1	Mechanisms of β-lactam resistance of <i>Streptococcus uberis</i> isolated from
2	bovine mastitis cases
3	Scott McDougall ^{a*} , Laura Clausen ^a , Hye-Jeong Ha ^b , Isobel Gibson ^c , Mark Bryan ^d , Nazreen
4	Hadjirin ^e , Elizabeth Lay ^e , Claire Raisen ^e , Xiaoliang Ba ^e , Olivier Restif ^e , Julian Parkhill ^r and
5	Mark A. Holmes ^e
6	^a Cognosco, Anexa FVC, Morrinsville, New Zealand
7	^b Animal Health laboratory, Ministry for Primary Industry, Upper Hutt, New Zealand
8	^c New Zealand Veterinary Pathology, Hamilton, New Zealand
9	^d VetSouth, Winton, New Zealand
10	^e Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
11	f Wellcome Sanger Institute, Hinxton, UK
12	*Corresponding author at: PO Box 21, Morrinsville, New Zealand, 3300: Tel: +64 7 889 5159, Fax:
13	+64 7 889 3681, Email address: smcdougall@anexafvc.co.nzPage Break
14	Abstract
15	A number of veterinary clinical pathology laboratories in New Zealand have been reporting
16	emergence of increased minimum in inhibitory concentrations for β -lactams in the common
17	clinical bovine mastitis pathogen Streptococcus uberis. The objective of this study was to
18	determine the genetic basis of this increase in MIC for β -lactam amongst S. uberis. Illumina
19	sequencing and determination of oxacillin MIC was performed on 265 clinical isolates.
20	Published sequences of the five penicillin binding proteins <i>pbp1a</i> , <i>pbp1b</i> , <i>pbp2a</i> , <i>pbp2b</i> , and

- pbp2x were used to identify, extract and align these sequences from the study isolates.

Amino acid substitutions resulting from single nucleotide polymorphisms (SNP) within these genes were analysed for associations with elevated (≥ 0.5 mg/L) oxacillin MIC together with a genome wide association study. The population structure of the study isolates was approximated using a phylogenetic tree generated from an alignment of the core genome. A total of 53% of isolates had MIC \ge 0.5 mg/L for oxacillin. A total of 101 substitutions within the five *pbp* were identified, of which 11 were statistically associated with an MIC ≥ 0.5 mg/L. All 140 isolates which exhibited an increased β-lactam MIC had SNPs leading to $pbp2x E_{381}K$ and $Q_{554}E$ substitutions. The phylogenetic tree indicated that the genotype and phenotype associated with the increased MIC for oxacillin were present in several different lineages suggesting that acquisition of this increased β-lactam MIC had occurred in multiple geographically distinct regions. Reanalysis of the data from the intervention studies from which the isolates were originally drawn found a tendency for the $pbp2x E_{381}K$ substitution to be associated with lower cure rates. It is concluded that there is geographically and genetically widespread presence of *pbp* substitutions associated with reduced susceptibility to β -lactam antimicrobials. Additionally, presence of *pbp* substitutions tended to be associated with poorer cure rate outcomes following antimicrobial therapy for clinical mastitis.

38 Key words: *Streptococcus uberis*; β-lactam resistance; penicillin binding proteins

1. Introduction

Streptococcus uberis is a common bovine mastitis pathogen (Bradley et al., 2007;
McDougall et al., 2007b). Its core genome consists of 1,530 genes and it is a highly
recombinant species (Lang et al., 2009). *Streptococcus uberis* is highly heterogeneous as
indicated by strain typing including random amplified polymorphic DNA (RAPD)
fingerprinting, multilocus sequencing typing (MLST), and pulsed field gel electrophoresis

(PFGE) (Zadoks et al., 2011). Isolates from the UK and New Zealand have been shown to
have distinct MLST patterns, with a preponderance of ST-143 in New Zealand isolates, while
ST-5 was predominant among the UK isolates (Pullinger et al., 2006). *S. uberis* may behave
either as an environmental or contagious pathogen. Contagious transmission has been
demonstrated through longitudinal studies and inferred from cross sectional studies in which
the same sequence type is observed among cows or herds (Phuektes et al., 2001; Zadoks et
al., 2003).

Bacteriological cure rates following therapy of clinical S. uberis are reported to range between 64 and 91% (McDougall, 1998; McDougall et al., 2007a; Owens et al., 1997). Many factors influence the cure rate following mastitis therapy, including antimicrobial resistance (Sandholm et al., 1990). Because they do not produce β -lactamase (Zapun et al., 2008), Streptococci have historically been regarded as highly susceptible to β-lactams which are still the therapy of choice for infections with these bacteria. However, phenotypically β -lactam resistant bovine S. uberis isolates have been reported with bimodal distributions of minimum inhibitory concentrations (MIC) for cloxacillin in French, German and New Zealand studies (Guérin-Faublée et al., 2003; McDougall et al., 2014; Tenhagen et al., 2006).

Penicillin-binding proteins (PBPs) are cell wall transpeptidases that catalyse assembly of cell wall peptidoglycan. Six *pbp* are found in *S. pneumoniae*: five high-molecular-mass *pbp* (*pbp1a*, *pbp1b*, *pbp2x*, *pbp2a*, and *pbp2b*) and one low-molecular-mass PBP (*pbp3*). pbp2a and 2b are essential, at least in S. pneumoniae, as double deletion results in non-viability (Peters et al., 2016). The active site of transpeptidase activity is formed by three conserved amino acid motifs, SXXK, SXN, and KT(S)G. β-lactam resistance is generally associated with changes within, or flanking, these motifs. Mutations that confer resistance have only been described in the penicillin binding domains, that is, the transpeptidase

domains (Hakenbeck et al., 2012a). Low affinity variants of all the *pbp* have been described (Hakenbeck et al., 1999), but only mutations of *pbp1a*, -2x, and -2b appear to be associated with clinical β-lactam resistance (Grebe and Hakenbeck, 1996; Nagai et al., 2002). Low level resistance occurs with amino acid substitutions in pbp2b or 2x, while high level resistance requires additional amino acid substitutions in *pbp1b* or *pbp3* (Du Plessis et al., 2002; Smith and Klugman, 1998). Alterations in the conserved motifs in *pbp2b* tend to be associated with resistance to penicillin, and alterations in pbp2x appear to contribute to low-level resistance to cephalosporins (Nagai et al., 2002). There is evidence of horizontal gene transfer amongst the streptococci, with a common resistance gene pool for S. pneumoniae, S. oralis and S. mitis (Dowson et al., 1994; Hakenbeck et al., 2012a). There is variation in the affinity of different β -lactams to *pbp* variants, which may reduce the clinical efficacy of different β -lactams in the face of emerging resistance (Garau, 2002; Grebe and Hakenbeck, 1996) in streptococci. It has been shown that resistant S. uberis isolates generated in the laboratory arise from alterations in *pbp1a*, *pbp2b* and/or *pbp2x* (Haenni et al., 2010b). β-lactam resistance mechanisms independent of substitutions amongst the *pbp* have been reported including the presence of a *murMN/fibAB* operon, a mutation in the gene coding for GlcNAc deacetylase, and mutations in the gene *mraY* (Chewapreecha et al., 2014; Hakenbeck et al., 2012b).

86 This study was undertaken to test the hypothesis that increases in MIC in clinical *S*.
87 *uberis* isolates are associated with amino acid substitutions in one or more of the *pbp*.

88 2. Materials and Methods

 Streptococcus uberis isolates collected during the conduct of two clinical mastitis
antimicrobial therapy intervention studies were used for this study (Bryan et al., 2016;
McDougall et al., 2019). The isolates were obtained from mastitic milk of cows prior to

treatment from a total of 35 dairy farms in New Zealand (North Island and South Island) and
were collected with permission of Animal Ethics Committees.

Isolates that were Gram positive cocci, catalase negative, cleaved esculin, sorbitol and inulin and which did not grow in SF broth were initially defined as S. uberis. All isolates were subcultured onto an entire 5% blood agar plate containing 1% aesculin (Fort Richard, Auckland, New Zealand). From a pure culture, a single colony was picked and inoculated onto a Dorset egg slope (Fort Richard, Auckland, New Zealand), incubated overnight at 37°C and checked for growth before storage at 4 °C for further testing. The species of isolates was confirmed by MALDI-TOF (Pathology Associates LTD, Pathlab Bay of Plenty Division, Tauranga, New Zealand).

102 2.1 Susceptibility testing

The MIC of oxacillin was determined using a broth microdilution method according to CLSI standards (CLSI, 2013) using cation-adjusted Mueller-Hinton broth supplemented with 2.5% lysed horse blood (CAMHB-LHB). Oxacillin solutions were prepared in CAMHB-LHB to a concentration range double of that the desired final concentrations of 0.0325 to 16 mg/L and dispensed into 96-well plates at 50 µl per well. Inoculum was prepared using colony suspension method to a turbidity equivalent to that of a 0.5 McFarland standard and was diluted 1:100 in CAMHB-LHB. For each test isolate, 50 µl of diluted isolate inoculum was added to the wells. Each isolate was tested in triplicate. The 96-well plates were then placed in a plastic bag to minimize evaporation and incubated at 35 °C for 20 h. Oxacillin was selected as we wished to determine the MIC for the penicillinase-stable penicillins including cloxacillin, which is commonly used for treatment of both clinical (Bryan et al., 2016, and subclinical mastitis at the end of lactation. The oxacillin MIC for the 265 isolates were used

to determine the epidemiological cut off (ECOFF) values by fitting a series of mixture models (Everitt, 1996) to the log-transformed MIC by maximum likelihood. Additional antibiotic susceptibility data was generated during the original clinical studies using either eTest (Biomerieux, France) or a custom-designed broth microdilution (Sensititre, Trek Diagnostics, Thermo Fisher, OH, USA) for penicillin, cefalexin, cefuroxime, ceftiofur, and cefquinome for subsets of the isolates. Streptococcus pneumoniae (ATCC 49619) was run as a quality-control organism in parallel with the unknown isolates and the results were within the CLSI defined quality assurance standards. 2.2 Molecular biology **2.3** Bioinformatics *pbp1b* and *2a*.

Genomic DNA was extracted from overnight cultures using the MasterPure Gram Positive DNA Purification Kit (Cambio, UK). Illumina library preparation was carried out as previously described (Quail et al., 2008), and sequencing performed on an Illumina HiSeq 2000 following the manufacturer's standard protocols (Illumina, Inc, USA) at the Welcome Sanger Institute, Hinxton, UK (WSI).

Assemblies and annotations were generated using pipelines at the WSI (Page et al., 2016). Assemblies were imported into Geneious (version 10.2.2, Geneious Inc, NZ) for analysis. The sequences for *pbp1a*, *1b*, *2a*, *2b* and *2x* were obtained from O140J S. *uberis* genome (NCBI accession number AM946015) and used to identify these genes in the study isolates. The *pbp* genes were extracted, aligned and single nucleotide polymorphisms (SNP) associated with amino acid substitution were identified. Amino acid sequences were aligned (and numbered) with those previously reported (Haenni et al., 2010b) for *pbp1a*, 2b and 2x, while amino acid numbering relative to the start of the open reading frame were used for

For comparison with the sequence data from the study isolates, the sequences of 13 UK *S. uberis* (Hossain et al., 2015) were downloaded from European nucleotide archive
(http://www.ebi.ac.uk/ena) and 63 Canadian *S. uberis* sequences were downloaded from
PATRIC (www.patricbrc.org) (Vélez et al., 2017).

143 Multilocus sequence types were determined from the genome sequenced data (Coffey et144 al., 2006) (http://pubmlst.org/suberis).

A core genome alignment was obtained using Roary (Page et al., 2015) and a maximum
likelihood phylogenetic tree was constructed using Randomized Accelerated Maximum
Likelihood (RAxML)(Stamatakis, 2014). This tree was annotated using iTOL (Letunic and
Bork, 2016).

Initial associations between non-synonymous SNPs and the presence of an MIC above the ECOFF were examined using bivariate (γ^2) statistics and binary logistic regression analyses. Subsequently forward and reverse multivariate logistic regression models were constructed to which all SNPS that were significant (P < 0.05) at the bivariate level were offered. This analysis was undertaken in STATA v10.2 (Stata Corp., College Station, TX, USA). Comparisons of MIC amongst other β -lactams for the specific SNPs were undertaken using Kruskal-Wallis non-parametric analyses, and regression analyses were used to compare the MIC of oxacillin with the MICs for other β -lactams.

Subsequently a genome wide association study (GWAS) was undertaken using the
oxacillin resistance MIC as the outcome using sequence element enrichment analysis (SEER;
https://github.com/johnlees/seer) (Lees et al., 2016) and visualised using Phandango
(Hadfield et al., 2017). K-mers (10-593bp) were generated from the isolate assemblies using
FSM-lite. For the population structure an initial distance matrix was prepared using Mash

(Ondov et al., 2016), which was projected onto a final distance matrix into 6 dimensions (selected on the basis of a Scree plot, data not shown) using R (script available at MRC Climb; climb.ac.uk) (Connor et al., 2016). SEER was then used to determine if any k-mers were associated with the cloxacillin resistance phenotype using a threshold adjusted for multiple testing of $P < 5 \ge 10^{-8}$ (Barsh et al., 2012).

Frequency of recombination events within the S. uberis genomes was estimated by performing a Genealogies Unbiased By recombinations In Nucleotide Sequences (Gubbins) analysis, (https://github.com/sanger-pathogens/Gubbins; Croucher et al 2015). A Roary alignment tree was used as the starting tree, the alignment was undertaken using SMALT, with O140J as the reference, and visualised using Phandango (Hadfield et al., 2017).

172 *2.4 Cure following intramammary therapy*

The association between the presence of the $E_{381}K$ substitution in *pbp2x* and cure rate (defined as absence of signs of clinical mastitis and/or non-isolation of the bacteria associated with clinical mastitis pre-treatment at 2 or 3 time points post treatment) following intramammary therapy was examined independently for the isolates from the two intervention studies. In the first study quarters with clinical mastitis were infused on three occasions at 24 hour intervals with either 1 g penicillin and 200 mg cloxacillin (PenClox 1200 High Potency Milking Cow, Virbac, (NZ) Ltd, Hamilton, NZ), or with a combination of 200 mg oxytetracycline, 100 mg oleandomycin, 100 mg neomycin and 5 mg prednisolone (Mastalone, Pfizer NZ Ltd., Auckland, NZ) (Bryan et al., 2016). In the second intervention study affected quarters were treated by intramammary infusion at 12 hourly intervals with 200 mg amoxycillin (as amoxycillin trihydrate), 50 mg clavulanic acid (as potassium clavulanate), and 10 mg prednisolone (Clavulox LC, Zoetis New Zealand Limited, Auckland, New Zealand) on three or five occasions (McDougall et al., 2019).

- Generalised linear mixed models were used to assess the effect of treatment, E₃₈₁K pbp2x genotype, and the treatment by genotype interaction on cure. For the first intervention study, herd was included as a random effect, and lactation number (i.e. categorised as first and second versus greater than second lactation) was also included as fixed effect. For the second intervention study, the model also included days in milk at clinical mastitis diagnosis (categorised as ≤ 4 versus > 4 days), and age (categorised as 2, 3, 4-6, > 6-years-old). 3. Results 3.1 Distribution of minimum inhibitory concentrations and cut-off value The frequency distribution of MICs of oxacillin are shown in Fig. 1. The MIC₅₀ and MIC_{90} were 1.0 and 2.0 mg/L. The ECOFF was defined as > 0.5 mg/L based on visual assessment and the mixture modelling, and 141/265 (53.2%) of the isolates had an ECOFF greater or equal to this cutpoint. 3.2 Penicillin binding proteins Penicillin binding proteins 1a, 1b, 2a, 2b and 2x were identified in all 265 isolates. The three conserved active site motifs were identified in *pbp1a* (S₂₁₄TMK, S₂₇₂SN, and K₄₀₁TG), *pbp1b* (S₄₄₁SIK, S₄₉₇WN and K₆₃₂TG), *pbp2a* (S₄₅₄TIK, Y₄₉₁GN and K₆₃₂TG), PBP2b (S₃₅₃VVK, S₄₀₈SN, and K₅₇₉TG), and in *pbp2x* (S₃₃₉TMK, S₃₉₈SN, and K₅₄₉TG: Fig. 2). There was perfect alignment of the conserved active site motifs between the S. uberis pbp2x and S. pneumoniae (NCBI gene ID 934744). A total of 101 non-synonymous SNPs were identified across the 5 pbp. There were 19,
 - 206 17, 19, 26 and 20 SNPs in *pbp1a*, *1b*, *2a*, *2b* and *2x*, respectively.

3.3 Associations between SNPs and oxacillin resistance

At a bivariate level, the 11 most common SNPs (i.e. present in \geq 26 (10%) of the isolates) were associated with an oxacillin MIC greater or equal to the ECOFF within the transpeptidase domains of *pbp1a*, 2b and 2x, and *pbp1b* and 2a (Table 1).

Of the 141 isolates having an oxacillin MIC greater or equal to the ECOFF, 140 of these had the $pbp2x E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions. There was only one isolate without the E_{381} K substitution that had an oxacillin MIC greater or equal to the ECOFF as it had an oxacillin MIC of 1 mg/L. A total of 133 of the isolates with an oxacillin MIC greater or equal to the ECOFF also had a $pbp2x V_{590}A$ substitution, and all of the $V_{590}A$ also had the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions. There was no difference in the oxacillin MIC for isolates that did or did not have the $V_{590}A$ substitution within isolates with the $E_{381}K$ substitution (1.79 ± $0.57 \text{ mg/L vs} 1.66 \pm 0.48 \text{ mg/L}$ for isolates with and without the V₅₉₀A substitution within the $E_{381}K$ substitution; P = 0.05).

The E₃₈₁K substitution was also associated with increases in MIC, relative to isolates without the substitution, for penicillin, cefuroxime, ceftiofur, and cefquinome, but with a decrease in MIC for cefalexin (Table 2; Fig. 3). There was a positive association between oxacillin MIC and the MICs for penicillin ($R^2 = 0.58$; P < 0.001), cefuroxime ($R^2 = 0.60$; P < 0.001) 0.001), ceftiofur ($R^2 = 0.29$; P < 0.001), ampicillin ($R^2 = 0.63$; P < 0.001), cefquinome ($R^2 =$ 0.43; P < 0.001) and ampicillin/clavulanic acid ($R^2 = 0.19$; P < 0.001), but a negative association between oxacillin and cefalexin ($R^2 = 0.07$; P < 0.001).

There were 5 non-synonymous SNPs in the transpeptidase domain of pbp2x gene of the 13 UK and 63 Canadian isolates (Table 1). All these variants, except the A₄₉₂E substitution, were also found in the New Zealand isolates.

Multivariable models for oxacillin resistance did not converge if any one of the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions and any other SNPs were included.

3.4 Multilocus sequence typing and Phylogenetic analysis

A total of 146 sequence type were identified by MLST in the New Zealand isolates, a proportion of which had not previously been described (listed in Supplementary Table 1). While there was an association between MLST type and presence of the $pbp2x E_{381}K$ substitution (P < 0.001), the E_{381} K substitution was widely distributed throughout the phylogenetic tree and not found exclusively within one lineage (Supplementary Fig. 1). 3.5 GWAS In the genome wide association study, the Manhattan plot (Supplementary Fig. 2) reveals a high level of association (peaking at $P < 10^{-12}$) of k-mers within *pbp2x* and three other genes positioned next to this gene. Statistically significant candidate loci were detected in the *pbp2x* and *mraY* peptidoglycan biosynthesis pathway, and in two other genes *yxeM* and *yxeN*. There were a total of 27, 42 and 11 SNPs in the *mraY*, *yxeM*, and *yxeN* genes, respectively of which 10, 18 and 4 were non-synonymous. There were 3, 2, and 1 non-synonymous SNPs with a prevalence of > 20% on *mraY*, *yxeM*, and *yxeN* genes, respectively, all of which were associated (P < 0.001) with the *bpb2x* $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions. No statistically significant SNPs were found in the *cshB* gene located between *mraY* and vxeM.

3.6 Gubbins analysis

A high level of genomic recombination was observed amongst the S. uberis genomes (Supplementary Fig. 3).

3.7 Cure rate

5	253	In the first intervention study (Bryan et al., 2016), there was no significant effect of
6 7	254	Treatment (P = 0.99), $pbp2x E_{381}K$ substitution (P = 0.13), or the treatment x $pbp2x E_{381}K$
0 9 0	255	substitution interaction ($P = 0.41$) on cure rate. However, the cure rate was numerically lower
1	256	in quarters affected with S. uberis with the $E_{381}K$ substitution where treatment occurred with
3	257	the β -lactam treatment (approximately 15% lower cure rate), while the cure rate of the $E_{381}K$
5 6	258	substitution was 4% lower following treatment with the non- β -lactam (Fig. 4a).

In the second study (McDougall et al., 2019), presence of the $E_{381}K$ substitution tended (P = 0.07) to reduce bacteriological cure rate (Fig. 4b). While not significant (P = 0.11), numerically there appeared to be an interaction with the duration of treatment, whereby isolates with the $E_{381}K$ substitution treated for a longer duration (5 x 12 hourly) had higher bacteriological cure rates than isolates treated for a shorter period (3 x 12 hourly), whereas duration of treatment did not affect cure rate amongst the isolates without the substitution.

4. Discussion

A bimodal distribution of MICs for oxacillin was observed for *S. uberis* isolated from cases of bovine mastitis. A total of 53% of isolates had an MIC greater than the ECOFF of \geq 0.5 mg/L. isolates with MICs greater than the ECOFF were present on 28 of 30 farms located both in the North and South islands of New Zealand, indicating wide geographic distribution and a low probability of direct cow to cow transmission of isolates with an MIC greater than the ECOFF.

SNPs with possible association with the oxacillin MICs greater than the ECOFF were
found on all 5 *pbp* (*pbp1a*, *1b*, *2a*, *2b* and *2x*). Following multivariable modelling, those on *pbp2x* resulting in a E₃₈₁K substitution were found to account for the observed increased MIC

for oxacillin. This finding was confirmed by the results from a GWAS, which identified only *pbp2x* and 3 genes flanking this region.

Substitutions in *pbp1b* and *pbp2a* have not been previously reported in *S. uberis*. However, substitutions in all *pbp* associated with phenotypic resistance have been reported to occur in S. pneumoniae (Hakenbeck et al., 2012a). The pbp1b G₇₆₈S and the pbp2a T₃₉₇A substitutions were also found in the Canadian and UK isolates, demonstrating wide geographic distribution of these substitutions.

On *pbp2b*, 4 of the substitutions previously induced (Haenni et al., 2010b) were also observed in the current study in New Zealand, Canada and the UK; N₃₆₆I, T₄₀₂I, V₅₇₀A and $P_{575}S$. Three other substitutions were located in *pbp2b* in the New Zealand isolates, but none of these were associated with an increased MIC for oxacillin. As previously reported (Haenni et al., 2010b), the N₃₆₆I substitution was located 13 residues downstream of the SVVK motif, the $T_{402}I$ SNP was located six residues before the SSN motif, and the $V_{570}A$ and $P_{575}S$ SNPs were located nine and four residues upstream of the KTG motif, respectively.

For pbp2x, five substitutions associated with an increased MIC for oxacillin were located in the present study. All 5 were also located in the Canadian and UK isolates. The $E_{381}K$ and $Q_{554}E$ substitutions were previously reported as occurring in naturally occurring and induced resistant S. uberis (Haenni et al., 2010b), being 42 amino acids downstream of the STMK motif and five amino acids downstream of the KTG motif, respectively. All isolates with the *pbp2x* E₃₈₁K, Q₅₅₄E, and G₆₀₀E substitutions had oxacillin MIC \ge 0.5mg/L. Of the eight isolates with the $pbp2x A_{590}V$ substitution, seven of these also had the $pbp2x E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions. This suggests that $pbp2x E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions are the functionally important ones, rather than the A₅₉₀V substitution. The mechanism of

298	resistance for the one isolate without the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions that had an
299	elevated oxacillin MIC remains to be determined.

The $pbp2x O_{554}E$ substitution has been described in other penicillin resistant streptococci (Haenni et al., 2018). Restoring the wild type genotype at this position results in 8 to 16 fold reduction in MIC (Dahesh et al., 2008), demonstrating the importance of this substitution. The $pbp2x E_{381}K$ substitution has not been described in Streptococci other than S. uberis (Haenni et al., 2010b; Hakenbeck et al., 2012a). The biological effect of the newly identified substitutions (I₂₉₅V, V₅₉₀A, G₆₀₀E, G₆₀₀D) are unclear. These substitutions were identified in all 3 populations of isolates examined. These substitutions were highly correlated with the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions, hence in the current population the increased MIC for oxacillin could be entirely explained by the presence of the E_{381} K and Q_{554} E substitutions. The V₅₉₀A, G₆₀₀E, G₆₀₀D substitutions are located in the α -helix of the transpeptidase domain. In S. pneumoniae, a N605T substitution is associated with decreased acetylation and reduced sensitivity to β-lactam antimicrobials (Carapito et al., 2006) and site-directed mutagenesis has demonstrated that the reversion of the resistant Y₅₉₅F substitution reduces the MIC (Smith and Klugman, 2005). Both of these substitutions are also within the α -helix of the transpeptidase domain (Hakenbeck et al., 2012a). Taken together these data suggest that the newly identified substitutions could contribute to reduced susceptibility of S. *uberis* to β -lactam antimicrobials.

The E₃₈₁K, Q₅₅₄E, and G₆₀₀E substitutions were also associated with increased MIC for other β-lactams including penicillin, ceftiofur, cefquinome, amoxicillin/clavulanic acid and cefuroxime. Only ceftiofur has a validated bovine mastitis clinical breakpoint (2 mg/L) and only 2 of 265 isolates in the current study had an MIC > 2 mg/L. For the other β -lactams, the maximum MIC were 0.5 mg/L for penicillin, 1 mg/L for cefquinome, and 2 mg/L for

cefuroxime, cephalexin and 2/1 mg/L for amoxicillin/clavulanic acid. In the absence of clinical breakpoints, while bimodal distributions for many of these antimicrobials were present, the clinical significance of this remains unclear. However, following intramammary infusion of 1 g of penicillin, which is a commonly used therapy in New Zealand, it is likely that concentrations greater than the maximum MIC for penicillin of the current isolates would be achieved. Following infusion of 1 million international units (i.e. approximately 606 mg) of penicillin G on 3 occasions at 12 hourly intervals, the mean milk concentration of penicillin was 175 mg/L (Moretain and Boisseau, 1989), approximately 700-fold higher than the MIC₅₀ for penicillin found amongst the E₃₈₁K substitute isolates in the current study. The $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions were associated with increased MIC for all β -lactams tested, other than cephalexin. Similarly, there was a positive association between the MIC for oxacillin and all other β-lactams, other than cefalexin. Different effects on sensitivity within antimicrobials class within mutations to pbp2x have been previously described. Laboratory *pbp2x* mutants which increased cefotaxime MIC by more than 10 fold had no effect, or increased, sensitivity to oxacillin (Grebe and Hakenbeck, 1996).

4.1 Population structure

 The current study found multiple MLST types including many novel types. In common with a number of previous studies, it is clear that bovine mammary *S. uberis* are a highly diverse population (Davies et al., 2016; Zadoks et al., 2011). There was limited evidence of clonal expansion within or between dairy herds in New Zealand, suggesting a predominantly environmental source of *S. uberis* in the New Zealand context, as distinct from cow to cow transmission inferred from some previous studies (Davies et al., 2016; Zadoks et al., 2011).

344 Streptococci are generally found to be recombinogenic as seen in *S. pneumoniae*880
881 345 (Croucher et al., 2014). This leads to substantial genome modification likely via a

combination of point mutations, homologous recombination and movement of mobile genetic elements (Croucher et al., 2014). This suggests that the association between the increased MIC for oxacillin and the *pbp2x* genotype is more likely to be causal and not just a result of clonal expansion of lineages carrying the pbp2x substitutions contained in a resistant background genome. The Gubbins analysis indicated that recombination events are particularly common in S. *uberis*. This places constraints on the interpretation of any phylogeny within this species not taking recombination into account although it should be noted that the maximum likelihood tree from the core genome shared much of the same structure as the tree from the Gubbins analysis (which accounted for recombination). As might be expected, the $pbp2x E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions were conserved amongst closely related isolates using the core genome phylogeny. However, there were many examples of isolates within the same clade having different *pbp2x* genotypes suggesting multiple *pbp2x* mutation or acquisition events.

359 *4.2 GWAS* 918

The GWAS independently identified the pbp2x locus. Additionally, the mraY locus was identified which codes for phospho-N-acetylmuramoyl-pentapeptide-transferase, an enzyme responsible for the formation of the first lipid intermediate of the cell wall peptidoglycan synthesis. These two loci were also identified in a GWAS study of S. pneumoniae (Chewapreecha et al., 2014). Two loci not previously reported as being associated with β -lactam resistance in Streptococci were identified including vxeM which codes for an extracellular solute-binding protein and *yxeN* which codes for an ABC transporter permease. These later 2 genes flank pbp2x, and it is likely that they are associated due to linkage disequilibrium. Interestingly *cshB*, which codes for a surface associated protein, and is located between mraY and yxeN, contained a number of SNPs, none of which were associated with oxacillin resistance. The reason for this is unclear; all isolates possessed this gene, and

in the same location. A number of loci identified in the GWAS of S. pneumoniae

(Chewapreecha et al., 2014) including *clpL*, *ciaH*, *ftsL* and *gpsB* were not associated with β-lactam resistance in the current study.

4.3 Cure rate

As the original intervention studies were not powered to specifically test the effect of $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions on bacteriological cure rate, care should be taken when interpreting the cure rate data given the relatively small sample size.

However, numerically the cure rate was lower amongst S. *uberis* isolates with the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions than those without these substitutions. The cure rate was numerically lower for isolates with $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions following treatment with a β -lactam compared with a non- β -lactam. This is biologically plausible as the SNP in the *pbp2x* is only likely to affect β -lactams, and not the efficacy of antimicrobials operating via different mechanisms. Increasing the duration of therapy with a β -lactam to 5 x 12 hourly tended to overcome the depression in cure rate seen with a shorter duration of therapy (i.e. the 3×12 hourly treatment). Again, this is biologically plausible given that β -lactams are timedependent antimicrobials, hence with increasing duration it is feasible that concentrations above MIC were of sufficiently long duration to result in bacteriological cure even amongst isolates with increasing MIC. Failure to detect difference in cure rate between pbp2xgenotypes could also have been due to presence of other resistance mechanisms being present masking any effect of the *pbp2x* genotype. For example, in the first study the control group was treated with a combination of an aminoglycoside, a macrolide and a tetracycline. While streptococci are considered to constitutively resistant to aminoglycosides (Jayarao and Oliver, 1992), there was no evidence of tetracycline resistance genes in the current study, and only 7 isolates had presence of the ermB gene conferring increased MIC to macrolides (unpublished

data). Thus, it is considered unlikely that the failure to differentiate cure rate was due to a
reduced cure rate in the non-β-lactam treatment group.

The maximum MIC for cloxacillin of any isolates in the current study was 2 mg/L. Ongoing monitoring of the MIC of *S. uberis* isolates, and the association between MIC and clinical and bacteriological cure rates amongst clinical mastitis cases associated with *S. uberis* is required. Additionally, as cloxacillin-based antimicrobials are the most commonly used at the end of lactation (i.e. for dry-cow therapy), it is plausible that ongoing use of antimicrobials at the end of lactation may result in selection of *S. uberis* with higher cloxacillin MIC. However, this hypothesis remains to be tested.

5. Conclusions

This study has found widespread evidence for increased MIC of oxacillin amongst the common bovine mastitis pathogen S. uberis. The great majority of isolates with an increased MIC for oxacillin were found to have substitutions in *pbp2x*, and the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions were predictive of the increased MIC for oxacillin phenotype and did not require inclusion of substitutions on other *pbp* in the final predictive models. Isolates with the E₃₈₁K, Q₅₅₄E, and G₆₀₀E substitutions were also found in Canadian, European and UK isolates, suggesting wide geographic distribution of this genotype. Phylogenetic analysis found the $E_{381}K$, $Q_{554}E$, and $G_{600}E$ substitutions were widely distributed amongst New Zealand clades, but there was variation in *pbp2x* genotype within closely related isolates. This suggests that horizontal gene transfer may be occurring, as has been reported in other Streptococci, or that multiple independent SNPs have occurred over time.

416Presence of the E_{381} K, Q_{554} E, and G_{600} E substitutions was numerically associated with057058417lower bacteriological cure rates following treatment with a β-lactam compared with a non-β-

1063		
1064		
1065 1066	418	lactam intramammary therapy. Additionally, lower bacteriological cure rates occurred where
1067 1068 1069	419	this genotype was treated with a shorter compared with the longer duration of therapy.
1070 1071 1072	420	6. Acknowledgements
1073 1074 1075	421	The provision of some isolates by Estendart Ltd is gratefully acknowledged.
1070 1077 1078 1079	422	7. Funding
1080 1081	423	Funding for the original intervention studies from which the isolates were obtained was
1082 1083 1084	424	provided by Zoetis Animal Health, and Virbac New Zealand Limited. These funding bodies
1085 1086	425	played no role in the design, analysis and reporting of the current study. The current research
1087 1088	426	did not receive any specific grant from funding agencies in the public, commercial, or not-
1089 1090 1091	427	for-profit sectors.
1092 1093 1094	428	8. Transparency declarations
1095 1096 1097	429	The authors declare that they have no competing interests.
1098 1099 1100	430	LC, IG, and HJH undertook the original microbiology to isolate and confirm the
1101 1102	431	phenotypic identity of the S. uberis and initial MIC determination. NH, EL, XR and XB
1103 1104	432	undertook DNA sequence preparation and final MIC determinations. OR developed the
1105 1106 1107	433	mixture models. JP contributed to manuscript reparation. MB undertook one of the
1108 1109	434	intervention studies. MH managed the sequencing processing, and contributed to the study
1110 1111	435	design, analysis and interpretation. SM undertook the design, analysis, interpretation and
1112 1113 1114 1115	436	manuscript preparation. All authors read and approved the final manuscript.
1116 1117 1118		
1119 1120 1121		19

1122		
1123 1124		
1125	437	9. Availability of data and materials statement
1126		
1127	438	The assemblies of the isolates are in the European Nucleotide Archive
1120	430	The assemblies of the isolates are in the European Nucleotide Menive
1130	439	(https://www.ebi.ac.uk/ena).
1131		
1132		
1134	440	Additional phenotypic data (New Zealand Island location, oxacillin MIC) and genotype
1135	441	data (<i>nbn2x</i> E_{ast} K as 0/1) is included in Supplementary Table 1.
1136		
1137 1138		
1139	442	10. References
1140		
1141	442	Parsh G.S. Cononhaver G.P. Gibson G. Williams S.M. 2012 Guidelines for genome
1142	443	Barsh, G.S., Copennaver, G.F., Gloson, G., Williams, S.M., 2012. Guidennes for genome-
1144	444	wide association studies. PLoS Genetics 8, e1002812.
1145		
1146		
1148	445	Bradley, A.J., Leach, K.A., Breen, J.E., Green, L.E., Green, M.J., 2007. Survey of the
1149	446	incidence and actiology of mastitis on dairy farms in England and Wales Vet Rec. 160
1150		
1151	447	253-258.
1153		
1154	118	Bryan MA Hea SV Mannering SA Booker R 2016 Demonstration of non-
1155	440	Dryan, M.A., Hea, S. I., Mannering, S.A., Dooker, R., 2010. Demonstration of non-
1157	449	inferiority of a novel combination intramammary antimicrobial in the treatment of clinical
1158		
1159	450	mastitis. N. Z. Vet. J. 64, 337-342.
1160		
1162	451	Carapito, R., Chesnel, L., Vernet, T., Zapun, A., 2006. Pneumococcal beta-lactam resistance
1163		
1164	452	due to a conformational change in penicillin-binding protein 2x. J. Biol. Chem. 281, 1771-
1166	450	1777
1167	453	1///.
1168		
1170	454	Chewapreecha, C., Marttinen, P., Croucher, N.J., Salter, S.J., Harris, S.R., Mather, A.E.,
1171		
1172	455	Hanage, W.P., Goldblatt, D., Nosten, F.H., Turner, C., Turner, P., Bentley, S.D., Parkhill,
1173	456	I 2014 Comprehensive identification of single nucleotide polymorphisms associated
1175	150	v., 2011. Comprenensive reentineation of single nucleotide porymorphisms associated
1176		
1177		
1178 1170		20
1180		

1181		
1182 1183		
1184	457	with beta-lactam resistance within pneumococcal mosaic genes. PLOS Genetics 10,
1185	458	e1004547
1186	450	
1188		
1189	459	CLSI 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for
1190	460	bacteria isolated from animals: Annroved standard fourth edition CLSI document
1191	400	bacteria isolated nom animals, Approved standard- Tourin edition. CESI document
1193	461	VET01-A4 (Wayne, PA., USA, Clinical and Laboratory Standards Institute).
1194		
1195 1196		
1197	462	Coffey, I.J., Pullinger, G.D., Urwin, R., Jolley, K.A., Wilson, S.M., Maiden, M.C., Leigh,
1198	463	J.A., 2006. First insights into the evolution of <i>Streptococcus uberis</i> : a multilocus sequence
1199		
1200	464	typing scheme that enables investigation of its population biology. Appl. Environ.
1202		
1203	465	MICrodioi. 72, 1420-1428.
1204 1205		
1206	466	Connor, T.R., Loman, N.J., Thompson, S., Smith, A., Southgate, J., Poplawski, R., Bull,
1207		
1208	467	M.J., Richardson, E., Ismail, M., Thompson, S.E, Kitchen, C., Guest, M., Bakke, M.,
1210	468	Sheppard, S.K., Pallen, M.J., 2016, CLIMB (the Cloud Infrastructure for Microbial
1211		
1212	469	Bioinformatics): an online resource for the medical microbiology community. Microbial
1213	470	C_{ansaming} = $2 - 2000086$
1215	470	Genomics 2, e000086.
1216		
1217	471	Croucher, N.J., Hanage, W.P., Harris, S.R., McGee, L., van der Linden, M., de Lencastre, H.,
1219		
1220	472	Sa-Leão, R., Song, JH., Ko, K.S., Beall, B., Klugman, K.P., Parkhill, J., Tomasz, A.,
1221	473	Kristinsson K G Bentley S D 2014 Variable recombination dynamics during the
1223		
1224	474	emergence, transmission and 'disarming' of a multidrug-resistant pneumococcal clone.
1225		
1220	475	BMC Biology 12, 49.
1228		
1229	476	Dahesh, S., Hensler, M.E., Van Sorge, N.M., Gertz, J., R. E., Schrag, S., Nizet, V., Beall,
1230 1231		
1232	477	B.W., 2008. Point mutation in the group B streptococcal $pbp2x$ gene conferring decreased
1233	478	susceptibility to beta-lactam antibiotics. Antimicrob. Agents Ch. 52, 2915–2918
1234	., 0	
1235		
1237		
1238		21
1209		

1240 1241		
1242 1243	479	Davies, P.L., Leigh, J.A., Bradley, A.J., Archer, S.C., Emes, R.D., Green, M.J., 2016.
1244 1245	480	Molecular epidemiology of Streptococcus uberis clinical mastitis in dairy herds: Strain
1246 1247 1248	481	heterogeneity and transmission. J. Clin. Microbiol. 54, 68-74.
1249 1250	482	Dowson, C.G., Coffey, T.J., Spratt, B.G., 1994. Origin and molecular epidemiology of
1251	483	penicillin-binding-protein-mediated resistance to beta-lactam antibiotics. Trends
1255 1254 1255	484	Microbiol. 2, 361-366.
1250 1257 1258	485	Du Plessis, M., Bingen, E., Klugman, K.P., 2002. Analysis of penicillin-binding protein
1259 1260	486	genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to
1261 1262 1263	487	amoxicillin. Antimicrob. Agents Ch. 46, 2349-2357.
1264 1265 1266	488	Everitt, B.S., 1996. An introduction to finite mixture distributions. Stat. Methods Med. Res.
1267 1268	489	52, 2107-2127.
1269 1270 1271	490	Garau, J., 2002. Treatment of drug-resistant pneumococcal pneumonia. Lancet Infect. Dis. 2,
1272 1273 1274	491	404-415.
1275 1276	492	Grebe, T., Hakenbeck, R., 1996. Penicillin-binding proteins 2b and 2x of Streptococcus
1277 1278	493	pneumoniae are primary resistance determinants for different classes of b-lactam
1279 1280 1281	494	antibiotics. Antimicrob. Agents Ch. 40, 829-834.
1282 1283 1284	495	Guérin-Faublée, V., Carret, G., Houffschmitt, P., 2003. In vitro activity of 10 antimicrobial
1285 1286 1287	496	agents against bacteria isolated from cows with clinical mastitis. Vet. Rec. 152, 466-471.
1288 1289	497	Hadfield, J., Croucher, N.J., Goater, R.J., Abudahab, K., Aanensen, D.M., Harris, S.R., 2017.
1290 1291	498	Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34,
1292 1293 1294 1295	499	292-293.
1296 1297 1298		22

1299		
1300		
1301 1302	500	Haenni, M., Galofaro, L., Ythier, M., Giddey, M., Majcherczyk, P., Moreillon, P., Madec, J
1303 1304	501	Y., 2010a. Penicillin-binding protein gene alterations in Streptococcus uberis isolates
1305 1306	502	presenting decreased susceptibility to penicillin? Antimicrob. Agents Chemother. 54,
1308 1309	503	1140-1145.
1310		
1311 1312	504	Haenni, M., Galofaro, L., Ythier, M., Giddey, M., Majcherczyk, P., Moreillon, P., Madec, J
1313 1314	505	Y., 2010b. Penicillin-binding protein gene alterations in Streptococcus uberis isolates
1315 1316 1317	506	presenting decreased susceptibility to penicillin? Antimicrob. Agents Ch. 54, 1140-1145.
1318 1319	507	Haenni, M., Lupo, A., Madec, J.Y., 2018. Antimicrobial Resistance in Streptococcus spp.
1320 1321 1322	508	Microbiol. Spectr. 6, 25.
1323 1324 1325	509	Hakenbeck, R., Bruckner, R., Denapaite, D., Maurer, P., 2012a. Molecular mechanisms of
1326 1327	510	beta-lactam resistance in <i>Streptococcus pneumoniae</i> . Future Microbiol. 7, 395-410.
1329 1330	511	Hakenbeck, R., Brückner, R., Denapaite, D., Maurer, P., 2012b. Molecular mechanisms of ß-
1331 1332 1333	512	lactam resistance in Streptococcus pneumoniae. Future Microbiol. 7, 395-410.
1334 1335	513	Hakenbeck, R., Grebe, T., Zähner, D., Stock, J.B., 1999. beta-lactam resistance in
1336 1337	514	Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding
1338 1339 1340	515	proteins. Mol. Microbiol. 33, 673-678.
1341 1342 1343	516	Hossain, M., Egan, S.A., Coffey, T., Ward, P.N., Wilson, R., Leigh, J.A., Emes, R.D., 2015.
1344 1345	517	Virulence related sequences; insights provided by comparative genomics of Streptococcus
1346 1347 1348	518	uberis of differing virulence. BMC Genomics 16, 1-13.
1349 1350	519	Jayarao, B.M., Oliver, S.P., 1992. Aminoglycoside-resistant Streptococcus and Enterococcus
1351 1352 1353 1354	520	species isolated from bovine mammary secretions. J. Dairy Sci. 75, 991-997.
1355 1356 1357		23

1358		
1359		
1360 1361	521	Lang, P., Lefébure, T., Wang, W., Zadoks, R.N., Schukken, Y., Stanhope, M.J., 2009. Gene
1362 1363	522	content differences across strains of Streptococcus uberis identified using oligonucleotide
1364 1365 1366	523	microarray comparative genomic hybridization. Infect. Genet. Evol. 9, 179-188.
1367		
1368 1369	524	Lees, J.A., Vehkala, M., Välimäki, N., Harris, S.R., Chewapreecha, C., Croucher, N.J.,
1370 1371	525	Marttinen, P., Davies, M.R., Steer, A.C., Tong, S.Y.C., Honkela, A., Parkhill, J., Bentley,
1372 1373	526	S.D., Corander, J., 2016. Sequence element enrichment analysis to determine the genetic
1374 1375 1376	527	basis of bacterial phenotypes. Nat Commun 7, 12797.
1377 1378	528	Letunic, I., Bork, P., 2016. Interactive Tree Of Life (iTOL) v3: an online tool for the display
1379 1380	529	and annotation of phylogenetic and other trees. Nucleic Acids Res. 44 (W1), W242-
1381 1382 1383 1384	530	W245.
1385 1386	531	McDougall, S., 1998. Efficacy of two antibiotic treatments in curing clinical and subclinical
1387 1388 1389	532	mastitis in lactating dairy cows. N. Z. Vet. J. 46, 226-232.
1390 1391	533	McDougall, S., Arthur, D.G., Bryan, M.A., Vermunt, J.J., Weir, A.M., 2007a. Clinical and
1392 1393	534	bacteriological response to treatment of clinical mastitis with one of three intramammary
1394 1395 1396	535	antibiotics. N. Z. Vet J. 55, 161-170.
1397 1398	536	McDougall, S., Arthur, D.G., Bryan, M.A., Vermunt, J.J., Weir, A.M., 2007b. Clinical and
1399 1400 1401	537	bacteriological response to treatment of clinical mastitis with one of three intramammary
1402 1403 1404	538	antibiotics. New Zealand Veterinary Journal 55, 161-170.
1405 1406	539	McDougall, S., Clausen, L., Hintukainen, J., Hunnam, J., 2019. Randomized, controlled,
1407 1408	540	superiority study of extended duration of therapy with an intramammary antibiotic for
1409 1410 1411	541	treatment of clinical mastitis. J. Dairy Sci. 102, 4376-4386.
1412 1413		
1414 1415		24
1416		

1417 1418		
1419 1420	542	McDougall, S., Hussein, H., Petrovski, K., 2014. Antimicrobial resistance in Staphylococcus
1421 1422	543	aureus, Streptococcus uberis and Streptococcus dysgalactiae from dairy cows with
1423 1424 1425	544	mastitis. N. Z. Vet J. 62, 68-76.
1426 1427 1428	545	Moretain, J.P., Boisseau, J., 1989. Excretion of penicillins and cephalexin in bovine milk
1429 1430	546	following intramammary administration. Food Addit. Contam. 6, 79-89.
1431 1432 1433	547	Nagai, K., Davies, T.A., Jacobs, M.R., Appelbaum, P.C., 2002. Effects of amino acid
1434 1435	548	alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of
1436 1437	549	penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18
1438 1439	550	clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci.
1440 1441 1442	551	Antimicrob. Agents Ch. 46, 1273-1280.
1443 1444 1445	552	Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H., Koren, S.,
1446 1447	553	Phillippy, A.M., 2016. Mash: fast genome and metagenome distance estimation using
1448 1449 1450	554	MinHash. Genome Biology 17, 132.
1451 1452	555	Owens, W.E., Ray, C.H., Watts, J.L., Yancey, R.J., 1997. Comparison of success of antibiotic
1453 1454	556	therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis.
1455 1456 1457	557	J. Dairy Sci. 80, 313-317.
1458 1459	558	Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M.,
1460 1461 1462	559	Falush, D., Keane, J.A., Parkhill, J., 2015. Roary: Rapid large-scale prokaryote pan
1463 1464 1465	560	genome analysis. Bioinformatics 31, 3691-3693.
1466 1467	561	Page, A.J., De Silva, N., Hunt, M., Quail, M.A., Parkhill, J., Harris, S.R., Otto, T.D., Keane,
1468 1469	562	J.A., 2016. Robust high-throughput prokaryote de novo assembly and improvement
1470 1471 1472	563	pipeline for Illumina data. Microb. Genom. 25, e000083.
1473 1474 1475		25

1476		
1477		
1478 1479	564	Peters, K., Pipo, J., Schweizer, I., Hakenbeck, R., Denapaite, D., 2016. Promoter
1480 1481	565	identification and transcription analysis of penicillin-binding protein genes in
1482 1483 1484	566	Streptococcus pneumoniae R6. Microb. Drug. Resis. 22, 487-498.
1485 1486	567	Phuektes, P., Mansell, P.D., Dyson, R.S., Hooper, N.D., Dick, J.S., Browning, G.F., 2001.
1487 1488	568	Molecular epidemiology of Streptococcus uberis isolates from dairy cows with mastitis. J.
1489 1490 1491	569	Clin. Microbiol. 39, 1460-1466.
1493 1494	570	Pullinger, G.D., Lopez-Benavides, M., Coffey, T.J., Williamson, J.H., Cursons, R.T.,
1495 1496	571	Summers, E., Lacy-Hulbert, J., Maiden, M.C., Leigh, J.A., 2006. Application of
1497 1498	572	Streptococcus uberis multilocus sequence typing: Analysis of the population structure
1499 1500	573	detected among environmental and bovine isolates from New Zealand and the United
1501 1502 1503	574	Kingdom. Appl. Environ. Microbiol. 72, 1429-1436.
1504 1505 1506	575	Quail, M.A., Kozarewa, I., Smith, F., Scally, A., Stephens, P.J., Durbin, R., Swerdlow, H.,
1507 1508	576	Turner, D.J., 2008. A large genome center's improvements to the Illumina sequencing
1509 1510 1511	577	system. Nat. Methods 5, 1005-1010.
1512 1513	578	Sandholm, M., Kaartinen, L., Pyorala, S., 1990. Bovine mastitis - why does therapy not
1514 1515 1516 1517	579	always work? An overview. J. Vet. Pharmacol. Ther. 13, 248-260.
1518 1519	580	Smith, A.M., Klugman, K.P., 1998. Alterations in PBP 1A essential-for high-level penicillin
1520 1521 1522	581	resistance in Streptococcus pneumoniae. Antimicrob. Agents Ch. 42, 1329-1333.
1523 1524	582	Smith, A.M., Klugman, K.P., 2005. Amino acid mutations essential to production of an
1525 1526	583	altered PBP 2x conferring high-level beta-lactam resistance in a clinical isolate of
1527 1528 1529	584	Streptococcus pneumoniae. Antimicrob. Agents Ch. 49, 4622-4627.
1530 1531		
1532 1533 1534		26

1535		
1536		
1537 1538	585	Stamatakis, A., 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis
1539 1540 1541	586	of large phylogenies. Bioinformatics 30, 1312-1313.
1542 1543	587	Tenhagen, B., Köster, G., Wallman, J., Heuwieser, W., 2006. Prevalence of mastitis
1545 1546	588	pathogens and their resistance against antimicrobial agents in dairy cows in Brandenburg,
1547 1548 1549	589	Germany. J. Dairy Sci. 89, 2542-2551.
1550 1551	590	Vélez, J.R., Cameron, M., Rodriguez-Lecompte, J.C., Xia, F., Heider, L.C., Saab, M.,
1552 1553	591	McClure, J.T., Sanchez, J., 2017. Whole-genome sequence analysis of antimicrobial
1554 1555	592	resistance genes in Streptococcus uberis and Streptococcus dysgalactiae isolates from
1550 1557 1558 1559	593	Canadian dairy herds. Front. Vet. Sci. 4, 1-11.
1560 1561	594	Zadoks, R.N., Gillespie, B.E., Barkema, H.W., Sampimon, O.C., Oliver, S.P., Schukken,
1562 1563	595	Y.H., 2003. Clinical, epidemiological and molecular characteristics of Streptococcus
1564 1565 1566	596	uberis infections in dairy herds. Epidemiology & Infection 130, 335-349.
1567 1568	597	Zadoks, R.N., Middleton, J.R., McDougall, S., Katholm, J., Schukken, Y.H., 2011. Molecular
1569 1570	598	epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.
1571 1572 1573	599	Journal of Mammary Gland Biology and Neoplasia 16, 357-372.
1574 1575 1576	600	Zapun, A., Contreras-Martel, C., Vernet, T., 2008. Penicillin-binding proteins and ß-lactam
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590	601	resistance. FEMS Microbiol. Rev. 32, 361-385
1591 1592 1593		27

1594		
1595		
1596	602	Table 1
1597	002	
1598		
1599	603	Penicillin binding protein (PBP) number residue number (based on previously reported
1600	000	rememme of and protein (1 D1) number, residue number (oused on providusly reported
1602	604	(Haenni et al., 2010b) numbering for $pbp1a$, $2b$ and $2x$, otherwise from the start of the open
1603 1604 1605	605	reading frame), most common residue at that position (core residue), the number of isolates
1605 1606 1607	606	with the core residue at that position, the amino acid of the variant and the number of isolates
1608 1609	607	with this variant, the P-value from chi squared analysis of the variant against the isolate being
1610 1611	608	resistant (that is, an oxacillin MIC of > 0.5 mg/L), and the number and percentage of isolates
1612 1613	609	in core and variant amino acids with oxacillin resistance. Note only those substitutions with
1614 1615	610	>10% prevalence and within the transpeptidase domain (for <i>pbp1a</i> , 2b and 2x) are listed.
1616 1617	611	Where the same substitutions were identified in Canadian (Vélez et al., 2017) and UK
1619 1620	612	(Hossain et al., 2015) isolates these are listed.
1621		
1622	613	Table 2
1623		
1624		
1625 1626	614	The mean, standard error of the mean (SEM) and median minimum inhibitory concentration
1627	615	(MIC : mg/mL) for B-lactam antimicrobials for Streptococcus uperis isolates with and
1628	015	(integit, ing/inte) for p factalli antimicrobials for sireproceedus useris isolates with and
1629	616	without the E K substitution in nhn^{2r}
1630	010	without the E_{381} K substitution in <i>pop2x</i> .
1631		
1632		
1633		
1635		
1636		
1637		
1638		
1639		
1640		
1641		
1642		
1643		
1644		
1645		
1646		
104/		
1040		
1650		
1651		28
1652		

Fig. 1. Frequency histogram of minimum inhibitory concentrations (mg/L) of oxacillin for Streptococcus uberis from bovine clinical mastitis cases.

Fig. 2 a, b, c. Sites in (a) *pbp1a*, (b) *pbp2b*, and (c) *pbp2x* implicated in altered affinity to β -lactams. The transpeptidase domain is represented as the horizontal black bar; the active site motifs are indicated in blue and marked by blue triangles. Numbers in brackets indicate the position of the first and last amino acids of the transpeptidase domain. The substitutions in green are from the current study, and the red substitutions are from those induced in S. uberis (Haenni et al., 2010a). Note only substitutions present in >10% of isolates in the current study are represented.

Fig. 3. Box plots of the MIC of β -lactams for *S. uberis* isolates from bovine clinical mastitis cases defined as oxacillin resistant (i.e. MIC ≥ 0.5 mg/L) or susceptible (< 0.5 mg/L).

Fig. 4 a,b. Estimated marginal mean (95% confidence intervals) for cure proportion for (a) study 1 for quarters infected with S. *uberis* that had the E_{381} K substitution (open bar) or not (solid bar) by treatment type. The non- β -lactam treatment was daily intramammary infusion for 3 days of a combination of 200 mg oxytetracycline, 100 mg oleandomycin, 100 mg neomycin and 5 mg prednisolone, and β -lactam treatment was daily infusion 3 days of a combination of 1 g penicillin and 200 mg cloxacillin, and (b) cure proportion for quarters treated by intramammary infusion at 12 hourly intervals with 200 mg amoxycillin, 50 mg clavulanic acid, and 10 mg prednisolone on three (hatched bar) or five (open bar) occasions.

1712		
1713		
1714 1715	636	Supplementary Table 1. Isolate identity, multilocus sequence type (Sequence type),
1716 1717	637	oxacillin minimum inhibitory concentration (Ox MIC (mg/L)), resistance phenotype
1718 1719	638	(resistant (1) = \geq 0.5 mg/L), resistance genotype (1 = <i>pbp2x</i> E ₃₈₁ K substitution), location in
1720 1721 1722	639	New Zealand (North or South Island) and the unique farm identity (Farm_ID), ENA sample
1722 1723 1724	640	accession number, and ENA lane accession number.
1725		
1726		
1727		
1728		
1729		
1730		
1/31		
1732		
1734		
1735		
1736		
1737		
1738		
1739		
1740		
1742		
1743		
1744		
1745		
1746		
1747		
1748		
1750		
1751		
1752		
1753		
1754		
1756		
1757		
1758		
1759		
1760		
1761		
1762		
1764		
1765		
1766		
1767		
1768		
1769		30
1770		

Supplementary Fig. 1. Phylogenetic tree of 265 S. uberis isolates from bovine clinical mastitis cases in New Zealand (classified as from the North or South Island) and S. uberis isolates from Canada and the UK. The tree is created from the core genome (~1,500 genes) of S. uberis. The meta data includes (from inner to outer) isolate number, multilocus sequence type, island of New Zealand, farm identity, $pbp2x E_{381}K$ genotype (open green Square = wild (sensitive) genotype; closed green square = resistant genotype), and oxacillin MIC phenotype (red open square < 0.5 mg/L, closed red square $\ge 0.5 \text{ mg/L}$).

Supplementary Fig. 2. Manhattan plot showing the results of a k-mer based genome wide association study using SEER visualised using Phandango. The reference genome used was 17652 8#12.gff. The annotation file was generated by Prokka as part of the Welcome Sanger Institute Pathogen Informatics pipeline. The size of the dots indicates the length of positively associated k-mer. A threshold of $P < 5x10^{-8}$ was applied. The vertical axis is the negative of the log10 value of P. The horizontal axis represents the base pair distance along the genome.

Supplementary Fig. 3. Gubbins plot of 265 S. uberis isolates from bovine clinical mastitis cases in New Zealand. The phylogenetic tree (left panel) represents the maximum likelihood tree. The S. uberis 0140J genome is represented as the blue vertical bars across the top of the figure, while the vertical red bars in the centre of the figure represent the density estimates of recombination events. The line graph at the bottom of the figure is the cumulative frequency of recombination events at that locus.

(a)

(c)

Table 1

Penicillin binding protein number (PBP), residue number (based on previously reported (Haenni et al., 2010b) numbering for *pbp1a*, *2b* and *2x*, otherwise from the start of the open reading frame), most common residue at that position (core residue), the number of isolates with the core residue at that position, the amino acid of the variant and the number of isolates with this variant, the P-value from chi squared analysis of the variant against the isolate being resistant (that is oxacillin MIC of >0.5 mg/L), and the number and percentage of isolates in core and variant amino acids with oxacillin resistance. Note only those substitutions with >10% prevalence and within the transpeptidase domain (for PBP1a, 2b and 2x) are listed. Where the same substitutions were identified in Canadian (Vélez et al., 2017) and UK (Hossain et al., 2015) isolates these are listed.

		New Zealand isolates							Canadian isolates				UK isolates									
		Core		Resistant		Variant		Resistant		Core Vari		ant Variant		Core		Variant		Variant				
Gene	Position	AA	no.	no.	%	AA	no.	no.	%	P-value	AA	no.	AA	no.	AA	no.	AA	no.	AA	no.	AA	no.
pbp1a	452	S	175	73	41.7	Ν	90	68	75.6	0.000	Ν	50	S	13			Ν	11	S	2		
Pbp1b	768	G	164	83	50.6	S	101	58	57.4	0.280	G	34	S	28			G	9	S	4		
Pbp2a	44	Е	179	107	59.8	G	86	34	39.5	0.002												
Pbp2a	397	Т	235	125	53.2	А	30	16	53.3	0.843	Т	45	Α	18			Т	12	Α	1		
pbp2b	366	Ν	162	67	41.4	I	103	74	71.8	0.000	Ν	55	I	8			Ν	1	I	2		
pbp2b	370	S	237	129	54.4	Т	28	12	42.9	0.246												
pbp2b	394	А	238	125	52.5	S	27	12	44.4	0.336												
pbp2b	402	Т	161	67	41.6	I	104	74	71.2	0.000	Т	55	I	8			Т	11	I	2		
pbp2b	570	V	174	78	44.8	А	91	63	69.2	0.000	V	55	Α	8			V	12	Α	1		
pbp2b	575	Р	174	78	44.8	S	91	63	69.2	0.000	Р	55	S	8			Р	12	S	1		
pbp2x	295	I	172	139	80.8	V	93	2	2.2	0.000	I	57	V	6			I	12	V	1		
pbp2x	381	К	140	140	100.0	Е	125	1	0.8	0.000	К	53	Е	10			Е	10	К	3		
pbp2x	554	Е	140	140	100.0	Q	125	1	0.8	0.000	Е	52	Q	11			Q	11	Е	2		
pbp2x	590	А	133	133	100.0	V	132	8	6.1	0.000	А	45	V	18			V	11	А	2		
pbp2x	600	Е	140	140	100.0	G	125	1	0.8	0.000	Е	49	G	11	D	3	G	10	Е	2	D	1

	E ₃₈₁]	K substitu	ition	No			
	Mean	SEM	MIC ₅₀	Mean	SEM	MIC ₅₀	P-value
Penicillin	0.24	0.09	0.25	0.05	0.02	0.0625	0.05
Cefuroxime	0.63	0.27	0.5	0.06	0.11	0.025	0.05
Ceftiofur	1.52	1.47	1.0	0.15	0.13	0.025	0.05
Cefquinome	0.23	0.15	0.25	0.03	0.01	0.025	0.05
Cefalexin	0.34	0.22	0.25	0.51	0.29	0.5	0.05