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Abstract 
 Drought affects plant hormonal homeostasis, including root to shoot signalling. The plant 

is intimately connected below-ground with soil-dwelling microbes, including plant growth 

promoting rhizobacteria (PGPR) that can modulate plant hormonal homeostasis. Incorporating 

PGPR into the rhizosphere often delivers favourable results in greenhouse experiments, while 

field applications are much less predictable. We review the natural processes that affect the 

formation and dynamics of the rhizosphere, establishing a model for successful field application 

of PGPR utilizing an example microbial inoculum, Variovorax paradoxus 5C-2.  
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Introduction 
 The world faces a major water crisis as a consequence of unsustainable human water 

withdrawal (primarily for irrigation) and alterations in natural hydrological cycles through 

agriculture, industrial and urban activities [1, 2]. Climate change will stimulate additional water 

demands in many agricultural regions [3]. The need to increase food production by at least 50% 

to feed an increasing population with greater wealth and food demands, could create feedbacks 

increasing the loss of freshwater quantity and quality [4]. Consequently, changes in agricultural 

practices are needed, based on multi-disciplinary scientific research and working in cooperation 

with farmers and policy-makers. 

 Knowledge from basic and applied sciences can be employed to fulfil the needs of 

modern producers. Although classical plant breeding methods have seen extensive application 

culminating in the development of more drought-tolerant crops, both ethical and practical 

limitations have constrained the development of genetically modified (GM) drought-resistant 

crops [5]. Specifically, drought tolerance is usually regulated by finely synchronized multi-gene 

systems that are difficult to manipulate [6]. Moreover, logistical difficulties occur in producing 

GM crops when considering variations of drought tolerant genes networks between different 

species, or even among different cultivars [6, 7, 8]. 

 Another biotechnological option has been to use soil-dwelling microbes that interact with 

plant root systems, namely plant growth promoting rhizobacteria (PGPR) [9], which dwell on, 

and sometimes in, plant roots and confer stress tolerance via multiple mechanisms [10, 11]. This 

review is focused on utilising PGPR to enhance crop fitness under drought conditions, especially 

since they are more effective in promoting growth and crop yields under drought conditions. By 

presenting a case study of the development of an exemplar PGPR, namely Variovorax paradoxus 

5C-2, as a microbial inoculum, key concepts are introduced to help match an agricultural 

scenario with successful PGPR activity. 

 Plants adapt to changing soil water availability by “measuring” soil water status [12, 13]. 

When the soil water status is low enough (below -0.05 MPa), root metabolism changes. 

Transcriptomics data [14] and headspace analysis [15] indicate that plants respond to abiotic 

stresses by producing the volatile plant hormone ethylene, which is aerially transported from one 



plant to another plant within a community. Elevated ethylene biosynthesis decreases yield by 

inhibiting growth, photosynthesis and seed set [16]. Although ethylene promotes fruit ripening, it 

accelerates leaf senescence and inhibits leaf growth. Ethylene also induces lateral cell expansion 

in stems and roots. In addition, ethylene increases root hair density and length [17], but inhibits 

primary root growth [18]. Ethylene-mediated growth inhibition has made the genetic, chemical 

or microbial manipulation of ethylene levels in planta an attractive biotechnological target. 

ACC as a key inter-kingdom signal molecule 
 In terrestrial plants, ethylene biosynthesis involves the methionine metabolic pathway 

(Figure 1) [14]. In this process, the conversion of 1-aminocyclopropane-1-carboxylate (ACC) to 

ethylene is regarded as a rate-limiting step. Moreover, ACC can also be bound with organic 

compounds to produce malonyl-ACC (M-ACC), γ-glutamyl-ACC (G-ACC) and jasmonoyl-ACC 

(JA-ACC). Additionally, ACC can be transformed by plant [19] and microbial enzymes known 

as 1-aminocyclopropane-1-carboxylate deaminases (ACC deaminase, gene notation acdS) into 2-

oxobutanoate and ammonia. Hence, ACC is a central biochemical player in integrating plant and 

microbial (inter-kingdom) metabolic networks and its root to shoot signalling is an important 

component of plant adaptation to drought [20].  

Although the root system is regarded as the primary sensor of soil conditions, 

microorganisms inhabiting the surface of, or inside, the root can influence root-to-shoot 

signalling processes [9, 10, 11]. Indeed, some PGPR producing ACC deaminase modulate root 

ACC levels and hence root [11] and shoot [21] ethylene evolution. When plants grown in drying 

soil were exposed to bacterial ACC deaminase, they developed a longer root system and had 

increased biomass and yield [22] suggesting this plant-microbe interaction is of adaptive 

significance in increasing plant drought tolerance. Interestingly, wild barley (Hordeum 

spontaneum) plants exposed to more stressful environments in natural settings have a higher 

proportion of ACCd-containing rhizobacteria on their root systems [23]. Moreover, withholding 

irrigation from wheat (Triticum aestivum) plants increased the relative abundance of acds-

containing rhizobacteria on the root system [24]. Understanding how plants regulate the 

recruitment of such PGPR represents a potential biotechnological opportunity to enhance plant 

drought tolerance. 



Agricultural practices and climate warming decrease soil biodiversity, community 

composition and activity, affecting the delivery of ecosystem services [25, 26]. The important 

meaning of richness and diversity in a given soil community lies in the number of species that 

undertake specific ecosystem services such as inducing plant drought fitness. The rhizosphere 

can be defined as the soil adjacent to the root systems that is biologically, chemically and 

physically influenced by the root system, distinct from the remaining bulk soil that is not [27, 28]. 

The rhizosphere is enriched, both in numbers and in the proportion of certain taxa, with certain 

soil microbes compared to the bulk soil “starting” community composition. Evidence based on 

qPCR of all acdS alleles and Illumina sequencing of acdS from DNA of rhizosphere of different 

Poaceae species (including maize) shows that contrasting plant genotypes preferentially recruit 

acdS alleles from the bulk soil [29, 24]. When microbial biodiversity is impaired, plant selection 

of different acdS alleles may be compromised. Efforts to understand the regulation of 

rhizosphere microbial dynamics is fundamental for the compatible application of PGPR to 

drought-stressed crops.  

Characteristics and dynamics of the plant holobiont 
 Each plant species and its habitat have a unique consortium of microbes, the microbiota 

[30, 31]. Altogether the microbiota’s genetic information is referred as the microbiome, and the 

concurrence of the host organism with the microbiota is the “holobiont”. Although each 

organism presents its own independent mechanism of survival, their co-evolution coordinates 

their metabolic processes resulting in increased fitness of the holobiont. Moreover, the holobiont 

possesses its “hologenome”: the aggregate of microbiome and host genomes. Such integration of 

genetic material from diverse organisms results in the formation of superorganism genetic 

systems. Therefore, altering the composition of the holobiont may potentially affect inter-

kingdom signalling thereby changing fitness/growth of the host [30].  

High throughput sequencing surveys of many rhizospheric microbiota show consistent 

repetition (at phylum level) between different plant species. Bacteria encompass 90% of the 

holobiome and the dominant phyla are the Proteobacteria, followed by Actinobacteria, 

Bacteroidetes, Firmicutes, Verrucomicrobia, and Acidobacteria [11]. Nevertheless, different 

bacterial species occur even between different plant cultivars growing in the same soil [32]. 



Bacterial population dynamics (species composition and number) are strongly influenced by 

their environment, such as soil water availability. Soils affected by drought events tend to be 

enriched with bacteria that tolerate desiccation. The spore-forming phyla Actinobacteria and 

Firmicutes are described as drought-resistant [33], even though several members of the 

Actinobacteria are drought-sensitive [34]. While the Verrucomicrobia are regarded as drought-

tolerant, they have not yet been described as having ACC deaminase activity. Thus while there is 

no absolute association of ACC deaminase and bacterial drought-tolerance, drought-stressed 

plants tend to select for the occurrence of acdS alleles in their rhizosphere [29, 24]. Consequently, 

there has been much interest in isolating and culturing free-living PGPR containing the ACC 

deaminase gene [11]. When developing microbial inocula for agriculture, it is crucial to 

understand the factors influencing PGPR activity in agricultural ecosystems to mitigate plant 

drought stress responses. 

Challenges of using PGPR to alter hormonal dynamics in planta 

 Soil inoculation with PGPR to promote crop yields has delivered some promising results. 

Furthermore, these techniques are environmentally friendly, since inoculant impacts on 

rhizospheric community dynamics are either positive, i.e. cooperative or synergistic, or null [35]. 

Applying PGPR has generally been accepted by farmers, since there has been a long history of 

using rhizobacterial inoculants, with the first patent granted in the USA in 1896 for inoculating 

leguminous field crops with nitrogen-fixing Rhizobium spp [36, 11]. The first non-symbiotic 

microorganism (Azospirillum) to promote plant growth was commercially released in 1981 [36]. 

However, most PGPR products are marketed as bio-control (70%) and bio-fertilizers (25%), with 

only 5% formulated to enhance plant stress tolerance [36]. Nevertheless, PGPR inoculation 

sometimes fails under field conditions, often due to diminished fitness of the inoculum in 

competing with native microbial communities [37, 38]. Successful inoculation of the soil 

requires that it supplies the minimum bacterial physiological requirements to grow and colonize 

the appropriate niche: the rhizosphere, rhizoplane or plant root cells.  

Three major environmental components drive the holobiont assemblage in agricultural 

plant hosts. Firstly, soils determine both physical and chemical characteristics of environmental 



niches for bacteria, via variation in structure, porosity, texture, nutrients, and pH [39, 40]. 

Secondly, plant genotype governs the quantity and quality of nutrients and chemicals signals 

accessible to the microorganism. Finally, agricultural practices/field history (e.g. application of 

herbicides and soil amendments such as lime, manure and microbial inoculants) will affect 

microbial populations and community diversity [40]. 

To demonstrate how these environmental components affect the success of microbial 

inoculation, an example PGPR bacterium, Variovorax paradoxus, is used. This species shows 

valuable traits such as osmotic stress resistance, resistance to some biocidal compounds applied 

in agriculture and high competitiveness [41, 42, 43], which will be advantageous when it is 

applied to a field in which there is limited information concerning its management history. 

The genetic diversity of V. paradoxus was probed by studying the total collection of 

genes within the genomes of seven V. paradoxus strains, the pan-genome [44], containing an 

average of 6000 genes (Table 1). The pan-genome of V. paradoxus strains shares 3400 genes in 

common, the core genome, but also has an average of 2000 genes shared by some strains, the 

variable or accessory genome, and an average of 65 unique genes for each strain [45]. The 

percentage of genes covering functions in metabolism of amino acids, carbohydrates, lipids, 

xenobiotic biodegradation and motility are shared by both core, variable and unique pan-genome 

(Figure 2). Thus pan-genomes and core genomes of V. paradoxus strains are functionally linked 

to the metabolic versatility and plant growth promotion traits. In particular, multi-drug resistance 

features present in V. paradoxus confer pesticide-antibiotic cross-resistance, implying the 

organism can adapt to different environmental constraints [42, 46]. 

V. paradoxus 5C-2 was first isolated from the roots of Brassica juncea L. Czern plants 

growing in soils contaminated with cadmium, based on its growth of ACC as a sole nitrogen 

source [43]. It is a facultative oligotrophic, Gram negative bacterium that can grow in both 

nutrient-poor and nutrient-rich media. To compete, endure and settle in the rhizosphere, V. 

paradoxus 5C-2 displays quorum sensing (QS). In addition, V. paradoxus 5C-2 may shape the 

bacterial population around the root as it can also degrade QS signals and utilize AHLs as a 

carbon source (A.A. Belimov, unpublished data). The N-Acyl homoserine lactone lactonase 

(AIIA) activity of V. paradoxus provides “quorum quenching”, allowing the bacteria to degrade 



and grow on acyl-HSL signals [43]. V. paradoxus 5C-2 has multiple PGPR features including the 

synthesis of indole-3-acetic acid (IAA), the expression of ACC deaminase activity [43] and 

enhancing nutrient uptake and partitioning in planta [47].  

 Successfully applying V. paradoxus 5C-2 as a soil inoculant will depend on its adaptive 

capacity to new, potentially hostile soil conditions, e.g. temperature, pH and water content, and 

competition with native organisms [48]. Ultimately, the physiological needs of the inoculum 

must match those it will encounter in the new environment.   

Soil temperature 
 Soil temperature is one of the most important factors affecting the dynamics of the 

rhizosphere [49, 50]. Microbial activity rate doubles for every 10°C rise in temperature until a 

point, depending on the temperature sensitivity of the microorganism, when high temperatures 

disrupt enzyme structure and cellular material. Moreover, temperature changes the physical 

properties of the environment such as surface adhesivity, thus affecting microbial motility [49]. 

Soil temperature depends on the irradiation energy, soil reflectivity (albedo), rainfall and 

topology, and increases during drought events when surface evaporation is decreased by low soil 

water content [51]. Soil temperature decreases with depth, which may influence the inoculation 

technique used in arid environments. 

V. paradoxus 5C-2 is a mesophile microorganism, with optimal growth at 28°C (Figure 

3A). However, maximum motility was measured at 30°C, with no measurable motility at 

temperatures less than or equal to 15°C, or more than or equal to 37°C (Figure 3A). This 

information helps determine the correct ecosystem climate zone and time of the year to apply 

this bacterium to encourage its proliferation [52]. It will proliferate when spring-summer 

minimum soil temperatures average 18°C, but local agricultural practices that trigger 

temperatures above 28°C should be avoided. In crops grown in black plastic mulch to minimise 

weed growth, surface soil temperature can exceed 28°C [53], thus V. paradoxus 5C-2 inoculation 

may be ineffective when plants are mulched. 

In agro-ecosystems from lower latitudes, drought events combined with high air 

temperatures trigger surface soil temperatures higher than 40°C in more than half the soils in 



Europe [49]. In this scenario, thermophile PGPRs may be better able to establish following 

inoculation, depending on the method of inoculation. Since most of the PGPRs currently isolated 

are mesophile, there is increasing interest in isolating themophilic PGPRs from desert 

environments [54]. V. paradoxus isolation from such environments suggests that it manages to 

find a temperature niche that allows its proliferation.  

Soil pH 
 In agricultural soils, pH determines the availability of nutrients and metals, affecting 

microbial composition and biomass [55]. Bacterial species exhibit various tolerances to pH, with 

most growing in a pH range between 6 and 9, but generally growing best at neutral conditions 

[48]. pH effects on bacterial motility and fitness will mediate the rhizosphere bacterial 

community. Alkaline pH (>8.5) suppresses bacterial motility [56], while catabolic reactions that 

consume acids are favoured at acidic pH (<6.5). Alkaline pH represses chemotaxis systems, 

perhaps due to their energetic cost [57].  

 Of those pHs tested, minimal growth of V. paradoxus 5C-2 occurred at pH 4 and pH 9 

(Figure 3.B). V. paradoxus 5C-2 g with growth and motility maximal between 5 and 7(Figure 

3.B). It resisted acidic pHs, because the growth and motility curve was high between pH 5 and 8 

and skewed towards an acidic range (Figure 3.B). This optimal pH embraces the range 

recommended by agronomists (pH 6-7) for good crop nutrition. Nevertheless, highly leached 

tropical soils are often acidic, which mobilises aluminium in the soil solution which can be toxic 

for plant growth and inhibits root elongation [58]. Since ethylene is involved in root growth 

inhibition under aluminum toxicity, the possibility that acdS-containing rhizobacteria such as V. 

paradoxus 5C-2 can overcome Al-mediated root growth inhibition [59] merits further research.  

Soil water availability 
 Bacteria maintain a certain cellular water content for optimal metabolism and soil water 

availability is perhaps one of the most influential factors that shape a microbial community [50]. 

Drought destabilises the bacterial community network, changing the trophic network dynamics 

[34]. The community tends to reorganize their populations towards drought tolerant bacteria 

(phylum Verrucomicrobia and the class Alphaproteobacteria). The bacterial semipermeable outer 



membrane allows rapid equilibration of cellular contents with soil water, consequently soil 

drying, which decreases water potential, decreases bacterial internal water potential. Bacterial 

accumulation of solutes, or osmolytes, is one survival strategy to maintain a favourable water 

potential gradient, but leaves the bacteria riskily dependent on nutrient availability [60]. 

Drought-induced morbidity can result from damage to the outer cell membrane, which may 

explain the higher resistance of Gram positive bacteria to desiccation. This effect varies between 

species and should be determined for each bacterium [61]. 

 Since V. paradoxus 5C-2 lives naturally in the rhizosphere, it can be exposed to a wide 

range of water potentials, which may be as low as -10 MPa [62]. To simulate the effects of soil 

drying on bacteria, glycerol was added to TSB medium to impose a range of osmotic potentials 

(-0.14 to -12 MPa). There was no significant effect on V. paradoxus 5C-2 survival but the 

bacteria were not motile (Figure 3.C). Indeed, motility steadily decreased from -0.17 MPa to -

0.24 MPa and bacteria were immobile below -0.54 MPa. After cells were exposed to different 

osmotic potentials in liquid media for 12 hours, motility tests were conducted to study whether V. 

paradoxus 5C-2 survives at low osmotic potential but loses its ability to resume motility (Figure 

3D). Exposure to even the lowest osmotic potential tested (-12 MPa) did not diminish subsequent 

V. paradoxus 5C-2 motility.  

 Compared to some other bacteria, V. paradoxus 5C-2 seems more resistant to osmotic 

shocks. In Rhizobium sp., the growth is minimal at -5 MPa [63] while this osmotic stress had no 

effect in V. paradoxus 5C-2. Lower osmotic tolerance of R. leguminosarum is correlated with its 

production of low molecular weight external polysaccharides (EPS). High-molecular-weight EPS 

increase water retention around the bacteria cell wall thus protecting against low external 

osmotic potential [64], [65]. While decreased rhizobial motility and growth at low soil water 

potentials may decrease nodulation frequency [66], co-inoculation with V. paradoxus 5C-2 

partially alleviated negative effects of drought on nodulation [22]. Taken together, these data 

suggest that V. paradoxus 5C-2 survives drought conditions, and recovers its motility when a 

favourable water regime is re-established, which may assist rhizosphere colonisation following 

inoculation of plants grown in drying soil.  



Plant influences on the microbial community 
Rhizosphere microbial activity can influence plant nutrient status while, vice versa, plants 

can also influence the physiology of microbial communities with their root exudates [67]. Root 

exudates vary from one species to another and are affected by plant age and nutrient status [68]. 

Plants may invest more than the 20% of the total carbon fixed in photosynthesis in rhizosphere 

carbon efflux [40]. This can benefit the plant if root exudate composition ’selects’ beneficial 

microorganisms that colonize the roots. Soil porosity will affect the amount and distance which 

root exudates can travel [48], in turn affecting the chemo-attraction of the rhizobacteria. Since 

bacterial response time, or detection limit for root exudates, may alter bacterial fitness, bacteria 

utilize chemotaxis to assess a cocktail of exudates.  

 Root exudation varies along the root surface, determined by different root cell 

characteristics, thus affecting rhizospheric chemical composition from tip to base [69]. Moving 

away from the root tip defines different zones such as the root tip, with the root cap and the 

meristem, the elongation zone without any cell division, the maturation zone with differentiated 

xylem vessels and root hairs and finally the mature zone with dead root hairs (Figure 4C). For 

maize, root surface pH changed along the root axis. Root tip pH was 7.6 and decreased linearly 

within the first 4 mm distance by 0.75 units and then increased linearly by 0.50 pH units [70]. 

This is consistent with the release of organic anions, which will attract different microorganisms. 

Pseudomonas species preferentially colonise the root tip and the elongation zone of wheat [71]. 

Rhizobium leguminosarum and the fungal pathogen Nectria haematococca are attracted to the 

maturation zone of pea roots [72] while Bacillus sp. preferentially colonize the Arabidopsis root 

elongation zone [73]. Confocal microscopy is often used to determine the location of 

fluorescently labelled bacteria on the roots of plants grown in artificial media in vitro [71]. 

Alternatively, the numbers and distribution pattern of V. paradoxus 5C-2 along the roots of both 

pea (Pisum sativum cv. Progress No. 9) and corn (Zea mays cv. ZB677) was measured, since 

inoculation increased growth of both species [22, 74]. Colonization of pea roots was minimal 

near the tip and maximal near the base of the root where root hairs were present (Figure 4A, C). 

In contrast, colonization of corn roots showed no specific spatial distribution and was 10-fold 

lower than in peas (Figure 4B). Differences in the relative concentrations of organic components 



such as amino acids and sugars exuded from corn and pea roots [75] were correlated with 

bacterial attraction to the roots of each species. 

V. paradoxus 5C-2 dispersal in a soil mesocosm 
 Like other bacteria, V. paradoxus can form biofilms on the plant root [76]. Bacterial 

dispersal occurs when they detach from the biofilm, switching to a planktonic lifestyle allowing 

new plant roots to be colonised. The dispersal process is complex and can be regulated by 

nutrient status and QS signals. It involves several steps such as the up-regulation of flagellar and 

chemotactic proteins and down-regulation of EPS [77]. Thus bacterial dispersal was tested in a 

mesocosm with field soil to determine bacterial movement in the rhizosphere and bulk soil. 

 When peas were grown in the mesocosm (Figure 5), V. paradoxus 5C-2 moved gradually 

away from the initial zone of inoculation, such that after 30 days, it was recovered from pea roots 

over 50 cm distant from the initial site of inoculation (Figure 5A). However, in the absence of 

plants, it moved only 30% of this distance and no change in movement was detected from 12 

days after inoculation (Figure 5B). Since V. paradoxus 5C-2 has a high dispersal capacity by 

moving between pea roots, field experiments were designed with substantial buffer strips 

between inoculated and uninoculated plots to prevent contamination. In other systems, runoff 

from sloping soil may risk cross-contamination of uninoculated plots [36] and should be 

considered in field trial design. 

Field application of a PGPR inoculum 
 Having understood the physiological requirements of V. paradoxus 5C-2, a field 

experiment was designed to determine the effects of V. paradoxus 5C-2 on pea (Pisum sativum) 

growth and development under soil drying conditions. It was performed in a field situated at 

53°50'44.42"N and 2°46'23.55"W (Lee Farm, Bilsborrow, Lancashire, UK). The mineral content 

of this soil at this site was predominantly sandy (93%), while silt and clay were 2.8% and 4.2% 

respectively. The organic matter content of the soil was 7.7 % with a pH of 5.8 (water extraction). 

The field site (13 m x 7 m) was covered by a semi-transparent plastic roof (“poly-tunnel”) to 

exclude rainfall and the irrigation system installed. Soil moisture was monitored by an irrigation 

controller and data logger (Model GP1, Delta-T Devices, Burwell, UK) connected to soil 



moisture sensors (Delta-T Devices, Burwell, UK, SM-200 sensors). Half of the 24 plots were 

randomly assigned for V. paradoxus 5C-2 inoculation. During this field experiment, soil 

temperature at 5 cm depth varied between 15°C (week 1, 01/09/2009) and 19°C (week 5, 

06/10/2009), while soil pH and water availability matched  those optimal for V. paradoxus 5C-2 

(Figure 3) [48]. 

Pea (Pisum sativum ‘Progress No. 9’) plants were germinated in seedling trays filled with 

an organic substrate (Levington’s M3, Levington, UK) in a greenhouse at the Lancaster 

Environment Centre. The inoculation was done on the day of transplanting by submerging the 

peat blocks containing one seedling per block) in a bacterial solution (1 litre, 1010 CFU.ml-1). At 

the field site, seedlings were transplanted on 01/09/2009 and well watered initially, then water 

was withheld (reaching soil water potential of -0.06 MPa at 20 cm depth) from half the plants 3 

days after transplanting. Shoot fresh weight was determined 21 and 47 days after transplanting. 

Roots were also sampled at these times to determine V. paradoxus 5C-2 colonizing the 

rhizosphere, using selective agar growth medium containing the antibiotics rifampicin, 

kanamycin and streptomycin to which this strain is resistant [22]. Colonies that resembled 

authentic V. paradoxus 5C-2 colonies were counted, and samples were taken to spread again on 

selective medium containing ACC as a sole nitrogen source for confirmation that bacteria 

contained acdS. 

 While uninoculated plants were not colonized (since the plot arrangement reflected the 

results of Figure 5), V. paradoxus 5C-2 root colonization decreased 20-fold by the end of the 

experiment (Figure 6C). Nevertheless, well-watered plants inoculated with V. paradoxus 5C-2 

had 50% more nodules than uninoculated controls (Figure 6B). Drying soil decreased nodule 

number by 30%, but the addition of V. paradoxus 5C-2 restored nodule number to a level that 

exceeded control plants grown in well-watered conditions. V. paradoxus 5C-2 inoculation 

increased shoot biomass by 23% in well-watered soil (Figure 6A). Dryer soil significantly 

decreased shoot biomass of uninoculated controls by 22%, but applying V. paradoxus 5C-2 

increased biomass above that of the well-watered controls. Thus in the field experiment V. 

paradoxus 5C-2 colonization in the roots was not adversely affected by drought, while drought 

decreased the number of nodules by 40% (Figure 6B). These results were qualitatively similar to 



those obtained in greenhouse experiments [22], even though soil type (and thus likely indigenous 

bacterial community) was very different. 

Considering the expense of developing microbial inoculants, an important question is 

whether they can successfully colonize, and promote growth of, multiple plant species. Using the 

technique described above, multiple studies have measured V. paradoxus 5C-2 colonisation of 

the root system in a range of substrates, with levels of root colonisation similar in pea and other 

species, and between plants that were grown in well-watered versus drying soil. Thus V. 

paradoxus 5C-2 is competitive in the rhizosphere of a range of species, and promoted growth of 

plants grown in vitro, pot trials and field trials [78]. In further field experiments, V. paradoxus 

5C-2 promoted potato, Solanum tuberosum, shoot growth and tuber yield [79]. Nevertheless, it 

can show specificity in its interaction and growth promotion according to the host genotype [80]. 

Of 4 tomato (Solanum lycopersicum) recombinant inbred lines tested for their growth and 

physiological responses to drought, only one was more drought resistant following V. paradoxus 

5C-2 inoculation. While there is abundant evidence that this specific bacterial strain is a 

promising inoculant to boost growth of plants grown in drying soils, it is of interest to know if 

other V. paradoxus strains could have the same effect. V. paradoxus is a widespread bacterium 

across different soils and environments [43] and generally promotes plant growth under stress 

conditions such as drought [22], salinity [81], heavy metals [43] and phytopathogens [82]. 

Isolation of local strains, their enrichment and inoculation is theoretically possible. However, 

each strain has different properties and thus effectiveness. For example,  10 different strains of V. 

paradoxus were isolated, in which ACC deaminase activity in vitro varied by an order of 

magnitude [43]. Interestingly, in vitro root growth promotion also differed by circa 25%. Thus 

not all the strains share the same effectiveness, and in the case of V. paradoxus, there will be 

differences in plant host specificity, that affect the capacity to integrate into the holobiome. 

Bacterial mechanisms to cope with hyperosmotic stress comprise complex genetic 

regulation involving a large set of genes arranged in operons [83]. The V. paradoxus core 

genome possesses genes that configure the bacteria for coping with hyper-osmotic stress (Table 

2), with two main mechanisms identified. First, osmotic adjustment allows the accumulation of 

physiologically compatible organic osmolytes utilising betaine-aldehyde dehydrogenase, and 



choline/betaine ABC transporters. Secondly, selective influx of inorganic ions such as potassium 

and chlorine occurs via trans-membrane channels. These genetic traits allow V. paradoxus to 

survive in the rhizosphere of extreme environments such as desert grasses [84], even if the soil 

matric potential in this niche has not been directly measured. While conserved genetic material 

across multiple strains suggests that V. paradoxus is well-adapted to proliferate in drying soil, it 

is less clear whether all strains can promote growth of plants in drying soil. 

Final remarks and future outlook 
 One concern of introducing a new organism to the field is that it may alter microbial 

community structure: displacing some organisms and/or favouring the activity of plant pathogens 

[85]. However, this risk is likely minimal since bacterial colonization of the root systems 

decreased with time following inoculation (Figure 6C) [85]. While the rhizosphere is a very 

complex chemically interconnected niche, with plant-microbe and microbe-microbe 

communication forming trophic networks, the plant holobiome is dynamic and reacts following 

any disturbance [86]. Soil inoculation with PGPR sometimes facilitates their integration within 

soil trophic networks [22]. On the other hand, microbial stress tolerance traits are of pivotal 

importance for PGPR success under abiotic stress conditions and such information can help 

design field applications to mitigate drought-induced crop losses. This model of bacterial 

ecophysiology (Figure 7) and targeted experimentation in gradually more complex systems 

(Figures 3-5) leading to controlled field trials (Figure 6) provides a roadmap to lessen the 

probability of inoculum failure in the field. 

PGPRs often possess more than one beneficial characteristic and complete genomic 

information can identify multiple potential growth-promoting mechanisms of each isolate [38]. 

Moreover, putative PGPRs can be identified by their specific genes rather than conventional 

bioassays. Information on the species dwelling in the plant holobiont (metagenomics) can help 

understand rhizosphere microbial community dynamics of a specific crop. Studying these effects 

in agroecosystems could help to deliver inocula that change bacterial dynamics towards the 

restoration of a microbial community promoting plant drought tolerance. In addition, with 

metatranscriptomics, it is possible to foresee the active bacteria or target genes and determine 

synergistic behaviours of the inoculum with native microbial population. Integrating the working 



model (Figure 7) with improved understanding of the microbial ecology of droughted 

agroecosystems may increase the reliability of microbial inocula, thereby enhancing grower 

acceptance. 
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Figure and Table legends 

Figure 1. Ethylene biosynthesis. Methionine is converted by (1) S-adenosylmethionine 
synthetase (SAM synthetase) to S-adenosyl methionine (SAM). Next, SAM is converted to 1-
Aminocyclopropane-1-carboxylate (ACC) and 5'-methylthioadenosine (MTA) by (2) 1-
aminocyclopropane-1-carboxylate synthase (ACS). MTA can enter in the Yang cycle that refills 
the pool of l-methionine. (3) 1-aminocyclopropane-1-carboxylate oxidase (ACO) turns ACC into 
ethylene, HCN and CO2. Alternatively, (4) ACC deaminase deaminates ACC resulting in 2-
oxobutanoate and ammonia. (5) γ-glutamyl-transpeptidase (GGT) forms γ-glutamyl-ACC 
(GACC) by addition of a glutamyl group (6) ACC-N-malonyl transferase (AMT) forms 1-
malonyl-ACC (MACC) from malonyl-CoA and ACC while (7) an enzyme encoded by Jasmonic 
acid resistance 1 (JAR1) yields jasmonyl-ACC (JA-ACC). 

Figure 2. Core and Strain-Specific Gene Extrapolation. A pan-genome study was implemented to 
determine the Variovorax paradoxus core genome, variable and unique genome. Seven strains of 
V. paradoxus (Table 1) were downloaded from NCBI Genome and their pan-genome analysis 
was accomplished with bacterial pan-genome analysis (BPGA) program [60]. Specific functions 
of the V. paradoxus pan-genome were delivered based on KEGG (Kyoto Encyclopedia of Genes 
and Genomes) biological pathways database. 

Figure 3. Effects of temperature (A), pH (B) and osmotic potential (C) on V. paradoxus 5C-2 
growth after 18 hours of incubation (◆) and motility after 72 hours (X). For (A) and (B) growth 
was assessed in TSB (liquid medium) while motility was tested in M8/M9 minimal medium 
solidified with 0.5% agarose. For (C) and (D), TSB (survival test) and semi-solid M8/M9 



(motility test) plates were amended with glycerol. (D) Resumption of V. paradoxus 5C-2 motility 
(on MS, 0.25% agar) after exposure (12 hours) to different osmotic potentials. Symbols are 
means ± SE of 9 replicates.  

Figure 4. V. paradoxus 5C-2 distribution along pea (A) and corn (B) roots. Root anatomy (C). 
Data are means ± SE of 3 replicates.  

Figure 5. V. paradoxus 5C-2 dispersal between the rhizosphere of pea plants (A) and in bulk soil 
without plants (B). Root colonisation by bacteria was assessed at fixed distances from the initial 
inoculation zone (yellow line), four times after inoculation. Symbols are means ± SE of 3 
replicates. 

Figure 6. Shoot biomass (A), nodule number (B) and V. paradoxus 5C-2 root colonisation (C) of 
inoculated and uninoculated plants grown in well-watered and drying soil in a field experiment. 
Bars are means ± SE of 6 plots. Different letters above the bars indicate significant treatment 
differences determined by LSD test (p<0.05). (D) Field experiment design. Seedlings were 
transplanted to coloured plots while uncoloured plots were fallow. Plots were inoculated with V. 
paradoxus 5C-2 (red cells) or not (control – blue cells). The outer two beds (each comprising 6 
pea plots) were watered throughout the experiment while water was withheld from the middle 
two (red arrows). 

Figure 7. Roadmap for soil and PGPR monitoring, leading to inoculum application in field 
experiments, as outlined in this manuscript.  

Table 1. Pan-genome characteristics of seven strains of Variovorax paradoxus 

Table 2. Operons for hyperosmotic stress resistance find in the core genome of Variovorax 
paradoxus. The genes are represented in the genomic context of the reference strain EPS 
NC_014931.1 (directions coordinates). Information on putative operon were obtained through 
UniProtKB (https://www.uniprot.org). 
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