View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by Lancaster E-Prints

Schrédinger’s Security: Opening the Box on App Developers’
Security Rationale

Dirk van der Linden
University of Bristol
dirk.vanderlinden@bristol.ac.uk

Thein Than Tun
The Open University
thein.tun@open.ac.uk

John Towse
Lancaster University
j.towse@lancaster.ac.uk

ABSTRACT

Research has established the wide variety of security failures in
mobile apps, their consequences, and how app developers introduce
or exacerbate them. What is not well known is why developers do
so—what is the rationale underpinning the decisions they make
which eventually strengthen or weaken app security? This is all the
more complicated in modern app development’s increasingly di-
verse demographic: growing numbers of independent, solo, or small
team developers who do not have the organizational structures and
support that larger software development houses enjoy.

Through two studies, we open the box on developer rationale, by
performing a holistic analysis of the rationale underpinning various
activities in which app developers engage when developing an app.

The first study does so through a task-based study with app
developers (N=44) incorporating six distinct tasks for which this
developer demographic must take responsibility: setting up a devel-
opment environment, reviewing code, seeking help, seeking testers,
selecting an advertisement SDK, and software licensing. We found
that, while on first glance in several activities participants seemed
to prioritize security, only in the code task such prioritization was
underpinned by a security rationale-indicating that development
behavior perceived to be secure may only be an illusion until the
box is opened on their rationale.

The second study confirms these findings through a wider sur-
vey of app developers (N=274) investigating to what extent they
find the activities of the task-based study to affect their app’s se-
curity. In line with the task-based study, we found that developers
perceived actively writing code and actively using external SDKs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °20, May 23-29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05....$15.00
https://doi.org/10.1145/3377811.3380394

Pauline Anthonysamy
Google
anthonysp@google.com

Marian Petre
The Open University
m.petre@open.ac.uk

Bashar Nuseibeh
The Open University
Lero, University of Limerick
b.nuseibeh@open.ac.uk

Mark Levine
Lancaster University
mark.levine@lancaster.ac.uk

Awais Rashid
University of Bristol
awais.rashid@bristol.ac.uk

as the only security-relevant, while similarly disregarding other
activities having an impact on app security.

Our results suggest the need for a stronger focus on the tasks
and activities surrounding the coding task — all of which need to be
underpinned by a security rationale. Without such a holistic focus,
developers may write “secure code" but not produce “secure apps”.

CCS CONCEPTS

« Security and privacy — Social aspects of security and pri-
vacy.

ACM Reference Format:

Dirk van der Linden, Pauline Anthonysamy, Bashar Nuseibeh, Thein Than
Tun, Marian Petre, Mark Levine, John Towse, and Awais Rashid. 2020.
Schrédinger’s Security: Opening the Box on App Developers’ Security
Rationale. In 42nd International Conference on Software Engineering (ICSE
"20), May 23-29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3377811.3380394

1 INTRODUCTION

Security failures in mobile apps and their consequences are well
understood - ranging from forgetting to sanitize user input to third
party libraries using dynamic code-loading to execute malicious
content [9, 19, 21, 25], or simply copy pasting insecure or obsolete
code snippets [22]. But, secure app development is about more than
just writing secure code. A range of activities, such as, choice of
development environment plugins, seeking help when things go
wrong and monetization of the app via third party ad libraries, all
have a potential impact on security. Prior work has focused on what
developers do—although primarily in activities that surround the
actual writing of code—we instead ask what drives developers to do
things securely or not across the variety of app development activities:
what rationale underpins their decisions?

To complicate matters, the demographic of app developers has
expanded significantly as well: app development is no longer the
domain of the select few with deep technical skills, training and
knowledge. Apps are now being developed by a wide range of
people with diverse backgrounds. Already in 2012 reports showed
that 40% of app developers were independent solo developers [17],

https://core.ac.uk/display/286713689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3377811.3380394
https://doi.org/10.1145/3377811.3380394

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

and more recent reports have shown that solo hobbyist and am-
ateur developers constitute 43% of the app developer community.
Professional app developers’ have moved towards smaller scales
as well: solo or small scale developer teams constitute a further
36% of the demographic [42]. With little ability to delegate things
these (often independent) developers do not know how to do — or
do not want to do — they must tackle a number of activities and
considerations [18], exemplified in Figure 1. What developers do
during all these activities (and not just while writing code) — and the
rationale underpinning their actions — may compromise or worsen
the security of the resulting app.

upow do!
configure MY
n “
\DE? ‘ H do;
) ders;
wh, and
[r—— do at this cod,
> Setting up way es Wr’)l]g?,,e St A
of working R whor do! \eml-"
- ; i s PYO°
v_x v
") s
Releasing er.llng and [«—| Solving problems
testing code
— s
“Y, K A .
w/,,i',””c ;"D L kng,, Sy
D — cat
Put jy, - Use, WO st
ag,1a ice, S lo M izin: < ”Wo test °
gree’henn?se I D .
’ —
A
upow can!
selectan @
tibrary wit

'
goﬂd yevenues

Figure 1: App development activities, with typical consider-
ations developers run across, adapted from [18, 38].

Yet, this increasingly diverse and independent group of develop-
ers remains under-studied, much research (e.g., [6, 7, 33]) focusing
on experienced, well-established developers. Research also tended
to focus more on what established developers do (wrong), e.g.,
programming errors [21], misuse of either APIs [33] or online infor-
mation sources (e.g., Stackoverflow [3]) — while not eliciting why
they do so. For instance, researchers have shown that copy/pasting
from StackOverflow may be harmful [22]. There are reasons why
developers do it: shrinking deadlines, frustration with code not com-
piling, poor documentation - all contribute toward a valid rationale
for developers to ‘throw caution to the wind’ and do something
they may very well know to be less secure.

Similarly, while developers may understand the potential secu-
rity implications of allowing third-party code to load into their app
and execute, the necessary step of monetization brings exactly this
threat of dynamic code loading. With developers often failing to
convince users to pay even $0.99 for an app (let alone consider
subscription fees for a service), many turn to advertisements as a
reliable way of income. An increasing number of these libraries
turn out to be malicious, e.g., Xavier [20] and Igexin [10]. Likewise,
most people would intuitively avoid accepting gifts from strangers.
Or, in the context of app development, a USB stick from a local
user group with a copy of one’s preferred platform development
tools. Yet, as the Xcode-ghost malware that affected > 500 million
i0S users [39] showed, there was a valid rationale behind doing

van der Linden, et al.

exactly that: many developers lived in areas where they did not
have sufficient bandwidth to (easily) download Xcode.

This paper is the first to present empirical insight into the ratio-
nale underpinning the various activities in which the ever-growing
part of the developer community of diverse and independent app devel-
opers engage (cf. Fig. 1) and the extent to which security features in
this rationale. The insight is based on two studies of app developers
who have gone through such activities and published apps:

(1) An in-depth exploration of developers’ prioritization (and
subsequent rationalization) during tasks modeling these
activities—what they do securely or insecurely, and why.

(2) A survey of a large sample of app developers’ attitude to-
wards the impact of various activities on app security—whether
a wider representative sample of app developers’ attitudes sup-
ports or rejects the in-depth exploration.

Our analysis is the first to uncover that while developers may
often make secure decisions across the different activities they have
to deal with—even activities not dealing with code—opening the box
on their rationale collapses the illusion of developers knowingly and
intentionally acting securely. We contribute the following:

e When faced with a coding task, almost half (43%) of partici-
pants rationalize their decision using security considerations.
However, when faced with any other kind of task, developers
rarely rationalize their decisions using security considera-
tions (supported by binomial test comparison of rationale
proportions, p<0.01). This indicates that developers may only
really consider security when facing code.

e When faced with most other tasks (e.g., building a license
agreement), half (50%) of the participants performed them
securely but did so without expressing a clear security ra-
tionale. This indicates that perceived secure development
behavior may only be an illusion.

e When faced with the two tasks that involve (the need for)
social interaction with others, few (14% and 23%) partici-
pants performed them securely (supported by binomial test
comparison of task solutions, p<0.01). This indicates that
developers may underestimate the impact their social inter-
action with other people can have on their app’s security.

e A wider survey of a representative app developer sample
(N=274) further supports the finding that security rationales
are focused on code-centric activities and perceived secure
behavior across the wider spectrum of activities may be an il-
lusion: while writing of code and active use of external SDKs
are perceived to affect an app’s security, no other activities
are clearly perceived by developers as impacting security.

These results highlight that, while code vulnerabilities are the
genesis of software insecurity, focusing solely on one’s code is not a
foolproof strategy to avoid introducing or exacerbating vulnerabilities.
Developers need to be supported in understanding the security im-
plications of their actions when deciding upon their way of working,
trusting third party resources, interacting with third parties, and
thinking of longer-term impacts of licensing. Researchers, equally,
should provide support, whether tools or methods, that focus not
only on code-level support, but non-obtrusively support secure
reasoning and decision making in the above activities.

Schrodinger’s Security: Opening the Box on App Developers’ Security Rationale

The rest of this paper proceeds as follows: Section 2 reviews
and contrasts related work. Section 3 describes the design of our
experiment, and Section 4 reports its results. Section 5 reports the
design of our wider survey of app developers, and Section 6 reports
it results. We discuss potential limitations and biases in Section 7
and conclude in Section 9.

2 BACKGROUND AND RELATED WORK

2.1 Vulnerabilities in mobile apps

Security failures in mobile apps and their consequences — ranging
from developers forgetting to sanitize user input to third-party
libraries using dynamic code-loading to execute malicious content
— are well understood [9, 19, 21, 25]. The factors that influence
security on major mobile ecosystems such as Android and iOS [1,
30], as well as attackers’ behavior to some extent [8], have also been
studied. On the developer side, vulnerability mitigation typically
focuses on tool-based interventions to catch vulnerabilities through
static or dynamic analysis (cf. [36, 37, 40]), assess third-party code
or binaries loaded into the app [35], and the promotion of APIs
which take critical code out of developers’ hands [41], the usability
of which for developers has been criticized [1].

Our focus on understanding what app developers prioritize and
the rationale they give for their decisions complements this body
of work by highlighting why vulnerabilities arise. This, in turn, can
help to focus interventions not just on identifying vulnerabilities
in code, but also on other tasks surrounding coding where the root
causes may lie.

2.2 Developer motivation

A 2012 study of mobile app developers found that 40% worked as
independents, 27% in small 2-3 person organizations [17]. Recent
professional reports [43] show that app developers have less pro-
fessional experience, and are not as motivated by financial gains
as others. For example, the solo ‘hobbyists’ (15%) and ‘explorers’
(28%) - those working to gain experience, constituted almost half
of the developer demographic in 2016. Other demographics consti-
tute a rather significant proportion, such as ‘hunters’: independent
developers focused on the money (21%), and ‘guns for hire’: indepen-
dent developers working on commission (15%). These demographics
clearly emphasize the need to understand the reality of this new group
of less established developers. When it comes to motivations for se-
curity, developers vary to what extent they consider it to be part of
their development process [7]. While many developers are known
to pass responsibility for security to others if they can [49] and
focus instead on functionality [47], the growing demographic of
independent app developers may not have this luxury, or have to
rely on different means to have recourse on others’ knowledge.
Intrinsic motivation for secure software has been found to translate
into better attitude toward secure development [5]. An important
anti-motivation in the context of app development is a perceived
lack of self-competence, which arises through a lack of extant re-
sources and support [5], which may arise especially in the case of
less experienced app developers working independently.

Our work shows that, notwithstanding code, by and large devel-
opers do not reason about security in many development activities—
providing a contrasting viewpoint that it is not so much whether

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

developers are (de)motivated to work securely, but that it may never
even occur to them.

2.3 Developer-centred security

Recent work has started to focus on developer-centred security,
both understanding (e.g., [7, 27, 48]) and improving (e.g., [28, 46])
how they engage with security. Much of this work is focused on
security surrounding technical code activities (e.g., coding, testing,
deploying), or studying developers in traditional larger software
development organizations (e.g., [6, 24]). Research has also shown
that security knowledge does not guarantee secure software: some
developers with good understanding of security practices fail to
apply it, while other developers with very little security knowledge
somehow built secure software [31].

Little work has yet focused on this breadth of knowledge now
required of developers. For example, a recent survey of security
advice most visible to developers [4] discusses guidance centered
almost exclusively on code-related security concerns. A recent
research agenda similarly focuses on coding activities [3], finding
wildly differing attitudes towards security in this task alone.

In contrast our findings offer support for the position that, espe-
cially in the app development context characterized by individuals
and small teams, security vulnerabilities should be understood in
context of the rationale for the activities that introduced them. Only
by understanding the lack of security rationale can we begin to
conceptualize interventions to mitigate these vulnerabilities.

3 STUDY I: SECURITY RATIONALES ACROSS
APP DEVELOPMENT ACTIVITIES

We designed a task-based online study to address three research
questions:

(1) Do app developers prioritize security during different activi-
ties in which they engage while producing the app?

(2) Are activities where security is prioritized informed by a
security rationale?

(3) What explanations underlie the rationales that developers
have for their prioritization?

Drawing on examples established in the literature, we identified
six tasks that reflect the activities that developers typically under-
take [18], all of which present some form of security concern. We
provided brief scenarios, and a selection of choices — some secu-
rity focused, and some not. An overview of the tasks as they were
presented to participants — and how we operationalized whether
participants’ selection and sorting of choices prioritizes security or
not, is given in Fig. 2.

In order to make the study tractable online we based the tasks
directly on activities found in recent literature summarizing the
wide spectrum of activities in software development [18], taking
care to ground them in relevant literature showing the effect of inse-
cure decisions in licensing [12, 14], incorporation of advertisement
SDKs [11, 44], seeking out of testers [16, 26], and use of different
sources for help [3, 29].

Tasks 1 and 2 were selection tasks (see Fig. 2), in which partici-
pants had to make a single choice while viewing source-code (Task
2), or choose a maximum of 3 from a number of possible options

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

van der Linden, et al.

Task 1: Setting up an IDE (select three)
The instructions:
Assume that you are using an Integrated Development Environment (IDE) to
develop your next app. Assume that it is as barebones as it gets - any
functionality you will have to add yourself. You are now setting up the
environment and selecting what plugins to work with to tailor the IDE's
functionality to your preference. However, you may only select a maximum
of 3 plugins. What selection do you make?

The possible choices to select up to three from:
Static code analyzer with security checking rules
o Bug spotter
o Syntax highlighter
o Revision control (CVS)
o Unnecessary code remover
o Screen darkener
o Coding style enforcer
o UML / Visual modeling

Task 2: Fixing source-code (select one)
The instructions:
Assume that you were given a piece of source-code written by somebody
else. They noted having concerns about three parts of the code, and want you
to fix them. However, you only have time to address and fix one of these
concerns. Given the source code below, please click on the part of the code
you would prioritize in fixing.

The possible choices to select from:
a security concern where passwords were stored in clear text
o a performance concern where an inefficient sorting algorithm was used
o areadability concern where significant hard coded values and lines of
code were poorly formatted

Task 3: Seeking help on a confusing API (card sort)
The instructions:
Assume that you are setting up a secure connection to a web server in your
app. You need to use a cryptographic AP but have trouble understanding
how to use it. Below are a number of approaches you can look for help. Sort
these in the order you're most likely to take them.

The choices to sort:
V Read the API’s official documentation
o Read an app development book for your relevant platform
o Ask another developer you happen to know in person
o Search the web, using any resource you may find
M Go to a specific online resource like StackOverflow to ask for help and use
a working example

Task 4: Seeking testers (card sort)
The instructions:
Assume that you have been working on a side-project by yourself, in your
own time. You're ready to launch your app, but how do you test it? Sort the
testing approaches below in the order you're most likely to take them.

y choices to sort:

Send it to a user group for testing

o Ask another developer you happen to know in person to test it
o Ask some direct personal connections (friends, family) to test it
o Test it as well as you can by yourself and then publish it

¥ Publish it right away and rely on user feedback for testing

Task 5: Selecting an advertisement SDK (card sort)
The instructions:
Assume you're struggling to get any financial gain from an app you wrote.
You decide to incorporate advertisements into the app. There are a couple of
approaches you could take. Sort these in the order you're most likely to use
them.

The choices to sort:
Select specific ad libraries depending on their required permissions
o Select specific ad libraries, depending on how other developers and tech
websites rate them
o Select specific ad libraries, purely depending on revenue potential
o Select one or two ad libraries at random and incorporate them
 Incorporate as many ad libraries as you can

Task 6: Building a software license agreement (card sort)
The instructions:
Assume that you have finished developing a new app. Before releasing it, you
talked to a technology lawyer advising you how to best protect you and your
new app. He suggested several clauses you should include in the software
license for your app, which are given below. Sort these clauses according to
how you would prioritize their inclusion into your software license
agreement.

The choices to sort:
o A limitation on liability
o A forced arbitration clause
o A provision that allows for disabling any functionality or code by the
licensee
o An explicit disclaimer of warranty
o A clause that allows you to terminate the license at any time
o A clause explicitly stating you license the software, not sell it
¥ A prohibition on reverse engineering and/or benchmarking

For a task’s solution to be considered prioritizing security, the below conditions should be met:

/: must be selected,; /= must be sorted to the top (prioritized); K = must be sorted to the bottom (de-prioritized)

Figure 2: Task materials used in Study I. Tasks 3-6 are shown sorted into a security prioritizing order — note that the order of
choices presented to participants was randomized in the study. Choices that should be prioritized are highlighted by a green
checkmark, whereas choices that should be deprioritized are highlighted by a red cross. Each task was followed by a question
to elicit a participant’s rationale, phrased as “Please explain why you [chose this option / selected these plugins / sorted the
answers in this order]”.

(Task 1) whose order was randomized. We assessed whether par-
ticipants prioritizes security by checking if they selected security-
supporting options.

Tasks 3-6 were card sorting tasks, where participants were
given a number of choices presented to them in random order (see

Fig. 2) and were asked to sort them in the order they would take
them. We assessed whether participants sorted options that sup-
ported security as top choice (prioritizing them), and sorting options
that undermined security as bottom choice (deprioritizing them).

Schrodinger’s Security: Opening the Box on App Developers’ Security Rationale

Task 1: Setting up an IDE IDEs are commonplace, and can
be configured to provide necessary support to developers. The
selection was drawn from a list of most popular plugin types. Of
the given type of plugins, the static analyzer with security checking
rules is the only plugin explicitly mentioning support for automatic
analysis of code vulnerabilities, and its inclusion can reasonably be
assumed to follow from an attitude of prioritizing security.

Task 2: Fixing source-code Storing passwords in plain text is
an obvious security concern which should be avoided. If partici-
pants select any other code fragment, they de-prioritize security
(or do not have the expertise and/or security-focused approach
to development). Thus, to prioritize security, participants should
select the security concern. An example of the code presented to
participants (one of three randomly shown variations to rule out
priming bias) is shown in the online appendix [45].

Task 3: Seeking help on a confusing API Research has shown
that copy pasting solutions from StackOverflow does not benefit se-
curity [29]. Moreover, in a secure coding experiment, it was shown
that between four groups only allowed to use either official API
documentation, app development book, web searches, or StackOver-
flow, it was the group who only used StackOverflow that produced
the least secure solutions. In contrast, the group only allowed to use
official API documentation produced the most secure solutions [3].
Thus, to prioritize security, participants should first read the APT’s
documentation, and only as a last resort go to StackOverflow to
copy-paste an example—and not just trust any example.

Task 4: Seeking testers Research on app testing and release has
shown that ‘just’ releasing apps is fraught with issues [26]. Using
dedicated user groups for testing helps to ensure that usability and
security do not oppose each other [16]. Thus, app testing via a
user group prioritizes a comprehensive testing approach while just
publishing the app without any testing de-prioritizes security.

Task 5: Selecting an advertisement SDK There has been a

steady increase in the number of permissions used by ad libraries [11].

Research has stressed the need to carefully assess the permissions
requested by Android advertisement libraries before incorporat-
ing them [44] to avoid accidentally including malicious libraries.
Thus, to prioritize security, participants should rank analyzing the
required permissions of the ad library highly (vice versa, a higher
ranking for including ad libraries at random, or including as many
as possible, de-prioritizes security).

Task 6: Building a software license agreement Research has
shown that prohibiting reverse engineering and bench marking
promotes discovery and sharing of vulnerabilities in black hat com-
munities, while denying this to white hat communities [12, 14].
Thus, to prioritize security, prohibitions on reverse engineering
and/or bench marking should not be included.

We trialed an initial study among five professionals with a back-
ground in computer science and/or programming. Their feedback
was used to verify the estimated time needed to complete the sur-
vey (30+5 minutes) and remove any potential misunderstandings
in the phrasing and unintentional connotations of demonstrative
pictures of developers. The final version of the study was trialed
with the same five professionals, after which no further remarks on
its structure were found. Before conducting the study, we obtained
IRB approval. No personally identifying information was collected
in the study itself.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

3.1 Participants

We used social networks and public mailing lists to approach app de-
velopers, regardless of platform (e.g., Android, iOS). In particular, we
solicited participation in the study via relevant professional groups
on LinkedIn and Facebook by searching for the terms ‘mobile soft-
ware’ or ‘app’ and ‘developer’, as well as 10S’ and ‘Android’. After
identifying and joining several relevant groups we snowballed for
more potential sources of participants by looking at linked groups.

Since our goal was to study the rationale used by app devel-
opers across the entirety of app development, we implemented a
strict exclusion criterion of any developers who had not actually re-
leased/published at least one app on an app store (e.g., Google Play,
Apple App Store). While this significantly reduced the potential
population, it was necessary in order to establish a realistic picture
of developers who can be expected to have had to deal with the
different dimensions of app development.

3.2 Materials and procedure

The tasks given to the participants, see Fig. 2, reflect the activities
that developers typically undertake [18] (cf. Fig. 1). Each task was
followed by an open question eliciting the rationale of their solu-
tion. The tasks were presented as part of an online questionnaire
that also included background questions: 24 professional and 4
basic demographics (age, gender, nationality, education level). We
neither mentioned the security focus of the study nor elicited (self-
reported) security experience in the study. This would likely create
demand characteristics and, therefore, exaggerate pro-security an-
swers (relative to real-world decisions). Moreover, self-reported
security experience would be difficult to interpret in a way that
compares objectively across participants as, for example, simply
measuring acquaintance with OWASP Top 10 lists does not mean
participants have also meaningfully engaged with such knowledge.
The study was open for four months, from March to June 2018. We
posted reminders in social media groups after two weeks to attempt
to elicit additional responses. All raw data of Study I is available
online at the online appendix [45].

3.3 Data analysis

Pre-processing. In total, we received 47 complete responses. Be-
fore analysis, we manually detected any suspicious entries, dis-
carding three responses based on repetition of nonsensical texts as
answers to all open questions. This led to a final set of 44 usable
responses.

Task analysis. To assess whether a task’s solution indicated a
potential security attitude (RQ1) we used the options as per Fig. 2:

Task 1 should have at least “static code analayzer with security
checking rules” selected.

Task 2 should have “security concern” selected.

Task 3 should have “read the API’s official documentation” sorted
as 1st or 2nd choice, while “Go to a specific online resource like
StackOverflow to ask for help and use a working example” should
be sorted as 4th or 5th choice.

Task 4 should have “send it to a user group for testing” sorted
as 1st or 2nd choice, while “publish it right away and rely on user
feedback for testing” should be sorted as 4th or 5th choice.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

Task 5 should have “select specific ad libraries depending on
their required permissions” sorted as 1st or 2nd choice, while “in-
corporate as many ad libraries as you can” should be sorted as 4th
or 5th choice.

Task 6 should have “a prohibition on reverse engineering and/or

benchmarking” sorted as 5th, 6th, or 7th choice.
Rationale analysis. To assess whether the tasks were performed
with a security rationale, and whether this correlated to their so-
lution (RQ2), we analyzed the rationale elicited from participants
after each task using open coding!. Two authors independently
coded each result to determine whether the rationale indicated a fo-
cus on security. Inter-rater reliability measure (Cohen’s Kappa [23])
showed strong to perfect inter-rater agreement and reliability across
all tasks (ide k = 0.91, code k = 0.91, help k = 1, testing k = 0.85,
ads k = 0.87, legal k = 1).

Thematic analysis. We used thematic analysis [13] to further
understand participants’ rationales (RQs 1-3), especially those that
were not security related. Two authors independently coded the
rationale data and compared codebooks, agreeing on dominant
themes emerging from the analysis.

Statistical tests. Task solutions and rationales were binarily
classified (secure, other). Binominal tests are most appropriate for
this type of categorical data. We, therefore, used binomial tests to
assess whether rationales were more or less likely to appear than
by chance, and whether these distributions differ between tasks.

4 STUDY I - FINDINGS

4.1 Demographics — Who is the archetypal app
developer?

The range of mobile developers we found in Study I is in line with
existing research [17, 42] and may effectively be stereotyped as
young independent men with at least a college degree, building
apps to improve their skills and know-how and have fun, while
being heavily reliant on knowledge from community websites like
StackOverflow.

Demographics. Participants were predominantly male (89%), some
female (9%) and one other (2%). Geographically, they are distributed
primarily across North America (32%), Europe (39%), and the Middle
East (27%), with one participant from Asia (2%). The majority were
young, with some published app developers even being under age,
< 18 (5%), 18-24 (18%), 25-34 (41%), 35-44 (23%), 45-54 (11%), 5564
(2%). Most finished a tertiary education, with highest completed
education being vocational training (9%), bachelor (55%), master
(20%), doctoral (9%).

The professional context. Most developers in the study are fairly
junior, having released (or been involved in) one to five apps (68%),
six to ten (25%), and only a few with 11+ (7%). The biggest sub-group
was solo developers (36%), followed by part of micro-enterprises
with fewer than 10 people (23%), and finally SMEs (20%) and large
enterprises (20%). Similarly, development team size tended toward
smaller teams: solo developers (39%), two to five people (39%), teams
of six to nine people (11%), 10+ people (11%). Even with most partici-
pants having finished a tertiary qualification, the majority professed

1 As in qualitative analysis [15] and not to be confused with code in a software sense.

van der Linden, et al.

to be self-taught for app development (80%), many also noting con-
tributions from their education (59%), and a much smaller group
mentioning training at work (20%).

The development focus. Participants developed mostly for An-
droid (77%), with iOS (55%), and several others including Windows
Phone (7%). There is a fairly even split between those who develop
exclusively for one platform (57%), and those who develop for multi-
ple platforms (43%). Of those developing for multiple platforms, 42%
released simultaneously for all platforms (typically Android and
i0S). Most developed to improve their skills and know-how (68%),
to have fun (66%), or for intellectual stimulation (55%). Somewhat
less-represented motivations include no apps with similar function-
ality existing yet (41%), financial gain (39%), and finally, building
their reputation within the app developer community (34%).

4.2 Task results — Do solutions indicate a
prioritization of security?

Figure 3 presents the results of the tasks described in Sec. 3.3.
Fig. 3(a) shows the distribution of solutions, namely those that were
deemed to prioritize security vs. those that did not while Fig. 3(b)
illustrates the distribution of the various rationales. Detailed task
results are shown in the online appendix [45].

Roughly half of the participants provided a solution prioritizing
security for tasks 1, 2, 5, and 6 (respectively 50%, 48%, 52%, and
52%), although those doing so with explicit security rationales were
far fewer. Tasks 3 and 4, in which participants had to reason about
(the need for) social interaction with, and reliance upon others (i.e.,
asking them to test or overcome a coding challenge), showed fewer
solutions prioritizing security (23% and 14%). In other words: par-
ticipants rarely offered a security rationale for tasks not involving
code, regardless of whether their solution prioritized security.

Secure rationales are asymmetrical (differing from chance, p<0.01)
except for task 2 where the distribution does not differ from chance.
Binomial test found that the proportion of secure rationalization
differs significantly for all non-coding tasks when compared to
coding tasks (p<0.01), suggesting that secure rationalizations are
less likely to appear for non-coding tasks. Binomial tests showed
that tasks 3 and 4 differ significantly from chance levels (p<0.05,
p<0.01, two tailed) whereas for task 1, 2, 5, and 6 these frequencies
of prioritization do not differ from a distribution that would arise
by chance (p>0.88).

4.3 Rationale analysis - What is in the Box?

We performed two distinct thematic analyses to build a holistic
understanding of developer rationales: one to understand the ratio-
nales driving the choices made in each task, and another to under-
stand cross-task themes. For the first analysis, key themes prevalent
in the codebook are shown in Fig. 4. The three subgroups most
relevant to understand why developers do (not) develop securely
are discussed here: (1) security rationales and security solutions, (2)
security rationales but non-security solutions, and (3) non-security
rationales with security solutions. Distribution of these subgroups
over the professional demographics of the participants showed no
significant deviation across organization size.

4.3.1 Security rationales, and security solutions.
Trust in other developers: Across different tasks participants

Schrodinger’s Security: Opening the Box on App Developers’ Security Rationale

noted that they would take into account other developers’ feedback
and opinions when making their own decisions about fixing source-
code:
“Another developer is adequately smart to give me technical feedback”
(P13)
Or while deciding which ad library to incorporate, the knowledge
and opinion of other developers were considered a valuable re-
source:
“[...]1 I will use the library(ies) that is most used to gather the fastest
support either from developers and community.” (P13)

This may further explain the quantitative finding that developers
rationalize about security less in tasks involving social interactions
with other developers because of the trust they place in them.
Understanding app permissions: While participants showed
trust in other developers when deciding on permissions to incorpo-
rate within their app:

W security solution non-security solution

Setting up an IDE
(Task 1) IR
Fixing source-code

(Task 2) s
Seeking help on a

confusing API (Task T

2%

Seeking testers

(Task 4) 86%
Selecting an
advertisement SDK 48%
Building a software

license agreement e

0% 25%

50%

100% 0%

(a) Distribution of solutions

W security solution w/ security rationale

ICSE 20, May 23-29, 2020, Seoul, Republic of Korea

“see what others have done and then look at permissions and revenue
potential” (P20)

they also showed an awareness of the importance of permissions
and the need to carefully assess which permissions to request (and
the value they would derive in return):

“Permissions required are important and I like to match it to my apps

to ensure a good return [on investment].” (P41)
Don’t implement your own crypto: Participants showed a clear
understanding of the risks of hand-rolled cryptography code:

“While the crypto looks iffy (why aren’t we just calling a library
hashing function), [...]” (P24) “The hashing algorithm is a hand-
rolled version of SHA-256 which might be buggy, [...] (P38)

and strongly recommended changing hand-rolled to library use:

“I'would tell them not to store plaintext passwords of their users, and
to use a secure hash function from a library (using a seed together
with the password) rather than implementing their own.” (P19)

non-security solution w/ security rationale solutions w/o security rationale

5% 86%

1% 57%
98%
93%
11% 78%
98%
25%

50% 100%

(b) Distribution of solutions with and without and secure rationale

Figure 3: Distribution of (a) task solutions according to Fig 2’s classification, and (b) task rationale.

dhbd

d

IR O IR OB NSO PR)

Security Rationale,
Security Solution

Security Rationale
Other Solution

Other Rationale,

Security Solution

12

Trust in other developers

Understanding permissions is important

Don’t implement your own crypto

v

) Don’t assume users
are predictable

) Don't test by

) yourself

clear
rationale given

Do input sanitization

Be careful with
) personal data

N YD N

Static analysis Bug spotter helps
helps spot issues spot issues

Don't store passwords
i ext

Figure 4: Schematic depiction of the codebook. Thematic analysis over the rationales for the tasks divided into three most
relevant subgroups: (a) security rationales with security solutions, (b) security rationales, but with non-security solutions,

and (c) Other rationales but with security solutions.

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

This indicates that messaging about not rolling one’s own crypto is
reaching app developers.

Do input sanitization: Several participants noted this, whether
by explicitly pointing out that the source-code in task 2 lacked this:

“Variables haven’t been sanitised.” (P39)

to more nuanced statements explaining one should not just trust
data provided by others:

“...just inserting untrusted, unsanitised data is a bad idea” (P32)
Don’t store passwords in plain text: Participants showed an un-
derstanding of the risks of storing passwords in plain text, whether
simply calling it out as being not done:
“Passwords should never be stored in plain text.” (P39)
to re-iterating why this should not be done:
“This stores the user’s plaintext password in a file. If the file was
compromised then user’s passwords would be leaked. Passwords
should never be stored — Only the hash” (P28)
Static analysis and bug spotters help spot issues: Participants
also showed a clear understanding of their own limitations in catch-
ing any and all possible coding mistakes or vulnerabilities, some
noting additionally how important this is when developing alone
without the safety net of a wider team:
“Bug spotter and analyzer because it'd help fix issues I create which
is important as a lone dev with no code review” (P9)
“The most important thing would be detecting things that are ‘off’
in the code. Syntax highlighting helps me do this myself, and the
bug spotter / static code analyzer plugins do this in an automated
fashion.” (P19)
Moreover, participants noted the importance of such tools because
even when armed with the relevant security knowledge, they

“[...] help prevent non-obvious security issues.” (P24)

4.3.2 Secure rationales, but other solutions. This subgroup, smaller
in number than others, shared a number of themes with those who
chose security solutions and provided security rationales, namely,
trusting in other developers, and more technical matters like un-
derstanding permissions, not implementing their own crypto, and
always performing input sanitization.

Be careful with personal data: The one particular theme that
came to the fore within this subgroup is that participants always
considered whether they would have to process and hold personal
data of their users, and adjusted their decision-making accordingly:
“I'm assuming that if I'm writing an app that requires the user’s
personal information I would first make sure that I am well-versed
in the field of data security.” (P6)
Some participants noted the same reservations in the context of
specific resources such as ad libraries:
“I would want to know what data libraries want to collect on my
users and what they plan on doing with it (P24)

Do not test by yourself and don’t assume users are predictable:

This again varied from participants simply calling it out,

“A developer should never test the code he built” (P1)
to giving a more detailed reasoning, e.g., that one can never predict
how software is actually used, and thus account for this as much
as possible:

van der Linden, et al.

“I never rely on just myself for testing, since I cannot always know
how people are going to use the app beforehand.” (P1)

Similarly, developers gave more technical considerations to dealing
with the unpredictable nature of their users:

“Never trust user input. Sanitize it before doing anything ...” (P18)

4.3.3 Other rationales, but security solutions. By far the largest
subgroup in the analysis, many participants produced a secure solu-
tion, but seemingly almost by accident. Unclear rationales such as
“no specific reason” (P18), or simply because it’s the “best [solution]
I could come up with” (P34), or that solutions “looked OK like this.”
(P14) means that we are unable to determine their intentions (i.e.
focusing on security or not).

Through some latent knowledge or behavior, participants pro-
duced security relevant solutions — yet we cannot be sure why they
solved the tasks the way they did. From a security standpoint this
is particularly troubling, as there is no insight into whether this
group of developers are consistently acting in a secure way (but
subconsciously), following secure development trends, or simply
doing whatever feels right at the moment.

4.3.4 What else characterizes participants’ rationales? The thematic
analysis of the rationale data gave rise to several recurring themes
that spanned across different tasks. These are described below to
allow for further understanding of why developers may prioritize
the way they do.

Caring about users: Many participants, across several tasks,
reflect on the impact of their decisions on users of the app. This
manifests in altruistic or empathetic context as, for example, in
reflection on the advertisement and license tasks:

“I don’t want to put my users at risk with weird permissions.” (P30)
“I prioritized based on how ‘extortionist’ or ‘evil’ the clauses would
feel to me as a consumer.” (P19)

Additionally, participants manifest the attitude in an egotistic
context as well. For example, caring about users in order to preserve
or improve one’s reputation as a developer:

“[...] it is better to have a small group [of testers] find bugs than
your users. This way, your reputation would be secured with the
whole world” (P3)

Avoiding dealing with others: In the tasks where participants
had to reason about interacting with others, a theme arose indicat-
ing their reluctance to engage with others before putting in their
own effort. For example:

“This problem should be solved as fast as possible but without being
needy so firstly I would read documentation and try to find a solution
on my own.” (P17) (emphasis added)
“First I'll use resources I can use without the help from other people
(their time is important as well). (P7)

All about the flow: In rationales for setting up an IDE, a key
distinction was IDE configurations supporting the developer get-
ting into a state of flow during development, rather than selecting
plugins that intervene and steer their behavior:

“Moving forward and getting better at programming takes practice

and I really enjoy the process. Programming at my own speed without
interruptions from plugins is my most productive workflow.” (P30)

Schrodinger’s Security: Opening the Box on App Developers’ Security Rationale

Similar examples manifested in the testing task, stressing the im-
portance of flow:
“This is the easiest way to move forward in the process without
having to get out of my chair. My time at work is limited. (P30)

An easy does it attitude: In the coding task, a distinction arose
between developers who take a pragmatic approach to fixing, and
those who focus on key issues arguably important to them. Many
participants take an approach of dealing with the part perceived as
being easiest. For example, P2, who provided a solution prioritizing
security in the coding task, did so for rather pragmatic reasons:

“The least complex block. Other blocks either have too many notes
and documentation to read and understand.” (P2)
This theme manifested across other tasks, showing pragmatic be-
haviors rooted in familiarity, such as justification of how to test:
“Launching an app is really not a big deal. A soft launch is often
best and you shouldn’t stress out about it. However, may as well test
some. :)” (P36)
Moreover, in the context of asking for help, some participants very
explicitly showed an easy does it attitude justifying their behavior:

“Least to most effort, 'm very lazy you see” (P9)

A misunderstanding of licensing: Many participants, even
though being solo developers with limited to no resources to afford
legal advice, have little understanding or patience for what license
clauses mean, or how they affect themselves and their customers.
This manifested mostly as participants flat out rejected the impor-
tance of licensing and the effects a Software License Agreement
(SLA) has on their products (let alone themselves):

“Sorry, I don’t see how it matters” (P43)

Several other participants were guided by ideological stance, in
these cases support of Open Source movements, underestimating
the role that an SLA plays, and the fundamental distinction between
license and product:

“I don’t see the need for licensing. I am a large proponent of FOSS

and the ‘it’s not my fault if your house burns down’ clause” (P9)

“Licensing is irrelevant, because the app is free” (P25)

5 STUDY II - PERCEIVED SECURITY IMPACT
OF DEVELOPMENT ACTIVITIES

To help generalize findings from Study I, we adapted its tasks into
a survey with Likert scale questions, eliciting the perceived impact
of the tasks on security. The survey was approved by the IRB.

5.1 Participants

We collected a random sample of 60,163 email addresses of Android
application developers listed in Google Play. We emailed these de-
velopers requesting their participation in the survey. We offered no
reward, and noted that participation was voluntary. After sending
out the invitations, 3419 emails bounced; we honored another 3375
requests to not be contacted, leaving 53,639 emails sent. A total
of 291 completed the survey over the two weeks period for which
the study was active. From the 291 responses, we discarded two
partial responses and additionally discarded fourteen potentially
suspicious responses which scored all items the same. This led to a
final set of 274 usable responses, well in line with other security
research employing this recruitment strategy (cf. [2, 3]).

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

5.2 Materials and Procedure

We used a single survey with six questions aligned with Study Is
tasks. Participants were asked to rate from strongly disagree (-2) to
strongly agree (+2) on whether:

The security of the app I develop is affected by decisions I make on ...
..the code I write (code)

..setting up my development environment (dev)

..the license my software is released under (license)

..the external SDKs I use (sdk)

..whom I involve in testing (test)

...what sources I go to for help (help)

Appropriate for the ordinal type data elicited by the above Likert
scale questions, we used polychoric correlation [34] to estimate
the correlation (r) between the answers. All raw data of Study II is
available online at the online appendix [45].

6 STUDY II - FINDINGS

6.1 Questionnaire Results

Figure 5 illustrates the results from the Likert scale questions —
whether different activities are perceived to affect the security of
software developed. Participants rated that the decisions they made
while writing code and using external SDKs affect the security
of their software, while the license under which their app is re-
leased was perceived to not affect security. Other tasks like “whom
Iinvolve in testing”, “sources I got to for help” etc. show a more
balanced distribution, indicating there is no clear consensus on
whether decisions made in such tasks affect the security of an app.
Items skewing towards positive responses may indicate aspects
where developers are more likely to consider security.

The security of apps | develop is affected by decisions | make on...

W strongly agree agree neutral

disagree M strongly disagree

... the code | write
... the external SDKs |
use

... whom l'involve in
testing

... what sources | go
to for help

... setting up my
development

... the license my
software is released

0%

Figure 5: App developers’ perception (N=274) whether devel-
opment activities affect the security of their app.

6.2 Questionnaire Analysis

To understand whether developers’ attitudes may be linked between
similar activities, we calculated correlations between the different
activities (polychoric r being more appropriate for ordinal value
assessing rater/developer agreement) In line with link between
writing code and using external SDKs found above, there was a
positive (albeit low) correlation between the perceived security

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

impact of writing code and selecting external SDKs (r=.27, p<0.01),
as well as a low negative correlation between writing code and
under what license their software is released (r=—.14, p<0.05). This
may indicate that writing code and selecting external SDKs are
indeed the two key factors which developers perceive to affect the
security of their software. Additional correlations were found, in
particular the two strongest correlations between the test and help
question (r=.39, p<0.01), and the help and development environment
question (r=.37, p<0.01).

The correlation between test and help - and that it did not score
as affecting security — corroborates the findings from Study I where
participants also prioritized security the least in the same tasks.

The correlation between how participants set up their develop-
ment environment and what sources they go to for help may reflect
some ways of working we found in Study I. For example, partici-
pants who deem it important to set up their IDE carefully, e.g., by
incorporating static analysis and bug spotters, may do so because
they trust in authoritative sources and communities which set out
best practices for secure coding and thereby ensure the security of
their apps. This needs to be validated through further research.

7 THREATS TO VALIDITY

Construct Validity. We based the items in Studies I and II directly
on activities found in recent literature summarizing the wide spec-
trum of activities in software development [18]. Moreover, for Study
I we took care to ground the definitions of security solutions in
relevant literature showing the effect of insecure decisions in licens-
ing [12, 14], incorporation of advertisement SDKs [11, 44], seeking
out of testers [16, 26], and use of different sources for help [3, 29].
We do not claim to exhaust the security challenges faced by devel-
opers through these tasks, but rather, sample a diverse variety of
challenges they must face.

Internal Validity. We do not claim to infer actual behavior from
the self-reported data elicited in Studies I and II. Moreover, in Study
I we explicitly only investigated estimated correlation between
solutions prioritizing security and any kind of rationale indicating
security. We do not claim that this lack of secure action and rationale
implies a lack of knowledge, which requires further psychological
work.

Moreover, given the nature of the tasks and their stand-alone
design, it necessarily means that participants’ decision-making is
done in a hypothetical context. This may affect the way in which
participants prioritize particular answers over others as, for exam-
ple, time pressure from managing concurrent tasks and activities
in a real-world scenario could lead to different prioritization. This
was, however, a necessary compromise in order to reveal the het-
erogeneity of reasoning that developers hold for different kinds of
tasks.

Notably, therefore, the thematic analysis of participants’ ratio-
nales did not expose any evidence that: they considered real-world
contexts differently; their decisions were driven by prior security
knowledge; or some choices were taken to be much more likely or
‘obvious’ than others.

External & Ecological Validity. We used purposive sampling
complemented with snowballing for both Studies I and II - specifi-
cally wanting to include only those with experience of the variety

van der Linden, et al.

of activities encountered in app development. While this proved no
problem for Study II due to the minimum time investment required
of participants, we couldn’t recruit as many developers willing to
invest the required average half hour into Study I. Nonetheless,
a comparison of the personal and professional demographics de-
tailed in Sec. 4.1 indicates significant overlap with demographics
established in earlier research [42]. Given that Study I’s findings
among a much wider sample of the mobile developer population is
in line with our key findings of Study II: a security focus on code-
related tasks and under-appreciation of security impact of other
activities, we feel confident that the samples of both studies show
a valid picture of the typical developers encountered in mobile app
development.

Moreover, the lack of security knowledge of participants in Study
I may limit the generalization of the findings, as we cannot confirm
whether security knowledge is normally distributed across partici-
pants, or skewed towards a particular extreme. However, eliciting
self-reported experience has its limitations as discussed before, and
would not necessarily enrich the findings. Thus, further studies may
attempt to use objective measures of security knowledge (rather
than self-reported experience) in focused task studies to assess
whether the level of security knowledge has an effect on different
tasks. This was not deemed feasible in the present study due to the
need to incorporate a wider variety of tasks, which already led to a
study with significant duration, limiting the potential of recruiting
willing participants.

8 DISCUSSION: FILLING THE BOX WITH
SECURITY

As we mentioned in Sec. 2.3, we need to understand developers’
rationales in order to begin conceptualizing interventions to mit-
igate vulnerabilities stemming from these rationales. Without a
holistic focus on app development-looking beyond solely the act of
writing code—we cannot effectively support developers in producing
secure apps, rather than ‘just’ writing secure code. We discuss some
key insights leading to takeaways on how app developers can be
supported to do so.

8.1 Be social, but also be critical

Studies I and I both indicated that developers lack a critical attitude
towards security in activities that involve (the need for) social in-
teraction with others. In particular, the seeking help and seeking out
testers tasks of Study I which required participants to consider third
parties and whether they can be trusted showed the lowest amount
of security rationalization. This may indicate that developers do
not make the leap of thinking of people and sources they use to
aid in their app’s development as potentially misguided, or even
adversarial.

These kinds of social interactions are vitally important for inde-
pendent and small scale developers, as they need to reach out to
external support networks, rather than rely on existing organiza-
tional structure. In reality, this will often come down to considering
whether libraries and friendly advice or useful code fragments
posted on forums such as StackOverflow can be inherently trusted
to be provided in good faith, let alone competence. To avoid the risk
of incorporating vulnerable code, promoting a more critical attitude

Schrodinger’s Security: Opening the Box on App Developers’ Security Rationale

to how social interactions can affect the security apps would be
warranted.

Takeaway—to ensure a more critical attitude towards security
among developers, we need to promote critical reflection on the
trusting of people and resources on which they rely.

8.2 Flowing towards a secure environment

Most of the rationales in task 1 (Study I) — in which participants
had to reason about setting up their development environment —
focused on setting up the environment enabling them to work in
a particular way. So it should not be a surprise that the solutions
expressing security considerations would mention so similarly. For
example, P9 made their selection because “it’d help fix issues I
create which is important as a lone dev with no code review” (P9),
and P24 did so because the “static analyzer helps prevent non-
obvious security issues.” This can be interpreted as the basis for
developers getting into a state of ‘flow’ — they prepare to work in a
way where they can be entirely absorbed in that work [32]. The key
link between the flow rationale and the security mindset seems to
be a realization of those participants who work as solo developers
that they cannot expect themselves to catch everything, but that
they are still responsible for everything at the end of the day.

Takeaway—solo and small-scale app developers need support to
make the ‘right’ choices in terms of security, but not only for code.
Research could focus on incorporating support for such activities
within IDEs but in a manner that is unobtrusive to the fluidity that
developers desire.

8.3 Thinking about users, thinking about
security

Some participants’ rationale explicitly showed that they were an-
ticipating the way their users would behave: “I never rely on just
myself for testing, since I cannot always know how people are go-
ing to use the app beforehand” (P1). Others mentioned considering
whom to involve based on their relationships, and how it might then
affect their users: “Friends and family are terrible testers, because
they don’t want to hurt your feelings. You yourself are even worse,
and relying on your users will find you all the bugs, but might lose
you your reputation” (P20). This hints that explicit consideration of
how users are affected by the software they develop leads them to
more carefully consider the decisions they make. We find further
evidence of this especially in task 5, in which participants had to
seek help on incorporating an advertisement library. Here consider-
ations of the users came through in terms of the potential impact of
vulnerabilities on users, for example, (P19) noting that they “[...]
would not want my users to experience any negative side effects
from the ad library,” and (P13) mentioning that “it is important to
grant minimal privacy impact to users”.

Takeaway—to reason about security, and to act upon it, devel-
opers should be encouraged to take a user-centric view — under-
standing the consequences vulnerabilities have for their users.

9 CONCLUSION AND FUTURE WORK

We investigated the rationale of app developers during different
activities in the app development process, performing an in-depth
task-based study with 44 app developers assessing the extent to

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

which they prioritize security and how they rationalize their choices.
We followed this up with a larger survey of 274 app developers
assessing their perception towards the impact of the different activ-
ities on the security of their produced apps.

Our analysis highlights that app developers rarely prioritize se-
cure ways of working for reasons of security unless it directly affects
the writing or the functionality of their code. In social (seeking help
or testers), economic (monetization) and legal (licensing) aspects
of app development, there were no prevalent security rationales
underpinning their choices.

Future work could consider, e.g., developers’ relationships with
others - e.g., thinking about users and the consequences vulnerabili-
ties have for them or identifying with a wider developer community
with its security norms, values and practices — may impact develop-
ers’ security behaviours and may be leveraged to bring a stronger
security rationale across the variety of activities in which they
engage during app development.

Acknowledgments

This work is partially supported by EPSRC grant EP/P011799/1,
Why Johnny doesn’t write secure software? Secure software devel-
opment by the masses and SFI grant 13/RC/2094.

REFERENCES

[1] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. Sok: Lessons learned from android security research for
appified software platforms. In Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 433-451.

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L Mazurek, and Christian Stransky. 2017. Comparing the usability of

cryptographic apis. In Security and Privacy (SP), 2017 IEEE Symposium on. IEEE,

154-171.

[3] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,
and Christian Stransky. 2016. You get where you’re looking for: The impact of
information sources on code security. In Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 289-305.

[4] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Weir, Michelle L
Mazurek, and Sascha Fahl. 2017. Developers Need Support, Too: A Survey of
Security Advice for Software Developers. In Cybersecurity Development (SecDev),
2017 IEEE. IEEE, 22-26.

[5] Hala Assal and Sonia Chiasson. 2018. Motivations and Amotivations for Software
Security — Preliminary Results. In Workshop on Security Information Workers
(WSIW) 2018.

[6] Hala Assal and Sonia Chiasson. 2018. Security in the Software Development
Lifecycle. In Fourteenth Symposium on Usable Privacy and Security (SOUPS
2018). USENIX Association, Baltimore, MD, 281-296. https://www.usenix.org/
conference/soups2018/presentation/assal

[7] Hala Assal and Sonia Chiasson. 2019. “Think secure from the beginning”: A
Survey with Software Developers. In Proc. CHI'19.

[8] Andrea Atzeni et al. 2011. Here’s Johnny: a methodology for developing attacker
personas. In Proc. ARES’11. IEEE, 722-727.

[9] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library
detection in android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 356-367.

[10] Adam Bauer and Bauer Hebeisen. 2017. Igexin advertising network put user

privacy at risk. https://blog.lookout.com/igexin-malicious-sdk. (2017). Online;

accessed 20 October 2018.

Theodore Book, Adam Pridgen, and Dan S Wallach. 2013. Longitudinal analysis

of android ad library permissions. arXiv preprint arXiv:1303.0857 (2013).

[12] Jean Braucher. 2006. 12 Principles for Fair Commerce in Mass-Market Software

and Other Digital Products. In Arizona Legal Studies Discussion Paper No 06-05.

Available at SSRN: https://ssrn.com/abstract=730907.

Virginia Braun, Victoria Clarke, and Gareth Terry. 2014. Thematic analysis. Qual

Res Clin Health Psychol 24 (2014), 95-114.

[14] Jennifer Chandler. 2009. Information Security and Contracts. Contracting Insecu-
rity: Software License Terms That Undermine Information Security. In Harboring
Data: Information Security, Law, and the Corporation, Andrea M. Matwyshyn (Ed.).
Stanford University Press, Stanford, California.

—
&,

[11

[13

https://www.usenix.org/conference/soups2018/presentation/assal
https://www.usenix.org/conference/soups2018/presentation/assal
https://blog.lookout.com/igexin-malicious-sdk
https://ssrn.com/abstract=730907

ICSE ’20, May 23-29, 2020, Seoul, Republic of Korea

[15]
[16]
[17]
(18]

[19

[20]

[21]

[22

[23

[24

[25]

[26]

[27

[28

[29]

[30]

(31

)
&

[33]

[34]

[35

[36]

[37

[38

[39]

Juliet M Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative sociology 13, 1 (1990), 3-21.

Lorrie Cranor and Simson Garfinkel. 2005. Security and Usability. O’Reilly Media,
Inc.

Amy Cravens. 2012. A demographic and business model analysis of today’s app
developer. GigaOM Pro (2012).

Cleidson RB de Souza et al. 2016. The social side of software platform ecosystems.
In Proc. CHI’'16. ACM, 3204-3214.

William Enck et al. 2011. A Study of Android Application Security.. In Proc.
SEC’11@USENIX, Vol. 2. 2.

Ecular Xu (Mobile Threat Response Engineer). 2017. Analyzing
Xavier: An Information-Stealing Ad Library on Android. https:
//blog.trendmicro.com/trendlabs- security-intelligence/analyzing-xavier-
information-stealing-ad-library-android/. (2017). Online; accessed 20 October
2018.

Sascha Fahl et al. 2012. Why Eve and Mallory love Android: An analysis of
Android SSL (in) security. In Proc. CCS’12. ACM, 50-61.

Felix Fischer et al. 2017. Stack Overflow Considered Harmful? The Impact of
Copy&Paste on Android Application Security. In Symp. S&P’17. IEEE, 121-136.
Kevin A Hallgren. 2012. Computing inter-rater reliability for observational data:
an overview and tutorial. Tutorials in quantitative methods for psychology 8, 1
(2012), 23.

Julie M Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard Prettyman.
2018. “We make it a big deal in the company”: Security Mindsets in Organizations
that Develop Cryptographic Products. In Fourteenth Symposium on Usable Privacy
and Security (SOUPS) 2018. 357-373.

Ankur Kataria, Tricha Anjali, and Raghu Venkat. 2014. Quantifying smartphone
vulnerabilities. In Signal Processing and Integrated Networks (SPIN), 2014 Interna-
tional Conference on. IEEE, 645-649.

Eero Laukkanen, Maria Paasivaara, Juha Itkonen, and Casper Lassenius. 2018.
Comparison of release engineering practices in a large mature company and a
startup. Empirical Software Engineering (2018), 1-43.

Tamara Lopez, Thein Tun, Arosha Bandara, Bashar Nuseibeh, Helen Sharp, and
Mark Levine. 2018. An Investigation of Security Conversations in Stack Over-
flow: Perceptions of Security and Community Involvement. In First International
Workshop on Security Awareness from Design to Deployment (SEADGAZ18).
Manuel Maarek, Sandy Louchart, Léon McGregor, and Ross McMenemy. 2018. Co-
created Design of a Serious Game Investigation into Developer-Centred Security.
In International Conference on Games and Learning Alliance. Springer, 221-231.
Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-
Argoty. 2018. Secure coding practices in java: Challenges and vulnerabilities.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 372-383.

Ibtisam Mohamed and Dhiren Patel. 2015. Android vs i0S security: A comparative
study. In Information Technology-New Generations (ITNG), 2015 12th International
Conference on. IEEE, 725-730.

Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why do developers get password storage
wrong?: A qualitative usability study. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 311-328.

Jeanne Nakamura and Mihaly Csikszentmihalyi. 2014. The concept of flow. In
Flow and the foundations of positive psychology. Springer, 239-263.

Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong, Justin Cappos,
and Yuriy Brun. 2018. API Blindspots: Why Experienced Developers Write
Vulnerable Code. In Fourteenth Symposium on Usable Privacy and Security (SOUPS
2018). USENIX Association, Baltimore, MD, 315-328. https://www.usenix.org/
conference/soups2018/presentation/oliveira

Ulf Olsson. 1979. Maximum likelihood estimation of the polychoric correlation
coefficient. Psychometrika 44, 4 (1979), 443-460.

Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute This! Analyzing Unsafe and Malicious Dy-
namic Code Loading in Android Applications.. In NDSS, Vol. 14. 23-26.
Venkatesh-Prasad Ranganath and Joydeep Mitra. 2018. Are Free Android App
Security Analysis Tools Effective in Detecting Known Vulnerabilities? arXiv
preprint arXiv:1806.09059 (2018).

Bradley Reaves, Jasmine Bowers, Sigmund Albert Gorski III, Olabode Anise,
Rahul Bobhate, Raymond Cho, Hiranava Das, Sharique Hussain, Hamza Karachi-
wala, Nolen Scaife, et al. 2016. * droid: Assessment and evaluation of Android
application analysis tools. ACM Computing Surveys (CSUR) 49, 3 (2016), 55.
Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? a large scale study using stack overflow. Empirical Software Engineering
21, 3 (2016), 1192-1223.

Joe Rossignol. 2015. What You Need to Know About iOS Malware
XcodeGhost. https://www.macrumors.com/2015/09/20/xcodeghost-chinese-
malware-faq/. (2015). Online; accessed 20 October 2018.

[40

[41]

[42

[44]

[45]

[46

[47]

(48]

van der Linden, et al.

Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. 2017. A tax-
onomy and qualitative comparison of program analysis techniques for security
assessment of android software. IEEE Transactions on Software Engineering 43, 6
(2017), 492-530.

David Scott and Richard Sharp. 2002. Developing secure web applications. IEEE
Internet Computing 6, 6 (2002), 38—45.

SlashData Developer Economics. 2016. Developer Economics: State of the Devel-
oper Nation Q1 2016. https://www.developereconomics.com/reports/developer-
economics-state- of-developer-nation-q1-2016. (2016). Online; accessed 18 Sep-
tember 2017.

SlashData Developer Economics. 2017. Developer Economics: State of the De-
veloper Nation. https://www.developereconomics.com/reports. (2017). Online;
accessed 20 October 2017.

Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.
Investigating user privacy in android ad libraries. In Workshop on Mobile Security
Technologies (MoST), Vol. 10.

van der Linden, Dirk and others. 2020. Schrédinger’s Security (ICSE 2020) Ap-
pendices. http://hdl.handle.net/1983/f43803de-4ade-488f-bela-a2e8ba30c201.
(2020). Online; accessed 8 January 2020.

Daniel Votipka, Michelle L Mazurek, Hongyi Hu, and Bryan Eastes. 2018. Toward
a Field Study on the Impact of Hacking Competitions on Secure Development. In
Workshop on Security Information Workers (WSIW).

Charles Weir et al. 2016. How should mobile app programmers learn security?
Comparing and contrasting expert views. In Proc. SOUPS@USENIX’16.

Chamila Wijayarathna and Nalin Asanka Gamagedara Arachchilage. 2018. Am I
Responsible for End-User’s Security? A Programmer’s Perspective. arXiv preprint
arXiv:1808.01481 (2018).

[49] J. Xie, H. R. Lipford, and B. Chu. 2011. Why do programmers make security

errors?. In Symp. VL/HCC 2011. IEEE, 161-164.

https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://blog.trendmicro.com/trendlabs-security-intelligence/analyzing-xavier-information-stealing-ad-library-android/
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.usenix.org/conference/soups2018/presentation/oliveira
https://www.macrumors.com/2015/09/20/xcodeghost-chinese-malware-faq/
https://www.macrumors.com/2015/09/20/xcodeghost-chinese-malware-faq/
https://www.developereconomics.com/reports/developer-economics-state-of-developer-nation-q1-2016
https://www.developereconomics.com/reports/developer-economics-state-of-developer-nation-q1-2016
https://www.developereconomics.com/reports
http://hdl.handle.net/1983/f43803de-4ade-488f-be1a-a2e8ba30c201

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Vulnerabilities in mobile apps
	2.2 Developer motivation
	2.3 Developer-centred security

	3 Study I: Security rationales across app development activities
	3.1 Participants
	3.2 Materials and procedure
	3.3 Data analysis

	4 Study I – Findings
	4.1 Demographics – Who is the archetypal app developer?
	4.2 Task results – Do solutions indicate a prioritization of security?
	4.3 Rationale analysis – What is in the Box?

	5 Study II – Perceived security impact of development activities
	5.1 Participants
	5.2 Materials and Procedure

	6 Study II – Findings
	6.1 Questionnaire Results
	6.2 Questionnaire Analysis

	7 Threats to Validity
	8 Discussion: Filling the Box with security
	8.1 Be social, but also be critical
	8.2 Flowing towards a secure environment
	8.3 Thinking about users, thinking about security

	9 Conclusion and future work
	References

