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Abstract 

 

Cardiac arrhythmias constitute a major public health problem. Pharmacological intervention 

remains mainstay to their clinical management. This in turn depends upon systematic drug 

classification schemes relating their molecular, cellular and systems effects to clinical 

indications and therapeutic actions. This approach was first pioneered in the 1960s Vaughan 

Williams classification. Subsequent progress in cardiac electrophysiological understanding 

led to a lag between the fundamental science and its clinical translation, partly addressed by 

The Working Group of the European Society of Cardiology (1991), which however did not 

emerge with formal classifications. We here utilise the recent Revised Oxford Classification 

Scheme to review anti-arrhythmic drug pharmacology. We survey drugs and therapeutic 

targets offered by the more recently characterized ion channels, transporters, receptors, 

intracellular Ca
2+ 

handling and cell signalling molecules. These are organised into their 

strategic roles in cardiac electrophysiological function. Following analysis of the arrhythmic 

process itself, we consider (a) pharmacological agents directly targeting membrane function, 

particularly the Na
+
 and K

+
 ion channels underlying depolarising and repolarising events in 

the cardiac action potential. (b) We also consider agents that modify autonomic activity that 

in turn affects both the membrane and (c) the Ca
2+

 homeostatic and excitation contraction 

coupling processes linking membrane excitation to contractile activation. Finally, we 

consider (d) drugs acting on more upstream energetic and structural remodelling processes 

currently the subject of clinical trials. Such systematic correlations of drug actions and 

arrhythmic mechanisms at different molecular to systems levels of cardiac function will 

facilitate current and future anti-arrhythmic therapy. 
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The clinical and preclinical background: Classifications of anti-arrhythmic 

drugs 

 

Cardiac arrhythmias constitute a major public health problem causing ~3.7 million deaths 

worldwide and significant clinical morbidity 
1
. Pharmacological intervention remains the 

mainstay of their management despite major progress in interventional including ablation and 

device therapy. Much of this was informed by systematic drug development and 

classification, the latter relating modes of molecular, cellular and systems actions to clinical 

indications and therapeutic effects. An early scheme classified then known anti-arrhythmic 

drugs and their actions on different components of the cardiac action potential 
2,3

. Class I 

drugs reduced phase 0 slopes and overshoots, increasing, reducing or conserving AP 

durations (APD) and effective refractory periods (ERP) respectively through Na
+
 channel 

block 
4
. Class II drugs slowed sino-atrial node (SAN) pacing and atrioventricular node 

(AVN) action potential conduction through β-adrenergic inhibition 
5,6

. Class III drugs 

delayed phase 3 repolarization and effective refractoriness by K
+
 channel block. Finally, 

Class IV drugs reduced cardiac, particularly SAN and AVN, rate and conduction through L-

type Ca
2+

 channel inhibition 
3
.  

 

The resulting simple yet coherent and pragmatic working model for cardiomyocyte function, 

thus approached cardiac arrhythmia in terms of disrupted cardiac electrophysiological 

activation, correlating available therapies with then known arrhythmic targets (referenced in 

7
). It found widespread usefulness in diagnostic analysis and therapeutic action, directly 

facilitating clinical management and drug development 
8
. Subsequent progress has expanded 

our electrophysiological understanding of both normal and arrhythmic cardiac excitation and 

its underlying membrane ion channel, intracellular ion transport and receptor protein 

molecules 
9,10

, and offered numerous novel pharmacological and therapeutic targets 
11

. Yet, 

management of clinical arrhythmias has often lagged progress in other cardiological areas 

and may not have optimally benefitted from these fundamental scientific advances. The latter 

may reflect unmet needs for classification of these wide-ranging findings coherently relating 

fundamental physiological mechanisms to clinical applications. This was partly attempted by 

the European Society of Cardiology 
12

 which however did not emerge with a formal drug 

classification scheme. 
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Revised classifications of pharmacological anti-arrhythmic targets: The 

Modernised Oxford Classification 

 

A recent modernized classification grouped currently available approved and investigational 

new drugs through their known molecular, ion channel, transporter, receptor, intracellular 

Ca
2+ 

homeostatic or cell signalling, targets (Fig. 1A). It devised a format accomplishing a 

simultaneous classification of their actions on strategic aspects of cardiac 

electrophysiological function (Fig. 1C). Of the latter processes, (a) the altered surface 

membrane excitability disrupting normal patterns of atrial or ventricular action potential 

generation involving one or more component ion channel processes (Fig. 2) constitutes the 

immediate source of arrhythmic phenomena. However, this interacts reciprocally with 

cytosolic processes involving (b) autonomic modulation, itself acting on both (a) and (c) 

excitation contraction coupling. Drugs might also modify (d) more upstream energetic and 

remodelling structural processes often concerning cell signalling and intracellular 

metabolism, energetics and mitochondrial function, and fibrotic and inflammatory change 

(Fig. 1C).  

 

Finally, it nevertheless remained possible to pragmatically retain the original Vaughan 

Williams classes I-IV 
7
, expanding these classes and adding additional drug categories to 

complete its representation of the subsequent biomedical advance. Together with the more 

concise representation emphasizing clinically accepted as opposed to investigational new 

drugs (Table 1; 
13

), it thus represents a pragmatic modernization of the original Vaughan 

Williams approach. It retained but added to Vaughan-Williams Class I, recognising recently 

reported late Na
+
 current (INaL) components and their importance in long QT syndrome type 3 

(LQTS3). A broader Class II captures advances in our understanding of autonomic, G-protein 

signalling and an expanded Class III the many subsequently discovered K
+
 channel subtypes. 

Class IV similarly encompasses recently demonstrated molecular targets and cellular 

physiological mechanisms related to Ca
2+

 homeostasis and excitation contraction coupling. 

Further new classes recognise discoveries in cardiac automaticity (Class 0), mechanically 

sensitive channels (Class V), cell-cell electrotonic coupling (Class VI), and physiological 

processes exerting longer term energetic changes and upstream structural remodelling (Class 

VII). This classification thus categorised both clinically acceptable and potential sites of drug 
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action relevant not only to current therapy but also future basic research and drug 

development.  

 

Approved drugs, drugs under clinical trial and investigational new drugs in the 

modernized classification 

 

This scheme thus updated current views on clinically used and potential anti-arrhythmic 

agents, facilitating classification of drugs under trial, and future developments of 

investigational new drugs. This article primarily concerns drugs either impacting current 

practice or under trial for possible future practice, listed in a shortened version 
13

 of the 

scheme in the original report 
7
 in Table 1. Thus, Table 1 indicates that most drugs in Classes 

0, I, II, III and IV of the classification scheme are accepted in one or more of the American 

College of Cardiology Foundation/American Heart Association (ACCF/AHA) and National 

Institute for Clinical Excellence (NICE) guidelines for management of patients with (a) 

ventricular arrhythmias and the prevention of sudden cardiac death 
17

, (b) atrial fibrillation 
16

 

and (c) supraventricular tachycardia 
18

. Table 1 also summarises their corresponding accepted 

therapeutic actions 
6,19–21

. 

 

 Of the remainder, ranolazine (Class Id), originally approved by the U.S. Food and Drug 

Administration for anti-anginal therapy, significantly reduced AF incidence in various 

clinical settings 
22–24

, including paroxysmal AF (HARMONY trial 
25

). There are trials on use 

28
, and application  in AF cardioversion 

29
 and comparisons against amiodarone 

30,31
 of the 

K1.5 channel mediated ultrarapid K
+
 current (IKur) blocker vernakalant. Flecainide, normally 

considered part of class Ic, was trialled in relationship to management of catecholaminergic 

polymorphic ventricular tachycardia 
32–34

. Although listed, clinical trials bearing on Kir6.2 

(IKATP) openers concern anginal rather than arrhythmia management. Table 1 is simplified in 

omitting the new classes V and VI as these only include investigational as opposed to 

clinically accepted drugs.  

 

Finally, drugs in class VII are named in ACCF/AHA guidelines for management of heart 

failure 
14

 but not in ACCF/AHA guidelines for the management of patients with ventricular 

arrhythmias and the prevention of sudden cardiac death, atrial fibrillation and 

supraventricular tachycardia. However, there exist clinical trials testing all its drug 
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subcategories. Thus, a meta-analysis reported that both angiotensin-converting enzyme 

inhibitors (ACEIs), and angiotensin receptor inhibitors (ARBs) produced ~28% reductions in 

atrial fibrillation (AF) risk in patients with left ventricular (LV) dysfunction or hypertrophy 

35
. Clinical trials reported decreased AF in postmyocardial infarction patients with LV 

dysfunction with trandolapril 
36

, and in patients with LV dysfunction with enalapril 
37

. 

Ongoing clinical trials compared effects of telmisartan alone and in combination with 

ramipril (ONTARGET/TRANSCEND trial 
38

), and clopidogrel with irbesartan in preventing 

vascular events (ACTIVE trial 
39

). Of aldosterone receptor antagonists, a meta-analysis of 7 

reported trials of spironolactone and epleronone demonstrated reduced episodes of ventricular 

premature complexes, and 21% and 72 % reductions in sudden cardiac death and ventricular 

tachycardia 
40

. Clinical trials reported positive anti-arrhythmic effects of spironolactone in 

patients with 
42,43

 or without congestive heart failure 
47

 and of eplerenone in congestive heart 

failure due to idiopathic dilated or ischemic cardiomyopathy 
45

.  

 

More preliminary evidence implicates omega-3 fatty acids in reducing incidence of AF (
48

, 

but see also 
49

), particularly following coronary artery bypass surgery 
50

. Finally, a meta-

analysis suggested that 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors reduced AF 

incidence in 3 of 3 trials 
51

. Statins reduced recurrent AF in 62 retrospectively studied lone 

persistent AF (≥3 months) patients after direct current cardioversion 
52

. It lowered rate of new 

AF development in prospectively studied coronary artery patients 
53

, and AF development by 

23% in patients prospectively enrolled in the multicenter Guidant-sponsored Advancement 

Heart Failure Registry 
54

. 

 

Electrophysiological pro-arrhythmic mechanisms as therapeutic targets 

 

Arrhythmias are the result of abnormal sino-atrial (SA), AVN or Purkinje fibre automaticity, 

or pathological generation or conduction of excitation in atrial or ventricular cardiomyocytes. 

Sustained arrhythmia likely requires not only an initial trigger, but also arrhythmic substrate 

typically arising from re-entry of excitation from active into recovered previously active 

myocardial regions (Fig. 1B). It can take diverse forms in different cardiac regions each with 

distinct phenotypes. Successful therapeutic management of arrhythmias must therefore 

recognise this underlying mechanistic context bearing particularly upon cardiac action 

potential generation, recovery and/or its conduction 
55

.  
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First, abnormal or altered action potential generation can arise from altered automaticity 

underlying spontaneous, rhythmic SAN, or AVN or purkinje tissue pacemaker activity. This 

could arise from altered slopes of the depolarisation processes triggering successive action 

potentials or altered maximum diastolic or resting potentials. Changes in normal automaticity 

typically reflect alterations in pacemaker potentials driven by inward HCN mediated If and 

other ionic currents following normal adrenergic or cholinergic SAN pacemaker stimulation 

or inhibition. Abnormal automaticity arises from spontaneous impulses generated in partially 

depolarised fibres in pathological circumstances; this can even involve normally non-

automatic atrial and ventricular muscle. This causes an automatic, often tachycardic, firing 

distinct from the SAN activity, exemplified by ectopic atrial tachycardias, accelerated 

idioventricular rhythms and ventricular tachycardias. 

 

Secondly, triggered activity can be initiated by membrane potential afterdepolarisation events 

whose amplitude is sufficient to initiate regenerative Na
+
 or Ca

2+
 channel excitation. Early 

after-depolarisation (EAD) events typically occur under bradycardic conditions, when altered 

balances of inward Na
+
 or Ca

2+
 and outward K

+
 current prolong the action potential. This 

permits Ca
2+

 current reactivation in turn triggering an extrasystolic action potential 

potentially leading to torsades de pointes. Delayed after-depolarisation (DAD) events 

following full action potential repolarisation result from transient inward currents, Iti, 

resulting from enhanced electrogenic Na
+
/Ca

2+
 exchange activity when this is increased by 

elevations in cytosolic Ca
2+

 concentrations due to abnormal diastolic SR Ca
2+

 release 
11,56

.  

 

Thirdly, abnormal action potential conduction slowing can follow functional reductions in 

inward Na
+
 current initiating the action potential and driving its propagation. It can also result 

from anatomical changes altering tissue electrical resistance compromising the local circuit 

currents taking place through connexin channels, and propagating the action potential. Either 

can involve either functionally or anatomically defined pathways 
57

. Actual conduction block 

can be associated with heterogeneities in refractoriness and conduction in particular parts of 

such a circuit. These heterogeneities could be varying with time and previous impulse 

activation, or over anatomically or functionally consistent or defined paths. These often result 

in regions of unidirectional conduction block.  

 

Altered action potential conduction is then often associated with a presence of re-entrant 

substrate perpetuating previously triggered arrhythmias 
58

. Re-entry can also occur with 
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abnormal action potential recovery reflecting altered relationships between the time intervals 

between action potential recovery, refractoriness and repolarisation reserve. It has thus been 

associated with the presence of discrepancies between effective refractory periods and action 

potential recovery times as exemplified in LQT syndromes 
56

. Either spatial heterogeneities, 

exemplified by transmural gradients, or temporal heterogeneities, most frequently manifest as 

alternans in these parameters, and would accentuate other pro-arrhythmic effects 
11,59–61

.  

 

Pro-arrhythmic effects of isolated, decay or block of impulse conduction can also occur in the 

absence of re-entrant pathways. This is exemplified by the SA conduction block permitting 

escape of a supraventricular or ventricular focus then generating abnormal impulses. Similar 

phenomena could follow delayed or completely blocked AV conduction.  

 

Therapeutic targets: Ion current excitation and the action potential propagation 

wavefront  

 

The functional unit of excitable activity in the cardiomyocyte is the propagating action 

potential (Fig. 2). Typical action potential waveforms comprise rapid depolarising (phase 0), 

early repolarising (phase 1), brief atrial and prolonged ventricular plateaus (phase 2), late 

repolarisations (phase 3) and end in electrical diastole (phase 4). Phase 0 action potential 

initiation beginning this sequence of events requires inward Na
+
 current activation (Fig. 2A); 

Ca
2+

 channel activation contributes to the phase 2 plateau contribution, and is more 

prominent in ventricular than atrial muscle and is considered in the next section. Action 

potential generation through the heart is initiated from pacemaker activity in the SAN which 

possesses a If current, for which a new drug Class 0 affecting such periodic generation of 

electrical activity and therefore heart rate has been introduced. Heart rate reduction also 

offers a therapeutic strategy to managing acute cardiac ischemia.  

 

Of drugs directed at the inward Na
+
 current responsible for the depolarisation phase 0 of the 

action potential, Class Ia drugs preferentially bind to the open state of the Nav1.5 Na
+
 

channel with a dissociation time constant of τ ~1-10 s. They thus inhibit AV conduction and 

increase the effective refractory period. They also exhibit a concomitant K
+
 channel block 

which increases action potential duration. Together these properties reduce re-entrant 

tendency. Class Ib agents contrastingly bind preferentially to the inactivated state of the Na
+
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channel from which they more rapidly dissociate over τ ~0.1 - 1.0 s. The latter minimises the 

duration of their actions within and through successive cardiac cycles. This explains their 

effectiveness in preventing arrhythmias in ventricular tissue, whose Na
+
 channels remain 

inactive for the longest duration amongst cardiomyocyte types reflecting the duration of the 

action potential plateau. There they block Nav1.5 window current, shortening action potential 

duration and increasing effective refractory period. They are useful in cardiac ischaemic 

situations where there is Na
+
 channel inactivation. Class Ic drugs bind to inactivated channels 

but dissociate slowly, over τ > 10 s. This results in a use-dependent channel block, 

particularly under conditions of high channel activation frequencies. They thus produce a 

generalised reduction in cardiac excitability with widespread effects, including slowing AV 

conduction, but do so whilst exerting little effect on action potential duration. Atrial Na
+
 

channels remain open for longer than in the ventricles, and so class Ia and Ic drugs have been 

used to prevent supraventricular arrhythmias 
62

.   

 

Finally, the new Class Id recognises recently developed agents acting the late Na
+
 current 

(INaL). These drugs are of potential importance for managing pro-arrhythmic situations under 

conditions of reduced repolarisation reserve as in long QT syndrome 3, and pathological 

bradycardic and ischaemic conditions, and cardiac failure. They shorten action potential 

recovery and increase refractoriness and repolarisation reserve 
63

.  

 

Action potential repolarisation ultimately restoring the background resting potential is driven 

by a range of outward K
+
 currents (Fig. 2B) 

11,64
. An expanded class III reflects the 

considerable progress in our understanding of K
+
 channel subtypes 

64–68
. Thus, phase 0 

depolarisation is rapidly terminated by transient outward Kv4.3 and Kv4.2-mediated Ito 

currents driving the early phase 1 action potential repolarisation. In atrial myocytes (Fig. 2C), 

the prominent Ito and the atrial-specific Kv1.5 (KCNA5) mediated ultra-rapid IKur, as well as 

the GIRK1 and GIRK4 mediated acetylcholine sensitive IKACh together ensure the relatively 

shorter atrial action potentials. In ventricular myocytes (Fig. 2D), the Kv11.1 (HERG or 

KCNH2) mediated IKr rapidly activates with phase 0 action potential depolarisation, then 

rapidly inactivates over action potential phases 0–2 
69,70

. Phase 3 repolarisation then re-opens 

the channel driving outward phase 3 and early phase 4 currents that terminate the plateau. 

The more slowly activating Kv7.1 (KCNQ1) mediated IKs increases over phase 2 to become a 

major relatively persistent phase 3 K
+
 conductance. The Kir2.1, Kir2.2 and Kir2.3 (KCNJ2, 

KCNJ12 and KCNJ4) mediated inward rectifying IK1 reduces K
+
 conductance at voltages >-
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20 mV in phases 0-2. In contrast, it produces outward currents with repolarisation to <-40 

mV late in phase 3, and stabilises phase 4 diastolic resting potentials. The latter are also 

stabilised by background K2P2.1 (KCNK2, expressing K2P currents), and the normally small 

ATP-sensitive Kir6.2 (KCNJ11) mediating IKATP. However, the latter can be activated by 

reduced intracellular ATP levels 
71

. Finally the effective refractory period extends beyond 

each action potential. This can increase with Na
+
 channel inhibition delaying the point at 

which a critical proportion of Na
+
 channels has recovered, or with action potential 

prolongation.  

 

The new Class V of mechanosensitive channel blockers are selective for cation selective and 

a number of mechanosensitive ion channel types that include TRPC3 or TRPC6. However, 

they do not include currently clinically utilised drugs; their available exemplars are confined 

to investigational new drugs. The latter is also true for Class VI gap junction modulators, 

despite the importance of gap junction intercellular conductance between cardiomyocytes in 

cell-to-cell coupling. The latter is key to ventricular conduction, of central importance in the 

generation of re-entrant substrate. Thus, its underlying pro-arrhythmic action potential 

conduction slowing can result follow not only from compromised action potential activation 

due to reduced inward Na
+
 current but also anatomical changes altering connexin (Cx)-

dependent intercellular conductances 
8
.  

 

Action potential depolarisation produces a coherent wave of excitation followed by 

refractoriness often propagating through often anisotropic gap junction connexin connections 

between successive SAN, atrial, AV, purkinje and endocardial and epicardial ventricular 

cardiomyocytes respectively, with detailed action potential waveforms varying with cell type. 

Thus atrial cells show shorter APs than ventricular cells, reflecting their large repolarising, 

transient outward voltage dependent and acetylcholine-sensitive K
+
 currents (Fig. 2C, D) 

57,61,72
.  

 

Therapeutic targets: Ca
2+

 homeostasis and excitation contraction coupling. 

 

Figure 3 summarises recent reports suggesting reciprocal mechanistic relationships between 

the membrane excitation described above, and particular component excitation contraction 

coupling processes whose activation connects surface electrical activation to the initiation of 

mechanical activity. It thus represents the substantial progress made in understanding of this 
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area following Vaughan Williams’s original studies. Thus, membrane excitation includes a 

depolarisation-induced Phase 2 activation of transverse tubular L-type Ca
2+

 current ICaL in 

turn responsible for the action potential plateau phase. These Ca
2+

 currents also feed-forward 

to initiation of cardiac excitation contraction coupling. The resulting local elevations in 

cytosolic Ca
2+

concentration trigger a Ca
2+

-induced ryanodine receptor (RyR2) mediated 

sarcoplasmic reticular (SR) Ca
2+

 release, thereby synchronised to the membrane excitation 

events (Fig. 3c) 
73,74

. The resulting elevated cytosolic Ca
2+

 concentrations result in the 

troponin mediated activation of mechanical activity. Termination of this Ca
2+

 release process 

normally takes place with membrane repolarisation. The cytosolic Ca
2+

 concentration is then 

returned to its resting level by both SR membrane Ca
2+

-ATPase mediated Ca
2+

 re-uptake 

returning Ca
2+

 into the SR and the surface membrane Na
+
-Ca

2+
 exchanger which expels Ca

2+
 

from the cytosol into the extracellular space in return for extracellular Na
+
 entry 

75
. Thus, the 

cycles of increase followed by restoration of cytosolic Ca
2+

 concentration are normally 

synchronised with membrane events associated with the action potential. The overall 

energetic cost is defrayed by metabolically dependent mitochondrial generation of cellular 

ATP 
76

. 

 

However, the processes involved in intracellular Ca
2+

 homeostasis can show pro-arrhythmic 

events independent of such surface membrane control. They can also actually exert 

potentially pro-arrhythmic feed-back effects on their initiating membrane events. First, 

altered Ca
2+

 channel function itself may predispose to initiation of pro-arrhythmic early after-

depolarisation (EAD) phenomena late in phase 2 or early in phase 3 of the action potential 

particularly in the presence of action potential prolongation as might occur in long QT 

syndromes. These would in turn result in extrasystolic membrane excitation. Secondly, 

elevated sarcoplasmic Ca
2+

 concentrations resulting from increased Ca
2+

 channel or 

mechanosensitive channel activity, or RyR2 Ca
2+ 

sensitivity, can themselves trigger 

propagating waves of spontaneous SR Ca
2+

 release asynchronous to the normal cycles of 

membrane excitation. These can lead to elevated cytosolic Ca
2+

 concentrations. The latter can 

result in increased electrogenic Na
+
/Ca

2+
 exchange activity. This drives a depolarising 

transient inward current, ITI. The latter may result in pro-arrhythmic delayed after-

depolarisations (DADs) following full action potential repolarisation 
75

. Thirdly, elevations in 

cytosolic Ca
2+

 concentration have been associated with downregulated longer-term Na
+
 

channel expression and function compromising action potential conduction velocity 
77

. 
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Finally, the depolarising electrogenic effects of Na
+
/Ca

2+
 exchange may contribute to SAN 

automaticity 
78

. 

 

These recent advances have thus considerably broadened the range of potential therapeutic 

targets concerned with such Ca
2+

 homeostasis and its modulation. They hold future promise 

of agents directed at (a) surface membrane L and/or T-type Ca
2+

 channels, (b) intracellular 

RyR and inositol trisphosphate receptor- Ca
2+

 channels, (c) SR Ca
2+

-ATPase activity, (d) ion 

exchange, particularly Na
+
-Ca

2+
 exchange processes  and (e) phosphorylation levels of 

cytosolic Ca
2+

 handling proteins, including CamKII inhibitors and P21 activated kinase 1 

modulators. However, in this group, only Ca
2+

 channel blockers and one RyR2-blocker, 

flecainide, which has found recent use in monotherapy of catecholaminergic polymorphic 

ventricular tachycardia (CPVT) are currently clinically available. 

 

Therapeutic targets: autonomic modulators 

 

Figure 3b illustrates the various relationships between autonomic inputs and the processes 

outlined below in a retention and broadening of Vaughan Williams Class II beyond its 

originally listed sympathetic β-adrenergic effects. This reflects progress in understanding of 

the wide range of modulators acting upon the widely expressed cell surface membrane 

guanine nucleotide-binding protein (G-protein) coupled receptors (GPCRs). The latter have 

been successfully exploited in a variety of other therapeutic applications. Thus, in addition to 

the selective and non-selective adrenergic antagonists are adenosine receptor and cholinergic 

muscarinic receptor modulators 
6
, and a possibility of future potential targets amongst the 

~150 remaining orphan GPCRs. The updated G-protein mechanisms have wide actions on 

both the excitation-contraction coupling and the surface membrane groups of functions.  

 

First, β-adrenergic receptor activation produces multiple, inotropic, chronotropic and 

lusitropic effects upon cardiac function 
73

 through Gs-protein and adenylate cyclase activation 

increasing cytosolic cyclic 3’5’-adenosine monophosphate concentrations, [cAMP]i. The 

latter promotes protein kinase A (PKA) mediated phosphorylation actions on a wide range of 

ion channels including the Nav1.5 Na
+
 channel, Kv11.1 and Kv7.1 K

+
 channel species 

mediating rapid and slow IKr and IKs K
+
 currents, Cav1.2 and Cav1.3 L-type Ca

2+
 channels 

mediating ICaL and the RyR2 SR Ca
2+

 release channel. cAMP also directly enhances HCN 



13 
 

channel and consequently pacemaker If current activity. Finally, exchange proteins directly 

activated by cAMP also likely trigger a pro-arrhythmic RyR2-mediated Ca
2+

 release 
79

.  

 

Secondly, of further G-protein subtypes, Table 1 now incorporates drugs targeted at Gi 

protein mediated parasympathetic cholinergic muscarinic (M2) or adenosine (A1) receptor 

activation, conversely reducing membrane excitation. These actions occur in the SAN, AVN 

or atrial myocardium even in the absence, but in ventricular tissue only in the presence, of 

pre-existing adrenergic challenge. The Gi activation causes a G protein  subunit mediated 

opening of inward rectifying IKACh or IKAdo channels particularly in supraventricular tissue, 

through actions on their GIRK1 and GIRK4 components 
65,80,81

. Gi activation also inhibits 

adenylyl cyclase reducing [cAMP]i and its associated increases in ICaL and If. It may also 

upregulate protein phosphatase 2 (PP2A)-mediated dephosphorylation at PKA 

phosphorylation sites 
82,83

.  

 

These updates prompt class II subclassifications of the clinically used nonselective and 

selective β1-adrenergic receptor inhibitors carvedilol propranolol and nadolol, and atenolol 

and bisoprolol respectively. To this are added the nonselective β-adrenergic receptor 

activators isoproterenol, reflecting the Gs-protein and adenylate cyclase modulation, and new 

subclasses also representing drugs acting through Gi protein.  

 

Possible therapeutic targets: upstream modulators of energetic status and 

structural remodeling  

 

Processes affecting long term cellular energetics and remodeling of tissue structure (Figs. 1d, 

3d) contrast with the primary pre-occupation with the acute effects on specific ion channels 

in the original Vaughan Williams classification. Thus, rather than direct effects on arrhythmic 

processes, the drugs included in Class VII are normally indicated for cardiovascular 

conditions such as hypertension, coronary artery disease, and heart failure that do not 

primarily result in arrhythmias. Nevertheless, such specific conditions, and the general 

categories of changes related to oxidative stress as well as longer term structural. fibrotic, 

hypertrophic, inflammatory, changes upstream of the electrophysiological processes at the 

membrane level have been associated with atrial fibrillation 
84–86

.  
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Metabolic stress associated with cardiovascular conditions such as hypertrophic change, 

cardiac failure, and ischaemia-reperfusion 
87–90

, and biochemical conditions including 

obesity, insulin resistance and type 2 diabetes are thus accompanied by energetic, particularly 

mitochondrial, dysfunction 
91–93

. The consequent destabilisation of inner membrane potentials 

required to drive the electron transport chain compromises ATP synthesis. ATP depletion or 

increased ADP increases sarcolemmal ATP-sensitive K
+
 channel (sarcKATP) open 

probabilities 
94

. This shortens action potential duration, potentially producing pro-arrhythmic 

re-entrant substrate 
95,96

, and hyperpolarises cell membrane potentials compromising cell 

excitability and action potential propagation 
94

.  

 

Compromised mitochondrial function also increases reactive oxygen species (ROS)-induced 

ROS release; ROS exert a wide range of potentially arrhythmogenic channel actions bearing 

upon cell-cell coupling 
97

, action potential conduction 
98

, repolarisation 
99

, alternans 
100

, and 

Ca
2+

 -mediated triggers 
90

. They decrease INa 
98

 and IK 
99

, activate sarcolemmal KATP channels 

101
, modify Na

+
 and L-type Ca

2+
 channel inactivation, increase INaL and oxidise RyR2. The 

latter results in an increased SR Ca
2+

 leak, altering intracellular Ca
2+

 cycling 
76,90,102

. They 

also reduce Cx43 trafficking and function 
94,103,104

..  

 

Atrial fibrosis is a potential source of arrhythmic substrate leading to atrial fibrillation; 

fibrotic change also accompanies some Na
+
 channelopathies 

105,106
. A significant proportion 

of pharmacological agents that might influence this are known to act on the renin-angiotensin 

system. In the present context, rather than its immediate cardiovascular pressor effects, they 

likely relate to its effects on cardiac remodelling. Thus, angiotensin II, through angiotensin 

receptor-1 (AT1) may trigger fibroblast proliferation associated with increased transforming 

growth factor β (TGF-β) release. This promotes fibrotic and/or hypertrophic change which 

AT1 receptor antagonists are reported to reduce. Angiotensin II has also been reported to 

affect cardiac electrical activity including gap-junction mediated impulse propagation. 

Finally, AT1 receptor activation has been reported to upregulate ROS with inflammatory as 

well as mitochondrial effects. Preliminary evidence suggests that the currently available 

drugs listed including angiotensin-converting enzyme and angiotensin receptor blockers, 

aldosterone receptor antagonists, 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors 

(statins), and n-3 (ω-3) polyunsaturated fatty acids may reduce such structural and 

electrophysiological remodelling 
85

. 
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Further future upstream targets are likely to emerge. For example, the key cardiomyocyte 

regulator of ion channel activity, Ca
2+

 homeostasis and cardiac contractility 
82,83,107

, P21 

activated kinase 1 (PAK1), has been reported to cardio-protect through signalling processes 

inhibiting maladaptive, pro-arrhythmic, hypertrophic remodelling and progression in cardiac 

failure 
108

. This offers potential novel clinical therapeutic strategies 
109,110

. 

Recapitulation 

 

Cardiac arrhythmias constitute a major clinical problem, and pharmacological intervention 

remains the mainstay of their clinical management. Rational drug use relies on a fundamental 

understanding of drug modes of action through the cellular, systems, and clinical levels and 

clear correlations of these with their clinical indications and therapeutic actions. This thus 

further involves their systematic classification relating these scientific and clinical issues 

within a rational framework. This article surveys current clinically established anti-

arrhythmic drugs in the light of pharmacological developments that followed the historic 

Vaughan Williams classification of such agents. It utilises the major progress in our 

understanding of cardiac electrophysiology, its contained mechanisms and its molecular and 

physiological basis in the large number of underlying membrane ion channel, intracellular ion 

transport and autonomic receptor and effector protein molecules underlying normal and 

abnormal cardiac function. It places these within a recently introduced classification scheme 

systematising their pharmacological targets in the light of recent biomedical advances. The 

latter in turn are grouped into categories of electrophysiological effects and their direct or 

indirect convergence upon their primary arrhythmic mechanisms. Such a systematic approach 

may facilitate current and future anti-arrhythmic therapy. 
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Table 1.  Current anti-arrrhythmic pharmacological drugs (after 
7,13

) 
 

Class Drug exemplars Pharmacological targets Clinical indications Therapeutic action  

0  HCN channel blockers 

 ivabradine HCN channel mediated 

pacemaker current (If) 

inhibitor. 

Stable angina and chronic cardiac failure with 

HR ≥ 70 bpm. Potential new applications for 

tachyarrhythmias [ACCF/AHA/NICE 

guidelines 
14

] 

Reduced SAN automaticity 

 

I  Voltage-gated Na
+
 channel inhibitors 

 quinidine, ajmaline, 
disopyramide 

 

Nav1.5 open state; 

intermediate (τ~1-10 s) 

dissociation kinetics; often 

accompanying K
+
 channel 

inhibition 

Supraventricular tachyarrhythmias particularly 

recurrent AF. VT, VF (including SQTS and 

Brugada syndrome) [ACCF/AHA/NICE 

guidelines 
15–18

] 

Reduced ectopic ventricular/atrial automaticity and 

accessory pathway conduction. Increased refractory 

period, decreasing re-entrant tendency
19–21

 

 lidocaine, mexiletine Nav1.5 open state; rapid 

dissociation (τ~0.1-1.0 s). INa  

window current 

Ventricular tachyarrhythmias (VT, VF), 

particularly following myocardial infarction 

[ACCF/AHA/NICE guidelines 
15,17

].   

Reduced ectopic ventricular automaticity, DAD-

induced triggered activity, and re-entrant tendency by 

converting unidirectional to bidirectional block, 

particularly in ischaemic partially depolarised 

myocardium
19–21

 

 propafenone, flecainide Nav1.5 inactivated state; slow 

dissociation (τ>10 s). 

Supraventricular tachyarrhythmias (AT, Af, 

AF and tachycardias involving accessory 

pathways). Ventricular tachyarrhythmias 

resistant to other treatment in the absence of 

structural heart disease, PVC, CPVT 

[ACCF/AHA/NICE guidelines 
15–18

] 

Reduced ectopic ventricular/atrial automaticity, DAD-

induced triggered activity, and re-entrant tendency by 

converting unidirectional to bidirectional block. 

Slowed conduction and reduced excitability 

particularly at rapid heart rates blocking re-entrant 

pathways showing depressed conduction
19–21

 

 ranolazine Nav1.5 late INaL current.  Stable angina, VT. Potential new class of 

drugs for management of tachyarrhythmias, 

particularly in LQTS3. [Clinical trials related 

to anti-arrhythmic effects 
22–25

] 

  

Decreased AP recovery time and QT interval. Reduced 

EAD -induced triggered activity 

II  Autonomic inhibitors and activators 

https://en.wikipedia.org/wiki/Ajmaline
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 Non selective, β-inhibitors: 

carvedilol, propranolol, 

nadolol 

 

Selective β1-adrenergic 

receptor inhibitors: atenolol, 

bisoprolol, betaxolol, 
celiprolol, esmolol, 

metoprolol 

Non selective, β-, and 

selective β1-adrenergic 

receptor inhibitors 

 

 

Sinus tachycardia or other types of 

tachycardic, including supraventricular (AF, 

Af, AT), arrhythmias.  Rate control of AF, and 

ventricular tachyarrhythmias (VT, PVC). 

[note. Atenolol, propranolol and nadolol also 

used in LQTS; nadolol used in CPVT] 

[ACCF/AHA/NICE guidelines 
15–18

]  

Reduced SAN, AVN and ectopic ventricular/atrial 

automaticity. Reduced EAD/DAD-induced triggered 

activity, SAN re-entry, and AVN conduction 

terminating re-entry
6,20,21

.  

 isoproterenol 

 

Nonselective β adrenergic 

receptor activators 

Congenital or acquired (often drug-related) 

Torsades de Pointes VT [ACCF/AHA/NICE 

guidelines 
15–18

] 

Suppressed EAD related triggered activity
6,20,21

. 

 

 

 atropine, anisodamine, 

hyoscine, scopolamine 

Muscarinic M2 receptor 

inhibitors 

 

Mild or modulate symptomatic sinus 

bradycardia or AVN conduction inhibition 

[ACCF/AHA/NICE guidelines 
15,18

]. 

Increased SAN automaticity and AVN conduction
20,21 

 

 

 

 carbachol, pilocarpine, 

methacholine, digoxin 

Muscarinic M2 receptor 

activators 

Sinus tachycardia or supraventricular 

tachyarrhythmias [ACCF/AHA/NICE 

guidelines 
15,18

]. 

Reduced SAN automaticity, SAN re-entry, and AVN 

conduction terminating re-entry
20,21 

 
 adenosine, ATP. 

[note: aminophylline acts as 

an adenosine receptor 

inhibitor] 

 

Adenosine A1 receptor 

activators 

 

 

Sinus tachycardia, supraventricular 

tachyarrhythmias, frequent atrial or premature 

ventricular beats, cAMP-mediated triggered 

VT [ACCF/AHA/NICE guidelines 
15,17,18

]. 

 

Reduced SAN automaticity, EAD/DAD-induced 

triggered activity, and AVN conduction, terminating 

re-entry
20,21,26

  

III   K
+
 channel inhibitors and openers 

 ambasilide, amiodarone, 

dronedarone 

 

Nonselective K
+
 channel 

inhibitors  

 

VT in patients without structural heart disease, 

or with remote myocardial infarction, 

Tachyarrhythmias with WPW. AF with AV 

conduction via accessory pathway; VF and 

PVC; Tachyarrhythmias associated with 

supraventricular arrhythmias and AF 

[ACCF/AHA/NICE guidelines 
15–18

]. 

Increased AP recovery time, and refractory period, 

decreasing re-entrant tendency. 

Note. Amiodarone also slows sinus node rate and AV 

conduction
20,21

. 

 

 dofetilide, ibutilide, sotalol  Kv11.1 (HERG) channel 

mediated rapid K
+
 current (IKr) 

inhibitors 

 

VT in patients without structural heart disease, 

or with remote myocardial infarction. 

Tachyarrhythmias associated with WPW 

syndrome. AF with AV conduction via 

accessory pathway, VF, PVC. Tachy-

arrhythmias associated with supraventricular 

Increased AP recovery time  and refractory period, 

with decreased re-entrant tendency
20,21,27
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arrhythmias and AF [ACCF/AHA/NICE 

guidelines 
15–18

. 

 vernakalant Kv1.5 channel mediated, 

ultra-rapid K
+
 current (IKur ) 

inhibitors 

Acute conversion of AF. [Clinical trials 

related to anti-arrhythmic effects: 
28–31

] 

Increased atrial AP recovery time, and atrial refractory 

period, with decreased re-entrant tendency
20

 

 

 nicorandil, pinacidil 

 

Kir6.2 (IKATP) openers 

 

Nicorandil: treatment of stable angina 

(second-line).  [note. Pinacidil: investigational 

drug for the treatment of hypertension] 

Potentially decreased AP recovery time  

 

IV   Ca
2+

 handling modulators  

 bepridil Nonselective surface 

membrane Ca
2+

 channel 

inhibitors  

Angina pectoris. Potential management of 

supraventricular tachyarrhythmias 

[ACCF/AHA/NICE guidelines 
15,18

] 

Reduced AVN conduction, terminating re-entry, and  

EAD/ DAD-induced triggered activity
6,20,21

 

 phenylalkylamines (e.g. 

verapamil), 

benzothiazepines (e.g. 

diltiazem). 

Cav1.2 and Cav1.3 channel 

mediated L-type Ca
2+

 current 

(ICaL) inhibitors 

Supraventricular arrhythmias and VT without 

structural heart disease.  Rate control of AF 

[ACCF/AHA/NICE guidelines 
15,17,18

]. 

Reduced AVN conduction, terminating re-entry, and  

EAD/ DAD-induced triggered activity
6,20,21

 

 flecainide SR RyR2-Ca
2+

 channel 

inhibitors 

Catecholaminergic polymorphic ventricular 

tachycardia (CPVT). [Clinical trials related to 

anti-arrhythmic effects
32,33,34

] 

Reduced DAD-induced triggered activity
6,20,21

 

V  Mechanosensitive channel inhibitors 

 No clinically approved drugs 

in use. 

   

VI  Gap junction channel inhibitors 

 No clinically approved drugs 

in use. 

   

VII  Upstream target modulators  

 captopril, enalapril, delapril, 

ramipril, quinapril 

perindopril, 

lisinopril,benazepril, 

imidapril, trandolapril,   

cilazapril 

Angiotensin-converting 

enzyme inhibitors (ACEIs) 

Management of hypertension, symptomatic 

heart failure. Potential application reducing 

arrhythmic substrate. [Clinical trials related to 

anti-arrhythmic effects
35–37

] 

 

 

Reduced structural and electrophysiological 

remodelling changes that compromise AP conduction 

and increase re-entrant tendency 

 losartan, candesartan, 

eprosartan, telmisartan, 

irbesartan, olmesartan, 

valsartan, saprisartan 

Angiotensin receptor 

inhibitors (ARBs) 

Management of hypertension, symptomatic 

heart failure. Potential application reducing 

arrhythmic substrate. [Clinical trials related 

to anti-arrhythmic effects
35,38,39

] 

 

 

Reduced structural and electrophysiological 

remodelling changes that compromise AP conduction 

and increase re-entrant tendency  

https://www.medicinenet.com/heart_disease_pictures_slideshow_visual_guide/article.htm
https://en.wikipedia.org/wiki/Ramipril
https://en.wikipedia.org/wiki/Quinapril
https://en.wikipedia.org/wiki/Perindopril
https://en.wikipedia.org/wiki/Lisinopril
https://en.wikipedia.org/wiki/Benazepril
https://en.wikipedia.org/wiki/Imidapril
https://en.wikipedia.org/wiki/Trandolapril
https://en.wikipedia.org/wiki/Cilazapril
https://en.wikipedia.org/wiki/Telmisartan
https://en.wikipedia.org/wiki/Irbesartan
https://en.wikipedia.org/wiki/Olmesartan
https://en.wikipedia.org/wiki/Valsartan
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 eplerenone, spironolactone Aldosterone receptor 

antagonists 

Congestive cardiac failure. [Clinical trials 

related to anti-arrhythmic effects
40–47

] 

 

Potential reduction of arrhythmic substrate, including 

reduced fibrosis. K
+
 sparing diuretic effect. 

 omega-3 fatty acids:  

eicosapentaenoic acid 

(EHA), docosahexaenoic 

acid （DHA, 

docosapentaenoic acid 

(DPA) 

Omega-3 fatty acids Post myocardial infarct reduction of risk of 

cardiac death, myocardial infarct, stroke, and 

abnormal cardiac rhythms. [Clinical trials 

related to anti-arrhythmic effects
48–50

] 

Reduced structural and electrophysiological 

remodelling changes that compromise AP conduction 

and increase re-entrant tendency  

 statins 3-hydroxy-3-methyl-glutaryl-

CoA reductase inhibitors 

Post myocardial infarct reduction of risk of 

cardiac death, myocardial infarct, stroke, and 

abnormal cardiac rhythms. [Clinical trials 

related to anti-arrhythmic effects
51–54

] 

 

Reduced structural and electrophysiological 

remodelling changes that compromise AP conduction 

and increase re-entrant tendency 

Notes 

1. Of categories in the full classification 
7
, Classes V (Mechanosensitive channel inhibitors), VI (Gap junction channel inhibitors) and subclasses IIIc (Transmitter dependent 

K
+
 channel inhibitors), IVc (Sarcoplasmic reticular Ca

2+
-ATPase activators), IVd (Surface membrane ion exchange inhibitors) and IVe (Phosphokinase and phosphorylase 

inhibitors) include investigational but not clinically approved drugs and are not listed here. In Class III, nicorandil and pinacidil are approved drugs but not in use or clinical 

trials for anti-arrhythmic therapy. Class VII (Upstream target modulators) contains approved drugs not in current direct use for anti-arrhythmic therapy, but for which clinical 

trials for anti-arrhythmic actions are now available. 

 

2. Abbreviations: AF, atrial fibrillation; Af, atrial flutter; AP, action potential; AT, atrial tachycardia; AV, atrioventricular; AVN; atrioventricular node; cAMP, cyclic 3’,5’-

adenosine monophosphate; CPVT, catecholaminergic polymorphic ventricular tachycardia; DAD, delayed afterdepolarisation; EAD, early afterdepolarisation; HCN, 

hyperpolarisation cyclic nucleotide activated channel; HR, heart rate; LQTS, long QT syndrome; PVC, premature ventricular contraction; SAN, sino-atrial node; SQTS, short 

QT syndrome; VF, ventricular fibrillation; VT, ventricular tachycardia; WPW, Wolf-Parkinson-White syndrome. 
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Figure legends  

 

Figure 1. Modernised classification scheme 
7,13

 for currently available pharmacological 

agents directed at treatment of arrhythmia, with a correlation of the relevant classes (A) acting 

on either arrhythmic trigger or substrate 
56

 (B), to the cascade of their underlying cellular 

membrane and physiological processes (Ca-d) 
11

. 

 

Figure 2. Membrane ion currents, listing their underlying proteins and encoding genes, 

underlying inward depolarising (A) or outward repolarising currents (B) producing the atrial 

(C) and ventricular (D) action potential, listing underlying membrane proteins and encoding 

genes 
11

.  

 

Figure 3. Surface and intracellular membrane ion channels, ion exchangers, transporters, 

autonomic receptors and ionic pumps involved in cardiomyocyte physiological excitation and 

activation forming established or potential pharmacological targets underlying membrane (a) 

and autonomic signalling (b), excitation contraction coupling (c) and upstream energetic or 

structural remodelling targets (d). ACh: acetylcholine; Adr: adrenaline; cAMP: cyclic 3’5-

adenosine monophosphate; Cx: connexin; Gi: inhibitory G protein; Gs stimulatory G-protein; 

HCN: hyperpolarisation-activated cyclic nucleotide-gated channel; MSC: mechanically 

sensitive channel; Na
+
, K

+
, Ca

2+
and Ca

2+
/3Na

+
 fluxes through Nav1.5/Na

+
, Kv/K

+
, Cav/Ca

2+
 

channel and Na
+
/Ca

2+
 exchanger proteins; PKA: protein kinase A; RyR2: cardiac ryanodine 

receptor, type 2; SERCA: sarcoplasmic reticular Ca
2+

 ATPase.
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