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Abstract: Failure mode and effects analysis (FMEA) has been extensively used by wind 

turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known 

failure modes. However, several limitations are associated with its practical 

implementation in wind farms. First, the Risk-Priority-Number (RPN) of a wind turbine 

system is not informative enough for wind farm managers from the perspective of 

criticality; second, there are variety of wind turbines with different structures and hence, it 

is not correct to compare the RPN values of different wind turbines with each other for 

prioritization purposes; and lastly, some important economical aspects such as power 

production losses, and the costs of logistics and transportation are not taken into account in 

the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for 

risk and failure mode analysis of wind turbine systems (both onshore and offshore) by 

integrating the aspects of traditional FMEA and some economic considerations. Then,  

a quantitative comparative study is carried out using the traditional and the proposed 

FMEA methodologies on two same type of onshore and offshore wind turbine systems. 

The results show that the both systems face many of the same risks, however there are 

some main differences worth considering. 

Keywords: risk assessment; failure mode and effects analysis (FMEA); onshore wind 

turbine; offshore wind turbine; risk-priority-number (RPN) 
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1. Introduction 

Wind energy has become an attractive source of renewable energy, and its installed capacity 

worldwide has grown significantly in recent years. For instance, the cumulative installations of wind 

power in the EU has increased from 23.1 GW in the end of 2002 to 106.0 GW in the year 2012, which 

represents an annual growth of 16.5% [1]. 

Basically, there are two main alternatives for wind energy, onshore and offshore. Offshore wind 

farms are constructed on the continental shelf area, usually about 10–40 km away from the coast. 

Comparing with onshore wind power, offshore winds tend to flow at a higher speed, thus allowing 

turbines to produce more electricity. However, a wind power system located at sea comes with higher 

failure rates, lower reliability and availability, and higher operation and maintenance (O&M) costs [2], 

so with the development of wind farms in remote areas, the need for an efficient tool to identify and 

then limit or avoid risk of failures is of increasing importance. 

Failure mode and effects analysis (FMEA) is a widely used engineering technique for designing, 

identifying and eliminating potential/known system failures. FMEA was first proposed by NASA in 

1963 for their obvious reliability requirements. Then, it was adopted and implemented by Ford Motor [3] 

in 1977. Since then, it has become a powerful tool for risk and reliability analysis of systems in a wide 

range of industries including automotive [4], foundry [5], nuclear [6], construction [7], etc. 

FMEA is a structured, bottom-up approach that starts with potential/known failure modes at one 

level and investigates the effect on the next sub-system level [8]. Hence, a complete FMEA analysis of 

a system often spans all the levels in the hierarchy from bottom to top (see Figure 1). 

Figure 1. Hierarchical structure of a system. 

 

A failure mode is defined as the way in which a component, sub-system or system could potentially 

fail to perform its desired function. A failure cause is defined as a weakness that may result in a failure. 

For each identified failure mode, their ultimate effects need to be determined, usually by a  

cross-functional team which is formed by specialists from various functions. A failure effect is defined 

as the result of a failure mode on the function of the system as perceived by the user. 

As outlined by Pillay and Wang [9], the process for carrying out an FMEA can be divided into 

several steps as shown in Figure 2. These steps are briefly explained here: 
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Figure 2. FMEA process. 

 

1. Collect the system function information: first, develop a good understanding of what the system 

is supposed to do when it is operating properly; then, divide the system into sub-divisions and 

use schematics and flow charts to identify relations among sub-assemblies; lastly, prepare a 

complete part list for each sub-assembly. 

2. Identify the failure modes of each sub-assembly. 

3. Consider how the failure modes might affect the performance of sub-assemblies, sub-divisions, 

and the entire system. 

4. Identify the operational and environmental stresses that cause failures. 

5. Estimate the probability of failure occurrence, and find the occurrence ranking (O) using the 

10-point scale described in appendix, Table A1. 

6. Categorize the hazard level of each failure, and find the severity ranking (S) using the 10-point 

scale described in appendix, Table A2. 

7. Identify the current control schemes to detect or prevent a given cause of failure, and find the 

detection ranking (D) using the 10-point scale described in appendix, Table A3. 

8. Calculate the risk-priority-number (RPN) which is defined as the product of the occurrence (O), 

severity (S) and detection (D) of a failure, i.e., RPN = O × S × D. 

9. Rank the RPN values that are between 1 and 1000 to find out the failures with higher risks  

for correction. 

10. Develop recommendations (preventive or corrective actions) to enhance the system performance. 

11. Prepare FMEA report by summarizing the analysis in a tabular form as shown in Table 1. 
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Table 1. Format of an FMEA report [10]. 

System           FMEA No. 

Subsystem           Page 

Component           Prepared by 

Core team           FMEA Date (org.) 

     Existing conditions Action results 

Component/  

process 

Potential 

failure 

mode 

Potential 

effects of 

mode 

Potential 

causes of 

mode 

Present 

control 

mechanisms 

Severity Occurrence Detection 

Risk Priority 

Number 

(RPN) 

Recommend 

actions 

Action 

taken 
S O D RPN 

The traditional FMEA methodology has been extensively used by wind turbine assembly 

manufacturers for analyzing, evaluating and prioritizing the potential/known failure modes [11]. 

However, a brief review of the literature shows that only a few researchers have worked on improving 

the traditional FMEA methodology to make it more practical for wind turbine systems (see [12–16]). 

Recently, Tavner and his colleagues presented a design-stage FMEA methodology for prioritization  

of failures in a 2-MW wind turbine system (named as R80) within the Reliawind project [17,18].  

The authors’ methodology used four-point scales for occurrence rating (see Table 2), severity rating 

(see Table 3), and detection of a failure (see Table 4) to represent the risk priorities of the sixty-four 

occurrence–severity–detection combinations. 

Table 2. Wind turbine FMEA ratings for occurrence of a failure ( fS ) [18]. 

Rank Description Criteria 

1 Level E (extremely unlikely) A single failure mode probability of occurrence is less than 0.001. 

2 Level D (remote) 
A single failure mode probability of occurrence is more than 0.001 
but less than 0.01. 

3 Level C (occasional) 
A single failure mode probability of occurrence is more than 0.01 but 
less than 0.10. 

5 Level A (frequent) A single failure mode probability of occurrence is greater than 0.10. 

Table 3. Wind turbine FMEA ratings for severity of a failure ( S ) [18]. 

Rank Description Criteria 

1 Category IV (minor) Electricity can be generated but urgent repair is required. 
2 Category III (marginal) Reduction in ability to generate electricity. 
3 Category II (critical) Loss of ability to generate electricity. 
4 Category I (catastrophic) Major damage to the Turbine as a capital installation. 

Table 4. Wind turbine FMEA ratings for detection of a failure ( dS ) [18]. 

Rank Description Criteria 

1 Almost certain  Current monitoring methods almost always will defect the failure. 
4 High  Good likelihood current monitoring methods will detect the failure.  
7 Low  Low likelihood current monitoring methods will defect the failure. 

10 Almost impossible No known monitoring methods available to detect the failure. 
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Even though it is shown that the proposed FMEA methodology was more efficient than the 

traditional one, several limitations are still associated with its practical implementation in wind farms: 

(i) the RPN value of a wind turbine system is not informative enough for wind farm managers 

from the perpective of criticality; 

(ii) there are variety of wind turbines with different structures, and hence, it is not true to compare 

the RPN values of different wind turbines with each other for prioritization purposes; 

(iii) RPN values are not continuous with many holes and heavily distributed at the bottom of the 

scale from 1 to 100. As a matter of fact, in the proposed FMEA methodology 161 RPN values 

(11, 13, 17, ..., 151–199) cannot be obtained from multiplication of the three risk factors; 

(iv) various sets of Sf, S and Sd may produce an identical RPN value, however, their hidden risk 

implications may be totally different. For example, two different failure modes with values of 

5, 4, 4 and 2, 4, 10 for Sf, S and Sd, respectively, will have the same RPN value of 80. However, 

the hidden risk implications of these two failure modes may not necessarily be the same, and 

this could entail a waste of resources and time; 

(v) the methodology only considers three factors in terms of safety, and some important 

economical aspects such as production losses, logistics and transportation are not taken into 

account in the RPN value. So, the result may not necessarily represent the true risk priorities of 

the failure modes. 

In order to overcome these drawbacks, we extend our works in [15,19], and develop a mathematical 

tool for risk and failure mode analysis of wind turbine systems (both the onshore and offshore) based 

on three main factors: failure probability, incurred failure costs, and the fault detection possibility. The 

proposed methodology is applied to the two same type of onshore and offshore wind turbine systems, 

and the results are compared with the existing prioritization approaches. Our results show that the 

proposed methodology can have a high potential to improve the safety as well as mitigate the 

operational risks associated with an unexpected failure within the wind farms (i.e., costly repair or 

replacement, lack of spare parts, transportation means and manpower, and loss of power production). 

The rest of this paper is organized as follows: Section 2 describes the wind turbine system 

considered in this study. In Section 3, the proposed FMEA methodology is described. In Section 4,  

a quantitative study is carried out on two same types of onshore and offshore wind turbines, and some 

useful comparisons and analyses are conducted. Finally, in Section 5, we conclude this study with  

a brief discussion on topics for future research. 

2. Wind Turbine System Considered in this Study 

Nowadays, many kinds of wind turbine systems compete in the market. According to Li and  

Chen [20] and Pinar et al. [21], wind turbines can be categorized by their generator, gearbox, and their 

power converter types as shown in Table 5. 
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Table 5. Existing wind turbine systems in market. 

Type of generation system Turbine concept Gearbox Converter 

Single Cage Induction Generator (SCIG) 
fixed speed multiple stage  - 

variable speed multiple stage full scale 

Permanent Magnet Synchronous Generator (PMSG) 
variable speed - full scale 

variable speed single or multiple stage full scale 

Doubly Fed Induction Generator (DFIG) variable speed multiple stage partial scale 

Electrically Excited Synchronous Generator (EESG) variable speed - partial & full scale 

Wound Rotor Induction Generator (WRIG) limited variable speed multiple stage partial scale 

Brushless Doubly Fed Induction Generator (BDFIG) variable speed multiple stage partial scale 

Fixed speed wind turbines which operate with constant speed “Danish concept” were produced until 

the late 1990s with power ratings below 1 MW. They used a multi-stage gearbox, and a standard 

squirrel-cage induction generator directly connected to the grid through a transformer. From the late 

1990s, fully variable speed wind turbines were introduced in wind power industry. The first generation 

of fully variable speed wind turbines (with power ratings of approximately 1 MW) used a multi-stage 

gearbox, a relatively low-cost standard wound rotor induction generator, and a power electronic 

converter feeding the rotor [22]. The doubly fed induction generator (DFIG) technology is currently 

the most widely used in the wind turbine industry because of its low investment cost and good energy 

yield [23]. Since the mide-1990s, there have also been variable speed wind turbines with gearless 

generator systems which are equipped with a direct-drive generator and a fully-rated power electronic 

converter. The brushless doubly fed induction generator (BDFIG) is a well known drive technology 

which eliminates the need for brushes and slip rings, increases the lifetime of the machine, and 

ultimately reduces the maintenance costs [24]. 

This paper focuses on a wind turbine system which is available in both onshore and offshore types. 

This wind turbine features a non-integrated drive train with a rotor shaft supported by two bearings, a 

combined planetary/spur wheel gearbox, and a double-fed asynchronous generator. The three-blade 

rotor is also equipped with an electrical blade angle adjustment and a cast iron rotor hub. 

The wind turbine has a condition monitoring system that measures a wide range of temperature, 

noise and vibration parameters (for more see [25]). This system monitors major components of wind 

turbine (such as the main gearbox, gear teeth and the generator bearings) to provide early diagnosis of 

potentially damaging changes. 

After recognizing the wind turbine type, we define a general set of sub-assemblies and main parts. 

In this study, sixteen sub-assemblies and components with higher failure probabilities and serious 

consequences have been considered: brake system, cables, gearbox, generator, main frame, main shaft, 

nacelle housing, pitch system, power converter, rotor bearings, rotor blades, rotor hub, screws, tower, 

transformer, yaw system. It may be apparent that not all of these components may be available in some 

types of wind turbine systems. 
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After subdivision of the wind turbine system, the potential failure modes of sub-assemblies are 

identified using the information gathered from four experts. These experts have experience, ranging 

from three to six years, within the reliability, availability, maintainability and safety (RAMS) of wind 

energy industry. The experts used the “fault tree analysis” (FTA) to describe the complete set of 

potential system failures. The FTA is one of the most popular and diagrammatic techniques to analyze 

the undesired states of a system using AND gate (the output occurs only if all inputs occur) and OR 

gate (the output occurs if any input occurs) [26]. 

Figure 3 depicts the fault tree diagram for three important sub-assemblies of the wind turbine 

system: gearbox, generator and the blades, starting with the top event “sub-assembly failure”. The 

main identified failure modes in the wind turbine sub-assemblies are as follows: fatigue, collapse, 

cracked, deterioration, deformed, stripped, worn, corroded, binding, buckled, sag, loose, misalignment. 

Figure 3. Fault tree diagram for (a) gearbox; (b) generator and (c) the blades. 

(a) 

 

(b) (c) 
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Any of these failure modes or their combination can become a cause of system failure. Each failure 

in the wind turbine system may result in a high production loss, poor power quality to the grid, and a 

significant audible noise. Evidently, each one of the failure modes has a root cause that the probability 

of failure mode is directly related to the probability of occurrence of its root cause. Table 6 shows the 

common root causes of the failure modes for the wind turbine systems in four different categories: 

external, structural, electrical, and wear. 

Table 6. Root causes of the failure modes in wind turbine systems. 

External Structural Electrical Wear 

High/low wind Installation defects Calibration error Aging 

Environmental shocks 
Manufacturing and 

material defect 
Connection fault Corrosion 

Icing Maintenance errors Overload Fatigue 

Lightning strike Mechanical overload Insulation failure Insufficient lubrication 

- - Software failure Aging 

3. Proposed Methodology 

In this section, a new tool for risk and failure mode analysis of wind turbine systems is presented. In 

the proposed methodology, the risk of each failure mode is evaluated by three factors as shown in 

Figure 4. 

Figure 4. Components of the proposed FMEA methodology for wind turbines. 

 

a. “probability of occurrence (O)” is a value between 0 and 1 that can be obtained from the field 
failure data. The probability of occurrence for the failure mode i is given by: 
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Number of failures resulting from the failure mode  in time period [0, ]
O lim

Number of total failures observed in time period [0, ]

i s
i ss

=
→ ∞

 (1)

Assume that the failures resulted from the failure mode i occur statistically independent according 
to a homogeneous Poisson process with parameter 0λ >i . This assumption can be applied in practice 

to the systems that are in their useful life period, where the underlying failure distribution is the 

negative exponential distribution. Accepting that the sub-assemblies of wind turbine are arranged in 

series and have no redundancy, the probability of occurrence for the failure mode i is calculated  

as follows: 


=

=
k

i
i

i
iO

1

λ

λ  
(2)

where k represents the total number of potential/known failure modes. 

b. “cost consequence of failure (C)” is a positive value including all costs associated with a failure 
due to repair or replacement, logistics and spare parts, transportation, manpower, and 
production loss. Then, the cost consequence of a failure resulted from the failure mode i is 
given by: 

P
i

M
i

TSR
ii CCCCCC ++++=  (3)

where: 

• R
iC (€) is the cost of the sub-assembly which needs to be repaired/replaced due to the failure; 

• SC (€) is the cost of equipping the maintenance crew, hiring the service vessels, and ordering the 
spare parts; 

• CT(€) is the expected cost of transporting the maintenance crew to the wind farm, that can be 
calculated using the following equation: 

TT cdC 2=  (4)

where d (km) is the average distance between the repair shop and the wind farm, and Tc (€/km) is the 

transportation cost per unit distance (including the cost of bio-diesel fuels used in the service vessels 
and helicopters, cost of 2CO  emissions associated with the maintenance expeditions, etc). 

• M
iC (€) is the manpower cost for the inspections and corrective maintenance tasks on the failed 

sub-assembly, and is given by: 

)2( 0 R
i

TL
i

L
i tttdcmC ++=  (5)

where mi is the number of technicians required to repair/replace the failed sub-assembly, cL (€/day) is 
the daily rate of manpower for eight working hours per day, tT (day/km) is the transportation time per 
unit distance, t0 (day) is the expected time required to setup the maintenance actions, and R

it  (day) is 

the expected time required to repair/replace the failed sub-assembly. 

• P
iC (€) is the expected cost of production loss due to the failure, that can be calculated using the 

following equation: 
PR

i
TP

i ctttdLC )( 0 +++=  (6)
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where L (day) is expected time required to equip the maintenance crew, and cP (€) is the fixed cost of 

production loss per unit downtime which is given by [11], that is: 

fEWc P ××=  (7)

where W is the wind turbine power rating (MW), E is the unit cost of energy (€/MW), and f is the 

capacity factor of wind farm. We assume that the time interval between failure occurrence and the 

failure detection is negligible and can be ignored. 

c. “not detection possibility (D)” is a value between 0 and 1 that can be obtained by dividing the 
number of actual failures ( FN ) to the total number of failure vulnerabilities ( FVN ) [13]. FVN is 
defined as the sum of number of actual failures ( FN ) and the number of detected possible 
failures prior to their occurrences ( DN ), for any given period of time. Then, the not detection 
possibility of the failure mode i is given by: 

F F

FV F D

N N

N N N
i i

i
i i i

D = =
+

 (8)

For each failure mode with several root causes, multiplying the occurrence (O), cost (C) and 

detectability (D) values results in related cost-priority-number (CPN), i.e., the CPN value for the 

failure mode i is calculated as: 

iiii DCO ××=CPN  (9)

The CPN value is continuous and is expressed in monetary unit (€), and hence, it can be easily used 

for comparison purposes. The failure modes with higher CPNs are assumed to be more important and 

will be given higher priorities for correction. 

By aggregating the sub-assembly CPNs, the wind turbine’s overall CPN is obtained as follows: 

Overall CPN = 
=

k

i
i

1

CPN  (10)

The share of each failure mode in the overall CPN can be evaluated by dividing its CPN value to the 

wind turbine’s overall CPN. Then, the share of failure mode i in the overall CPN, %CPN, is given by: 

CPNoverall

CPN
CPN% i

i =  (11)

A simple tool that can help managers to prioritize the main factors causing failures in the wind farm 

is pareto analysis (for more see [27]). Pareto analysis can provide a mechanism for identifying a set of 

sub-assemblies that have significant impact on the overall CPN. It can also be used to calculate the 

percentage reduction in the overall CPN of system when the CPN of one of the critical sub-assemblies 

is reduced. In this study, we use the cumulative %CPN to classify the wind turbine subassemblies into 

three main groups. The main features of the three groups are the following: 

Group A. Significant savings can be obtained by reducing their failure frequency and/or the 

downtime length. These failure modes comprise around 70% of the overall CPN. 

Group B. A medium CPN reduction can be obtained using an effective preventive maintenance 

strategy. These failure modes comprise around 20% of the overall CPN. 
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Group C. Low levels of savings can be obtained through reduction of failure consequences. These 

failure modes comprise around 10% of the overall CPN. 

It is very often observed that a wind farm consists of “different types” of wind turbines produced by 

the same manufacturer, or different brands from different manufacturers [28]. Different wind turbines 

have generally different capacities and structures. A main feature of the proposed methodology is that 

the CPN analysis can be applied to any type of wind turbines with different structures. In order to 

compare the different types from criticality perspective, the wind turbines’s “annual” CPN should be 

considered. The annual CPN for a wind turbine system with k potential/known failure modes is defined as: 

Annual CPN = i

k

i
iE CPNN

1

FV )( ×
=

 (12)

where )( FVNiE  is the expected number of failure i vulnerabilities per year; and iCPN  is given by 

Equation (9). Indeed, each sub-assembly’s CPN is multiplied by its failure vulnerability as a weighting 
factor. Thus, the annual CPNs can be used to identify the wind turbines with higher risk in a wind farm 
consisting of multiple different wind turbines. The wind turbine with higher annual CPN is given 
higher priority for correction. 

4. A Comparative Study 

In this section, a quantitative comparative study is carried out using the traditional and the proposed 

FMEA methodologies on two onshore and offshore wind turbine systems of the same type. Both the 

wind turbines have the same power rating, structure, and same condition monitoring system to detect 

failures. The only difference between the turbines is in their geographical features (such as location, 

weather conditions, wind speed and temperature). 

In order to make comparison of the results fair, the same database has been used for two 

methodologies. Our failure data has been collected from ten-minute Supervisory control and data 

acquisition (SCADA) database, automated fault logs, O&M reports, and supplemented with data from 

references [11,29–31]. Figure 5 represents the failure rate of the sixteen sub-assemblies of the 

onshore/offshore wind turbine system. Since the wind turbines considered for this study are in their 

useful lifetime, we assumed that their failure rates are constant. However, we tested our dataset and  

it did not provide enough evidence to reject our hypothesis that the underlying failure distribution is  

the negative exponential distribution. As shown, the average failure rate of the onshore (offshore) wind 

turbine system (i.e., the expected number of failures per year) is equal to 1.22 (1.38)/year. In the 

onshore wind turbine system, the most frequent failures are related, respectively, to the tower, gearbox, 

rotor blades, rotor hub and the transformer, whereas in the offshore wind turbine system, the gearbox, 

rotor blades, generator, tower and the transformer possess the highest failure rates. 

The software reliability analysis tool used for this study is Windchill Quality Solutions (formerly 

Relex), version 10.0 [32]. This software can be used for a variety of purposes such as reliability 

prediction, FTA, Markov modeling, Weibull analysis and drawing the reliability block diagrams. 
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4.1. Traditional FMEA 

On the basis of collected information from the experts and the criteria explained in Tables 2–4,  

the traditional FMEA methodology is applied to both the onshore and offshore wind turbine systems. 

Figure 5. The failure rates for the sub-assemblies of the (a) onshore and (b) offshore wind 

turbine system (sub-assemblies are listed in alphabetical order) [15,19]. 

 

Table 7 gives the RPN values obtained from PTC Windchill FMEA module [33] for the sixteen  

sub-assemblies of wind turbine systems considered in this study. Since we assumed that both the wind 

turbines have been equipped with the same condition monitoring system, the same scores were 

assigned for detection of a failure (Sd) in sub-assemblies. 

From Table 7, the tower (sub-assembly #14) is identified as the most critical part in both the 

onshore and offshore wind turbine systems. However, the tower’s RPN value in offshore system is  

35 units higher than that of onshore counterpart. Also, the screws (sub-assembly #13) are the least 

critical part in both systems with the same RPN value of 2. 

The ranking order of all sub-assemblies with their scores is shown in Figure 6, where the vertical 

axis represents the RPN values. As shown, in the onshore wind turbine system, the gearbox has a 

higher RPN value compared to the rotor blades, whereas, in the offshore wind turbine system, the RPN 
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values of these two sub-assemblies are equal. Also, in the onshore wind turbine system, the generator 

and the power converter are ranked, respectively, as the forth and the fifth critical sub-assemblies, 

while this ranking order is reversed in offshore type. 

Table 7. The RPN values for the onshore/offshore wind turbine sub-assemblies  

(sub-assemblies are listed in alphabetical order). 

# ID Sub-assembly Some components 
Onshore Offshore 

Sf S Sd RPN Rank Sf S Sd RPN Rank 

1 Brake system Brake disk, Spring, Motor 2 1 7 14 13 2 2 7 28 11 

2 Cables Cable 2 2 1 4 15 2 3 1 6 14 

3 Gearbox 
Toothed gear wheels, Pump,  

Oil heater/cooler, Hoses 
3 4 7 84 2 5 3 7 105 2 

4 Generator Shaft, Bearings, Rotor, Stator, Coil 3 3 7 63 4 5 2 7 70 5 

5 Main frame - 2 3 4 24 10 2 4 4 32 10 

6 Main shaft Shaft, Bearings, Couplings 2 2 7 28 9 3 2 7 42 8 

7 Nacelle housing Nacelle 2 3 1 6 14 2 3 1 6 14 

8 Pitch system Pitch motor, Gears 2 3 7 42 7 2 4 7 56 7 

9 Power converter Power electronic switch, cable, DC bus 2 4 7 56 5 3 4 7 84 4 

10 Rotor bearings - 2 2 4 16 11 2 3 4 24 12 

11 Rotor blades Blades 5 2 7 70 3 5 3 7 105 2 

12 Rotor hub Hub, Air brake 3 3 4 36 8 5 2 4 40 9 

13 Screws Screw 2 1 1 2 16 2 1 1 2 16 

14 Tower Tower, Foundation 5 3 7 105 1 5 4 7 140 1 

15 Transformer - 3 4 4 48 6 5 3 4 60 6 

16 Yaw system Yaw drive, Yaw motor 2 2 4 16 11 2 2 4 16 13 

Figure 6. RPN values for the sixteen sub-assemblies of (a) onshore and (b) offshore  

wind turbine. 
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It also should be noted that the ranking orders of some individual sub-assemblies (such as 

transformer, pitch system and main frame) in both systems are the same. One reason for this event 

might be the restricted number of severity-occurrence-detection combinations to assige to the three risk 

factors in traditional methodology. Figure 7 illustrates the RPN values, out of the thirty-nine different 

RPN values, obtained for each sub-assembly of onshore/offshore wind turbine system. 
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Figure 7. The RPN values (+), out of the 39 different RPN values (+,+), obtained for the  

(a) onshore and (b) offshore wind turbine sub-assemblies. 
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The difference between the risk levels of the two wind turbine systems will become more obvious 

when the proposed methodology is applied. 

4.2. Proposed FMEA 

The distance between the onshore platform and the repair shop is negligible and can be ignored, but 

the offshore platform is located approximately 20 km from the repair shop. The onshore (offshore) 

wind turbine’s capacity factor is 0.3 (0.4). This implies that the onshore (offshore) wind turbine system 

is expected to generate ~13.14 (17.52) gigawatt hours (GWh) of electricity per year. This is equivalent 

to the annual electricity consumption of about 3000 (4000) households. The average electricity 

purchase rate is equal to 48 €/MW. 

The expected time required to equip the maintenance crew is 0.5 days. The expected cost to order 

the spare parts and hire service vessels (ship and lifting crane) is 10,000 €. The expected transportation 

time per kilometer is 0.02 days, and the expected transportation cost per kilometer is 500 €. The 

expected time required to setup the maintenance is 0.5 days. The expected time to perform the 

maintenance actions on the failed sub-assembly in onshore (offshore) wind turbine is 0.5 days  

(one day). Daily rate of a skilled worker for maintenance tasks is 200 €. 

Table 8 gives the CPN values for the sixteen sub-assemblies of the onshore/offshore wind turbine 

system considered in this study. As can be seen, the tower (sub-assembly #14) has the highest CPN 

value in both the onshore and offshore wind turbine systems. However, the tower’s CPN value in 

offshore wind turbine system is 432.77 € higher than that in onshore counterpart. Also, the cables  

(sub-assembly #2) possess the lowest CPN value in the both systems. 

From Table 8, the CPN value of gearbox in the onshore wind turbine system is 35.84 € higher than 

that of rotor blades. This order becomes reverse in the offshore wind turbine system, where the rotor 

blades’ CPN value is 2833.45 € higher than that for gearbox. The main reason might be that the offshore 

wind turbine blades are more under “stress” in harsh maritime environments because of the extreme 

weather conditions as well as seasonal affects (such as icing and thunderstorms) [34]. In addition, 

conducting the maintenance tasks for an offshore wind turbine blade is more expensive since it requires 

hiring specialized equipment (e.g., lifting cranes) and transportation means (ships, helicopters). 
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Table 8. The CPN values for the onshore/offshore wind turbine sub-assemblies  
(sub-assemblies are listed in alphabetical order). 

ID Sub-assembly 
Onshore Offshore 

O C D CPN Rank O C D CPN Rank 

1 brake system 0.0100 35,880 0.9 322.92 15 0.00942 47,488 0.9 402.60 12 

2 cables 0.0071 61,299 0.7 304.66 16 0.00580 72,118 0.7 292.80 16 

3 gearbox 0.1102 30,657 0.9 3,040.56 2 0.12971 33,730 0.9 3,937.55 3 

4 generator 0.0901 12,410 0.7 782.70 6 0.10870 13,789 0.7 1,049.20 6 

5 main frame 0.0097 113,849 0.8 883.47 5 0.00797 133,940 0.8 854.00 7 

6 main shaft 0.0418 17,657 0.9 664.26 8 0.03116 20,773 0.9 582.55 9 

7 nacelle housing 0.0100 57,469 0.7 402.28 9 0.00870 67,611 0.7 411.75 11 

8 pitch system 0.0100 81,341 0.9 732.07 7 0.00942 95,695 0.9 811.30 8 

9 power converter 0.0110 37,883 0.8 333.37 11 0.04928 38,759 0.8 1,528.05 4 

10 rotor bearings 0.007 78,709 0.6 330.58 13 0.00725 85,540 0.6 372.10 14 

11 rotor blades 0.1017 42,207 0.7 3,004.72 3 0.12609 76,714 0.7 6,771.00 2 

12 rotor hub 0.0990 4,208 0.8 333.27 12 0.10072 5,186 0.8 417.85 10 

13 screws 0.0044 124,135 0.6 327.72 14 0.00362 146,041 0.6 317.20 15 

14 tower 0.1234 68,330 0.9 7,588.73 1 0.10435 85,412 0.9 8,021.50 1 

15 transformer 0.0990 11,467 0.8 908.19 4 0.10145 13,491 0.8 1,094.95 5 

16 yaw system 0.0090 48,002 0.8 345.61 10 0.00942 50,590 0.8 381.25 13 

- others 0.2566 14,668 1 3,763.81 - 0.18696 17,407 1 3,254.35 - 

- overal CPN (€) - - - 24,069 - - - - 30,500 - 

It is also observed that the overall CPN value for onshore wind turbine system is 24,069 €, whereas, 

this is 30,500 € for the offshore type. This implies that the wind power system located on sea comes 

with 27% higher O&M costs compared to its onshore counterpart. Definitely, this cost ratio will 

become greater for those offshore wind turbines located in cold, icy or remote areas. Now, the share of 

each subassembly’s failure in the overall CPN is calculated using Equation (11). In Figure 8, the  

sub-assemblies have been sorted in descending order with regard to their %CPNs, where the vertical 

axis represents the cumulative %CPN. 

Figure 8. Cumulative %CPNs for the sixteen sub-assemblies of (a) onshore (b) offshore 

wind turbine system. 

(a) (b) 
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From the criticality point of view, the wind turbine sub-assemblies were classified into three main 

groups. In onshore wind turbine, the seven most critical sub-assemblies of tower, gearbox, rotor 

blades, transformer, main frame, generator and pitch system comprise around 70% of the overall CPN, 

whereas, their frequency of failure accounts for 54% of the system failures. Similarly, in the offshore 

type, the five most critical sub-assemblies tower, rotor blades, gearbox, power converter and 

transformer are included in Group A. The failures due to these five sub-assemblies comprise around 

51% of the total system failures. 

In order to estimate the annual CPN of the wind turbine systems, Equation (12) is used. Table 9 

gives the annual CPNs for the sixteen sub-assemblies of the onshore/offshore wind turbine system. The 

column of failure vulnerability specifies the expected frequency that each sub-assembly has been 

detected with a risk of failure or has actually been failed. 

Table 9. Annual CPNs for the sixteen sub-assemblies of onshore/offshore wind  

turbine system. 

ID Sub-assembly 
Onshore Offshore 

Failure vulnerability Annual CPN Failure vulnerability Annual CPN 

1 brake system 0.14 43.77 0.14 58.15 
2 cables 0.12 37.70 0.11 33.46 
3 gearbox 1.49 4,542.06 1.99 7,831.35 
4 generator 1.57 1,229.08 2.14 2,248.29 
5 main frame 0.15 130.69 0.14 117.43 
6 main shaft 0.57 376.38 0.48 278.33 
7 nacelle housing 0.17 70.11 0.17 70.59 
8 pitch system 0.14 99.24 0.14 117.19 
9 power converter 0.17 55.92 0.85 1,298.84 

10 rotor bearings 0.14 47.05 0.17 62.02 
11 rotor blades 1.77 5,325.82 2.49 16,830.77 
12 rotor hub 1.51 503.15 1.74 726.01 
13 screws 0.09 29.32 0.08 26.43 
14 tower 1.67 12,694.09 1.60 12,834.40 
15 transformer 1.51 1,371.14 1.75 1,916.16 
16 yaw system 0.14 47.43 0.16 61.95 
- others 3.13 11,782.68 2.58 8,396.22 

From Table 9, it can be seen that the annual CPN for the onshore (offshore) wind turbine system is 

38,386 € (52,908 €), which implies an expected annual failure vulnerability of 1.59 (1.73) for the 

onshore (offshore) wind turbine system. 

4.3. Analysis of Results 

4.3.1. Comparisons 

In this section, some comparisons are made between the quantitative results of the proposed FMEA 

methodology and the existing prioritization approaches in wind farms. Then, the results are analyzed to 

establish some relationships that might be useful for future wind turbine designs. 
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A useful outcome of the proposed methodology could be a comparison between the ranking orders 

obtained from the sub-assemblies’ CPNs and the field failure rates. Such a comparison between  

field failure rate data (in Figure 5) and CPN values (in Table 8) for the offshore wind turbine system is 

shown in Table 10. 

Table 10. Ranking comparisons between “failure rate” and “CPN”. 

Rank Failure rate Proposed FMEA 

1 Gearbox Tower 
2 Rotor blades Rotor blades 
3 Generator Gearbox 
4 Tower Power converter 
5 Transformer Transformer 
6 Rotor hub Generator 
7 Power converter Main frame 
8 Main shaft Pitch system 
9 Brake system/ Pitch system/Yaw system Main shaft 
10 - Rotor hub 
11 - Nacelle housing 
12 Nacelle housing Brake system 
13 Main frame Yaw system 
14 Rotor bearings Rotor bearings 
15 Cables Screws 
16 Screws Cables 

From Table 10, it is observed that both the approaches (failure rate and CPN) obtain the same ranking 

orders for three of the individual sub-assemblies (i.e., rotor blades, transformer and rotor bearings). 

Nevertheless, there is a noticeable difference between the results obtained using two approaches for 

some major sub-assemblies such as the tower, gearbox, power converter, and the generator. 

Also, as the failure rates of the three sub-assemblies brake, pitch system and the yaw system are 

almost equal, they are put in the same priority level from the failure rate perspective. However,  

the yaw system’s failures are more detectable than the brake or pitch system’s failures. For instance,  

in Table 7, the detection rating of 4 was assigned to the yaw system, while it was 7 for both the brake 

and the pitch system. Similarly, according to Table 8, the not detection possibility of yaw system was 

obtained equal to 0.8, while it was 0.9 for both the brake and the pitch system. 

Even though the detection possibility is linked to failure rate (because if a root cause is hard to 

detect, a failure is more likely to occur), it might seem more reasonable to compare the ranking orders 

with the product of failure rate and detection possibility. Such a comparison between “failure rate × not 

detection possibility” data (from Figure 5 and Table 8), and CPN values (in Table 8) for the offshore 

wind turbine system is shown in Table 11. 
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Table 11. Ranking comparisons between “ λ  D× ” and “CPN”. 

Rank “Failure rate × not detection possibility” Proposed FMEA 

1 Gearbox Tower 
2 Tower Rotor blades 
3 Rotor blades Gearbox 
4 Transformer Power converter 
5 Rotor hub Transformer 
6 Generator Generator 
7 Power converter Main frame 
8 Main shaft Pitch system 
9 Brake system/Pitch system Main shaft 
10 - Rotor hub 
11 Yaw system Nacelle housing 
12 Main frame Brake system 
13 Nacelle housing Yaw system 
14 Rotor bearings Rotor bearings 
15 Cables Screws 
16 Screws Cables 

Table 11 shows more similarity between the results obtained from the “failure rate × not detection 

possibility” point of view and the CPN approach. For instance, the difference between the ranking 

orders of some sub-assemblies such as the tower and the generator has been less. In addition, as it was 

expected, the brake and the pitch system are ranked ahead of the yaw system from the “failure rate × not 

detection possibility” perspective. Nevertheless, there is still some noticeable difference between the 

ranking orders of some critical sub-assemblies such as the gearbox and the power converter. The main 

reason is that the severity information cannot be concluded from “failure rate × not detection 

possibility”. Therefore, it seems more reasonable to multiply the “failure rate × not detection 

possibility” data by some measures of severity (such as the mean-time-to-repair, logistics lead-time, or 

cost consequences of a failure). In Table 12, the results obtained for the offshore wind turbine system 

from the CPN perspective is compared with the results obtained from the traditional FMEA using  

RPN method. 

As can be seen, two methodologies are in agreement about the tower being the most critical  

sub-assembly of wind turbine. Also, the results obtained from two approaches (RPN and CPN) are 

very similar to each other for most of the major sub-assemblies (such as the rotor blades, gearbox, 

power converter, generator and the transformer). 

The main problem in the traditional FMEA methodology is that it puts two critical sub-assemblies 

of the gearbox and the rotor blades as having the same priority. The nacelle housing and the cables are 

also placed at the same ranking level. But, applying the proposed methodology reveals that there is a 

significant difference between these sub-assemblies’ CPN values. 
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Table 12. Ranking comparisons between “RPN” and “CPN”. 

Rank Traditional FMEA Proposed FMEA 

1 Tower Tower 
2 Gearbox/Rotor blades Rotor blades 
3 - Gearbox 
4 Power converter Power converter 
5 Generator Transformer 
6 Transformer Generator 
7 Pitch system Main frame 
8 Main shaft Pitch system 
9 Rotor hub Main shaft 

10 Main frame Rotor hub 
11 Brake system Nacelle housing 
12 Rotor bearings Brake system 
13 Yaw system Yaw system 
14 Nacelle housing/Cables Rotor bearings 
15 - Screws 
16 Screws Cables 

4.3.2. CPN Reduction 

Offshore wind farm managers are under an increasing pressure to reduce their O&M costs. One 

effective way to reduce O&M costs of the wind turbine systems is by improving the fault detection 

capability. This improvement can be achieved through using new monitoring techniques such as 

acoustic emission, ultrasonic testing, strain measurement, radiographic inspection, thermography and 

signal processing methods [35]. 

As mentioned earlier, the proposed FMEA methodology can be used in order to find out the 

percentage reduction in the overall CPN of system when the CPN value of one of the sub-assemblies is 

reduced. Table 13 gives the amount of reduction in each sub-assembly’s annual CPN that can be 

achieved by ten percent improvement in the fault detection capability. 

Table 13. Reduction in the annual CPN by ten percent improvement in fault detection. 

ID Sub-assembly 
Redunction in annual CPN 

onshore offshore 

1 brake system 4.37 5.81 
2 cables 3.77 3.34 
3 gearbox 454.21 783.14 
4 generator 122.90 224.83 
5 main frame 13.07 11.75 
6 main shaft 37.63 27.83 
7 nacelle housing 7.01 7.06 
8 pitch system 9.93 11.72 
9 power converter 5.59 129.88 

10 rotor bearings 4.70 6.21 
11 rotor blades 532.58 1683.08 
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Table 13. Cont. 

ID Sub-assembly 
Redunction in annual CPN 

onshore offshore 

12 rotor hub 50.31 72.60 
13 screws 2.93 2.64 
14 tower 1269.41 1283.44 
15 transformer 137.11 191.61 
16 yaw system 4.74 6.19 

 others 1178.27 839.62 

 Group A 2539.21 4071.15 

From Table 13, it can be seen that ten percent improvement in fault detection capability of the 

group A’s sub-assemblies will result, respectively, in 6.61 and 7.69 percent reduction in the onshore 

and offshore wind turbine’s annual CPN. This implies that using a condition monitoring system that be 

able to improve the detection possibility of these sub-assemblies by ten percent and costs less than this 

amount of saving, is beneficial to be purchased. 

4. Conclusions 

In this paper, we developed a new tool for risk and failure mode analysis of wind turbine systems 

(both onshore and offshore) by integrating the aspects of traditional FMEA and some economic 

considerations. Some important features of the proposed methodology, for application to FMEA of 

wind turbine systems, can be summarized as follows: 

i. The traditional FMEA methodology is based on the risk-priority-number (RPN) index which is 

calculated by multiplying the occurrence (O), severity (S), and detection (D) of a failure. 

While, the proposed FMEA methodology is built on the cost-priority-number (CPN) index 

which is defined as the product of the probability of failure (O), it’s likely cost consequences 

(C) and detection possibility (D). 

ii. The proposed FMEA methodology provides an organized framework to combine the 

qualitative (expert experience) and quantitative (SCADA field data) knowledge for use in an 

FMEA study; 

iii. The building blocks of RPN method are discrete, and therefore cannot represent effectively  

the strength of criticality. But, the CPN method is based on the cost consequences of failures 

which are expressed in monetary unit. So, it makes the proposed FMEA methodology more 

understandable, realistic and practical for wind farm managers; 

iv. The relative importance weights of the risk factors need to be taken into account in the 

traditional methodologies (see [36]), but in the CPN method, there is no need to include any 

weighting factors for O, C and D; 

v. The use of CPN analysis enables the wind farm managers to compare different wind turbine 

systems with different structures from criticality point of view; 

vi. The CPN method supports wind farm managers’ decision making on whether and how much to 

invest in reliability improvement programs (such as upgrading the monitoring system) in order 

to reduce the O&M costs; 
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vii. The CPN method can be utilized when the field failure data and the cost parameters are 

available. Since our analysis showed a meaningful similarity between the results of the 

traditional FMEA and the CPN method, the use of the traditional FMEA is recommended only 

in situations where there is a lack of the field data; 

viii. The traditional FMEA methodology could be suitable for use in “risk screening” phase, or 

during the “design” stage of a new wind turbine configuration. During the risk-screening phase, 

only a relative ranking order is needed. This will distinguish the failure modes with a high risk 

level from those with a low-risk level. The proposed FMEA methodology would be suitable for 

use in “risk analysis and evaluation” phase, or during the “operation” stage. At this stage, a 

more detailed analysis of each failure mode is required to evaluate their ultimate effects on the 

system performance. 

There is a wide scope for future research in the area of FMEA for wind turbine systems. In this 

study, we only considered the economic dependence that exists between the components in a  

multi-component system and focused on an economical risk assessment approach of the wind turbine 

systems. The generalization of the model in order to include the structural and stochastic dependencies 

between components will be an interesting topic for future research. It is also observed sometimes that 

the FMEA team members, because of their different expertise and backgrounds have different 

opinions. The diversity and uncertainty of FMEA team members’ assessment information will be well 

modeled and analyzed using some existing belief structures in our future research. 
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Appendix 

Table A1. FMEA ratings for occurrence of a failure (O) [10]. 

Rating Occurrence Meaning Possible failure rate 
1 remote Failure in unlikely. ≤1/1,500,000 
2 low Relatively few failures. 1/150,000 
3 - - 1/15,000 
4 moderate Occasional failures. 1/2,000 
5 - - 1/400 
6 - - 1/80 
7 high Repeated failures. 1/20 
8 - - 1/8 
9 very high Failure is almost inevitable. 1/3 
10 - - ≥1/2 
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Table A2. FMEA ratings for severity of a failure (S) [10]. 

Rating Severity effect Meaning 

1 none No effect. 

2 very minor 
Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications. 

Defect noticed by discriminating customers. 

3 minor 
Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications. 

Defect noticed by average customer. 

4 very low 
Cosmetic defect in finish, fit and finish/squeak or rattle item that does not conform to specifications. 

Defect noticed by most customers. 

5 low 
Item operable, but comfort/convenience item(s) operable at reduced level of performance. Customer 

experiences some dissatisfaction. 

6 moderate 
Item operable, but comfort/convenience item(s) inoperable. Customer  

experiences discomfort. 

7 high Item operable, but at reduced level of performance. Customer dissatisfied. 

8 very high Item inoperable, with loss of primary function. 

9 
hazardous with 

warning 

Very High severity ranking when a potential failure mode affects safe operation and/or involves 

noncompliance with government regulations with warning. 

10 
hazardous 

without warning 

Very High severity ranking when a potential failure mode affects safe operation and/or involves 

noncompliance with government regulations without warning. 

Table A3. FMEA ratings for detection of a failure (D) [10]. 

Rating Detection Meaning 

1 almost certain Design control will almost certainly detect a potential cause/mechanism and subsequent failure mode. 

2 very high Very High chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

3 high High chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

4 moderately high Moderately high chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

5 moderate Moderate chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

6 low Low chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

7 very low Very Low chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

8 remote Remote chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

9 very remote Very remote chance the design control will detect a potential cause/mechanism and subsequent failure mode. 

10 
absolutely 

impossible 

Design control will not and/or cannot detect a potential cause/mechanism and subsequent failure mode;  

or there is no design control. 
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