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Abstract 

 

β-diversity (variation in community composition) is a fundamental component of biodiversity, with 

implications for macroecology, community ecology and conservation. However, its scaling properties are 

poorly understood. Here, we systematically assessed the spatial scaling of β-diversity using 12 empirical 

large-scale datasets including different taxonomic groups, by examining two conceptual types of β-

diversity and explicitly considering the turnover and nestedness components. We found highly consistent 

patterns across datasets. Multiple-site β-diversity (i.e. variation across multiple sites) scaling curves were 

remarkably consistent, with β-diversity decreasing with sampled area according to a power law. For 

pairwise dissimilarities, the rates of increase of dissimilarity with geographic distance remained largely 

constant across scales, while grain size (or scale level) had a stronger effect on overall dissimilarity. In 

both analyses, turnover was the main contributor to β-diversity, following total β-diversity patterns 

closely, while the nestedness component was largely insensitive to scale changes. Our results highlight 

the importance of integrating both inter- and intraspecific aggregation patterns across spatial scales, 

which underpin substantial differences in community structure from local to regional scales. 

 

Keywords: species composition; dissimilarity; diversity partitioning; nestedness component; spatial 

turnover; scale dependence; intraspecific aggregation; spatial grain   
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Introduction 

 

Biodiversity patterns and the mechanisms driving them are inherently scale dependent (Wiens 1989, 

Levin 1992, McGill 2010a, McGill et al. 2015). Multiple processes determine the distribution and 

abundance of species, acting upon ecological communities differently at different scales, e.g. climate, 

local environmental conditions, dispersal and species interactions (MacArthur 1972, Ricklefs 1987, 

McGill 2010a). Beta (β) diversity quantifies the variation of species composition between assemblages or 

sites (Whittaker 1960). It is a fundamental component of biodiversity, with implications for community 

ecology, macroecology and conservation (Whittaker 1960, Anderson et al. 2011, Socolar et al. 2016). As 

additional habitat types and different environmental features are included in larger geographical areas, β-

diversity patterns are expected to be scale dependent (Koleff et al. 2003, Tuomisto 2010a, Barton et al. 

2013). However, while the scaling properties of species richness have received substantial attention (e.g. 

Rosenzweig 1995; Harte et al. 2009; Storch et al. 2012), the scaling of β-diversity is less understood, with 

a lack of theoretical predictions about the form of β-diversity scaling patterns (Koleff et al. 2003, Gaston 

et al. 2007, Barton et al. 2013).  

 

Analyses of β-diversity can be used to address two sets of questions: variation among sites within a given 

spatial extent, habitat type or experimental treatment (multiple-site β-diversity) vs differences between 

sites along a spatial or environmental gradient (pairwise dissimilarities), thus yielding two conceptual 

types of β-diversity (Anderson et al. 2011). The first approach derives aggregate measures of β-diversity 

across all sites regardless of their location (i.e. not spatially explicit), while the second approach typically 

regresses pairwise site comparisons vs geographic distance (distance-decay relationship (DDR); Nekola & 

White 1999; Morlon et al. 2008). DDR are often well fitted by exponential or power law curves, and β-

diversity is then summarized as the rate of change from this curve (Nekola and McGill 2014). 

Additionally, β-diversity may reflect two underlying phenomena – turnover and nestedness. The turnover 

component represents the replacement of species between sites, whereas the nestedness-resultant 

component occurs due to changes in species richness – sites with fewer species are strict subsets of richer 

sites (Harrison et al. 1992, Koleff et al. 2003, Baselga 2010). Nestedness and turnover are generated by 

different processes – species loss and species replacement respectively – therefore quantifying their 

relative contribution can provide insights into the mechanisms underlying β-diversity across spatial scales 
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(Baselga 2010, Svenning et al. 2011). However, little is known about how the two components change 

across different scales. Here, we examine both multiple-site and pairwise β-diversity, as well as their 

components, taking advantage of the framework developed by Baselga for presence-only data (2010), in 

order to understand the scaling properties of β-diversity. 

 

 

Expectations for the scaling of β-diversity 

The measurement of β-diversity is affected by the spatial scale of observation, both in terms of grain and 

extent (Preston 1948, Wiens 1989, Nekola and White 1999, Mac Nally et al. 2004, Qian 2009, Keil et al. 

2012, Steinbauer et al. 2012, Barton et al. 2013, Nekola and McGill 2014). For small grain sizes 

compared to the overall study extent, even close sampling units might be very dissimilar in their species 

composition, due to stochastic sampling effects and high variability in species occupancy patterns. As 

grain size increases, mean environmental variability decreases as a result of spatial averaging, and the 

probability of detecting more rare species increases (Wiens 1989, Levin 1992, Gaston et al. 2007, Keil et 

al. 2012, Barton et al. 2013). Hence, multiple-site β-diversity is expected to decrease as grain increases. 

But what is the functional form of this relationship? And are the patterns system or taxon specific (Barton 

et al. 2013)? Our analysis provides the first attempt to build empirical β-diversity scaling curves – akin to 

the triphasic Species-Area Relationship (SAR; Williams 1943; Rosenzweig 1995; Storch et al. 2012), and 

the first assessment of the generality of these scaling patterns. 

 

Pairwise dissimilarities are also expected to decrease as grain size increases, but previous studies have 

reported conflicting results. For instance, lower DDR rates (Nekola and White 1999) and lower β-

diversity (Keil et al. 2012) were reported for larger grains. In contrast, Morlon et al. (2008) found that 

grain size only affected rates of decay at the smallest grain analysed, while no consistent trend was found 

by both Steinbauer et al. (2012) and Zacaï et al. (2016). This suggests that the influence of grain size on 

DDR cannot be easily predicted, and might be context and/or taxa dependent. However, these studies 

have all employed different approaches, varying total extent and/or grain, and analysing the patterns at 

different spatial scales (continents to plots). Hence, employing a systematic multiscale approach across 

multiple taxa can help disentangle scale effects and ecological patterns. 
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A few studies have analysed turnover and nestedness components’ patterns at large spatial extents for 

specific taxa, with their relative contributions being apparently contingent on the context and scale 

investigated (Baselga 2010, Svenning et al. 2011, Wen et al. 2016), but a general investigation of turnover 

and nestedness relative contributions independent of latitudinal, longitudinal or environmental gradients 

is still lacking. Turnover can be expected to be lower between larger sampled areas and for more vagile 

organisms. It may be that the nestedness component is less relevant between smaller sampled areas, 

where turnover may be the dominant driver of β-diversity. On the other hand, nestedness could also 

represent a smaller portion of β-diversity in scenarios with high dispersal rates. Thus, it is not clear how 

grain could affect the relative importance of the two components, with possible interactions resulting 

from other mechanisms, such as metacommunity dynamics (Leibold et al. 2004, Si et al. 2015, Tonkin et 

al. 2016, Schuler et al. 2017, Gianuca et al. 2017). 

 

Here, we establish a scale gradient within 12 communities encompassing different taxa to systematically 

assess β-diversity scaling patterns. We undertake the first empirical assessment of multiple-site β-

diversity scaling with sampled area. Additionally, we consistently investigate the behaviour of pairwise 

dissimilarities across the scale gradient, by testing the hypothesis that DDR rates become steeper (more 

pronounced) as grain size decreases. Finally, we test whether turnover decreases with area sampled, while 

exploring the behaviour of the nestedness component. 
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Material and Methods 

 

To quantify community dissimilarity, we used the additive partition framework proposed by Baselga 

(2010), where the Sørensen index represents total β-diversity accounting for all aspects of compositional 

variation, the Simpson index represents turnover, i.e. species replacement independent of species richness 

gradients, and their difference represents a measurement of dissimilarity due solely to species richness 

differences, i.e. the nestedness-resultant component: 

βSørensen = βSimpson + βNestedness-resultant. 

 

We follow the same notation as Baselga (2010), using upper-case letters for the multiple-site metrics 

(βSOR, βSIM, βNES), and lower-case letters for pairwise dissimilarities (βsor, βsim, βnes). We emphasize that 

we examine the component of β-diversity due to differences in species richness, not nestedness itself 

(Baselga 2010, 2012). Gamma diversity (i.e. the total number of species sampled in the overall extent) 

was assumed constant for each dataset, and because our goal was not to estimate latitudinal gradients of 

β-diversity, we did not employ a null model approach (Tuomisto 2010b, Ulrich et al. 2016, Socolar et al. 

2016). All analyses used presence-only data and were performed using the statistical software R (R Core 

Team 2017). 

 

 

Empirical Data 

We analysed 12 datasets comprising different taxa, namely birds, fish, benthos and trees. We selected 11 

datasets from the BioTIME database (Dornelas et al. 2018) with spatial extent larger than 150 000 km
2
 

and for which the unique sampling locations were distributed across the study area so that the random 

splitting of the total extent would not result in portions without sampling locations (see next section). We 

used data from a single year for each dataset (the year with the most and more evenly distributed 

sampling locations). We also analysed the Forest Inventory and Analysis Database (FIA; 

http://fia.fs.fed.us/; USDA Forest Service 2010; Woudenberg et al. 2010), as we wanted to include tree 

community data in our analysis; we obtained these data using the EcoData Retriever (http://data-

retriever.org; Morris and White 2013, McGlinn and White 2015). These empirical datasets cover a wide 
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range of sampling grains (0.0001 to 400 km
2
) and total spatial extents (167 455 to 16 663 141 km

2
). The 

full list of datasets and sources can be found in Table 1. 

 

 

Implementing the scale gradient 

We established a scale gradient by using the fixed extent of the study area and systematically partitioning 

this area into smaller portions, thus varying “grain” size as follows. We drew a circle encompassing all 

the sampling locations from the community data and centred on the centroid of the sampling locations. A 

random point from the circle was selected to split the circle into halves, thirds, quarters, eights and 

sixteenths, using the initial random point from the bisection as reference (Fig. 1). We subsampled to 

obtain an equal number of samples in each subsection and pooled species abundances across the retained 

samples within each section. We then calculated β-diversity metrics at each level. Each study was 

randomly split ten times, to assess the generality of our results focusing on effects of scale independently 

of latitudinal or longitudinal effects. Finally, we calculated β-diversity between all the individual samples, 

representing the lowest level of the scale gradient. This procedure thus yielded six scaling levels covering 

several orders of magnitude (we were not able to establish more levels after splitting the extent into 16 

sections since the sampling locations were not evenly distributed across the extents, which would lead to 

having empty sections or sections containing only one or two samples). 

 

The sample areas created as described above were not exhaustively sampled (which would be a logistical 

impossibility). Thus, we calculated the area of the sample in two ways, bracketing the upper and lower 

bounds of what could reasonably be called the sampled area. First, the areas sampled were calculated 

using convex hull polygons encompassing the sampling locations within each section, using package 

rgeos (Bivand and Rundel 2016) (Fig. 1). At each level, sampled area was estimated as the minimum of 

the convex hull areas – the estimated metrics are representative of the smallest area. Additionally, we 

calculated area sampled as grain size * number of samples, representing the actual area sampled. For the 

lowest level of the scale gradient, we considered the grain size of individual samples, assuming a value 

from a similar study if the exact information was not available (Table 1). Since the range of grains 

analysed covers several orders of magnitude, our results are not contingent on the exact grain size at the 

smallest scale. Geographic distances were calculated in km as the distance between the centroids of each 
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section, and between all the sampling locations for the grain level, using package sp (Pebesma and 

Bivand 2005) (Fig. 1). 

 

 

Multiple-site β-diversity 

To assess how multiple-site dissimilarity varied with grain, we used function beta.sample() in betapart 

package (Baselga and Orme 2012, Baselga et al. 2017) to calculate total β-diversity, turnover and 

nestedness components. beta.sample() randomly selects a specified number of sites to generate 

distributions of the multiple-site dissimilarity measures, thus allowing to compare the different scaling 

levels using an equal number of sites. To fully explore scaling, we sampled two sites at each level, 

drawing 1000 random samples. We fitted two models to the multiple-site β-diversity scaling curves. First, 

we used generalized nonlinear least squares to fit a power law to each metric as a function of area (i.e. 

Dissimilarity ~ 1-(a*Area
^b

)), using function gnls() from the nlme package (Pinheiro et al. 2016). Second, 

we fitted a linear model to the logit transformation of dissimilarity values as a function of log10(Area). 

To illustrate that the patterns are not contingent on using estimates from a single trial, we compared the 

median βSOR values across all the trials (excluding the last one) with the values used in the analysis. 

 

 

Pairwise β-diversity 

We used function beta.pair() in betapart (Baselga and Orme 2012, Baselga et al. 2017) to obtain pairwise 

dissimilarities between the sections at each scaling level and between all the sampling locations for the 

grain level (pairwise dissimilarities represent the opposite of distance-decay of similarity). For the 

datasets with over 5000 individual samples, we randomly sampled 2000 samples for the grain level 

models, due to the very high number of pairwise comparisons (Table 1). We fitted negative exponential 

models to each dissimilarity metric vs geographic distance (Nekola and McGill 2014) via GLM using the 

decay.model() function from betapart, which also implements a permutation test to assess significance 

(n=100) (Baselga et al. 2017, Gómez-Rodríguez and Baselga 2018). We tested if the slopes and intercepts 

increased as grain decreased by bootstrapping the parameters using the function boot.coefs.decay() in 

betapart (1000 bootstraps; for the grain level only 100 bootstraps were used due to the very high number 

of calculations to perform). Finally, we assessed if coefficients for turnover (βsim) were higher than for 
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nestedness (βnes) within each scaling level by calculating the probability of obtaining the opposite result 

by chance, by comparing the bootstrap parameter distributions. These procedures were not performed for 

the bisection, 1/3 and 1/4 levels due to the small number of pairwise comparisons available to accurately 

assess DDR.  

 

 

Results 

 

Multiple-site β-diversity 

Multiple-site β-diversity scaling curves were very similar across the communities analysed, with βSOR 

decreasing with sampled area according to a power law (Fig. 2; Table S1). As these patterns were 

consistent across the ten random splitting trials (Supplementary Figs. S1 and S2), we report the results for 

a single split. Some communities exhibited more contracted curves along the y-axis, i.e. for the larger 

areas sampled βSOR was <0.2 (e.g. SCRT, MBBA, and NPGO), whereas for others it was ~0.4-0.8 (e.g. 

RLS_F, RLS_I, and FIA). βSIM exhibited a similar pattern, representing the largest portion of β-diversity 

across the scale gradient and for all the communities. βNES seemed to be relatively insensitive to changes 

in area sampled, and always had a smaller contribution to β-diversity, although it increased slightly for 

some communities as area increased (Fig. 2). The results were qualitatively very similar when using area 

sampled as grain * number of samples (Fig. S3). Model fitting indicated that a power law always 

provided the best fit according to AIC (Fig. S4). Moreover, the estimated power law coefficients fell in a 

relatively narrow parameter space (Fig. S5), and in many situations were not statistically different 

between datasets. 

 

 

Pairwise β-diversity 

We used a single random trial since there was relatively small variability in the estimated coefficients 

among trials, and restricted our comparisons to the lowest levels of the scale gradient. At a given level, 

βsor increased with geographic distance, and as the scale level increased overall dissimilarity decreased 

(Figs. 3 and S6). While βsim followed βsor patterns closely, βnes exhibited significant negative slopes at the 

grain level, and did not show a consistent trend across the other levels, but always exhibited shallower 
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slopes (Figs. 3 and S6). In general, pairwise-vs-distance slopes remained relatively unchanged as grain 

decreased, and for several datasets were not different between scaling levels, while intercepts were 

consistently higher comparing grain vs 1/16 and vs 1/8 for βsor and for βsim (Figs. 3 and 4; note the 

different scales for slopes and intercepts and across the metrics). For βnes, grain had no effect for both 

parameters (Fig. 3). Turnover accounted for the largest portion of β-diversity across all the communities 

and the scale gradient (Fig. S6). Pairwise comparisons between the bootstrapped coefficients for βsim and 

βnes showed that both slopes and intercepts were consistently higher for turnover (Fig. 4). 

 

 

Discussion 

 

Our study - the first comprehensive empirical analysis of β-diversity scaling patterns - reveals a 

remarkable consistency across taxa, with multiple-site β-diversity decreasing with area sampled according 

to a power law. Furthermore, for pairwise comparisons, the rates of increase of dissimilarity with distance 

remained largely unchanged across scales spanning several orders of magnitude, while grain affects 

overall dissimilarity values. In both analyses, turnover accounted for most of β-diversity across all the 

communities, showing similar scaling properties to total dissimilarity, with the nestedness component 

being lower and relatively insensitive to large changes in grain. In general, the smaller the area sampled 

(and for more dispersal limited organisms), the more dissimilar the sites being compared will be (Nekola 

and White 1999, Mac Nally et al. 2004, Barton et al. 2013). This is consistent with what we found in both 

our analyses: a decrease in multiple-site dissimilarity as grain increased, and higher overall pairwise 

dissimilarity for smaller grains (consistently higher intercepts for lower levels of the scale gradient). As 

grain size increases, more species are shared between the sampled areas, and micro-environmental 

differences are attenuated. Moreover, larger areas will harbour more species and pooling samples to 

obtain coarser grains results in larger samples and consequently increased probability of sampling more 

rare species. 

 

Multiple-site β-diversity decreases as a power law of sampled area for all the communities analysed, 

when some variability could be expected due to specific ecological and/or environmental underlying 

factors (Barton et al. 2013). In addition, both types of β-diversity exhibited regular patterns, revealing a 
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remarkable consistency in β-diversity scaling properties across taxa. The datasets analysed comprise very 

different taxa, with different ecological and dispersal characteristics. Moreover, the datasets analysed 

cover a wide range of spatial extents, grain sizes and species richness, suggesting that our results are 

robust to large variation in these fundamental aspects of ecological studies. Our findings can be related to 

two fundamental patterns of ecology: species spatial aggregation patterns and the triphasic SAR, which 

we discuss in turn. 

 

One of the three assumptions common across unified biodiversity theories is that conspecific individuals 

are spatially aggregated (McGill 2010b). Spatial aggregation has been particularly studied for terrestrial 

plants and at smaller spatial scales (Condit et al. 2000, 2002, Plotkin and Muller-Landau 2002, Plotkin et 

al. 2002, Morlon et al. 2008). Conspecific aggregation affects the expected similarity between samples 

within a regional landscape (Plotkin and Muller-Landau 2002) and DDR rates (Morlon et al. 2008). Our 

results suggest that conspecific aggregation is a plausible mechanism across spatial scales spanning 

several orders of magnitude, from very small local samples to very large regional areas, and across 

taxonomic groups. However, two further aspects could be relevant in framing our results and the effects 

of species spatial aggregation. First, Morlon et al. (2008) noted that the homogeneous Poisson-cluster 

Process was unable to completely reproduce distance-decay relationships in empirical forest plots, 

particularly for more heterogeneous landscapes. This process assumes a single scale of aggregation, a 

constant density of conspecifics across the landscape, and ignores interspecific spatial correlations; these 

assumptions are likely violated in natural systems. Second, we found a different functional form of the 

expected similarity with increasing area to that derived by Plotkin & Muller-Landau (2002). Given the 

consistency of the β-diversity scaling patterns we found and the range of scales analysed (and presumably 

the high habitat heterogeneity underlying the scale gradient), together with the two above inconsistencies, 

our results suggest that neither the negative binomial nor a Poisson-cluster Process will be able to 

adequately describe (dis)similarity patterns across scales (from local to regional scales). We suggest that 

such inability may be attributable to the underlying assumption of independent species placement (i.e. 

species randomly distributed regardless of other species), which is unlikely to hold across scales. Morlon 

et al. (2008) also suggested that interspecific spatial aggregation could potentially affect distance-decay 

relationships by indirectly influencing species abundances and intraspecific aggregation, while noting that 

the inability of the Poisson Cluster model in reproducing empirical patterns would reveal the need of 
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incorporating more heterogeneity into the models. We suggest that inter-species aggregation is also a 

relevant driver of the patterns we found, particularly at larger spatial scales. 

 

SARs describe the increase in species richness as area sampled increases. In logarithmic space, SARs are 

concave for small scales (downward accelerating), become linear for intermediate scales, and then convex 

for larger scales (upward accelerating), indicating that distinct regions are then being sampled 

(Rosenzweig 1995). Intuitively, the transition between these distinct phases (i.e. inflection points) can be 

related to the dispersal ability of the taxa studied. Since in all our datasets the total extent sampled was 

much larger than the areas at which the inflection point indicates progressively increasing slopes (Fig. 

S7), one can expect relatively high β-diversity (mainly due to turnover) even for very large samples (e.g. 

the bisection level), since each section is likely to contain some species not present in the other section. In 

other words, if the total spatial extent roughly coincided with the inflection point, the two random 

bisections would more likely contain the entire set of species present in the region, and β-diversity would 

be ~0. Our results are consistent with this expectation. Furthermore, the dataset with the largest difference 

between the inflection point and the overall extent is RLS Invertebrates (RLS_I), which exhibited the 

overall highest β-diversity values across the scale gradient. Moreover, of the datasets analysed, RLS 

Invertebrates is arguably the most dispersal-constrained community, further suggesting that both dispersal 

ability and spatial extent underlie the patterns found. Nonetheless, we have not explicitly explored how 

dispersal ability could be linked to our results, thus further research is still necessary to evaluate which 

species traits underlie the patterns found, and furthermore if such patterns would be consistent for other 

taxa and ecosystems. Overall, our results suggest the spatial extent (and potentially the underlying habitat 

heterogeneity), dispersal abilities, and both intra- and inter-species aggregation patterns as important 

drivers of β-diversity scaling patterns.  

 

 

Multiple-site β-diversity 

There were some differences among the scaling curves, namely a contraction along the y-axis for some 

communities. In other words, some communities still showed very high multiple-site β-diversity even for 

very large sampled areas. βSOR at the bisection level was particularly high for the RLS Fish and 

Invertebrates (RLS_F; RLS_I), and FIA datasets (Fig. 2). For more heterogeneous landscapes and for 
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organisms with lower dispersal ability, sampled areas are expected to be more dissimilar (Qian 2009, Si et 

al. 2015). While the spatial configuration of the RLS data could also potentially affect multiple-site β-

diversity patterns, and we have not tested for this effect (sampling sites distributed around Australia vs 

contiguous cloud of more or less dispersed sampling locations across the spatial extent), the FIA dataset 

exhibited similar patterns, which lends support to the argument that ecological properties of the different 

taxa, rather than the spatial distribution of the individual sampling locations, more strongly affected 

multiple-site β-diversity patterns in our analysis, along with the influence of the overall extent sampled, as 

discussed above. 

 

 

Pairwise β-diversity 

The rates of pairwise-vs-distance relationships remained relatively unchanged as grain decreased, across 

very large ranges of area sampled, while intercepts increased with decreasing grain size. These results 

contrast with previous reports (Keil et al. 2012, Steinbauer et al. 2012), but are in accordance with Morlon 

et al.’s (2008) results showing that grain affected overall similarity values, rather than DDR rates, except 

at the smallest sampled area. Our results are consistent with Morlon et al.’s, although we found no 

significant differences among the scaling levels for some of the datasets (Fig. 4). However, the range of 

areas investigated differs greatly between our studies: grain values ranged between 0.0004 - 6.25 ha in 

Morlon et al., while our scale gradient spanned much larger areas, with a very sharp increase from the 

smallest to the subsequent levels. Since Morlon et al.’s range is much narrower, we can reconcile both 

studies in that DDR rates seem to be overall robust to large variations in area sampled, while those 

variations more strongly affect overall dissimilarity (which is also aligned with Keil et al.’s results). This 

suggests that DDR rates alone are not a good indicator of compositional patterns across scales, while 

intercepts provide a better assessment of dissimilarity across spatial scales (Morlon et al. 2008, Gómez-

Rodríguez and Baselga 2018), as do multiple-site dissimilarity metrics. 

 

Our results differ from those of Keil et al. (2012) and Steinbauer et al. (2012), but we attribute this to the 

very different spatial frameworks between our studies. Firstly, both grain and extent were allowed to vary 

in those studies. Moreover, in Steinbauer et al.’s analysis, the distance between plots was kept constant 

while increasing plot size, and slopes were more strongly affected by varying extent than grain size. In 
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our analysis, we used a fixed extent, so that community data was sampled from a fixed species pool, 

while the areas sampled and the distance between them were unconstrained. This isolates variation in β-

diversity from variation in gamma diversity. Secondly, we did not impose static grids over regional or 

continental extents, but analysed dissimilarity patterns across a scale gradient spanning several orders of 

magnitude. Finally, we used data collected with a high degree of spatial resolution, from many small 

representative samples, rather than incidence data across large grid sizes, atlases or simulated data. 

However, one caveat of our study was that we were unable to fully explore the scale gradient for the 

pairwise-vs-distance analysis, as we could not include the higher levels of the scale gradient. Nonetheless, 

our results showed that large increases in grain had no or little effect on DDR rates, but did affect overall 

dissimilarity; i.e. grain size, rather than the distance between sites, more strongly affected dissimilarity 

patterns across the scale gradient. 

 

Higher intercepts indicate higher β-diversity, since even closer locations exhibit low similarity; this can 

be related to higher habitat heterogeneity in those communities, and/or linked to low dispersal abilities of 

the organisms (Nekola and White 1999, Morlon et al. 2008). Both multiple-site and DDR intercepts are 

good indicators of how dissimilarity is affected by sampling grain. For some datasets, DDR slopes 

differed more between scaling levels, namely for the RLS datasets and SCRT. The RLS survey datasets 

are the two most diverse in our analysis in terms of species richness; moreover, the sampling locations are 

distributed around Australia, which encompasses distinct ecoregions. Thus, one could expect the rates of 

dissimilarity between very small sample sizes at the grain level to differ to grain sizes orders of 

magnitude larger. On the other extreme, SCRT is the dataset with fewer species, so sampling effects (e.g. 

not sampling the rarest species) could explain the differences in DDR rates. Nonetheless, the overall 

pattern across all the datasets is that grain affected intercepts more strongly than slopes, suggesting that 

including information about variation in intercepts (i.e. dissimilarity at the smallest scale) is fundamental 

to understanding dissimilarity patterns (Morlon et al. 2008, Gómez-Rodríguez and Baselga 2018). 

 

 

β-diversity components 

Partitioning β-diversity into turnover and nestedness revealed that the two components exhibit divergent 

spatial patterns, with turnover strongly driving total β-diversity patterns, for all the communities and 

across the scale gradient (see also Soininen et al. 2017). In contrast, the nestedness component 
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contribution was systematically low and generally scale insensitive. Since turnover followed the total 

dissimilarity pattern very closely, the nestedness component had to exhibit a contrasting pattern, due to 

the additive nature of the partitioning framework (Baselga 2010). Interestingly, nestedness decreased with 

geographic distance only at the lowest level of the scale gradient (and occasionally also at the next level), 

being seemingly unaffected when calculating dissimilarity between sections at higher levels. It is not 

straightforward to establish expectations for how the nestedness component should behave across scales, 

since several interacting factors must be considered. For instance, the relative balance between turnover 

and nestedness depends both on dispersal rates and on environmental heterogeneity (Gianuca et al. 2017). 

Complementary analyses including dispersal ability and habitat heterogeneity might provide further 

insights to help discern how the two components are expected to behave (Soininen et al. 2017). We note 

here that although β-diversity partitioning has sparked some debate (Almeida-Neto et al. 2012, Carvalho 

et al. 2012), the framework used here was shown to adequately measure the portions of dissimilarity 

derived exclusively from species replacement and nested patterns (Baselga 2012, Baselga and Leprieur 

2015). 

 

The fact that species replacement, rather than change in species richness, was the main driver of 

compositional change across the scale gradient offers important insights for the underlying processes 

driving β-diversity at different spatial scales. It also has implications for both our understanding of 

spatiotemporal dynamics of biodiversity change and conservation (Baselga 2010, Dornelas et al. 2014, 

McGill et al. 2015, Magurran et al. 2015, Socolar et al. 2016), highlighting that substantial changes in 

community composition might be occurring, despite species richness remaining seemingly stable. A 

recent meta-analysis by Soininen et al. (2017) also found turnover to be the dominant component of β-

diversity across different latitudes, spatial extents and taxa. A general understanding of the relative 

contribution of each component to β-diversity patterns across spatial scales has relevant implications for 

conservation strategies, specifically concerning the number and size of areas to be protected depending on 

whether species turnover or species richness differences are dominant (Baselga 2010, Socolar et al. 2016). 

Our study represents the first investigation of turnover and nestedness components contributions 

independent of latitudinal, longitudinal or environmental gradients, revealing consistent patterns for the 

communities analysed. 
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Conclusions  

We found highly regular β-diversity scaling patterns across the communities analysed, with multiple-site 

dissimilarity decreasing with grain according to a power law, and with turnover being the main driver of 

β-diversity across scales spanning several orders of magnitude. We suggest that the scaling patterns found 

are likely underpinned by the interplay of species dispersal abilities, intra- and inter-specific spatial 

aggregation patterns, as well as the overall diversity being sampled (as exemplified by the potential link 

with the SAR). Given the current need to quantify how biodiversity is changing in the Anthropocene, it is 

of critical importance that we understand how spatial scale can influence changes regarding community 

structure and composition. Our findings provide valuable insights to understanding and synthetizing β-

diversity scaling patterns across taxa and ecosystems.  
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Figure Legends 

Figure 1. Schematic representation of the scale gradient, showing an example of how an encompassing 

circle was drawn and a random point was selected to establish bisections (a and b) and thirds (c – e). For 

multiple-site β-diversity scaling curves, the smallest section area at each level was used (b and c); for 

pairwise β-diversity, the distances between the centroids of each section were calculated (d and e). 
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Figure 2. Multiple-site β-diversity scaling curves, showing the decrease of βSOR and the turnover component βSIM 

with increasing grain according to a power law (on a semi-log plot). The points represent the multiple-site 

dissimilarity values for each level of the scaling gradient (1/2, 1/3, 1/4, 1/8, 1/16 of the total extent; and 

sampling grain), where the bisection level has the largest area, and the grain size represents the smallest area. 

The lines represent the power law model fitted to each dataset for each dissimilarity metric, which provided a 

better fit than a linear logit model according to AIC (Fig. S4). The area plotted is the minimum convex hull 

polygon value at each level; Fig. S3 shows the scaling curves with area calculated as grain * number of samples. 
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Figure 3. Pairwise dissimilarities vs distance negative exponential models parameters ((a) slopes and (b) 

intercepts) as a function of the scaling level, combining all the random splitting trials and datasets; note the 

differences in the y-axis scales for the two parameters. For this analysis, we explored only three scaling levels 

(grain; 1/16; and 1/8) because the higher levels in the scale gradient contain too few pairwise comparisons to 

confidently estimate DDR. 
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Figure 4. Bootstrapped distributions of the negative exponential models parameters used to describe pairwise 

dissimilarities as a function of distance for βsim and βnes (note the differences in the x-axis scales between slopes 

and intercepts and between metrics). Each row is identified by the corresponding dataset abbreviation as in 

Table 1. 
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Table Legend 

Table 1 – Community data with the corresponding taxon, species richness, spatial extent, grain and data source. 

Dataset Title Abbreviation Taxon Usage notes 
Spatial extent 

(km2) 
Grain (km2) 

Number of 

species 

Number of 

samples 
Reference 

Forest Inventory Analysis FIA Trees 
2013; excluded 

Alaska 
16 663 141 0.004047 305 19 427¥ 

(USDA Forest Service 

2010, Woudenberg et 

al. 2010) 

North American Breeding Bird 

Survey 
BBS Birds 

2015; USA data only 

(excluded Alaska) 
13 104 786 25.42715 521 2 420 (Pardieck et al. 2016) 

Maritimes Breeding Bird Atlas MBBA Birds 2009 480 235 0.031416* 163 3 243 (NatureCounts a) 

Landbird Monitoring Program LBMP Birds 2004 1 057 570 0.031416* 229 5 107¥ (USFS) 

Ontario Breeding Bird Atlas OBBA Birds 2003 3 545 420 0.031416 233 19 611¥ (NatureCounts b) 

East Coast North America Strategic 

Assessment 
ECNASAP Fish 1994 7 229 693 0.33336 110 2 101 (Brown et al. 2005) 

Reef Life Survey: Global reef fish 

dataset 
RLS_F Fish 

Spatial subset 

around Australia 
572 747 0.0005 1 847 6 666¥ 

(Edgar and Stuart-

Smith 2014a, b) 

ICES North Sea International 

Bottom Trawl Survey for 

commercial fish species 

NSIBT Fish 2011 2 726 171 0.33336* 131 688 (DATRAS 2010a) 

Irish Ground Fish Survey for 

commercial fish species 
IGFS Fish 2004 967 879 0.177792 207 163 (DATRAS 2010b) 

Reef Life Survey: Invertebrates RLS_I Invertebrates 
Spatial subset 

around Australia 
572 747 0.0001 1 013 6 817¥ 

(Edgar and Stuart-

Smith 2008, 2014b) 

Snow crab research trawl survey 

database 
SCRT Benthos 2009 167 455 0.00642 32 354 (Wade 2011) 

North Pacific Groundfish Observer NPGO Benthos 1993 6 794 596 400 220 1 007 

(North Pacific 

Groundfish Observer 

Program) 

*Grain was approximated to similar studies; ¥ indicates 2000 random samples were used for the grain level pairwise dissimilarities analysis. 


