et al., 2007)) and the STAI-scale is thus 722 

thought to be more reflective of trait than state anxiety. Second, leveraging naturally 723 

occurring panic attacks allowed us to mirror the acute and sudden onset of anxiety 724 

that our lab-based procedure achieved.  725 

 726 

Conclusions. Experimentally-induced state anxiety failed to produce deficits in goal-727 

directed behaviour as measured via two independent experiments using two well-728 

validated probes. Such lack of effect was also observed in a more ecologically valid 729 

set-up, where we used recent panic attacks as a proxy for acute anxiety. While 730 

modest decreases in goal-directed planning were seen in individuals who had recent 731 

panic attacks in the past year, these effects did not survive when controlling for 732 

compulsivity. The same was true of the occurrence of major life stressors in the past 733 
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year. In terms of clinical implications, these data suggest that state anxiety has little 734 

specific effect on goal-directed control, in contrast for example to compulsivity, which 735 

research has shown has a consistent association. This distinction may have 736 

important implications for the development of differential treatment approaches for 737 

patients who present with the same diagnosis, for example of OCD, but differ 738 

substantially in their levels of anxiety versus compulsivity. Dimensional approaches 739 

that seek to distinguish these dimensions and target them individually present a new 740 

frontier for psychiatry research aiming to develop more personalised treatment 741 

approaches. For future research studies more generally, these data highlight the 742 

necessity of using positive clinical control measures and causal manipulations to 743 

ascertain robust and specific associations given a deeply complex and highly inter-744 

correlated mental health landscape.  745 

 746 
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Figure 1. Experiment 1 Study Design – Contingency Degradation Task  939 
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 941 

A. Contingency degradation task design. In each block, subjects were 942 

presented with a white triangle, signalling that they had the opportunity to 943 

press or to not press the space bar, in a free-operant, self-paced procedure 944 

(Vaghi et al., 2018). The triangle turned yellow (here in grey) when a 945 

response was recorded. Rewards (a 25 pence image) were delivered 946 

according to a probability, P(O|A), on trials when a response was made, and 947 

P(O|-A) when a response was not made.  948 

B. Physiological response to anxiety induction. Heart rate was elevated 949 

significantly during the gas condition, p < .001. Error bars represent SE. 950 

C. Programmed contingencies. Each participant completed 8 blocks where 951 

contingency was systematically varied through changes to P(O|-A). The first 952 

two blocks were considered training blocks and appeared in a fixed order 953 

as denoted in the table. The 6 remaining test blocks were presented in a 954 

counterbalanced order across subjects. 955 

D. Psychological response to anxiety induction. Anxiety scores measures 956 

using a visual analogue scale (VAS) were also significantly elevated during 957 

the inhalation of gas compared with air, p < .001. Error bars represent SE. 958 

***, p<0.001 959 

 960 

Figure 2. Results from Experiment 1 961 

 962 

A. There was no effect of CO2-induced anxiety on subjects’ sensitivity to 963 

instrumental contingency as measured by choice responses, F(3.73, 320.59) = 964 

1.74, p = .15. Error bars represent SE. 965 

B. There was similarly no effect of group on the extent to which causality 966 

judgements scaled with instrumental contingency, F(2.99, 256.89) = 0.33, p = .81. 967 

Error bars represent SE. 968 
 969 

 970 

Figure 3. Experiment 2 Study Design – Model-Based Learning Task. 971 

 972 

A. On each trial, subjects chose between two fractals, which probabilistically 973 

transition to either an orange or blue state (pictured here in greyscale) 974 

where they must make another choice. In this schematic, the fractal on the 975 

left had a 70% chance of transitioning to the blue state, what is called a 976 

‘common’ transition, and a 30% chance of transitioning to the orange state, 977 

i.e. a ‘rare’ transition. In the second orange or blue state, subjects again 978 

chose between two fractals, each of which was associated with a probability 979 

of reward (a pound coin). Unlike the transition structure, these reward 980 

probabilities drifted slowly over time (.25 < P< .75). This meant that subjects 981 

were required to dynamically track which of the fractals in the orange and 982 

blue states were currently best. The reward probabilities depicted (34%, 983 

68%, 72%, 67%) refer to an example trial. Model-based planning on this task 984 

is operationalised as the extent to which subjects’ decision to repeat an 985 

action at the first stage, depend on (i) whether this action was rewarded on 986 

the previous trial and (ii) and whether the path from action to outcome was 987 

expected (‘common’). 988 
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B. Physiological response to anxiety induction. Heart rate was elevated 989 

significantly during the gas condition, F(1,49)=10.72, p=.002. Error bars 990 

represent SE. 991 

C. Psychological response to anxiety induction. Self-reported anxiety levels 992 

were also significantly elevated during the inhalation of gas compared with 993 

air, F(1,49)=57.47, p<.001. Error bars represent SE. ***, p<0.001 994 

 995 

Figure 4. Results from Experiment 2 996 

  997 

A. Stay/switch behaviour for subjects in the Air condition as a function of 998 

whether or not the last trial was rewarded/unrewarded and followed a 999 

rare/common transition. Error bars represent SE. 1000 

B. The same plot, showing the group average behaviour under CO2. In both 1001 

plots, subjects showed the classic signatures of both model-based and 1002 

model-free planning, indexed by a significant reward x transition 1003 

interaction (β=.28, SE=.06, p<.001) and a main effect of reward (β =.55, 1004 

SE=.08, p<.001). Error bars represent SE. 1005 
 1006 

 1007 

Figure 5. Results from Experiment 3 1008 

  1009 

A. Histogram displaying the number of individuals endorsing the various 1010 

levels of frequency and severity of panic attacks in the past week. 1011 

Scores were coded as follows: none (“no panic or limited symptom 1012 

attacks”), mild (no full panic attacks and no more than 1 limited 1013 

symptom attack/day), moderate (“1 or 2 full panic attacks and/or multiple 1014 

limited symptom attacks/day”), severe (Severe: more than 2 full attacks 1015 

but not more than 1/day on average) and extreme (“full panic attacks 1016 

occurred more than once a day, more days than not”). 1017 

B. Histogram displaying the distribution of life stress scores in the sample. 1018 

C. There was no association between model-based planning and the 1019 

occurrence of panic attacks in the past week, after controlling for age, 1020 

gender, IQ and compulsive symptomatology, β=-.01, SE=.01, p=.33. Y-1021 

axis displays residuals for model-based planning after these features are 1022 

taken into account. 1023 

D. There was no association between model-based planning and life stress 1024 

experienced over the past year, after controlling for age, gender, IQ and 1025 

compulsive symptomatology, β=-.01, SE=.01, p=.33. As above, Y-axis 1026 

displays residuals for model-based planning 1027 
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Experiment 1 21 
 22 

Subjects. Recruitment and experimental procedures were approved by the 23 
Ethics Committee of the University of Cambridge, School of the Biological 24 
Sciences. For subjects included in the experiment, exclusion criteria were 25 
screened by a structured telephone interview  and were as follows: current or 26 
past diagnosis of cardiovascular disease, respiratory disease, thyroid disease, or 27 
diabetes; lifetime history of DSM-VI Axis I disorders (Mini International 28 
Neuropsychiatric Interview: MINI (Sheehan et al., 1998)); having a first-degree 29 
relative diagnosed with panic disorder; (history of) migraine or epilepsy; 30 
pregnancy; excessive weekly consumption of alcohol (28 units for males, 21 31 
units for females), excessive daily consumption of caffeine (more than 8 32 
caffeinated drinks per day); current (illegal) drug use; recent history of smoking 33 
on a daily basis. Participants were free of regular medication intake, with the 34 
exception of oral contraceptives. Invited participants were asked to abstain from 35 
alcohol consumption 24 hours prior to the experiment, as well as caffeinated 36 
drinks from the midnight before the experiment. Sample size was determined 37 
based on a previous study (Schwabe and Wolf, 2010) that found a between-38 
subjects effect of stress on habitual performance with partial eta squared = .07. 39 
88 subjects were required to reproduce an effect of this size with 80% power. 40 
Participants were reimbursed for their time and informed consent was obtained 41 
prior to participation. 42 

Contingency degradation manipulation. Participants were tested on the 43 
ability to detect action-outcome instrumental contingency via the experimental 44 
manipulation of contingency degradation. Our index of contingency was the 45 
standard P measure indexing the action-outcome instrumental relationship 46 
(Dickinson and Balleine, 1994). P was the difference between the conditional 47 
probability of outcome given an action [P(O|A)], i.e., the probability of response-48 
contingent outcome; and the probability of receiving an outcome given the 49 
absence of an action [P(O|-A)], i.e., the probability of a non-contingent outcome, 50 
such that P = P(O|A) - P(O|-A). By increasing non-contingent outcomes, the 51 
contingency (i.e., the causal action-outcome association) is degraded. Under 52 
these circumstances, individuals who are making decisions in a goal-directed 53 
manner should stop or reduce responding in line with the reduction in 54 
instrumental contingency.  55 
 56 
Contingency degradation paradigm. In a free-operant, self-paced procedure, 57 
a white triangle on the screen signalled that the participant was free to press, or 58 
not to press, the space bar. On each response, the triangle turned yellow until 59 
the end of the a priori specified bin to signal that a response has been recorded 60 
and to prevent multiple responses within the same 1-second bin. When a 61 
reward was delivered, following a key press or not, an image of a 25 pence coin 62 
was shown at the end of the bin for 500 milliseconds with the text “Reward, you 63 
win!” and a sound. If no outcome was delivered, no feedback was given and the 64 
next bin started. Each participant completed 8 blocks where P was 65 



systematically varied (Figure 1B). A running total of money earned within the 66 
block was displayed in the corner of the screen and reset to 0 at the beginning 67 
of each block. Causality judgments regarding the relationship between pressing 68 
the key and receiving the reward were collected at the end of each block. Each 69 
block included 140 un-signalled bins, each lasting 1 second. If a response 70 
occurred during a given bin, the outcome was delivered with probability P(O|A) 71 
defined a priori for that block; if no response occurred, the outcome was 72 
delivered with probability P(O|-A) defined a priori for that block. Only the first 73 
space-bar press within the bin had any programmed consequences. By varying 74 
P(O|A) and P(O|-A), different levels of instrumental contingency were 75 
established in each block. In the first 2 blocks, all participants inhaled normal air 76 
and the associated programmed contingencies were always presented in the 77 
same order (high contingency 0.6, followed by degradation of the contingency 78 
to 0.3), providing an implicit training phase. The remaining blocks (test phase) 79 
were presented according to a Latin square design for participants in each of 80 
the two experimental groups.  81 
Prior to the experiment, the instructions informed the participants that they could 82 
earn 25 pence whilst pressing the space bar on a keyboard, and that they were 83 
free to press the key as often as they liked. They were further instructed that the 84 
relationship between pressing the space bar and receiving the 25p reward 85 
would vary during the experiment, and that pressing the space bar might earn a 86 
reward, a reward might also arrive on its own, or pressing the space bar might 87 
prevent a reward from arriving. Lastly, they were informed that occasionally they 88 
would be asked to rate the degree to which pressing the space bar caused the 89 
occurrence of the reward.  90 
 91 
Table S1: Programmed contingency, experienced contingency, response 92 
rate, and causality judgement for each experimental block. 93 
 94 
 95 

  

 
Programmed 
contingency 

Experienced 
contingency 

Response 
Rate 

Causality 
judgment 

 Block P(O|A) P(O|-A) P Air CO2 Air CO2 Air CO2 

F
ix

e
d

 

O
rd

e
r 

1 0.60 0.00 0.60 0.61 0.60 0.54 0.57 58.79 63.19 

2 0.60 0.30 0.30 0.36 0.35 0.42 0.46 40.15 43.84 

S
h

u
ff

le
d

 i
n

 a
 

L
a
ti

n
 s

q
u

a
re

  3 0.60 0.00 0.60 0.60 0.59 0.64 0.59 56.29 58.97 

4 0.60 0.10 0.50 0.52 0.51 0.55 0.55 47.53 51.61 

5 0.60 0.30 0.30 0.30 0.31 0.50 0.42 42.68 40.53 

6 0.60 0.40 0.20 0.21 0.19 0.40 0.45 38.65 40.22 

7 0.60 0.50 0.10 0.07 0.06 0.43 0.40 33.66 36.87 

 8 0.60 0.60 0.0 -0.02 -0.03 0.39 0.33 28.27 28.10 

 96 
P(O|A), probability of the outcome given the action; P(O|-A), probability of the outcome in 97 
the absence of the action; P =contingency. Dependent variables are given as mean. 98 



Blocks 1-2 were presented in a fixed order; Block 4-8 were presented according to a Latin 99 
square design. Programmed contingency refers to the a priori experimentally programmed 100 
contingency resulting from the a priori programmed conditional probabilities. Experienced 101 
contingency was computed on the basis of experienced event frequencies.  102 
 103 
Psychological and physiological response to stress. Psychological and 104 
physiological measures confirmed that participants in the CO2 condition 105 
experienced greater anxiety and stress than those assigned to the Air condition 106 
(Figure 1B and 1D). Group means and standard deviations are presented in 107 
Table S2 and S3, respectively. Subjective ratings of negative affect increased 108 
under CO2; there were significant group by time interaction effects (all p < .001) 109 
for the API, the PANAS negative affect subscale, as well as the “fearful” and 110 
“anxious” visual analogue scales (Figure 1D). The results for positive affect were 111 
mixed; happiness decreased under CO2 (p = .004), but there was no significant 112 
difference for the (more extensive) PANAS positive affect subscale (p = .84). In 113 
terms of autonomic measures of arousal, there were significant group by time 114 
interaction effects (all p < .001) for heart rate, systolic blood pressure and 115 
diastolic blood pressure. As shown in Figure 1B, heart rate and blood pressure 116 
significantly increased under inhalation of CO2 compared to normal air. 117 
 118 
Relationship between response rate and causality judgments. As goal-119 
directed control involves the implementation of contingency knowledge into 120 
flexible action, we lastly tested the extent to which causality judgments predicted 121 
response rate, and whether that might be affected by CO2-induced anxiety. 122 
Overall, response rate was linearly predicted by causality ratings (F(1, 96.44) = 123 
78.18, p < .001), but the slope of this relationship was not significantly different 124 
between groups (group by causality judgement interaction effect: F(1, 96.44) = 0.05, 125 
p = .83) (Figure 2B). This analysis thus indicated that the linear relationship 126 
between subjectively detected instrumental contingency and response rate 127 
remained intact in face of an acute anxiety induction. To examine the relative 128 
evidence for the null we used Bayes analysis from the ‘bmrs’ package in R. For 129 
this specific model (i.e., mixed models) there is no “default” and we had to set our 130 
own priors. We standardized the data and used relatively wide (i.e., ‘weakly 131 
informative’) priors, following recommendations from the ‘brms’ package 132 
documentation (Bürkner ,2017). Specifically, we used normal priors with mean=0 133 
and standard deviation=10 for the fixed effect parameters; half student-t priors 134 
with degrees of freedom=3, location=0 and scale=10 for the standard deviation of 135 
the random effects; and an LKJ prior with shape=1 for the correlation between 136 
random effects. The null model (including only causality judgements) was very 137 
strongly preferred over the alternative model with fixed effect of anxiety and 138 
anxiety by causality judgement interaction (BF01 = 5882.35). 139 
  140 



Table S2: Means and standard deviations for positive and negative affect 141 
by group and time 142 
 Pretest Test Post-test 

 Air CO2 Air CO2 Air CO2 

API 1.80 ± 2.00 2.88 ± 3.28 2.98 ± 3.69 16.5 ± 8.17 3.10 ± 3.99 4.35 ± 6.05 

VAS       

Anxious 17.49± 16.95 18.19± 18.10 11.39± 11.77 42.34± 27.08 13.22± 14.05 16.83± 19.82 

Fearful 14.48± 19.15 12.88± 16.22 10.23± 15.12 35.59± 27.52 11.84± 17.76 14.16± 19.70 

Happy 63.23± 18.20 53.66± 19.96 54.26± 19.98 34.11± 19.62 59.05± 21.93 52.70± 22.69 

PANAS       

Negative 12.67 ± 3.27 12.71 ± 3.23 11.41 ± 2.24 17.28 ± 6.42 12.19 ± 3.48 12.65 ± 4.62 

 Positive 27.60 ± 7.76 26.95 ± 8.35 22.14 ± 8.30 20.67 ± 7.92 24.43 ± 9.29 23.47 ± 8.64 

API, Acute Panic Inventory; VAS, Visual Analogue Scale; PANAS, Positive and Negative 143 
Affective Scale. Data show mean and standard deviation. 144 

 145 

 146 

Table S3: Means and standard deviations for autonomic arousal by group 147 
and time 148 
 Pretest Test Post-test 

 Air CO2 Air CO2 Air CO2 

HR 70.0± 10.4 70.1± 10.5 70.3± 10.0 86.0± 15.8 68.1± 11.1 68.0± 13.2 

BP systolic 116.0±13.6 117.7±16.3 115.0±12.3 140.4±22.8 115.2±20.1 123.3±16.7 

BP diastolic 69.2± 8.2 71.6± 10.4 70.5 ± 9.9 83.7± 15.8 72.2 ± 9.7 78.5± 11.7 

HR, rate rate; BP, blood pressure. Data show mean and standard deviation. 149 

 150 

Figure S1  151 

152 



 153 
 154 

Figure S1. Bayes Factor as a function of the scale parameter of the Cauchy prior 155 
for the fixed effects under the alternative hypothesis. The grey dot indicates the 156 
result from the default prior (scale parameter = 0.5). As the scale parameter 157 
increases (i.e. the prior becomes wider), the Bayes Factor increasingly favors the 158 
null hypothesis. Even under the prior setting that most favors the alternative 159 
hypothesis (i.e. scale parameter close to zero), the Bayes Factor remains in favor 160 
of the null hypothesis, both in the case of response rate (A) and subjective 161 
causality ratings (B).  162 

 163 
 164 

  165 



Supplementary Information for Experiment 2 166 
 167 

Subjects. Four subjects aborted the experiment and data were lost from an 168 
additional 3. Because of the nature of the analyses, subjects were excluded if 169 
their stay/switch behaviour showed such little variation as to preclude a 170 
hierarchical model-fit (choosing same response >90% of trials, N=3) or 171 
conversely, deviated substantially (>3 SDs) from the mean in the opposite 172 
direction (N=1). Sample size was determined based on a previous study 173 
(Schwabe and Wolf, 2010) that found a between-subjects effect of stress on 174 
habitual performance with partial eta squared = .07. Using a within-subject 175 
design, and assuming a .5 correlation across within-subject conditions, we 176 
determined that 47 subjects were required to reproduce an effect of this size with 177 
95% power. The study was approved by the same ethics committee as 178 
Experiment 1. Participants were reimbursed for their time and informed consent 179 
was obtained prior participation. 180 

Reinforcement learning task. On each trial, participants were presented with a 181 
choice between two fractals, each of which commonly (70%; see Figure 3A) led 182 
to a particular second state displaying another two fractals. These second-state 183 
fractals each had some probability (between .25 and .75) of being rewarded with 184 
a pound coin. On 30 % of trials (“rare” transition trials; Figure 3A), choices 185 
uncharacteristically led to the other state. A purely model-free learner makes 186 
choices irrespective of these contingencies (i.e. which action is most strongly 187 
linked to which second stage state), and instead focuses on repeating actions 188 
that were followed by reward. A model-based strategy, in contrast, is 189 
characterized by sensitivity to both reward and the transition structure 190 
(contingency) within the task. This means that when a stage 1 action is ultimately 191 
rewarded at the end of a trial, a model-based learner will repeat that stage 1 192 
action again, only if the path to reward they took was likely (i.e. involved a 193 
common transition). If the path they took to reward was unlikely (involving a rare 194 
transition), a model-based subject switches their stage 1 action to promote their 195 
chances of returning to that valuable second stage state. The chances that a 196 
second stage fractal would be rewarded drifted slowly over time, such that in 197 
order to perform optimally, subjects needed to update action preferences 198 
dynamically throughout the task.  199 
 200 
Before starting the task, participants completed a training session, which 201 
comprised written instructions, the viewing of 20 trials demonstrating the 202 
probabilistic association between the second stage fractals and coin rewards, 203 
and completion of 20 trials of active practice with the probabilistic transition 204 
structure of the task. Subjects were then tested for their comprehension of the 205 
task with a short quiz (Gillan et al., 2016a) and if they answered any questions 206 
incorrectly, these comprehension issues were clarified on-screen. The task 207 
consisted of 200 trials in which participants had 2.5 s in which to make a 208 
response using the left and right keys following presentation of the first-state 209 
choice. If no response was made on time, “no response” were presented on the 210 
screen, and the next trial started. If a choice was made, the selected fractal 211 



moved to the top centre of the screen and shrunk in size. A new, second-state 212 
fractal appeared in the centre of the screen and was followed by an image of a 213 
pound coin or a zero. Subjects completed two counterbalanced versions of the 214 
task, with different fractal stimuli and reward drifts. Model-based planning has 215 
been previously shown to correlate with sensitivity to outcome devaluation (Gillan 216 
et al., 2015), OCD diagnosis (Voon et al., 2014), symptoms (Gillan et al., 2016a), 217 
and has been successfully modified using pharmacological manipulations 218 
(Wunderlich, Smittenaar and Dolan, 2012; Worbe et al., 2015). As such, it 219 
represents an established test of goal-directed planning. 220 

 221 
Psychological and physiological response to stress. Under acute CO2 222 
administration, subjects were more anxious, fearful, and less happy (all p<.001, 223 
Table 2). Subjects’ scores on the acute panic index (API) also increased (p<.001) 224 
under CO2, as did their heart-rate (p<.001) and blood pressure (p<.001). 225 
Subjects also reported more negative affect (p<.001) and less positive affect 226 
(p=.029) on the PANAS.  227 
 228 
Table S4. Self-report within-subject changes associated with acute CO2 229 
administration  230 
 231 

 Air CO2 F p 

 Mean (SD) Mean (SD)   

API 3.6 (4.0) 13.4 (9.0) 64.86 < .001*** 

PANAS PA 24.6 (8.4) 22.4 (8.9) 5.16 = .03* 

PANAS NA 11.5 (2.7) 15.9 (5.1) 55.1 < .001*** 

VAS anxious 13.6 (12.6) 35.3 (24.0) 57.47 < .001*** 

VAS fearful 9.4 (9.8) 25.6 (24.1) 35.44 < .001*** 

VAS happy 51.5 (20.7) 41.6 (22.2) 15.72 < .001*** 

BP-systolic^ 114.8 (15.2) 133.9 (22.2) 74.17 < .001*** 

BP-diastolic^ 73.1(12.0) 81.1(15.3) 15.7 < .001*** 

HR^ 67.2 (9.0) 76.6 (14.4) 25.28 <.001*** 

     

SD= standard deviation; API = acute panic index; PANAS= positive and 232 
negative affect schedule; PA= positive affect; NA= negative affect’ VAS= 233 
visual analogue scale; BP= blood pressure; HR= heart rate.  234 
^BP data were missing for 1 subject and HR was missing for 2 subjects. 235 
* p<.05; **p<.01, ***p<.001 236 
 237 
Detailed Results for Model-Based Task. The regression model fit subjects’ 238 
behavior as expected, based on the prior literature; there was a significant main 239 
effect of Reward (β =.55, SE=.08, p<.001) and a significant Reward x Transition 240 
interaction (β=.28, SE=.06, p<.001), providing evidence that, overall, subjects’ 241 
choices showed signatures of both model-free and model-based processes. The 242 
intercept was significant; subjects had an overall tendency to repeat choices from 243 
one trial to the next, β=1.59, SE=.12, p<.001) (Table S5). Importantly, CO2 had 244 



no effect on subjects’ tendency to exhibit model-based (β=-0.03, SE=0.04, p=.44) 245 
or model-free (β=-0.02, SE=0.03, p=.52) behavior. There was a non-significant 246 
trend for subjects to switch more under CO2 (main effect of CO2 condition, β=-247 
0.08, SE=0.04, p=.060; Table S5).  248 
 249 
Table S5. Results from regression model for Experiment 1 250 
  

Coefficient β  (SE) z-value p-value 

(Intercept) 1.59(0.12) 12.88 <.001 *** 

Reward 0.55(0.08) 6.74 <.001 *** 

Transition 0.08(0.04) 1.96 0.05 * 

CO2 -0.08(0.04) -1.85 0.06 

Reward:Transition 0.28(0.06) 4.48 <.001 *** 

Reward:CO2 -0.02(0.03) -0.65 0.52 

Transition:CO2 0.04(0.03) 1.48 0.14 

Reward:Transition:CO2 -0.03(0.04) -0.76 0.44 

    

*p<.05      ** p<.01    ***p<.001 251 
SE=standard error 252 
 253 
 254 
 255 
Computational Modeling Method  256 
 257 
Reinforcement Learning (RL) Model 258 
 259 
We used a reinforcement-learning (RL) model based on a hybrid of model-free 260 
QMF(sA, a) and model-based QMB(sA, a), as utilized in previous studies (Sharp et 261 

al., 2016; Daw et al., 2011). This model consists of separate model-based and 262 
model-free subcomponents, both of which estimate a state-action value function, 263 
which maps each possible action to its expected future reward. On trial t, we 264 
denote the first-stage state (always sA) by s1,t, the second-stage states by s2,t, the 265 

chosen first-stage action by at, and the second-stage rewards as rt . 266 

 267 
For the model-free algorithm, we used temporal difference (TD) learning 268 
(Rummery and Niranjan, 1994), which updates the value for the visited state-269 
action pair at s1,t according to: 𝑄𝑀𝐹(𝑠1,𝑡, 𝑎𝑡) = 𝑄𝑀𝐹(𝑠1,𝑡, 𝑎𝑡) + 𝛼𝛿1,𝑡 270 

where α is a learning rate parameter and 𝛿1,𝑡 is the reward prediction error (RPE) 271 

at state 1, trial t:𝛿1,𝑡 = 𝑄𝑀𝐹(𝑠2,𝑡) − 𝑄𝑀𝐹(𝑠1,𝑡, 𝑎𝑡) 272 



The RPE is based on the second-stage value, 𝑄𝑀𝐹(𝑆2,𝑡). Second-stage values 273 

are themselves updated according to: 𝑄𝑀𝐹(𝑠2,𝑡) = 𝑄𝑀𝐹(𝑠2,𝑡) + 𝛼𝛿2,𝑡 274 

where the RPE at the second stage state, trial t (𝛿2,𝑡) is determined by whether 275 

or not the trial was rewarded, 𝑟𝑡:𝛿2,𝑡 = 𝑟𝑡 − 𝑄𝑀𝐹(𝑠2,𝑡) 276 

The model assumes that the eligibility trace =1 for all subjects (Sharp et al., 277 
2016), thus propagating second-stage reward information to the first-stage 278 
values. At the end of each trial, we decayed the Q values for all of the non-279 
selected actions by multiplying them by 1 − α (Lau and Glimcher, 2005; Ito and 280 
Doya, 2009).  281 

The model-based RL algorithm works by learning the transition structure of the 282 
task (the state most often visited previously after each top-stage choice) and 283 
immediate reward values for each second stage state, then computing 284 
cumulative state-action values by iterative expectation over these. At the second 285 
stage (where immediate rewards were offered), the problem of learning 286 
immediate rewards is equivalent to that for TD above, because 𝑄𝑀𝐹(𝑠2𝑡) is just 287 
an estimate of the immediate reward rt; with no further stages to anticipate, and 288 

the SARSA learning rule reduces to a delta rule for predicting the immediate 289 
reward. Thus, the two approaches coincide at the second stage, and we define 290 
QMB = QMF at those states. Critically, the top level model-based values are 291 

defined from both the transition and reward estimates using the Bellman 292 
Equation (Bellman, 1957):  293 

𝑄𝑀𝐵 (𝑠𝐴, 𝑎𝐴𝑗
) = 𝑃(𝑠𝐵|𝑠𝐴, 𝑎𝑗) 𝑄𝑀𝐹(𝑠𝐵) + 𝑃(𝑠𝐶|𝑠𝐴, 𝑎𝑗) 𝑄𝑀𝐹(𝑠𝐶) 294 

where we have assumed these are recomputed on each trial from the current 295 
estimates of the transition probabilities and rewards. To connect the model-296 
based and model-free values to choices, we use a softmax choice rule, which 297 
assigns a probability to each action based on a weighted sum of model-based 298 
and model free values (Otto et al., 2013). The probability of each choice at the 299 
first stage is calculated, accordingly, as 300 
 301 

𝑃(𝑎𝑡 =  𝑎|𝑠1,𝑡) =
exp [𝛽𝑀𝐵 ∙  𝑄𝑀𝐵(𝑠1,𝑡, 𝑎) + 𝛽𝑀𝐹 ∙ 𝑄𝑀𝐹(𝑠1,𝑡, 𝑎) + 𝑝 ∙ 𝑟𝑒𝑝(𝑎)]

Σ𝑎′  exp [𝛽𝑀𝐵 ∙  𝑄𝑀𝐵(𝑠1,𝑡, 𝑎′) + 𝛽𝑀𝐹 ∙ 𝑄𝑀𝐹(𝑠1,𝑡, 𝑎′) + 𝑝 ∙ 𝑟𝑒𝑝(𝑎′)]
 302 

 303 
The indicator function rep(𝑎) is defined as 1 if 𝑎 is the same one as was chosen 304 
on the previous trial, zero otherwise. Together with the “stickiness” parameter p, 305 
this captures first-order perseveration (p > 0) or switching (p < 0) in the first- 306 
stage choices (Lau and Glimcher, 2005). Second-stage choices are modeled 307 

with only a single value term𝑄𝑀𝐹(𝑠1,𝑡, 𝑎) with its an inverse temperature β and no 308 
stickiness parameter.  309 
 310 



This model was embedded within a multi-level random effects model of the 311 
population variation in its parameters to estimate it for all subjects simultaneously 312 
and to estimate the effect of condition on these parameters, i.e. CO2 (on/off). 313 
This was done identically to Sharp and colleagues (2016), in that the within-314 
subjects effect of CO2 is a subject-specific latent variable with its own population-315 
level mean and variance, which are themselves inferred.  All of the parameters of 316 
the model were taken as random effects, instantiated separately for each subject 317 
s from a common group level distribution. We estimated the parameters of the 318 
group level distributions using uninformative priors: for all parameters, the prior 319 
means and SDs were the heavy-tailed Cauchy(0,2), with the exception of α, 320 
where we selected narrower prior distributions so that the sigmoid-transformed 321 
parameters were roughly uniform in [0,1] a priori; prior mean and SD were 322 
Normal(0,1). 323 

We estimated the joint distribution of the parameters of the model, conditional on 324 
all subjects’ observed choices and rewards. For this, we used Markov Chain 325 
Monte Carlo (MCMC) techniques (specifically the No-U-Turn variant of 326 
Hamiltonian Monte Carlo) as implemented in the Stan modeling language (v2.5, 327 
2014). Given a probabilistic generative model (the above equations) and a 328 
subset of observed variables, MCMC techniques provide samples from the 329 
conditional joint distribution over the remaining latent variables. We ran four 330 
chains of 4,000 samples each, discarding the first 2,000 samples of each chain 331 
for burn-in. We examined the time-series plots of the chains visually for 332 
convergence and also computed Gelman and Rubin’s (1992) potential scale 333 
reduction factors. For this, large values indicate convergence problems, whereas 334 
values near 1 are consistent with convergence. We ensured that these 335 
diagnostics were less than 1.02 for all variables. 336 

Computational Modeling Results for Experiment 2 337 
 338 
Using the complementary computational analysis detailed above, we estimated 339 
learning rates and choice stochasticity, in addition to model-based, model-free 340 
and exploratory behaviour. This allowed us to test if changes in learning rates 341 
and/or choice randomness might explain our findings of increased exploration 342 
under CO2. Consistent with the one-trial back regression analysis, CO2 had a 343 
significant effect on stay/switch behaviour only, such that subjects were more 344 
likely to switch to a new action under acute CO2 (Table S7). This does not 345 
correspond to more randomness in choice, which is captured by the stochasticity 346 
parameter.  347 
  348 



Table S6. Group-level estimates of the effect of CO2(on/off) on each free 349 
parameter in the computational model.  350 

Influence of CO2 (ON/OFF) on Model Parameter Estimates 

 
Upper 95% 

Median 
Lower 95% 

α𝐂𝐎𝟐 p𝐂𝐎𝟐 𝒎𝒃𝐂𝐎𝟐 𝒎𝐟𝐂𝐎𝟐 𝒃𝒆𝒕𝒂𝟐𝐂𝐎𝟐 

0.29 -0.04 0.07 0.23 0.12 

-0.21 -0.16 -0.05 0.08 -0.11 

-0.60 -0.27 -0.17 -0.06 -0.35 

 351 
α = learning rate; p = perseveration; mb = model-based; mf = model-free; 352 
beta2 = choice stochasticity.  353 
For the effect of CO2 on each parameter, the median posterior estimate is 354 
given, together with the 95% confidence intervals. Only the slope of pCO2 355 
(i.e. the effect of CO2 on perseveration) is significantly different from zero, 356 
such that subjects were more likely to switch choices from trial to trial (i.e. 357 
perseverate less) under CO2. 358 
 359 
 360 
 361 
Experiment 3Subjects. Participants were paid a base rate of $2.50, in addition 362 
to a bonus based on their earnings during the reinforcement-learning task 363 
(M=$0.54, SD=0.04). This study was approved by the New York University 364 
Committee on Activities Involving Human Subjects. These participants are the 365 
same as those in a previously published article (Gillan et al., 2016a). Participants 366 
provided their consent online after reading the study information in agreement 367 
with the requirements of the relevant research committee. Sample size was 368 
determined using pilot data N=548 from a prior study (Gillan et al., 369 
2016a) suggesting that to achieve 80-90% power to detect an association 370 
between OCD symptoms and model-based planning in an online sample, using a 371 
two-tailed test with a significance level of p<.05, the sample size should range 372 
between N=1223-1637.  373 
 374 
 375 
Exclusion criteria for online task data. In line with suggestions made for 376 
conducting experiments online using Amazon’s Mechanical Turk (AMT), a priori 377 
exclusion criteria were applied to ensure data quality (Crump, McDonnell and 378 
Gureckis, 2013). Subjects were excluded if they missed more than 10% of trials 379 
(n=62), responded on the same key on more than 95% of trials on which they 380 
registered a response (n=85) or had implausibly fast reaction times, i.e. ±2 381 
standard deviations from the mean (n=18). Clinical Questionnaires Exclusion 382 
Criterion: In an effort to identify participants who were not reading the questions 383 
prior to selecting their responses, we included one catch item: “If you are paying 384 
attention to these questions, please select "A little" as your answer”. Very few 385 
subjects failed to select the appropriate response to this catch question; those 386 
that did were excluded (n=6).  IQ Test Exclusion Criterion: Participants who did 387 
not answer correctly to any of the IQ questions were excluded from further 388 
analysis (n=87). The adaptive character of the test meant that participants 389 



responding incorrectly received increasingly easy items; consistently failing to 390 
respond correctly indicates that given participants might have been inattentive or 391 
dishonest. In total, 258/1671 (15%) were excluded from this experiment, in line 392 
with a previously published report using this dataset. Note that in this dataset, it 393 
was also established that the results did not change regardless of the application 394 
of these criteria (Gillan et al., 2016b). In addition to these criteria, we also 395 
required subjects to score 100% on a brief test that queried their comprehension 396 
of the task instructions. If they failed this test, they were required to restart the 397 
instructions (and repeat the practice trials) until the 100% criterion was reached. 398 
 399 
Panic Attacks and Life Stress. The occurrence of recent panic attacks was 400 
assessed using item 1 on the self-report version of the Panic Disorder Severity 401 
Scale (PDSS): “How many panic and limited symptoms attacks did you have 402 
during the week?”. Subjects were provided with a definition of a panic attack: a 403 
“sudden rush of fear or discomfort”, peaking within 10 minutes accompanied by 4 404 
of 17 symptoms (e.g. rapid or pounding heartbeat, feeling of choking, nausea, 405 
chills or hot flushes, fear of dying). Subjects were told that episodes that have 406 
fewer than 4 symptoms are ‘limited symptom attacks’. Panic attack frequency 407 
scores ranged from none (“no panic or limited symptom attacks”), mild (no full 408 
panic attacks and no more than 1 limited symptom attack/day), moderate (“1 or 2 409 
full panic attacks and/or multiple limited symptom attacks/day”), severe (Severe: 410 
more than 2 full attacks but not more than 1/day on average) and extreme (“full 411 
panic attacks occurred more than once a day, more days than not”). 412 
In the Social Readjustment Scale, events are weighted in a manner that reflects 413 
the relative amount of stress that event causes, with the death of a spouse and 414 
divorce being the most stressful and minor violations of the law, major holidays 415 
and vacations being the least. 416 
 417 
Control Variables. As detailed in a prior report, subjects completed a range of 418 
self-report questionnaires that were the topic of a factor analysis in a previously 419 
published study (Gillan et al., 2016a), which was subsequently validated in an 420 
independent dataset (Rouault et al., 2018). One factor, titled “Compulsive 421 
Behaviour and Intrusive Thought”, was shown to be highly associated with 422 
model-based planning failures in this sample. Scores on this factor were thus 423 
controlled, along with IQ, age and gender. 424 
 425 
Detailed Results for Model-Based Task and Panic Attacks (past week). 426 
Basic results from this task, and its association to compulsivity, age and IQ, have 427 
been published in detail elsewhere (Gillan et al., 2016a). The novel results 428 
relevant to this study are as follows: one-trial-back regression analysis controlling 429 
for IQ, age and gender only, revealed that the frequency of panic attacks in the 430 
past week was associated with reductions in model-based planning (p=.012), and 431 
also increase in switch behavior (p=.04), but no effect on model-free learning 432 
(p=.80). Neither of these significant effects survived inclusion of compulsivity in 433 
the model (panic_attack*model-based, p=.33; panic_attack*switching, p=.24). 434 
  435 



 436 
Table S7. Results from Regression Analysis with Anxiety Attacks 437 
   

Coefficient β   SE z-value p-value 

     

model-based * panic attack -0.03 0.01 -2.52 .012* 

controlling for compulsivity -0.01 0.01 -0.97 .33 

model-free * panic attack -.005 0.02 -0.25 .80 

controlling for compulsivity .004 0.02 0.223 .82 

repetition * panic attack -0.07 0.04 -2.09 .04* 

controlling for compulsivity -.04 0.04 -1.19 .23 

   

 438 
Detailed Results for Model-Based Task and Life Stress (12 months).  439 
 440 
 441 
Table S8. Results from Regression Analysis with Life Stress (12 month) 442 
 443 
   

Coefficient β   SE z-value p-value 

     

model-based * life stress -.02 .01 -2.02 .04* 

controlling for compulsivity -.01 .01 -.98 .33 

model-free * life stress -.01 .02 -.74 .46 

controlling for compulsivity -.01 .02 -.46 .65 

repetition * life stress -.02 .03 -.87 .38 

controlling for compulsivity -.01 .03 -.22 .83 

   

 444 
Computational Modeling Method for Experiment 3 445 
 446 
The computational model proceeded exactly in Experiment 2, except that the 447 
within-subject manipulation was absent. We estimated each subject’s learning 448 
rate, model-based, model-free, perseveration and choice stochasticity 449 
parameters and then tested the extent to which these parameters were 450 
associated with panic attacks and life stress, after controlling for age, gender, IQ 451 
and the compulsive dimension in secondary regression analyses. The general 452 



pattern from the simpler analysis was reproduced with a couple of slight 453 
differences. First, the effect of panic attacks on model-based planning was not 454 
significant, even without controlling for compulsivity (Table S10). Second, the 455 
effect of panic attacks on choice switching (p) was significant both when 456 
compulsivity was and was-not controlled for (Table S10). 457 
 458 
 459 
Table S9. Association between having a recent panic attack (Item 1 on 460 
PDSS) and parameters in the computational model. 461 
 462 
   

Coefficient β   SE z-value p-value 

 

learning rate * panic attack .00 .01 0.25 .81 

controlling for compulsivity .01 .01 0.88 .38 

perseveration * panic attack -0.05 0.02 -2.55 .01** 

controlling for compulsivity -0.04 0.02 -1.87 .06 

model-based * panic attack -0.02 0.01 -1.62 .10 

controlling for compulsivity -0.00 0.01 0.25 .81 

model-free * panic attack -0.01 0.03 -0.32 .75 

controlling for compulsivity 0.01 0.03 0.30 .76 

stochasticity * panic attack -0.03 0.04 -0.66 .51 

controlling for compulsivity -0.04 0.04 0.90 .37 

 463 
 464 
  465 



Table S10. Association between Life Stress (12 months) on parameters in 466 
the computational model 467 
 468 
   

Coefficient β   SE z-value p-value 

     

learning rate * panic attack -0.00 .01 -.02 .98 

controlling for compulsivity 0.00 .01 .36 .72 

perseveration * panic attack -0.00 .02 -.18 .86 

controlling for compulsivity 0.01 .02 .38 .70 

model-based * panic attack -0.02 .01 -2.33 .02* 

controlling for compulsivity -0.01 .01 -1.17 .24 

model-free * panic attack -0.02 .02 -0.61 .54 

controlling for compulsivity -0.01 .03 -0.22 .82 

stochasticity * panic attack -0.08 .03 -2.43 .02* 

controlling for compulsivity -0.05 .03 -1.52 .13 

 469 
 470 

 471 
  472 
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