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Introduction: There is growing concern around the effects of concussion and sub-concussive impacts in sport.
Routine game-play in soccer involves intentional and repeated head impacts through ball heading. Although
heading is frequently cited as a risk to brain health, little data exist regarding the consequences of this activity.
This study aims to assess the immediate outcomes of routine football heading using direct and sensitivemeasures
of brain function.
Methods: Nineteen amateur football players (5 females; age 22± 3 y) headedmachine-projected soccer balls at
standardized speeds,modelling routine soccer practice. The primary outcomemeasure of corticomotor inhibition
measured using transcranial magnetic stimulation, was assessed prior to heading and repeated immediately,
24 h, 48 h and 2 weeks post-heading. Secondary outcome measures were cortical excitability, postural control,
and cognitive function.
Results: Immediately following heading an increase in corticomotor inhibition was detected; further to these
electrophysiological alterations, measurable reduction memory function were also found. These acute changes
appear transient, with values normalizing 24 h post-heading.
Discussion: Sub-concussive head impacts routine in soccer heading are associated with immediate, measurable
electrophysiological and cognitive impairments. Although these changes in brain function were transient,
these effects may signal direct consequences of routine soccer heading on (long-term) brain health which re-
quires further study.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

With increased awareness of immediate and late complications of
head injuries in sport, in particular the proposed association between
exposure to repetitive concussion and late neurodegenerative disease
(Hay et al., 2016), there have been considerable efforts to reduce risk
of injury and better manage concussions when they do arise (McCrory
et al., 2013). Soccer (association football) is acknowledged as the most
popular participation sport globally, with routine game-play in soccer
involving intentional and repeated head impacts through heading the
ball; a skill regularly included in training sessions and from a young
age. Therefore, although rates of concussion are relative low in soccer
compared to other contact sports such as rugby union or American
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football (Pfister et al., 2016), participation rates and the incidence of in-
tentional sub-concussive impacts through heading in training and
match play are such that the safety of heading in soccer has been
questioned in some quarters (Patlak and Joy, 2002).

Though accepted as part of routine game-play, emerging evidence
suggests exposure to repeated sub-concussive impacts in soccer may
be associated with measurable changes in brain structure and function,
and perhaps with late neurodegenerative disease. Rotational headers
may prove of particular interest as they are often performed in training
drills andmatches (i.e. corner kicks) and are believed to bemore injuri-
ous compared to linear accelerations (Cantu and Hyman, 2012). Imag-
ing studies over the course of a season in active soccer players report
evidence of white matter microstructural changes with associated im-
paired cognition (Lipton et al., 2013). Further, imaging of former profes-
sional soccer players aged 40–65 demonstrates evidence of cortical
thinning, again with associated cognitive impairment (Koerte et al.,
2015). Regarding longer term outcomes, recent identification of a
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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form of dementia known as chronic traumatic encephalopathy (CTE) in
athletes froma range of contact sports (for review see Smith et al., 2013)
including soccer (Geddes et al., 1999; McKee et al., 2014) has drawn at-
tention to the possibility that head impacts in soccer might be associat-
ed with increased risk of neurodegenerative disease.

Nevertheless, despite growing evidence on risks from the cumula-
tive effects of sport-related head impacts and anxieties around the safe-
ty of ball-heading, little data exists demonstrating direct consequences
of heading on brain function. Transcranial magnetic stimulation (TMS)
can be used to assess a variety of indices of function in the brain tomus-
cle pathway (Goodall et al., 2014). Further, TMS has demonstrated util-
ity in quantifying electrophysiological changes in concussion (Major et
al., 2015). Themost consistent TMSmarker of concussion (both acutely
and longitudinally) appears to be corticomotor inhibition (Major et al.,
2015; Pearce et al., 2015; Miller et al., 2014), expressed by a longer pe-
riod of electromyographic silence (cortical silent period – cSP), after a
motor evoked potential (MEP) is delivered to the primary motor cortex
during contraction. Given the apparent high sensitivity to identify alter-
ations in brain function, TMS could potentially be used to detect acute
changes in brain function following sub-concussive head impacts. The
relative novelty of TMS used in this context makes interpretation in
terms clinically meaningful effects difficult, but its appeal is sensitivity
in detecting direct brain changes (De Beaumont et al., 2007). It poten-
tially highlights neurochemical changes that can beused to direct routes
of investigation into the effects of sub-concussive impacts on the brain.
Therefore, the aim was to study the use of TMS corticomotor inhibition
in the lower limbs as primary outcomemeasure to detect acute changes
in brain function from repetitive sub-concussive head impacts simulat-
ing routine soccer heading. We hypothesized that there would be a
(transient) increase in corticomotor inhibition following a standardized
bout of soccer heading, which may be accompanied by measurable
changes in other established but less sensitive or less objective indexes
of changes to brain function and brain injury as secondary outcome
measures such as cognitive tests.

2. Methods

2.1. Approvals and Recruitment

The studywas approved by the local Research Ethics Committee and
procedures conformed to the guidelines set out by the Declaration of
Helsinki. Written informed consent was obtained from all participants,
prior to taking part. Twenty-three healthy, amateur football players (5
females; age 22 ± 3 y; weight 72.9 ± 8.3 kg; height 175.4 ± 10.2 cm)
were recruited for study via advertisement on university noticeboards
and meetings with local football clubs. Participants were excluded
from taking part if they presented with any of the following: 1) history
of brain injury resulting in loss of consciousness; 2) history of a neuro-
logical condition; 3) history of concussion in the 12months prior to tak-
ing part; 4) family history of epilepsy; 5) use of psychoactive
recreational or prescription drugs. Data from one participant could not
be analyzed and three more participants withdrew from the study for
personal reasons. The final cohort included a total of nineteen
participants.

2.2. Study Design

Participants were asked to refrain from vigorous physical activity,
consuming alcohol and caffeine or smoking for 24 h prior to each
study session. Furthermore, participants were required to present to
the laboratory fasted where they were provided with a standardized
breakfast. At the first experimental session baselinemeasures for cogni-
tive function, postural control, corticospinal excitability and
corticomotor inhibitionwere recorded in this order; assessments there-
after recorded in the same order at each time point during study. Fol-
lowing baseline testing, participants underwent the heading protocol
and then repeated themeasures at 4 follow-up timepoints (takingmea-
sures in reverse order from the baseline order, starting with the TMS
primary outcome measure); immediately post-heading and at 24 h,
48 h and 14 days following the heading protocol. The decision to include
the 48 h follow-up was to assess the transient nature of the effects of
heading, and the 14 day follow-up was intended as a time point at
which complete “wash out”would have occurred following heading im-
pact. Prior to commencement of study data collection participants
attended the laboratory for a familiarization session, during which
they completed all outcomemeasures to acquaint themwith the assess-
ment procedures and minimize later learning effects.

2.3. Heading Protocol

The heading protocol consisted of heading a standard football
(400 g; 70 cm circumference; 8 psi) projected at a speed of 38·7 ±
2.1 kph from a football delivery device (JUGS sports, Tualatin, USA) po-
sitioned 6 m from participants, simulating routine soccer game-play
(Haran et al., 2013; Broglio et al., 2004). Participants were instructed
to perform a rotational header, redirecting the football perpendicularly
to the initial trajectory, with each session consisting of 20 consecutive
head impacts over a 10min period, replicating typical heading practice.
A custom-built accelerometer placed at the back of the participant's
head recorded linear g-force of the head during impact. Ball speed was
determined based on the participants' perceived ability to head the
ball with a minimum speed of 30 kph and maximum speed of 50 kph.

2.4. Transcranial Magnetic Stimulation

Motor evoked potentials (MEPs) were elicited in the rectus femoris
of the dominant leg via single pulse TMS and assessed using electro-
myographic (EMG) recordings (see below). Single magnetic stimuli of
1 ms duration where applied over the contralateral primary motor cor-
tex using amagnetic stimulator (Magstim 2002 unit, TheMagstim Com-
pany Ltd., Whitland, UK) and a 110 mm double cone coil. Optimal coil
location for generating MEPs was determined by placing the coil over
the motor cortex, laterally to the vertex; the area where the largest
MEP peak-to-peak amplitudes occurred was identified and marked on
the scalp with ink (Goodall et al., 2009). The active motor threshold
for the quadriceps femoris was determined by increasing stimulator
output from 10% by 5% increments, while the participant held a 10%
maximal voluntary contraction (MVC) isometric contraction until dis-
cernible MEPs were visible (Wilson et al., 1995). Once this individual
level was established, subsequent stimulations were delivered at 130%
of active motor threshold.

MEPs, alongside all other EMGmeasures, were recordedwith partic-
ipants sittingwith their dominant leg secured to a calibrated load cell of
an isokinetic dynamometer (Kin-Com, Chattecx Corp, Chattanooga
Group Inc., Tennessee). Knee anglewas set at 60° (0° being fully extend-
ed limb) and the arm of the dynamometer was set such that the axis of
rotation was aligned with the participant's lateral femoral condyle.

To assess theprimary outcomemeasure corticomotor inhibition par-
ticipants were required to perform maximal knee extensor voluntary
contractions (MVCs) of 5 s duration while a single TMS stimulation
was delivered over the motor cortex. This was repeated three times
with a minute's rest between each contraction, as is common practice.
Corticomotor inhibition was quantified as the cortical silent period
(cSP) duration, taken from the stimulation artefact to the resumption
of discernible, uninterrupted EMG activity from the muscle (Fig. 1). By
measuring cSP at MVC, even though this limits the number of repeti-
tions feasible, we ensure to recruit a motor unit pool large enough to
show an effect. Measuring cSP at lower intensitymay not be as sensitive
since a smaller pool of motor units is recruited, reducing the relative ef-
fect size of GABA inhibitory mechanisms on the EMG signal. In turn,
making the cSP measurements less sensitive in detecting subtle and
transient cortico-spinal changes. During the assessment of secondary



Fig. 1. Snapshots of the cortical silent period (cSP) of two participants measured by TMS
before (a) and immediately after heading (b) illustrating a typical lengthening in cSP
immediately following heading. The cSP was quantified as the period of time between
the delivered TMS pulse (dashed line) and the resumption of uninterrupted EMG
activity (arrows).

Table 1
Mean impact values for each individual recordedusing a linear ac-
celerometer. Data for 2 participantswas not recordeddue to hard-
ware malfunction.

Force of head impact (g) for each participant (mean ± SD)

12.7 ± 2.02
11.9 ± 2.1
13.9 ± 2.1
15.3 ± 3.2
12.7 ± 2.1
14.6 ± 2.4
11.6 ± 2.6
11.3 ± 1.7
10.5 ± 1.8
12.3 ± 1.7
16.9 ± 4.0
11.7 ± 2.9
11.9 ± 2.1
12.3 ± 2.6
11.8 ± 1.9
14.6 ± 2.5
16.7 ± 4
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outcome measure corticospinal excitability, participants maintained a
20% MVC isometric contraction while 20 single TMS pulses, separated
by 6 s, were delivered over the motor cortex. Corticospinal excitability
was determined as the average MEP amplitude normalized to the max-
imal response elicited bymotor nerve stimulation (%Mmax, see below).
We chose to assess cortical excitability and inhibition in the lower limbs
rather than in the upper limbs because of its functional relevance; in
soccer, changes in lower limb may be more valid as they relate directly
to gait and performance.

2.5. Electromyography and Femoral Nerve Stimulation

Electromyographic activity was recorded using a wireless system
(Biopac Systems, Inc. Goleta, CA, USA). Data were sampled at 2 kHz,
and filtered using 500 Hz low and 1.0 Hz high band filters. Signals
were analyzed offline (Acqknowledge, v3.9.1.6, Biopac Systems, Inc.
Goleta, CA, USA). EMG activity was assessed using Ag/AgCl surface elec-
trodes (Vermed, Devon, UK) with an intra-electrode distance of 2 cm
positioned over rectus femoris; prior to electrode placement, the area
of interest was shaved and abraded as per Surface Electromyography
for the Non-Invasive Assessment of Muscles (SENIAM) guidelines. The
position of each electrode was marked with permanent ink to ensure
consistent placement during subsequent visits.

Peripheral stimulation of the femoralmotor nervewas administered
using anelectrical stimulator (Biopac Systems, Inc.). The stimulation site
was identified by locating the femoral artery and placing a self-adhesive
surface electrode (cathode) lateral to it, high over the femoral triangle,
with the anode on the buttock. Single stimuli were delivered to the
muscle while participantsmaintained a 20%MVC isometric contraction,
and the intensity of stimulation was increased until a plateau in twitch
amplitude and rectus femoris M-wave (Mmax) occurred.
Supramaximal stimulation was delivered by increasing the final stimu-
lator output intensity by a further 30%.

2.6. Cognitive Function

Secondary outcome measure cognitive function was assessed in a
quiet room using the Cambridge Neuropsychological Test Automated
Battery (CANTAB), a computer based cognitive assessment tool and
neuropsychological standard. The following CANTAB taskswere includ-
ed: Reaction Time (RTI; divided attention); Paired Associate Learning
(PAL; long-term memory); Spatial Working Memory (SWM; short-
term memory); Attention Switching Task (AST; executive function);
and Rapid Visual Processing (RVP; sustained attention).
2.7. Postural Control

Secondary outcome measure postural control was assessed using
the Biodex Balance System SD (BBS; Biodex Medical Systems, Inc. New
York, USA). Participants stood on a circular dynamic platform and aver-
age sway scorewas determined bymeasuring the degree of tilt on ante-
rior-posterior and medial-lateral axes during three, 20 s trials (using
dedicated Biodex software, v1.08, Biodex Inc.).

2.8. Statistical Analysis

Immediate post-heading responses were analyzed using a paired t-
test, comparing measures before and immediately after the heading
protocol. Recovery was analyzed for individual growth curves using
the SPSSMIXEDmodelwith the restrictedmaximum likelihoodmethod
in keeping with standards for analysis of longitudinal data (Singer and
Willett, 2003; Peugh and Enders, 2005). To achieve this, individual
curves were analyzed to examine change over time. The following
time points were included: immediate post, 24 h post, 48 h post, two
weeks post. Data was checked for skewness and kurtosis and three cog-
nitive measures (SWM, PAL, and RVP) and the balance variable were
normalized using log transformation. The 95% lower and upper confi-
dence intervals (CIs) were also calculated from difference of the mean
values. Effect sizes (ES)were calculated for non-transformeddifferences
using Cohen's d formula and were quantified as follows: 0.2 = small;
0.5 = medium; 0.8 = large. Statistical significance was set at p ≤ 0.05.
Each measure was separate in relation to the hypotheses and therefore
no correction for multiple comparisons was necessary. Data are
expressed as means (±standard deviation) unless otherwise stated.
The funding source had no input in the study other than suggesting at
the design stage to add a full recovery assessment time-point.

3. Results

Overall, each participant performed 20 headers, achieving a mean
force of impact of 13.1 ± 1.9 g (Table 1), with a coefficient of variance
of 18%(±3%).

3.1. Effect of Heading on Corticomotor Inhibition and Corticospinal
Excitability

Immediately after ball heading there was a measurable increase in
the primary outcomemeasure cSP within 74% (14 out of 19) of partici-
pants (Fig. 2). The cSP duration increased from 117.8(±19.8)ms at
baseline to 123.1(±17.6)ms (t(18) = −2.11, p = 0.049; ES 0.28),



Fig. 2. Change in cortical silent period (cSP) duration for each participant from baseline to
immediately following the heading protocol.
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representing an average increase of 5.4(±4.8)% in cSP duration, com-
patible with increased corticomotor inhibition. This increase in cSP
proved transientwith apparent normalization to baseline in subsequent
follow-up assessments at 24 h, 48 h and 14 days (F(1,18) = 4.23, p =
0.04) (Fig. 3). Therewas amoderate, but not significant, relationship be-
tween these acute increases in cSP and g-force on impact with the ball
(r = 0.37, p = 0.07 one-tailed).

To determine the reproducibility of the primary outcome measure
the intraclass correlation coefficient (ICC) was calculated between the
baseline and the 2 weeks post-measure. ICC for the two measures was
0.764, suggesting excellent agreement (Cicchetti, 1994). Furthermore,
no within-participant differences were found between the two time
points using a paired t-test (t(18) = −0.47, p b 0.63; ES 0.09; CI
−10.36 to 6.53).
Fig. 3.Difference in cSP inms after heading relative to baseline. Immediately after heading
cSP duration increased on average by 5.3(±5.7)ms (*p b 0.05) which within participants
is an 5.4(±4.8)% average increase from baseline values. This increase detectable
immediately after heading normalized over the four follow-up timepoints (p b 0.05)
with values apparently returning to baseline level. Error bars indicate the 95%
confidence intervals.
No changes were found on the secondary TMS outcome measure
corticospinal excitability; MEP amplitude demonstrated no change in
the acute phase immediately after ball heading, nor in the follow-up as-
sessment time-points (Table 2). There was no notable change in knee
extensor MVC after heading the ball (Table 2), suggesting the partici-
pants did not experience significant muscular fatigue that might inter-
fere with TMS measurement.

3.2. Altered Cognitive Function Following Heading

Immediately after the heading protocol there was a reduced perfor-
mance compared to baseline in two CANTAB sub-tasks assessing accu-
racy on different aspects of memory. Specifically, Spatial Working
Memory (SWM) error scores were significantly higher (t(18) = −2.28,
p = 0.03, ES 0.3) immediately after the heading protocol, compatible
with impairment in short-term memory (Fig. 4a). Furthermore, total
adjusted error score on the Paired Associated Learning (PAL) task im-
mediately after heading increased by 67% (t(18) = −3.05, p = 0.007,
ES 0.5), compatible with a reduced long-term memory function (Fig.
4b). These disturbances in short- and long-term memory proved tran-
sient, with normalization to baseline performance in SWM (F(1,18) =
10.28, p = 0.002) and PAL (F(1,18) = 11.14, p = 0.002) in the subse-
quent follow-up assessments at 24 h, 48 h and 14 days (Table 2).

Heading only significantly affected memory function; the remaining
CANTAB tasks assessing aspects of attention and processing speed did
not show significant heading-associated decrements compared to base-
line assessments (Table 2). No change was detected on the Rapid Visual
Processing task, with RVP A′ scores close to ceiling/maximum, making
the measure insensitive to change. There was a marginal improvement
on themedian corrected latency scores of the executive function Atten-
tion Shifting Task (t(18) = 2.52, p = 0.021), possibly due to practice. On
the Choice RTImeasure therewas no effect of heading on decision times
(t(18) = 0.69, p = 0.5) (Table 2).

4. Discussion

Following a standardized session of football heading designed to
simulate routine soccer practice our data demonstrate immediate alter-
ations in brain electrophysiological and cognitive function compared to
baseline assessments in a cohort of healthy, young soccer players. Spe-
cifically, using TMSwe found ameasurable increase in cortical silent pe-
riod (cSP) after just 20 consecutive headers. Furthermore, in cognitive
assessments, our data demonstrate evidence of decreases in measures
of both short- and long-term memory immediately following heading.
Notably, in this single exposure paradigm, these alterations in brain
corticomotor inhibition and cognitive function appeared short-lived;
the effects apparently normalizing in follow-up assessments from 24 h
onwards. In contrast to previous studies in athletes and patients with
confirmed concussion or mild TBI (De Beaumont et al., 2007;
Chistyakov et al., 2001; Bernabeu et al., 2009; Livingston et al., 2010)
these novel observations demonstrate, for the first time, detectable al-
terations in brain function in footballers exposed to ‘routine’ head im-
pacts not associated with clinically recognizable brain injury.

The prolonged silent period of neuromuscular recruitment found in
this study is a sign of increased inhibition in the motor system and is
thought to reflect GABA activity (Inghilleri et al., 1993; McDonnell et
al., 2006) which is themost powerful inhibitor in themotor system. Al-
though the mechanisms behind corticomotor inhibition are not fully
understood (Chen et al., 1999), increased inhibition following repeated
sub-concussive head impactmay reflect protectivemechanisms against
minor injury. What is a concern however is that such protective mech-
anisms could become maladaptive when stimulated repeatedly, as oc-
curs during soccer heading practice. Albeit apparently transient, the
acute increases in corticomotor inhibition following football heading
could trigger a pathological process damaging brain health through
the accumulative effect of sub-concussive head impact. Increased



Table 2
Mean (standard deviation) values for each of the outcome measures: corticomotor inhibition (cortical silent period in ms) and corticospinal excitability (MEP amplitude normalized to
femoral nerveM-wave, %Mmax), SpatialWorkingMemory (SWMerrors), Paired Associate Learning (PAL errors), Rapid Visual Processing (RVPA′ score), Attention Shifting Task (ASTme-
dian corrected latency), Reaction Time (Choice RTI decision times) and Postural control (Balance, SI stability index deviation from thehorizontal baseline)measured at each timepoint, and
95% lower and upper confidence intervals (CIs) for the difference in means before and immediately after heading.
*p b 0.05 Baseline v Imm. Post; §p b 0.05 change over time growth curve analysis.

Variable

Assessment time post-heading exposure

Baseline Immediately 24 h 48 h 2 weeks Δ mean Pre v Imm Post (95% CI)

TMS
Inhibition (ms) 117.8 ± 19.8 123.0 ± 17.6* 119.9 ± 19.8 115.7 ± 20.6 115.9 ± 19.7§ 5.28 (0.017 to 10.54)
Excitability (%Mmax) 44.1 ± 20.6 47.4 ± 22.3 47.9 ± 24.0 44.4 ± 22.5 46.5 ± 22.1 3.34 (−5.03 to 11.72)

Cognitive function
SWM (log_errors) 0.79 ± 0.59 1 ± 0.51* 0.77 ± 0.62 0.72 ± 0.57 0.69 ± 0.57§ 0.2 (0.016 to 0.40)
PAL (log_errors) 0.38 ± 0.41 0.65 ± 0.29* 0.49 ± 0.32 0.51 ± 0.32 0.35 ± 0.32§ 0.26 (0.08 to 0.44)
RVP A′ 0.952 ± 0.052 0.959 ± 0.040 0.958 ± 0.044 0.971 ± 0.028 0.962 ± 0.038 0.0007 (−0.005 to 0.021)
AST (ms) 396 ± 58 376 ± 67* 369 ± 64 370 ± 66 373 ± 82 −19.11 (−35.01 to −3.20)
RTI (ms) 295 ± 29 301 ± 35 295 ± 33 297 ± 32 297 ± 31 6 (−6.13 to 19.24)

Postural control
Balance (SI) 0.76 ± 0.36 0.71 ± 0.21 0.67 ± 0.23 0.63 ± 0.25 0.72 ± 0.18 −0.06842 (−0.164 to 0.028)

Fig. 4. Difference in memory performance (log transformed error score difference) after
heading relative to baseline. Immediately after heading, errors were higher compared to
baseline on both the (a) Spatial Working Memory SWM (*p b 0.05) and (b) Paired
Associated Learning PAL (*p b 0.01) tasks. This increase evident immediately after
heading normalized over the four follow-up timepoints (p b 0.01) with error scores
apparently returning to baseline level. Error bars indicate the 95% confidence intervals.
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corticomotor inhibition silent period has been found to be associated
with pathophysiology in brain damage suggesting a link between func-
tional deficits and hyperactivity of cortical inhibitory interneurons
(Classen et al., 1997). Further study into thedynamicmetabolic process-
es as a direct result of soccer heading is required. When we understand
the complex interplay between functional, metabolic, and structural
brain changes following repeated sub-concussive head impact, we can
establish the link to accumulative and long-term consequences. At pres-
ent, the current findings at least suggest acute brain changes occur as a
direct consequence of soccer heading.

As well as increased corticomotor inhibition, parameters of memory
function were altered following the heading protocol, consistent with a
recent report of a relationship betweenmemory function and history of
heading in soccer (Lipton et al., 2013). Furthermore, a study of retired
Australian Rules footballers found that elite players performed more
poorly on the Paired Associate Learning test than amateurs (Pearce et
al., 2014). Practical limitations of cognitive-based tests to detect impair-
ment in athletes are due to reliability: in high performance sports ath-
letes have been recognized to purposely produce low baseline
performances on cognitive tests to allow them to avoid removal from
play, or to reduce return to play intervals (Erdal, 2012).

For completeness postural control (balance) was included as a sec-
ondary, albeit indirect, outcome measure as concussion has been shown
to result in impaired balance (McCrory et al., 2013; Powers et al., 2014),
yet the participants in the current study were able to maintain their bal-
ance despite an increased level of corticomotor inhibition. And while
one study has shown a decrease in postural control following bouts of
soccer heading (Haran et al., 2013), another study has not (Broglio et al.,
2004); and now our own show no change in postural control.

Secondary TMS outcomemeasure cortical excitability has previously
been shown to decrease following TBI (De Beaumont et al., 2007;
Chistyakov et al., 2001; Bernabeu et al., 2009; Livingston et al., 2010),
yetwe demonstrated no such change following ball heading. The reason
why changeswere seen in cortical inhibition and not cortical excitability
may be due to the different levels of muscle contractile force applied
during recording of the two parameters (20% MVC for excitability vs.
100% MVC for inhibition, see the introduction for its justification). Fur-
thermore, it should be noted that measuring cortical excitability is a
less straightforward procedure than corticomotor inhibition as it re-
quires MEP normalization to maximal motor nerve response (Goodall
et al., 2009). Primary outcome measure TMS corticomotor inhibition
was thought to be most sensitive to quantifying electrophysiological
changes based on a recent systematic review (Major et al., 2015), and
is a direct measure of changes to brain function.

Future work should include a control activity, such as body move-
ment without head impact. However, the current pattern of results
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leaves little doubt that the changes in brain function were related to
head impact rather than physical activity. The force of maximal knee
contraction was not reduced after heading, therefore the absence of a
physical exercise control group it is highly unlikely to explain the effect
on corticomotor inhibition or memory function. Nevertheless, a future
extension of this work can focus on the acute effects of heading now
that the transience of the effect has been established, and would be
well placed to reveal the mechanisms underlying these brain changes
through a cross-over design that includes a control activity. Further-
more, because it is likely that sub-concussive impacts are more general
in nature (i.e. they do not affect single muscles) future work should as-
sess corticomotor inhibition in a larger number of muscles, possibly
encompassing both upper and lower limbs. Further study into the dy-
namic metabolic processes as a direct result of soccer heading is re-
quired. Implementing the use of magnetic resonance spectroscopy in
future studies could help determine short-term alterations in GABA
and glutamate responses. With regard to changes in GABA, because of
the use of single-pulse TMS in this study, we were only able to report
on the activity of GABAB, while the use of paired-pulse TMS in future
work can distinguish modulation of GABAA and GABAB. Critically, how-
ever, the sensitivity of the current primary outcome measure suggests
that corticomotor inhibition through future dose-response studies has
the potential to provide the evidence-base to guide safe engagement
in contact-sports, such as soccer.

5. Conclusion

The current study is the first to show direct evidence for acute
changes to corticomotor function and changes to memory function fol-
lowing routine soccer heading. It is furthermore the first study to show
that corticomotor inhibition, measured by TMS, is able to detect acute
transient changes in brain function following sub-concussive head im-
pacts. And although the magnitude of the acute changes observed was
small, it is the presence of the effect that is of interest. This measure
was previously shown to be altered in confirmed concussion, but the
acute changes in corticomotor inhibition, accompanied by cognitive
changes, following the sub-concussive impact of football heading raise
concerns that this practice, routine in soccer, may affect brain health.
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