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Abstract 12 

Using multispectral remote sensing, glacier surfaces can be classified into a range of zones. The 13 

properties of these classes are used for a range of glaciological applications including mass balance 14 

measurements, glacial hydrology, and melt modelling. However, it is not immediately evident that 15 

multispectral data should be optimal for imaging glaciers and ice caps. Thus, this investigation takes an 16 

inverse perspective. Taking into account spectral and radiometric properties, in situ spectral reflectance 17 

data were used to simulate glacier surface response for a suite of multispectral sensors. Sensor-simulated 18 

data were classified and compared. In addition, airborne multispectral imagery was classified for a range 19 

of spatial resolutions and intercompared in three different ways. In these analyses, the most important 20 

property which determined the suitability of a multispectral imager for glacier surface classification was 21 

its radiometric range (i.e. gain settings). Low resolution imagery (250 m pixels) is too coarse to represent 22 

the true complexity present on a glacier while medium resolution imagery (60 m, 30 m, or 20 m) 23 
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 2 

accurately represented the results derived from high resolution airborne imagery. Of those studied here, 24 

the satellite imagers currently in use that are most suitable for glacier surface classification are Landsat 25 

TM / ETM+ and ASTER (all with particular gain settings). Both Sentinel-2 and the OLI on Landsat 8 are 26 

also expected to be similarly qualified. Landsat MSS is also found to be radiometrically well-suited for 27 

glacier surface classification, but its lower spatial resolution makes it a secondary selection. 28 

 29 

1. Introduction 30 

The world’s glaciers and ice caps (GIC), which respond much more quickly to shifting climate than the 31 

continental ice sheets, provide information about past and present climate variability, are central parts of 32 

the world’s hydrological cycle, and are key to understanding regional and global climate change (e.g. 33 

Cogley et al., 2011; Oerlemans, 1994). In addition, glaciers contribute to local biodiversity (Jacobsen et 34 

al., 2012), mediate the hydrology and flooding of some mountain systems (Dahlke et al., 2012), and 35 

provide crucial water resources for large populations of the world (Baraer et al., 2011; Barry, 2011; 36 

Björnsson & Pálsson, 2008; Bolch et al., 2012; Hopkinson & Demuth, 2006).  37 

Glacier surface properties are integral to the behaviour of GIC. The division of GIC into 38 

accumulation and ablation areas is just the beginning of classification of glacier facies, or zones (Benson, 39 

1960; Williams et al., 1991). The equilibrium line altitude (ELA) and accumulation area ratio (AAR; 40 

Cogley et al., 2011) can be used as proxies for glacier mass balance (Braithwaite, 1984; Dyurgerov, 41 

1996). In addition, the glacier surface controls much of a glacier’s energy balance (Cuffey & Patterson, 42 

2010). Energy balance models both assimilate remotely sensed data about glacier surfaces to improve 43 

their results (Machguth et al., 2009; van Angelen et al., 2012), as well as validate their results (Braun et 44 

al., 2007; de Woul et al., 2006). 45 

Multispectral imagery is often the best tool for studying glaciers surfaces (Pellikka & Rees, 46 

2010). Reflectance information over a range of wavelengths, good spatial resolution, frequent repeat 47 

imaging, an extensive image archive, and often cost-free data access are all important. However, 48 

multispectral sensors were not designed by glaciologists. Satellites like the original Landsat were (and 49 
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continue to be) designed for a range of tasks including agricultural, oceanographic, and atmospheric 50 

monitoring (Markham & Helder, 2012). Therefore, it is not self-evident that they should be optimal for 51 

imaging GIC. Thus, the roles that the various spectral, spatial, and radiometric properties of each sensor 52 

play in the success and output of resulting classifications remain unquantified. 53 

 54 

1.1 Research Aims 55 

Multispectral imagers are powerful tools, and with the increasing availability of a range of high quality 56 

multispectral data including the recently launched Landsat 8 (Irons et al., 2012) and upcoming Sentinel 2 57 

(Drusch et al., 2012), it is increasingly crucial that they are fully understood. This investigation therefore 58 

takes an inverse perspective; it aims to start with in situ data to investigate the extent of information 59 

available from full-spectrum data and what that means for efficient and consistent application across 60 

multispectral sensors with different band capabilities and combinations. We ask the questions: How do 61 

the spectral and radiometric properties of these sensors limit or enhance their performance in glacier 62 

classification? Because sensors are characterised by both spatial and spectral properties, how does the 63 

spatial resolution of these various sensors impact the resultant surface classification? And what does this 64 

mean for glaciological applications? 65 

 66 

2. Background 67 

2.1 Glacier Facies 68 

Glacier surfaces exhibit a range of zones – wet and dry, snowy and icy, clean and dirty. In order 69 

to understand better the changing conditions of a glacier’s surface, the area can be considered to be 70 

divided into a set of systematic, idealised facies that are characterised by a particular set of properties 71 

relating to the metamorphosis of the snow or ice surface; facies range from dry snow at colder, higher 72 

elevations through to melting ice near the glacier terminus (Benson, 1960; Williams et al., 1991). 73 

Although there is a wide range of glacier facies, a glacier can be divided into two larger regions: the 74 

accumulation zone and the ablation zone. The transition between these two areas is the line of net zero 75 
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annual mass change known as the equilibrium line (Cogley et al., 2011; Cuffey & Patterson, 2010). Each 76 

different configuration of facies is evidence of a different metamorphic history. Facies distributions vary 77 

across glaciers both within seasons and across years, and not all facies are necessarily present on all 78 

glaciers. 79 

In addition, beyond these zones which are considered ‘facies,’ further surface classes can be 80 

identified in situ and remotely. For example, there are extensive areas of wind glaze and sastrugi in 81 

Antarctica (Kuchiki et al., 2011; Orheim & Lucchitta, 1987; Scambos et al., 2012). The presence of snow 82 

algae imparts a reddish tinge to an evolving wet-snow facies (Takeuchi, 2009), and dust or black carbon 83 

will darken the snow surface (e.g. Painter, 2011). Debris cover on the glacier can be considered another 84 

type of surface class (e.g. Casey et al., 2012; Shukla et al., 2009), as can volcanic ash deposited on glacier 85 

surfaces from a nearby eruption. In this study, ‘facies’ are considered to be the idealised zones of glacier 86 

surfaces which relate directly to accumulation and melt, while ‘surface classes’ are the zones which can 87 

be distinguished from the surface.  88 

Identification of accumulation versus ablation classes (through the ELA or the AAR) can be used 89 

as a proxy for a glacier’s mass balance, often in combination with further data such as a digital elevation 90 

model (e.g. Braithwaite & Müller, 1978; Dyurgerov, Meier, & Bahr, 2009; Rabatel et al., 2005; Shea et 91 

al., 2013). Also, glacier facies can be related to mass balance in other ways. Snow is bright (i.e. highly 92 

reflective in much of the visible and near-infrared) and ice is darker, therefore as the melt season 93 

progresses the glacier as a whole gets darker overall - specifically in proportion to the relative 94 

contributions of different glacier facies. In this way, it is possible to monitor glacier albedo as a tool for 95 

monitoring glacier mass balance (Dumont et al., 2012; Greuell & Oerlemans, 2005; Greuell et al., 2007).  96 

Shortwave radiation is crucial to the energy balance of a glacier. Glacier facies meaningfully 97 

contribute to this radiation balance and therefore to the surface energy balance of GIC. A clear example of 98 

the interrelated nature of energy balance and glacier facies can be seen in the simple parameterization of 99 

the degree-day melt model where ice and snow have different degree day factors (e.g. Hock, 2003). 100 

Information about the interannual and intra-annual evolution of glacier surfaces is also a key parameter in 101 
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building energy balance models. Fuller consideration of glacier facies in glacier melt modelling is gaining 102 

increasing traction within the glaciological community (e.g. Dumont et al., 2010; Machguth et al., 2009). 103 

This is true not just for GIC, but also for the larger ice sheets, where better classification and description 104 

of the unique properties of different facies improve melt model behaviour (e.g. van Angelen et al., 2012).  105 

Snow and ice reflectances are heavily wavelength-dependent (e.g. Wiscombe & Warren, 1980). 106 

In particular, the NIR (near infrared, ~700-1400 nm) has been seen as containing quantitative information 107 

about snow and ice surfaces (Kokhanovsky & Zege, 2004; Li et al., 2001; Nolin & Dozier, 1993). Glacier 108 

facies classification, too, has focused on the NIR to the exclusion of the visible, although snow studies 109 

have highlighted both ranges (Zeng et al., 1983). Sidjack and Wheate (1999) and Braun et al. (2007) cited 110 

some saturation in the visible and enhanced performance in the NIR as reasons for choosing linear 111 

combinations of input multispectral bands which contained large contributions from the NIR and SWIR 112 

(shortwave infrared, ~1400-2500 nm) and minimal contributions from the visible. 113 

Based on these examples, it is natural to hypothesise that sensors with enhanced capabilities in 114 

the NIR will be able to classify glacier facies better than their counterparts. This belief will be 115 

investigated below. 116 

 117 

2.2 Multispectral Remote Sensing, Classification, and Glacier Facies 118 

Multispectral remote sensing images are some of the most prevalent, easily available, and 119 

versatile forms of data available for the Earth Observing glaciologist. There are a variety of factors which 120 

must be weighed in choosing an appropriate multispectral sensor; each separate investigation or task 121 

requires an imager which is fit for purpose. Major considerations include spatial resolution, spectral 122 

resolution (i.e. band wavelengths), radiometric resolution and range, temporal resolution (i.e. revisit 123 

time), data cost and ease of access, length of data archive, data availability, and availability of pre-124 

processed products. From the range of different options, it is highly unlikely that any one sensor will be 125 

optimal for all studies. Nevertheless, sensors were chosen to span a wide range of properties (i.e. spatial 126 

scales, spectral bands, and gain settings) and priority was placed on wide use and easy data access. 127 



 6 

Although many imagers could have been included, those not included (e.g. SPOT, WorldView, etc.) will 128 

be able to find analogous properties in those considered here. Figure 1 includes the range of popular and 129 

prominent multispectral imagers that are considered in this study.  130 

 131 

***INSERT Figure 1 approximately here*** 132 

 133 

Glaciological uses of multispectral imagery include glacier maps and inventories (Albert, 2002; 134 

Hendriks & Pellikka, 2008; Kargel et al., 2005; Paul & Kääb, 2005; Paul, 2000), albedo calculation 135 

(Greuell et al., 2002; Knap, Reijmer, & Oerlemans, 1999), distinguishing snow from cloud (Hall et al., 136 

1995), identification of surface and basal crevasses (Luckman et al., 2012), feature tracking (Heid & 137 

Kääb, 2012), interpolating digital elevation models (Pope et al., 2013), identifying ice sheet grounding 138 

lines (Bindschadler et al., 2011), and much more (Pellikka & Rees, 2010; Rees, 2006).  139 

Classification, the process that takes quantitative information from every pixel and places each into 140 

one of a group of discrete categories, is crucial for image interpretation. Many different techniques have 141 

been applied to multispectral data to identify glacier surface classes. It should be noted that (automated) 142 

classification of glacier extent is considered to be a separate problem, one which has been largely solved, 143 

with the exception of debris-covered areas (Paul et al., 2013). Unsupervised classifications have had 144 

significant success in classifying glacier facies not only because they are easily reproducible but also 145 

because they are often able to exploit subtle features within data sets. ISODATA (Iterative Self-146 

Organizing Data Analysis; e.g. Aniya et al., 1996; De Angelis et al., 2007; Nolin & Payne, 2007; Sidjak 147 

& Wheate, 1999; Wolken et al., 2009) and k-means classification (e.g. Barcaza et al., 2009; König et al., 148 

2004) are the most widely and easily implemented clustering algorithms for glacier surface classification. 149 

This study will therefore implement these two iterative, unsupervised classification techniques. 150 

 151 

2.2.1 Impact of Spatial Resolution on Multispectral Classification 152 
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Data is not bad or good because of coarse or fine resolution, but difference scale imagery is better 153 

or worse suited to particular applications. Coarse imagery often confounds land cover classification as a 154 

result of pixels representing a mixture of classes. In this case, increasing resolution would increase 155 

classification success. Resolution effects have been investigated in a range of different applications 156 

(Baker et al., 2013; Battersby et al., 2012; Michishita et al., 2012; Phinn et al., 2012; Sobrino et al., 2012). 157 

The results of these comparisons have shown that agreement between spatial scales varies depending on 158 

the type of surface and the scale of inhomogeneity. In other words, although it is not immediately 159 

intuitive, increasing spatial resolution can decrease classification success. This happens in the case where 160 

coarser imagery serves to smooth out spatial inhomogeneity within classes. 161 

To the authors’ knowledge, no study has directly considered this subject for glaciers. Previous 162 

studies have used higher resolution imagery (~10 and ~1 m) to assess the accuracy of glacier extent 163 

measurements using medium resolution (~30 m) imagery (Paul, 2000; Paul et al., 2013). There is no 164 

significant difference in measured glacier area using imagery at 60 m resolution and finer; lower 165 

resolution imagery was not tested (Paul et al., 2002). In glacier albedo calculations, the scale of albedo 166 

variations is smaller than 30 m Landsat pixels (Reijmer et al., 1999), but because albedo can vary within 167 

facies this does not necessarily mean glacier facies vary on the same scales. Albedo variations within 168 

facies would then confound glacier surface classifications with spatial resolution finer than 30 m. 169 

 170 

3. Field Sites and Data 171 

3.1 Field Spectra 172 

For this study, visible through shortwave infrared (350-2500 nm) hemispherical-directional 173 

reflectances (HDRs; Schaepman-Strub et al., 2006) were collected during two field campaigns. In August 174 

2010, data were collected on Midtre Lovénbreen, Svalbard. In August 2011, data were collected on the 175 

major western outlet of Langjökull, Iceland. These two locations were chosen so as to include sampling of 176 

glaciers that had undergone different accumulation and melting histories. Additional differences were 177 

introduced by the springtime eruption of Grímsvötn volcano in Iceland. The data, as well as consideration 178 
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of available snow and ice spectral reflectance measurements and modelling efforts, are fully presented in 179 

Pope and Rees (In Press) and are also available upon request to the corresponding author.  180 

 181 

3.2 Multispectral Imagery 182 

Imagery collected with the UK Natural Environment Research Council (NERC) Airborne Research 183 

and Survey Facility’s (ARSF) Airborne Thematic Mapper (ATM) was used to investigate the effects of 184 

spatial resolution. The ATM was designed to mimic many of Landsat 7 ETM+’s bands but with added 185 

spectral coverage and spatial resolution (30 vs. ~2 m, determined by flight height and processing; see 186 

Figure 1).  187 

 188 

***Insert Figure 2 approximately here*** 189 

 190 

The ARSF flew a campaign over Midtre Lovénbreen on 9 August 2003 (see Figure 2); the ATM 191 

was mounted inside the ARSF’s Dornier 228 aircraft. Simultaneously collected laser ranging data (Rees 192 

& Arnold, 2007) were used to orthorectify the imagery. Azgcorr version 5.0.0, produced by Azimuth 193 

Systems UK and provided by the ARSF, was used to perform the orthorectification (Azimuth Systems, 194 

2005). ATM measurements are delivered as at-sensor radiance. No measurements of incoming radiation 195 

were available coincident with airborne data collection, and calibration to reflectance with pseudo-196 

invariant off-glacier targets from Landsat imagery was attempted, but no nearby surface was found to be 197 

consistent in its reflectance. Therefore, ATM data were left as at-sensor radiance. No surface anisotropy 198 

or slope corrections were implemented. The meteorological records at the nearby Ny-Ålesund research 199 

station also indicate that the glacier surface froze overnight and that frost deposition was likely. Angular 200 

crystals on the surface may increase surface reflectance (Casacchia et al., 2001). These combined effects 201 

may have some impact on glacier surface classification. However, as this study is concerned mainly with 202 

intercomparison of classifications at different resolutions, and the ATM image is only compared to 203 
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spatially degraded versions of itself, possible classification-confounding factors will be self-consistent 204 

and therefore should not impact the results of this study. 205 

 206 

4. Methods 207 

4.1 Spectral Response Matching 208 

A narrow to broadband (NTB) conversion is necessary to use spectral reflectance to replicate 209 

multispectral reflectance. This is done with a known relative spectral response function for each band 210 

obtained via NASA, ESA, and the NERC Field Spectroscopy Facility. Sentinel-2 and OLI are both 211 

approximated with “top hat functions” (i.e. uniform spectral response across each band), as no further 212 

data were available. In addition, spectra are not used to simulate Landsat-8 OLI data because calibration 213 

values were not available at the time of writing. The 12 bit radiometric resolution of the OLI is assessed 214 

by comparing the effect of radiometric resolution on the full-spectrum data. In addition, only MODIS 215 

bands 1-16 are considered because higher bands are in unsuitable wavelengths (e.g. water absorption) and 216 

their spectral response functions were not available. More detail on spectral response matching is 217 

available in the supplementary material. 218 

 219 

4.2 Multispectral Sensor Radiometric Properties 220 

Beyond the NTB conversion, further calibration parameters from each multispectral band must be taken 221 

into account to fully simulate the measurements which would be taken by a multispectral sensor – had the 222 

user been holding an extremely portable version of a satellite rather than a FieldSpec’s photodiodes. Full 223 

details on how field data were used to simulate sensor radiometric properties are available in the 224 

supplementary material. 225 

 226 

4.3 Principal Component Analysis 227 

The spectra measured in this study are highly multidimensional data, and multispectral data have a 228 

number of dimensions (in this case, bands) themselves. That is to say, each data “point” is characterised 229 
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by many values rather than a single number. Therefore, some method is needed to reduce the 230 

dimensionality of the data for analysis – without losing important information – in order to understand 231 

what the most important input wavelengths are for glacier surface classification. Concisely put, PCA is a 232 

transformation that reduces the dimensionality of a dataset by reprojecting it into a new coordinate space 233 

(e.g. Boresjö Bronge & Bronge, 1999; Sidjak & Wheate, 1999). Thus, each principal component (PC) is a 234 

linear combination of the input data.  235 

The first two or three PCs produced from full-spectrum reflectance can be used to create 236 

transferrable linear combinations (LCs) which are optimised for particular satellite bands for glacier 237 

surface using appropriate relative response functions (Pope & Rees, In Press). Here, PCs were calculated 238 

separately for Langjökull and Midtre Lovénbreen field spectra, and coefficients were rounded and 239 

compared. This has two benefits: one, it aids in a conceptual understanding of what each LC is 240 

emphasizing within the data; two, it facilitates wider transferability of LCs by not being specifically 241 

tailored to the field data. A unified set of LCs was produced for each satellite for later analysis (see 242 

below). For glaciers, LC1 is representative of VNIR albedo, LC2 emphasizes the difference in reflectance 243 

at blue / green wavelengths and red / NIR wavelengths, and LC3 highlights the difference in blue / NIR 244 

reflectance and green / red reflectance. All LCs are available in the supplementary material. LC1 in each 245 

case is representative of VNIR albedo, LC2 emphasizes the difference in reflectance at blue / green 246 

wavelengths and red / NIR wavelengths, and LC3 highlights the difference in blue / NIR reflectance and 247 

green / red reflectance. All LCs are available in the supplementary material.  248 

 249 

4.4 Classification 250 

Both ATM data and LCs are clustered using very similar techniques. Following previous studies 251 

(Braun et al., 2007; de Woul et al., 2006; Pope & Rees, In Press), an arbitrary number of classes were 252 

identified with a clustering algorithm, ISODATA for ATM data and k-means for LCs, respectively. For 253 

ATM imagery, output classes were subsequently grouped into accumulation and ablation areas for 254 

statistical analysis. For LCs, grouped classes are discussed below.  255 
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 256 

4.5 Statistical Classification Comparison 257 

This study requires that two main classification accuracy assessments be conducted. The first is a 258 

clustering analysis where the classification of field spectra is compared to knowledge from fieldwork. The 259 

second compares the results of classification of ATM imagery degraded to different spatial resolutions. A 260 

contingency matrix is created which shows the number of times (i.e. number of pixels or number of 261 

spectra) where two classifications agree or disagree. This matrix provides information on errors of both 262 

omission and commission and is the basis for statistical analysis (Congalton & Green, 1999; Congalton, 263 

1991; Foody, 2002; Rees, 2008). 264 

From the information in the contingency matrix, the most basic statistic is “A,” or the overall 265 

accuracy agreement. This is the sum of the times for which the classifications agree divided by the total 266 

number of samples. Put another way, A is the trace of the normalised contingency matrix (Rees, 2008). 267 

However, random chance can lead to agreement of classes, and therefore A can overestimate classification 268 

accuracy.  269 

In response, Cohen’s Kappa (K, Cohen, 1960) is a statistic which accounts for random effects 270 

within the classification comparison and remains an indexed value (i.e. perfect agreement result in K = 1). 271 

In this way, K reduces the overestimation of classification success included in A. K values can also be 272 

described by qualitative descriptions rather than simply numerical values (Monserud & Leemans, 1992). 273 

 274 

5. Results & Interpretation 275 

This study aims to answer the question of what qualities define the best multispectral imagers for 276 

glacier surface classification. Therefore, this section begins with spectral and radiometric considerations, 277 

transitions to an investigation of the impact of spatial resolution, and then combines the two to understand 278 

the advantages and limitations of a range of popular multispectral sensors to glacier surface classification. 279 

 280 

5.1 Impact of Spectral and Radiometric Properties on Glacier Surface Classification 281 
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5.1.1 Midtre Lovénbreen Clustering and Classification Analysis 282 

For this study, Midtre Lovénbreen provides an example of a largely “clean” and simple glacier. 283 

LCs 1, 2, and 3 are calculated for each sensor; all cases are described in Table 1 and presented in Figure 284 

3. The data were merged into three larger groups defined as snow surfaces, ice surfaces, and wet surfaces; 285 

these three main classes are circled in Figure 3a. Classification success is assessed, and the results 286 

presented in Table 1 are ranked in order of descending K. 287 

 288 

***Insert Table 1 and Figure 3 approximately here*** 289 

 290 

Overall, all sensors in all settings are largely able to classify the three clusters. Even the worst case 291 

attains almost 80% success and is considered “very good.” This success is tempered by the fact that the 292 

classification task is idealistically easy because there are no pixels as there would be in real imagery. 293 

There is one setup which does not group the wet classes as well as the other sensors: MODIS using bands 294 

8 and higher in a low gain setting (Figure 3o). This is possibly due to lack of contributions to the LCs 295 

from NIR wavelengths.  296 

Radiometric resolution on its own does not appear to be important in the “clean glacier” case on 297 

Midtre Lovénbreen, as can be seen by comparing Figures 1a, 1d, 1e, and 1c which are all clustered using 298 

full spectra but at unrestricted, 16 bit, 12 bit, and 8 bit resolution, respectively. However, when combined 299 

with a limited set of bands to use in LCs, the quantisation does begin to appear (e.g. Equations 11 and 12 300 

in the supplementary material used to produce Figures 1g and 1i, emulating ASTER). This example 301 

supports the importance of using LCs with a higher number of band combinations which better represent 302 

the full spectrum surface reflectance. 303 

Radiometer properties (i.e. radiance range and gain settings) do appear to play some role in 304 

classification accuracy, but it is hard to assess fully with such widespread success for the Midtre 305 

Lovénbreen spectra. Saturation is clearly visible in some Landsat settings; its distinctive signature is a 306 

linear alignment of spectra with high LC1 values for Landsat TM/ ETM+ HHHH (i.e. high gain for Bands 307 
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1-4) and Landsat MSS in Figures 1l and 1f, respectively. Landsat TM/ETM+ LLLH replicates original 308 

spectra biplots better than Landsat LLLL (i.e. low gain for Bands 1-4; Figures 1k and 1p, respectively), 309 

which makes sense given the high to lower reflectance transition of glacier surfaces from visible to NIR 310 

wavelengths. Interestingly, ASTER in a high gain setting (Figure 3b) appears to have such success in 311 

classification because all of the bright, snowy surfaces were compressed into the same saturated point in 312 

the plot, thereby making the entire class almost entirely homogeneous.  313 

Ultimately, while varying slightly in performance, imager radiometric properties do not provide 314 

significant limitations or guidance in selecting the most appropriate multispectral imager for surface 315 

classification of clean glaciers. 316 

 317 

5.1.2 Langjökull Clustering and Classification Analysis 318 

Langjökull provides an example of a glacier with a more complex set and larger range of surface 319 

classes, furnished in this case by ash from the Grímsvötn eruption in spring 2011. For Langjökull spectra, 320 

a very similar analysis to Midtre Lovénbreen is performed. All cases are described in Table 2 and 321 

presented in Figure 4. However, the results were merged into only two classes (clean ice and other; this is 322 

indicated by the circle in Figure 4a). Again, classification is assessed using knowledge from fieldwork, 323 

and the results are presented in Table 2 ranked in order of descending K. 324 

 325 

***Insert Table 2 and Figure 4 approximately here*** 326 

 327 

While the “clean” glacier ice was easily classified across all sensors, and despite the apparently 328 

simpler task of dividing into two groups rather than Midtre Lovénbreen’s three, there is a much larger 329 

range of success between sensors and settings for the Langjökull spectra. For the ash-covered glacier, no 330 

imager emulation is fully able to represent the range of information contained in the full spectrum data. 331 

From the spread of data points, it appears this is largely due to lack of sensitivity in LC2, although 332 
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saturation in LC1 also plays a role. Nevertheless, because of the simpler task (i.e. identifying clean ice), it 333 

is possible to achieve “perfect” classification success (for terminology see Monserud & Leemans, 1992). 334 

Radiometric resolution, again, is not found to be important on its own, but the quantising effects are 335 

again seen in ASTER because of the smaller number of bands contributing to the LCs (see Figures 2g, 2i, 336 

and to a lesser extent 2n). Even without restricting spectral range and rounding for radiometric resolution 337 

only (no scaling, 16 bit, 12 bit, and 8 bit in Figures 2a, 2b, 2c, and 2d, respectively), saturation does 338 

appear to be present in the data; this is because some spectra were measured at higher than 100% 339 

reflectance as a result of a specular component of reflectance (see Section 3.5.2).  340 

Indeed, radiometric resolution is overshadowed by other factors. For example, 12 bit MODIS 341 

sensors would be expected to perform well given their higher radiometric resolution compared to 342 

Landsat’s 8 bits. However, MODIS gain settings are tuned for darker land and ocean surfaces and so are 343 

less suitable to the task of glacier surface classification. As this demonstrates, radiometric range is more 344 

important than radiometric resolution. 345 

The importance of radiometric range and gain settings is also demonstrated by ASTER and 346 

Landsat. ASTER hi gain (Figure 4n), Landsat TM / ETM+ LLLL (Figure 4m), Landsat MSS (Figure 4h), 347 

and Landsat TM / ETM+ HHHH (Figure 4k) all show a linear feature influencing the higher ranges of 348 

both LC1 and LC2, the result of “sensor” saturation. This is more pronounced for ASTER than Landsat 349 

because more contributing “bands” are saturated, and LC2 shares more coefficients in common with LC1 350 

for ASTER. Landsat MSS is actually very similar to Landsat TM / ETM+ HHHH, but Landsat LLLH 351 

performs better than other Landsat setups. For ASTER, as in the Midtre Lovénbreen case, the brightest 352 

classes (New Drifted Snow 1, New Drifted Snow 3, and White Ice 2) are compressed to a single point.  353 

The LC1-LC2 biplots for MODIS 8+ in both gain settings (Figure 4o and p) demonstrate an 354 

intriguing chevron shape. Various theories were considered for why this would occur, including lack of 355 

band representation in the NIR or perhaps particular placement of bands in higher and lower wavelengths 356 

causing anomalous effects in LC2. In order to find the real culprit, it is necessary to return to exactly what 357 

LC1 and LC2 are (see Equations 26 and 17 in supplementary material). Unlike for other bands, the 358 
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magnitude of all coefficients of bands contributing to the LCs for MODIS 8+ are identical, except for a 359 

flip in sign for higher bands. Where reflectance in Bands 8 to 12 is much higher than 13 to 16, there is a 360 

positive linear pattern, and when the opposite is true there is a negative linear pattern. The linear pattern is 361 

more pronounced than it would be otherwise because snow and ice spectra have fairly uniform reflectance 362 

across the range of wavelengths observed by Bands 8 to 16. Although PCs are uncorrelated, rounding in 363 

the coefficients of the LCs caused an artefact in this case. 364 

Ultimately, as can be seen with the K rankings in Table 2, while a large number of sensors do a 365 

“perfect” job identifying clean ice on Langjökull, others perform very poorly. There is a pronounced 366 

division between the two, jumping from K = 0.9081 for ASTER normal gain down to 0.6579 for MODIS 367 

1-7. It should be noted that these results hold only for a simple unsupervised classification; supervised or 368 

iterative approaches have the potential to yield more specific classes but would lose transferability and 369 

ease of implementation. For surface classification of “dirty” or ash-covered glaciers, these results indicate 370 

that sensors with “Good,” “Fair,” or “Poor” K values should be foregone in preference for the many 371 

alternative sensors which rank higher in performance. 372 

 373 

5.2 Impact of Spatial Resolution on Glacier Surface Classification 374 

5.2.1 Experimental Strategy and Considerations 375 

ATM imagery of most of Midtre Lovénbreen was used in this experiment. LCs were calculated for 376 

the 2 m imagery (Equations 8 and 9 in supplementary material), and the image is masked using a manual 377 

outline of the glacier. LCs were degraded to 20, 30, 60 and 250 m pixels analogous to Sentinel-2, Landsat 378 

TM / ETM+ / OLI, Landsat MSS, and MODIS Bands 1-2, respectively; 500 m imagery is considered too 379 

coarse to resolve smaller mountain glaciers. LCs were then input into an ISODATA classification (10 380 

classes, maximum 10 iterations, 95% convergence); output classes were merged by the user into 381 

meaningful glaciological classes (i.e. ablation and accumulation facies). 382 

As spatial resolution is varied, the radiometric content of all images remains constant as a control. 383 

As alluded to earlier, the impact of resolution will depend on the fractal scale of the surfaces being 384 
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considered. For this purpose, Midtre Lovénbreen is taken to be a representative glacier surface because 385 

there is no reason to believe otherwise. Most classification accuracy and quality assessments suffer from 386 

their inability to fulfil some assumptions, namely co-registration and random sampling (e.g. Comber, 387 

Fisher, Brunsdon, & Khmag, 2012); this experiment uses all pixels to assess accuracy, and because 388 

coarser imagery is created from finer imagery, co-registration is a not an issue.  389 

By definition, the detail available in the 2 m results will be blurred out (to the lower resolution), but 390 

it is unknown what beneficial or detrimental effects this may have on surface classification accuracy and 391 

what this will mean for individual sensors which provide imagery at a variety of spatial resolutions. In 392 

this case, only pixel-based classification is considered because pixel-based classifications have been 393 

traditionally easier to implement with a range of software tools. Although object-based image analysis has 394 

been shown to have benefits for very-high resolution imagery (1 m), at any lower resolutions it does not 395 

produce statistically significantly different results from pixel-based classification (Baker et al., 2013). 396 

 397 

5.2.2 Spatial Resolution Assessment 1 398 

For each resolution, the ISODATA classification outputs 10 classes (see Figure 5). Classes 1 and 2 399 

are mixes of shadow and thin debris cover, classes 3 through 8 are interpreted as ablation classes, and 400 

classes 9 and 10 are interpreted as accumulation classes. For reasons described in earlier sections 401 

concerning the potential presence of frost and the use of radiance rather than reflectance, from 402 

investigation of the visible imagery it appears this interpretation (i.e. merging of classes) may slightly 403 

overestimate the accumulation area. Nevertheless, this is deemed to be preferable to significant 404 

underestimation of the area of accumulation facies.  405 

Percentages of each class and the aggregated accumulation and ablation areas are presented in 406 

Table 3. Most classifications have very similar accumulation and ablation area measurements, with the 407 

exception of the 250 m pixel classification, which results in slightly less ablation and more accumulation, 408 

although the differences are below 5%. While these figures agree, that does not mean the classification 409 

results agree on the pixel level; to understand this, further analysis is necessary.  410 
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 411 

***Insert Table 3 and Figure 5 approximately here*** 412 

 413 

5.2.3 Spatial Resolution Assessment 2 414 

To begin to understand pixel-level agreement of glacier surface classification at various resolutions, 415 

a majority filter was used to down-sample high resolution images to lower resolutions (see Table 4). 416 

Because class numbers are not indicative mathematically of their similarity or difference, mathematic 417 

convolution would not be meaningful. As would be expected, similarity is the most meaningful between 418 

images with similarly sized pixels (see Table 4). However, the 2 and 30 m images and 2 and 20 m images 419 

are more similar than the 20 and 30 m images. While this could be the result of a resampling artefact, it 420 

does indicate that medium resolution imagery is doing a good job at reproducing the results obtained with 421 

high resolution imagery. The 2 m classification results are approximately as similar to the 60 m results as 422 

all of the medium resolution classifications are to each other, potentially indicating that 20 or 30 m 423 

imagery is more suited to glacier surface classification than 60 m resolution imagery. At the bottom, the 424 

low resolution imagery (250 m pixels) by a large step shows the lowest agreement with all other results; 425 

according to this result, MODIS imagery is not appropriate for glacier surface classification.  426 

The A and K rankings of the classification comparisons differ slightly in the relative position of the 427 

comparison of 60 m and higher resolution results, 250 m to 2 m and 20 m images. The inferences drawn 428 

above are consistently supported by both A and K, but divisions are more visible in the K values than in 429 

the A values. This lends some confidence to the conclusions, because K values should contain more signal 430 

and less false agreement than A values.  431 

 432 

***Insert Table 4 approximately here*** 433 

 434 

5.2.4 Spatial Resolution Assessment 3 435 
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In addition to downscaling high resolution imagery, the low resolution imagery is resampled to 436 

high resolution by converting each pixel in the high resolution image to a host of small pixels of the same 437 

class (i.e. one 250 m pixel becomes 15,625 corresponding 2 m pixels). Pixels in the original high 438 

resolution and the down-sampled classifications are compared and assessed using A and K (see Table 5). 439 

A and K ranks and relative values are in better agreement than in the previous section. For this round of 440 

comparisons, similarity in pixel size was the unambiguous driver of similarity in results. Again, there is a 441 

clear break between high (2 m) / medium (20, 30, or 60 m) resolution image results and any comparison 442 

to the 250 m resolution classification results.  443 

 444 

***Insert Table 5 approximately here*** 445 

 446 

6. Discussion 447 

Using full-spectrum in situ reflectance data to emulate the spectral and radiometric properties of a 448 

range of imagers and settings is a controlled experiment of sorts, removing uncertainty introduced by 449 

unknown or changing surface conditions. For both clean and dirty glacier surfaces, although radiometric 450 

resolution is largely insignificant, selecting the sensor / gain settings with the most appropriate 451 

radiometric range is very important. For the data presented here, Landsat TM / ETM+ LLLH, Sentinel-2, 452 

Landsat MSS, ASTER low 1, and ASTER normal perform the classification tests the best. The 453 

radiometric properties of the recently-launched OLI were not available at the time of writing, but by 454 

considering analogues for its spectral bands and radiometric resolution, it is possible to envision that it 455 

would yield results which are a cross between full-spectrum 12 bit results, Sentinel-2, and Landsat TM / 456 

ETM+ and would therefore be quite well suited to glacier surface classification, too.  457 

Moving on to spatial resolution, each method used to compare glacier surface classification at 458 

different pixel sizes gives a slightly different impression of the importance of sensor spatial resolution. 459 

Figure 5 clearly shows the loss of detail associated with observation at lower resolutions, but the relative 460 

area of shadow, debris, accumulation and ablation facies is very similar among images of all classes. 461 



 19 

However, relative accuracy at different spatial scales is dependent on the scale of inhomogeneity within 462 

and between classes. For Midtre Lovénbreen, classes appear to be similarly behaved at high and medium 463 

resolutions, but the glacier is definitely more complex than 250 m pixels can capture. Although 15 m 464 

pixels (analogous to ASTER bands or fused ETM+ images) are not explicitly considered, in view of these 465 

results, such an analysis would appear to have been superfluous. Based upon this analysis, for glacier 466 

surface classification, high resolution imagery would indeed be desirable. It appears that even the highest 467 

resolution that MODIS is capable of providing (250 m) is insufficient for glacier surface classification. 468 

Medium resolution imagery is found to be adequate for the task, and 20 or 30 m imagery is preferable to 469 

60 m imagery but not drastically.  470 

However, it is important to question how representative the surfaces of Langjökull (spectrally) and 471 

Midtre Lovénbreen (both spectrally and spatially) are of glaciers in general. The selection of field spectra 472 

sampling locations was based upon the exploration of the field party. For Midtre Lovénbreen, the glacier 473 

is small and therefore it is highly unlikely that any major classes were omitted. Langjökull is much larger, 474 

and measurements were limited to a single outlet. Nevertheless, Landsat classification of this outlet 475 

indicates the presence of the full range of facies along the transect which was used, and therefore it is 476 

unlikely that any major classes were omitted there, either.  477 

The question then turns to the relative proportion of each class as measured; to an extent, it is 478 

important to recognize that these relative proportions will have some impact on the statistics, in particular 479 

the proportions in any contingency table. The ranking of sensors according to K values could conceivably 480 

have been more impacted by different proportions of facies. For example, for Midtre Lovénbreen, 481 

inclusion of more ‘coarse snow’ and ‘dry ice’ spectra would likely have depressed all K values. Similarly, 482 

for Langjökull, including more spectra from the classes near the ‘white ice’ spectra could have had a 483 

similar impact. However, although the magnitude of the statistics would have changed, this would have 484 

impacted (beneficially or detrimentally) all simulated clustering analyses, and it is therefore unlikely that 485 

the conclusions thereof (based on relative rank) would change. This study based conclusions on all 486 
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available data, choosing not to filter out spectra. Nevertheless, potential impacts of relative proportions of 487 

classes would be testable with further sampling campaigns.  488 

It is crucial for this study that the spectra measured on Midtre Lovénbreen and Langjökull (and 489 

principal components thereof) are considered to be representative of other glaciers. Because spectra are a 490 

result of a combination of physical processes (snow formation, accumulation, compaction, melt, etc.), it is 491 

reasonable to expect that this will be the case. Indeed, the similarity of the first and second principal 492 

components of spectra between the two glaciers supports this interpretation. In addition, preliminary 493 

principal component analysis of satellite imagery from other glaciers at other times yield nearly identical 494 

principal component band combinations. Indeed, for a particular glacier, if the user wanted a customised 495 

band combination, it would be reasonable to use PC1 and PC2 of a site-specific PCA. Thus, because 496 

spectra from the two chosen field sites and satellite images from others agree upon the principal 497 

components, it is reasonable to assume that Midtre Lovénbreen and Langjökull are representative glaciers 498 

for study.  499 

Nevertheless, although the major classes of Midtre Lovénbreen and Langjökull will be spectrally 500 

representative of many glaciers, there are still surface features on other subsets of glaciers that are not 501 

considered but could and would impact transferability of results. The largest subset of glaciers will be 502 

those in colder climates, in particular those with dry snow facies, for example in Greenland and 503 

Antarctica. Other surfaces which fall outside the remit of this study include those influenced by debris 504 

cover, dust, black carbon, and snow algae. It is entirely possible that the LCs presented here will be 505 

appropriate for classification of these facies; earlier work (Boresjö Bronge & Bronge, 1999) classified 506 

snow and ice zonation in Antarctica (even including sea ice) using PCA as a guide. More work will be 507 

needed to confirm or deny this hypothesis, but that is beyond the scope of this study. 508 

The analysis of the impact of spatial resolution on classification success raises the question of 509 

whether Midtre Lovénbreen is also spatially representative of other glaciers. Processes which impact the 510 

spatial distribution and scale of facies include the accumulation distribution, wind and avalanche 511 

redistribution, melt patterns, and local slopes, to name a few. In these regards, there is nothing that sets 512 
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Midtre Lovénbreen apart as a special glacier. By contrast, factors such as crevasses or incised supraglacial 513 

streams are glacier-specific and may have some impact on the impact of resolution on surface 514 

classification. However, such features are small on Midtre Lovénbreen and would likely manifest 515 

themselves as an important difference between high- and mid-resolution images, rather than influencing 516 

the conclusion that low-resolution images are inappropriate for facies classification. Thus, while there is 517 

no reason to suspect that Midtre Lovénbreen would have a different spatial character than other glaciers, 518 

it is recognized as a limitation of this study. Investigation of a wider study area would confirm or confine 519 

this extrapolation, so it is suggested as a potential future research direction. 520 

Accepting the transferability of this study, efficient and effective multispectral glacier surface 521 

classification has many implications for glaciological research. The most immediate use is selection of 522 

optimal imagery for widespread measurements of AAR (and therefore ELA) as mass balance proxies (e.g. 523 

Rabatel et al., 2008; Rabatel et al., 2005; Shea et al., 2013). Some of the studies upon which the 524 

classification method developed in this thesis were used for validation of glacier melt and hydrology 525 

models (Braun et al., 2007; de Woul et al., 2006). The effective identification of wet facies on clean 526 

glaciers by a wide range of sensors predisposes this classification scheme to effective application to 527 

hydrological applications. Increased application to validate models studying glacier surface hydrology 528 

would therefore be appropriate. In addition to small mountain glaciers (e.g. Dahlke et al., 2012), there is 529 

increasing interest in water-saturated areas in Greenland, so this may be a promising research direction. In 530 

addition, energy balance models may find some overlap with hydrological modelling, driving the liquid 531 

contributions to the glacier system. This study provides another step in the direction of successfully 532 

applying such an assimilation or validation mechanism. 533 

Other areas of research which will be impacted eventually include, as mentioned earlier, studies 534 

of climate variability, understanding of water resources, study of geomorphologic hazards, and 535 

investigation of high altitude and latitude biodiversity. These all tie back to better process-based 536 

understanding of glacier surface processes enabled by application of multispectral remote sensing. Here, 537 

two data sets were used to investigate the wider application of glacier surface classification across many 538 
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platforms. For the new sensors whose properties are not fully quantified (OLI on Landsat 8 and Sentinel-539 

2), it will be interesting to confirm the conclusions drawn here from the assumptions made here. Further 540 

principal component analysis of multispectral remote sensing imagery of glaciers would confirm the 541 

linear combinations of bands presented here for surface classification.  542 

In addition, the transferability of the conclusions about the necessity of medium-to-high spatial 543 

resolution has wide implications. It is pragmatic and efficient to identify the lowest reasonable resolution 544 

of data to use for studying glacier surface properties. This is especially true if the techniques are going to 545 

be used across wide areas or long time series. Although not expected that the conclusions will change 546 

significantly, it would still be beneficial to confirm with ATM images from other glaciers, in other areas, 547 

and across larger areas as well. Beyond application of ATM images, coordinated campaigns allowing for 548 

intercomparison of coincident, multi-resolution data would lead to even more robust conclusions in the 549 

future.  550 

 551 

7. Conclusion 552 

Increasing availability of multispectral data requires that researchers know what data types are best suited 553 

for their own research questions. For glacier surface classification, the radiometric, spectral, and spatial 554 

properties of a suite of popular sensors (ATM, ASTER, MSS, TM, ETM+, OLI, Sentinel-2, and MODIS) 555 

are investigated using data sets in common to perform controlled analyses. Linear combinations for all 556 

sensors were created based on principal component analysis of in situ spectra. Among these sensors, 557 

spectral resolution and range or radiometric resolution were not important on their own. The most 558 

important property which determined the suitability of a multispectral imager for glacier surface 559 

classification was its radiometric range. In particular, it was found to be beneficial to have a low gain in 560 

the visible and a higher gain in the NIR.  561 

Spatial resolution can, seemingly paradoxically, be either beneficial or detrimental to classification, 562 

depending on the fractal scale of the surface being classified. For glaciers, it was found that low 563 

resolution imagery (250 m pixels) is too coarse to represent the true complexity present on a glacier. 564 
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However, medium resolution imagery (60 m, 30 m, or 20 m) did accurately represent the results derived 565 

from high resolution airborne imagery. Nevertheless, 30 m imagery was preferable to 60 m imagery. 566 

From this, it was inferred that inhomogeneity on glaciers is significant on a scale between ~60 and 250 m.  567 

Based upon these radiometric, spatial, and spectral requirements, the sensors emulated here that are 568 

most suitable for glacier surface classification are Landsat TM / TM+ (with gain settings of LLLH) and 569 

ASTER (low 1 or normal gain). Both Sentinel-2 and the OLI on Landsat 8 are also expected to be 570 

similarly qualified. Landsat MSS is also found to be radiometrically well-suited for glacier surface 571 

classification, but its lower spatial resolution makes it a secondary selection. However, MSS has historical 572 

imagery whereas other sensors have more recent (or future) data ranges, and therefore these imagers 573 

could be used in conjunction with each other. This demonstrates, once again, that although priority can be 574 

given to sensor capabilities, temporal resolution and data availability will still remain important 575 

considerations.  576 

Consideration was given to the transferability of the results presented here. The result of universal 577 

physical processes, Midtre Lovénbreen and Langjökull are deemed to be representative of the classes 578 

present on many GICs, both spatially and spectrally. Future work should focus on downstream impacts, 579 

related to mass balance proxies, integrated with glacier modelling, and related to applied studies of glacier 580 

behaviour. The potential exists for further confirmation of the conclusions presented here using further 581 

data sets.  582 

In sum, the work presented in this paper has contributed to the understanding of glaciological 583 

applications of multispectral remote sensing imagery, a field which will be sure to remain innovative and 584 

vital to glaciology for many years to come.  585 
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 833 

 834 

Figures: 835 

Figure 1: Comparison of spectral bands of the multispectral sensors considered in this study. Background 836 

spectrum is the same as ‘Fine Snow’ in Figure 2.3. See Table S2 for further details. 837 

Figure 2: False-colour ATM image of Midtre Lovénbreen collected on 9 August, 2003. ATM bands 4, 3, 838 

and 2 are used for red, green, and blue respectively. Full colour versions for this and other figures are 839 

available online. 840 

Figure 3: Biplots of the first and second linear combinations of in situ spectral data from Midtre 841 

Lovénbreen modified to mimic the spectral and radiometric properties of a range of multispectral 842 

imagers. See Table 1 for the details of all individual plots, (a) through (p). The ellipses in Figure 3a also 843 

show the three groups into which the data were classified. 844 

Figure 4: Biplots of the first and second linear combinations of in situ spectral data from Langjökull 845 

modified to mimic the spectral and radiometric properties of a range of multispectral imagers. See Table 2 846 

for the details of all individual plots, (a) through (p). The ellipse in Figure 4a highlights the clean ice 847 

spectra which were classified as distinct from the rest. 848 

Figure 5: Midtre Lovénbreen surface classification using ATM imagery at 2 m resolution (a) and the 849 

same image degraded to 20 m (b), 30 m (c), 60 m (d), and 250 m pixels (e). 850 

  851 
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 852 

Tables: 853 

Table 1: For Midtre Lovénbreen spectra: sensors, radiometric resolution, gain settings, K (Cohen’s 854 

Kappa) of clustering success, description of classification success (Monserud & Leemans, 1992), and 855 

corresponding panel in Figure 3.  856 

Sensor Radiometric 

Resolution 

Gain 

Settings 

K Monserud 

Agreement 

Figure 6.1 

ASTER 

ASD FieldSpec 

ASD FieldSpec 

ASD FieldSpec 

Landsat MSS 

ASTER 

ASD FieldSpec 

ATM 

ASTER 

Sentinel-2 

Landsat TM / ETM+ 

Landsat TM / ETM+ 

MODIS 1-7 

MODIS 8+ 

MODIS 8+ 

Landsat TM / ETM+ 

8 bit 

8 bit 

16 bit 

12 bit 

8 bit 

8 bit 

- 

16 bit 

8 bit 

12 bit 

8 bit 

8 bit 

12 bit 

12 bit 

12 bit 

8 bit 

hi 

- 

- 

- 

- 

low 1 

- 

- 

normal 

- 

LLLH 

HHHH 

- 

hi 

lo 

LLLL 

0.9816 

0.9742 

0.9742 

0.9742 

0.9705 

0.9669 

0.9669 

0.9631 

0.9595 

0.9484 

0.9448 

0.9267 

0.9158 

0.8938 

0.8721 

0.7977 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Excellent 

Very Good 

b 

c 

d 

e 

f 

g 

a 

h 

i 

j 

k 

l 

m 

n 

o 

p 

 857 

  858 
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 859 

Table 2: For Langjökull spectra: sensors, radiometric resolution, gain settings, K (Cohen’s Kappa) of 860 

clustering success, description of classification success (Monserud & Leemans, 1992), and corresponding 861 

panel in Figure 4. 862 

Sensor Radiometric 

Resolution 

Gain 

Settings 

K Monserud 

Agreement 

Figure 6.2 

ASD FieldSpec 

ASD FieldSpec 

ASD FieldSpec 

ASD FieldSpec 

Sentinel-2 

Landsat TM / ETM+ 

ASTER 

Landsat MSS 

ASTER 

MODIS 1-7 

Landsat TM / ETM+ 

ATM 

Landsat TM / ETM+ 

ASTER 

MODIS 8+ 

MODIS 8+ 

- 

16 bit 

12 bit 

8 bit 

12 bit 

8 bit 

8 bit 

8 bit 

8 bit 

12 bit 

8 bit 

16 bit 

8 bit 

8 bit 

12 bit 

12 bit 

- 

- 

- 

- 

- 

LLLH 

low 1 

- 

normal 

- 

HHHH 

- 

LLLL 

hi 

hi 

lo 

1 

1 

1 

1 

1 

1 

1 

1 

0.9081 

0.6579 

0.6559 

0.5979 

0.5841 

0.5101 

0.4879 

0.3522 

Perfect 

Perfect 

Perfect 

Perfect 

Perfect 

Perfect 

Perfect 

Perfect 

Excellent 

Good 

Good 

Good 

Good 

Fair 

Fair 

Poor 

a 

b 

c 

d 

e 

f 

g 

h 

i 

j 

k 

l 

m 

n 

o 

p 

 863 

  864 
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 865 

Table 3: Comparison of the results of the classifications presented in Figure 5 by considering relative 866 

area of each class as well as their aggregation into glaciologically meaningful groups of accumulation and 867 

ablation area. 868 

Class 2 m 

Pixels 

Percent Interpretation    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

124,425 

196,744 

57,694 

67,947 

107,323 

158,711 

205,371 

179,783 

116,938 

72,040 

9.7 

15.3 

4.5 

5.3 

8.3 

12.3 

16.0 

13.0 

9.1 

5.6 

Shadow / Debris 

Shadow / Debris 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Accumulation 

Accumulation 

  

 

 

Total Area: 

 

Shadow/Debris: 

Ablation: 

Accumulation: 

 

 

 

 

5.15 km2 

 

25.0 % 

60.4 % 

14.7 % 

 

Class 20 m 

Pixels 

Percent Interpretation    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1,383 

1,932 

610 

653 

1,023 

1,479 

2,307 

1,883 

1,107 

765 

10.5 

14.7 

4.6 

5.0 

7.8 

11.3 

17.6 

14.3 

8.4 

5.8 

Shadow / Debris 

Shadow / Debris 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Accumulation 

Accumulation 

  

 

 

Total Area: 

 

Shadow/Debris: 

Ablation: 

Accumulation: 

 

 

 

 

5.26 km2 

 

25.0 % 

60.5 % 

14.2 % 

 

Class 30 m 

Pixels 

Percent Interpretation    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

630 

889 

287 

288 

454 

624 

1,005 

895 

491 

358 

10.6 

15.0 

4.8 

4.9 

7.7 

10.5 

17.0 

15.1 

8.3 

6.0 

Shadow / Debris 

Shadow / Debris 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Accumulation 

Accumulation 

  

 

 

Total Area: 

 

Shadow/Debris: 

Ablation: 

Accumulation: 

 

 

 

 

5.33 km2 

 

25.7 % 

60.0 % 

14.3 % 
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Class 60 m 

Pixels 

Percent Interpretation    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

167 

228 

93 

87 

92 

153 

240 

264 

119 

100 

10.8 

14.8 

6.0 

5.6 

6.0 

9.9 

15.6 

17.1 

7.7 

6.5 

Shadow / Debris 

Shadow / Debris 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Accumulation 

Accumulation 

  

 

 

Total Area: 

 

Shadow/Debris: 

Ablation: 

Accumulation: 

 

 

 

 

5.55 km2 

 

25.6 % 

60.2 % 

14.2 % 

 

Class 250 m 

Pixels 

Percent Interpretation    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

15 

16 

7 

11 

7 

6 

13 

17 

11 

9 

13.4 

14.3 

6.3 

9.8 

6.3 

5.4 

11.6 

15.2 

9.8 

8.0 

Shadow / Debris 

Shadow / Debris 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Ablation 

Accumulation 

Accumulation 

  

 

 

Total Area: 

 

Shadow/Debris: 

Ablation: 

Accumulation: 

 

 

 

 

7.0 km2 

 

27.7 % 

54.5 % 

17.9 % 

 

 869 

  870 
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 871 

Table 4: Comparison of the results of the classifications presented in Figure 5 by down-sampling results 872 

with majority filtering to lower resolutions. A is overall agreement and K is Cohen’s Kappa, both 873 

presented in Section 4.5; perfect agreement would lead to a value of 1 for both A and K.  874 

Starting 

Resolution 

Final 

Resolution  

A  A, 

grouped 

A, 

ranked 

K  K, 

grouped 

K, 

ranked 

2 m 

2 m 

20 m 

30 m 

2 m 

20 m 

60 m 

30 m 

20 m 

2 m 

30 m 

20 m 

30 m 

60 m 

60 m 

60 m 

250 m 

250 m 

250 m 

250 m 

0.6315 

0.7217 

0.5788 

0.6414 

0.5284 

0.6126 

0.2857 

0.1923 

0.1975 

0.2405 

0.9477 

0.9459 

0.9324 

0.9084 

0.9135 

0.9090 

0.7727 

0.7612 

0.6857 

0.6912 

1 

2 

3 

6 

4 

5 

7 

8 

10 

9 

0.5825 

0.6837 

0.5226 

0.5927 

0.4662 

0.5605 

0.1881 

0.0878 

0.1023 

0.1425 

0.9035 

0.9017 

0.8746 

0.8360 

0.8359 

0.8326 

0.5956 

0.5681 

0.4554 

0.4322 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 875 

  876 
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 877 

Table 5: Comparison of the results of the classifications presented in Figure 5 by downscaling results to 878 

higher resolutions. A is overall accuracy agreement and K is Cohen’s Kappa, both described in Section 879 

4.5; perfect agreement would lead to a value of 1 for both A and K. 880 

Starting 

Resolution 

Final 

Resolution  

A  A, 

grouped 

A, 

ranked 

K  K, 

grouped 

K, 

ranked 

30 m 

20 m 

30 m 

60 m 

60 m 

60 m 

250 m 

250 m 

250 m 

250 m 

20 m 

2 m 

3 m 

30 m 

20 m 

2 m 

60 m 

30 m 

20 m 

2 m 

0.7381 

0.6393 

0.5976 

0.6383 

0.5958 

0.4977 

0.2612 

0.2342 

0.2165 

0.2145 

0.9603 

0.9585 

0.9450 

0.9338 

0.9252 

0.9065 

0.6909 

0.6833 

0.6711 

0.6647 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.7030 

0.5918 

0.5443 

0.5902 

0.5422 

0.4317 

0.1690 

0.1400 

0.1207 

0.1190 

0.9269 

0.9233 

0.8983 

0.8778 

0.8609 

0.8253 

0.4469 

0.4223 

0.3985 

0.3883 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 881 


