
A Design Engineering Approach for Quantitatively
Exploring Context-Aware Sentence Retrieval for
Nonspeaking Individuals with Motor Disabilities

Per Ola Kristensson, James Lilley
Department of Engineering
University of Cambridge

Cambridge, United Kingdom
{pok21,jal218}@cam.ac.uk

Rolf Black, Annalu Waller
School of Science and Engineering

University of Dundee
Dundee, United Kingdom

{r.black,a.waller}@dundee.ac.uk

ABSTRACT
Nonspeaking individuals with motor disabilities typically have
very low communication rates. This paper proposes a design
engineering approach for quantitatively exploring context-
aware sentence retrieval as a promising complementary input
interface, working in tandem with a word-prediction keyboard.
We motivate the need for complementary design engineering
methodology in the design of augmentative and alternative
communication and explain how such methods can be used to
gain additional design insights. We then study the theoretical
performance envelopes of a context-aware sentence retrieval
system, identifying potential keystroke savings as a function of
the parameters of the subsystems, such as the accuracy of the
underlying auto-complete word prediction algorithm and the
accuracy of sensed context information under varying assump-
tions. We find that context-aware sentence retrieval has the
potential to provide users with considerable improvements in
keystroke savings under reasonable parameter assumptions of
the underlying subsystems. This highlights how complemen-
tary design engineering methods can reveal additional insights
into design for augmentative and alternative communication.

Author Keywords
Augmentative and alternative communication; design
engineering; text entry; context-aware text entry; sentence
prediction; information retrieval

CCS Concepts
•Human-centered computing→ Accessibility systems and
tools;

INTRODUCTION
Nonspeaking individuals with motor disabilities typically rely
on augmentative and alternative communication (AAC) tech-
nologies to communicate. In this paper we focus on the subset
of the target audience that is literate. A commonly used AAC

device for this user group is a keyboard, either a physical key-
board or a touchscreen keyboard, with built-in auto-complete
and word predictions. When the user has typed a word, phrase
or sentence the user can speak the text using speech synthesis.
However, compared to speaking rates of between 125 and
185 words per minute (wpm; with a word defined as a five
consecutive characters including space), aided communication
rates in general are reported at 8–10 wpm without accelera-
tion methods such as prediction (for direct selection). Current
acceleration techniques range from the use of abbreviations or
word and phrase encoding to letter, word and phrase predic-
tion. However, there is only a limited increase to rates of up to
12–18 wpm and usability issues such as having to scan word
prediction lists visually present challenges when using these
acceleration methods. Even with acceleration methods, rates
rarely exceed 20 wpm [14, 4]. In practice, individual rates
span a wide range and we encourage the reader to explore this
range using the AT-Node search tool.1

Traditionally, word prediction presents the user with a list of
words that can either be selected directly (touchscreen or scan-
ning) or via keyboard shortcuts (for example, function keys).
Although several research projects have demonstrated the po-
tential of using conversational language models to achieve
rates of up to 64 wpm, these rates were obtained under partic-
ular circumstances and have not been translated into practical
applications [21].

In this work we make two contributions. First, we propose
a conceptual design of context-aware sentence retrieval for
nonspeaking individuals with motor disabilities. Second, we
explain how methods from design engineering can be used in
tandem with traditional AAC design to gain design insights
at the conceptual design stage of an AAC method. We will
explain why this approach is sometimes even necessary in
order to progress certain AAC designs, such as context-aware
sentence retrieval.

Context-Aware Sentence Retrieval
We propose augmenting AAC touchscreen keyboards with sen-
tence suggestions retrieved from the user’s set of previously
spoken sentences. In addition to word predictions, the system

1https://kpr.pythonanywhere.com/q?diagnosis=*&
interface=physical_keyboard

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/286714246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://kpr.pythonanywhere.com/q?diagnosis=*&interface=physical_keyboard
https://kpr.pythonanywhere.com/q?diagnosis=*&interface=physical_keyboard

shows sentence suggestions on the display. If the sentences
are relevant, the user can save valuable keystrokes by directly
selecting the desired sentence. If the sentences are not relevant,
the user may ignore them. Such a system would likely be un-
suitable for regular mobile text entry, as users would spend a
disproportionate amount of time scanning the sentence sugges-
tions. However, when the communication rate is very low this
effort is worthwhile—assuming it results in keystroke savings.

To improve the probability of a suitable sentence suggestion,
we propose leveraging context tags. A context tag is a label
that describes aspects of the context of a conversation, such as
the location, current time or conversation partner.

Design Engineering for AAC
The second contribution in this paper is a consequence of
the first contribution. It is extremely difficult to validate a
context-aware sentence retrieval system with AAC users and
this difficulty short-circuits established user-centred design
practices. First, such a system needs to be bootstrapped with
sentences for an individual user. Given the rate-limited nature
of AAC communication, this may demand up to six months of
usage of the device by an AAC user before the benefits of the
system can be felt by the user. The logistics involved in hav-
ing even a single AAC user, and their assistant/family/friend,
switch to a new device for the eventual benefit of being pro-
vided more relevant sentences is very difficult (and perhaps
ethically wrong) to carry out. The alternative solution of pre-
feeding old sentences to the system might work but these
would have to have context tags assigned post-hoc, which are
unlikely to be valid and such a procedure can not be validated
without ground truth data. Finally, using proxy-users (people
pretending to have dexterity issues) cannot replicate issues
we observe in users who have involuntary and idiosyncratic
movement.

As a result of the difficulty of validating such a system we
explore an approach often taken in design engineering. De-
sign engineering (sometimes called Engineering Design) is
a methodology used in product and integrated system design
which spans the entire continuum from elaboration of an ini-
tial solution-neutral problem statement to design concerns in
manufacturing, support and disposal of a product or system.

Specifically, we elaborate a functional design of context-aware
sentence retrieval and study a conceptual design of context-
aware sentence retrieval in which the key function of the sys-
tem (sentence prediction) has been translated to three can-
didate function carriers. We then identify a set of control-
lable and uncontrollable system parameters of this conceptual
design and explore the viable efficacy of such a system by
quantitative envelope analysis.

We build a surrogate context model and identify the relevant
controllable and uncontrollable parameters of the model and
vary them in an envelope analysis. This allows us to demon-
strate that a context-aware sentence retrieval system can pro-
vide substantial keystroke savings ranging from 50–96%, de-
pending on assumptions on word prediction accuracy, accuracy
of context tagging and the level of sentence re-use.

The design engineering approach thus serves two purposes.
First, it helps define requirements for important function car-
riers, in particular the required accuracy of auto-complete,
sentence retrieval and context-tagging. Second, it provides
information on the viability of this approach without a need
to first build, deploy and monitor a system over a prolonged
period of time.

Paper Structure
The rest of this paper is structured as follows. First we re-
view prior work in AAC sentence prediction. Then we explain
how we used approaches for design engineering to study the
system at the conceptual design stage. Then we explain the ap-
proach and modeling assumptions of the work. Thereafter, we
model the underlying subsystems and observe the achievable
keystroke savings via envelope analysis. Finally, we discuss
the implications of this work and conclude.

RELATED WORK
Phrase prediction, that is, the prediction of more than two
words, has become a ubiquitous feature in many text entry
systems and is probably most prominent in the Google search
window, where a number of additional search terms are sug-
gested once a character has been typed. Google uses current
searches on its platform combined with the user’s location and
their previous searches.2 Another example is writing sugges-
tions in Google’s email product Gmail.

In the 1970s, phrase-based AAC systems were thought to be
better equipped in enabling users to communicate at faster
communication rates. In these early Speech Generating De-
vices3 (SGDs), phrases were encoded using either number
codes (Phonic Ear) or mnemonic encoding using icon combi-
nations for accessing pre-stored phrases (Minspeak) [18].

However, the retrieval of pre-stored phrases places additional
cognitive burden onto the user and different approaches were
investigated for allowing the user to find the appropriate
phrases.

The TOPIC prototype by Arnott et al. [2] added semantic
tags to each phrase to allow for easier (manual) retrieval [18].
TalksBac added communication partner tags to allow easier
tailoring of communication according to the conversation part-
ner [20].

Prior research suggests that well-designed utterance-based re-
trieval systems which link pragmatic features and user goals
can lead to faster communication without losing coherence.
The TALK system [21] is based on a pragmatic model which
sees the progression of a conversation as a series of grad-
ual shifts of perspectives relating to the speaker, time (past,
present, future) and event-related information (what, where,
who, how, and why). By changing perspective, the system
can predict possible utterances. However, these systems rely
on handcrafted sentences and the user needs to remember the
conversational content and the location of this content.

2https://www.blog.google/products/search/how-google-
autocomplete-works-search/
3Also referred to as Voice Output Communication Aids (VOCAs)

Whole-message retrieval has also benefited from linguistic
prediction. Langer and Hickey [9] developed WordKeys, a
research system which allows the user to retrieve pre-stored
messages by typing or selecting a key word that can be as-
sociated with any word in the target message. For instance,
the message ‘I enjoy watching tennis’ could be retrieved by
entering the word ‘ball’, even though ‘ball’ does not appear
in the sentence. The associations (for example, a ball is used
in tennis) are automatically generated by a large semantic
lexicon, derived from the WordNet database [15].

In general, retrieval of stored sentences has proven difficult
and thus individual words became the main unit to be stored
in AAC systems.

Users of current commercial SGDs sometimes pre-store utter-
ances and monologue ‘talks’, but sharing personal experiences
(stories) interactively using SGDs is rare. The main reasons for
not using pre-stored utterances and talks despite the evidence
that this improves communication rates can be described in
terms of pragmatics (how language is used and the usability
of the user interface):

1. It is unnatural for users to anticipate experiences which may
be used within future conversations, resulting in limited
pre-stored material.

2. Experiences are ‘shared’ as interactive conversational narra-
tives and not as monologue ‘talk’.

3. The cognitive and physical effort needed to retrieve pre-
stored conversational information is high, resulting in users
resorting to word-for-word typing—users have to invest
effort into remembering where the vocabulary is stored, or
in the case of word prediction, there is a cognitive overhead
in visually scanning the options to find the desired item.

The need to resort to spelling and word-by-word production
affects the spontaneous conversational flow and its quality
because of the slow speed and physical effort to produce text.

Nandi and Jagadish [12] describe the two main challenges of
phrase prediction:

1. The number of possible phrases is considerably larger than
the number of possible words.

2. A phrase has no defined boundary compared to a word.

Phrase prediction can also be seen as word prediction with
larger words where commonly co-located words are coded
as one word in the prediction index, for example, New York
becomes New_York. However, if the phrase corpus consists
of phrases typed by the user it can be expected that a phrase
boundary/ending in general is defined by the use of certain
function or punctuation keys, such as ‘speak’ and ‘full stop’.

Advances in context sensing technologies have opened up
opportunities to refine word and sentence prediction using
information such as location and conversational partner. It is
anticipated that a so-called context-aware system will predict
more appropriate lexical items, thereby reducing the cognitive
and physical effort required to use word and utterance-based
AAC.

Very early phrase-based systems, Floor Grabber and
TALK [17], gave access to a large number of phrases grouped
by conversation topic, such as ‘Miami Trip’ or ‘my car’. These
systems contained approximately 500 sentences that could be
accessed through a topics-based user interface on a desktop
computer. In a study exploring phrase prediction Garcia et
al. [3] transcribed a participant’s communication paper note-
books for a corpus of 545 sentences.

It is notable that no research-based prediction systems (stan-
dard and context-aware) have as of yet been reflected in com-
mercially available systems. Although there is a small number
of systems that use GPS data to pre-select phrase collections,
these are restricted to needs-based conversations, for example,
ordering phrases in a cafe or restaurant (for example, Locab-
ulary4 or TalkRocketGo5). Grid 3 by Smartbox can suggest
previously typed phrases filtered by the location where the
phrases were typed previously.6 There is no information avail-
able on the number of phrases stored in these systems.

Commercially available systems with manual access to phrases
usually group these by context (for example, in a cafe, at
the bank, etc.) for selection of a suitable phrase. Systems
providing phrase prediction suggest phrases that either begin
with a typed letter, contain a typed word or are identified by
an acronym.

Recent systematic reviews of the literature have found little
evidence for phrase prediction being used: Koester et al. [8]
reviewed 39 papers on text entry strategies. Although predic-
tion was not at the heart of this review, the authors conclude
that word prediction in the studies seldom allowed for an in-
creased typing rate. Phrase prediction was not available in any
of the studies. Polacek et al. [14] reviewed 150 publications
on text input for users with motor impairments. They only
refer to one of their own publications for prediction of longer
text elements. No indication on effectiveness is given [13].

This highlights a mismatch between theoretical and practical
values in typing rate improvements. Although theoretically
improvements seem apparent for using prediction they do
not seem to be reflected in practical studies with users with
disabilities. All these systems have in common that a user
needs to scan a list visually and read suggested phrases to be
able to choose a suitable one, justifying the need for improved
methods for predicting correct phrases.

In addition, the idea of leveraging context has been incorpo-
rated into AAC design before. An example is the work by
Kane et al. [7] and others (for example, Mahmud et al. [1]).
However, our use of context in this paper is different in that the
context tags are here directly incorporated into an information
retrieval model for retrieval of stored sentences.

FUNCTIONAL DESIGN AND FUNCTION CARRIERS
Design engineering is a set of methodologies for product and
integrated system design. There are many specialized design

4http://locabulary.com/
5http://myvoiceaac.com/app/talkrocketgo/
6https://thinksmartbox.com/product/grid-3/

processes for various domains, such as medical devices or
aerospace.

The relevant aspect of the design engineering process for
this paper is the conceptual design stage. In this stage
of the design, a product or integrated system is first de-
scribed as a functional design. This typically means iden-
tifying the overall function (which in this case can be de-
noted as Predict Text) and the necessary sub-functions
(such as Create Context Tags, Auto-Complete Word,
Retrieve Sentence, Display Word Predictions and
Display Sentence Predictions) and their interrelation-
ships.

The second part of the conceptual design stage involves identi-
fying solution principles for translating functions into function
carriers. In this paper we focus on the conceptual design im-
plications of a single critical function: Retrieve Sentence.
This function is fundamental as the design of its function car-
rier (in other words, the implementation of sentence retrieval
in software) is dependent on two other functions in particu-
lar: Auto-Complete Word and Create Context Tags. To
understand the requirements of a function carrier for the func-
tion Retrieve Sentence it is necessary to evaluate a set of
candidate function carriers to understand their relative suitabil-
ity. To do this we identify the controllable and uncontrollable
parameters such potential function carriers must be exposed
to and vary these parameters to perform envelope analyses.
These analyses provide information on some of the overall
requirements the entire system must satisfy for these function
carriers to be able to carry out the overall function satisfactory.

In this paper we study three function carriers, three well-
established information retrieval algorithms, which are de-
scribed in detail later in this paper.

What the design engineering approach does is allow us to
identify critical functions and study aspects of some of them
in isolation. This is normally not required in AAC design,
but given the difficulty in validating context-aware sentence
retrieval we alluded to in the introduction, in this particular
case such an approach becomes critical to make progress.

Note in particular that we specifically are going to study the
translation of a key sub-function (Retrieve Sentence) to
a function carrier without any concern on how to translate
other key functions, in particular Auto-Complete Word and
Create Context Tags. Instead, an output of the analysis is
a set of requirements which can later be used to make informed
decisions of appropriate function carriers for these functions.

For brevity, we have only sketched a minimal functional de-
sign to motivate the quantitative parameter exploration we will
carry out in the next sections in order to understand the poten-
tial of context-aware information retrieval for AAC. A com-
plete functional design is out-of-scope for this paper, however,
it is worth noting that certain functions, such as the function
Display Word Predictions, can be studied in isolation
using more traditional user-centred design methods.

QUANTITATIVE PARAMETER EXPLORATION
Our modeling approach treats the sentence retrieval problem
as an information retrieval (IR) problem. We assume the AAC
system contains a set of previously typed sentences, where
each sentence may optionally be associated with one or more
context tags. We treat both the words and the context tags as
terms and the collections of terms for a sentence (including
any associated context tags) form a document, where the terms
term and document arise from the IR nomenclature.

In a similar vein, whenever the user desires to write a sentence,
we call this a query. A query consists of context tags (if
available) and any words the user has completed.

Both documents and queries are modeled as bags-of-words.
A bag-of-words is a multiset of terms which, unlike a set,
preserves multiplicity of the terms.

When investigating the performance of context-aware sentence
retrieval we make an assumption that a hypothetical user has
500 prior sentences stored in their AAC system. This parame-
ter choice is tentative but representative of AAC practice (see
the related work section). We then typically select a sentence
from this set of sentences (we will later in this paper also study
typing sentences outside this stored sentence set) and model
the user typing this sentence.

The user’s typing is modeled both supported and unsupported
by auto-complete assistance (word prediction). Without auto-
complete assistance, a user must type each individual word to
completion without aid. As a word is completed, it is added to
the query as an additional term.

With auto-complete assistance, with some probability, the
word is added to the query as a term for every keystroke typed
that is part of the word.

Regardless of the typing method, for every keystroke typed
we form a query with the terms consisting of any present
context tags and the currently fully-typed, or predicted, words.
We then score all sentences in the stored sentence set using
three different IR algorithms (which are explained in the next
section). Thereafter we rank all the sentences based on their
relevance scores. If we have several sentences with equal
relevance scores we choose a sentence at random. This models
an interaction method where, as the user continues to type,
the retrieved sentences will match the user intent better. This
approach was inspired by our observations of actual AAC
users retrieving stored sentences.

Unless otherwise stated, we retrieve the four best matching
sentences and consider a match to be found if one of these
four retrieved sentences matches the test sentence. We chose
four sentences as there is sufficient space in a typical AAC
touchscreen interface to display four sentences above the key-
board. We will later in the analyses in this paper also vary this
number of sentences.

This typing process repeats until the system is able to retrieve
a matching sentence. We then calculate the keystroke savings,
KS, which is defined as:

KS =

(
1− km

kc

)
×100%, (1)

where km is the number of keystrokes that need to be typed
before the model under investigation results in a matching
sentence and kc is the number of keystrokes in total for the test
sentence. A higher keystroke savings value is better.

Unless otherwise stated, we use a set of 500 sentences from a
publicly available AAC corpus [19] to model sentences stored
in an AAC user’s AAC device. We will select 40 sentences at
random from this test set and use the above described model of
typing behavior to simulate an AAC user typing the sentence
on their AAC device. Before we retrieve sentences we pass all
stored sentences and query terms through a porter stemmer,
remove all punctuation and remove all capitalization.

SENTENCE RETRIEVAL ALGORITHMS
We investigate three algorithms for sentence retrieval: Inverse
Document Frequency (IDF) [16], Best Matching (BM25) [5,
6] and a Unigram model. For completeness we define the
models below. For more information on these models and
how they are used in IR we refer to an IR textbook, such
as for example Manning et al. [10]. We note that these IR
algorithms are easily available, simple and robust. While
more sophisticated algorithms exist, it is important to recall
that we are performing envelope analyses and we should be
conservative in our estimations.

IDF
IDF assigns each document in the collection a relevance score,
and then ranks them accordingly. The relevance is given by
the sum of each term’s id f , defined as:

∑
t ∈ d

id f t , where id f t = log
N
nt
,

id f t is a measure of the inverse document frequency. This is
the log ratio of the size N of the collection and the number
of documents nt that contain term t. It is summed for every
term in each document d to calculate the relevance score of
that document.

BM25
The BM25 algorithm is a probabilistic model which also as-
signs each document a relevance score. The relevances are
given by:

∑
t ∈ d

id f t .
(k1 +1)× t ftd

k1(1−b+b× (Ld/Lave))+ t f td
,

where previously defined symbols remain the same as before,
and t ftd is the term frequency of a term t in document d, Ld
is the length of the document d, Lave is the average document
length in the collection, and k1 and b are parameters which
throughout this paper will be set to k1 = 1.2 and b = 0.75.

Unigram
The Unigram model builds a dictionary of all terms in the
collection. For each document it finds the probability of each

1 2 3 4 5 6 7 8 9 10

Number of Sentences Available

45

50

55

60

65

70

75

A
v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

BM25

UniGram LM

Figure 1. Average keystroke savings as a function of the number of sen-
tence suggestions presented to the user for the three IR algorithms with-
out using context tags and without auto-complete assistance.

term by summing its frequency of occurrence in the document
and dividing by the total number of terms in the document. It
then smooths these probabilities by adding a small constant α

to the numerator and multiplying the denominator by α . This
set of probabilities attached to each document is the Unigram
language model based on each document.

For a given query q the algorithm calculates the product of
the probabilities of each term in the query according to each
document’s language model. This acts as a relevance score
with the highest product corresponding to the most relevant
document.

The probability of a query containing m terms is given by:

P(q) =
m

∏
i=1

P(ti),

where each term probability is:

P(ti) =
count(ti)+α

m×α
.

BASELINE MODEL WITHOUT CONTEXT TAGS
We first investigate a baseline model without context tags
where the user is typing the test sentence word by word with-
out auto-complete assistance. Figure 1 shows the average
keystroke savings obtainable as a function of the number of
sentence suggestions that are shown to the user.

SURROGATE AAC CONTEXT MODEL
We then analyze if the baseline model results can be improved
by assuming a context-aware AAC IR system. Since no large
dataset of AAC sentences with context tags exists, real or
surrogate, we need to create a surrogate AAC context model
that can generate surrogate AAC sentence sets with associated
context tags.

The basic form of this AAC context model is that we have a
cache of context tags and these context tags are defined by
the family of context tags they are part of, and their position

within the family. For example, an individual context tag may
be of the form ‘location1’ or ‘person2’ and belong to a tag
family, such as Location and Person, respectively.

As the user types, an actual system would provide a real-
time feed of these context tags, for example by using face
recognition to provide tags of the form ‘person2’ and GPS
to provide tags of the form ‘location1’. Tags could also be
inputted manually by an assistant. These tags are then attached
as terms to the start of the query. This means a query is pre-
loaded with terms even before the user has begun typing.

To more fully define a surrogate AAC context model, which
is a form of generative model, we introduce a number of pa-
rameters. We will split these parameters into two groups,
controllable and uncontrollable. A parameter is controllable if
it is essentially a design choice for any given system. In other
words, a controllable parameter is a design parameter in the
system and the identification of design parameter values cap-
ture requirements for implementing a well-functioning system.
A parameter is uncontrollable if it will affect the system but
cannot be directly controlled by the system. We will perform
envelope analyses to both controllable and uncontrollable pa-
rameters. The envelope analyses of controllable parameters
inform design objectives for their optimization. The enve-
lope analyses of uncontrollable parameters demonstrate the
likely variation in performance of any given system (a form of
sensitivity analysis).

The controllable parameters are:

1. The number of context tags attached to each document.
Unless otherwise stated; this parameter is set to 2.

2. How each family of context tags is represented in each
document (stored sentence); this parameter is set as one
context tag from each family in each document, unless
otherwise stated.

3. The average number of context tags per context tag family;
this parameter is set to 15, unless otherwise stated.

4. The spread of these context tags between the context tag
families. Each context tag family will have the same size
unless otherwise noted.

Note that the first and second parameters define the number of
context tag families.

The uncontrollable parameters are:

1. The popularity of each individual context tag in each context
tag family.

2. The probability of a context tag attached to a sentence be-
ing typed matching the context tag attached to the same
sentence in the set of stored sentences.

3. The number of stored sentences (the size of the document
collection).

ANALYZING UNCONTROLLABLE PARAMETERS
Popularity of Individual Context Tags
We first investigate how often each individual context tag will
appear. This depends on how often the user, whose data we

0 2 4 6 8 10

Power Law Parameter

70

75

80

85

90

95

100

A
v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

Figure 2. Average keystroke savings for three IR algorithms as a func-
tion of varying the power law parameter ω (without auto-complete assis-
tance).

are assuming we have, is situated in different contexts and
therefore we will not be able to control it and it will also
most likely change between users. Therefore, we will first
assume that within each context tag family the probability of
each context tag being associated with each sentence follows a
discrete power-law distribution. This assumption is motivated
by the observation that even very simple generative typing
processes will result in power law distributions [11]. We
will then perform an envelope analysis of different power-law
parameters in order to observe potential keystroke savings.
For the rest of this paper we have set the power-law parameter
to 4 as this proved a robust choice.

The power-law distribution is defined by the density function:

P(x,ω) = ωxω−1 | x ∈ Z+ and x≤ γ,

where x is the position of the context tag within the family
(e.g., ‘location1’ ‘location2’), ω is a parameter that defines
the distribution and γ is the number of tags in the family. The
effect of varying the power law parameter is shown in Figure 2.

Probability of Matching Context Tagging
Another uncontrollable parameter is the probability of a test
sentence’s context tags matching the context tags of a sentence
among the stored sentences. This parameter covers a range of
different real-world scenarios where either the tag has been
incorrectly assigned by the context tagging system (possibly
due to classification errors) or the user is writing a sentence
that exists among the stored sentences but in a new context and
therefore the context tagging system may be either correct or
incorrect but nonetheless the assigned context tag is different.

We perform an envelope analysis of this parameter as follows.
Each time a test sentence is chosen from the collection, we
sample from a uniform random distribution and if the sample is
higher than a set probability parameter a context tag in the test
sentence is randomly reassigned according to the previously
defined power-law model. Otherwise, the context tag in the
test sentence is left as it is. We vary the probability parameter
between 0 and 1. Note that for the rest of this paper we
are effectively setting the probability parameter to 1, which

0.0 0.2 0.4 0.6 0.8 1.0

Probability of Correct Tag

40

50

60

70

80

90

100
A

v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

Figure 3. Average keystroke savings as a function of varying the proba-
bility of matching context tagging without auto-complete assistance.

1000 2000 3000 4000 5000
Size of Collection

80

82

84

86

88

90

92

94

Av
er

ag
e

Ke
ys

tro
ke

 S
av

in
gs

 (%
)

IDF
UniGram LM
BM25

Figure 4. Average keystroke savings as a function of varying the number
of stored sentences without auto-complete assistance.

assumes perfect context tagging. The results from varying the
probability parameter are shown in Figure 3.

Stored Sentences
The final uncontrollable parameter is the number of stored sen-
tences in the AAC system (or the number of documents using
IR terminology). Figure 4 shows the effect of this parameter
when varying it between 500 and 5,000 sentences.

OPTIMIZING CONTROLLABLE PARAMETERS
The analysis of the uncontrollable parameters revealed the
performance gains that are likely to be obtained in an unopti-
mized system. However, further gains can possibly be made
by optimizing the controllable parameters. We carried out four
investigations:

1. The effect of varying the size of the context tag families.

2. The effect of varying the number of context tags per sen-
tence (document).

3. The effect of unevenly assigning the context tag families to
sentences. We begin by using only one context tag family
and thereafter increasing the number of context tags per sen-
tence (document), and then, using two context tag families,

4 6 8 10 12 14 16 18 20

Size of Tag Families

75

80

85

90

95

100

A
v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

Figure 5. Average keystroke savings as a function of varying the number
of context tags per context tag family without auto-complete assistance.

0 1 2 3 4 5

Number of Tags per Sentence

60

65

70

75

80

85

90

95

100

A
v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

Figure 6. Average keystroke savings as a function of varying the number
of context tags per sentence without auto-complete assistance.

assigning one context tag from one of them, and then vary
the number of context tags per sentence (document), adding
context tags only from the other context tag family.

4. The effect of assigning unevenly sized context tag families.
This is defined by varying an offset parameter with one
context tag family increasing its number of context tags by
the offset amount and another context tag family decreasing
by the same amount.

The respective results are shown in Figures 5–8. As is evident
in the envelopes, there are design parameter choices that can
further improve overall system performance in terms of av-
erage keystroke savings. These insights can be captured as
part of an improved requirements specification of the overall
system.

EFFECT OF WORD PREDICTION
Throughout this paper the envelope analyses are based on
the user typing individual words to completion without auto-
complete assistance, also known as word prediction. This
provides easily interpretable baseline keystroke savings and
demonstrate the substantial keystroke savings that can be
achieved using even modest context tagging.

1 2 3 4 5

Number of Tags per Sentence

60

65

70

75

80

85

90

95

100
A

v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF - All Same (B), One Diff. (Y)

UniGram LM - All Same (Bk), One Diff. (G)

BM25 - All Same (R), One Diff. (P)

Figure 7. Average keystroke savings as a function of varying the number
of context tags per sentence without auto-complete assistance.

0 2 4 6 8 10

Size Offset of Tag Families

84

86

88

90

92

94

96

A
v
e
ra

g
e
 K

e
y
st

ro
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

Figure 8. Average keystroke savings as a function of the size offset of the
context tag families without auto-complete assistance.

However, AAC users typically rely on auto-complete7 and
we therefore also studied the impact of auto-complete on
keystroke savings. This allows us to capture requirements
on the important function Auto-Complete Word, which we
identified in the conceptual design of the system earlier in this
paper.

We model auto-complete with a word prediction accuracy
parameter which determines the probability that for a given
keystroke the intended word would be auto-completed. This
model is a simplification of a true auto-complete system as
we thereby assume the probability of auto-complete assistance
predicting the intended word as being the same regardless of
how many keystrokes the user has typed. In reality, the prob-
ability of an intended word being accurately predicted will
increase as a function of the number of the keystrokes. How-
ever, as we perform an envelope analysis this effect will, in the
limit, average out. Setting a fixed probability is a compromise
between over-parameterization and simplicity (Occam’s razor)
and represents an “uninformative prior” that avoids us having
7To be precise, most AAC users rely on typing assisted by word
prediction, which is not the same as typing assisted by auto-complete.
We assume AAC users are willing and able to use auto-complete in
this analysis.

0.0 0.2 0.4 0.6 0.8 1.0
Word Prediction Accuracy

88

90

92

94

96

98

100

Av
er

ag
e

Ke
ys

tro
ke

 S
av

in
gs

 (%
)

IDF
UniGram LM
BM25

Figure 9. Average keystroke savings with auto-complete assistance as a
function of word prediction accuracy for data with context tags.

0.0 0.2 0.4 0.6 0.8 1.0
Word Prediction Accuracy

60

65

70

75

80

85

90

95

Av
er

ag
e

Ke
ys

tro
ke

 S
av

in
gs

 (%
)

IDF
UniGram LM
BM25

Figure 10. Average keystroke savings with auto-complete assistance as a
function of word prediction accuracy for data without context tags.

to make elaborate distributional assumptions, which would be
difficult to justify.

We carry out the envelope analysis both using context tags
and without to assess the effect of keystroke savings with auto-
complete assistance using a non-context aware system and a
context-aware system. Figure 9 shows that under very rea-
sonable estimations of word prediction accuracy (around the
80% word prediction accuracy point), the average keystroke
savings are substantial at around 96%, assuming two context
tags are used and they both match the context tags of the test
sentence. In reality such a high performance will reduce in
practice, as the context tags will inevitably not always match.

For calibration, Figure 10 repeats the analysis without the aid
of context tags. At the 80% word prediction accuracy point,
performance drops to around 80%.

UNOBSERVED SENTENCES
We have observed that under reasonable parameter assump-
tions, two context tags per sentence, a stored set of 500 sen-
tences, and each context tag family having 15 members, sub-
stantial keystroke savings can be achieved by retrieving a
stored sentence using standard IR algorithms. Word prediction
further improves the performance.

0 20 40 60 80 100

Threshold WER (%)

0

20

40

60

80

100
A

v
e
ra

g
e
 K

e
y
st

o
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

(a) 500 stored sentences

0 20 40 60 80 100

Threshold WER (%)

0

20

40

60

80

100

A
v
e
ra

g
e
 K

e
y
st

o
ke

 S
a
v
in

g
s

(%
)

IDF

UniGram LM

BM25

(b) 4,500 stored sentences
Figure 11. Average keystroke savings as a function of thresholded WER
when the system is requested to retrieve unobserved sentences from a)
500 stored sentences; and b) 4,500 stored sentences.

The reason the keystroke savings are substantial is because we
are retrieving sentences that are already stored in the system.
Such retrieval is common in AAC and therefore motivates the
analysis. However, we were also interested in investigating
how well a context-aware sentence retrieval system would be
able to predict unobserved sentences, that is, sentences that are
not stored in the system. Such unobserved sentences are by
definition unlikely to perfectly match stored sentences. How-
ever, the system could find similar sentences and occasionally
these sentences may be useful to the user. For example, if the
user is attempting to communicate: “I want to go to school”,
a completion of: “Can I go to school”, might be perceived as
good enough by an individual user.

To get some indication of the performance of using the system
in this mode, we defined a permissible word error rate (WER)
which determined whether or not a retrieved sentence was
considered as correct. WER is the minimum number of word
insertions, deletions and substitutions necessary to transform a
source sentence into a target sentence, divided by the number
of words in the target sentence. We perform an envelope anal-
ysis by varying this WER threshold and observe the average
keystroke savings.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Observed Sentence (%)

20

30

40

50

60

70

80

90

100

Av
er

ag
e

Ke
ys

to
ke

 S
av

in
gs

 (%
)

IDF
UniGram LM
BM25

Figure 12. Average keystroke savings as a function of probability of ob-
served sentences and correct tags with auto-complete set to 80% for sen-
tences inside the sentence cache and 20% for sentences outside the sen-
tence cache.

The test sentences were drawn from the same source as the
other sentences in our previous analyses [19] but not present
among the stored sentences. The total number of sentences in
this sentence set source [19] is 5,000. While this set is small,
the sentences in this set also tend to be distinct in terms of
word usage and topic and therefore an unobserved sentence
is unlikely to match a stored sentence well. In this sense, our
analysis is conservative and erring on the side of caution.

Since the analysis is dependent on the system in some sense
getting “lucky” that a test sentence happens to reasonably
match a stored sentence, we carried out this investigation
for two sentence sets. First, a conservative number of 500
stored sentences and, second, a large number of 4,500 stored
sentences. This allowed us to observe how much performance
would improve if more sentences are available. Auto-complete
was turned off and two perfect context tags were used in this
analysis. The results are shown in Figure 11. As expected, the
threshold WER has to be relaxed to around 60–80% for the
system to be able to generate meaningful keystroke savings.
We also observe a slight increase in performance with the
larger sentence set.

Figure 12 illustrates a more representative scenario. Figure 12
shows average keystroke savings as a function of the proba-
bility the user is typing an observed (stored) sentence for all
IR algorithms. We set the threshold WER to 50%, assume
perfect context tags and have added auto-complete. As with
previous analyses, we set the auto-complete probability to 80%
for stored sentences inside the sentence cache. However, such
a high auto-complete probability is unrealistic for unobserved
sentences outside the cache and we therefore lowered it to
20% for those sentences. Figure 12 shows expected keystroke
savings ranging from 20% with 0% observed sentences to
between 40% and 60% for 50% observed sentences depending
on the IR algorithm.

Overall, a context-aware sentence retrieval system does not
need a large degree of sophistication to provide tangible
keystroke savings, even for sentences that are not present
in the sentence cache.

DISCUSSION
Many nonspeaking individuals with motor disabilities rely
on word prediction and simple sentence mechanisms to com-
municate. The communication rates are typically very low.
In this work we have suggested a context-aware sentence re-
trieval model which leverages the fact that many AAC users
reuse previously typed sentences. In our model the user starts
typing a sentence as usual but is in addition to word predic-
tions presented with a number of retrieved previously typed
sentences.

We used a design engineering approach to identify the key
functions and then decided to investigate three widely used IR
algorithms which have open implementations and are easy to
integrate into AAC systems: IDF, BM25 and a Unigram lan-
guage model. We further assumed that very few context tags
would be assigned to sentences (typically, two) and a relatively
small number of retrieved sentences would be presented to the
user (typically, four). These parameter choices are deliberately
conservative.

We created a surrogate AAC context model and identified the
controllable and uncontrollable parameters of the system. We
then carried out envelope analyses that on the whole demon-
strate very high keystroke savings assuming perfect context
tagging. Assuming two perfect context tags, we typically
obtain a keystroke savings range of 94–97% when the word
prediction accuracy is assumed to reside at around 80%, which
forms an important requirement on this particular sub-system.

We also investigated the sensitivity of these keystroke savings
when context tagging was imperfect, and as demonstrated in
Figure 3, even with a context tagging error of 50%, average
keystroke savings are expected to be above 70%. This demon-
strates how useful a context-aware sentence retrieval system
can be for a nonspeaking individual with motor disabilities
whose rate-limitation necessitates slow and perhaps inaccurate
typing.

The high keystroke savings are achievable because the system
is retrieving sentences that have already been typed before.
For completeness, we also investigated hypothetical keystroke
savings when a user typed sentences that were not stored in the
system. First, we varied a threshold WER and experimented
with two different sizes of the sentence sets, 500 and 4,500.
We found that if a threshold WER between 60–80% is accept-
able to the user, such a mode of operation can potentially result
in 50% keystroke savings. Then we varied the level of sen-
tence re-use. Figure 12 illustrates potential average keystroke
savings with context tagging and auto-complete as a function
of the level of sentence re-use.

Another important aspect we have demonstrated in this pa-
per is the usefulness of functional design, envelope analysis
and modeling in AAC. It would be very difficult to carry
out traditional A/B testing or user-centred designs around a
context-aware sentence retrieval system without first gaining
an understanding of the controllable and uncontrollable pa-
rameters of the underlying model. The heterogeneity among
the AAC user population and the fact that a context-aware
sentence retrieval system would need to be field tested over a

period of several months further necessitates a new approach
in AAC text entry design. We hope this design engineering
approach will inspire further research in this direction as a
complementary method to traditional AAC user-centred de-
sign.

CONCLUSIONS
Many nonspeaking individuals with motor disabilities have
difficulties communicating due to low communication rates.
In this paper we suggest context-aware sentence retrieval as
a potentially useful complementary technology alongside a
touchscreen keyboard with word predictions. We have built a
surrogate AAC context model and identified both controllable
and uncontrollable parameters and visualized the design space
using envelope analysis. We have shown that such a system
can realize substantial keystroke savings ranging from 50–
96%, depending on assumptions on word prediction accuracy,
accuracy of context tagging and the level of sentence re-use.

The IR algorithms investigated in this paper are relatively
simple and openly available, thereby making it easy for AAC
device manufacturers to implement context-aware sentence
retrieval functionality. Further, the context tags need not rely
on overly sophisticated sensing. Context tags generated by,
for example, GPS, the time of day and face identification are
examples of context sensing which is widely available today.
Our next step is to perform a longitudinal observational study
with an AAC user group to study the nature of sentences stored,
the accuracy of context tagging in practice and the realizable
gains achieved in the field. We hope this work will find its way
into AAC devices as a complementary technology that can
provide substantial keystroke savings when the user simply
wants to retype a previously typed sentence.

ACKNOWLEDGMENTS
This work was supported by EPSRC (grant EP/N014278/1).
Supporting code for this paper is available in the ACM Digital
Library.

REFERENCES
[1] Abdullah Al Mahmud, Rikkert Gerits, and Jean-Bernard

Martens. 2010. XTag: designing an experience capturing
and sharing tool for persons with aphasia. In
Proceedings of the 6th Nordic Conference on
Human-Computer Interaction: Extending Boundaries.
ACM, 325–334.

[2] John L Arnott, Norman Alm, and Alan F Newell. 1988.
A text database as a communication prosthesis. June
(1988), 76–77.

[3] Luís Garcia, Luis de Oliveira, and David de Matos.
2014. Word and sentence prediction: Using the best of
the two worlds to assist AAC users. Technology and
Disability 26, 2, 3 (2014), 79–91.

[4] D. Jeffery Higginbotham, Gregory W. Lesher, Bryan J.
Moulton, and Brian Roark. 2012. The Application of
Natural Language Processing to Augmentative and
Alternative Communication. Assistive Technology 24, 1
(mar 2012), 14–24. DOI:
http://dx.doi.org/10.1080/10400435.2011.648714

http://dx.doi.org/10.1080/10400435.2011.648714

[5] K Sparck Jones, Steve Walker, and Stephen E.
Robertson. 2000a. A probabilistic model of information
retrieval: development and comparative experiments:
Part 1. Information processing & management 36, 6
(2000), 779–808.

[6] K Sparck Jones, Steve Walker, and Stephen E.
Robertson. 2000b. A probabilistic model of information
retrieval: development and comparative experiments:
Part 2. Information processing & management 36, 6
(2000), 809–840.

[7] Shaun K Kane, Barbara Linam-Church, Kyle Althoff,
and Denise McCall. 2012. What we talk about:
designing a context-aware communication tool for
people with aphasia. In Proceedings of the 14th
international ACM SIGACCESS conference on
Computers and accessibility. ACM, 49–56.

[8] Heidi Horstmann Koester and Sajay Arthanat. 2018.
Text entry rate of access interfaces used by people with
physical disabilities: A systematic review. Assistive
Technology 30, 3 (2018), 151–163. DOI:
http://dx.doi.org/10.1080/10400435.2017.1291544

[9] Stefan Langer and Marianne Hickey. 1998. Using
semantic lexicons for full text message retrieval in a
communication aid. Natural Language Engineering 4, 1
(1998), 41–55. DOI:
http://dx.doi.org/10.1017/S1351324998001855

[10] Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to information
retrieval. Cambridge University Press.

[11] George A Miller, E Newman, and E Friedman. 1957.
Some effects of intermittent silence. American Journal
of Psychology 70, 2 (1957), 311–314.

[12] Arnab Nandi and H. V. Jagadish. 2007. Effective Phrase
Prediction. Proceedings of the 33rd International
Conference on Very Large Data Bases (2007), 219–230.
http://dl.acm.org/citation.cfm?id=1325851.1325879

[13] Ondrej Polacek, Zdenek Mikovec, Adam J. Sporka, and
Pavel Slavik. 2011. Humsher: A Predictive Keyboard
Operated by Humming. The proceedings of the 13th
international ACM SIGACCESS conference on
Computers and accessibility - ASSETS ’11 (2011), 75.
DOI:http://dx.doi.org/10.1145/2049536.2049552

[14] Ondrej Polacek, Adam J. Sporka, and Pavel Slavik.
2017. Text input for motor-impaired people. Universal
Access in the Information Society 16, 1 (2017). DOI:
http://dx.doi.org/10.1007/s10209-015-0433-0

[15] R. Richardson, A. Smeaton, and J. Murphy. 1994. Using
WordNet as a Knowledge Base for Measuring Semantic
Similarity between Words. Technical Report Working
Paper CA-1294 (1994). DOI:
http://dx.doi.org/10.1.1.49.6027

[16] Karen Sparck Jones. 1972. A statistical interpretation of
term specificity and its application in retrieval. Journal
of documentation 28, 1 (1972), 11–21.

[17] John Todman, Norman Alm, and Leona Elder. 1994.
Computer-Aided Conversation: A Prototype System for
Nonspeaking People with Physical Disabilities. Applied
Psycholinguistics 15, 1 (1994), 45–73. DOI:
http://dx.doi.org/10.1017/S0142716400006974

[18] John Todman, Norman Alm, Jeff Higginbotham, and
Portia File. 2008. Whole utterance approaches in AAC.
AAC: Augmentative and Alternative Communication 24,
3 (2008), 235–254. DOI:
http://dx.doi.org/10.1080/08990220802388271

[19] Keith Vertanen and Per Ola Kristensson. 2011. The
Imagination of Crowds: Conversational AAC Language
Modeling using Crowdsourcing and Large Data Sources.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP). ACL,
700–711.

[20] Annalu Waller, Fiona Dennis, Janet Brodie, and
Alistair Y. Cairns. 1998. Evaluating the use of TalksBac,
a predictive communication device for nonfluent adults
with aphasia. International Journal of Language and
Communication Disorders 33, 1 (1998), 45–70. DOI:
http://dx.doi.org/10.1080/136828298247929

[21] Timothy Walsh. 2010. Utterance-Based Systems:
Organization and Design of AAC Interfaces.
Proceedings of the 12th international ACM SIGACCESS
conference on Computers and accessibility (2010),
327–328. http://src.acm.org/binaries/content/assets/
src/2010/timothy-walsh.pdf

http://dx.doi.org/10.1080/10400435.2017.1291544
http://dx.doi.org/10.1017/S1351324998001855
http://dl.acm.org/citation.cfm?id=1325851.1325879
http://dx.doi.org/10.1145/2049536.2049552
http://dx.doi.org/10.1007/s10209-015-0433-0
http://dx.doi.org/10.1.1.49.6027
http://dx.doi.org/10.1017/S0142716400006974
http://dx.doi.org/10.1080/08990220802388271
http://dx.doi.org/10.1080/136828298247929
http://src.acm.org/binaries/content/assets/src/2010/timothy-walsh.pdf
http://src.acm.org/binaries/content/assets/src/2010/timothy-walsh.pdf

	Introduction
	Context-Aware Sentence Retrieval
	Design Engineering for AAC
	Paper Structure

	Related Work
	Functional Design and Function Carriers
	Quantitative Parameter Exploration
	Sentence Retrieval Algorithms
	IDF
	BM25
	Unigram

	Baseline Model without Context Tags
	Surrogate AAC Context Model
	Analyzing Uncontrollable Parameters
	Popularity of Individual Context Tags
	Probability of Matching Context Tagging
	Stored Sentences

	Optimizing Controllable Parameters
	Effect of Word Prediction
	Unobserved Sentences
	Discussion
	Conclusions
	Acknowledgments
	References

