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Abstract

The last fifty years or so have seen a transformational change in statistical methodology, from
a discrete set of specific methods to a single, integrated paradigm. An early example is the
seminal paper by Nelder and Wedderburn (1972) that introduced the unifying concept of the
generalised linear model for independently replicated data. Later computational advances have
stimulated a comparable unification for modelling data with various kinds of dependence, for
example in time and/or in space. T argue that this transformation should encourage statistical
scientists to change their focus from analysing data to solving problems. I give an example
from an ongoing study of the acquisition of natural immunity to leptospirosis among slum-
dwellers in northern Brazil.
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1 Introduction

The last fifty years or so have seen a steady trend towards de-compartmentalization of sta-
tistical methodology. Perhaps the best known example of this trend in the context of inde-
pendently replicated data was the seminal paper of Nelder and Wedderburn (1972), which
collected many apparently different methods for the analysis under the single umbrella of
the generalized linear model (GLM). Over the subsequent 20 years, many authors considered
extensions of the GLM to accommmodate particular types of dependence in data, including
temporal (Stiratelli, Laird and Ware, 1984; Liang and Zeger, 1986) and spatial (Clayton and
Kaldor, 1987; Besag, York and Mollié, 1991). A very wide class of models can be captured
under the heading of the generalized linear mized model (GLMM). A GLMM is a GLM whose
linear predictor includes a (possibly high-dimensional) vector of unobserved random effects.
Breslow and Clayton (1993) give a very good review of the literature on GLMMs up to that
time, describe an approximate method for circumventing the general intractability of the
associated likelihood and give several examples.
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The intractability of the likelihood function was a major concern during the early development
of spatial statistical methods in the 1970s. For example, two classic papers, Besag (1974) and
Ripley (1977), greatly extended the availability of parametric models for spatial lattice data
and spatial point process data, respectively, but were forced to use ad hoc methods for fitting
the models to data. However, both of these authors recognised the potential for Monte Carlo
methods of inference to get round the intractability problem. In the early 1990s, Monte
Carlo methods for likelihood-based inference entered the statistical mainstream, following
the influential papers by Gelfand and Smith (1990) and Geyer and Thomson (1992) who,
respectively, considered Bayesian and non-Bayesian approaches.

These methodological advances, and the parallel development of more flexible software en-
vironments (notably R), have shifted the emphasis of parametric statistical inference away
from developing methods tailored to particular kinds of data in favour of applying statistical
method singular to an ever-wider range of scientific problems.

In this short note, I use an example from infectious disease epidemiology to suggest how a
single data-set might be analysed in different ways, according to the scientific question of
primary interest.

2 A longitudinal study of sub-clinical leptospirosis in a
Brazilian slum community

2.1 Serial dilution assays

In infectious disease epidemiology, evidence of a person experiencing a sub-clinical infection
event over a specified follow-up period is often gathered by periodically testing for presence,
and if present the strength, of an antibody response using a serial dilution assay. In this
procedure, a blood-sample is tested against a standardised challenge and if this gives a negative
result the antibody response, W say, is recorded as “below detection limit.” If the test gives
a positive result, the sample is diluted by a known factor and the test is repeated, and so
on. This generates an integer response, K = 0,1,2, ..., the number of dilutions required to
return a negative result. The value of K corresponds to an interval-censored version of W, i.e.
K =k if and only if ckd < W < ¢(k + 1)d, where c¢ is the detection limit and d the dilution
factor. Although this interpretation is rarely used explicitly, it is implicit in the standard
practice of requiring an increase of at least two in successive values of K in order to declare
the occurrence of an infection event at some time during the follow-up interval in question.

2.2 A leptospirosis cohort study

In a recent cohort study of sub-clinical leptospirosis infections in a Brazilian slum community;,
study-participants provided blood-samples at approximately yearly intervals. For each blood-
sample a yes/no antibody response was recorded from a series of two-fold dilutions and an



infection event was deemed to have occurred if, over the follow-up interval between successive
blood-samples, either (a) the antibody response changes from non-detectable, i.e. K = 0, to
positive, or (b) the number of dilutions, K, needed to return a negative result increases by at
least two (Hagan et al, 2016).

2.3 Problem 1: understanding spatio-temporal variation in risk of
infection

Hagan et al (2016) used the criteria (a) and (b) above to convert each sequence of five recorded
values of K on a study-participant, say k;;j7 = 1,...,5, to a binary sequence Y;; = 0/1 : j =
1,...,4. They then fitted a generalized linear mixed model as follows. Let p;; denote the
probability that Y;; = 1. Hagan et al (2016) modelled the p;; as

log{pi;(1 = pij)} = 2,8 + S(zi, ) + Ui. (1)

In (2), z; is a vector of covariates with regression parameters 3, S(z,t) is a spatio-temporal
Gaussian process and U; ~ N(0, %) are uncorrelated individual-level random effects.

I would argue that this was a sensible strategy because the aims of the study were: to estimate
covariate-effects on an individual’s risk of infection; to map unexplained variation in risk due
to unmeasured environmental risk-factors.

2.4 Problem 2: does a sub-clinical infection confer partial immu-
nity to future infection?

The approach of Hagan et al (2016) now runs into some difficulty. A simple, and superficially
attractive way to answer this question is to add to the covariate vector z;; in (2) a person’s
antibody response at their previous follow-up. Partial immunity would then be indicated by
a negative regression coefficient. But the reasoning behind this is flawed. Recall that the
integer-valued response K can be considered as an interval-censored version of a real-valued
antibody response, W. Let W, and W5 be the values of X at two consecutive follow-up times
t; and ty. Then, the event I, a re-infection at some time between ¢; and t, is declared when
(approximately, because of the interval censoring) Wy > 4W;. It follows that I and W; cannot
be independent. Moreover, the circumstances in which g(w) = P(Wy > 4W;|W; = w) could
be other than a decreasing function of w would seem to be quite contrived.

An alternative, model-based solution to problem 2 is the following. To avoid unnecessary
notational complications, we describe a version of the model for a single individual without
covariates.

2.4.1 Process model

Let W (t) denote the antibody response of an individual at time ¢ > 0; for an infection-naive
individual, W;(0) = 0. Assume that W (t) jumps by random iid amounts V; at infection times
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Figure 1: A simulated realisation of model (2) for the time-evolution of an individual’s anti-
body response over 24 months, with follow-up times indicated at 0, 6, 12, 18 and 24 months.

t; and decays exponentially at a rate ¢ between infection events. Finally, assume that infection
events follow a Poisson process with intensity

A(t) = exp{a(t) + W(t)5} (2)

The parameter of interest here is [, with a negative value indicating that infection events
confer partial immunity to future infections. Figure 1) shows a realisation of W (¢) under
model (2), with constant a(t) = —1, exponential decay factor 0.1 per month, 5 = —3 and iid
V; following exponential distributions with mean 1.

2.4.2 Data model

The observed response from an individual is the sequence of values of K; at a set of pre-
specified follow-times f; : 7 = 1,...,n. Each K; is an interval-censored version of aW (t;),
where « is an unknown constant of proportionality; an observation K; = 0 corresponds to
aW(t;) < ¢, where c is the detection limit of the assay, whilst K; = k& > 0 corresponds to
2kt < aW (t;) < e2*.



2.4.3 Fitting the model

Evaluation of the probability of an observed sequence K; : j = 1,...,n, and hence the likeli-
hood, requires marginalisation with respect to the latent variables t; and V;. Whilst this is
possible in principle, much more extensive data than were available for the analysis reported in
Hagan et al (2016) would be needed to make likelihood-based inference a realistic proposition.
For example, to capture the behaviour of the process W (t) illustrated in Figurel would need
much more frequent follow-up than the six-month intervals shown. Alternatively, information
could be added to the data either by using Bayesian inference with strong and well-informed
priors on the model parameters or by incorporating data from other studies. For example,
in an unpublished Yale University PhD Thesis, Dr Katharine Owers has used data from a
single-source outbreak of leptospirosis reported in Lupidi et al (1991) to obtain a confidence
interval for the exponential decay rate parameter ¢.

3 Conclusion

Computationally intensive methods of inference developed over the last few decades have made
it possible to fit a rich variety of models to data using principled, i.e. likelihood-based, methods
of inference. An attendant danger is a temptation to fit over-complex models to sparse data;
the virtues of parsimony in statistical modelling cannot be over-stated. Also, some questions,
notably those addressed in late-phase randomised trials of novel drug-therapies, are better
answered using design-based rather than model-based inference. With these qualifications, the
freedom of the contemporary statistician to analyse a scientist’s data in a way that answers
their research question and can incorporate their subject-matter knowledge is refreshing. The
papers that follow in this special issue of Spatial Statistics well-illustrate this freedom, ranging
widely in both the scientific problems that they address and the specific methods that they
use.
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