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We investigate an implication of the most recent observation of a second Jπ = 2+ state in 12C,
which was measured using the 12C(γ,α)8Be(g.s.) reaction. In addition to the dissociation of 12C to

an α-particle and 8Be in its ground state, a small fraction of events (2%) were identified as direct
decays and decays to excited states in 8Be. This allowed a limit on the direct 3α partial decay
width to be determined as Γ3α < 32(4) keV. Since this 2+ state is predicted by all theoretical
models to be a collective excitation of the Hoyle state, the 3α partial width of the Hoyle state is
calculable from the ratio of 3α decay penetrabilities of the Hoyle and 2+ states. This was calculated
using the semi-classical WKB approach and we deduce a stringent upper limit for the direct decay
branching ratio of the Hoyle state of Γ3α

Γ
< 5.7 × 10−6, over an order of magnitude lower than

previously reported. This result places the direct measurement of this rare decay mode beyond
current experimental capabilities.

PACS numbers: 21.60.Gx (Cluster models), 26.20.Fj (Stellar helium burning), 21.10.-k (Properties of nuclei;
nuclear energy levels), 27.20.+n (6≤A≤19)

The Hoyle state at 7.6542 MeV in 12C is a subject of
continued great interest due to the crucial role it plays
in the formation of 12C in the universe, and also due to
its peculiar α-particle structure [1]. Indeed, its very ex-
istence was used in ambitious nuclear lattice simulations
[2] to predict the quark masses and the strength of the
electromagnetic interaction in the frame of the anthropic
principle.

The discovery and analysis of the broad second 2+

state in 12C [3–7] at approximately 10 MeV has led to
an interesting conclusion on the structure of the narrow
[Γ = 8.5(1) eV] Hoyle state. This 2+ state is predicted to
be a collective excitation of the Hoyle state. This is also
supported by their similar measured reduced α-particle
widths and the observation of a Hoyle state rotational
band [8, 9]. The implication of the same underlying
structure allows us to study the excited 2+ state and
subsequently infer properties of the Hoyle state itself.

The Hoyle state is thought to exist as a three α-particle
system, which the algebraic cluster model (ACM) pre-
dicts are arranged on an equilateral triangle [8, 10]. In
contrast, ab initio nuclear lattice simulations using chiral
effective field theory [11] predict the three α-particles to
be arranged on an obtuse triangle. Furthermore, anti-
symmetrized molecular dynamics (AMD) and fermionic
molecular dynamics (FMD) calculations predict a trian-
gular 8Be + α configuration [12, 13]. It has also been
suggested that the Hoyle state could be the nuclear ana-
logue of atomic Bose Einstein Condensation [14, 15] if
the 3α system is sufficiently diffuse, allowing the bosonic

nature of the α-particle to dominate. Each of these mod-
els, despite vast differences in their formulations and pre-
dicted Hoyle state structures, successfully calculate var-
ious experimental observables. Therefore, distinguishing
between these models remains a challenge.

Recently, there has been a growing interest in measur-
ing the direct 3α-decay width of the Hoyle state [16–21]
in order to learn more about its structure. An upper
limit on the direct decay branching ratio of 0.019% was
obtained in the most recent study [21].

For a structureless α-condensate, the relative phase
spaces and Coulomb decay barriers for direct and sequen-
tial decays should entirely determine the branching ratio
for the direct 3α decay [22]. Under this assumption, a
branching ratio of 0.06% was calculated [19], larger than
the current experimental upper limits. Similar calcula-
tions [23] recently predicted a direct decay branching ra-
tio of 0.0036%, considerably below current experimental
limits. Furthermore, a detailed theoretical analysis into
the decay of the Hoyle state, calculated in the Faddeev
three-body formalism [24], concluded that the direct de-
cay should contribute at a level < 1%. The measured
experimental enhancement of the 8Beg.s. channel relative
to some theoretical predictions has been interpreted as
an underlying 8Be + α structure for the Hoyle state [19].
However, due to theoretical uncertainties, a meaningful
comparison with previous data is difficult, since the mea-
sured upper limits still lie close to these predictions.

In this paper, we report on new independent analyses
of the data reported in reference [7], which were mea-
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sured at the HIγS facility with an optical readout Time
Projection Chamber (O-TPC) [25]. We have reanalyzed
the excitation curve measured for the second 2+ state
at approximately 10 MeV and have extracted the de-
cay width of this 2+ state to channels other than α0 +
8Beg.s., using the branching ratio published in reference
[7]. Since the 3α reduced widths of this state and the
Hoyle state should be the same, based on the shared un-
derlying structure, their partial widths are related simply
by a ratio of decay penetrabilities. We utilise three-body
WKB tunnelling calculations to obtain the penetrability
ratio and extract an upper limit on the direct 3α de-
cay width of the Hoyle state. The result is compared
with predictions of this quantity in the framework of an
α-condensate structure and we conclude that our exper-
imental upper limit is considerably lower than that ex-
pected for an α-condensate.

In the experimental measurement of the 12C(γ, 3α) re-
action [7] the three outgoing α-particles were observed
using an O-TPC detector [25], which “takes a picture” of
the event and allows us to visualize it in three dimensions.
A reanalysis of the O-TPC data has allowed us to observe
two distinctively different 12C dissociation events: In one
class of events, two α-particles emerge close together, cor-
related in space from the decay of the ground state of
8Be. These are denoted as 12C(γ, α0)8Beg.s., and a typ-
ical event is shown in the upper panel of Fig. 1. In the
second class of events, we observe large opening angles
between the three α-particles. A typical event is shown in
the lower panel of Fig. 1. This means that the α-particles
share the breakup energy more evenly, and cannot cor-
respond to decays through the 8Beg.s.. These events
compose 2.0(2)% of the total “on resonance” events at
Eγ = 10.05 MeV, as previously reported [7].

These rare “direct decay” events have previ-
ously been identified [25] as the combined sequential
12C(γ, α1)8Be2+ and direct 12C(γ, 3α) dissociation of the
10 MeV second 2+ state of 12C. The two have strongly
overlapping kinematics because the 8Be2+ is so broad
[Γ ≈ 1.5 MeV]. As highlighted in a recent theoreti-
cal study [26], decays through the broad 8Beg.s. ghost
anomaly are also indistinguishable from direct 3α decays.
Therefore, it can be concluded that

Γ − Γα0 = Γα1 + Γ3α, (1)

Γ3α < Γ − Γα0. (2)

where Γ is the total width of the second 2+ state, Γα0
and Γα1 are the α-widths for decays to the 8Beg.s. and
8Be2+ , respectively, and Γ3α is the width for direct 3α
decay.

The 2+ resonance curve measured using the
12C(γ,α0)8Be(g.s.) reaction [7] has since been rean-
alyzed using a single level R matrix fit. New resonance
parameters were extracted and published in reference
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FIG. 1. (Color online) Different types of events pho-
tographed by the O-TPC for Eγ = 9.6 MeV. Upper panel:
A 12C(γ,α0)8Be(g.s.) sequential decay. Lower panel: A
12C(γ,α1)8Be2+ sequential decay or 12C(γ,3α) direct decay,
which are indistinguishable.

[27]: ER = 10.025(50) MeV, Γ = 1.60(13) MeV,
θ2α0

= 2.3(3) and Γγ = 220+26
−36 keV. In the new

R matrix analysis, the resonance parameters were found
to be sensitive to the channel radius. The penetration
factor is evaluated at the channel radius, which is given

as R = R0(A
1/3
1 +A

1/3
2 ), where A1 and A2 are the mass

numbers of the α and 8Be decay fragments. Therefore,
the chosen best fit and corresponding uncertainties
include consideration of both the obtained χ2 values and
the systematic variation due to the R0 parameter.

A χ2 per degree of freedom close to unity was obtained
for a large R0 = 1.6 fm. The fit requiring such an unusu-
ally large channel radius is strongly indicative of a spa-
tially extended structure. A large R0 is also required to
obtain the experimental width of the Hoyle state [28]. A
comparably large θ2α0

value is obtained using R0 = 1.6 fm
[27]. Due to their shared underlying structure, the Hoyle
state and 2+ excitation have similar θ2α0

values, each re-
quiring a large channel radius.

Using the measured total width of the 2+ state of
Γ = 1.60(13) MeV [27] and the 2% observed branching ra-
tio for non-α0 events, we deduce Γ3α < 32(4) keV. From
this we extract an upper limit of Γ3α for the Hoyle state.
In R matrix theory, the partial width of a state, for chan-
nel, i, is given by Γi = 2Piγ

2
i , where Pi is the penetra-
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bility factor and γ2i is the reduced channel width. Recall
that the reduced-channel-width-to-Wigner-limit ratio is
denoted by θ2i , which is defined as

γ2i = θ2i ×
3

2

~2

MR2
, (3)

Since the Hoyle state and second 2+ state share the
same intrinsic structure, we assume that θ23α(Hoyle) =
θ23α(2+), hence

γ23α(Hoyle) = γ23α(2+) (4)

Γ3α(Hoyle) = Γ3α(2+)
P3α(Hoyle)

P3α(2+)
. (5)

We discuss below our method for calculating the ratio of
the two penetrability factors in equation 5 and we deduce
an upper limit on the direct 3α width for the Hoyle state,
Γ3α(Hoyle).

The three α-particle system is fully described by their
three relative coordinates. Using these relative coordi-
nates, the 3α Coulomb and Centrifugal decay barriers
may be parameterised by the hyperradius of the system,
ρ, as defined by equation 3 in reference [29]. It was as-
sumed that only the lowest value partial wave for each
decay contributes, since it has the lowest barrier [30, 31].

Unlike in a simple sequential decay, the direct decay
into three α-particles permits a variety of different α-
configurations. These vary from an extreme collinear
decay, where two of the α-particles are emitted back-to-
back, leaving the third stationary, through to an equal
energies case, where the α-particles are emitted at 120◦

to one another. These cases are pictured in the inset
of figure 2. Importantly, these different decay configura-
tions possess different decay barriers which are shown as
a function of the hyperradius, ρ, for the Hoyle state in
figure 2. This must be considered when calculating the
penetrability factor for the 3α decay.

The Penetrability of Three Alphas (PeTA) code [32]
was used to calculate the 3α penetrability factors for the
direct decay of the Hoyle state and 2+ excitation. Further
details may be found in reference [29]. This Monte-Carlo
code uniformly samples the available phase space for a
given direct decay and generates 3α momenta subject to
the constraints of energy and momentum conservation.
The code calculates the penetrability factor for the 3α
decay using the semi-classical WKB approach presented
in reference [30], and an average is found over all of the
generated 3α configurations. This approach assumes that
the trajectories of the three α-particles and the barrier
do not change during tunneling. Full consideration of
the decay dynamics and the 3α Coulomb interactions will
perturb this static picture.

The PeTA WKB code [32] has previously been used
to predict the 3α phase space distribution for decays
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FIG. 2. (Color online) The Coulomb potential as a function
of the hyperradius for various direct 3α decay configurations
of the Hoyle state. The horizontal and vertical dashed lines
show the energy above the 3α threshold and the ρ0 value,
respectively.

from the Hoyle state [19, 29]. Its agreement with an-
other model [26], which accounts for the 3α Coulomb
interactions differently, has been noted. Using this code,
the ratio of penetrability factors P3α(Hoyle)/P3α(2+) was
found to be 8(2) × 10−10. The α-particles are calculated
to tunnel from a point where they are just touching (ρ0
in figure 2) out to the classical turning point. Therefore,
the result depends on the α-particle radius, which scales
with theR0 parameter. Although the penetrabilities vary
strongly with R0, their ratio, P3α(Hoyle)/P3α(2+), re-
mains fairly insensitive to this parameter, as shown in
figure 3.

Including a more realistic Coulomb interaction for
overlapping spherical charge distributions, rather than
point charges, will affect the result. However, this has
previously been evaluated for the sequential decay of the
Hoyle state and was found to give a modest change for
reasonable R0 values [33]. Furthermore, the inclusion of
an attractive nuclear potential will act to lower the tun-
neling barrier near to the channel radius, thus altering
the absolute values of the decay penetrability. However,
we already account for a variation in barrier height by an-
alyzing the change in P3α(Hoyle)/P3α(2+) over a range
of R0. Therefore, the approximate effect of an attractive
potential is included within this uncertainty.

Using equation 5, and the ratio of penetrabilities, an
upper limit on the 3α partial width was calculated to be
2.6(7) × 10−5 eV. Using this value and the known width
for the Hoyle state, Γ = 8.5(1) eV, we deduce a direct de-
cay branching ratio upper limit of B.R. < 5.7×10−6. All
experimental uncertainties and systematic errors from
the calculations have been included in this limit, totalling
around 25%. The primary assumption of this work, that
the reduced 3α channel widths of the Hoyle state and 2+



4

state are the same, adds a further factor of 2 uncertainty.
This is based on the θ2α0

values of 1.5 [27] and 2.3(3) for
the Hoyle and second 2+ states, respectively.
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FIG. 3. The ratio of the 3α penetrability factors as a function
of the R0 parameter. The vertical dashed line marks the R0

value that best reproduces the experimental α-particle radius.

In the most recent experiment, an upper limit on
this direct decay branching ratio was placed at 0.019%
(≈10−4) [21]. Therefore, the upper limit deduced in this
work is approximately two orders of magnitude below the
experimental limit. Our calculated upper limit, which is
based on the measured properties of the 10 MeV second
2+ state, yield, for the first time, an upper limit for di-
rect decay far lower than existing theoretical predictions
[19, 23, 24]. In references [19, 22], it was stated that, in
the popular α-condensate description of the Hoyle state,
the direct decay branching ratio should be around 0.06%.
Similar calculations [23] recently predicted a direct de-
cay branching ratio of 0.0036%. The presently derived
upper limit is considerably lower than these calculations,
and is therefore inconsistent with the predictions for an
α-condensate state. As also noted in reference [19], an
experimental enhancement of the sequential decay chan-
nel could indicate a 8Be + α structure for the Hoyle
state as predicted by the molecular dynamics calculations
[12, 13].

In addition, future measurements of the 3α direct de-
cay of the Hoyle state may also provide new insight into
the nature of this 2+ resonance. If direct decay of the
Hoyle state is experimentally measured at a level higher
than our deduced upper limit, this could imply that the
Hoyle and 2+ resonances have different θ23α values, and
hence different structures, leading to important theo-
retical re-evaluations. Another possibility could be the
existence of additional 2+ strength at energies higher
than the 11.2 MeV maximum measured at HIγS, which
would have distorted the single level R matrix fit used in
this work. A future incompatible result would therefore
prompt further experimental work.
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