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Abstract

This review presents how R, the popular statistical environment and programming language,

can be used in the frame of proteomics data analysis. A short introduction to R is given, with

special emphasis on some of the features that make R and its add-on packages a premium

software for sound and reproducible data analysis. The reader is also advised on how to find

relevant R software for proteomics. Several use cases are then presented, illustrating data

input/output, quality control, quantitative proteomics and data analysis. Detailed code and

additional links to extensive documentation are available in the freely available companion

package RforProteomics.

Keywords: software, mass spectrometry, quantitative proteomics, data analysis, statistics,

quality control

1. Introduction1

Proteomics is evolving at a rapid pace [1] and updates in technologies and instruments2

applied to the study of bio-molecules, such as proteins or metabolites, require proper com-3

putational infrastructure [2]. A broad diversity of complementary tools for data processing,4

management, visualisation and analysis have already been offered to the community and5

reviewed elsewhere [3, 4]. The work presented here focuses on a particular type of software,6

namely R [5], and the add-on packages that enable extension in its functionality and scope,7

and their usefulness to the analysis of proteomics data.8
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R is an open source statistical programming language and environment, originally created9

by Ross Ihaka and Robert Gentleman [6] at the University of Auckland and, since the mid-10

1997, developed and maintained by the R-core group. Originally utilised in an academic11

environment for statistical analysis, it is now widely used in public and private sector in a12

broad range of fields [7], including computational biology and bioinformatics. The success13

of R can be attributed to several features including flexibility, a substantial collection of14

good statistical algorithms and high-quality numerical routines, the ability to easily model15

and handle data, numerous documentation, cross-platform compatibility, a well designed16

extension system and excellent visualisation capabilities to list some of the more obvious17

ones [8]. These are some of the requirements that need to be fulfilled to tackle the complexity18

and high-dimensionality of modern biology.19

The focus of R itself is and remains centred around statistics and data analysis. Function-20

ality can however be extended through third-party packages, which bundle a coherent set of21

functions, documentation and data to address a specific problem and/or data type of inter-22

est. The Bioconductor project2 [9], initiated by Robert Gentleman, has a specific focus on23

computational biology and bioinformatics and represents a central repository for hundreds24

of software, data and annotation packages dedicated to the analysis and comprehension of25

high-throughput biological data, and promoting open source, coordinated, cooperative and26

open development of interoperable tools. The development and distribution of new packages27

is a very dynamic and important aspect of the R software itself. Adherence to good devel-28

opment practice is crucial and enforced by the R package development pipeline through a29

built-in checking mechanism, ensuring, among other things, proper package installation and30

loading, package structure, code validity and correct documentation. In addition, package31

development also provides multiple opportunities for unit and integration testing as well as32

reproducible research [10, 11, 12, 13, 14] through the mechanism of literate programming33

[15] and Sweave [16] or knitr [17] vignettes, which is crucially important from a scientific34

perspective.35

2http://bioconductor.org/
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Packages can be submitted to the main central repository, the Comprehensive R Archive36

Network (CRAN) or to Bioconductor, which provides its own repository, to assure tighter37

software interoperation. In addition, any developer can easily set up private or public38

CRAN-style systems. Software management can become a tedious task when thousands of39

packages are distributed, many of which depend on each other and interoperate in complete40

pipelines. In R, this has been solved by providing dedicated package repositories as well as41

straightforward installation and updating mechanisms.42

Most importantly, R and many packages are regarded as quality software [18]. They are43

aimed at users who want to explore and comprehend complex data for which there is often44

no predefined recipe. It is also a research tool to tackle new questions in innovative ways.45

The Bioconductor project, for example, has had a substantial impact on the field of microar-46

rays through multi-disciplinary and cooperative method development and implementation,47

paving best practises for the current development of state-of-the-art high throughput ge-48

nomics data analysis and comprehension. With respect to R’s contribution to other areas49

of bioinformatics and computational biology, it has also a lot to offer to proteomics. Biolo-50

gists and proteomicists can gain immensely from autonomous data exploration and analysis.51

Bioinformaticians working in computational proteomics can use R and specialised packages52

as an independent analysis and research framework or employ them to complement existing53

pipelines.54

This manuscript presents a brief overview of some applications of the R software to55

the analysis of MS-based quantitative proteomics data. We will review compliance of R56

with open proteomics data standards, input/output capabilities, quantitation pipelines for57

label-free and labelled quantitation, quality control, quantitative data analysis and relevant58

annotation infrastructure. The review is accompanied by a package, RforProteomics, that59

provides the code to install a selection of relevant tools to reproduce and adapt the examples60

described below. Installation instruction are provided on the package’s web page3. Once61

installed, the package is loaded with the library function as shown below, to make its62

3http://lgatto.github.com/RforProteomics/
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functionality available.63

> library("RforProteomics")

This is the ’RforProteomics’ version 1.0.1.

Run ’RforProteomics()’ in R or visit

’http://lgatto.github.com/RforProteomics/’ to get started.

2. Using R in proteomics64

2.1. Finding relevant software65

R is a very dynamic ecosystem [19, 20] – yearly R and bi-annual Bioconductor releases,66

exponentially growing number of available packages [21], numerous active mailing lists and a67

community of hundreds of thousands of active users and developers in private and corporate68

environment [7]. There are currently thousands of packages available through the official69

repositories, and new packages are published, discontinued or replaced by new, more elabo-70

rate alternatives on a daily basis. Providing an up-to-date and exhaustive list of packages71

is unachievable, even for a specified area of interest like proteomics, and would undoubtedly72

be out-dated too quickly to be useful. Dedicated pages are available however, that allow one73

to obtain an overview of some of the available packages in a specific area. CRAN maintains74

topic task views4, which are curated and maintained by experts. Each view provides a sum-75

mary and some guidance on some of the growing number of CRAN packages that are useful76

for a certain topic. As of this writing, the Chemometrics and Computational Physics view77

features a total of 67 packages, some of which are dedicated to mass spectrometry and will78

be described later. The Bioconductor project provides a set of dedicated keywords to cate-79

gorise packages, called biocViews, that can be explored interactively5. For proteomics, most80

relevant candidates are MassSpectrometry (in the Software/AssayTechnology view with 2181

packages) and Proteomics (in the Software/BiologicalDomain view, 35 packages), although82

numerous data analysis and annotation packages in other categories provide invaluable sup-83

port, some of which will also be demonstrated below.84

4http://cran.r-project.org/web/views/
5http://www.bioconductor.org/packages/devel/BiocViews.html
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2.2. Getting suitable data85

Software development, evaluation and demonstration can not be envisioned without ap-86

propriate data. Although R packages most often focus on software functionality, packages are87

also used to distribute experimental and annotation data, displayed in the AnnotationData88

and ExperimentData biocViews. A specific MassSpectrometryData category, currently of-89

fering 5 packages, is dedicated for experimental data of interest here. Software packages90

often also distribute small data sets for illustration, demonstration and code testing.91

To exemplify some of the pipelines in this publication, we will make use of a larger,92

public data set, available from the ProteomeXchange6 [22] ProteomeCentral repository (data93

PXD0000017). In this TMT 6-plex [23] experiment, four exogenous proteins were spiked94

into an equimolar Erwinia carotovora lysate with varying proportions in each channel of95

quantitation; yeast enolase (ENO) at 10:5:2.5:1:2.5:10, bovine serum albumin (BSA) at96

1:2.5:5:10:5:1, rabbit glycogen phosphorylase (PHO) at 2:2:2:2:1:1 and bovin cytochrome C97

(CYT) at 1:1:1:1:1:2. Proteins were then digested, differentially labelled with TMT reagents,98

fractionated by reverse phase nanoflow UPLC (nanoACQUITY, Waters), and analysed on99

an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific). Files in multiple format100

will be used to illustrate the input/output capabilities that are available to the proteomics101

audience. The companion package provides dedicated functions to directly download the102

data.103

2.3. Proteomics standards and MS data input-output104

Proteomics is a very diverse field in terms of applications, experimental designs and file105

formats. When dealing with a wide range of data, flexibility is often key; this is particularly106

relevant for the R environment, which can be used for many different purposes and data107

types. Raw mass spectrometry data comes in many different formats. While closed vendor-108

specific binary formats are less interesting due to their limited scope, several research groups109

as well as the HUPO Proteomics Standards Initiative (PSI) have developed open XML-based110

6http://www.proteomexchange.org/
7Data DOI: http://dx.doi.org/10.6019/PXD000001
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standards, formats and libraries to facilitate the development of vendor-agnostic tools and111

analysis pipeline. This functionality is available through the mzR package [24, 25], that112

provides a unified interface to the mzData [26], mzXML [27], mzML [28] as well as netCDF113

formats. The openMSfile function opens a connection to any of these file types and enables114

to query instrument information and raw data in a consistent way. It is generally used by115

experienced users or developers who require maximal flexibility. For instance, mzR is used116

by xcms [29, 30], TargetSearch [31] and MSnbase [32] for interaction with raw data.117

Other packages provide higher level interfaces to raw data, modelled as computational118

data containers that store data and meta-data while assuring internal coherence. Such119

classes come with a set of associated methods, that allow the application of predefined120

actions on class instances, also called objects, such as accessing specific pieces of information,121

modifying parts of the data or producing relevant graphical representation of the data. The122

MSnExp or xcmsRaw classes, defined in the MSnbase and xcms packages respectively, represent123

experiments as a collection of annotated spectra, with the aim of removing the burden of124

users to manipulate the complex data by bundling it in specialised classes with an easy-to-125

use and well documented interface, the associated methods, to streamline the most common126

tasks. The example raw file used below, available from the MSnbase package, is an iTRAQ127

4-plex [33] experiment. It is read into R and converted into an MSnExp object using the128

readMSData function. This specific data structure allows the spectra to be stored along129

with associated meta data and enables easy manipulation of the complete annotated data130

set. The last line displays a summary of the data in the R console and figure 1 illustrates131

some of the raw data plotting functionality applicable to an MSnExp instance (left) or an132

individual spectrum (right).133

This first command finds the location of the test data file.134

> mzXML <- dir(system.file(package = "MSnbase", dir = "extdata"),

+ full.name = TRUE, pattern = "mzXML$")

We then proceed by reading the mzXML file and create an MSnExp object.135
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> rawms <- readMSData(mzXML, verbose = FALSE)

Finally, we show a summary of the contents of the data object.136

> rawms

Object of class "MSnExp"

Object size in memory: 0.2 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 5

Number of precursor ions: 5

4 unique MZs

Precursor MZ's: 437.8 - 716.34

MSn M/Z range: 100 2017

MSn retention times: 25:1 - 25:2 minutes

- - - Processing information - - -

Data loaded: Tue Apr 9 22:10:44 2013

MSnbase version: 1.9.1

- - - Meta data - - -

phenoData

rowNames: 1

varLabels: sampleNames fileNumbers

varMetadata: labelDescription

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1.1 X2.1 ... X5.1 (5 total)

fvarLabels: spectrum

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

[Fig. 1 about here.]137

The mgf file format is also supported, for reading through the function readMgfData,138

which encapsulates the peak list data into MSnExp objects as above, and for writing such139

objects to a file through the writeMgfData. Other input/output facilities for quantified140

data will be presented in the next section.141
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Standard formats for identification data are not yet systematically supported. It is142

however possible to import such information into R , using existing R data import/export143

infrastructure. For example, the XML package [34] allows one to parse arbitrary xml files144

based on their schema definition. Support for mzIdentML, mzQuantML and possible other145

community supported formats will be added to the mzR package.146

2.4. Data processing and quantitation147

Quantitation has become an essential part of proteomics, and several alternatives are148

available in R for label-free and labelled approaches. In this section, we will present quanti-149

tation functionality and associated raw data processing capabilities.150

2.4.1. Label-free quantitation151

Several packages provide functionality that can be applied to the analysis of label-free152

MS data. Although its first scope is the study of metabolites, xcms is a mature package that153

provides a complete pipeline for preprocessing LC/MS data for relative quantitation and154

data visualisation [35, 36]. A typical xcms work flow implements peak extraction, filtering,155

retention time correction and matching across samples. The package is very versatile, featur-156

ing, for example, several peak picking methods, including some applying continuous wavelet157

transformation (CWT) [37, 38]. The pipeline offers a complete framework to support data158

analysis and visualisation of chromatograms and peaks to be deemed to be differentially159

expressed. On-line help is available though a dedicated forum8.160

MALDIquant [39] also provides a complete analysis pipeline for MALDI-TOF and other161

label-free MS data. Its distinctive features include baseline subtraction using the SNIP162

algorithm [40], peak alignment using warping functions, handling of replicated measure-163

ments as well as supporting spectra with different resolutions. Figure 2 illustrates spectrum164

preprocessing and peak detection steps.165

[Fig. 2 about here.]166

8http://metabolomics-forum.com/
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synapter is a package [41] dedicated to the re-analysis of data independent MSE data167

[42, 43], acquired on Waters Synapt instruments . It implements robust data filtering strate-168

gies, calculating and using peptide identification reliability statistics, peptide-to-protein am-169

biguity and mass accuracy. It then models retention time deviations between reliable sets170

of peptides in different runs and transfer identification across acquisitions to increase the171

overall peptide and protein coverage in full experiments through an easy-to-use interface.172

As illustrated in section 2.6, it interoperates well with MSnbase to take advantage of the173

existing data structure and offers a complete analysis pipeline.174

Finally, packages that implement MS2 data processing, like MSnbase and isobar [44] (see175

section 2.4.2), also support spectral counting once identification data is available. In addi-176

tion, isobar allows one to perform emPAI [45] and distributed normalised spectral abundance177

factor (dNSAF) [46] quantitation.178

2.4.2. Labelled quantitation179

Pipelines for labelled MS2 quantitation, using isobaric tagging reagents such as iTRAQ180

and TMT are available in the isobar and MSnbase packages. The code chunk below, taken181

from MSnbase, illustrates how to quantify the iTRAQ reporter peaks from the rawms data182

instance read in section 2.3. The quantify function returns another data container, an183

MSnSet, specialised for storing quantitative data and associated meta data. Reporter impu-184

rity correction can then be applied using the purityCorrect. The isobar package imports185

centroided peak data identification data from mgf and text spread sheet files or converts186

MSnSet instances to create its own IBSpectra containers for further isotope impurity cor-187

rection, normalisation and differential expression analysis (section 2.6).188

Below, we perform quantitation of the raw MSnExp data using the iTRAQ 4-plex reporters189

ions to create a new MSnSet object containing the quantitative data.190

> qnt <- quantify(rawms, reporters = iTRAQ4, verbose = FALSE)

In the following code chunk, we first define the reporter tag impurities as reporter by the191

manufacturer, apply the correction and display a summary of the resulting MSnSet instance.192
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> impurities <- matrix(c(0.929, 0.059, 0.002, 0.000,

+ 0.020, 0.923, 0.056, 0.001,

+ 0.000, 0.030, 0.924, 0.045,

+ 0.000, 0.001, 0.040, 0.923),

+ nrow=4)

> qnt <- purityCorrect(qnt, impurities)

> qnt

MSnSet (storageMode: lockedEnvironment)

assayData: 5 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116

iTRAQ4.117

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: X1.1 X2.1 ... X5.1 (5 total)

fvarLabels: spectrum file ... collision.energy (12

total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation: No annotation

- - - Processing information - - -

Data loaded: Tue Apr 9 22:10:44 2013

iTRAQ4 quantification by trapezoidation: Tue Apr 9 22:10:49 2013

Purity corrected: Tue Apr 9 23:44:45 2013

MSnbase version: 1.9.1

Once spectrum-level data is produced and stored in the specialised containers with pep-193

tide identification and protein inference meta data, it can be visualised (see figure 3) and194

combined into peptide- and protein-level quantitation data.195

[Fig. 3 about here.]196

Data analysis capabilities, including data normalisation and statistical procedures, are197

well known strengths of the R software. It is therefore important to provide support for198

the exchange of quantitative data. The newly developed mzTab9 file, that aims at facilitat-199

9https://code.google.com/p/mztab/
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ing proteomics and metabolomics data dissemination to a wider audience through familiar200

spreadsheet-based format, can also be incorporated and exported using the readMzTabData201

and writeMzTabData functions. It is of course also possible to import quantitation data ex-202

ported by third party applications to spread sheet formats. The most general way to import203

such data is using the read.table function. Specialised alternatives exist, to produce data204

structures, like MSnSets. The readMSnSet function, for instance, can import quantitation205

data, feature meta data and sample annotation from spread sheets and create fully-fledged206

MSnSet instances.207

Additional packages provide specialised functionalities relevant to data processing. IPPD208

[47] uses template matching to deconvolute peak patterns in individual raw spectra or com-209

plete experiments. Rdisop [48, 49] is designed to determine the formula of ions based on210

their exact mass or isotope pattern and can, reciprocally, estimate these from a formula.211

OrgMassSpecR [50] has similar capabilities including specific functions to process peptide212

and protein data: it allows the user, for example, to digest proteins, fragment peptides and213

estimate peptide isotopic distributions modified peptides with, for example, variable 15N214

incorporation rates. In the RforProteomics documentation, we demonstrate how to assess215

protein abundance of the yeast enolase spike present across the 6 PXD000001 channels using216

OrgMassSpecR’s Digest function and observe that, allowing for one missed cleavage, we217

observe 13 out of 79 peptides with length greater than 7 residues (corresponding to the218

shortest identified ENO peptide), as illustrated in figure 4. The LATEX code producing the219

alignment for the figure has been generated automatically, from within R, using the protein220

sequence and observed peptide sequences and TEXshade [51].221

[Fig. 4 about here.]222

2.5. Quality control223

Data quality is a concern in any experimental science, but the high throughput nature224

of modern omics technologies, including proteomics [52, 53], requires the development of225

specific data exploration techniques to highlight specific patterns in data. Examination of226
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complex data is greatly facilitated by well structured containers such as those cited above,227

that enable direct access to a specific set of values. This, in turn, streamlines the implemen-228

tation of default and robust pipelines that recurrently query the same data to produce the229

diagnostic plots and metrics. It is however also often necessary to manually explore data230

specificity, making the availability of data management facilities even more important.231

In this section, we present 3 quality plots (figure 5) that can be used to assess the intrinsic232

features of the PXD000001 data set at different levels. On the left, the distribution of MS2
233

delta m/z [54] allows the user to assess the relevance of peptide identification; high quality234

data show m/z differences corresponding to amino acid residue masses rising well above the235

general noise level in the histogram. One can also observe a peak at 44 Da, corresponding236

to the mass of a polyethylene glycol (PEG) monomer, a common laboratory contaminant in237

MS. The middle figure illustrates incomplete dissociation of TMT reporter tags, a technical238

characteristic of the labelling approach. Incomplete dissociation of the reporter and balance239

moieties of isobaric tags result in this additional single fragment ion peak, in which the240

multiple channels of quantitation remain convoluted. The figure illustrates the sum of241

genuine reporter peaks as a function of incompletely dissociated reporter data. The dotted242

line corresponds to equal real and lost signal. A linear model has been fitted to the data243

(blue line), indicating that there is, on average, 100-fold more genuine reporter signal. The244

heatmap on the right indicates the relevance of our quantitation data at the level of our245

experiment. Congruent peptide clustering indicates agreement between spike peptides while246

no significant grouping is detected for the samples.247

[Fig. 5 about here.]248

Although the figures above are helpful individually, quality assessment is often most249

efficient when put into context. Lab-wide monitoring of quality properties and metrics over250

time to gain experience of average performances and critical thresholds, is the most efficient251

and valuable application of quality control; the tools presented in this section are one way252

to automate such a process.253
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2.6. Data analysis254

In this section, we will describe data analysis pipelines for two quantitative strategies,255

namely MSElabel-free and isobaric tagging, using synapter and isobar respectively.256

Once quantitation data is obtained, it is often desirable to correct technical biases to257

improve detection of biologically relevant proteins. The availability of well established nor-258

malisation algorithms within the Bioconductor project are directly applicable here. The259

MSnSet object called qnt, created in section 2.4.2 can be normalised using various meth-260

ods, including quantile normalisation [55] and variance stabilisation [56, 57] using a single261

normalize command. isobar also has similar functionality, tailored for IBSpectra objects;262

its normalize method corrects by a factor such that the median intensities in all reporter263

channels are equal.264

isobar implements methodology to model variability in the data. We will illustrate this265

using the PXD000001 data to estimate spectra and proteins exhibiting significant differences266

between channel 127 and 129. As shown on figure 6, experimental noise has been approxi-267

mated using the NoiseModel function on Erwinia background (red), spiked-in (blue) or all268

(green) peptides (left) and protein ratios and significance have been computed (using the269

full noise model) with the estimateRatio function, to call statistically relevant proteins.270

[Fig. 6 about here.]271

Data independent MSE acquisition from a Synapt mass spectrometer (Waters) can be272

efficiently analysed in R using the synapter pipeline, providing a complete and open work273

flow (figure 7) leading to comprehensive data exploration and more reliable results. The test274

data used for this illustration is a spiked-in set distributed with the synapterdata package: 3275

replicates (labelled a to c) of the Universal Proteomics Standard (UPS1, Sigma) 48 protein276

mix at 25 fmol and 3 replicates at 50 fmol, in a constant Escherichia coli background. The277

set of functions in synapter produce data in a specific data container, called Synapter objects,278

and labelled ups on figure 7. They store quantitative data for a set of m identified peptides279

for one unique sample. Although at this step, much has been gained in terms of reliability280
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and number of peptides, we are still far from having interpretable results at this stage. These281

Synapter objects can easily be converted into MSnSet instances (of dimensions mi×1, where282

mi is the number of peptides for the processed sample, labelled ms on figure 7). Each newly283

converted MSE data can now be quantified using the top 3 method [42] (or any top n284

variant) where the intensities of the 3 most intense peptides for each protein are aggregated285

to estimate protein quantities. Each set of replicates is then combined into two new mi × 3286

MSnSet instances (named ms25 and ms50), one for each set of spike concentration, that are287

then filtered for missing quantitation, keeping only proteins that have been quantified in at288

least 2 out of 3 replicates. ms25 and ms50 are finally combined into the final mi × 6 final289

data, normalised and subjected to a statistical analysis. As illustrated above, it becomes290

possible to design specific pipelines for any type of experiments using standardised methods291

and data structures.292

[Fig. 7 about here.]293

2.7. MS2 spectra identification294

A very recent addition to Bioconductor is the rTANDEM package [58]. The package en-295

capsulates the mass spectrometry identification algorithm X!Tandem [59], the software for296

protein identification by tandem mass spectrometry, in R , making it possible to perform MS2
297

spectra identification within the R environment and directly benefit from R’s data mining ca-298

pabilities to explore the results. The package includes the X!Tandem source code eliminating299

independent installation of the search engine. In its most basic form, the package allows to300

call the tandem(input) function, where input is either an object of a dedicated class or the301

path to a parameter file, as one would execute tandem.exe /path/to/input.xml from the302

command line. The results are, as in the original X!Tandem software, stored in an xml, which303

can however be imported into R in a straightforward way using the GetResultsFromXML304

function to subsequently extract the identified peptides and inferred proteins.305

rTANDEM is currently the only direct R interface to a search engine and is as such of306

particularly noteworthy. Other alternatives require to execute the spectra identification307
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outside of R and import, export it in an appropriate format and subsequently import is into308

R .309

2.8. Annotation infrastructure310

The Bioconductor project provides extensive annotation resources through curated off-311

line annotation packages, that are updated with every release, or through packages that312

provide direct on-line access to web-based repositories. The former can be targeted towards313

specific organisms (e.g. org.Hs.eg.db [60] for Homo sapiens) of systems-level annotation314

such as gene ontology (the GO.db package [61] to gain access to the Gene Ontology [62]315

annotation) or gene pathways (the reactome.db [63] interface to the reactome database [64,316

65]). biomaRt [66, 67] is a very flexible solution to build elaborated web queries to dedicated317

data mart servers. Both approaches have advantages. While on-line queries allow one to318

obtain the latest up-to-date information, they rely on network availability and immediate319

reproducibility in less straightforward to control.320

In the RforProteomics documentation, we demonstrate a use case applying 3 complemen-321

tary alternatives. If one wishes, for example, to extract sub-cellular localisation for a gene322

of interest, say the human HECW1 gene with Ensembl id ENSG00000002746, it is possible323

to use (1) the hpar package [68] to query the Human Protein Atlas data [69, 70] or (2) to324

query the org.Hs.eg.db and GO.db annotations to extract the relevant information or (3)325

biomaRt to query the Ensembl server. Each alternative reports the same location, namely326

nucleus and cytoplasm, although this might not be necessarily the case. The hpar results327

are very specific and manually annotated, specifying that the protein, although observed in328

the nucleus, has not been observed in the nucleoli. The other generic alternatives provide329

additional information, including GO evidence codes.330

To conclude this section, we also refer readers to the rols package [71], which provides331

on-line access to 85 ontologies through the ontology look-up service [72, 73]. Among those332

are the PRIDE, PSI-MS (Mass Spectrometry), PSI-MI (Molecular Interaction) PSI-MOD333

(Protein Modifications), PSI-PAR (Protein Affinity Reagents) and PRO (Protein Ontology)334

controlled vocabularies to name those specific to proteomics and mass spectrometry.335
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3. Conclusions336

We have illustrated data processing and analysis on a set of test and small size data.337

While real life data sets can be processed on commodity hardware or small servers (see338

supplementary file of [32] and the MSnbase-demo vignette for reports), the sophistication of339

the biological questions of interest and the increase in throughput of instruments requires340

software tools to adapt and scale up. R is an interpreted language (although support for341

byte code compilation is available through the compiler package) and relies in many aspects342

on a pass-by-value semantics, slowing execution of code compared to compiled languages343

and pass-by-refence semantics. Fortunately, R’s ability to interoperate with many other344

languages, including C and C++ [74], allows users to execute computationally demanding345

tasks while still retaining the flexibility and interactivity of the R environment. Direct346

support for parallel computing, large memory/out-of-memory data (see for instance High-347

Performance Computing task view10) and cloud deployment with the Bioconductor Amazon348

Machine Image11, make it possible to embark on large-scale data processing tasks.349

Among the brief list of packages that has been reviewed, we have demonstrated alter-350

native and complementary functionality. Most noteworthy however, is the interoperability351

of these packages, as illustrated in some of the examples. Generally, no specific effort is352

expected from developers to explicitly promote interaction among packages (on CRAN for353

example), and thus it is often the user’s/programmer’s responsibility to implement interop-354

erability. The Bioconductor project, on the other hand, openly promotes interoperability355

between packages and reuse of existing infrastructure. The classes for raw and processed356

data, briefly described in sections 2.3 and 2.4 are adapted from and compatible with ex-357

isting implementations for transcriptomics data, widely used in many core Bioconductor358

packages. Data processing procedures used for data normalisation and statistical algorithms359

are a direct and invaluable side effects of the R language and previous Bioconductor devel-360

opment. The quality and diversity of available software, fostered by interdisciplinary, open361

10http://cran.r-project.org/web/views/HighPerformanceComputing.html
11http://bioconductor.org/help/bioconductor-cloud-ami/
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and distributed development, is an immense source of knowledge to build upon.362

Although an elaborated environment and programming language like R has undeniable363

strengths, its sheer power and flexibility is its Achilles’ heel. An important obstacle in the364

adoption of R is its command line interface (CLI) that a user needs to apprehend before being365

able to fully appreciate R. Life scientists very often expect to operate a software through a366

graphical user interface (GUI), which is probably the major hurdle to the wider adoption367

of R, or other command line environments, outside the bioinformatics community. The368

important point is, however, that properly designed graphical and command-line interfaces369

are good at different tasks. Flexibility, programmability and reproducibility are the strength370

of the latter, while interactivity and navigability are the main features of the former and371

these respective advantages are complementary. Users should not be misguided and adhere372

to any interface through dogma or ignorance, but choose the best suited tools for any task373

to tackle the real difficulty, which is the underlying biology.374

In this review, we have described how to use R and a selection of packages to analyse375

mass spectrometry based proteomics data, ranging from raw data access and visualisation,376

data processing, labelled and label-free quantitation, quality control and data analysis. It is377

however essential to underline that, beyond the utilisation of the functionality exposed by378

the software, fundamental principles of data analysis have been demonstrated.379

Every use case that is summarised, including generation of the figures, is documented380

in the RforProteomics package and is fully reproducible: we provide code and data so that381

interested readers are in a position to repeat the exact same steps and reproduce the same382

results. The complexity of biological data itself and the processing it undergoes make it383

very difficult, even for experienced users, to track the computations and verify the results by384

merely looking at the input and the output data. As such, transparency of the pipeline is a385

required condition to aim for robustness and validity of the work flow, and the software itself.386

Biology is, by nature, extremely diverse, and creativity in the designs of experiments and the387

development and application of technology is the main obstacle to our understanding. The388

software that is employed must be flexible and extensible, to support researchers in their389
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quest rather then limit and constrain them. Reproducibility, transparency and flexibility390

are essential characteristics for scientific software, that are provided by the tools described391

above.392

Despite these indisputable advantages, a lot of work still needs to be done to improve393

and integrate our pipelines, demonstrate how R can efficiently, reproducibly and robustly be394

used for in-depth proteomics data comprehension as well as broaden access to these tools395

to the proteomics community. The RforProteomics is one effort in that direction. Finally,396

support is an essential part of the success and adoption of software; the on-line R community397

in general and the the Bioconductor mailing lists12 in particular are a rich and broad source398

of information for new and experienced users.399
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Fig. 1: Plotting raw MS2 data using functionality from the MSnbase package. On the left, the full m/z range
of an experiment containing 5 spectra is displayed. On the right, one spectrum of interest is illustrated,
highlighting the 4 iTRAQ reporter region. Both figures, have been created with the generic plot function,
applied to either the complete experiment of a single MS2 spectrum.
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Fig. 2: Label-free spectrum processing peak detection from the MALDIquant package. Figures represent
(1) raw data, (2) effect of variance stabilisation using square root transformation, (3) smoothing using a
simple 5 point moving average, (4) base line correction, (5) noise reduction and peak detection and (6) final
results.
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Fig. 3: Representation of peptide-level quantitation data. This plot has been generated using the PXD000001
TMT 6-plex data and converted to an MSnSet object. Normalised background and spike (BSA, CYT, ENO
and PHO) reporter ion intensities for a subset of peptides have been plotted using the ggplot2 package [75].
The complete code is available in the companion package.
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Fig. 4: Visualising observed peptides for the yeast enolase protein. Consecutive peptides are shaded in
different colours. The last peptide is a miscleavage and overlaps with IEEELGDNAVFAGENFHHGDK.
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Fig. 5: Assessing the quality of the PXD000001 data set. On the left, the delta m/z plot illustrates the
relevance of the raw MS2 spectra for peptide identification. The middle figure compares fully dissociated
reporter signal against incompletely dissociated ions, indicating satisfactory reporter dissociation for the
experiment. The last figure, a heatmap of a subset of peptides, highlights the expected lack of sample
grouping and tight peptides clustering. The first plot is produced by the plotMzDelta function from the
MSnbase package. The other figures used standard base R plotting functionality. The detailed code and
data to reproduce the figures is available in companion package.
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Fig. 6: On the left, the MA plot for the PXD000001 127 vs. 129 reporter ions, showing the 95% confidence
intervals of the background peptides (red), spikes (blue) and all (green) peptide noise models. The respective
peptides are colour-coded according to the proteins. The volcano plot on the right illustrates protein
significance (−log10 p-value) as a function of the log10 fold-change. The vertical coloured dashed indicate
the expected log10 ratios. The black dotted horizontal and vertical lines represent a p-value of 0.01 and
fold-changes of 0.5 and 2 respectively.
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Fig. 7: The synapter to MSnbase pipeline, illustrating how to combine and process data objects in an
design specific work flow. Data objects are represented by grey boxes, while functions, that manipulate
and transform the objects are shown in white boxes. The respective dimensions of the objects (number of
features × number of sample) are given in parenthesis.
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