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ABSTRACT 

Purpose: Radiation-induced dermatitis is a common side effect of breast radiotherapy (RT). 

Current methods to evaluate breast skin toxicity include clinical examination, visual inspection, 

and patient-reported symptoms. Physiological changes associated with radiation- induced 

dermatitis, such as inflammation, may also increase body-surface temperature which can be 

detected by thermal imaging. Quantitative thermal imaging markers were identified using 

supervised machine-learning to develop a predictive model for radiation dermatitis. 

Methods: Ninety patients treated for adjuvant whole-breast radiotherapy (4250 Gy/fx=16) were 

recruited to the study. Thermal images of the treated breast were taken at four intervals: prior to 

RT, then weekly, at fx=5, fx=10, and fx=15. Parametric thermograms were analyzed and yielded 

26 thermal-based features which included surface temperature (C) and texture parameters 

obtained from 1) grey-level co-occurrence matrix (GLCM), 2) grey-level run-length matrix 

(GLRLM) and 3) neighborhood grey-tone difference matrix (GTDM). Skin toxicity was 

evaluated at the end of RT using the Common Terminology Criteria for Adverse Events 

(CTCAE) guidelines (Ver.5). Binary group classes were labelled according to a CTCAE cut-off 

score of ≥2, and thermal features obtained at fx=5 were used for supervised machine learning to 

predict skin toxicity. The dataset was partitioned for model training, independent testing, and 

validation. Fifteen patients (~ 17% of the whole dataset) were randomly selected as an unseen 

test dataset, and 75 patients (~ 83% of the whole dataset) were used for training and validation of 

the model. A random forest classifier with leave-one-patient-out cross-validation was employed 

for modelling single and hybrid parameters. The model performance was reported using receiver 

operating characteristic analysis on patients from an independent test set.  
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Results: Thirty-seven patients presented with adverse skin effects, denoted by a CTCAE score 

≥2, and had significantly higher local increases in skin temperature, reaching 36.06C at fx=10 

(p=0.029). However, machine- learning models demonstrated early thermal signals associated 

with skin toxicity after the fifth RT fraction. The cross-validated model showed high prediction 

accuracy (Acc) on the independent test data (test Acc=0.87) at fx=5 for predicting the skin 

toxicity at the end of RT.  

Conclusion: Early thermal markers after five fractions of RT are predictive of radiation- induced 

skin toxicity in breast radiotherapy. 
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INTRODUCTION 

Radiation therapy (RT) utilizes ionizing radiation to target residual cancer cells of the 

breast and induce cellular death. This results in the reduction of locoregional and distant cancer 

recurrence following lumpectomy (15.7%; 95% CI: 13.7-17.7; p<0.00001) (1) or mastectomy 

(11.5%; 95% CI: 0.57-0.82; p=0.00006) (2). However, RT is associated with dermatological 

risks such as erythema which affects approximately 90% of treated patients (3,4). The skin is a 

highly proliferative organ and is therefore, susceptible to radiation damage and toxicity (5). 

Cellular apoptotic and necrotic events are initiated in the skin from repeated and fractionated 

exposure to radiation (5,6). Cellular death leads to the recruitment of cytokines, prompting an 

inflammatory response (acute dermatitis) that stimulates the transendothelial migration of 

immune cells to the target site (5,6). Consequently, blood vessels dilate causing increases in 

blood volume; while the damaged irradiated skin clinically presents as erythema and 

desquamation (3). As a result, patients undergoing RT are carefully monitored using standard 

assessment tools such as, the Common Terminology Criteria for Adverse Events (CTCAE) 

system to manage toxicity burden (7). Major challenges associated with visual inspection of the 

breast to evaluate skin-related symptoms include low sensitivity and specificity for detecting 

early signs of dermatitis, as well as differentiating the degree of severe skin toxicity (i.e. 

CTCAE≥2). This is caused by practitioner bias, under-reporting by patients, and clinician 

expertise that may lead to the variabilities in grading skin toxicity (7–9). Topographical imaging 

modalities, such as quantitative thermal imaging (QTI) have the potential to overcome these 

challenges and objectively measure the changes in surface skin temperature associated with 

radiation- induced skin dermatitis. Exploiting QTI and machine learning frameworks (i.e. 

thermoradiomics) may yield actionable insight into symptom management during radiotherapy. 
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 Quantitative thermal imaging has previously been used to identify temperature changes 

associated with alterations in blood flow and disease presentation (10–12). Within the RT 

setting, Maillot et al., investigated the use of thermography to quantitatively evaluate skin 

toxicity and found that patients that were classified using the CTCAE, and Radiotherapy 

Oncology Group (RTOG) criteria, demonstrated a high grade of skin toxicity (≥2) that was also 

associated with an increase in the average local temperature (p<0.05) (13). Furthermore, Maillot, 

et al. found that thermography-derived temperature features recorded a week before the clinical 

presentation of skin toxicity, had a predictive value of 70%. Their study also demonstrated a 

higher incidence of high-grade radiation- induced dermatitis after 10 – 15 RT fractions (13). 

Other QTI applications for breast cancer include using first-order temperature features, and 

second-order features such as thermogram-texture parameters for detecting breast lesions. 

Milosevic et al. tested the feasibility of thermal breast imaging to screen for malignancies. The 

study exploited machine learning classification algorithms to distinguish thermal features 

associated with benign versus malignant masses in the breast. Second-order features included 

grey-level co-occurrence matrix (GLCM) features, and the results of the study demonstrated a 

diagnostic accuracy of 92.5% (14). Potential applications and advantages of employing image-

guided decision support tools, such as QTI include early-intervention and preventive therapeutics 

that could mitigate radiation- induced skin toxicity. Current treatment strategies for managing 

skin toxicity include the use of glucocorticosteroids, to inhibit the inflammatory response that 

mediates acute skin dermatitis (15,16). Early thermoradiomic markers for skin toxicity would 

potentially allow radiation oncologists to target patients for prophylactic corticosteroid use, 

which has been shown to reduce the incidence of radiation-induced dermatitis (17).  
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Although the capability of thermal imaging to monitor the occurrence of disease has been 

demonstrated in previous studies, the potential of using temperature-based, and textural features 

as imaging biomarkers for radiation- induced dermatitis remains unclear and warrants further 

investigation (12,13). Here, we investigated QTI and machine learning frameworks (i.e. 

thermoradiomics) to develop a predictive tool for radiation-induced skin toxicity at early 

treatment time intervals. This study aimed to measure thermal characteristics of the irradiated 

skin in breast cancer patients and we hypothesized that radiation- induced skin toxicity is 

associated with an increase in skin-surface temperature and changes in thermoradiomic 

parameters. 
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METHODS 

Patient Recruitment Criteria and Radiation Treatment Parameters 

This study was carried out at a single academic health centre and approved by the 

institutional research ethics board. Participants signed an informed consent form prior to 

enrolment. Patients were included in the study based on the following inclusion criteria: 

confirmed diagnosis of invasive breast cancer or ductal carcinoma in situ, age (18+), and 

undergoing adjuvant hypofractionated radiotherapy to the whole breast or chestwall (4250 

Gy/fx=16). Patients were excluded from the study if their planned treatment position was prone, 

undergoing expander-implant breast reconstruction, or had a history of inflammatory breast 

cancer (18,19). Ninety patients were prospectively recruited to the study and clinical 

characteristics are presented in Table 1. All patients completed a full whole-breast or chestwall 

treatment course, i.e. 16 fractions of adjuvant RT and received standard skin management 

strategies, consisting of saline rinses only. As part of the study protocol, patients were not 

prescribed topical corticosteroids (e.g. hydrocortisone) or topical antibiotics (e.g. 

Bacitracin/polymyxin B or silver sulfadiazine cream) during their treatment course. Figure 1 

summarizes the study workflow and methods.  

 

Data Acquisition: Quantitative Thermal Imaging and Clinical Information 

Infrared (IR, thermal) imaging data was captured using a Forward-Looking Infrared 

(FLIR) E53 Advanced Thermal Imaging Device (FLIR, Wilsonville, USA). Images were 

acquired from the ipsilateral and contralateral breasts at the following time intervals: baseline 

(prior to RT), and after every fifth RT fraction (fx=5, fx=10, and fx=15). Imaging settings were 

kept constant throughout the time series for each patient. A fixed distance of 2 m was used 
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between the patient and camera. Thermograms were reconstructed at a resolution of 240 x180 

pixels. The instantaneous field of view (IFOV), which comprises the pixel size on the 

measurement surface (i.e. breast or chestwall) was 3.54 mm. Thermal images were captured 

using a fixed emissivity setting of =0.98.  

Long wave infrared thermography was carried out in a designated exam room. The room 

was controlled for ambient temperature and air flow during examination. Patients were 

positioned, while standing, with their arm behind their head, exposing the axilla, midline, and 

inframammary folds. All study participants were evaluated for radiation- induced skin toxicity 

using the CTCAE Ver. 5 guidelines and information was recorded in the electronic medical 

record. The final CTCAE assessment (i.e. end of the 16th fraction) was used for ground truth 

labelling in machine learning models (described below). Other clinical and demographic 

information were collected from the electronic medical records, and included the following 

variables: age, cancer diagnosis, clinicopathological characteristics of the tumor, surgery details 

and radiotherapy treatment information. Patient ethnicity was collected through clinical reports 

and breast cup size was measured as per the standardized North American scale (Table 1).  

Other clinical information associated with risk factors for radiation-induced dermatitis 

were collected from the patients’ electronic medical record and recorded in the patients’ case 

report forms (CRFs). Table 1 includes information on those variables, which include the 

administration of adjuvant chemotherapy (y/n), type of adjuvant chemotherapy, local treatment 

(whole breast only) versus locoregional irradiation (four-field technique involving the chestwall 

and regional lymph nodes), the radiation dose to skin volume (cGy), and menopausal status (20–

22).  
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Image Processing and Feature Extraction  

Data preprocessing was performed to construct parametric thermal images using FLIR’s 

proprietary software development kit (FileReader; FLIR, Wilsonville, USA). Thermal images 

were normalized using the software development kit prior to segmentation and analysis, which 

used a non-uniformity correction (NUC) process. Analytical software for segmentation and to 

extract first and second order QTI features was developed using MATLAB (The MathWorks, 

Natick USA). The region of interest (ROI) was delineated manually by using a standard protocol. 

The ROI comprised the treatment field borders according to clinical and anatomical landmarks, 

i.e. clavicle (superior border), 2 cm below inframammary fold (inferior border), midline sternum 

(medial border) and mid-axillary line (lateral border). The radiation treatment field published 

from the radiation treatment planning system (Pinnacle, Philips Healthcare, Amsterdam 

Netherlands) was used as a reference to the targeted irradiated area of the thermograms for each 

time interval. All ROIs were verified with our collaborating radiation oncologists with 5-30 years 

of experience (Figure 2F).  

First-order features included temperature (°C) measurements, which were calculated as 

an average value across the entire breast treatment area (Figure 2C). Other first-order features 

included entropy, skewness and kurtosis. All first-order features recorded are presented in 

Supplementary Table 1. The thermal images were also analyzed using second-order statistics to 

extract 25 textural features related to Haralick textures. For extracting textural features from the 

thermal images, the original thermograms were used without resampling and the full range of 

gray-level intensities in each thermal image was quantized into 16-levels. Second-order texture 

features were extracted using MATLAB (The MathWorks, Natick USA), and adapted from 

open-source radiomics codes using the Pyradiomics platform (23,24). The Pyradiomics platform 
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has been used in previous radiomic studies, and comprise standard methods for radiomics feature 

extraction and image analysis (24). Second-order features were derived using a grey-level co-

occurrence matrix (GLCM), which yielded attributes associated with the spatial relationship 

between pixel intensities (25,26). Other second-order features were computed from a grey-level 

run-length matrix (GLRLM) and a grey-tone difference matrix (GTDM). Other available second-

order feature matrices (e.g. a grey-level size zone [GLSZM] and a grey-level dependence matrix 

[GLDM]) were excluded due to redundancy with the selected feature sets, and sample size 

limitations, i.e., to avoid “data fishing” that can potentially overfit the models (i.e. the total 

number of selected features within a given model should be limited to 1/10 of the sample size) 

(27,28).  

Overall, there were four Haralick texture GLCM features (FGLCM=4), five GTDM 

features (FGTDM=5) , and 16 GLRLM attributes (FGLRLM=16). Grey-tone texture features were 

calculated based on a grey-scale of 16-tones (Ng=16). The displacement vector (d) and offset 

angle (), relative to the central pixel was constrained to, d=1, and  = 0, 45, 90, 135, 

respectively. Directional matrices (GLCM and GLRLM) were summated into a global matrix 

and normalized prior to feature extraction. The texture equations (GLCM, GTDM, GLRLM) and 

the textural features (F=25) are described in Supplementary Tables 2, 3 and 4.  

 

Statistical Analysis 

  Descriptive statistics were calculated for differences in temperature and textural features 

between CTCAE≥2 and CTCAE≤1 patient classes using SPSS V. 24 (IBM Corp., Armonk, NY, 

USA). This was calculated for the ipsilateral (irradiated) side and contralatera l (non-irradiated) 

side. A Shapiro-Wilk test was used to test for normality violations. Averages were calculated 
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(Figure 2C) and compared between groups using both parametric (unpaired, 2-sided 

independent t-test) and non-parametric (Mann-Whitney) statistical tests based on normal versus 

non-normal data distributions, respectively. A repeated-measures analysis of variance (ANOVA) 

was carried out to determine the significance of temporal changes in features. A Bonferroni 

correction for multiple comparisons was carried out, as well as random sampling with 

replacement (i.e. bootstrapping) over 1000 repetitions. Group comparisons for clinical and 

demographic data used a Fisher’s exact test to compare categorical variables (Table 1). P values 

< 0.05 were considered significant. 

 

Dimensionality Reduction and Machine Learning Modelling 

For thermoradiomic markers, the relative changes from the baseline value of all first- and 

second-order features were calculated for each subject and class at all time intervals. Skin 

toxicity is typically observed after the 10th RT fraction; therefore, the objective was to test if QTI 

and texture parameters obtained from earlier time intervals (i.e., 5th RT fraction) demonstrated 

early prediction capabilities to severe skin toxicity.  Several machine learning classification 

experiments were carried out to yield various predictive models.  First, the dataset was divided 

into two sets for training and independent testing of the model. Fifteen patients (~ 17% of the 

whole dataset) were randomly selected as an unseen test dataset, and 75 patients (~ 83% of the 

whole dataset) were used for training and validation of the model. Feature selection was 

performed using a sequential forward feature selection (SFS) approach. The leave-one-patient-

out (LOPO) cross-validated area under the receiver operating characteristic (ROC) curve (area 

under the curve, AUC) was used as the criteria for feature selection. In the first two experiments, 

the first-order temperature features alone, were used as the initial feature set. In experiments 
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three and four, all first-order and texture features were included in the initial feature set.  Since 

the first initial feature set only included 8 first-order features, no feature reduction was applied or 

required prior to feature selection. The second initial feature set included 33 features (8 first-

order and 25 texture features) and the redundant features were eliminated based on inter-feature 

correlation. Specifically, the correlation between each two features was calculated. The features 

with high inter-feature correlation (r2 > 0.70) were selected for analysis, and the retention 

criterion was based on the feature that yielded a higher AUC in the training set. Bootstrapping 

was used on the training data to improve the generalization performance of the trained classifier 

on unseen data (29). Specifically, the classifier was trained using 100 bootstrap samples for each 

fold of the data during LOPO cross-validation. Before each bootstrap sampling, the majority 

class (negative) was randomly down sampled to compensate for the imbalance of data between 

the two classes (45 negative versus 30 positive cases). The optimal feature set was selected using 

a majority vote on the selected features for all folds of the data. The sensitivity, specificity, and 

accuracy of the trained model were calculated on the unseen test data and used in addition to the 

AUC to evaluate the efficacy of the optimal feature set to predict skin toxicity (30).  

Machine learning classification experiments were repeated using clinical features alone to 

develop a baseline clinical model. Six clinical features were modelled, which have been 

previously shown to predict radiation- induced skin toxicity: adjuvant chemotherapy (y/n), type 

of adjuvant chemotherapy, local (whole breast only) versus locoregional (four-field technique) 

irradiation, radiation dose to skin volume (cGy), menopausal status, and cup size. The clinical 

model was trained and subsequently evaluated using the same training and testing sets (subjects) 

that were utilized to develop the thermoradiomic model. The baseline clinical model was used to 

compare the performances between clinical features alone, versus thermoradiomic predictors.  
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RESULTS 

Study Participant Demographics and Outcomes 

Of the ninety patients enrolled in this study, 37 (41%) presented with bright tender 

erythema and/or desquamation (CTCAE≥2) at the end of their treatment. The difference in 

reported skin toxicity between CTCAE≥2 and CTCAE≤1 groups is represented in 

Supplementary Figure A. Of the patients that presented with skin toxicity (CTCAE≥2), 70.3% 

were Caucasian, 13.5% Asian, and 5.4% were Black (Table 1). Further demographic and clinical 

features such as cancer histological type, tumor grade, and molecular subtype are presented in 

Table 1.  

 

Temperature Measurements of the Treated Breast 

Significant differences (p<0.05) in skin-surface temperatures (mean value and central 

tendency measures) were observed between the CTCAE≥2 and CTCAE≤1 classes, at fraction 

intervals fx=10 and fx=15 (Figure 3A, Supplementary Figure B). The CTCAE≥2 patients 

demonstrated an increase in mean skin temperature, reaching 36.42°C at the end of treatment 

with a significant temperature increase of 0.58°C(±0.172C) from baseline (p<0.01), whereas the 

CTCAE≤1 group had an insignificant temperature increase of 0.13°C(±0.133C) compared to the 

baseline measurements (p>0.05). Figure 3C illustrates a significant difference in mean 

temperature distributions of 0.45C (±0.202C) (p=0.029) on the ipsilateral side at the 10th 

treatment fraction between CTCAE≥2 and CTCAE≤1 classes, with the CTCAE≥2 patients 

demonstrating higher breast surface temperature. 
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Thermoradiomic Markers Using Textural Features of the Treated Breast  

Most of the textural feature distributions did not demonstrate any statistical significance 

(Supplementary Figures C, D, & E). However, texture analyses identified the GLRLM-Short 

Run Emphasis (SRE) as being significantly different between the two patient groups 

(Supplementary Figure D). Thermal measurements of CTCAE≥2 patients exhibited higher 

SRE values than the CTCAE≤1 group at fx=10 (p=0.033). However, this effect demonstrates 

insignificant differences by fx=15 (p=0.69) 

 

Machine Learning Predictive Models Using Clinical Variables 

The performance of the clinical model demonstrates a prediction accuracy (Acc) of 67%, 

sensitivity (Sen) of 75% and specificity (Spec) of 57%, using the following five clinical features 

selected through a forward feature selection: adjuvant chemotherapy (y/n), type of adjuvant 

chemotherapy, radiation dose to skin volume (cGy), menopausal status, and cup size. In a second 

experiment, the forward feature selection algorithm was used to select four clinical features 

(instead of five). The selected features included adjuvant chemotherapy (y/n), radiation dose to 

skin volume (cGy), menopausal status, and cup size. The accuracy of the model in this 

experiment was 60%, with a sensitivity of 62.5% and a specificity of 57%.  

 

High-Accuracy Predictive Model for Toxicity Outcomes Using Thermoradiomic Biomarkers 

Table 2 presents the results of the skin toxicity prediction one week after the start of RT 

(at fx=5) using a select number of feature subsets. The following experiments demonstrated the 

most optimal outcome within their respective feature subsets: Experiment one (five selected 

features from first-order temperature features) demonstrated test AUC of 0.90 and test accuracy 
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of 73%; and experiment three (five selected features from all first-order temperature and texture 

features) demonstrated test AUC of 0.98 and test accuracy of 87%. The model based on 

experiment three was trained particularly well in classifying the patients in our overall analysis 

(train Acc = 91%; Sen = 0.86; Spec = 0.88). Figure 4 displays the ROC curves for experiments 

one and three.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Thermal Imaging of Skin Toxicity ROB-D-19-00982 , V3: Dec 11 2019 

 17 

DISCUSSION 

The aim of this study was to investigate the use of QTI biomarkers for radiation- induced 

skin toxicity in breast cancer. Our results demonstrate that patients who presented with a 

CTCAE≥2, as evaluated at the time of their last RT fraction, exhibited higher skin-surface 

temperature values during treatment compared to those who demonstrated a CTCAE≤1 score. 

The temperature differences between patient groups were most evident at the 10th fraction of 

radiotherapy. Moreover, using inferential statistical analyses alone, the QTI-texture features of 

the ipsilateral breast such as the GLRLM-SRE revealed a significant difference between the 

patient groups after the 10th radiation fraction. The CTCAE≤1 patient group showed higher 

GLRLM-SRE average values. GLRLM textural features quantitate the length/number of 

homogenic pixels, and the GLRLM-SRE is indicative of how many short lengths of homogenic 

pixels are within the matrix (31,32). Within this framework, we posit that a high GLRLM-SRE 

value in low-grade patients (CTCAE≤1) represent a finer/smoother image texture within the 

thermograms. Clinically, this corresponds to unremarkable dermatological changes and 

temperature variances on the breast skin surface (31). In contrast, patients who demonstrated a 

CTCAE≥2 had heterogeneous thermal maps of the skin, which may represent increased 

temperatures in regions of the breast that are at higher risk for dermatitis, such as the 

inframammary fold, and axilla.  

Using machine learning, we report early thermoradiomic signatures of acute skin toxicity 

which is typically observed after 10-14 days of initiating RT (33). Early thermal parameters from 

the 5th RT fraction were used in machine learning models to classify patients and to test the 

accuracy of predicting symptom-based endpoints from selected QTI and textural hybrid feature-

sets (34,35). These hybrid feature-sets, in conjunction with a nonlinear classification model and 
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bootstrapping, yielded high classification accuracy in a multidimensional space. We carried out 

several experiments, using the Random Forest method to compute individual textural features 

and temperature parameters into optimized sets that are associated with binary outcomes; i.e., 

(CTCAE≥2) versus (CTCAE≤1). Figure 4 displays the experiment containing only first-order 

feature sets and an experiment with both first-order and texture feature sets, where experiment 

three had the highest prediction accuracy and area under the ROC curve (test Acc=0.87, test 

AUC=0.98). The results presented in Figure 4 and Table 2 demonstrate the significance of using 

texture features in conjunction with the mean temperature parameter to predict skin toxicity after 

breast radiotherapy.  In comparison, the first-order temperature features alone did not 

demonstrate a high prediction accuracy (test Acc = 0.73). Despite individual QTI features that 

showed insignificant differences between groups based on a Gaussian distribution (i.e. carrying 

out inferential statistical analysis), the machine learning algorithm utilized a non-linear classifier 

to assess the predictive performance of the combined features within a multidimensional space. 

The forward feature selection method yielded optimal complementary features based on the 

relative distances of attributes within the feature space (36). We tested clinical features alone, to 

develop a baseline machine learning model. A comparison between clinical models versus 

thermoradiomic models were carried out and the results suggest that thermoradiomic markers 

demonstrate superior early-predictors of radiation- induced skin toxicity compared to using 

clinical features alone. Within these frameworks, we propose that QTI may be used as a clinical 

tool in radiation oncology; specifically, that measuring the breast surface temperature and 

extracting the associated texture features may serve as possible predictive biomarkers for severe 

radiation- induced skin toxicity (CTCAE≥2).  
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In comparison to other investigations, Templeton et al. measured radiation- induced 

dermatitis in mice using three-dimensional thermal tomography. Their results revealed an 

increase in the thermal effusivity, which was associated with high-grade skin dermatitis (37,38). 

In the clinical setting, our findings are concordant with a previous study by Maillot et al., which 

tested thermography for monitoring and predicting skin toxicity in a prospective patient cohort 

(n=64) (13). Patients in that study who demonstrated a CTCAE≥2 (i.e. high-grade dermatitis) 

showed a very significant increase in the average skin-surface temperature over the course of 

radiotherapy (p<0.001) (13). Here, our novel approach incorporated textural features from 

GLCM, GTDM, and GLRLM analyses to evaluate and predict dermatitis in breast cancer 

patients. We also employed machine- learning classification to identify early signatures (at fx=5) 

of skin toxicity, which corresponded to the patients’ CTCAE grade at the end of treatment. Other 

technologies have been used to non-invasively study radiation- induced skin toxicity. For 

example, laser doppler flowmetry (LDF) has been shown to quantitatively monitor skin toxicity 

by measuring microscopic changes in blood flow associated with skin reactions (39,40). Previous 

studies have demonstrated that the LDF microcirculation index values correspond with CTCAE 

scores, and suggest that LDF may be used to monitor radiation-induced dermatitis (41). 

Although there is interest in combining LDF with thermal imaging, QTI remains a more practical 

and economic imaging modality (39,42,43), due to readily available technology to radiation 

oncology clinics, as well as relaying practical and intuitive information about the macroscopic 

changes of the skin during RT (43).  

Radiation therapy remains a crucial component in the post-operative management of 

breast cancer. The associated side effects from treatment may affect patients’ quality of life. 

Particularly, severe skin toxicity is prevalent within this patient population and carries an 
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increased risk of pain, and discomfort. Approximately 61.9% of patients will develop CTCAE 2 

toxicity; whereas 8.3% present with CTCAE 3 symptoms after two weeks of treatment (44). In 

our patient cohort, 41.1% of patients had a CTCAE ≥ 2. Therefore, it represents a significant 

patient population that would potentially benefit from early detection and early intervention for 

symptom management. Radiation-induced skin toxicity associated with RT may be better 

managed using thermography and has several advantages such as portability, relatively low cost 

compared to other imaging devices and may provide actionable biomarkers that may guide the 

administration of early-intervention therapeutics. Therapeutic options include Mepitel film for 

prophylaxis against the onset of skin toxicity. The mechanism of action of Mepitel film involves 

protecting the affected skin from external contamination and maintaining a moist environment to 

facilitate wound healing (45–47). Herst et al. demonstrated that Safe-tac-based Mepitel film 

prevented the occurrence of radiation- induced skin toxicity by 92% (p<0.0001) and improved 

post-radiation patient satisfaction (45). Thermal imaging may also provide a method to validate 

the efficacy of pharmacological agents to manage skin toxicity (16,48). For instance, while 

glucocorticosteroids are successful in treating radiation- induced skin toxicity, their anti-

inflammatory effects have been found to interfere with passive wound healing which may 

compromise the structural integrity of the tissue in the long term (48,49). Quantitative thermal 

imaging has potential uses as a decision-support tool. QTI-based biomarkers could steer 

symptom management decisions in radiation oncology; for example, avoiding unnecessary 

treatments for patients who demonstrate a low-risk risk of developing skin symptoms. 

Conversely, for patients who have a high-risk, there is an opportunity to develop a personalized 

thermography-guided approach for skin toxicity management and prevention.  
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The limitations of this study include low sample size, which affects the framework of the 

prediction model.  First, small sample sets limit the approach for group classification (i.e. 

sufficient samples and distributions are required between classes). Second, model testing and 

validation in small sample sets have a greater risk of yielding an overfitted prediction model. To 

address this problem, the predictive model was trained using a LOPO validation approach, and 

subsequently evaluated using unseen data from an independent test set. Furthermore, while data 

collection conditions were controlled as best as possible, some inconsistencies in experimental 

conditions, such as heavy clothing attire, may have led to an increase in patients’ skin-surface 

temperature prior to imaging. We attempted to reduce this effect by instructing patients to 

change into standard hospital gowns prior to imaging. Other limitations include interfraction ROI 

selection. Although we used clinical- and protocol-guided segmentation with reference to the 

radiation treatment plan, the region of interest may also fluctuate based on anatomical changes 

(i.e. changes in the size of the breast), as well as positional differences of the patient at each time 

interval. Our study population was largely composed of Caucasian and Asian patients (86.7%) 

with light skin pigmentation (Table 1) who tend to demonstrate less severe skin toxicity than 

patients with darker skin pigmentation (50). Ethnicity is a known risk factor for radiation-

induced skin toxicity, most notably, black patients have a 73% greater risk of skin-dermatitis 

than other ethnic groups, and thus it is crucial that these methods be repeated in a patient 

population with greater diversity in ethnicity and skin phenotype (50,51).  In future work, 

thermoradiomic markers may also be useful in other cancer sites, such as head and neck (H&N) 

radiation oncology.  Severe skin toxicity, characterized as confluent moist desquamation (i.e. 

grade 3) presents in approximately 23% of H&N patients (52);  thus, early thermoradiomic 
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markers in this setting may significantly improve management strategies at the beginning of the 

seven-week treatment course for this patient population.    

In conclusion, QTI is a readily available technology, and may potentially support clinical 

decisions in breast radiation oncology. Quantitative assessments of skin toxicity are useful to 

reduce diagnostic variability among health care providers and have the potential to validate early 

clinical management of skin-related side effects of treatment. Advances to current practices are 

limited by the available imaging tools that can objectively measure skin toxicity. As a result, 

visual inspection and patient-reported symptoms remains the primary method, but may be 

subjective (7,53,54). Thermal imaging has the potential to reduce these biases and may also 

complement current grading systems, such as the CTCAE score. It could potentially help better 

define the grading scales within quantitative thermal boundaries. Image-guided radiotherapy 

already plays an integral role in the clinic for treatment delivery. This study demonstrates the 

feasibility of additional image-guided approaches; specifically, to use QTI as a clinical decision 

support tool for symptom management in the breast radiation oncology clinic.  
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FIGURE CAPTIONS 

 

Figure 1 

Schematic demonstrating the workflow and methodology of the study.  

 

Figure 2 

(A) Digital image of a lumpectomy patient at baseline. (B) Thermal image representation of 

image A. (C) A schematic illustrating the area of measurement for the mean temperature values 

in both ipsilateral and contralateral breasts; (D) Digital image at the end of a 4250Gy RT 

regimen. (E) Thermal image representation of image C. (F) Skin rendition highlighting the area 

receiving radiation. (G) ROI selection based on the target area outlined in the skin rendition. (H) 

The grey-level representation of the selected ROI. Temperature scale bar: Figures B, E & G, 

Grey level scale bar: Figure H; Abbreviations: Temp.= Temperature; µ= Mean; µT= Mean 

Temperature; Avg= Average. 

 

Figure 3 

(A – B). Comparison of ipsilateral and contralateral mean temperature averages between patients 

evaluated with a CTCAE score of either ≥2 or ≤1 at baseline and at every 5th RT fraction. (C) 

Sample distribution comparison of mean temperature values between CTCAE≥2 and CTCAE≤1 

groups after 10 fractions of RT for both ipsilateral and contralateral sides. Mean temperature 

(ΔµTAvg) value differences between CTCAE≤1 and CTCAE≥2 patient groups. * = p<0.05 ** = 

P≤0.01, based on independent t-test. Error bars represent standard error of the mean.  
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Figure 4 

Test Receiver Operating Characteristic (ROC) curves for two representative experiments.  

 


