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Highlights 

 Over-trained rats perform reversal learning more rapidly than rats trained to 
criterion only. 
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 The same mechanism that can result in more rapid reversing slows 
attentional shifting.  

 Greater alacrity of reversal learning does not necessarily indicate greater 
cognitive flexibility. 

 

Abstract 

Cognitive flexibility is a term used to describe the brain processes underlying the 

phenomenon of adaptive change in behaviour in response to changed contingencies 

in the internal or external environment. Cognitive flexibility is often assessed in 

complex tasks measuring perceptual attentional shifting or response or task switching, 

but, arguably, reversal learning is a simple assay of cognitive flexibility. Reversal 

learning requires the detection of a changed outcome, the cessation of a previously-

rewarded response and the selection of an alternative, previously-unrewarded, 

response. This study addressed the issue of the relationship between reversal learning 

and cognitive flexibility.  

In a single testing session, rats completed a series of 2-alternative forced-choice 

discriminations between digging bowls. The bowls differed according to both the 

medium within the bowl and the odor of the bowl. Having learned which cue (one of 

the odors or one of the digging media) indicated the food-baited bowl, half the rats 

were given additional trials of “over-training”. To test reversal learning, the meaning 

of the cues predictive of reward/non-reward was then switched.  

There was a robust effect of over-training, with over-trained rats performing reversal 

learning in fewer trials than rats trained to criterion only. The pattern of errors 

supported the hypothesis that more rapid reversing results from the formation of an 

attentional set. This is the same attentional mechanism that results in less rapid 

shifting or switching. We conclude that the behavioural flexibility demonstrated in 

reversal learning does not provide a scale on which cognitive flexibility can be 

measured.  

 
Keywords: overtraining; schizophrenia; discrimination learning; ASST; 
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1 Introduction 

Just as “Everyone knows what attention is”[1], everyone knows what cognitive 

flexibility is. We have all experienced the annoyance of inflexible cognitions, such as 

when a song is ‘stuck in our head’ or we cannot find the solution to a problem and 

persist with a tactic that evidently does not work. Conversely, we know the joy of 

when it serves us well and delivers eureka moments, solutions ‘pop’ into mind, or we 

manage to ‘think outside the box’. For these reasons, we can also appreciate just how 

devastating are the consequences of impaired cognitive flexibility, which is common 

in so many psychiatric and neurological disorders[2].  

Although we can introspect on our own cognitive flexibility, the reliable 

evidence of it in other people or animals is their behavioural adaptability. Indeed, 

behavioural flexibility has been referred to as the ‘gold standard’ of evidence for 

complex cognition [3]. The early psychology literature provides many examples of how 

it can be measured [4–7], but at its most simple, behavioural flexibility is the 

“modifiability of learned behaviour”[8]. Exemplary of this is discrimination reversal 

learning, which has been called a “pre-eminent test of cognitive flexibility”[9]. Reversal 

learning is considered a particularly important measure of flexibility because of its 

translational value: it is readily measured in many different species. Species 

appropriate stimuli, responses and rewards can be used and behavioural flexibility is 

measured as the number of trials required to change responding in response to a 

change in feedback, providing a simple to understand scale that can be directly 

compared within and between species. However, we must not be seduced by the 

apparent elegant simplicity of this paradigm: reversal learning is paradoxically 

complex. 

We have previously argued [10] that reversal learning may represent a 

different kind of flexibility than is typically measured in tasks involving perceptual 

shifting or task switching. Specifically, in many shifting and switching tasks, the 

construct of interest is cognitive preparedness, also known as ‘mental set’ [11] (e.g., 

a perceptual set, response set or learning set). Mental set can be thought of as a 

cognitive structure that is a component of a model in model-based learning (model-

based learning uses “representations of the environment, expectations, and 
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prospective calculations to make cognitive predictions of future value” [12] in contrast 

to model-free learning, which “progressively acquires cached estimates of the long-

run values of circumstances and actions from retrospective experience.” [12]).  

Mental set does not refer to a group (for example, a group of stimuli or 

features of a perceptual dimension, like ‘colours’ or ‘shapes’, or a group of problem-

solving strategies) but rather it refers to the idea that the cognitive system is set, or 

prepared, to perform particular mental operations or process particular information. 

It is the same meaning as when used by the starter in a race: “on your mark, get set, 

Go!” ‘Getting set’, or prepared, benefits performance when the preparation is 

appropriate and impedes performance when it is not. Nevertheless, it is important to 

note that efficiency is not the same as capability: if the starter simply shouted ‘Go!’ 

the race would still begin, albeit more slowly and, probably, more chaotically. 

Conversely, if the starter unexpectedly shouted ‘No!’, rather than ‘Go!’, the runners 

would struggle to inhibit their prepared response. Tasks designed to assess mental set 

typically look for costs (e.g., failure to inhibit responses) and benefits (e.g., faster or 

more accurate responses) of being inappropriately versus appropriately prepared, or 

having the right cognitive structure or model. In the ID/ED task [5], new learning is 

assessed in the context of two different states of cognitive preparedness: at the ID 

stage, where there is an appropriate mental set, it confers a learning benefit; and at 

the ED stage, where the mental set is inconsistent with the new learning, it results in 

a learning cost. The state of mental set cannot be directly measured, but rather it is 

inferred from the difference between its benefit (trials to learn at the ID stage) and its 

cost (trials to learn at the ED stage).  

Reversal learning is different in that behavioural flexibility is directly measured 

because it is an inherent performance requirement. This does not necessarily mean 

that reversal learning occurs in a model-free context (see [13,14]). Indeed, it has been 

suggested [9] that, in addition to reinforcement learning [15], at least two model-

based processes are involved, namely: ‘knowing that reversals can occur’ [16,17];  and 

having ‘a representation of the task demands’ [18,19]. This means that either, or both, 

model-free and model-based processes may be activated and contribute to reversal 

learning in any particular task variant [9]. 
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It seems intuitively plausible that the demands on cognitive flexibility would 

be rather different in the case of model-based, compared to model-free, reversal 

learning. This might account for some of the paradoxical effects that have been 

reported in the reversal learning literature, such as unexpected improvements where 

manipulations had been expected to result in impairment of performance [20–27]. An 

example of this is the over-training reversal effect (ORE) [26], which is the paradoxical 

finding that rats given additional, post-criterion, training on a visual discrimination 

require fewer trials to learn the reversal than rats trained to criterion only. This 

demonstrates that reversal learning involves more than simply inhibiting a pre-potent 

response and learning a new response (see also [28]), as model-free learning would 

require. Over-training may serve to increase the salience of the predictive cues and/or 

reduce or eliminate the number of ‘error factors’ (i.e., cues that might be predictive 

of reward but which are, in fact, irrelevant) [20]. This modulation of salience enables 

the solution of the credit assignment problem by inhibiting the processing of, or down-

regulating attention to, irrelevant information [29]. In other words, reversal learning 

is more rapid because over-training modulates the relative salience of cues, which is 

a change in the state of cognitive preparedness, or mental set.  

Patterns of errors can be used to infer whether an animal is perseverating with 

a previous solution or is seeking to find or maintain a new solution (e.g., [30]). An 

attentional account of the ORE predicts that with over-training there will be an 

increase in the number of perseverative responses at the outset of reversal learning 

and a reduced probability of responding to irrelevant cues, hence fewer trials of ‘at 

chance’ responding [31]. It has been noted that an ORE is less likely to be observed if 

the task is ‘easy’ (such as spatial discrimination learning) compared to more ‘difficult’ 

(such as visual discrimination learning) [31]. Crucially, however, ‘problem difficulty’ is 

not determined by the absolute number of errors or trials to criterion, but rather by 

the initial probability of responding to the relevant aspect of the stimulus [31,32]. For 

example, allocentric, or absolute, spatial location is a salient feature for a rat in a maze 

with stable extra-maze spatial cues and is likely to be a default response. Therefore, 

an allocentric (one place vs another) spatial discrimination is ‘easy’ for a rat. A visual 

discrimination in the same maze is more ‘difficult’ because a rat might first explore 
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other possibilities (e.g., allocentric location) before learning about the relevant visual 

stimulus. 

In the experiment reported here, we examined reversal learning and the ORE 

in a bowl-digging paradigm, exploiting a number of advantages of this approach to 

explore the processes involved. Rats spontaneously forage and will readily dig in bowls 

filled with various scented media to find food. They quickly learn to discriminate 

between bowls which differ by at least two stimulus attributes (or dimensions), either 

odor (scent added to the bowl) or haptic (the digging media) cues, but only one of 

which is correlated with reward. We have previously undertaken an analysis of the 

performance of 375 intact rats (control groups tested in 22 different experiments, by 

different experimenters, over 18 years) and confirmed that the odor and haptic 

dimensions are both learned very rapidly [33]. Although rapid learning implies this is 

an ‘easy’ task for the rat, the initial probability of responding to the relevant stimulus 

attribute is chance. Our task, therefore, dissociates difficulty of learning (defined by 

the number of trials or errors) from problem difficulty. A second advantage is that 

because the rat learns the discrimination in a small number of trials, the number of 

over-training trials required for an ORE should also be small. We know from previous 

work [33] that an attentional set typically forms within 30 trials of performing 

successive discriminations, suggesting that, if the ORE is an attentional phenomenon, 

30 additional trials should be sufficient to generate it in a bowl-digging context. We 

know that rats will continue to perform bowl-digging discriminations and consume the 

food bait (pieces of cereal) for well over 100 discrete trials in a single testing session, 

so this number of over-training trials, additional to the 30 or so trials of the test 

discriminations, is comfortably within the satiety limit. Therefore, in a single session, 

rats first learned that one of two bowls contained bait, signalled by its odor or by the 

digging material. Half then received an additional 30 trials of overtraining before the 

cues were reversed. Finally, they learned a new discrimination, with novel stimuli: if 

odor had been the relevant cue, it was now the digging media and vice versa. 

The specific prediction was that 30 trials of over-training would generate an 

ORE in this bowl-digging task, reducing the number of trials to criterion for reversal 

learning. The improved reversal learning performance should not generalise to new 

learning of different stimulus attributes that were not over-trained. 
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2 Materials and methods 

2.1 Animals 

Twenty-two female Lister hooded rats (bred in-house; University of St 

Andrews, from Charles River stock), were housed in pairs in 40 x 23 x 19 cm plastic 

cages. This was a convenience sample of female rats, but previous studies have 

reported that there is not a sex difference in normal rats tested in the ID/ED bowl-

digging paradigm, which includes reversal learning [33–36]. Therefore, there is good 

reason to suppose that these results would generalize to male rats. 

Testing was conducted during the ‘lights-on’ phase in a 12-h light/dark cycle 

(lights on at 7:00 am). Although rats are more active during the dark cycle, they have 

sleep-wake periods throughout both the light and dark cycle. Furthermore, they have 

other circadian pacemakers, which can be entrained to food-cues (e.g., activity 

increases in anticipation of food-rewarded T-maze testing in the lights-on period [37]). 

Given that rats appear to be more adaptable in this regard than their human testers, 

all testing was conducted in normal light levels.  

Rats were maintained with controlled access to food, receiving 15-20 g of lab 

chow each day in the latter half of the light period, with water available ad libitum. 

This level of controlled access did not result in weight loss and all rats gained weight 

during the experiment, tracking the normal body-weight curve supplied by Charles 

River. We monitored body condition [38] but we did not keep a rat with ad libitum 

food as a reference point. The weight range of the group was 180-250 g at the start of 

the experiment and 233-328 g at the end.  

The work was conducted under UK Home Office licenced authority (Animal 

(Scientific Procedures) Act 1986) and local ethical and welfare oversight.    

2.2 Apparatus and training 

The apparatus, which has been described previously [39,40], was a plastic cage 

(70cm (length) × 40cm (width) × 18cm (height)), with acrylic dividers forming three 

sections: a large ‘waiting’ area (approximately two thirds of the length), and two 

smaller adjacent ‘choice’ compartments (the remaining third of the length, with each 
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being half of the width). Acrylic panels were used selectively to block access to one or 

both of the choice compartments.  

A bowl (internal diameter of 7cm, with 4cm vertical walls) was placed in each 

of the two choice compartments. Each was filled, to a depth of 0.5 cm from the top, 

with a different digging substrate and with a different odor mixed in. 

 To encourage the rats to retrieve food bait (one half of a Honey Loop; Kellogg, 

Manchester, UK) from digging bowls, they were initially given a bowl, filled with 

sawdust into which had been mixed six pieces of the cereal food reward, in their 

home-cage. The bowl was given at the same time as the daily lab chow and left in the 

cage overnight for the rats to explore and consume the food. However, as the rats 

were housed in pairs, we could not be certain both rats had consumed the cereal bait. 

Therefore, before testing, they were introduced individually to the apparatus and 

presented with bowls filled with sawdust. Bait was initially placed on the surface of 

the sawdust but, over trials, was progressively buried deeper in the sawdust until rats 

were reliably and promptly retrieving it (typically within six presentations). In the 

same session, the rats were then given two discrimination problems, in which they 

had to learn which one of two bowls was baited. The procedure for this training is 

described below. The first discrimination was between two odors mixed in sawdust; 

the second was between two (similar smelling but with different haptic properties) 

media. On a subsequent day, rats were given another two-choice discrimination, but 

this time the two bowls differed from each other both in odor and in digging media 

(i.e., they were presented with a pair of bowls which were compound stimuli: one 

bowl contained medium 1, scented with either odor 1 or 2, and the other contained 

medium 2, scented with the other odor). The rat first had to learn which stimulus (e.g., 

odor 1) reliably indicated that the bowl was baited and then the learning was followed 

by a reversal of the discrimination, where the other stimulus (e.g., odor 2) now 

indicated the location of the bait. The purpose of the training was to ensure the rats 

had experience discriminating the bowls and with reversal learning. Stimuli used 

during any of these training stages were novel and not used again.  

The procedure for testing the rats in these and all subsequent discrimination 

learning (including the test discriminations described below) was the same. 

Specifically, the bowls were introduced, simultaneously, to the ‘choice chambers’ 
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while the rat was in the ‘waiting area’. The location of the baited bowl was pseudo-

randomly determined, with no more than three consecutive trials having the 

rewarded bowl in the same location. The barrier was lifted and rat was allowed to 

approach either or both bowls freely and touch and whisk it, including the surface of 

the digging media. If the rat dug in the baited bowl, the trial was recorded as correct 

and terminated. If the rat dug in un-baited bowl, it was allowed to continue digging 

and searching until it moved away from the bowl, whereupon the trial was recorded 

as incorrect and terminated. When the rat started to dig, a barrier was lowered to 

block access to the bowl in the other choice chamber. The exception to this was the 

first four trials (comprised of two presentations of each pair of bowls) in each stage, 

including reversal learning, where access to the other bowl was not blocked. The rat, 

having first dug in the incorrect bowl, was thus permitted to dig in and retrieve the 

bait from the alternative bowl. This is equivalent to the ‘self-correcting’ procedure 

used by [26]. These trials were still recorded as incorrect but the ‘self-correction’ (i.e., 

digging in the other bowl) gave information to the rat. Criterion performance was six 

consecutive correct responses (P = 0.0156), which could include one or more of the 

first four trials. 

2.3 Design and testing 

In a single testing session, rats completed a series of three, two-choice 

discriminations, an example of which is shown in Figure 1. The rats learned that one 

of the features of the bowl (either its odor or the digging medium) indicated which 

was the baited bowl, and the other feature was irrelevant.  When they had reached 

criterion, half of the rats (n=11) were given 30 additional trials of over-training before 

proceeding to the next stage, while the remaining rats (n=11) proceeded immediately. 

The next stage was a reversal of the discrimination, in which the meaning of the cues 

predictive of reward / non-reward were switched, to test for the effect of over-training. 

Finally, to confirm any effect of over-training was specifically an ORE rather than a 

non-specific learning or performance improvement, rats were given a new 

discrimination with novel compound stimuli (NCD), based on the other, previously 

irrelevant, dimension.    
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2.4 Data Analysis 

The number of trials to criterion was analysed by repeated-measures analysis 

of variance (ANOVA; SPSS v. 23), with a within-subjects factor of stage (three levels: 

CD; Rev; NCD), and a between-subjects factor of Group (two levels: over-trained and 

not over-trained) and Dimension (odor and medium).  

In addition to the effect of over-training on the absolute number of trials, we 

also looked in detail at responding in the reversal stage. We divided responding into 

two learning phases, representing retention of the previous learning and ‘at chance’ 

responding, in a manner similar to previously reported [41]. Trials prior to the first 

correct response (all of which were errors, of course) were classified as ‘perseverative’. 

Responses including and subsequent to the first correct response, and up to and 

including the error trial preceding the final 6-correct trials were classified as ‘at chance’ 

responding. These data were analysed together, with a within-subjects factor of 

Response-type (two levels: perseverative and chance) and a between-subjects factor 

of Group (two levels: over-trained and not over-trained). For all analyses, interactions 

were further examined using restricted analyses (with appropriate corrections) to 

investigate Simple Main Effects [42].  

We also examined the effect of over-training on the probability of an error on 

the early trials of the reversal stage as a function of whether the rat dug in the first 

bowl encountered or sampled both bowls before choosing to dig, and analysed the 

proportion of responses using chi-squared tests. As the rats do not know the location 

of the correct bowl until they approach and sample it, whether they approach the 

baited bowl first is by chance. They are free to dig in the first bowl they encounter, 

but they may also sample the alternative bowl before deciding where to dig. If a rat 

encounters the previously correct bowl first and immediately digs, this could be due 

to a failure to inhibit a pre-potent, well-trained response. However, it is more effortful 

to actively seek an alternative bowl. Therefore, if the rat did not dig in the first bowl 

encountered, but rather sought out the newly incorrect bowl, this would provide 

strong evidence that the response was perseverative. With the same reasoning, the 

converse should apply for correct trials: if the rat sought the correct bowl, this would 
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suggest that it had not merely dug in the first bowl and had a ‘lucky encounter’ (see 

Table 1). 

 

3 Results 

3.1 Trials to criterion 

3.1.1 Discrimination learning (CD stage) 

Rats in both groups attained criterion in the initial discrimination in around 11 

trials (over-trained: M = 11.5, SEM = 1.56; not over-trained: M = 10.7, SEM = 1.54). 

Unexpectedly, we found that rats learned the medium discrimination in significantly 

fewer trials (M = 9.33, SEM = 0.74) than the odor discrimination (M = 13.3, SEM = 1.9) 

(omnibus analysis: Stage by Group by Dimension: F(2,36) = 4.68, p = 0.02; ηp
2 = 0.21; simple 

main effect of Dimension, CD stage: F(1,36) = 7.09, p = 0.01; ηp
2 = 0.18) (see Figure 2).  

Of the 11 rats that were given 30 additional post-criterion trials, 9 made no 

errors in these overtraining trials; one rat made a single error (at the 27th trial of over-

training); and another made 2 errors (on the 5th and 17th trials of overtraining). 

3.1.2 Reversal 

Rats with over-training reached criterion at the reversal stage in significantly 

fewer trials (M = 11.2, SEM = 0.78) than rats trained to criterion only (M = 16.5, SEM = 

1.15) confirming the expected ORE, with a large effect size (simple main effect of Group, 

Reversal stage: F(1,36) = 13.39, p < 0.001; ηp
2 = 0.595; see Figure 2).  

As with the initial acquisition, odor reversals required more trials than medium 

reversals (odor: M = 15.9 (SEM = 1.38); medium: M = 12.1 (SEM = 0.69)) (simple main 

effect of Dimension, Reversal stage: F(1,36) = 6.57, p < 0.015; ηp
2 = 0.42). However, this 

effect of discrimination type was irrespective of whether the rats were over-trained 

(simple interaction of Group by Dimension, Reversal stage: F(1,36) = 1.71, p = 0.2 (n.s.) ηp
2 

= 0.16). 
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3.1.3 New Learning 

The effect of the stimulus (odor or medium) on discrimination learning was also 

seen in the new discrimination, but only for the haptic stimuli (simple interaction of Group 

by Dimension, NCD learning stage: F(1,36) = 9.13, p = 0.005; ηp
2 = 0.19; see Figure 2). The 

rats that had been over-trained on the odor discrimination – and consequently showed 

improved reversal learning – required significantly more trials than the rats not over-

trained to learn the subsequent media discrimination (M = 14.5, SEM = 2.46 (over-trained), 

compared to M = 9.4, SEM = 0.81 (not over-trained)). This pattern confirms that the 

improved reversal learning performance after over-training does not generalize and 

improve performance of a subsequent acquisition. 

3.2 Response types in the reversal stage 

Because the reversal was un-cued, it was unsurprising that all of the rats 

responded on the first trial in a manner consistent with the reward history and the first 

trial of the reversal was an error (classified as perseverative). Some rats (n=8) made no 

further errors after they had made a correct response and so these rats had no ‘at chance’ 

responses. However, for those rats (n = 14) who did make errors after the first correct 

response, the proportion of trials that were errors was 0.51, suggesting that these 

responses were indeed ‘at chance’. 

The over-trained rats made significantly more perseverative responses (M = 3.9, 

SEM = 0.48; range: 1 - 7) compared to the rats not over-trained (M = 1.6, SEM = 0.42; 

range: 1 - 3). The pattern was opposite for ‘at chance’ responding: the over-trained rats 

made significantly fewer responses ‘at chance’ (M = 1.2, SEM = 0.54; range: 0 - 3) 

compared to the rats not over-trained (M = 8.7, SEM = 4.2; range: 0 - 13). Of the 11 over-

trained rats, 7 (64%) made no errors after the first correct response compared to only 1 

(9%) of the 11 rats not over-trained (Figure 3). This pattern was confirmed by a 

significant interaction of Response type by Group: F(1,20) = 33.21, p < 0.01; ηp
2 = 0.62; 

Bonferroni-corrected pairwise comparisons p<0.01 for main effect of Group for each 

response type). 

3.3 Responses in the early trials of the reversal 

As noted above (Section 2.4), the rats do not know the location of the correct 

bowl until they approach it. They may dig in the first bowl approached or they may 
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sample the alternative bowl before deciding where to dig. On the very first trial of the 

reversal, all of the rats made an error and dug in the un-baited bowl. Almost half of 

them (9/22) encountered, by chance, the previously correct bowl first and they dug in 

it without sampling the other bowl. The remaining rats (13/22) encountered the newly 

correct bowl, but then sampled and elected to dig in the alternative (previously 

correct) bowl. This is entirely as expected: it demonstrates that, if the rat did not 

encounter by chance the bowl it expected to be baited, it would actively seek out that 

bowl. 

The probability of a correct response on the subsequent three trials (i.e., the 

2nd, 3rd and 4th trials of the reversal) and whether the rat dug in the first bowl it 

encountered or whether it sampled both of the bowls before making a choice to dig 

were examined to see if the rats continued to actively seek out the previously 

reinforced bowl. As expected, about half of the first approaches were to the newly 

correct bowl on these trials (32 approaches in 66 trials; 48%). However, rats in the two 

groups were not equally likely to dig: the over-trained rats moved to the alternative 

(previously correct) bowl on 82% (14/17) of approaches, which is all the more 

remarkable given that we were using a self-correction procedure, but confirms the 

observations of [26], who also used a self-correction procedure. By contrast, the rats 

not over-trained only moved to the previously correct bowl on 30% (5/15) of 

approaches (Figure 4). This difference between the groups in the likelihood that they 

would perseverate in seeking out the previously correct bowl was statistically reliable, 

with a moderate to large effect size (2 = 7.94, df = 1, p = 0.005, Phi = 0.498).  

Being more likely to ‘accept’ the newly-correct bowl when encountered first 

might imply that the rats not over-trained were learning more rapidly. However, they 

were as likely as the over-trained rats also to ‘accept’ the un-baited (previously 

correct) bowl when that was the first bowl they encountered (2 = 1.7, df = 1, n.s., Phi 

= 0.225).  

4 Discussion 

The aim of this study was to examine the nature of cognitive structures in the 

rat, using reversal learning as a case-study, and looking specifically at over-training 
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and the resultant ORE to see if it is possible to tease apart underlying processes and 

cognitive structures in reversal learning. We trained rats to discriminate bowls based 

on their odor or haptic properties, before giving half of them 30 additional trials (over-

training).  

Over-trained rats showed enhanced reversal learning, which is the over-

training reversal effect, or ORE [26]. The effect of overtraining accounted for >59% of 

the variance and therefore, although amounting to a benefit in this task of a small 

number of trials (~5), overtraining had a large, as well as statistically significant, impact 

on performance. Obviously, no one has or would suggest that the absolute number of 

trials to criterion in any particular reversal learning task is indicative of flexibility per 

se: treatment groups are compared within tasks because different tasks or testing 

paradigms result in differing absolute number of trials to criterion. Even a seemingly 

small change (such as the inclusion of an additional stage or stimulus dimension, as in 

[39], or the difference between stimuli, as we observed here), can have an effect on 

the absolute number of trials for reversal learning. Nevertheless, the effect of 

overtraining was in spite of absolute differences in trials to criterion for odor and 

medium stimuli, thus demonstrating that the ORE is not influenced by ease of learning, 

but rather by problem difficultly [20]. 

The decreased trials to criterion at the reversals was seen in the context of a 

significant increase in perseverative responding (persistence of choosing the 

previously correct bowl) but a greater decrease in the number of trials in which 

responding was at chance. This pattern was predicted [20] and is consistent with the 

suggestion that the ORE reflects greater attentional focus on the relevant stimulus 

attributes and the down-regulation of attention to stimulus attributes that might have 

been relevant for predicting reward, but are in fact irrelevant (i.e., error factors).  

One surprising aspect of the results was that discriminating between odors 

required more trials to learn and reverse than discriminating between media. 

Although we have previously reported [43] that reversals of odor discriminations 

require more trials, the effect size in that large sample was small and a power analysis 

confirmed a sample of >200 rats would be required. It is possible that a difference 

arose due to the particular odors and media used in this experiment. Nevertheless, 

importantly, the discrimination type (i.e., odor or medium) did not significantly change 
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the magnitude of the ORE. It did have an effect on learning a new discrimination that 

involved a shift of attention to a previously irrelevant feature. Rats that had been over-

trained required more trials to learn the final novel discrimination compared to the 

initial discrimination, regardless of the discrimination type. This would be expected if 

the ORE arises from an attentional focus: the initially trained and then over-trained 

dimension means that the novel discrimination requires an extra-dimensional shift of 

attention. Rats that had not been over-trained showed no learning decrement for the 

medium discrimination, acquiring it in as few trials as required by rats performing a 

medium discrimination in the first stage.  

It is intuitively plausible, that reversal learning comprises two parts (e.g., see 

[20]). First, the previous learning must extinguish: in this initial stage, there is a strong 

tendency to respond according to prior reinforcement history, and error responses 

are therefore perseverative and these responses need to be inhibited. Second, new 

learning must occur: in this stage, responses are likely to be correct only by chance, 

prior to the formation of a new association. Because learning in the bowl-digging 

paradigm is so rapid, it is often not possible to identify the point at which responding 

ceases to be perseverative and is at chance. However, over-training had a differential 

effect on the pattern of these different kinds of responses. Specifically, over-training 

resulted in an increase in perseverative responses, with rats more likely to persist in 

seeking the previously correct bowl, and a decrease in responding at chance. More 

than half of the over-trained rats made no further errors after their first correct 

response (i.e., there was no ‘at chance’ responding) and the rest made very few errors. 

By contrast, the rats not over-trained made very few perseverative errors, quickly 

adopting a new strategy of digging in the first bowl they encountered, consequently 

responding at chance, until they learned the new association. 

As discussed above, reversal learning tasks can depend solely on model-free 

learning, but they may also involve model-based processes [9,44]. We suggested 

(Introduction) that mental set is an example of a model for model-based learning. 

Prior experience of one dimension enhances the learning of a new discrimination 

involving the same dimension and slows learning when another stimulus feature 

becomes relevant. Overtraining contributes to the formation of mental set – the 

model – and it is this model that results in more rapid reversal learning. Most 
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importantly, if reversal learning in this task were accomplished by model-free 

associative learning, by adding to the reinforcement history overtraining would 

increase the trials to criteria for a reversal. 

One of the processes identified as a potential component in model-based 

reversal learning is that ‘reversals can occur’ [9]. This is a reasonable expectation for 

serial reversal learning: over successive reversals errors reduce because the animal 

appears to learn a win-stay/lose-shift rule [7]. The first error, or unexpected non-

reward, is the cue that a reversal has occurred and the lose-shift rule is invoked. 

Clearly, this model is not relevant in the case of the ORE. We make this observation to 

re-emphasise the point that, in different circumstances, model-based reversal 

learning may involve different types of model. 

At this point, it is as well to remind ourselves that “when philosophers and 

psychologists speak of ‘cognitive processes’ and ‘cognitive structures’ it is not clear 

what they are talking about” ([45]p.385). Even putting the term ‘cognitive’ aside, and 

thinking of very specific examples of cognition, the meaning of ‘processes’ and 

‘structures’ is often still obscure [44]. One of the issues is that processes are often 

invoked in a manner that essentially describes the behaviour and, as such, they do not 

offer explanations. This is not to say that there is no value in a careful analysis and 

description of behaviour, but we must be cautious and not think that in naming 

something, we have explained it. It is also as well to remember that simple systems 

can result in surprisingly complex outputs: for example, it has been suggested that the 

‘reward prediction error’ systems in the brain may be smarter than often assumed 

[44]. 

In this paper, we have used reversal learning as a specific example to examine 

cognitive processes that have been postulated to underlie cognitive flexibility. We 

have previously suggested that shifting and switching may be different forms of 

flexibility compared to reversal learning [10]. Nevertheless, notwithstanding the 

obvious differences between tasks, under some conditions performance of all of them 

may be modulated according to the regulation of attention to cues predictive of 

reward. Thus, a cognitive structure (mental set) is the product of an attentional 

process and this is common to all these tasks under particular experimental conditions. 

The real paradox of the ORE is that the improvement in the rate of reversal learning 

ACCEPTED M
ANUSCRIP

T



17 
 

arises from the same attentional mechanism or model that accounts for the 

decrement in performance in the ED stage of a shifting task or when a task requires a 

response switch. Of course, this is not so paradoxical if one considers that what affects 

rate of learning (including reversal learning) is the appropriateness of the mental set. 

The ORE is evidence of the benefit of a mental set and it is thus akin to the 

performance improvement seen at the ID stage of an ID/ED task. Nevertheless, it 

necessarily follows that the rate of reversal learning cannot, per se, be indicative of 

the capacity for cognitive flexibility.  
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Figure legends 

 
Figure 1: Schematic representation of the task. The rats were presented with a pair of 

bowls containing coarse or fine tea (‘media’) scented with ginger or cinnamon (‘odor’). 

In the example, the bait (a piece of cereal, represented by the ‘cut out’ corner) is 

initially in the bowl with the odor of ginger (signified by upper case bold), but for half 

the rats it was associated with one of the media. In the reversal, the same pairs of 

bowls are used, but the bait is now associated with the alternative odor (or the 

alternative medium). For the novel compound discrimination, two new pairs of bowls 

are used, containing sand or grit scented with sage or paprika. Rats who had 

discriminated odors now had to discriminate between the media and vice versa. The 

criterion for learning was six consecutive correct trials. 

 

Figure 2: Mean trials to criterion (±SEM) for each stage of test, plotted by whether the 

initial discrimination (CD) was between odors or media. Thirty addition trials of over-

training of the initial CD facilitated subsequent reversals of both odor and medium 

discriminations. Overall, odor discriminations required more trials to learn than media 

discriminations, except for rats over-trained on the odor discrimination: they failed to 

show better subsequent discrimination learning of the media. *p < 0.05. 
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Figure 3: In the reversal learning stage, error responses prior to the first correct 

response were considered ‘perseverative’. Responses form the first correct response 

to the last error response, inclusive, were considered to be ‘at chance’ responding. 

Over-trained rats made significantly more perseverative responses, but made 

significantly fewer responses ‘at chance’, than rats trained to criterion only. *p < 0.05.  

 

Figure 4: Responses on the 2nd, 3rd and 4th trials of the reversal stage for each group 

of 11 rats (i.e., 33 responses per group) were categorized according to whether the 

rat dug in the first bowl encountered without sampling the other bowl (‘accept’; solid) 

or where it was sampled and rejected in favour of the alternative (‘reject’; hashed). 
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Correct responses (i.e., accept the baited or reject the un-baited) are shown in white; 

incorrect responses (i.e., reject the baited or accept the un-baited) are shown in grey. 

The rats not over-trained were more likely to ‘accept’ the first bowl they encountered, 

while the over-trained rats sought out the previously rewarded bowl (i.e., 

perseverative responding). 
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Table 1: A rat could dig in the first bowl encountered or could sample both 

bowls before deciding in which to dig. If the rat accepts the first bowl, the meaning of 

the choice is ambiguous. However, there is greater confidence in the interpretation if 

the rat samples both bowls: the seeking behavior suggests that it was either correctly 

rejecting the un-baited bowl or it was incorrectly rejecting and perseverating.  

 

 Dig in first bowl 
approached (“accept”) 

Sample both 
bowls before digging 

(“reject”) 

Dig in baited bowl 
(“correct”) 

Made a lucky 
guess or knew it was 

correct? 

Reject the 
unbaited bowl and seek 

out the baited bowl: 
correct response 

Dig in un-baited 
bowl (“incorrect”) 

Made an unlucky 
guess or Failed to inhibit 
a pre-potent response or 

thought it was correct 

Reject the baited 
bowl in favor of seeking 

out the previously-baited 
bowl: perseverative 

response 
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