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Abstract

The computation of the semiclassical Schrödinger equation presents major
challenges because of the presence of a small parameter. Assuming periodic
boundary conditions, the standard approach consists of semi-discretisation with
a spectral method, followed by an exponential splitting. In this paper we sketch
an alternative strategy. Our analysis commences from the investigation of the
free Lie algebra generated by differentiation and by multiplication with the inter-
action potential: it turns out that this algebra possesses structure that renders
it amenable to a very effective form of asymptotic splitting: exponential splitting
where consecutive terms are scaled by increasing powers of the small parameter.
This leads to methods that attain high spatial and temporal accuracy and whose
cost scales like O(M logM), where M is the number of degrees of freedom in the
discretisation.

1 Introduction

The semiclassical Schrödinger equation plays central role in a wide range of appli-
cations and is the fundamental model of quantum mechanics (Griffiths 2004). Its
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computation presents numerous enduring challenges (Jin, Markowich & Sparber 2011)
which form the centrepiece of this paper.

We consider the standard linear Schrödinger equation in a single space variable,

ih̄
∂u

∂t
= − h̄2

2m

∂2u

∂x2
− Ṽ (x)u, t ≥ 0, x ∈ [−(2m)−1/2, (2m)−1/2], (1.1)

where u = u(x, t) is given with an initial condition and periodic boundary condi-
tions, the interaction potential Ṽ is a periodic function and m is the mass of the
underlying particle. The parameter h̄, the reduced Planck constant , is truly minute,
h̄ ≈ 1.05457168×10−34 Joule secs, while m is a small quantity, although substantially
larger than h̄. However, since physical interest is in fairly small spatial and temporal
‘windows’, it is usual to rescale so that (1.1) is replaced with

iε
∂u

∂t
= −ε2 ∂

2u

∂x2
− V (x)u, t ≥ 0, x ∈ [−1, 1], (1.2)

where ε > 0 is a small parameter: it is useful to keep in mind the range 10−8 ≤ ε ≤
10−2.

The equation (1.2) is a univariate model for the considerably more important
multivariate semiclassical Schrödinger equation with periodic boundary conditions,

iε
∂u

∂t
= −ε2E∇2u− V (x)u, t ≥ 0, x ∈ [−1, 1]d, (1.3)

where u = u(t,x) and E is a diagonal matrix. The methodology of this paper lends
itself to straightforward generalisation to (1.3) provided that the dimension d is mod-
erate. Large values of d require combining our approach with other computational
techniques, an area under current investigation.

The small size of ε is a source of substantial difficulties in the numerical discretiza-
tion of (1.2) because, using a näıve approach, rapid oscillations require resolution of
O(ε) in both space and time which is often impractical or, at best, exceedingly expen-
sive. This is the motivation to pursue alternative approaches, based in the main on the
concept of exponential splittings (Faou 2012, Jin et al. 2011, Lubich 2008, McLachlan
& Quispel 2002).

The construction of exponential splitting methods typically commences from space
discretization. Rewriting (1.2) in the form

∂u

∂t
= iε

∂2u

∂x2
+ iε−1V (x)u, t ≥ 0, x ∈ [−1, 1], (1.4)

we let the vector u(t) ∈ CM represent an approximation to the solution at time t:
typically, the components of u are either approximations to the values of u on a
spatial grid or to Fourier coefficients of this function. Replacing the second-derivative
operator by a matrix K (thus, replacing an infinite-dimensional linear operator by a
finite-dimensional one), we obtain the ODE system

u′ = i(εK + ε−1D)u, t ≥ 0, (1.5)



Approximation of the linear Schrödinger equation 3

where u(0) is derived from the initial conditions and D represents a multiplication by
the interaction potential V in the finite-dimensional space.

The exact solution of (1.5) is of course

u(t) = exp
(
it(εK + ε−1D)

)
u(0)

and a natural temptation is to approximate it (using small time steps) by any of many

methods to compute the matrix exponential, u((n + 1)∆t) ≈ ei∆t(εK+ε−1D)u(n∆t),
n ∈ Z+. This is generally accepted as a poor idea, because the vastly different scales of
εK and ε−1D require either very small time step ∆t or exceedingly expensive methods
to approximate the exponential (e.g. Krylov subspace methods of large dimension)
to attain reasonable accuracy. The alternative is to separate scales by means of an
exponential splitting. The starting point is usually the Strang splitting

eit(εK+ε−1D) = e
1
2 itεKeitε−1De

1
2 itεK +O

(
t3
)
. (1.6)

This has the clear virtue of separating scales. Moreover, usually each individual ex-
ponential can be computed very affordably: e.g., once we semidiscretise (1.4) with

a spectral method, K is diagonal and D a circulant, therefore e
1
2 itεK is a diagonal

matrix, while eitε−1D can be approximated in O(M logM) operations with FFT. Yet
the order of approximation is unacceptably low. The standard generalisation of the
Strang splitting bears the form

eiα1tεKeiβ1tε
−1Deiα2tεK · · · eiαrtεKeiβrtε

−1DeiαrtεK · · · eiα2tεKeiβ1tε
−1Deiα1tεK.

The palindromic form of this splitting (it reads the same from the left and from the
right), which is referred to as symmetric splitting in much of the literature, is not
accidental, since it guarantees higher order. The coefficients αi and βi are typically
chosen to ensure either higher order (because of palindromy, the order is always even)
or smaller error constants or both (Blanes, Casas & Murua 2006, McLachlan & Quispel
2002).

This approach retains the main virtues of (1.6), namely separation of scales and
the ease of computation of individual exponentials. However, an inordinately large
number of exponentials is required to attain significant order. The simplest means
toward a high-order splitting, the Yošida method (McLachlan & Quispel 2002, Yošida
1990), calls for r = 3p−1 (which translates to 2×3p−1 +1 exponentials) to attain order
2p. Our aim in this paper is to present splittings that require far fewer exponentials to
attain given order: we wish the number of exponentials to grow linearly, rather than
exponentially, with order. Moreover, once the number of exponentials becomes large,
ideally we do not want all of them to fit into the same two scales but wish for them
to become increasingly smaller: to have an asymptotic splitting .

In this paper we introduce a family of exponential splittings with these favourable
features. More specifically, we introduce and analyse exponential splittings of the form

ei∆t(εK+ε−1D) = eR0eR1 · · · eRseTs+1eRs · · · eR1eR0 +O
(
ε2s+2

)
, (1.7)
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where

R0 = R0(∆t, ε,K,D) = O
(
ε0
)
,

Rk = Rk(∆t, ε,K,D) = O
(
ε2k−2

)
, k = 1, . . . , s,

Ts+1 = Ts+1(∆t, ε,K,D) = O
(
ε2s
)

and variations on this theme. Note a number of critical differences between (1.7) and
standard exponential splittings.

Firstly, we quantify the error not in terms of the step-size ∆t but of the small
parameter ε. There are three small quantities at play: ε,∆t and 1/M (where M is
the number of degrees of freedom in the semidiscretisation). By letting power laws
govern the relationship between ε and the choices of ∆t and M , we express the error
in the single quantity ε.

Secondly, the number of individual terms in (1.7) is remarkably small and it grows
linearly with s – compare with the exponential growth, as a function of order, in the
number of components of familiar splittings. The reason is that the arguments of the
exponentials in (1.7) decay increasingly more rapidly in ε.

Thirdly, each of these exponentials can be computed fairly easily. Some of the
Rks are diagonal matrices, whereby computing the exponential is trivial. Other are
circulants and can be computed with FFT. Finally, because of the minute spectral
radius of the arguments for sufficiently large k, the remaining exponentials can be
evaluated up to the requisite power of ε using a very low-dimensional Krylov subspace
method. All in all, the cost of these splittings ends up being cubic in the desired order
in contrast with the exponential cost of the Yošida method.

The asymptotic splitting (1.7) is possible because we have deliberately breached the
consensus in the design of exponential splittings: the termsRk and Ts+1 contain nested
commutators. The use of commutators is usually frowned upon because of their cost,
and also because they are believed to increase in norm. However, as we demonstrate
in Section 2, in the current setting the use of commutators, appropriately handled,
is benign. The first idea is to forego the standard steps of first semidiscretising like
in (1.5) and then splitting the exponential: we semidiscretise only once the splitting
has been done! Thus, the entire narrative takes place within the free Lie algebra
F = FLA{∂2

x, V }, where ∂x = d
dx and V is the operation of multiplying with the

interaction potential: since we have not yet discretised, both are infinite-dimensional
linear operators. We demonstrate in Section 2 that F can be embedded in a larger
Lie algebra G, where the commutation has simple, straightforward interpretation. To
all intents and purposes, commutators are replaced by simple linear combinations of
powers of ∂x. Moreover – and this is what lets all this procedure work in a beneficial
manner – these are smaller powers of ∂x than näıvely expected. Section 2 also describes
two Lie-algebraic concepts which are at the heart of our methodology, the symmetric
BCH formula and the Zassenhaus splitting.

In Section 3 we introduce – still working in an infinite-dimensional operatorial
setting – our exponential splitting. This requires a recursive procedure, based upon
repeated application of the symmetric BCH formula in G, working in the Hall basis.
Although the underlying algebra is time consuming, it need be done just once and the
outcome is fairly simple.
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Section 4 is concerned with semidiscretisation. We consider several alternatives,
finally opting for spectral collocation. This allows us to work with nodal function
values, attain spectral speed of convergence and calculate matrix exponentials very
effectively and affordably.

The computation of matrix exponentials is the theme of Section 5. Most exponen-
tials in (1.7) are trivial to calculate because the underlying matrix is either diagonal
or a circulant. The one exception are matrices of size O(εα) for sufficiently large
α > 0. Owing to the small size of their argument, once they are calculated by Krylov
subspace methods, the price tag is very small.

We discuss some variants of the splittings in Section 6 and present a number of nu-
merical results concerning these in Section 7. Section 8 is devoted to brief conclusions
and pointers for future research.

2 A Lie-algebraic setting

2.1 An algebra of operators

The vector field in the semiclassical Schrödinger equation (1.4) is a linear combination
of the action of two operators, ∂2

x and multiplication by the interaction potential V .
Since the calculation of exponential splittings entails nested commutation, the focus
of our interest is on the free Lie algebra

F = FLA{∂2
x, V },

i.e. the linear-space closure of all nested commutators generated by ∂2
x and V . The

elements of F are operators, acting on sufficiently smooth functions including the
initial value of (1.4): for the purpose of this paper and for simplicity sake we assume
that the initial value, hence the solution of (1.4) for moderate values of t ≥ 0, is a
periodic function in C∞[−1, 1], but our results extend in a straightforward manner to
functions of lower smoothness.

To compute commutators we need in principle to describe their action on functions,
e.g.

[V, ∂2
x]u = V (∂2

xu)− ∂2
x(V u) = −(∂2

xV )u− 2(∂xV )∂xu

implies that [V, ∂2
x] = −(∂2

xV )− 2(∂xV )∂x. This algebra necessitates knowing deriva-
tives of the interaction potential, which are assumed for the scope of this paper to
be given exactly but in practice can be obtained via differentiation matrices. The
higher derivatives of V appearing in our splitting need to be known only to a certain
accuracy, and spectral methods or finite difference methods of fairly reasonable orders
suffice. It must be noted that these derivatives, if not given exactly, need be derived
only once and the overhead is bearable.

We list the lowest order further commutators that form a so called Hall basis
(Reutenauer 1993) of the free Lie-algebra F in Table 1. “Grade” therein refers to the
number of “letters” V and ∂2

x in the expression, while χj is the coefficient of this term
in the symmetric BCH formula, cf. Subsection 2.2.



6 P. Bader, A. Iserles, K. Kropielnicka & P. Singh

Table 1: The terms of the Hall basis of F of grade ≤ 4.

j Nested commutator χj grade

H1 ∂2
x 1 1

H2 V 1 1
H3 [V, ∂2

x] 0 2
H4 [[V, ∂2

x], ∂2
x] − 1

24 3

H5 [[V, ∂2
x], V ] − 1

12 3

H6 [[[V, ∂2
x], ∂2

x], ∂2
x] 0 4

H7 [[[V, ∂2
x], ∂2

x], V ] 0 4

H8 [[[V, ∂2
x], V ], V ] 0 4

Computing the commutators Hj , j = 3, 4, . . . , 8, explicitly, we have

H3 = −(∂2
xV )− 2(∂xV )∂x,

H4 = (∂4
xV ) + 4(∂3

xV )∂x + 4(∂2
xV )∂2

x,

H5 = −2(∂xV )2,

H6 = −(∂6
xV )− 6(∂5

xV )∂x − 12(∂4
xV )∂2

x − 8(∂3
xV )∂3

x,

H7 = 4[(∂xV )(∂3
xV ) + (∂2

xV )2] + 8(∂xV )(∂2
xV )∂x,

H8 = 0.

We note that all the terms belong to the set

G =

{
n∑
k=0

yk(x)∂kx : n ∈ Z+, y0, . . . , yn ∈ C∞[−1, 1] periodic with period 2

}
.

It is trivial to observe that G is itself a Lie algebra.
There are numerous cancellations, similar to H8 = 0, because of the special struc-

ture induced by the letters ∂2
x and V (x), nevertheless, for our exposition it is more

appropriate to operate in the larger Lie-algebra G, where all cancellations will be
taken care of by simple computation of the commutators, according to n∑

i=0

fi(x)∂ix,

m∑
j=0

gj(x)∂jx

 =

n∑
i=0

m∑
j=0

i∑
`=0

(
i

`

)
fi(x)

(
∂i−`x gj(x)

)
∂`+jx

−
m∑
j=0

n∑
i=0

j∑
`=0

(
j

`

)
gj(x)

(
∂j−`x fi(x)

)
∂`+ix . (2.1)

2.2 The symmetric BCH formula

Let X and Y be two terms in a Lie algebra g. The symmetric Baker–Campbell–
Hausdorff formula (usually known in an abbreviated form as the symmetric BCH
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formula) is

e
1
2XeY e

1
2X = esBCH(X,Y ), (2.2)

where

sBCH(tX, tY ) (2.3)

= t(X + Y )− t3( 1
24 [[Y,X], X] + 1

12 [[Y,X], Y ]) + t5( 7
5760 [[[[Y,X], X], X], X]

+ 7
1440 [[[[Y,X], X], X], Y ] + 1

180 [[[[Y,X], X], Y ], Y ]

+ 1
720 [[[[Y,X], Y ], Y ], Y ] + 1

480 [[[Y,X], X], [Y,X]]

− 1
360 [[[Y,X], Y ], [Y,X]]) +O

(
t7
)
.

The expansion (2.3) can be computed to an arbitrary power of t using an algorithm
from (Casas & Murua 2009). (Because (2.3) is palindromic, only odd powers of t
feature in the expansion.) An observant reader would have noticed that the coefficients
are the numbers χj from Table 1. This is not accidental: once we let X = ∂2

x and
Y = V , the table lists the coefficients up to grade four.

2.3 The Zassenhaus splitting

Unless X and Y commute, it is in general not true that et(X+Y ) = etXetY . The
Zassenhaus splitting (Oteo 1991)

et(X+Y ) = etXetY et
2U2(X,Y )et

3U3(X,Y )et
4U4(X,Y ) · · · , (2.4)

where

U2(X,Y ) = 1
2 [Y,X],

U3(X,Y ) = 1
3 [[Y,X], Y ] + 1

6 [[Y,X], X],

U4(X,Y ) = 1
24 [[[Y,X], X], X] + 1

8 [[[Y,X], X], Y ] + 1
8 [[[Y,X], Y ], Y ],

quantifies this discrepancy. (More terms can be generated using the – non-symmetric
– BCH formula.)

The splitting (2.4) is not well known and seldom used in computation, for the
perfectly valid reason that it is not palindromic. The natural temptation is thus to
symmetrize it and consider a palindromic splitting of the form

et(X+Y ) = · · · et
5Q5(X,Y )et

3Q3(X,Y )e
1
2 tXetY e

1
2 tXet

3Q3(X,Y )et
5Q5(X,Y ) · · · (2.5)

where we can deduce by inspection of (2.3) that, for example,

Q3(X,Y ) = 1
48 [[Y,X], X] + 1

24 [[Y,X], Y ].

Rather than engaging in increasingly tedious calculations to compute Q5, we replace
(2.5) by a more computation-friendly splitting. We commence from the symmetric
BCH formula (2.3),

e−
1
2 tXet(X+Y )e−

1
2 tX = esBCH(−tX,t(X+Y )),
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which we rewrite in the form

et(X+Y ) = e
1
2 tXesBCH(−tX,t(X+Y ))e

1
2 tX . (2.6)

It follows from (2.3) that

sBCH(−tX, t(X + Y )) =W [1] = tY +O
(
t3
)
,

and we note that we have extracted the outer term tX from the inner exponent. We
iterate (2.6) over the resulting term and continue to symmetrically pull out the lowest
order terms, one by one, until the central exponent reaches the desired high order,

exp t(X + Y ) = e
1
2 tXesBCH(−tX,t(X+Y ))e

1
2 tX

= e
1
2 tXe

1
2 tY esBCH(−tY,sBCH(−tX,t(X+Y )))e

1
2 tY e

1
2 tX = · · · .

Notice that by pulling out, we essentially subtract a term and add higher order cor-
rections. It is important to observe that the order of the exponent given by the sBCH
formula (2.6) is never decreased by this procedure1 and thus we can easily control
the order of the approximation error when truncating the BCH formula. With the
notation

W [k+1] = sBCH(−W [k],W [k]), W [0] = t(X + Y ), (2.7)

the result after s steps can be written as

exp t(X + Y ) = e
1
2W

[0]

e
1
2W

[1]

· · · e 1
2W

[s]

eW
[s+1]

e
1
2W

[s]

· · · e 1
2W

[1]

e
1
2W

[0]

.

We emphasise that, in principle, we can freely choose the elements W [k] that we want
to extract. A first idea is to choose the W [k] = O

(
t2k−1

)
for k > 0 and W [0] =

O(t), which yields a separation of powers, analogous to (2.5), and thus for s stages
and approximating W [s+1] = W [s+1] + O

(
t2s+3

)
, we obtain a symmetric Zassenhaus

splitting of order 2s+ 2.
We have almost established the splitting (1.7) – ‘almost’ because of yet another

consideration. In standard splittings, e.g. in the context of a numerical solution of
Hamiltonian ordinary differential equations, there is usually a single small parameter,
∆t (the time step), and it makes perfect sense to expand in its powers. However, once
we contemplate the discretization of (1.4), we have three small parameters to reckon
with:

1. The built-in small parameter ε;

2. The time step ∆t;

3. 1/M , where M is the number of degrees of freedom in the spatial semidiscreti-
sation.

Although we derive our splitting before the infinite-dimensional operator ∂2
x has been

discretised, we must keep the eventual discretisation at the back of our mind. In
other words, sooner or later (more specifically, in Section 4) we replace ∂2

x with a

1Unless a non-existing term is subtracted and thus newly introduced instead of removed.
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differentiation matrix acting on an appropriate M -dimensional space: M might be
the number of nodal values or of Fourier modes. It is elementary that the norm of a
differentiation matrix corresponding to ∂nx scales like O(Mn), n ∈ N. Therefore, we
employ in our analysis the shorthand ∂nx = O(Mn).

We propose to deal with three small parameters in unison by converting them
into a single currency. More specifically, we assume that our choice of ∆t and M is
governed by the scaling laws

M = O
(
ε−ρ
)
, ∆t = O(εσ) , (2.8)

where ρ, σ > 0 are given. As a consequence, each ∂nx scales like O(ε−nρ).
The choice of these parameters is not entirely arbitrary. Wentzel–Kramers–Brillouin

(WKB) analysis of the semiclassical Schrödinger equation (Jin et al. 2011) shows that
even with arbitrary well behaved initial conditions the full solution develops spatial
oscillations of order O

(
ε−1
)
. A reasonable approximation of the solution therefore

necessitates taking M = O
(
ε−1
)

Fourier modes or nodal values at the very least,
restricting us to ρ ≥ 1.

It must be noted that, despite equally high oscillations in time, similar consider-
ations do not apply to σ. This is because the solution in time is obtained via expo-
nentials and is exact except for the omission of terms in the splitting. The accuracy
in time is tied to the accuracy of the splitting.

The simplest choice of parameters in (2.8), keeping above considerations in mind,
is ρ = σ = 1 and this is what we assume in the next section.

3 An asymptotic splitting

3.1 Towards an asymptotic splitting

Recalling that ρ = σ = 1, we commence in this section with the asymptotic splitting
(1.7) with s = 2, i.e. bearing the error of O

(
ε6
)
. Given that ε > 0 is very small,

this presents a method which is very accurate – arguably, of higher accuracy than
required in standard numerical computations. We will expand the commutators in
powers of ε and successively remove them from the core of our expansion, aiming for
W [j] = O

(
ε2j−2

)
except for W [0] which will be O

(
ε0
)
. Our next observation is that

∆t is always multiplied by i, therefore it is handy to let

τ = i∆t = O(ε) .

Note that τε∂2
x = O

(
ε0
)

and τε−1V = O
(
ε0
)
, or more generally

τ `ε−m∂nx = O
(
ε`−m−n

)
, ε→ 0. (3.1)

We can now commence the algorithm (2.7), setting

W [0] = τε−1V + τε∂2
x, W [0] = τε−1V.

With the help of (2.3), we compute the commutators in W [1] = sBCH(−W [0],W [0])
according to (2.1). This task faces us with long and tedious algebra, but can, however
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be automatized with a computer algebra programme. It is worth pointing out, that all
simplifications, such as [[[V, ∂2

x], V ], V ] = 0 are automatically performed once we work
in the larger Lie algebra S with differential operators and scalar functions. Likewise,
there is no need for a tedious representation of expansion elements in, say the Hall
basis, because this is done automatically in G.

Substituting and aggregating terms of the same order of magnitude, we obtain

W [1] =

O(ε0)︷︸︸︷
τε∂2

x +

O(ε2)︷ ︸︸ ︷
1
12τ

3ε−1(∂xV )2 − 1
3τ

3ε(∂2
xV )∂2

x−

O(ε3)︷ ︸︸ ︷
1
3τ

3ε(∂3
xV )∂x (3.2)

+

O(ε4)︷ ︸︸ ︷
1
60τ

5ε−1(∂2
xV )(∂xV )2 − 1

12τ
3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
τ5ε{ 4

45 (∂2
xV )2 − 1

90 (∂3
xV )(∂xV )}∂2

x + 1
45τ

5ε−3(∂4
xV )∂4

x

+

O(ε5)︷ ︸︸ ︷
τ5ε{ 1

6 (∂3
xV )(∂2

xV )− 1
90 (∂4

xV )(∂xV )}∂x

+

O(ε5)︷ ︸︸ ︷
2
45τ

5ε−3(∂5
xV )∂3

x +O
(
ε6
)
.

Unfortunately, (3.2) contains terms of order O
(
ε3
)

and O
(
ε5
)

that are both due
to the presence of odd powers of ∂x. This presence is worrisome for an important
reason, namely stability. Both ∂2

x and multiplication by V are Hermitian operators,
therefore τ(ε∂2

x+ ε−1V ) is a skew-Hermitian operator: its exponential is thus unitary.
This survives under eventual discretisation, because any reasonable approximation
of ∂2

x preserves Hermitian structure. However, ∂x (and, in general, odd powers of
∂x) is a skew-Hermitian operator, hence i∂x is Hermitian and so are its reasonable
approximations. Therefore, the introduction of odd powers of ∂x is fraught with loss
of unitarity and stability. An extra ingredient is required in our algorithm!

3.2 An intermezzo: getting even

Let y be a C1 function. The starting point for our current construction is the opera-
torial identity

y(x)∂x = − 1
2

[∫ x

x0

y(ξ) dξ

]
∂2
x − 1

2∂xy(x) + 1
2∂

2
x

[∫ x

x0

y(ξ) dξ ·
]
, (3.3)

where x0 is arbitrary: its direct proof is trivial. Note that, while we have ∂x on the
left, the right-hand side features ∂0

x and ∂2
x, both even powers of the differentiation

operator. Since in principle we might be interested in expanding beyond O
(
ε7/2

)
or

employ different values of ρ and σ, we wish to cater not just for ∂x but for all its odd
powers. The challenge is thus to generalise (3.3) and express y(x)∂2s+1

x , s ∈ Z+, solely
by means of even derivatives.
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Theorem 1 Let s ∈ Z+, define the real sequence {βk}k≥0 by

∞∑
k=0

(−1)kβk
(2k + 1)!

T k =
1

T

(
1− T 1/2

sinhT 1/2

)
and set

Qk(x) = (−1)s−k+1βs−k

(
2s+ 1

2k

)
∂2s−2k+1
x y(x), k = 0, 1, . . . , s, (3.4)

Qs+1(x) =
1

2s+ 2

∫ x

x0

y(ξ) dξ, (3.5)

Pk(x) = −
s+1∑
`=k

(
2`

2k

)
∂2`−2k
x Q`(x), k = 1, 2, . . . , s+ 1. (3.6)

Then

y(x)∂2s+1
x =

s+1∑
k=0

Pk(x)∂2k
x +

s+1∑
k=0

∂2k
x [Qk(x) · ]. (3.7)

Proof We act on the second sum on the right of (3.7) with the Leibnitz rule,
whereby

y∂2s+1
x =

s+1∑
k=1

Pk∂
2k
x +

s+1∑
`=0

2∑̀
k=0

(
2`

k

)
(∂2`−k
x Q`)∂

k
x

=

s+1∑
k=1

Pk∂
2k
x +

s+1∑
k=0

[
s+1∑
`=k

(
2`

2k

)
(∂2(`−k)
x Q`)

]
∂2k
x

+

s∑
k=0

[
s+1∑
`=k+1

(
2`

2k + 1

)
(∂2(`−k)−1
x Q`)

]
∂2k+1
x .

Equating powers of ∂x on both sides, we obtain (3.5), (3.6) and the equations

s+1∑
`=k+1

(
2`

2k + 1

)
∂2(`−k)−1
x Q` = 0, k = s− 1, s− 2, . . . , 0. (3.8)

Our contention is that there exist coefficients {βk}k≥0 such that (3.4) is true. Indeed,
substituting (3.4) in (3.8) yields, after simple algebra, the triangular linear system

s∑
`=k+1

(−1)s−`
(

2s− 2k

2s+ 1− 2`

)
βs−` =

1

2s− 2k + 1
, k = 0, 1, . . . , s− 1.

We deduce that
k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β` =

1

2k + 1
, k ∈ N.
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Finally, we multiply the last equation by T k−1/(2k)! and sum up for k ∈ N. On the
left we have

∞∑
k=1

1

(2k)!

k−1∑
`=0

(−1)`
(

2k

2`+ 1

)
β`T

k−1 =

∞∑
`=0

(−1)`β`
(2`+ 1)!

∞∑
`=k+1

T k−1

(2k − 2`− 1)!

=

∞∑
`=0

(−1)`β`
(2`+ 1)!

T `
∞∑
k=0

T k

(2k + 1)!

=
sinhT 1/2

T 1/2

∞∑
`=0

(−1)`β`
(2`+ 1)!

T `,

while on the right we obtain

∞∑
k=1

T k−1

(2k + 1)!
=

1

T

(
sinhT 1/2

T 1/2
− 1

)
.

This confirms (3.4) and completes the proof. 2

First few values are β0 = 1
6 , β1 = 7

60 , β2 = 31
126 , β3 = 127

120 , β4 = 511
66 , β5 = 1414477

16380
and β6 = 8191

6 . Since

text

(et − 1)
=

∞∑
k=0

Bk(x)

k!
tk,

where Bk is the kth Bernoulli polynomial, it is easy to confirm that

βk =
(−1)k+122k+1B2k+2( 1

2 )

k + 1
, k ∈ Z+.

Practically, just

y∂x = − 1
2

[∫ x

0

y(ξ) dξ

]
∂2
x − 1

2∂xy + 1
2∂

2
x

[∫ x

0

y(ξ) dξ ·
]
,

y∂3
x = −(∂xy)∂2

x − 1
4

[∫ x

0

y(ξ) dξ

]
∂4
x + 1

4∂
3
xy − 1

2∂
2
x[(∂xy) · ] + 1

4∂
4
x

[∫ x

0

y(ξ) dξ ·
]
,

y∂5
x = 4

3 (∂3
xy)∂2

x − 5
3 (∂xy)∂4

x − 1
6

[∫ x

0

y(ξ) dξ

]
∂6
x − 1

2∂
5
xy + 7

6∂
2
x[(∂3

xy) · ]

− 5
6∂

4
x[(∂xy) · ] + 1

6∂
6
x

[∫ x

0

y(ξ) dξ ·
]
,

are ever likely to be needed in practical computation.

3.3 An asymptotic splitting

All necessary tools are now available and we dedicate this subsection to illustrate how
to compute the splitting (1.7) with the algorithm in Table 2. Using (3.3) and its
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Symmetric Zassenhaus Algorithm

s := 0; W [0] := τ(ε∂2
x + ε−1V ); W [0] := τε−1V

do
s := s+ 1
computeW [s] := sBCH(−W [s−1],W [s−1])
rewriteW [s] in even derivatives, cf. (3.7)
expand result in powers of ε
define W [s] := O

(
ε2s−2

)
, s.t. W [s] −W [s] = O

(
ε2s
)

while s < desired order smax

Resulting method:

eW
[0]

= eW
[0]/2eW

[1]/2 · · · eW [smax] · · · eW [1]/2eW
[0]/2 +O

(
ε2smax+2

)
Table 2: Symmetric Zassenhaus splitting of the first kind in even order derivatives

generalisations to replace all the occurrences of ∂x and ∂3
x in (3.2), we express W [1] in

the form

W [1] =

O(ε0)︷︸︸︷
τε∂2

x +

O(ε2)︷ ︸︸ ︷
1
12τ

3ε−1(∂xV )2 − 1
6τ

3ε
{

(∂2
xV )∂2

x + ∂2
x[(∂2

xV ) · ]
}

+

O(ε4)︷ ︸︸ ︷
1
60τ

5ε−1(∂2
xV )(∂xV )2 + 1

12τ
3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
1

180τ
5ε
{

8(∂2
xV )2∂2

x + 8∂2
x[(∂2

xV )2 · ]− (∂3
xV )(∂xV )∂2

x − ∂2
x[(∂3

xV )(∂xV ) · ]
}

+

O(ε4)︷ ︸︸ ︷
1
90τ

5ε−3
{

(∂4
xV )∂4

x + ∂4
x[(∂4

xV ) · ]
}

+O
(
ε6
)
.

Recall that we have started the algorithm with

R0 = 1
2W

[0] = 1
2τε
−1V

and, to progress to the second stage, we choose to eliminate the lowest ε-order term,

R1 = 1
2W

[1] = 1
2τε∂

2
x

from W [1].
Although the new W [1] andW [1] are more complicated, the computations are now

much simpler. The main reason is that the ε-order behaves under commutation like

[τ i1ε−j1f(x)∂k1x , τ
i2ε−j2g(x)∂k2x ] = O

(
τ i1+i2ε−(j1+j2)∂k1+k2−1

x

)
,

and thus, the order increases under very general assumptions. The first commutators
then become,

[W [1],W [1]] = O
(
ε3
)

and [[W [1],W [1]],W [1]], [[W [1],W [1]],W [1]] = O
(
ε4
)
.
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Continuing the argument we find that all grade four and five commutators scale as
O
(
ε5
)

and O
(
ε6
)
, respectively. Subsequent commutators are even smaller and we

obtain

W [2] = sBCH(−W [1],W [1])

= −W [1] +W [1] − 1
24 [[W [1],W [1]],W [1]]− 1

12 [[W [1],W [1]],W [1]] +O
(
ε6
)

=

O(ε2)︷ ︸︸ ︷
1
12τ

3ε−1(∂xV )2 − 1
6τ

3ε
{

(∂2
xV )∂2

x + ∂2
x[(∂2

xV ) · ]
}

+

O(ε4)︷ ︸︸ ︷
1
60τ

5ε−1(∂2
xV )(∂xV )2 + 1

12τ
3ε(∂4

xV )

+

O(ε4)︷ ︸︸ ︷
1

120τ
5ε
{

7(∂2
xV )2∂2

x + 7∂2
x[(∂2

xV )2 · ] + (∂3
xV )(∂xV )∂2

x + ∂2
x[(∂3

xV )(∂xV ) · ]
}

−

O(ε4)︷ ︸︸ ︷
1
60τ

5ε−3
{

(∂4
xV )∂4

x + ∂4
x[(∂4

xV ) · ]
}

+O
(
ε6
)
.

In the next iteration, we pull out the O
(
ε2
)

term,

2R2 = W [2] = 1
12τ

3ε−1(∂xV )2 − 1
6τ

3ε{(∂2
xV )∂2

x + ∂2
x[(∂2

xV ) · ]}

and need to computeW [3]. Because of [W [2],W [2]] = O
(
ε7
)

, again, commutators can

be disregarded to obtain T3 =W [3] = O
(
ε4
)
: the asymptotic splitting is therefore

S [1]
(1,1),2 = eR0eR1eR2eT3eR2eR1eR0 , (3.9)

where

R0 = 1
2τε
−1V = O

(
ε0
)
, (3.10)

R1 = 1
2τε∂

2
x = O

(
ε0
)
,

R2 = 1
24τ

3ε−1(∂xV )2 − 1
12τ

3ε
{

(∂2
xV )∂2

x + ∂2
x[(∂2

xV ) · ]
}

= O
(
ε2
)
,

T3 = 1
60τ

5ε−1(∂2
xV )(∂xV )2 + 1

12τ
3ε(∂4

xV )

+ 1
120τ

5ε{7(∂2
xV )2∂2

x + 7∂2
x[(∂2

xV )2 · ] + (∂3
xV )(∂xV )∂2

x

+ ∂2
x[(∂3

xV )(∂xV ) · ]} − 1
60τ

5ε−3
{

(∂4
xV )∂4

x + ∂4
x[(∂4

xV ) · ]
}

= O
(
ε4
)
.

The notation S [1]
(1,1),2 is mostly self-explanatory: (1, 1) refers to the values of ρ and σ,

while s = 2. The superscript [1] stands for an asymptotic splitting of the first kind: in
Subsection 3.5 we consider an alternative splitting (with initial W [0] equalling τε∂2

x),
which we designate as an asymptotic splitting of the second kind.

Once we replace derivatives by differentiation matrices, the evaluation of a single

time step un+1 = S̃ [1]
(1,1),2u

n requires in principle seven exponentials. However, we

note that, once we use nodal values in semidiscretisation, the discretised matrix R̃0
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is diagonal and the computation of its exponential can be accomplished in O(M)
operations. 2 The next discretised matrix, R̃1, is circulant and its exponentiation
involves O(M logM) operations. This is an important point because R̃0 and R̃1 are
(spectrally) the largest matrices present. All other matrices are O

(
ε2
)

or less and, as
will be clear in Section 5, their computation with Krylov subspace methods is very
affordable.

3.4 Stability

The convergence of classical methods for initial-value partial differential equations
is governed by the Lax equivalence theorem: convergence equals consistency plus
stability (Iserles 2008). Our method is clearly consistent but the question is whether,
once derivatives are replaced by differentiation matrices, the ensuing finite-dimensional
operator is stable in the sense of Lax. Within our formalism this is equivalent to

lim
ε→0

lim sup
n→∞

‖(S̃ [1]
(1,1),2)n‖ <∞, (3.11)

where S̃ [1]
(1,1),2 is the finite-dimensional discretisation of S [1]

(1,1),2. Here ‖ · ‖ is the

standard Euclidean norm.
The condition (3.11) is clearly implied by S̃ [1]

(1,1),2 being a unitary matrix for all

(sufficiently small) ε > 0, in other words by the discretisation method being unitary.
This has the added virtue of the discretisation method mimicking the unitarity of
the infinite-dimensional operator exp(it(ε∂2

x + ε−1V )). (The latter follows because
both i∂2

x and multiplication by iV are skew-Hermitian.) Consequently, in that case we
obtain a geometric integrator in the sense of (Faou 2012, Hairer, Lubich & Wanner
2006, Lubich 2008). Once we use Krylov methods for approximating the exponentials,
unitarity is lost but the conservation of `2 norm guarantees stability nevertheless.

Suppose that R̃0, R̃1, R̃2 and T̃3 are all skew-Hermitian matrices. Then, by (3.9),

S̃ [1]
(1,1),2 is unitary. But are they?

The discretisation of ∂2
x is the subject of Section 4. Here we preempt the discussion

by identifying two options. Either we choose the unknowns as nodal values (e.g.
by using finite differences or spectral collocation) or as Fourier coefficients (using a
spectral method). In the first case ∂2

x is approximated by a symmetric circulant K and
multiplication with V by a diagonal matrix D. In the second case all is reversed: ∂2

x is
approximated by a diagonal matrix and multiplication by V by a symmetric circulant.
In either case iK, iD ∈ suM (C), the Lie algebra of M ×M complex skew-Hermitian

matrices. It follows at once that R̃0, R̃1 ∈ suM (C), consequently eR̃0 , eR̃1 ∈ UM (C).3

However,
R̃2 = 1

24τ
3ε−1D(∂xV )2 − 1

12τ
3ε(KD∂2

xV
+D∂2

xV
K),

where Df is the discretisation of a multiplication by f , may seem problematic: iK, iD ∈
suM (C) need not imply that iKD, iDK ∈ suM (C).4 Fortunately, it is trivial to verify

2Using a Fourier basis the cost is O(M logM).
3As before, a tilde denotes a discretisation.
4All powers of τ are odd, because of the palindromy of the symmetric BCH formula. Since τ = i∆t,

this means that they always contribute a multiple of ±i.
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that i(KD +DK) ∈ suM (C) and this proves that R̃2 ∈ suM (C). Examining carefully

(3.10), we observe that so does T̃3. We deduce that eR̃2 , eT̃3 ∈ UM (C) and stability
(3.11) follows.

The unitarity of S̃ [1]
(1,1),2 is not accidental and we do not need to repeat our analysis

on a case-by-case basis for different values of ρ, σ and s or for the asymptotic splittings
of the second kind from the next subsection.

Theorem 2 Supposing that the splitting (1.7) has been derived by the symmetric
Zassenhaus algorithm of Table 2, it is true that W [i] ∈ suM (C) for all i ≥ 0 and
thus also R̃0, R̃1, . . . , R̃s, T̃s+1 ∈ suM (C).

Proof The algorithm starts from a skew-Hermitian operator W [0] and, in each
step, pulls out a term W [j] via the symmetric BCH formula (2.3). Assume, that W [j]

is skew-Hermitian, then so is W [j+1] because skew-Hermiticity is preserved under
commutation. What remains to be shown is that at each step, the lowest order ε
terms in W [j] after the ‘odd to even’ substitution (3.3), namely W [j], are indeed
skew-Hermitian. Recall that, by assumption, W [j] is skew-Hermitian and since the
substitution is exact, it remains so after it has been applied. For this reason, it is
clear that its summands are either skew-Hermitian or feature in skew-Hermitian pairs
i(KlD + DKl), where Kk is a symmetric discretisation of ∂2k

x . The algorithm groups
terms with the same scaling and since DKk = O

(
ε−2k

)
= KkD, the pair will not be

split and thus W [j] ∈ suM (C). 2

3.5 An asymptotic splitting of the second kind

The motivation for splittingW [0] = τε−1V +τε∂2
x is down to the structural differences

in τε−1V and τε∂2
x which make it easy to exponentiate either separately. There is,

however, no reason why we must commence with W [0] = τε−1V . In this subsection

we start with the term τε∂2
x, instead, and arrive at a variant of the splitting S [1]

(1,1),2.

Revisiting the narrative of Subsection 3.1, while proceeding faster and sparing the
reader many details of algebraic computations, we start from

2R0 = W [0] = τε∂2
x, W [0] = τε∂2

x + τε−1V

This results in

W [1] = sBCH(−W [0],W [0]) =

∞∑
j=0

W [1]
j , where W [1]

j = O
(
ε2j
)
,

and

W [1]
0 = τε−1V,

W [1]
1 = − 1

6τ
3ε−1(∂xV )2 + 1

12τ
3ε{(∂2

xV )∂2
x + ∂2

x[(∂2
xV ) · ]},

W [1]
2 = − 1

24τ
3ε(∂4

xV ) + 2
45τ

5ε−1(∂2
xV )(∂xV )2

+ 1
60τ

5ε{∂2
x[(∂2

xV )2 · ] + (∂2
xV )2∂2

x − 2∂2
x[(∂3

xV )(∂xV ) · ]− 2(∂3
xV )(∂xV )∂2

x}
+ 1

240τ
5ε3{(∂4

xV )∂4
x + ∂4

x[(∂4
xV ) · ]}.
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We next remove 2R1 = W [1] = W [1]
0 = O

(
ε0
)

and obtain, with the shorthand X =

−W [1], Y =W [1],

W [2] = sBCH(X,Y ) = X + Y − 1
24 [[Y,X], X]− 1

12 [[Y,X], Y ] +O
(
ε6
)

=

∞∑
j=1

W [2]
j ,

where

W [2]
1 = − 1

6τ
3ε−1(∂xV )2 + 1

12τ
3ε{(∂2

xV )∂2
x + ∂2

x[(∂2
xV ) · ]},

W [2]
2 = − 1

24τ
3ε(∂4

xV ) + 7
120τ

5ε−1(∂2
xV )(∂xV )2

+ 1
60τ

5ε{∂2
x[(∂2

xV )2 · ] + (∂2
xV )2∂2

x − 2∂2
x[(∂3

xV )(∂xV ) · ]− 2(∂3
xV )(∂xV )∂2

x}
+ 1

240τ
5ε3{(∂4

xV )∂4
x + ∂4

x[(∂4
xV ) · ]}.

Finally,

R2 = 1
2W

[2]
1 , T3 =W [2]

2 .

The outcome is the splitting

S [2]
(1,1),2 = eR0eR1eR2eT3eR2eR1eR0 , (3.12)

where

R0 = 1
2τε∂

2
x,

R1 = 1
2τε
−1V,

R2 = − 1
12τ

3ε−1(∂xV )2 + 1
24τ

3ε{∂2
x[(∂2

xV ) · ] + (∂2
xV )∂2

x},
T3 = − 1

24τ
3ε(∂4

xV ) + 7
120τ

5ε−1(∂2
xV )(∂xV )2

+ 1
60τ

5ε{∂2
x[(∂2

xV )2 · ] + (∂2
xV )2∂2

x − 2∂2
x[(∂3

xV )(∂xV ) · ]
− 2(∂3

xV )(∂xV )∂2
x}+ 1

240τ
5ε3{(∂4

xV )∂4
x + ∂4

x[(∂4
xV ) · ]}.

As in the case of (3.9), we end up needing to compute seven exponentials. R̃0 is either a
circulant (once we use nodal values) or a diagonal matrix (in case we employ a Fourier
expansion), while R̃1 is then either a diagonal matrix or a circulant – the opposite of
R̃0. Therefore the cost of computing R̃i, i = 0, 1, is O(M logM) operations. This
leaves R̃2 = O

(
ε2
)

and T̃3 = O
(
ε4
)
, which need be computed with Krylov subspace

methods. The small magnitude of both these matrices means that their exponentials
can be computed in ridiculously small number of Krylov iterations, cf. Section 5.

Note that the palindromic property allows us to further reduce the number of
exponentials if no output at intermediate steps is required. This so-called First-Same-
As-Last (FSAL) property effectively yields a method

S̃(α)
[2]
(1,1),2 = eR̃1eR̃2eT̃3eR̃2eR̃1eαR̃0 , (3.13)

where the first step has to be calculated with α = 1, and further steps with α = 2.

Whenever output is required, we apply eR̃0 , and initialise the method by letting α = 1
for the next step. All in all, we only need to compute six exponentials each step,
two of which are diagonal matrices, one is circulant and the remaining three can be
approximated cheaply by Krylov methods.
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4 The semidiscretisation

The asymptotic splittings (3.9) and (3.12) are expressed in operatorial terms: to render
them into proper computational algorithms we must replace ∂2

x with an appropriate
differentiation matrix, acting on an M -dimensional space.

It is common in the numerical solution of the Schrödinger equation to use spectral
discretization (Faou 2012, Jin et al. 2011). Thus, the unknowns are the Fourier coeffi-
cients of u, K is a diagonal matrix, Kj,j = −π2j2, |j| ≤ (M − 1)/2, (note that indeed
‖K‖ = O

(
M2
)

= O
(
ε−2
)
) and the operator of a multiplication by f is discretised

a circulant Df , composed of the Fourier coefficients of f . We deduce that, for any

v ∈ CM , the computation of Kv costs O(M) operations, while the price tag of Dfv,
computed with FFT, is O(M logM). The main appeal of spectral methods is that
they exhibit spectral convergence: for sufficiently large M the error decays faster than
M−α = O(εα) for any α > 0. In classical terms, the method is of an infinite order.

Alternative methods of discretisation are based on nodal values. In all such meth-
ods a multiplication by a function f discretises into a diagonal matrix. Since it is
compelling in the presence of period boundary conditions to use equispaced points,
the unknowns are thus um ≈ u(m/(N + 1

2 )), |m| ≤ N , where M = 2N + 1. Two
methods that fall into this category are finite differences and spectral collocation.

The idea in spectral collocation (Hesthaven, Gottlieb & Gottlieb 2007) is to in-
terpolate the solution at the nodal values using a trigonometric polynomial. Since
a trigonometric interpolation can be written as a convolution with the values of the
scaled Dirichlet kernel

DN (x) =
sin((N + 1

2 )πx)

(2N + 1) sin( 1
2πx)

– in other words,
∑N
`=−N DN (x − `/(N + 1

2 ))u` is an Nth-order trigonometric poly-

nomial that equals um at m/(N + 1
2 ) – therefore the differentiation matrix given by

Kj,` = D′′N ((j − `)/(N + 1
2 )) is a circulant.

Like spectral methods, spectral collocation exhibits spectral convergence. The two
are, in fact, equivalent in the context of periodic boundaries and equispaced points
– they are just a Fourier transform away from each other. For this reason it is not
uncommon in the literature to refer to both by the same name – usually spectral
collocation – and the choice between them is mostly a matter of convenience, having
little influence on the efficiency. Here we end up favouring the nodal representation
of ‘spectral collocation’ over the Fourier represenation of ‘spectral methods’.

At this point, a word about finite differences is also in order. At first glance, finite
differences might be considered a viable alternative to spectral collocation. An order
five central difference method for the second derivative, for instance, incurs an error of
O
(
(∆x)6

)
= O

(
ε6
)
, which seems acceptable considering that we already have an error

of O
(
ε6
)

in the splitting. A closer look at the finite differences error term, however,

reveals a factor of u(8) which is far from a constant. In fact, it scales as O
(
ε−8
)
,

upsetting the entire balance and bringing the overall error to O
(
ε−2
)

– as huge as the
norm of the Laplacian! It is possible to coax and cajole finite differences to work with
ρ > 1, but the O

(
ε−1 log ε−1

)
cost of spectral collocation cannot be improved upon

in this way and spectral collocation remains the method of choice.
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Figure 4.1: The error in approximating u′′ committed by the Fourier method (top
row) and spectral collocation (bottom row) for the function u(x) = 1/(2 + sinπx) and
M = ε−1.

The error for 1/(2+sinπx) and ecosπx is displayed in Figs 4.1 and 4.2 respectively.
Although the spectacular performance of spectrally-convergent methods is hardly sur-
prising, it is amazing nonetheless. The reason spectral convergence for ecosπx is so
fast – super-exponential, compared to exponential convergence for 1/(2 + sinπx) – is
because the first function is entire, while the second has a polar singularity at i(

√
3−2).

5 The computation of exponentials

Considering the splittings (3.9) and (3.12), each step forward in time calls for the
computation of

un+1 = eR̃0eR̃1eR̃2eT̃3eR̃2eR̃1eR̃0un, (5.1)

where un is the initial value at tn, say, while un+1 approximates u( · , tn+1), where
tn+1 = tn + ∆tn. The matrices R̃k and T̃3 depend on ∆tn We recall that, using
finite differences or spectral collocation, un is made out of equally-distributed function
values and in splitting of the second kind R̃0 is a Toeplitz circulant while R̃1 is
diagonal. However, once we use a spectral method, the entries of un consist of Fourier
coefficients, R̃0 is diagonal and R̃1 is a circulant. The roles are reversed in splitting
of the first kind. One way or the other, we need to calculate (or approximate up to
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Figure 4.2: The error in approximating u′′ committed by the Fourier method (top row)
and spectral collocation (bottom row) for the function u(x) = ecosπx and M = ε−1.

O
(
ε6
)
) the vector eSv for v ∈ CM and three types of M×M skew-Hermitian matrices

S: (a) diagonal, (b) Toeplitz circulant, and (c) neither, yet small: R̃2 = O
(
ε2
)

and

T̃3 = O
(
ε4
)
. Note that we must keep in mind three prerogatives: not just error of

O
(
ε6
)

and low cost but also conservation of `2 norm.
Cases (a) and (b) are straightforward. The exponential of a diagonal matrix is itself

diagonal and can be computed inO(M) = O
(
ε−1
)

operations, while eSv for a circulant

S can be calculated by two FFTs, at the price tag of O(M logM) = O
(
ε−1 log ε−1

)
operations. Since both calculations are exact (up to machine accuracy), unitarity is
maintained. Finally, to deal with case (c) we use a Krylov subspace method. Such
methods have undergone many enhancements since the pioneering work of Tal Ezer &
Kosloff (1984): in the current paper we adopt the approach in (Gallopoulos & Saad
1992).

Given an M ×M matrix A and v ∈ CM , the mth Krylov subspace is

Km(A,v) = span {v,Av,A2v, . . . ,Am−1v}, m ∈ N.

It is well known that dimKm−1(A,v) ≤ dimKm(A,v) ≤ min{m,M} and we refer
to (Golub & Van Loan 1996) for other properties of Krylov subspaces. The main idea
is to approximate

eAv ≈ VmeHmV∗mv, (5.2)
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where Vm and Hm are M ×m and m×m respectively and m�M . In addition, the
columns of Vm are orthonormal vectors which form a basis of Km(A,v), while Hm is
upper Hessenberg.

The matrices Vm and Hm are generated by the Arnoldi process

The Arnoldi process

v1 = v/‖v‖2
for j = 1, . . . ,m− 1 do
t = Avj
for i = 1, . . . , j do
hi,j = v∗i t, t = t− hi,jvi

end for
hj+1,j = ‖t‖2; vj+1 = t/hj+1,j

end for

(Golub & Van Loan 1996, Gallopoulos & Saad 1992). Note that, once A ∈ suM (C),
it follows that Hm ∈ sum(C). Therefore, the columns of Vm being orthonormal, the
`2 norm is conserved. Moreover, since V∗mv = ‖v‖2e1, where e1 ∈ Cm is the first unit
vector, it follows that eHmV∗mv is merely the first column of eHm , scaled by ‖v‖2. To
compute the approximation (5.2) we thus need to evaluate a small exponential and
calculate a single matrix-vector product.

The computational cost is dominated by the cost of the iterations, each involving
a matrix-vector product of the form Avj . In any Zassenhauss splitting the matrices
which requires exponentiation by Krylov methods will involve a multiplication of a
diagonal and a circulant. A few FFTs are therefore unavoidable in each iteration,
bringing the overall cost to O(mM logM) operations.

The question of an appropriate value of m is answered by the inequality

‖eAv − VmeHmV∗mv‖2 ≤ 12e−ρ
2/(4m)

( eρ

2m

)m
, m ≥ ρ, (5.3)

where ρ = ρ(A) is the spectral radius of A (Hochbruck & Lubich 1997). We know
that R̃2 = O

(
ε2
)

and assume, with very minor loss of generality, that ρ(R̃2) ≤ cε2 for
some c > 0. We thus deduce from (5.3) that

‖eR̃2v − VmeHmV∗mv‖2 ≤ 12
( ec

2m

)m
ε2m, m ≥ ρ,

and m = 3 is sufficient to reduce the error to O
(
ε6
)
, in line with the error of our

symmetric Zassenhaus algorithm. This is true provided that ρ ≤ 3, i.e. ε ≤
√

3/c
– since we expect ε > 0 to be very small, this is not much in a way of restriction.
Likewise, T̃3 = O

(
ε4
)

and the inequality ρ(T̃3) ≤ c̃ε4 implies that

‖eT̃3v − VmeHmV∗mv‖2 ≤ 12

(
ec̃

2m

)m
ε4m, m ≥ ρ

and for ε ≤ (2/c̃)1/4 we need just m = 2. Altogether, we deduce that the computation

(consistent with the error of O
(
ε6
)
) of eR̃2v (twice) and eT̃3v in each step (5.1) cost

just O(M logM) operations.
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Figure 5.1: The error, compared to the required order O
(
ε6
)
, in computing eR̃2v (left)

and eT̃3v (right).

Fig. 5.1 presents the L2 error committed in approximating the exponentials eR̃2v

and eT̃3v, where we take φ(x) = e−20 sin2(πx/2) as the interaction potential V and

ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2)) as the wave-function u, both discretised as nodal val-
ues at M = 2N + 1 grid points with N = bε−1c. Although we have used just m = 3

for eR̃2v (i.e., approximated the (2N + 1) × (2N + 1) exponential by an 3 × 3 one)
the error is truly minuscule. Moreover, consistently with our theory (but not with
conventional numerical intuition) it decreases with ε. Indeed, the sort of accuracies
we obtain for small values of ε are well in excess of what is required in realistic numer-

ical computations. In the case of eT̃3v, we approximate with just a 2× 2 exponential!
Again, everything is consistent with our analysis.

The slope of the error bound is steeper than ε6 in the second figure and this should

cause no surprise. The error for eT̃3v decays like O
(
ε8
)
, much faster than required.

6 Asymptotic splittings with different values of ρ
and σ.

The Zassenhaus splitting procedure used for deriving the S [2]
(1,1),2 splitting (3.12) is

hardly tied to the choice of (ρ, σ) = (1, 1) and works just as well for any other pair
(except that WKB considerations restrict us to ρ ≥ 1). With small modifications in
the working and with little difficulty, for instance, we are able to arrive at variants
of this splitting with ρ = 1 and σ = 1

2 or 1
4 . The common form of the splittings we

present is

S [2]
(1,σ),2 = eR0eR1eR2eT3eR2eR1eR0 , (6.4)
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with

R0 = 1
2τε∂

2
x,

R1 = 1
2τε
−1V,

R2 = 1
24τ

3ε
{
∂2
x

[
(∂2
xV ) ·

]
+ (∂2

xV )∂2
x

}
− 1

12τ
3ε−1(∂xV )2,

being common to the three cases σ = 1, 1
2 ,

1
4 . The components of the final term,

T3 = 1
240τ

5ε3
{
∂4
x

[
(∂4
xV ) ·

]
+ (∂4

xV )∂4
x

}
− 1

24τ
3ε(∂4

xV )

+ 1
60τ

5ε
{
∂2
x

[
(∂2
xV )2 ·

]
+ (∂2

xV )2∂2
x

}
− 1

30τ
5ε
{
∂2
x

[
(∂xV )(∂3

xV ) ·
]

+ (∂xV )(∂3
xV )∂2

x

}
+ 7

120τ
5ε−1(∂xV )2(∂2

xV ),

are also identical apart from the factor − 1
24τ

3ε(∂4
xV ) which features in the case of

σ = 1 and is missing for σ = 1
2 and σ = 1

4 . The error in these splittings is O
(
ε7σ−1

)
6.1 Implementation issues

As before, the first two terms R̃0 and R̃1, which constitute a circulant and a diagonal,
are easily exponentiated after discretisation. The remaining terms are R̃2 = O

(
ε3σ−1

)
and T̃3 = O

(
ε5σ−1

)
. Except for cases with σ < 1

3 , where the spectral radius of

R̃2 increases with a decreasing ε, the number of iterations required in the Krylov
approximation of the exponentials is small and derived in a straightforward manner
from the bound (5.3). The exponentiation of R̃2 requires 3 iterations for σ = 1
and 5 iterations for σ = 1

2 , while T̃3 can be exponentiated in 2, 2 and 3 iterations,
respectively, in the cases σ = 1, 1

2 ,
1
4 .

For the case σ = 1
4 , the spectral radius of R̃2 becomes large enough to be of concern

with regards to the side condition in (5.3), m ≥ ρ, where, it should be recalled, m
was the number of iterations and ρ the spectral radius. In this case, as noted by
Hochbruck & Lubich (1997), the error does not decrease substantially till m ≥ ρ,
decreasing rapidly thereafter. Re-writing (5.3) as

‖eAv − VmeHmV∗mv‖2 ≤ 12 exp
(
−ρ2+4m2(1−log 2)

4m

)( ρ
m

)m
, m ≥ ρ, (6.5)

from where, with the choice m ≥ αρ for some α > 1, we end up with an estimate

‖eAv − VmeHmV∗mv‖2 ≤ 12 exp
(
−ρ2+4m2(1−log 2−logα)

4m

)
.

Exponential convergence, well in excess of what we require, can be achieved by an
appropriate choice of α, whereby O

(
ε−1/4

)
iterations prove adequate. With α = 2, for

instance, the error term works out to roughly exp(− 7
8ρ). After O

(
ε−1/4

)
iterations we

are also left with the task of exponentiating a O
(
ε−1/4

)
×O

(
ε−1/4

)
upper Hessenberg

matrix which, although large, can be exponentiated by brute force using MATLAB’s
expm in O

(
ε−3/4 log ε−1

)
operations.
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The O
(
ε−5/4 log ε−1

)
cost of the Krylov iterations for eR̃2v dominates the cost of

each time-step of the splitting with σ = 1
4 , making the overall cost O

(
ε−3/2 log ε−1

)
.

This is no less than the cost of the more accurate σ = 1
2 splitting. In the case of

σ = 1 – where, of course, a much smaller error is achieved with the same number of
exponentials – the overall cost comes to O

(
ε−2 log ε−1

)
.

There seems little point in considering a σ smaller than 1
3 where R̃2 becomes O(1)

or larger and the number of Krylov iterations required for eR̃2v starts increasing as
ε → 0. Even where the spectral radius does decrease with ε, a small σ makes the
constraint m ≥ ρ in (5.3) a graver concern. With σ = 1

4 , for instance, where T̃3 scales

as c̃ε1/4, this requires ε ≤ (3/c̃)4. The constant c̃ depends on the interaction potential
and circumstances where this constraint can become a serious concern are far from
inconceivable.

7 Numerical results

We present numerical results for two interaction-potential wave-function pairs. The
wave-functions used in our experiments are u1(x) = 1

100φ(x + 0.6)ei20πx and u2 = ψ,
where φ and ψ have been previously introduced as

φ(x) = e−20 sin2(πx/2), ψ(x) = e−4(sin2(5πx/2)+sin2(πx/2)).

The first of these is a moderately oscillating wave-train with a periodic Gaussian
envelope seen travelling to the right in free space (V = 0). In our experiments, these
move under influence of the interaction potentials

V1(x) = b(s(x)) sin(20πx),

V2(x) = 1
5 + 1

2 b(s(x+ 1
10 )) + 3

10

(
sin4(2πx− 24

35 ) + sin2(5πx− 8
3 )
)
,

where b is a bump function turned periodic by composition with s,

b(x) =

{
exp

(
− 1

1−x2

)
|x| < 1

0 |x| ≥ 1
,

s(x) = 1− sin(π(x+ 1/2)).

Physically, the first pair shown in Fig. 7.2 (top row) is an attempt at modelling
a wave-packet heading towards a periodic lattice. The second pair, Fig 7.2 (bottom
row), has no physical motivation and is chosen for its complexity.

The error estimates are, of course, of an asymptotic nature and it is little surprise
that for some cases the true nature does not emerge till very small values of ε. In
the case of V1 with σ = 1

2 or 1
4 , for instance, where one of the terms omitted in the

splitting, − 1
24τ

3ε(∂4
xV ), is fairly large, we do not see a noticeable decrease till very

small values of ε unless the magnitude of the interaction potential is decreased. In
Fig.7.4 (top row) the error is seen to approach the asymptotic estimate at at earlier
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Figure 7.2: The interaction-potential wave-function pair u1, V1 (top row) and u2, V2

(bottom row).

stage in the case of a smaller potential. The asymptotic bounds are very much adhered
to, but here we become limited by inefficiency of the reference method – MATLAB’s
expm – which does not allow us to go beyond moderate values of M = O

(
ε−1
)
.

All estimates and bounds in our analysis have, of course, been derived with respect
to the L2 norm. This is approximated by the `2 norm on the grid xM = (x1, . . . , xM ),

‖f‖L2[−1,1] =

√∫ 1

−1

|f(x)|2dx ≈

√√√√ 2

M

M∑
i=1

|f(xi)|2 =

√
2

M
‖f‖`2[xM ] . (7.6)

Of more consequence in numerical settings, arguably, is the behaviour of the L∞ error.
The `∞ norm is a very good approximation for the L∞ norm, converging rapidly as
M →∞. Noting the inequality ‖f‖`∞ ≤ ‖f‖`2 , one should expect the L∞ error to be

worse off than the L2 error by a factor of
√
M = O

(
ε−1/2

)
and this is indeed seen to

be the case in our experiments (bottom row, Figs 7.4 and 7.5).
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Figure 7.3: Error plots for (1, 1)-splittings showing L2 error for the pairs (u1, V1) (left

column) and (u2, V2) (right column): S [2]
(1,1),2 splitting (top row) with seven exponen-

tials has an error estimate of O
(
ε5
)
; S [2]

(1,1),1 splitting (bottom row), which omits T̃3,

uses five exponentials and has an error estimate of O
(
ε3
)
.

8 Conclusions

In this paper we have presented a methodology for the computation of the semiclassical
Schrödinger equation (1.4) with small values of ε. It has led to asymptotic exponential
splitting á la (3.9), (3.12) and (6.4), where each consecutive argument (except per-
haps for one) is progressively smaller. Moreover, these arguments are skew-Hermitian
(hence stability and unitarity) and the underlying exponentials are easy to compute.
All this has been accomplished by creating a Lie-algebraic framework that uses nested
commutators, yet avoids their expensive computation, combined with a repeated use
of the symmetric BCH formula to form a symmetric Zassenhaus splitting. We have
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Figure 7.4: Error plots for S [2]

(1, 12 ),2
splitting: (top) L2 error for the pairs (u1,

1
10V1)

(left) and (u1,
1

100V1) (right), demonstrates the asymptotic nature of the error estimate
O
(
ε2
)
; (bottom) relation between L2 error (left) and L∞ error (right) for (u2, V2) is

evident – error estimates being O
(
ε2
)

and O
(
ε

3
2

)
, respectively.

also discussed the choice of semidiscretisation and of effective means to approximate
matrix exponentials.

We do not view the work of this paper as a finished and complete endeavour: it is
more in the nature of an initial foray into a broad and fascinating subject area. There
is a wide range of issues that our work raises. Some are already subject to active
investigation, others more speculative:

1. A time-dependent interaction potential. In place of (1.4) we can consider the
(non-autonomuos) semiclassical Schrödinger equation with time-dependent po-
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Figure 7.5: Error plots for S [2]

(1, 14 ),2
splitting: (top) L2 error for the pairs (u1,

1
10V1)

(left) and (u1,
1

100V1) (right), demonstrates the asymptotic nature of the error estimate

O
(
ε

1
2

)
; (bottom) relation between L2 error (left) and L∞ error (right) for (u2, V2) is

evident – error estimates being O
(
ε

1
2

)
and O

(
ε0
)
, respectively.

tential
∂u

∂t
= iε

∂2u

∂x2
+ iε−1V (x, t)u, t ≥ 0, x ∈ [−1, 1],

again with periodic boundary conditions. To this end we need to combine our
methodology – algebra of operators, symmetric Zassenhaus – with Magnus ex-
pansions (Iserles, Munthe-Kaas, Nørsett & Zanna 2000). Preliminary work indi-
cates that, inasmuch as this leads to considerably more complicated framework,
it can fit into our narrative. Specifically, different Magnus terms can be written
in a form consistent with the Lie algebra G. We expect to report on this work
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in the near future.

2. A multivariate setting. An effective numerical discretisation of the equation
(1.3), evolving in a torus in Cd, is the ultimate goal of this work. Insofar as
small d ≥ 1 is concerned, this is a fairly straightforward exercise but matters
are more complicated when d becomes large and the cost of O

(
Md logM

)
be-

comes unsustainable. It is clear that, for our methodology to be scaleable to
large dimensions, it must be combined with other approaches, e.g. sparse grids
(Bungartz & Griebel 2004).

3. The nonlinear Schrödinger equation. A major challenge is to apply our method-
ology in a nonlinear setting, e.g. to the nonlinear Schrödinger equation

iε
∂u

∂t
= − ε2

2m

∂2u

∂x2
− V (x)u+ λ|u|2u.

Preliminary investigation seems to indicate that a näıve generalisation does not
work, because we are not enjoying the reduction of negative powers of ε after
commutation with Lie-derivatives corresponding to |u|2.

4. Symmetric Zassenhaus in other settings. Exponential splittings have reached
their apogee in the context of symplectic integrators for Hamiltonian ordinary
differential equations (Hairer et al. 2006, McLachlan & Quispel 2002). Can
symmetric Zassenhaus be used in this setting? The idea seems particularly
appealing in the context of Hamiltonian functions of the form

H(p, q) = H1(p, q) + εH2(p, q),

where 0 < |ε| � 1. Such systems occur often in celestial mechanics and many-
body problems once there exists large disparity of masses and it is tempting
to use an asymptotic splitting. However, in general we cannot employ in this
context the formalism of Subsection 2.1, computing commutators easily. The
computation of commutators in this context (in which they become Poisson
brackets) is frowned upon because it is expensive. However, for special Hamil-
tonian functions this approach might be feasible.

Similar reasoning applies to volume-conserving geometric integrators based on
splittings (McLachlan, Munthe-Kaas, Quispel & Zanna 2008).

The symmetric Zassenhaus formula might be also relevant within the realm
of partial differential equations in the presence of a small parameter, e.g. the
Klein–Gordon equation

1

c2
∂2u

∂t2
= ∇2u+

m2c2

h̄2 u.

This, again, is matter for further research.
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