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Abstract9

Wood continues to increase in importance as a sustainable source of energy and shelter. Wood10

formation is a dynamic process derived from plant secondary (radial) growth. Several11

experimental systems have been employed to study wood formation and its regulation. The use12

of genetic manipulation approaches and genome-wide analyses in model plants have13

significantly advanced our understanding of wood formation. In this review, we provide an14

update of our knowledge of the genetic and hormonal regulation of wood formation based on15

research in different plants systems, as well as considering the subject from an evo-devo16

perspective.17

18

19

Introduction20

Wood (secondary xylem) is mainly composed of tracheary elements (TEs, tracheids and vessels)21

and fibers, both of which have highly thickened secondary cell walls (SCWs); xylem22

parenchyma also forms a minor component. Patterning of the SCWs in xylem cells is adapted23

to their function. Fibers have thick and uniformly deposited walls to provide support and24

protection, whereas TEs have patterned walls to facilitate water transport. Protoxylem cell25

walls have annular or spiral patterning, providing elasticity to the elongating tissues.26

Metaxylem cells, on the other hand, have pitted or reticulate wall patterning, making them more27

rigid and durable. All of the types of xylem cells are derived from vascular cambium, the lateral28

secondary meristem. Wood formation is a dynamic and continuous process which includes29

cambial cell proliferation, xylem cell specification and expansion, secondary cell wall30

biosynthesis and programmed cell death. Each step is highly regulated by internal and external31

factors. In this review, we will first introduce various experimental systems and techniques32



used in wood formation studies, followed by an update of our knowledge about the genetic and33

hormonal regulation of different developmental stages of wood formation from an “evo-devo”34

perspective.35

36

Experimental models and approaches for studying wood formation37

Several different experimental systems have been used to study wood formation. Important38

discoveries have been made using Zinnia cell cultures, including the identification of master39

regulators of TE differentiation and factors involved in SCW biosynthesis and PCD. In addition,40

Arabidopsis has emerged as an excellent model to study wood formation. Arabidopsis has a41

unique genetic resource for developmental studies: a cell-type specific gene expression map42

for the root vasculature [1]. Transcriptomics, combined with the genetic manipulation of43

Arabidopsis, has led to the identification of several key factors regulating wood formation44

(Figure 1) [2].  In several  cases (see below), their  tree orthologs have been shown to share a45

similar function, indicating that the control of wood formation is evolutionarily conserved46

between woody and herbaceous species (Figure 1).47

Due to their massive capacity for wood production, trees are natural research models for this48

process. Researchers have taken advantage of the large size of the multilayered cambial49

meristem and wood forming tissues in a tree trunk; for example, transcriptomics and chemical50

profiling have been performed at a high spatial resolution across the wood-forming region of a51

Populus stem [3,4]. Tree genetics has enjoyed an increase in productivity thanks to the52

development of next generation sequencing technologies and the enormous genetic diversity53

of tree genomes. Genomes of several forest trees, including Populus, Eucalyptus [5], together54

with the first conifer genomes, Norway and white spruce [6••, 7••], have already been released.55

The spruce genome will provide a powerful platform to study wood formation, enabling56

researchers to conduct comparative genome-wide studies between angiosperms and57

gymnosperms. One difference between the two is the xylem, which is composed solely of58

tracheids in gymnosperms but of both fibers and TEs in angiosperms. Potentially reflecting this59

difference in xylem cell types, only two VASCULAR RELATED NAC DOMAIN (VND) genes60

(which are master regulators of xylem differentiation, see below) have been discovered in the61

spruce genome, compared with seven in Arabidopsis. This result suggests that expansion of62

the VND gene family was important in the development of angiosperm wood [6••].63

In addition, genomes of some “woody” monocot species, such as bamboo and oil and date palm64

trees, have been released recently [8,9,10]. Despite not having a vascular cambium, these65



species can reach a large size by producing an extensive number of vascular strands during66

their growth. These genomic resources provide us novel opportunities to study the evolution67

of genes that are crucial for cambium initiation and wood formation.68

Complementing the advances in genomics, a breakthrough has recently taken place in tree69

genetics research: the first specific, causative mutation behind a tree architectural trait has been70

identified. By mapping a segregating progeny population, Dardick et al. [11••] found that the71

PpeTAC1 (TILLER ANGLE CONTROL 1) gene regulates branch angle in peach; a72

semidominant mutation of this gene is responsible for the standard, upright and pillar form of73

peach trees.  The success of the mapping approach reaffirms the possibility of discovering the74

genes controlling any tree trait, including the regulation of their massive wood production in75

angiosperm trees. By taking advantage of an early flowering spruce mutant “acrocona” [12],76

in combination with spruce transformation technology [13], similar studies are now becoming77

possible also in gymnosperm trees.78

Regulation of cambium activity and cell proliferation79

Recent findings have identified a peptide-receptor-transcription factor signalling pathway,80

TDIF/CLE41/CLE44-TDR/PXY-WOX4, that controls cambium maintenance (Figure 1)81

[14,15]. The small peptide TDIF, that is processed from the translated products of82

CLE41/CLE44 in Arabidopsis, is produced in the phloem; it interacts with its receptor, the83

receptor-like kinase TDR/PXY (TDIF RECEPTOR/PHLOEM INTERCALATED WITH84

XYLEM), which is expressed in (pro)cambium. WOX4,  a WUSCHEL HOMEOBOX85

RELATED gene, mediates this ligand-receptor signalling to regulate the maintenance of86

(pro)cambium cells. Cambium activity is reduced in the hypocotyl and inflorescence stem of87

the wox4 mutant, indicating that WOX4 regulates, but is not required to establish, the meristem88

[14,16]. Another WOX-family gene, WOX14, acts redundantly with WOX4 to regulate cambial89

cell proliferation [17]. The TDIF/CLE41/CLE44-TDR/PXY-WOX4 signalling pathway seems90

to be evolutionarily conserved between both woody and herbaceous species, as it has been91

described in both Arabidopsis and Populus [3].92

Partners potentially interacting with TDR/PXY have recently been identified: the receptor-like93

kinases (RLKs) ERECTA (ER) and ER-LIKE1, together with their putative ligands EPFL4 and94

EPFL6 [17,18].   Their mutation enhances the tdr/pxy phenotype in vascular patterning. In95

addition,  two  other  RLKs,  MORE  LATERAL  GROWTH1  (MOL1)  and  REDUCED  IN96

LATERAL GROWTH1 (RUL1), represent opposing regulators of cambial activity which97

probably act upstream of the TDR/PXY-WOX4 pathway. MOL1 acts as a repressor and RUL198



as an activator of secondary growth in the inflorescence stem, which is enhanced in mol1 and99

reduced in rul1 [19].100

Class I KNOX transcription factors (TFs) are important in maintaining the meristematic101

activity in the shoot apical meristem of Arabidopsis. Interestingly, KNOX genes are also102

expressed in the cambium region during wood formation in Populus [3]. When ARK2, the103

ortholog of Arabidopsis BP/KNAT1 is overexpressed, the cambium region is expanded and104

xylem differentiation is inhibited; by contrast, in the knock-down lines, lignified xylem and105

fiber cells appear earlier than in wildtype, indicating a role for this KNOX gene in the106

regulation of secondary xylem differentiation (Figure 1) [20]. This is similar to the situation in107

Arabidopsis, where ectopic lignin deposition is found in bp mutant stems [21].108

Plant hormones also play important roles to regulate wood formation (Figure 1). It has been109

known for a long time that auxin concentration peaks at the cambium zone in the tree stem.110

Perturbing auxin signalling by over-expressing a mutated Populus IAA3 gene resulted in111

reduced cell proliferation in the cambium and thus less wood formation [22]. The TDR/PXY-112

WOX4 pathway appears to act downstream of auxin signalling in regulating cambial cell113

proliferation [16]. The role of cytokinin as an essential regulator of cambium activity has been114

demonstrated in both Arabidopsis and Populus [23,24]. Reduced cytokinin levels lead to115

impaired cambial activity in tree stems [24], and secondary growth does not occur in the116

Arabidopsis mutant ipt1,3,5,7 where four genes encoding the cytokinin biosynthesis enzyme117

IPT are simultaneously mutated [23]. Consistent with this, secondary growth is enhanced when118

cytokinin signalling is increased [25].119

Ethylene acts as a positive regulator of wood formation. In Populus, ethylene treatment120

promotes cambial cell proliferation [26]. In the Arabidopsis stem, ethylene appears to crosstalk121

with the TDR/PXY pathway. In the tdr/pxy background, a double mutant of two ETHYLENE122

INDUCED RESPONSE FACTOR genes  (ERF109 and ERF018) shows reduced secondary123

growth while an ethylene over-producing mutant displays enhanced growth [27]. Recently,  a124

genome-wide screen for Populus ERFs led to the identification of ERF genes  that  modify125

secondary growth, wood properties and tension wood formation [28•], indicating that the126

ethylene pathway also regulates various aspects of wood formation in trees.127

Recent findings have identified auxin-mediated basic helix-loop-helix (bHLH) transcription128

factor dimers as important factors regulating early vascular development, including TARGET129

OF MONOPTEROS5 (TMO5), LONESOME HIGHWAY (LHW) and their closest homologs130



[29•]. Vascular tissue differentiation was totally blocked in the roots of TMO quadruple mutants.131

By contrast, co-overexprsison of TMO5 and LHW induced dramatic periclinal divisions within132

the vasculature of roots. During primary root vascular development in Arabidopsis,  a133

cytokinin-auxin crosstalk loop has been shown to regulate procambium activity and xylem134

formation [30•].  It would be intriguing to find out how these factors interact to regulate135

secondary growth in different species.136

137

Regulation of xylem specification and cell expansion138

The class III homeodomain leucine zipper (HD-ZIP III) genes play important roles in xylem139

specification during primary growth (Figure 1). When expression of all five HD-ZIP III genes140

is reduced in Arabidopsis, procambium cells fail to differentiate into xylem cells [31].141

Furthermore, the gradient of SHR and miR165/166 resulting from their bidirectional transport142

in root modulates HD-ZIP III levels to regulate protoxylem differentiation in the root [31].143

Brassinosteroids can also activate HD-ZIP III expression and thus promote xylem144

differentiation [32]. The function of the HD-ZIP III genes during wood formation has been145

recently studied in Populus. Knockdown of POPCORONA causes abnormal lignification of146

pith cells, while overexpression of miRNA-resistant POPCORONA results  in  delayed147

lignification of xylem and phloem fibers [33]. On the other hand, when a microRNA-resistant148

form of popREVOLUTA was overexpressed, ectopic layers of cambium with reversed polarity149

were formed within cortical parenchyma [34].150

Several NAC-domain transcription factors have been identified as master regulators of xylem151

differentiation. VND7  induces protoxylem and VND6 induces metaxylem differentiation,152

whereas SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 1/ NAC SECONDARY153

WALL THICKENING PROMOTING FACTOR3 (SND1/NST3), together with NST1, promotes154

fiber differentiation (Figure 2) [reviewed in 2]. Similarly, in Populus, overexpression of the155

NAC domain genes PtVNS/PtrWND induces ectopic wood formation [35]. On the other hand,156

another NAC domain gene, VND-INTERACTING 2 (VNI2), acts as a repressor of VND7 [36].157

In Populus, galactoglucomannan oligosaccharides (GGMOs) have been identified as novel158

repressors  of  NAC  TF  expression  [37].  Accordingly,  over-expression  of  the  endo-mannase159

gene PtrMAN6 suppressed secondary cell wall thickening while its silencing had the opposite160

effect [37].161



Although TDIF promotes cambial cell proliferation, it inhibits vessel differentiation in leaves162

and hypocotyls [14, 38]. Another group-A CLE peptide, CLE10, suppresses protoxylem vessel163

formation in roots by activating cytokinin-mediated pathway [39].164

Unlike auxin, which is found in the cambium, gibberellic acid (GA) is observed in the165

differentiating xylem cells of tree stems [40]. When GA levels are increased by overexpressing166

GA-20 oxidase in Populus, an increase in both the number and length of xylem fibres is167

observed, indicating that GA promotes both cell division and xylem elongation (Figure 1) [41].168

Recent analyses in Arabidopsis have revealed that xylem expansion in the hypocotyl is169

promoted by flowering-related GA transport [42].170

Transcriptional regulation on secondary cell wall (SCW) biosynthesis and programmed171

cell death (PCD)172

The NAC master regulators (VND6, VND7, NST1 and SND1/NST3) switch on the xylem173

differentiation program largely by inducing the expression of two MYB TFs, MYB46 and174

MYB83 (Figure 2) [43,44]. The MYB46/83 node activates the expression of a plethora of other175

TFs and enzymes which are directly active in SCW biosynthesis (Figure 2) [43,44,45]. The176

induced  TFs  either  promote  biosynthesis  of  cellulose,  hemicellulose,  xylan  and  lignin,  or177

alternatively act as negative feedback regulators of this process. In general, the xylem178

differentiation program functions through a robust multilevel feed-forward loop, with the NACs179

and the MYBs acting as master switches which directly induce many of the same genes (Figure180

2).  This  two-level  master  switch  system  of  xylem  cell  differentiation  appears  to  be181

evolutionarily conserved between woody and herbaceous species. Orthologs of the Arabidopsis182

NAC and MYB genes have been identified, and in some cases functionally verified, in several183

tree species, among them Populus (Figure 2), Eucalyptus and pine [46, 47].184

The xylem cell-type specific pattern of SCW deposition is determined by cortical microtubules185

(MT) that direct the movement of cellulose synthase complexes [48]. Excitingly, several novel186

regulators of MT network patterning have been recently identified. Overexpression of two MT-187

ASSOCIATED PROTEIN 70 (MAP70) proteins promotes spiral cell wall patterning, whereas188

their silencing induces production of pitted walls [49]. By contrast, the MT-depolymerising189

protein MIDD1 promotes MT depolymerization at the forming pit regions; knock-down of190

MIDD1 produces pit-free walls [50]. Localization of MIDD1 at the plasma membrane takes191

place through ROP (Rho of plant) GTPase regulation, where local activation of ROP11 recruits192

MIDD1 at the forming pit [51•].193

194



PCD represents the final stage of xylem differentiation. TEs undergo PCD via a fast autolysis195

mechanism that involves vacuolar collapse by tonoplast rupture, releasing digestive enzymes196

(nucleases and proteases) which degrade cell components [52]. Fibers undergo PCD through a197

slower pathway that requires DNA degradation and cellular dismantling before the vacuolar198

collapse [52]. In Populus, the 20S proteasome (20SP) was shown to be responsible for the199

caspase-3-like activity in secondary xylem development; inhibition of 20SP impairs PCD of200

TEs in poplar and Arabidopsis [53]. VND6 induces the expression of the cysteine proteases201

XCP1  (XYLEM  CYSTEINE  PROTEASE  1)  and  XCP2  [54]  which  participate  in  autolysis202

during tracheary element PCD [55]. Cysteine protease METACASPASE 9 (AtMC9) has203

recently been shown to be important for efficient progression of autolysis during Arabidopsis204

vessel PCD [56]. The timing of PCD is regulated by the polyamine thermospermine, which is205

synthesised by ACUALIS5 (ACL5). Recent studies reveal that its ectopic overexpression in206

Populus delays xylem maturation [57].207

Lignin is the last compound to be added to the SCW of xylem cells. Monolignols are stored208

within the vacuole and released during PCD to polymerize into the cell wall [58]. Lignification209

of TEs appears to be partly non-cell autonomous and continues even after the PCD [49•, 58].210

Recently, miRNA control of lignification has been identified in Populus; Ptr-miR397a211

participates in post-transcriptional regulation of laccase genes [59•].212

The recently published bamboo and palm genome sequences enable us to identify regulators213

of xylem formation also in “woody” monocot species. Although their vascular bundles consist214

of only primary xylem and phloem tissues, it is possible that the regulatory network of SCW215

formation is evolutionary conserved. The bamboo genome contains high copy numbers of216

genes that affect cell wall composition and structure, such as cellulose and lignin biosynthetic217

enzymes, similar as in Populus genome [8].218

Conclusions and future Perspectives219

The characterization of the TDIF/CLE41/CLE44-TDR/PXY-WOX4 signalling peptide-220

receptor-target module has greatly advanced our understanding of vascular regulation.221

However, as discussed above, cambium identity is not affected in the wox4 mutant. Thus, the222

identification of upstream/downstream factors or novel regulators that are required for223

cambium identity will further reveal the mechanism of wood formation. Furthermore,224

investigation of these gene families in various plant species, including monocots and non-225



vascular plants, can help us to understand the evolution of cambial development and diversity226

of wood formation.227

It has also been demonstrated that there is no secondary growth in ipt1,3,5,7 mutants; therefore,228

looking for new genes that act downstream of the cytokinin pathway may lead to the229

identification of master regulators for secondary growth. It is likely that wood formation is230

regulated by a gene regulatory network (GRN) consisting of various TFs. Previously, tissue-231

specific GRNs in the Arabidopsis stele have been mapped via systematic yeast one-hybrid and232

two-hybrid screens to discover protein–protein interactions between the selected TFs [60]. Also,233

recent comparative transcriptome analysis has able to identify several fundamental biological234

processes needed for vascular formation in Arabidopsis [61]. In this in silico investigation, 107235

conserved vascular gene groups were identified and these gene groups may form a complex236

co-expression network with multiple functional connections. By combining genome-wide237

technology, in silico analysis  and  genetic  manipulation,  a  vital  GRN  that  regulates  wood238

formation may be identified in the near future. Through comparative genetic analysis, this239

approach can be expanded to angiosperm and gymnosperm tree species, where we can identify240

GRNs specific for hardwood and softwood formation. This knowledge will provide a valuable241

resource for wood properties related tree breeding.242
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Figure Legends252



Figure 1. Illustration of transcriptional and hormonal regulation of wood formation.253

Cross sections of Populus stems are shown; secondary vascular tissues including phloem,254

cambium and xylem (wood) are displayed on the section. Different developmental stages of255

wood formation can be observed in the cross section. The functions of various transcriptional256

regulators and hormones (circled) in regulating cambium activity and xylem differentiation are257

presented, cross-talk among these regulators is also revealed. The source of the evidence is258

indicated using different font colors. Green: evidence obtained from Arabidopsis; Orange:259

evidence obtained from Populus; Blue: evidence obtained from both Arabidopsis and Populus.260

CK: cytokinin, GA: Gibberellin, BR: Brassinosteroid.261

262

Figure 2. A transcriptional regulatory network controlling secondary cell wall263

biosynthesis in Arabidopsis and Populus. Arabidopsis genes are presented in green and their264

Populus orthologs in orange. The NAC genes (blue boxes) function as first-level master265

switches; they induce expression of the second-level master switches, MYB46 and MYB83 (red266

box), which in turn activates a plethora of downstream TFs (yellow boxes), as well as many267

genes directly involved in secondary wall biosynthesis. The MYB target TFs promote the268

biosynthesis of lignin, cellulose, hemicellulose and xylan biosynthesis. A multilevel feed-269

forward loop structure is integrated in the transcriptional network: both NAC and MYB master270

switches directly induce expression of many of the same genes (dashed arrows).271
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Figure 1. Illustration of  transcriptional and hormonal regulation on  wood  formation. 
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