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Abstract: Chinese hamster ovary (CHO) cells are used for the production of the majority of
biopharmaceutical drugs, and thus have remained the standard industry host for the past three
decades. The amino acid composition of the medium plays a key role in commercial scale biologics
manufacturing, as amino acids constitute the building blocks of both endogenous and heterologous
proteins, are involved in metabolic and non-metabolic pathways, and can act as main sources of
nitrogen and carbon under certain conditions. As biomanufactured proteins become increasingly
complex, the adoption of model-based approaches become ever more popular in complementing
the challenging task of medium development. The extensively studied amino acid metabolism
is exceptionally suitable for such model-driven analyses, and although still limited in practice,
the development of these strategies is gaining attention, particularly in this domain. This paper
provides a review of recent efforts. We first provide an overview of the widely adopted practice, and
move on to describe the model-driven approaches employed for the improvement and optimization
of the external amino acid supply in light of cellular amino acid demand. We conclude by proposing
the likely prevalent direction the field is heading towards, providing a critical evaluation of the
current state and the future challenges and considerations.

Keywords: Chinese hamster ovary; medium development; amino acid; heterologous expression;
biologics; biomanufacturing; metabolic models; design of experiments

1. Introduction

The global biopharmaceutical market is growing rapidly in light of recent advances in the field
leading to the widespread utilization of biopharmaceuticals in the treatment of numerous diseases [1].
The majority of biopharmaceutical drugs are currently produced using Chinese hamster ovary (CHO)
cells, which have remained the standard industry host for the past three decades. CHO cells are
predominantly used as expression hosts for recombinant monoclonal antibody (mAb) production,
which comprises the fastest growing segment of the biopharmaceutical industry [2].

CHO cells require suitable growth conditions in order to produce and secrete a required amount
of the desired recombinant protein. The nutrient components provided in the culture medium
comprise one of the most important factors in establishing an optimal growth environment for the
cells, and therefore this task constitutes a central activity in the design of upstream cell culturing of
biopharmaceutical processes [3]. Among these components, amino acids constitute the building blocks
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of both the recombinant protein and of the native CHO proteins, which make up ca. 70% of the dry cell
mass [3,4]. Mammalian cells can only produce some of the amino acids that are required for protein
synthesis, while others, the essential amino acids, need to be supplemented externally. Amino acids
act as precursors for a multitude of intermediates in a large number of metabolic pathways, and as
important sources of nitrogen and potentially carbon when other sources are limited. It is, therefore,
imperative that the CHO cells are supplemented with the sufficient amount of essential amino acids to
sustain continued survival, growth, and proliferation, and with non-essential amino acids to facilitate
the favorable use of resources. The extracellular provision of non-essential amino acids limits the
extent of energy loss in amino acid biosynthetic pathways, and renders additional reducing power
available for other biological processes in the cell, reducing additional metabolic burden on the CHO
cell metabolism via the extensive use of biosynthetic amino acid routes. This, in turn, avoids potential
constraints on the growth yield and cellular productivity.

In line with their relevance, amino acid metabolism and related metabolic and non-metabolic
pathways of CHO cells have been extensively studied [5–7]. Consequently, the key significance of
amino acids in medium design has been recognized for a long time, although, even after decades of
industrial practice, there is still a huge potential for improvement of the growth environment for CHO
cells [8]. No systematic procedure exists for the optimization of the CHO cell culture growth and
production medium; several strategies followed by the industry led to the emergence of a vast number
of different medium formulations, including those of amino acids, predominantly developed based on
relevant experience. Comprehensive and insightful reviews are available on the subject [9].

Due to their economic importance, CHO cell-based biomanufacturing platforms have been
the subject of extensive investigation for process optimization. Model-based strategies have been
successfully adopted for improving upstream [10,11] and downstream [12,13] processing and
conducting an economic evaluation of different strategies [14,15]. Excellent reviews exist on the
subject [16,17]. This paper describes the latest and imminent efforts on the utilization of model-driven
approaches in medium development, which provide mechanistic insight into the CHO production
system and replace heuristic efforts with limited systematic abilities (Figure 1). Amino acids so far
served as excellent test cases for such attempts, in light of the extensive knowledge on the amino acid
metabolism, which allowed the construction of mechanistic models to draw conclusions from and
translate them into process requirements. Consequently, the investigation of amino acid routes in
conjunction with mechanistic models of the cell have been successfully integrated in model organisms
such as the Baker’s yeast [18], and in industrial yeasts employed in recombinant protein production [19],
although such efforts are fairly recent, and limited in number for industrially relevant mammalian cells,
including CHO systems. Therefore, many resources focus on these efforts to improve the formulation of
chemically defined media collectively within the domain of recombinant protein production, providing
an overall view on a wide subject [20]. This work specifically aims to address these recent advances in
the field, and focuses on the range of model-based applications and approaches assisting empirical
efforts in the exclusive identification of amino acid requirements of CHO cells and consequent tailoring
of their growth environment.
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Figure 1. Overview of the mainstream approaches currently used in the optimization of amino acid 
composition in culture medium for recombinant protein-producing Chinese hamster ovary (CHO) 
cells. Note that the approaches summarized above are those specifically relevant within the domain 
of tailoring medium composition for optimal utilization of amino acids within the domain of 
recombinant protein production by CHO cells. A plethora of alternative systematic strategies not 
limited to those covered here (beyond the scope of this Review) exist, which deal with different 
aspects of improving biomanufacturing platforms for CHO cell-based technologies. FBA: flux balance 
analysis; MFA: metabolic flux analysis; ADP: adenosine diphosphate; ATP: adenosine triphosphate; 
v: rate of reaction; [S]: substrate concentration; vmax: maximum rate of reaction; KM: saturation 
constant. 

2. Brief Overview of the Established Practice in Determining the Amino Acid Composition of 
the CHO Cell Medium 

Reports on improving the culture medium composition for CHO cells, specifically in relation to 
the amino acids, are relatively limited in number. This paucity of reports is strikingly unusual 
especially considering the widespread use and vast economic importance of CHO cells [3]. 

2.1. Statistical Methods: Utilizing Data-Driven Models in Experimental Design 

Statistical design, also known as design-of-experiments, is arguably the most commonly 
employed strategy for medium development. Unfortunately most such studies for CHO cells focus 
on components such as those relevant for the carbon and energy metabolism [21–24] with only a 
limited number of studies specifically addressing amino acids. In line with this observation for 
statistical methodologies, search heuristics such as genetic algorithms commonly employed in 
medium development and optimization in various organisms [25] have not been utilized for 
improving CHO cell medium compositions, even the chemically defined cell-free formulations. 

Low glutamine and high essential amino acid concentrations led to high mAb production 
against Botulinum A by CHO cells. An amino acid other than glutamine (analytically 
uncharacterized) was identified as the limiting component in a study that employed response surface 
methodology to evaluate medium-associated effects on viable cell density (as a proxy for mAb 
concentration) during coupled production and growth [26]. 

González et al. used the Plackett-Burman design method to optimize the contribution of ten 
amino acids to the rate of growth and monoclonal antibody production by Chinese hamster ovary 
cells. These 10 amino acids were specifically identified as per their superior uptake and utilization by 
the CHO cell metabolism [27]. The analysis was carried out both during exponential phase of growth 
through monitoring how the specific growth rate and the concentration of the viable cell 
concentration evolved over time, and during the phase where the cell population reached a very high 

Figure 1. Overview of the mainstream approaches currently used in the optimization of amino acid
composition in culture medium for recombinant protein-producing Chinese hamster ovary (CHO)
cells. Note that the approaches summarized above are those specifically relevant within the domain of
tailoring medium composition for optimal utilization of amino acids within the domain of recombinant
protein production by CHO cells. A plethora of alternative systematic strategies not limited to
those covered here (beyond the scope of this Review) exist, which deal with different aspects of
improving biomanufacturing platforms for CHO cell-based technologies. FBA: flux balance analysis;
MFA: metabolic flux analysis; ADP: adenosine diphosphate; ATP: adenosine triphosphate; v: rate of
reaction; [S]: substrate concentration; vmax: maximum rate of reaction; KM: saturation constant.

2. Brief Overview of the Established Practice in Determining the Amino Acid Composition of the
CHO Cell Medium

Reports on improving the culture medium composition for CHO cells, specifically in relation
to the amino acids, are relatively limited in number. This paucity of reports is strikingly unusual
especially considering the widespread use and vast economic importance of CHO cells [3].

2.1. Statistical Methods: Utilizing Data-Driven Models in Experimental Design

Statistical design, also known as design-of-experiments, is arguably the most commonly employed
strategy for medium development. Unfortunately most such studies for CHO cells focus on components
such as those relevant for the carbon and energy metabolism [21–24] with only a limited number of
studies specifically addressing amino acids. In line with this observation for statistical methodologies,
search heuristics such as genetic algorithms commonly employed in medium development and
optimization in various organisms [25] have not been utilized for improving CHO cell medium
compositions, even the chemically defined cell-free formulations.

Low glutamine and high essential amino acid concentrations led to high mAb production against
Botulinum A by CHO cells. An amino acid other than glutamine (analytically uncharacterized) was
identified as the limiting component in a study that employed response surface methodology to
evaluate medium-associated effects on viable cell density (as a proxy for mAb concentration) during
coupled production and growth [26].

González et al. used the Plackett-Burman design method to optimize the contribution of ten
amino acids to the rate of growth and monoclonal antibody production by Chinese hamster ovary
cells. These 10 amino acids were specifically identified as per their superior uptake and utilization by
the CHO cell metabolism [27]. The analysis was carried out both during exponential phase of growth
through monitoring how the specific growth rate and the concentration of the viable cell concentration
evolved over time, and during the phase where the cell population reached a very high density, through
monitoring of the final monoclonal antibody product concentration and the specific productivity of the
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cell population. This investigation aimed to determine which among the ten amino acids were critical
for supporting health growth of the population and product formation. In return, this information
could be utilized for designing an amino acid supplementation regime, through which a superior
culture could be achieved through medium improvements. The authors proposed a two-stage strategy
for providing the cells with the key amino acids. One stage focused on achieving a healthy cell culture
through focusing on growth optimization, and a second stage which optimizes product formation
once a large cell population has been achieved.

More recently, Torkashvand et al. used the Plackett-Burman design to screen the effects of amino
acids on promoting growth, and then optimized the medium concentrations of a combination of amino
acids using response surface methodology to determine the feed composition [28].

Although statistics were employed in these studies, it would be very difficult to extract learning
as to the nature of the potential benefits of employing different design approaches since these
investigations focused on the empirical aspects of the study rather than providing an in-depth
evaluation of the statistical tools employed. Consequently, they fail to compare and contrast different
methods and provide reasoning for the selection of certain models over others, or point towards the
utilization of favorable statistical designs, which could prove invaluable to attain systematic medium
development strategies.

2.2. Metabolic Profiling

Another method widely used in the industry to understand the impact of amino acid composition
on mAb production is exo- and endo-metabolic profiling. Such methods are purely empirical and are
mainly utilized to improve an established platform process, by suggesting specific nutrients to be added
during the course of a cultivation, for example, rather than to conduct a broad de novo exploration.

A study on the identification and elimination of cellular and process bottlenecks that prevent high
levels of antibody production by CHO cells employed metabolic profiling to identify the depletion
of tyrosine, a key amino acid for protein synthesis, as the bottleneck for production, which could
successfully be alleviated by its additional supplementation in the feed [29]. A CHO cell culture
supplied with glutamine and glucose was shown via metabolic profiling to deplete aspartate, cysteine,
methionine, tryptophan, and tyrosine during antibody production. This analysis was used to implement
a medium supplementation strategy doubling the amount of the depleted factors, and the culture
performance was shown to improve without affecting the quality of the mAbs [30]. Unlike earlier
studies, Sun et al. adopted metabolic profiling of amino acids as a top-down approach to develop
an optimal medium formulation in response to culture performance [31]. Metabolic profiling was
used not only to develop or fine-tune medium formulations, but also to identify bottlenecks leading to
non-metabolic cellular processes. An analysis of the temporal amino acid concentration profiles of
naive and recombinant CHO cell cultures showed the highest depletion rates for those amino acids
that constitute the highest mass fractions of the mAb, and unexpectedly, also for alanine, and this
was attributed to its importance for the metabolic processes related to recombinant protein synthesis.
Significantly different amino acid demands were observed during the growth phase and the production
phase for the CHO cell culture. However, these differences were not accompanied by statistically
significant differences in rates of consumption [3].

2.3. Modification of the Amino Acid Transporters

The study of the role of cell membrane amino acid transporters (AATs) in CHO cell medium
development has only recently gained attention. AATs mediate the cellular uptake of amino acids
and take part in connecting compartmentalized metabolic pathways, energy generation and redox
regulation [32]. Due to that reason, there are considerable opportunities in genetically engineering
the activity of AATs in conjunction with the amino acid composition of the medium to improve mAb
production by recombinant CHO cells. However, necessary information regarding the activity of
the functional classes of AATs is still lacking, which renders current efforts exploratory rather than
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applied [33]. Our current understanding on the amino acid transporters or transporter families leads
to the thought that they are highly specific with regards to their transport mechanism, substrate
specificity, and even at times, to cell type/tissue specificity and the roles they play in different
physiological functions [32]. Unfortunately, this information has not yet been utilized in tailoring
an optimal medium or feeding strategy for CHO cells producing recombinant proteins in either
empirical or model-based studies. The translation of such molecular insight into biotechnological
understanding would nevertheless be essential in developing more elegant and systematic strategies
for this long-standing quest.

The gene expression profiles of AAT-encoding genes in naive and mAb-producing CHO cells were
investigated by RNA-seq analysis. The functional analyses via the use of transporter-specific chemical
inhibitors of these transporters, whose gene expression profiles were obtained, showed that half of
the 16 ATTs overexpressed in CHO cell populations were specifically upregulated in cells that were
engineered for recombinant mAb production. The analyses showed that the cells were supplemented
with the amino acids, which dominate the amino acid composition of the CHO cells that express the
recombinant monoclonal antibody, through the use of their cognate amino acid transporters. This allowed
the cells to avoid shortage of essential amino acids and to ensure constant activity of synthesizing proteins.
Furthermore, it enabled the provision of amino acids as substrates for facilitating the coordinated antiport
activity across transport channels [33,34]. However, these analyses were limited to the investigation of
the expression levels of AAT-encoding genes. Although the activation or the suppression of relevant
transduction pathways such as the mammalian Target of Rapamycin (mTOR) pathway, which plays
an essential role in protein synthesis, has extensively been studied in mammalian systems [35], neither
this notion, nor coupling this information with metabolome and transcriptome-based analysis of amino
acid transport pathways, has yet been utilized in the context of optimizing medium requirements for
recombinant protein production. Furthermore, the differences in the relative contribution of different
amino acids and their cell-specific roles have not been explored in this context either.

3. Mechanistic Insight by Model-Assisted CHO Cell Medium Development and Optimization

Empirical methods for process improvement are often resource-intensive [36]. Furthermore,
a recombinant protein that is inherently complex, or one that imposes stringent requirements on
the host metabolism necessitates a rational approach to medium tailored for the mammalian host [37].
Consequently, in light of the increasing demand and the expanding market for evermore capable and
complex biologics products, there is emerging interest in using model-based approaches to assist and guide
experimentation to achieve process improvement in terms of both productivity and product quality. As in
process development, models facilitate hypothesis generation and preliminary testing of sprouting ideas,
as well as the development and discovery of novel methods in medium development. However, despite
their broad popularity in CHO cell culture development and production, the utilization of mechanistic
models in medium development and optimization was rather limited, and even more so within the
domain of the investigation of the complete amino acid profile [38,39].

3.1. Kinetic Models to Assist CHO Cell Upstream Bioprocess Development and Control

Understanding the dynamic behavior of the system is extremely useful in bioprocess design
and improvement, and kinetic models are extremely valuable for this purpose since they establish
relationships between metabolites through kinetic laws, which are represented by differential algebraic
equations. Kinetic models of biological systems are often complex, and there is a paucity of rate
constants describing kinetic relationships across all scales of life. Therefore, accurate kinetic models
are usually available for only extremely well-studied metabolic pathways, generally those pertaining
to the central carbon metabolism [40].

On the other hand, simple Monod-type kinetics are often employed to describe the cellular uptake
of main macronutrients and the rate of growth and the secretion of main metabolic byproducts, and
CHO cells are no exception. Lopez-Meza et al. studied the kinetics of cell growth, consumption
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of glucose, mAb product formation and lactate secretion in naive and recombinant CHO cells [41].
Monod-type growth kinetics were utilized and a variant of the Luedeking-Piret model was proposed
to associate the rate of product formation to growth rate and the cell density. The results showed that
simple kinetic models could successfully explain cellular growth, product formation, and glucose
consumption. A modified Monod-type model proposed for cellular growth was able to account for a
threshold glucose concentration of 0.6 g/L below which no growth was observed.

Monod-type models on bioprocesses, which specifically focus on the reaction kinetics of the
mammalian amino acid metabolism, are available, but these studies are very limited in number as well
as in context [42–44]. Selisteanu et al. used a dynamic model to describe mAb production in CHO cells.
They estimated the kinetic parameters for a set of reactions that utilize alanine, glutamine, glutamate,
aspartate, asparagine, and proline by minimizing an error function with a particle swarm optimization
algorithm. The statistical analysis they performed demonstrated that the proposed estimation method
was robust against normally distributed noisy measurements, and that it provided acceptably accurate
results. [36,45]. A kinetic model of the central metabolism of CHO cells comprised of 34 reactions
was employed to investigate the role of amino acids in both the central carbon metabolism and
the tricarboxylic acid (TCA) cycle, as well as on recombinant mAb production and cellular growth.
The model was thus proposed as an in silico platform, which could be challenged for optimizing
medium composition and fed-batch culture strategies, although the authors did not attempt to make
such projections in their analysis [46].

Simon and Karim used the extended Kalman filter on kinetic equations for CHO cell culture to
estimate the number (or the density) of viable cells and the concentrations of glutamine and asparagine.
These estimated variables were then fed to a neural network that approximated the concentration of
apoptotic cells in a bioreactor. A controller could then be activated when the apoptotic cell concentration
was predicted to reach a certain value [47].

Understanding the dynamic behavior of the system is extremely useful in bioprocess design
and improvement, and thus rendering kinetic models valuable in the exploration of upstream
processing (Table 1). However, the disadvantage of kinetic models is that non-linear equations can
render the solution process difficult and computationally expensive, and that it may become very
difficult to recreate exactly the dynamic interactions among the various components in an intracellular
environment [48].

Table 1. Summary of the available kinetic model-based approaches employed in recombinant
protein-producing CHO cell medium development and optimization.

Details on Kinetic Model Metabolites/Pathways Involved Reference

Monod-kinetics, Luedeking-Piret model for
associating rates of growth and product formation

Growth, glucose uptake, lactate
secretion, product formation [41]

Dynamic model, particle-swarm optimization for
parameter estimation

Alanine, glutamine, glutamate,
aspartate, asparagine, and proline

utilization, product formation
[36,45]

34-reaction model, multiplicative
Michaelis-Menten kinetics

Role of amino acids in central
carbon metabolism, tricarboxylic

acid (TCA) cycle, recombinant
monoclonal antibody (mAb)

production, and cellular growth

[46]

Kalman filters for approximating the state variables
represented by dynamic mathematical models,
model predictive control on the apoptotic cell

density, neural networks to express apoptotic cells
as a function of state variables

Viable cell density, glutamine and
asparagine concentration to

predict apoptotic cell population
[47]
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3.2. Stoichiometry-Based Modelling to Explore Amino Acid Requirements for Medium Development and
Bioprocess Design

Stoichiometric models provide a different type of approach to the problem at hand through
mathematically describing all relevant reactions in a system of interest. The material flow rate (i.e., the
flux) through each of these reactions is then determined by methods such as metabolic flux analysis
(MFA) and flux balance analysis (FBA). Both FBA and MFA constrain the network of reactions to
respect the laws of conservation of mass and energy, as well as the observed conditions in the studied
environment. They rely on the assumption of pseudo-steady state, which states that the accumulation
of intracellular metabolites would be negligible compared to the observed fluxes [49,50]. MFA is
employed to analyze networks that are fully defined by measured extracellular reactions, for example
by isotopic-labeling. On the other hand, FBA methodology, coupled with linear programming, was
developed specifically for the analysis of underdetermined systems, and thus are suitable for the
analysis of genome-scale reconstructions of the metabolism.

MFA was utilized to some extent also for optimizing the concentration of non-amino acid medium
components [51–54]. The adoption of similar techniques for amino acids is rather limited. Most work
carried out in this domain focused on the supplementation of a single amino acid, namely glutamine,
primarily due to its role in the formation of the unwanted byproduct, ammonia [55–58].

Xing et al. used MFA to modify the amino acid composition of the medium for a mAb-producing
CHO cell culture. MFA was performed using 32 specific metabolic rates derived from two semi-steady
states of continuous culture. It was suggested to modify the formulation by reducing the concentrations
of arginine, alanine, glutamine, and glycine and increasing the concentrations of methionine, tryptophan,
asparagine, and serine. The peak cell density and the product concentration were shown to improve
by 55% and 27%, respectively, in cultures grown in the modified medium [59].

Recently, elementary flux mode analysis coupled with kinetic modelling was employed on a
126-reaction network of the CHO cell central metabolism. The metabolic response was tested against
different scenarios that introduce variations in amino acid availability using this poly-pathway model [60].

Selvarasu et al. combined metabolomics and genome-scale modeling in an approach to gain new
insight into the molecular mechanisms that occur within Chinese hamster ovary cell cultures that were
grown in fed-batch mode. Former studies on the intracellular and extracellular metabolite profiling of
these cells were employed to generate a list of metabolites, which could be strongly associated with
limitations on the growth of a cell culture. A derivative of the mouse genome-scale metabolic network
model was generated to investigate the key metabolic functions of CHO cells, and this new model was
fine-tuned by incorporating cell-specific information that arose from CHO cDNA annotation collected by
the research group. The analysis on the biomass composition revealed that the amino acid content of CHO
cells was different from that of other mammalian cells. The subsequent in silico modeling characterized
the intracellular metabolic behavior, and allowed further exploration of the pathways that are relevant for
understanding growth limitations and identifying factors that were potentially growth-limiting [4].

Following up on these initial efforts, Hefzi et al. reconstructed the metabolic pathways in CHO
and associated them with more than 1700 genes in its genome [61]. This genome-scale metabolic model
of the CHO cell community comprised of 6663 metabolic reactions involving 2341 unique metabolites
provides a systematic representation of the biochemical basis for growth and recombinant protein
production in CHO cells. The mechanistic link between metabolic reactions and the enzymes catalyzing
those reactions allows for the effective integration of orthogonal data types, such as metabolomics,
genetic variants, transcriptomics, and phenotypic information. Following up on this development,
an important progress in utilization of genome-scale metabolic models for medium optimization and
development has recently been published. The community model of the CHO cell metabolism was
curated extensively, and was adapted to conform to the metabolic profiles of high-yielding CHO cell
lines used in industrial protein production. Constraining this modified model with the transport
rates of twenty four metabolites that were measured on daily basis in four independent bench scale
fed-batch cell culture processes for mAb production was shown to predict the fluxes calculated from
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exo-metabolomic data and the growth rate with reasonable accuracy. These predictions allowed the
identification of potential routes towards improving the medium composition; one such suggestion
was to reduce the amount of asparagine supplementation in the medium [62].

In another recent study, Fouladiha et al. employed this model and developed a method, which
proposed different feeding strategies to improve monoclonal antibody production by CHO cells as
hosts for a total of seven amino acids (GLU, ASP, LYS, TRP, THR, VAL, and HIS). Their methodology
was focused on conducting a form of scanning of flux variabilities based on the use of an enforced
objective flux [63]. This was a pioneering study in the sense that the genome-scale metabolic model of
the Chinese Hamster Ovary cells was used for the first time with the specific purpose of designing
a feeding strategy, and threonine was suggested as an important metabolic constraint, which could
significantly improve mAb production in CHO cells.

Another recent in silico investigation of the amino acid requirements of CHO cells during the
expression of a range of antibody products through the use of genome-scale metabolic modelling by
Traustason showed that the extracellular provision of non-essential amino acids, particularly that of
cysteine and tyrosine, had a positive effect on CHO cell growth. This extracellular supplementation
was thought to reduce the extent of energy loss in the amino acid biosynthetic pathways, thus rendering
additional reducing power and energy available for other biological processes within the cell, leading
to growth and growth-coupled antibody production. An analysis of a range of antibody production
systems (alemtuzumab, trastuzumab, blinatumomab, ibritumomab tiuxetan, and denileukin diftitox)
indicated that size alone did not explain the differences in the rates of secretion of different products, and
that the amino acid content of the product also had a substantial contribution. Furthermore, the amino
acid requirements of the medium did not match with the amino acid content of the antibody product
indicating that blindly increasing the composition of the amino acids with the highest composition in
the target protein was not necessarily the best strategy. This indicated that optimization of the amino
acid formulation of the medium is a multi-parametric problem, which necessitates taking metabolic
complexity into account, in order to narrow down the search space for experimental analysis [64].

Although a combination of machine learning techniques and metabolic modeling was recently
employed to estimate lactate production in CHO cell cultures [65], these attempts, have not yet been
extended to the domain of amino acid-related pathways, and consequently in the design of their
medium in light of such metabolic requirements identified by these complex predictions. These efforts
are summarized in Table 2.

Table 2. Summary of the available stoichiometry-based models employed in recombinant
protein-producing CHO cell medium development and optimization.

Method Scale Reference

Metabolic flux analysis + 13C analysis Small scale: 272 reactions and 228 metabolites [51]

Metabolic flux analysis + 13C analysis Small scale: 58 reactions and 50 metabolites [52]

Elementary flux mode analysis/extreme pathways Small scale: 24 extracellular, 13 intracellular species,
35 reactions [53]

Metabolic flux analysis + 13C analysis Small scale: 73 reactions and 77 metabolites [54]

Metabolic flux analysis + 13/14/15C-labelling
Small scale: 68 reactions and 21 metabolites

(19 amino acids) [55]

Metabolic flux analysis + 13C-labelled glucose and glutamine Small scale: 37 reactions [56]

Metabolic flux analysis Small scale: 34 reactions and 30 metabolites [57]

Metabolic flux analysis in response to varying levels of
glutamine supplementation

Small scale: 40 reactions and 37 intracellular,
23 extracellular metabolites [58]

Metabolic flux analysis to modify medium amino
acid composition Small scale: 23 reactions and 23 metabolites [59]

Elementary flux mode analysis + kinetic modelling Small scale: 166 reactions and 29 extracellular,
89 intracellular metabolites [60]

Flux balance analysis Genome scale: 1540 reactions and 1302 metabolites [4]

Flux balance analysis Genome scale: 1766 genes, 6663 reactions, and 4456
metabolites (in different subcellular compartments) [61–65]
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4. Discussion

This paper provides an overview of the existing literature on our current understanding of
improving recombinant protein production by CHO cells through the use of various digital platforms
and model-driven regimes. The most striking feature encountered by this investigation is the limited
availability of such studies in contrast to a plethora of empirical analyses available in the literature.
This implies that the utilization of computer-aided model-based strategies in this field is still at its
infancy, granting the field has gained particular momentum within the recent years. Most of the
above-mentioned studies rely on the use of empirical techniques in conjunction with rational strategies
to generate an outcome. However, they fall short in providing an in-depth critical evaluation of
the adopted techniques or approaches, which could facilitate the development of a structured and
systematic methodology to serve as a preliminary guideline for future studies that would focus on
similar type of problems. This shortfall imposes a challenge for the scientific progress in the field as
well as for the industrial development of novel biologics products, since both research and industry
operate on tight and resource-constrained schedules. Moreover, we discern an immediate need for
studies that specifically focus on evaluating and conducting a critical comparison of and benchmarking
these computational methodologies to assist the end-users of these technologies in exploring their
options and during their decision-making process.

Huge efforts have been made to bridge the evident gap between model-based approaches and
empirical methods that are predominantly data-intensive in addressing different challenges faced
in biomanufacturing platforms, let it be metabolic challenges [66–68] or the thermodynamic and
kinetic limitations of the host system [69–71], or challenges associated with the biomanufacturing
process itself [72–76]. Models can provide a mechanistic understanding of the processes, and suggest
guidelines for narrowing down the search space for experimental analysis. Furthermore, they can
assist the construction of a transient design space, which can expand, shrink, or shift, leading the
way towards dynamic and adaptable product development in Quality-by-Design. High-throughput
omics technologies coupled with the use of formal models can provide further insight into how
changes to process inputs such as medium components would affect the output observations such
as growth rate and productivity. System-based approaches and machine learning techniques are
likely to create a paradigm shift in our understanding and handling of CHO cells within the domain
of biopharmaceutical production, as they become widely used tools. Such hybrid approaches are
expected to have superior ability to cope with the uncertainties associated with the stochasticity of the
bioprocess as well as of the cell line development pipelines. In particular, the adoption of data-driven
methodologies in conjunction with genome-scale metabolic modelling is anticipated to become an
increasingly prevailing direction that the field will move towards [77].

Current practice in biomanufacturing of recombinant proteins inherently couples cellular growth
and proliferation with recombinant protein production. This is a different approach to that of other
practices that employ metabolic engineering for small molecule biomanufacturing where the cellular
growth and product formation mechanisms would compete for available resources. In the event
that a recombinant protein production process necessitates such decoupling, adoption of systematic
model-based strategies could allow the fastest route towards the identification of the readjustments
that need to be made to modify the existing processes by allowing a superior evaluation of the cellular
performance the cell, and shorten the adaptation period.

In this domain, amino acids present a very suitable but also a challenging case. Understanding the
role of the amino acid metabolism, and how this would translate into the amino acid requirements of
CHO systems through model-based analysis, is certainly far more complex than acquiring a mechanistic
understanding of how only key small molecules of a cell culture (glucose, lactate, glutamine, glutamate,
and ammonium) evolve by modelling. Concurrently, the system is sufficiently well-studied to allow
researchers dwell into this challenge.

The cellular requirements, of which the demand for different amino acids constitutes an important
subset, can vary substantially for the production of different biopharmaceuticals, rendering the use of



Int. J. Mol. Sci. 2019, 20, 5464 10 of 13

systematic and model-based approaches of prime interest to handle the cellular burden associated
with the production of different types of proteins. The adoption and standardization of these recent
technologies and advances will, without doubt, improve our understanding of the cellular refunctioning
of the amino acids and assist biopharmaceutical process development in light of these findings.
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