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and have made further changes in the light of these. Changes from the first
revision have been highlighted in red in this revision. Our responses to the
reviewers’ comments are given below.

Reviewer 1

Regarding my comments on the previous version,
For (2), your comment should be reflected in the paper. Since your

remark 2 says your construction can be used in the case of two arbitrary
distributions, your comment should not be restricted to the case where one
of the distributions is uniform.

We have re-written Remark 2 to clarify that it refers to all appropriate
transformations, not just the almost-canonical transformations introduced
in Section 2.

Partly in further response to your earlier comment, we have inserted
new text into the first paragraph of Section 3 to emphasise that tangent
spaces do not play an intrinsic role in the tests φ∗T ; they arise merely in
the construction of some suitable transformations φ.

For (3), since all your examples are ‘1-dimensional’, is the relevant ψd−1

just the identity map (when one of the distributions is uniform)? If so, there
is no application of Proposition 2 involved. Am I missing anything here?
A non-trivial example demonstrating how Proposition 2 is used should be
included.

Yes, for distributions with symmetry of the type described just after
Remark 2, ψd−1 is the identity. Providing details of an example without
such symmetry would involve more work than we can manage at present.

For (4), the (r, u) coordinates in Proposition 2 are polar coordinates on
the tangent space, rather than the Riemannian normal coordinates on the
manifold. You should perhaps reconsider my comment.
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The (r,u) coordinates are the polar form of the usual Riemannian normal
coordinates. We have clarified this near equation (10) and have introduced
the term ‘polar Riemannian normal coordinates’.

For (5), since the aim of the paper is to ‘propose and explore a new
method as stated in your response to the AE, a comparison with existing
methods should be included as it becomes more relevant.

Our aims are (i) to show how almost-canonical versions of probability
transforms can be defined in a fairly general context, (ii) to show how these
can be used to transform tests, e.g. of uniformity, into tests of goodness of
fit, (iii) to explore some basic properties of these tests. There are many
established tests of uniformity and several classes of tests of goodness of fit.
Detailed comparison of the behaviour of the latter with tests obtained by
the general machinery that we describe here would be a large undertaking,
which we believe to be best left to future publications.

Reviewer 2

. . .
One confusion remains on my side that may have an easy fix.
The authors now (p. 4) define the mean as the extrinsic (not the intrin-

sic with respect to spherical distance) Fréchet median. Btw: Speaking for
potential readers, I suggest to reverse engineer: First introduce the extrinsic
Fréchet median, then talk about its properties.

Further, I believe the following uniformity statements (e.g. for µ0) are
only true for _intrinsic_ Fréchet medians. So, maybe, it’s an intrinsic Fréchet
median after all?

Yes, it should indeed be the Riemannian (intrinsic) Fréchet median. The
use of the definition of the extrinsic (instead of Riemannian) Fréchet median
was an error. We have inserted the correct definitions just before equation
(4) and just before Proposition 2.
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Measures of goodness of fit obtained by almost-canonical transformations on
Riemannian manifolds

P.E. Juppa,∗, A. Kumeb

aSchool of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
bSchool of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent CT2 7FS, UK

Abstract

The standard method of transforming a continuous distribution on the line to the uniform distribution on [0, 1]
is the probability integral transform. Analogous transforms exist on compact Riemannian manifolds, X, in that for
each distribution with continuous positive density on X, there is a continuous mapping of X to itself that transforms
the distribution into the uniform distribution. In general, this mapping is far from unique. This paper introduces the
construction of an almost-canonical version of such a probability integral transform. The construction is extended to
shape spaces, Cartan–Hadamard manifolds, and simplices.

The probability integral transform is used to derive tests of goodness of fit from tests of uniformity. Illustrative
examples of these tests of goodness of fit are given involving (i) Fisher distributions on S 2, (ii) isotropic Mardia–
Dryden distributions on the shape space Σ5

2. Their behaviour is investigated by simulation.

Keywords: Cartan–Hadamard manifold, Compositional data, Directional statistics, Exponential map, Probability
integral transform, Shape space, Simplex
2010 MSC: 62F03

1. Introduction

Directional statistics, shape analysis and compositional data analysis are concerned with probability distributions
on Riemannian manifolds, shape spaces and simplices, respectively. The aim of this paper is to introduce and explore
a canonical method of constructing transformations from such manifolds, X, to certain associated manifolds, Y, that
send (almost) arbitrary continuous distributions on X into standard distributions on Y. More precisely, Y is X itself,
or a tangent space to X, or a star-shaped open subset of a tangent space. Given a basepoint x in X and a standard
continuous distribution, ν, onY, for any continuous distribution, µ, onXwith positive density, we construct a function
φ : X → Y that is an almost-diffeomorphism (a diffeomorphism on the complements of some null sets in X and Y)
that sends µ to ν. Under mild conditions on uniqueness of medians of µ and of some distributions drived from it, φ
as constructed here is canonical (in that any two versions differ only on a null set). These almost-diffeomorphisms,
φ, are used to obtain tests of goodness of fit to µ from tests of goodness of fit to ν. If X is a compact Riemannian
manifold then we can take Y = X, ν as the uniform distribution, and φ can be regarded as a form of probability
integral transformation. On compact manifolds our tests of goodness of fit complement the general Wald-type tests
of Beran [1], the score tests of Boulerice and Ducharme [3] and the Sobolev tests of Jupp [13], as well as the more
specific tests in [17], [23], [5], [2] (see [22, Section 12.3]), [11, Section 4.2], [25] and [14, Section 4.4].

If X is a connected compact Riemannian manifold of dimension at least 2 and x1, . . . , xn and y1, . . . , yn are sets
of disjoint points in X then there is a diffeomorphism ψ : X → X that preserves the uniform distribution and such
that ψ(xi) = yi for i = 1, . . . , n. (This follows from a straight-forward argument involving rotations on small em-
bedded discs, as in Section 2.1.) Thus ‘all data sets of size n are equivalent’ up to diffeomorphism. The inference

∗Corresponding author
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obtained from applying almost any test of uniformity to φ(x1), . . . , φ(xn) is usually different from that obtained from
applying it to (φ◦ψ)(x1), . . . , (φ◦ψ)(xn). For well-defined inference it is therefore necessary to use an agreed almost-
diffeomorphism φ.

Although there is no unique canonical choice of the transformations φ, we introduce in Section 2 a sensible
construction of ‘almost-canonical’ transformations, first for spheres and then for compact Riemannian manifolds,
shape spaces, Cartan–Hadamard manifolds and simplices. Section 3 shows how these transformations send general
tests of uniformity (or of goodness of fit to some standard distribution) into general tests of goodness of fit. The
behaviour of these goodness-of-fit tests is illustrated in Section 4 by some simulation studies on the sphere, S 2, and
on the shape space, Σ5

2.

2. Almost-canonical transformations

2.1. Spheres
Let X be a random variable on the unit circle and suppose that an orientation and an initial direction on the circle

have been chosen. Then the probability integral transformation of the distribution is the transformation of the circle
which sends θ to U, where U = 2πPr(0 < X ≤ θ). If the distribution of X is continuous then U is distributed
uniformly on the circle. Thus the probability integral transformation can be used to transform any test of uniformity
into a corresponding test of goodness of fit (see [22, Section 6.4]). For continuous distributions (with positive density)
µ, on S p−1, the unit sphere in Rp, with p > 2, there are analogues φ : S p−1 → S p−1 of the probability integral
transformation that transform µ into the uniform distribution, ν. Such φ are far from unique, since if ψ : S p−1 → S p−1

preserves ν then the composite function ψ ◦ φ : S p−1 → S p−1 also transforms µ into ν. Homeomorphisms ψ that
preserve ν can be constructed from any embeddings γ : Dp−1 → S p−1 that map the uniform distribution on the
(p − 1)-dimensional disc, Dp−1, to the uniform distribution on γ(Dp−1), together with functions t 7→ Ut from [0, 1] to
the rotation group S O(p − 1) with Ut = I3 for t near 0 or 1. Then ψ is the identity outside γ(Dp−1) and is given by
ψ{γ(r, θ)} = γ{r,Ur(θ)} on γ(Dp−1), where (r, θ) are polar coordinates on Dp−1.

Our construction of almost-canonical versions of the probability integral transformation φ on S p−1 is based on a
set S p−1 ⊃ S p−2 · · · ⊃ S s of nested spheres for which

S k−1 is the great sphere in S k normal to mk in S k, for k = p − 1, . . . , s + 1, (1)

where mk is some point in S k. The tangent-normal decomposition [22, (9.1.20)] expresses each x in S k as

x = t mk + (1 − t2)1/2 u (2)
= cos(r) mk + sin(r) u, (3)

where t = x>mk, u ∈ S k−1, the sphere normal to mk, and r = arccos t is the colatitude of x. The function x 7→ u =

(1 − t2)−1/2(x − tmk) sends S k \ {±mk} into S k−1, so that, given a distribution µ on S p−1, we can define distributions
µp−1, . . . , µs on S p−1, S p−2, . . . , S s recursively by µp−1 = µ and µk−1 as the marginal distribution of u on S k−1 for
k = p − 1, . . . , s + 1. Although the points mp−1, . . . ,ms+1 could be chosen as any orthonormal points in S p−1 (see
Remark 1), we need to ensure that if s = 0 then µ0 is the uniform distribution on S 0. If m1 is a (circular) median [22,
(3.4.18)] of µ1 then µ0 is uniform; if the median is unique then uniformity on S 0 is equivalent to m1 being a median of
µ1. It is therefore convenient to take mk (k = p − 1, l . . . , s + 1) to be the (Riemannian, alias intrinsic) Fréchet median
of µk, i.e., the point m in S k minimising the expected spherical distance Eµk {arccos(x>m)}. We shall assume that

µ is either uniform or has a unique Fréchet median mp−1, (4)
for k = p − 2, . . . , s + 1, µk has a unique Fréchet median mk, (5)
µs is the uniform distribution on S s. (6)

The nested spheres in (1) are reminiscent of the principal nested spheres of [12] but, whereas principal nested spheres
may be small spheres and are chosen to give closest fit to the data, the spheres in (1) are great spheres and are chosen to
be orthogonal to mp−1, . . . ,ms+1. In cases in which (4)–(6) hold, Proposition 1 provides an almost-canonical version
of the probability integral transformation on S p−1.
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Proposition 1. Let µ be a probability distribution on S p−1 such that the density of µ with respect to the uniform
distribution, ν, is continuous and positive. Suppose that µ satisfies conditions (4)–(6). Then homeomorphic almost-
diffeomorphisms φk : S k → S k for k = s, . . . , p − 1 can be defined inductively by (a) φs is the identity, (b) for
k = s + 1, . . . , p − 1,

φk(r,u) = ψk|φk−1(u)(r) φk−1(u), (7)

where
ψk|u = F̃−1

u ◦ Fu

with

Fu(v) = Pr (0 < R ≤ v|U = u) under µk (8)
F̃u(v) = Pr (0 < R ≤ v|U = u) under νk (9)

for 0 ≤ v ≤ π, points x in S k+1 are identified with their coordinates (r,u) as in (3), (R,U) denotes a random element of
S k+1, and νk is the uniform distribution on S k. Then φp−1 is a homeomorphic almost-diffeomorphism that transforms
µ into ν.

Proof. From (7) and continuity of the density, φk is a homeomorphism of S k and its restriction to S k \ {±mk} is a
diffeomorphism. It is straightforward to show that φp−1 transforms µ into ν.

2.2. Compact Riemannian manifolds
We now show how the probability integral transformation can be extended to arbitrary compact Riemannian

manifolds in an almost-canonical way.
Let X be a compact Riemannian manifold. The Riemannian metric determines the volumes of infinitesimal cubes,

and so equips X with a unique uniform probability measure, νX. Let µ be a probability distribution on X having
continuous positive density with respect to νX. If X is connected then there are homeomorphisms of X that transform
µ into νX; see [14, Proposition 1]. One way of constructing such homeomorphisms, φ, is by using the multivariate
probability integral transformation (alias Rosenblatt transformation, [26]) in coordinate neighbourhoods, as in the
first proof in [24]. In the case in which the density is smooth, there is also a slick differential-geometric proof [24,
Theorem 2]. This proof can be used to provide a canonical choice of φ but this involves solving a differential equation
and does not give φ explicitly. If X = S 1 or dimX > 1 then, as in the spherical case, the homeomorphism φ is far
from unique and it is not obvious how to make a canonical choice of φ. To obtain a canonical choice of φ by extending
the construction in Proposition 1 to compact Riemannian manifolds, we exploit the fact that, if X is a Riemannian
manifold and m is any point in X then the exponential map (see, e.g., [8, Section 1.6]) from the tangent space, TXm, at
m into X can be used to identify suitable open discs round the origin of 0 in TXm with suitable open sets in X. Define
the open set B of X by

B =
{
∃r ≥ 0,∃u ∈ T1Xm : ∃ unique minimising geodesic from m to exp(ru)

}
,

where T1Xm denotes the set of unit tangent vectors at m. Then the restriction of exp−1 to B identifies B with
{(r,u) : 0 ≤ r < ru,u ∈ T1Xm}, where

ru = sup{r : ∃ unique minimising geodesic from m to exp(ru)}.

The mapping
exp(ru) 7→ (r,u) (10)

can be regarded as giving ‘polar Riemannian normal coordinates on B’.
For X = S p−1, the tangent-normal decomposition (2) is related to these coordinates by t = cos r. If X is com-

pact then X \ B has measure zero. See, e.g., [6, Proposition 2.113, Corollary 3.77, Lemma 3.96]. Thus absolutely
continuous probability distributions on X can be identified with absolutely continuous probability distributions on
{(r,u) : 0 ≤ r < ru,u ∈ T1Xm}. In particular, such a distribution induces a marginal distribution on T1Xm.

Recall that on a Riemannian manifold, X, a Riemannian (alias intrinsic) Fréchet median of a probability distribu-
tion, µ, onX is a point m inX that minimises the expected distance Eµ{d(x,m)}, where d denotes Riemannian distance.
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Proposition 2. Let µ be a probability distribution on a compact Riemannian manifold X of dimension d such that
the density of µ with respect to the uniform distribution, ν, is continuous and positive. Suppose that µ has a unique
Fréchet median, m. Let {(r,u) : 0 ≤ r < ru,u ∈ T1Xm} be (maximal) polar Riemannian normal coordinates on B with
m corresponding to the origin. Assume that the marginal distributions on T1Xm obtained from µ and ν by using (10)
satisfy conditions (4)–(6).

Let φd−1, φ̃d−1 : T1Xm → T1Xm be the almost-canonical uniformising almost-diffeomorphisms corresponding to µ
and ν, respectively, given by Proposition 1 and identification of T1Xm with S d−1. Put ψd−1 = φ̃−1

d−1 ◦ φd−1 and define
the function φ : X → X by

φ
{
exp(ru)

}
= exp

[
F̃−1
ψd−1(u) {Fu(r)} ψd−1(u)

]
ru ∈ exp−1(B) (11)

and arbitrarily on X \ B, where Fu and F̃u are defined by (8) and (9) with k = d − 1. Then φ is a diffeomorphism
almost everywhere and transforms µ into ν. If µ is the uniform distribution then (11) is the identity.

Proof. This is a straightforward calculation.

We call the almost-diffeomorphism φ of Propositions 1 or 2 the probability integral transformation. It is almost
canonical, since it is determined (except on null sets) by unique medians at each stage.

Remark 1. The appropriate general mathematical setting for the constructions in Propositions 1 and 2 is that of
orthonormal frames in a tangent space. An orthonormal frame at a point m in a d-dimensional Riemannian manifold
X is an ordered set of orthonormal vectors in the tangent space TXm. Let µ be a probability distribution on X such
that the density of µ with respect to the uniform distribution, ν, is continuous and positive. Let (md−1, . . . ,ms+1) be
an orthonormal frame at m and suppose that the distribution on the u-dimensional sphere normal to md−1, . . . ,ms+1
is uniform. Then replacing the successive medians in Propositions 1 and 2 by m,md−1, . . . ,ms+1 defines an almost-
diffeomorphism φ of X that takes µ to ν.

Remark 2. Almost-homeomorphisms can be used in the simulation of arbitrary continuous distributions on X. Let
µ and ν be probability distributions on X (with ν not necessarily being the uniform distribution) and φ any transfor-
mation (not necessarily an almost-canonical homeomorphism as introduced in this Section) that takes µ into ν. If
x1, . . . , xn in X are a random sample from ν then φ−1(x1), . . . , φ−1(xn) are a random sample from µ.

A class of distributions for which the probability integral transformation takes a particularly simple form consists
of those with unique median m on X and for which the corresponding marginal distribution on T1Xm (obtained using
(10)) is uniform. If X is the sphere S p−1, the projective space RPp−1, the rotation group S O(3) or the complex project-
ive space CPk−2 then this class includes the distributions that have rotational symmetry about the unique median.
Some examples are:

(a) For a distribution µ on S p−1 that is rotationally symmetric about a unit vector µ, the transformation φ given by
(11) that sends µ into the uniform distribution has the form

φ(x) = uµ + {(1 − u2)/(1 − t2)}1/2
(
Ip − µµ

>
)

x,

where t = x>µ, Ip denotes the p × p identity matrix and u = G−1
0 (Gµ(t)), Gµ and G0 denoting the cumulative

distribution functions of x>µ when x has distribution µ and the uniform distribution, respectively. In particular,
for the Fisher distribution, F (µ, κ), on S 2 with mean direction µ and concentration κ,

u =
(
2eκt − eκ − e−κ

)
/
(
eκ − e−κ

)
, κ > 0 (12)

and u = t for κ = 0 (see [14, Example 1]).
(b) The angular central Gaussian distributions on the real projective space RPp−1 have probability density functions

f (±x; A) = |A|−1/2
(
x>A−1x

)−p/2
, x ∈ Rp, (13)
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where A is positive definite (see [22, Section 9.4.4]). Those distributions with probability density functions (13)
that are symmetrical about the modal axis ±µ have A = a2 µµ> + b2 (Ip − µµ

>) with a > b > 0. Then φ is given
by

φ(±x) = ±
[
uµ + {(1 − u2)/(1 − t2)}1/2

(
Ip − µµ

>
)

x
]
,

where t = x>µ and
u = t{a/b + (1 − a/b)t2}−1/2.

The transformation φ coincides with the standard transformation ±x 7→ ±‖A−1/2x‖−1A−1/2x to uniformity on
RPp−1 [22, Section 9.4.4], where A1/2 denotes the positive definite square root of A.

(c) For the matrix Fisher distribution on S O(3) with density proportional to exp
{
trace

(
κX>M

)}
for κ ≥ 0 and M in

S O(3), [14, Example 2] shows that M>X and M>φ(X) have the same rotation axis, and that the rotation angle,
u, of M>φ(X) is related to the rotation angle, t, of M>X by

F̃0(u)/F̃0(π) = F̃κ(t)/F̃κ(π),

where F̃κ(θ) =
∫ θ

0 e4κ cos2(ω/2) sin2(ω/2)dω.
(d) On the shape space Σk

2 of k non-identical labelled landmarks in R2, the isotropic Mardia–Dryden distributions,
alias isotropic offset normal distributions, MD([µ], κ) [4, Section 11.1.2] of shapes [X] obtained by isotropic
Gaussian perturbation of the landmarks of shapes [µ] have densities

f ([X]; [µ], κ) = eκ{1−cos2 ρ([X],[µ])}Lk−2{−κ cos2 ρ([X], [µ])}, (14)

whereLk−2 is the Laguerre polynomial of order k−2, ρ is the Riemannian shape distance and κ is a concentration
parameter [4, equations (11.11), (11.15)]. Identification of 2× (k− 1) real matrices Z satisfying trace(ZZ>) = 1
with unit vectors z in Ck−1 leads to identification of the space Σk

2 with the complex projective space CPk−2.
Calculation shows that for the distribution with density (14), the homeomorphism φ is

φ([z]) =
[
uµ + {(1 − u2)/(1 − t2)}1/2

{
z − (z>µ)µ

}]
,

where t = cos ρ([X], [µ]), u2 = F−1
[X],0

{
F[X],κ(t2)

}
with F[X],κ defined by

F[X],κ(x) = (k − 2)eκ
k−2∑
i=0

k−3∑
r=0

(
k − 2

i

)(
k − 3

r

)
(−1)rκi

i!

∫ x

0
e−κssr+ids.

For κ = 0 (corresponding to the uniform distribution) F[X],κ takes the simple form

F[X],0(x) = 1 − (1 − x)k−2.

2.3. Shape spaces
The probability integral transformation can be defined also for the shape spaces, Σk

m, of shapes of k non-identical
labelled landmarks in Rm. As indicated after (14), the space Σk

2 can be identified with the complex projective space
CPk−2, and so is a compact Riemannian manifold. For m > 2, Σk

m is not a manifold but for our purposes, it is enough
to work on the non-singular part of Σk

m, which is the open set consisting of the shapes of k non-identical labelled
landmarks in Rm that do not lie in any (m − 2)-dimensional affine subspace.

It follows from [16, Section 6.3 and Theorem 6.5] that, for x in the non-singular part of Σk
m there is a system of

Riemannian normal coordinates with inverse that maps an open set {(r,u) : 0 ≤ r < ru,u ∈ T1Xx} diffeomorphically
onto an open set B of Σk

m by (10), where T1Xx denotes the set of unit tangent vectors at x, and Σk
m \ B has measure

zero. If the distribution on T1X satisfies conditions (4)–(6) then the probability integral transform can be defined as in
Proposition 2.

A referee has pointed out that this construction can be extended to more general shape spaces. For a quotient of
a Riemannian manifold by a proper isometric Lie group action, the singularity set has dimension less than that of the
manifold [9], and so (10) is an almost-diffeomorphism.
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2.4. Cartan–Hadamard manifolds
The Cartan–Hadamard manifolds are the complete simply-connected manifolds with non-positive curvature. It

follows from the Cartan–Hadamard theorem [8, Theorem I 13.3], [18] that on a Cartan–Hadamard manifold, X,
the inverse of the exponential map at any basepoint x identifies X with TXx. Then the choice of a distribution ν
(with positive density) on X enables an extension of the approach used in Section 3. Important instances of such
manifolds are the simplicial shape spaces of shapes of m-simplices in Rm with positive volume, equipped with a
Riemannian metric derived from a natural metric on S L(m) [27, Section 3.6.2], [20, Section 2]. The case m = 2 gives
the space of shapes of non-degenerate triangles in the plane, which can be identified with the Poincaré half-plane,
H2 = {(x1, x2) ∈ R2 : x2 > 0}, with Riemannian metric gi j = δi jx−2

2 . This space was used in [10] as a sample space for
electrical impedances.

Proposition 3. Let µ and ν be probability distributions with positive densities on a Cartan–Hadamard manifold, X,
of dimension d. Let m be a point of X and {(r,u) : 0 ≤ r,u ∈ T1Xm} be polar Riemannian normal coordinates on X
with m corresponding to the origin. Let φd−1, φ̃d−1 : T1Xm → T1Xm be the almost-canonical uniformising almost-
diffeomorphisms corresponding to µ and ν, respectively, given by Proposition 1 and identification of T1Xm with S d−1.
Put ψd−1 = φ̃−1

d−1 ◦ φd−1 and define the function φ : X → X by

φ
{
exp(ru)

}
= exp

[
F̃−1
ψd−1(u) {Fu(r)} ψd−1(u)

]
,

where Fu and F̃u are defined by (8) and (9) with k = d − 1. Then φ is an almost-diffeomorphism that maps geodesics
through m into geodesics through m and transforms µ into ν.

2.5. Simplices
The open (p − 1)-simplex is

∆p−1 =

(y1, . . . , yp) : y j > 0,
p∑

j=1

y j = 1

 .
There is a canonical base point, the centroid, c = (p−1, . . . p−1) and a canonical Riemannian metric obtained by
regarding ∆p−1 as an affine subspace of Rp. The unit tangent sphere at c is

T1∆p−1,c =

u = (v1, . . . , vp) :
p∑

j=1

v j = 0,
p∑

j=1

v2
j = 1


and the exponential map is

exp(ru) = c + ru (15)

for r ∈ [0, 1/(pmax1≤ j≤p|v j|)]. The uniform distribution is a scaled version of Lebesgue measure on ∆p−1 and the
corresponding marginal distribution on the unit tangent sphere is the uniform distribution on T1∆p−1,c.

2.5.1. Using the exponential map
The manifold ∆p−1 is simply connected and has curvature 0 but it is not complete. The exponential map (15) is a

diffeomorphism between a star-shaped portion of T∆p−1,c and ∆p−1. Let µ be a distribution on ∆p−1 with continuous
positive density with respect to the uniform distribution, ν. Then a minor variant of Proposition 3 produces a canonical
almost-diffeomorphism φ : ∆p−1 → ∆p−1 that transforms µ into ν.

Proposition 4. Let µ be a probability distribution on ∆p−1 having continuous positive density with respect to Lebesgue
measure. Let c be the barycentre of ∆p−1 and

{
(r,u) : 0 ≤ r,u ∈ T1∆p−1,c

}
be polar Riemannian normal coordinates

on ∆p−1 with c corresponding to the origin. Let (R,U) be the normal coordinates of a random element of ∆p−1. Let ψ :
T1∆p−1,c → T1∆p−1,c be the almost-canonical homeomorphism such that ψ(U) is uniformly distributed. Identification
of T1∆p−1,c with S p−2 leads to definition of Fu and F̃u by (8) and (9) with k = p−2. Define the function φ : ∆p−1 → ∆p−1
by

φ
{
exp(ru)

}
= exp

[
F̃−1
ψ(u) {Fu(r)} ψ(u)

]
.

Then φ is a diffeomorphism almost everywhere, maps geodesics through c into geodesics through c, and transforms µ
into ν.
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2.5.2. Using radial projection
An alternative to using the exponential map (15) is to use ‘radial projection’ of ∆p−1 \ {c} onto its boundary ∂∆p−1.

The coordinates (r, z1, . . . , zp) given by radial projection are defined by

r =

{
0 if x = c,
1 − py(1) if x , c (16)

z j = r−1(y j − y(1)) j = 1, . . . , p, (17)

y(1) denoting the smallest of y1, . . . , yp. Then r ∈ [0, 1). A simple calculation shows that the density of the uniform
distribution with respect to dr dz1 . . . dzi−1 dzi+1 . . . dzp is proportional to r−(p−1). It follows that, for i = 1, . . . , p,
radial projection of ∆p−1,i =

{
(y1, . . . , yp) ∈ ∆p−1 \ {c} : y(1) = yi

}
onto the face ∂i∆p−1 =

{
(z1, . . . , zp) : zi = 0

}
sends

the uniform distribution on ∆p−1,i to the uniform distribution on the (p − 2)-simplex ∂i∆p−1. The boundary, ∂∆p−1, of
∆p−1 is the union of ∂1∆p−1, . . . , ∂p∆p−1.

The next proposition shows that radial projection provides canonical uniformising homeomorphic almost-diffeo-
morphisms of simplices that are analoguous to those for spheres that are described in Proposition 1. Unlike the
construction in Proposition 1, the construction in Proposition 5 does not assume uniqueness of medians, as in (4)–(5).

Proposition 5. Let µ be a probability distribution on ∆p−1 having continuous positive density with respect to Lebesgue
measure. For k = 0, . . . , p − 2, denote by ∂p−1−k∆p−1, the union of the k-dimensional faces of ∆p−1. Then repeated
radial projection sends µ to a probability distribution µk on ∂p−1−k∆p−1. Let s be the largest value of k for which µk is
uniform. For k = s+1, . . . , p−1, let r, z1, . . . , zi−1, zi+1, . . . zk be coordinates (defined analogously to those in (16)–(17))
on the part of the (p − 1 − k)-simplex in ∂p−1−k∆p−1 on which zi = 0. Define functions φk : ∂p−k−1∆p−1 → ∂p−k−1∆p−1
for k = s, . . . , p − 1 recursively by (a) φs is the identity, (b) for k = s + 1, . . . , p − 1,

φk(r, z) = Fz(r)1/(k+2−p) φk−1(z),

where
Fz(t) = Pr (0 < R ≤ t|Z = z) under µk

for 0 ≤ t ≤ 1 and z = (z1, . . . , zi−1, zi+1, . . . zk), Then φp−1 is a homeomorphic almost-diffeomorphism that transforms
µ into ν.

Proof. This is a straightforward calculation using the fact that Pr (0 < R ≤ t|Z = z) = tk+2−p under the uniform distri-
bution on this (p − 1 − k)-simplex.

3. Goodness-of-fit tests via transformation

For many of the sample spaces that we consider there are well-established tests of, e.g., uniformity. Transforma-
tions can be used to adapt these to give tests of goodness of fit. Let µ and ν be probability distributions on X. Then
any transformation, φ, that takes µ into ν can be used to transform any test, T , of goodness of fit to ν into a test,
φ∗T , of goodness of fit to µ. Given points x1, . . . , xn in X, φ∗T is obtained by applying T to the transformed data,
φ(x1), . . . , φ(xn). The null distribution of φ∗T is the same as that of T . (Although our almost-canonical construction
in Section 2 of suitable transformations φ proceeds via a tangent space, TXm, this tangent space plays no key role in
the test φ∗T .)

Often the null hypothesis about the distribution generating the data is not that it is some specified distribution but
that it is a distribution in a given parametric model, {µθ : θ ∈ Θ}. For each θ in Θ, let φθ be a transformation that takes
µθ into ν. Let θ̂ be an estimate of θ. Then goodness of fit to {µθ : θ ∈ Θ} is tested by applying T to the transformed data,
φθ̂(x1), . . . , φθ̂(xn). Significance can be assessed by simulation from the fitted distribution. If a good approximation to
the null distribution of T is available then simulation can be avoided by using this approximation.

Provided that the estimator giving θ̂ is consistent, the consistency properties of φ∗T are inherited from those of T .
In particular, if θ̂ is the maximum likelihood estimate then φ∗T is consistent against all alternatives if and only if T is
consistent against all alternatives.
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3.1. Spheres

On a sphere the uniform distribution provides a canonical choice for ν. Then the transformation, φ, of Proposition
1 that takes µ into ν can be used to transform tests of uniformity into tests of goodness of fit to µ. If the test of
uniformity is (like the Sobolev tests of [7]) invariant under isometries of the sphere then φ need not be specified fully
but only up to composition with a rotation. In this case, φs defined in (a) of Proposition 1 need not be the identity of
S s but can be any rotation.

One nice characterisation of the uniform distributions on S 2 is that, for a uniformly distributed random vector with
longitude ψ and colatitude θ, (a) ψ is uniformly distributed on [0, 2π], (b) cos θ is uniformly distributed on [−1, 1],
(c) ψ and θ are independent. Thus combining any tests of (a), (b) and (c) gives a test of uniformity on S 2. Using
the general construction given in the previous paragraph with φ : S 2 → S 2 given by (11) but with (12) replaced by
the approximation 2eκ(t−1) − 1 to (12) for κ not close to 0, taking the tests in (a), (b) and (c) to be Kuiper’s Vn, the
Kolmogorov–Smirnov test, and a rather special ‘2-variable’ test yields the standard method [22, Section 12.3.1] of
investigating goodness of fit of Fisher distributions on S 2.

3.2. Compact Riemannian manifolds and shape spaces

On a compact Riemannian manifold or a shape space the uniform distribution provides a canonical choice for ν.
Then the transformation, φ, of Proposition 2 that takes µ into ν can be used to transform tests of uniformity into tests
of goodness of fit to µ.

3.3. Cartan–Hadamard manifolds

Let m be a point in a Cartan–Hadamard manifold, X, and let µ and ν be probability distributions on X and TXm,
respectively, such that the density of µ with respect to ν is positive. By Proposition 3, there is an almost-canonical
almost-diffeomorphism φ : X → TXm that transforms µ into ν. Since TXm can be identified with Rd (where d is the
dimension of X), standard goodness-of-fit tests on Rd can be adapted to give goodness-of-fit tests on X.

3.4. Simplices

On the simplex ∆p−1 the uniform distribution provides a canonical choice for ν. Then the transformation, φ, of
Proposition 4 or Proposition 5 that takes µ into ν can be used to transform tests of uniformity into tests of goodness of
fit to µ.

An appealing test of uniformity on ∆p−1 is the score test of uniformity (α1 = . . . = αp = 1) within the Dirichlet
family with densities (with respect to the uniform distribution)

f (y1, . . . , yp;α) =
Γ(

∑p
j=1 α j)∏p

j=1 Γ(α j)

p∏
j=1

yα j−1
j ,

where α = (α1, . . . , αp) with αi > 0 for i ∈ {1, . . . , p}. For independent observations y1, . . . , yn on ∆p−1 with yi =

(yi1, . . . , yip) (for i = 1, . . . , n), this score test rejects uniformity for large values of

S n =
n

ψ′(1)

 ψ′(p)
pψ′(p) − ψ′(1)

p∑
j=1

p∑
k=1

w jwk −

p∑
j=1

w2
j

 ,
where w j = n−1 ∑n

i=1 ln yi j and ψ denotes the digamma function. Under uniformity the large-sample asymptotic
distribution of S n is χ2

p.

4. Simulation studies

In order to assess the performance of our tests, we consider three simulation studies. The first involves the
goodness-of-fit test on S 2 based on the Rayleigh test of uniformity. First 10, 000 random samples of size 50 were
simulated from the Fisher distribution F (µ, κ) with given mode µ and concentration κ = 10. For each sample, good-
ness of fit to (a) the true F (µ, 10) distribution, (b) the fitted F (µ̂, κ̂) distribution, where µ̂ and κ̂ are the maximum
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likelihood estimates of µ and κ, was assessed. Then 10, 000 random samples of size 50 were simulated from the
projected normal PN3(µ, I3) distribution (obtained by projecting the trivariate normal N3(µ, I3) distribution radially
onto S 2) and goodness of fit to the F (µ, 10) distribution was assessed. The resulting p-values (based on the large-
sample asymptotic χ2

3 distribution) are shown in the histograms on the left of Fig. 1. Corresponding histograms for
1, 000 samples of size 500 are given on the right of Fig. 1. The fairly uniform distribution of p-values for fit to the
true distribution indicates that the test tends not to reject the null hypothesis when it is true, whereas the clustering of
p-values near 1 when assessing goodness of fit to the fitted distribution shows the anticipated excellent fit to the fitted
distribution. For samples generated from PN3(µ, I3), the p-values for fit to the F (µ, 10) distribution also cluster near
1, meaning that this test does not detect that the data come from the wrong model.

Fig. 1: Behaviour of test of goodness of fit (a) to true F (µ, 10) distribution on S 2 (black), (b) to fitted F (µ̂, κ̂) distribution (red), (c) to projected
normal PN3(µ, I3) distribution (blue), using test based on Rayleigh’s test of uniformity. The histograms are of p-values (based on the large-sample
asymptotic χ2

3 distribution). Each histogram summarizes 10,000 simulations, each of size 50 (left) or 500 (right).

One possible explanation for the inability of the above test to detect that the data come from the wrong model
is that the Rayleigh test of uniformity is not consistent against all alternatives. Therefore a second simulation study
was carried out, which was like the first but with the Rayleigh test replaced by Giné’s [7] Fn test [22, Section 10.4.1],
which is consistent against all alternatives to uniformity on S 2. Histograms of the resulting values of Fn are shown in
Fig. 2 for sample sizes, n, of 50 (left) and 500 (right). Significance was assessed using the asymptotic quantiles given
in [15] and [22, Section 10.4.1]. For assessing goodness of fit to the true distribution, the proportions of the values
of the statistic that exceeded the asymptotic 10%, 5% and 1% upper quantiles were 0.10, 0.05 and 0.01 (n = 50) and
0.10, 0.04 and 0.01 (n = 500), respectively, indicating that the test detects good fit when it is present. For fit to the
fitted distribution, none of the values of Fn exceeded the asymptotic 10% quantile, indicating the anticipated excellent
fit to the fitted distribution. For samples generated from PN3(µ, I3), the proportions of the values of Fn that exceeded
the asymptotic 10%, 5% and 1% upper quantiles were 0.58, 0.34 and 0.05 for n = 50, while for n = 500, all the values
of Fn far exceeded the asymptotic 1% upper quantile. This indicates clearly that the test can detect bad fit.

The third simulation study involves the goodness-of-fit test on Σ5
2 based on Mardia’s [21] test of uniformity. First,

10, 000 random samples of size 50 were simulated from the isotropic Mardia–Dryden MD([µ], 0.125) distribution
with given mode [µ]. For each sample, goodness of fit to (a) the true MD([µ], 0.125) distribution, (b) the fitted
MD([µ̂], κ̂) distribution, where [µ̂] and κ̂ are the maximum likelihood estimates of [µ] and κ (calculated by the EM
method of [19]), was assessed using Mardia’s uniformity test on Σ5

2. Then 10, 000 random samples of size 50 were
simulated from the non-isotropic Mardia–Dryden distribution obtained by GaussianN2(0,Σ) perturbations of µ, where
Σ = diag(1, 25), and goodness of fit to theMD([µ], 0.125) distribution was assessed. The resulting p-values based
on the large-sample asymptotic χ2

15 distribution are shown in the histograms on the left of Fig. 3. Corresponding
histograms for 10, 000 samples of size 500 are given on the right. The fairly uniform distribution of p-values for fit
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Fig. 2: Behaviour of test of goodness of fit (a) to true F (µ, 10) distribution on S 2 (black), (b) to fitted F (µ̂, κ̂) distribution (red), (c) to projected
normal PN3(µ, I3) distribution (blue), using test based on Giné’s Fn test of uniformity. The histograms are of values of Fn. Each histogram
summarizes 10,000 simulations, each of size 50 (left) or 500 (right). Green arrows on horizontal axes are 10%, 5% and 1% upper quantiles of
asymptotic distribution.

to the true distribution indicates that the test tends not to reject the null hypothesis when it is true. The clustering of
p-values near 1 for fit to the fitted distribution shows the anticipated excellent fit to the fitted distribution. For samples
generated from the non-isotropic distribution, the p-values cluster near 0, indicating that the test can detect bad fit.

Fig. 3: Behaviour of test of goodness of fit (a) to true isotropic Mardia–DrydenMD([µ], 0.125) distribution on Σ5
2 (black), (b) to fitted isotropic

MD([µ̂], κ̂) distribution (red), (c) to non-isotropic Mardia–Dryden distribution obtained by Gaussian N2(0, diag(1, 25)) perturbations of µ (blue),
using test based on Mardia’s test of uniformity. The histograms are of p-values (based on the large-sample asymptotic χ2

15 distribution). Each
histogram summarizes 10,000 simulations, each of size 50 (left) or 500 (right).
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