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Abstract
1
 

Objectives: Residually strained porcelain is influential in the early onset of failure in 

Yttria Partially Stabilised Zirconia (YPSZ) – porcelain dental prosthesis. In order to improve 

current understanding it is necessary to increase the spatial resolution of residual strain 

analysis in these veneers. 

Methods: Few techniques exist which can resolve residual stress in amorphous materials 

at the microscale resolution required. For this reason, recent developments in Pair 

Distribution Function (PDF) analysis of X-ray diffraction data of dental porcelain have been 

exploited. This approach has facilitated high-resolution (70 µm) quantification of residual 

strain in a YPSZ-porcelain dental prosthesis. 

In order to cross-validate this technique, the sequential ring-core focused ion beam and 

digital image correlation approach was implemented at a step size of 50 µm. This semi-

destructive technique exploits microscale strain relief to provide quantitative estimates of the 

near-surface residual strain. 

Results: The two techniques were found to show highly comparable results. The residual 

strain within the veneer was found to be primarily tensile, with the highest magnitude stresses 

located at the YPSZ-porcelain interface where failure is known to originate. Oscillatory 

tensile and compressive stresses were also found in a direction parallel to the interface, likely 

to be induced by the multiple layering used during fabrication. 

                                                 
1
  Abbreviations 

DIC – Digital Image Correlation 

FE – Finite Element 

FIB – Focused Ion Beam 

LRO – Long Range Order 

MBLEM – Multi Beam Laboratory for Engineering Microscopy 

MRO – Medium Range Order 

PDF – Pair Distribution Function 

SEM – Scanning Electron Microscopy 

SRO – Short Range Order 

XRD – X-Ray Diffraction 

 YPSZ – Yttria Partially Stabilised Zirconia 
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Significance: This study provides the insights required to improve prosthesis modelling, 

to develop new processing routes that minimise residual stress and ultimately to reduce 

prosthesis failure rates. The PDF approach also offers a powerful new technique for 

microscale strain quantification in amorphous materials. 

Graphical Abstract 
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synchrotron X-ray diffraction, residual strain, ring-core, focused ion beam milling, digital 
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1. Introduction 

In recent decades the high strength, high toughness, excellent biocompatibility and appealing 

aesthetics of Yttria Partially Stabilised Zirconia (YPSZ) has ensured that this ceramic has become the 

restorative material of choice used in premium dental prostheses [1]. During the manufacture of 

these copings, YPSZ is coated with a porcelain veneer in order to match the shade and pearlescence 

of the patients’ existing teeth and to reduce wear during occlusal contact [2]. However, along with 

these benefits this manufacturing approach is known to induce the primary failure mode of these 

prostheses: near interface chipping of the porcelain veneer [3]. 

Recent studies into the origin of this behaviour have suggested that failure arises from 

modifications to the microstructure (and mechanical behaviour) of porcelain within the first few 

microns of the interface [4–7] . Although elemental diffusion is known to influence this weakened 

near interface region, the primary driving force behind many of these mechanical changes is the 

tensile residual stress (or strain) which is generated during manufacture [8–10]. These stresses are 

induced by a combination of thermal expansion mismatch between porcelain and YPSZ [11], the 

tetragonal to monoclinic phase transformation of YPSZ [12] and the multiple layer approach used to 

produce the prosthesis veneer [13]. The low tensile fracture toughness of porcelain means that these 

stresses, in combination with mastication loads, are sufficient to induce tensile failure of the near-

interface veneer [14]. To reduce the likelihood of failure, an improved understanding of the residual 

strain state within the porcelain is crucial. 

A number of microscale semi-destructive residual stress and strain analysis techniques have 

previously been applied to dental prosthesis cross sections both within YPSZ and porcelain. Spatially 

resolved nanoindentation testing has previously shown that porcelain is on average in a state of 

tension, and that a variation in the residual stress state corresponding to the veneer layering process 

can be detected [11,15]. Recent developments of the ring-core Focused Ion Beam (FIB) milling and 

Digital Image Correlation (DIC) technique have resulted in higher resolution (micro-scale) and more 
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precise residual stress analysis [16] in comparison to the methods successfully applied previously to 

measure the average strain within a veneer [17]. The ~0.5 mm step size used in this study was 

insufficient to capture the variations in residual stress induced by the multi-layered manufacturing 

approach. However, both tensile and compressive stresses were observed, suggesting that the 

approach would be capable of resolving the strain response at higher resolution. 

In the past few decades, micro-focused synchrotron X-ray diffraction has become well 

established as one of the most suitable techniques for microscale structural analysis and residual 

strain quantification [18]. The regularly spaced structure of atomic planes within crystalline materials 

produces sharp X-ray diffraction reflexes which forms a convenient and precise basis for the XRD 

lattice strain quantification approach [19,20]. Amorphous materials such as porcelain produce 

diffraction patterns with broad and diffuse peaks which, despite containing large amounts of 

structural information, cannot be analysed for strain in the same manner [21]. In order to extract local 

structure information, diffraction data collected over a sufficient momentum transfer range can, after 

careful correction and background subtraction, be Fourier transformed to give the Pair Distribution 

Function (PDF) [22]. These representations of the probability of finding an atom at a particular 

interatomic radial distance characterise the average distribution of atoms within the amorphous 

material. Strain causes changes in the arrangements of atoms within the material, which is reflected 

in changes in the peak centre positions (shifts) within the PDF [23,24]. For amorphous materials 

subjected to elastic deformation, a linear correlation between the macroscopic strain and PDF peak 

centre position has been reported [25]. 

In a recent experimental and modelling study [26], the influence of macroscopic strain on the 

PDF pattern of dental porcelain was considered in detail. In situ loading in the 4-point bending 

configuration was used to impose a well-characterised strain distribution within porcelain, and the 

impact on the resulting PDF-derived strain distributions was assessed. As well as providing insight 

into the fundamental atomic scale response of porcelain, critically the relationships between PDF 
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peak shift and macroscopic strain were revealed by this investigation. These results enable the 

quantification of residual strain within the sample of interest by the combination of X-ray scattering 

and PDF analysis. In the present study, this approach is used to perform residual strain profiling 

within a porcelain dental veneer of YPSZ copings. 

In order to validate this new technique, the recently developed sequential spatially resolved ring-

core FIB milling and DIC approach has been applied at the same location [27]. This analysis has 

been performed at a step size of 50 μm (i.e. an order of magnitude finer than the 0.5 mm step 

previously implemented) to capture the variation of strain over multiple veneering layers. Strain 

evaluation was performed in directions parallel and perpendicular to the interface that correspond to 

the two key distinct orientations within the system [28]. DIC marker outlier removal was also 

implemented in this study to increase the reliability and precision of the results with respect to those 

presented previously [29]. 

2. Materials and methods  

 

Figure 1. Prosthesis cross section showing the location of line scan and the relative orientation 

of interface between YPSZ and porcelain.  

2.1. Sample preparation 

The incisal dental prosthesis examined in this study was manufactured by the Specialist Dental 

Group, Singapore, using the manufacturing routes prescribed by the suppliers. Wieland Dental 

Zenotec Zr Bridge [30] YPSZ was used to make the coping base and Ivoclar Vivadent IPS e.max 

Ceram [31] porcelain was veneered onto this in a multiple stage process at a firing temperature of 

730°C and holding time of 2 mins. The coefficient of thermal expansion of the Zr Bridge is slightly 

larger (10.5 × 10−6 K−1) than that of the IPS e.max Ceram (9.5 × 10−6 K−1) such that the thermal 
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expansion mismatch generates a low magnitude tensile stress within the YPSZ and a compressive 

stress within the porcelain veneer. The completed prosthesis was mounted in epoxy and sectioned in 

a such a way that at the location of interest the YPSZ-porcelain interface was perpendicular to the 

cross-section surface, as shown in Figure 1. The thickness of the prosthesis slice was selected to be 

2 mm in order to maximise the diffracted signal during the synchrotron X-ray scattering experiment. 

In order to minimise the residual stresses induced during sample preparation, a Buehler Isomet 

Diamond Saw was used to perform gentle sectioning. It should be noted that the sectioning using this 

approach can have a localised impact on the surface residual stress and strength of ceramics [32]. 

Therefore, it is important to estimate the size of the impact zone, which can be predicted through 

knowledge of the grinding medium and Hertzian contact theory [33]. The resulting expressions 

reveal that the size of the nominally influenced region is expected to be less than three times the 

diameter of the grit size. In this study, a diamond blade with a grit size of 60 μm was used to section 

the sample and therefore a 250 μm layer was removed from the two cut surfaces. This process was 

performed using progressively refined grinding and diamond polishing, in which the same 

considerations of Hertzian contact theory and grinding medium size were used to produce a surface 

in which the size of the influenced zone had been minimised to less than 300 nm.  

In the case of the PDF analysis, this influence of the impacted zone will be averaged through the 

entire 2 mm cross section. This represents 0.03% of the gauge volume and will therefore have a 

minimal impact on the result. For the ring-core analysis, this region represents a maximum of 6% of 

the gauge volume. However, it should be noted that this represents an overestimate and that the stress 

measurements are being performed within the surface plane of the sample, and not the plane normal, 

which is the direction most influenced by Hertzian contact [33]. 

Consideration of the impact of relief intrinsically induced by the sectioning process must also be 

performed in order to determine the difference between the stress state originally present and that 

measured after sectioning. This concept has previously been the focus of numerous discussions in the 
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literature [34,35], in which it has been shown that a good approximation to the change in the strain 

state is given by the square of Poisson’s ratio. This means that the prosthesis cross section is a good 

representation for the undisturbed strain distribution with a maximum difference of ≈ 4% [35]. 

Porcelain veneers such as IPS e.max Ceram are supplied as powders that are then applied as 

aqueous slurry and fired to build up millimetre thick multiple layer veneers. This approach differs to 

that used for the monolithic Cerec 2 VITABLOC
®

 Mark II ceramic blanks [36] examined in the 

study by Lunt et al. [37], however the elemental composition of the two materials are similar [36,38], 

with both porcelains being primarily composed of silica with reduced concentrations of other oxides. 

The diffraction of the two material types is therefore expected to be sufficiently similar as to 

facilitate an effective comparison between the results from the two materials, particularly at small 

atomic distances as outlined in §2.2.4. The effectiveness of this comparison was further confirmed 

by performing cross-validation of the results with those obtained by an independent method as 

outlined in Section 3. 

2.2. PDF analysis 

2.2.1. X-ray diffraction 

The X-ray diffraction approach implemented in this study builds and expands the approach by 

Lunt et al. [37]. An X-ray energy of 76 keV and circularly collimated beam cross section of 70 µm 

was used to perform transmission diffraction at beamline I15 at Diamond Light Source, UK. In order 

collect data at a high momentum transfer ( 𝑄𝑚𝑎𝑥 =  25.1 Å−1) a Perkin Elmer flat panel 1621 EN 

area was placed 262 mm downstream from the sample. For this experiment, the sample-to-detector 

distance calibration was performed using lanthanum hexaboride (LaB6, NIST SRM 660b) [37]. 

An optical microscope was used to align the sample region of interest with the incident beam 

and translation stages were used to move the sample to position different regions within the sample 

into the beam. The data collection routine, as previously performed by Lunt et al. [37], consisted of a 

one minute dark field data collection (𝐷𝑅) (in absence of X-rays), followed by a one minute raw 
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collection exposure (𝑅); this sequence was repeated 12 times at each point on the sample. Flat field 

data collection was also performed by removing the sample and repeating the stage movements and 

image collections previously performed during the data acquisition (𝐹). Dark field correction in the 

absence of X-rays was also performed during the flat field collection routine (𝐷𝐹). The resulting 

corrected image (C) at each collection point was therefore given by 

 𝐶 =
(𝑅 − 𝐷𝑅) × 𝑚

𝐹 − 𝐷𝐹
, (1) 

where 𝑚 is the average value of the image 𝐹 − 𝐷𝐹. 

X-ray scattering data were collected across the porcelain veneer of the 2 mm prosthesis cross 

section at the location shown in Figure 1. The position of the line scan was selected to be within a 

region where the YPSZ-porcelain interface was uniform in the through-beam direction and to be far 

from the boundaries of the prosthesis; this was to reduce the impact of curvature and surface relief 

effects in these areas. A line scan was then performed from the YPSZ-porcelain interface to the edge 

of the veneer in increments of 70 μm. Thirteen points, covering a total distance of 0.91 mm, were 

successfully collected from within this region. The full veneer thickness of the porcelain at this 

location was found to be 0.925 mm, as measured from Scanning Electron Microscopy (SEM) 

images. Data at the extreme ends of this scan were excluded from the PDF analysis. In the case of 

data collected closest to the YPSZ substrate, Bragg peaks from the zirconia were observed, whereas 

the scattered intensity dropped significantly at the extreme of the porcelain side. At both extremes, 

this meant that the PDF data generated was not of the necessary quality for detailed analysis. 

2.2.2. PDF processing 

One of the important considerations that needs to be taken into account when performing 

amorphous PDF analysis is the presence of crystalline material within the diffraction pattern. Within 

the study by Lunt et al. a crystalline content of less than 1% was present within the porcelain, and 

therefore masking of these peaks was performed during the data processing stage [37]. Within the 

present study several similar Bragg peaks were identified within the data, however the intensity and 
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number of these peaks was found to be sufficiently low as to not noticeably influence the azimuthally 

integrated profiles. In order to quantify this effect, Rietveld refinement was performed on the 

scattered data in order to determine that the crystalline content was less than 0.1% on average, with 

no spatial trends in crystallite concentration within the veneer. As a result, the influence of 

crystallites on the experimental results was expected to be significantly lower than the confidence 

limits associated with other stages of the data interpretation procedure. 

The software package DAWN [39] was used to process the 2D images in order to provide 1D 

amorphous scattering profiles in the horizontal and vertical directions. In order to do this azimuthal 

integration was performed from the centre of the diffraction pattern to a momentum transfer 𝑄 of 

25.1 Å−1 at an angle relative to the vertical. The vertical profile was obtained by averaging the 

integrated distributions from −15° to 15° and 165° to 195°, and the horizontal was obtained by 

averaging the distributions from 75° to 105° and 255° to 285°. Integrating using this approach  

greatly improves the statistics of the 1D profiles obtained, at the expense of the averaging over small 

variations expected in azimuthal strain (with a maximum error of 2.3% expected). 

The segmented 1D scattering data from DAWN was further processed using the software 

GudrunX [40] in order to correct for background, Compton, and multiple scattering, as well as beam 

attenuation. Using the approach published by Keen [41] the resulting total scattering function 𝑆(𝑄) 

was next Fourier transformed to produce the PDF which has a form similar to Fig 2a in the article by 

Lunt et al. [37] , where 𝑟 is the interatomic distance. 

2.2.3. PDF strain calibration 

The resulting pair distribution function, 𝐺(𝑟), is a quantitative histogram of interatomic 

distances between a pair of atoms, and the area of the peaks are related to the coordination of the 

atoms [42]. The PDF can therefore give structural information about the atomic bonding 

environment, even for amorphous substrates. Even in the absence of a complete structural model for 
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a material the deviations in the PDF peak positions and intensities provides a quantitative indication 

of the alteration in the local structural lengths within the material. 

As demonstrated by Lunt et al. in their study [37], the application of externally applied strains 

through the use of a loading rig, result in PDF peak shifting in dental porcelain. This behaviour can 

be considered to be analogous to the Bragg peak shifting response observed in crystalline materials 

under applied strain [43]. In the case of Bragg diffraction, X-ray powder diffraction produces Debye-

Scherrer rings that correspond to 1D profiles with sharp, clearly defined peaks after azimuthal 

integration. These peaks can be individually fitted to provide reliable estimates of peak centres and 

lattice parameters, and thereby lattice strain for crystallite planes with a given Miller index [44]. 

Alternatively, full refinement of the diffraction pattern can be performed to provide an overall 

estimate of the unit cell dimensions (lattice parameters) of the material. This is a global minimisation 

problem that takes into account the peak centres (and shape) of multiple peaks to derive the 

parameter descriptors of the crystalline lattice.  

For PDF data, peak positions also change due to the local displacement of atoms under the 

application of macroscopic strain. However, not all peaks displace to the same extent: the amount of 

peak shift depends on the extension and rotation of the bonds that define the particular interatomic 

distance. The broad peak shape observed in PDF data of amorphous substances means that peak 

overlap, coupled with differences in the amount of shift between individual peaks, may reduce the 

certainty with which the centre of a single peak can be determined. Statistical noise in the collected 

diffraction pattern, particularly at high values of 𝑄 where the scattering signal is weak, may also 

induce aberrations in the peak centre position determination at lower radial distances. Typically this 

is not a problem as the peak shifts are small [45], and when matching structural models to entire 

patterns, this behaviour can be averaged out over multiple peaks; this means that an approach 

equivalent to single peak fitting and the associated identification of strain is imprecise and ultimately 

forms an unreliable measure of strain. However, in order to overcome this limitation, an approach 
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based on multiple peak fitting in order to identify a single average measure of strain is sufficiently 

precise as to provide a reliable measure. This fundamental approach forms the basis of strain 

quantification used here. 

In order to provide estimates of the macroscopic strain distribution within the porcelain veneer, 

the impact of macroscopic strain (𝜀𝑀) on the PDF profile of porcelain needs to be determined. In 

order to describe this relationship most effectively, we begin by introducing the concept of atomic 

strain (𝜀𝑘
𝐴) within amorphous materials [25]. The value of 𝜀𝑘

𝐴 is dependent upon the atomic pair 

under consideration, which corresponds to a particular peak (𝑘) within the PDF profile. This 

descriptor can be considered the equivalent of lattice strain within crystalline materials and is given 

by the expression: 

 𝜀𝑘
𝐴 =

𝑟𝑘 − 𝑟𝑘
0

𝑟𝑘
0 , (2) 

where 𝑟𝑘 is the fitted radial peak centre position at for the 𝑘th
 peak and 𝑟𝑘

0 is the equivalent 

unstrained radial peak centre of that peak, i.e. when the applied macro strain is zero. As part of the 

study by Lunt et al. quantification of 𝑟𝑘
0 and the associated standard deviation, 𝜎𝑟𝑘

0, was performed 

on 39 peaks [37]. Some of these peaks were found to show limited correlation between macroscopic 

strain and peak centre position. Therefore, only those peaks with a correlation coefficient (𝑅𝑘) value 

greater than ~2/3 were analysed further. As a result, estimates of 𝑟𝑘
0 for 18 peaks covering 𝑟 values 

in the range 1.64 − 37.84 Å were obtained. These can be used to quantify 𝜀𝑘
𝐴 from estimate of 𝑟𝑘 

obtained from peak fitting of the PDF data in this study. 

Once estimates of the atomic strain have been obtained for each peak, the relationship between 

𝜀𝑘
𝐴 and the macroscopic strain can be exploited to estimate the macroscopic strain for each peak: 

 𝜀𝑘
𝑀 = 𝜀𝑘

𝐴/𝛽𝑘. (3) 

Here, 𝛽𝑘 is the constant of proportionality between the two measures of strain for a given peak 𝑘. For 

peaks at large radial distances the value of atomic strain must tend towards that of macroscopic 
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strain, and therefore thelim𝑘→∞ 𝛽𝑘 = 1. For the 18 peaks under consideration, estimates of the 

standard deviation of 𝛽𝑘, 𝜎𝛽𝑘
, were also quantified and published by Lunt et al. as shown in Figure 2.  

 

Figure 2. Constant of proportionality between atomic and macroscopic strain (𝜷𝒌) against the 

unstrained radial peak centre position 𝒓𝒌
𝟎 as published by Lunt et al. [37]. The correlation 

coefficient between atomic and macroscopic strain at each point (𝑹𝒌) is indicated by the 

marker colour and the 95% confidence interval for each value is indicated by error bars. A 

region highlighting the general trends in the data is shown in green. 

The transition from the reduced value of  𝛽𝑘~ 0.45 for the near neighbours to  𝛽𝑘~ 1 for 

atomic pairs separated by ~20 Å or more has been explained in [37] by identifying the dominance of 

bond rotation over bond stretching for near neighbours. It is particularly interesting to discuss these 

findings in the context of the nature of order and disorder present in amorphous materials. 

 

Figure 3. Simulated (left, colour) and experimentally determined (right, greyscale) atomic 

arrangements in amorphous silica (green/lighter coloured spots = silicon atoms, red/darker 

coloured regions = oxygen atoms). Note the presence of atomic rings consisting of 4-8 silicon 

atoms [46]. 
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Figure 3 illustrates the results of the study by Huang et al. that reveal the structure of 2D 

layer of amorphous silica on graphene substrate [46]. The preponderance of four- to eight-membered 

silicon rings is evident in the structure. Further interpretation of the data is shown in Figure 4 in the 

form of radial pair distribution function 𝐺(𝑟) for the crystalline (a) and amorphous (b) silica. It is 

apparent that at the radial distances below ~10 Å both crystalline and amorphous forms show strong 

peaks indicating the presence of strong Si-O bonds, as well as second neighbour distances that 

correspond to Si-O-Si and O-Si-O arrangements. These rigid groups correspond to the Short Range 

Order (SRO) in the atomic arrangement that is present in both structures. In the current 

interpretation, (as shown in Figure 2) this corresponds to the ‘stiff’ (low 𝛽𝑘) strain response of the 

pairwise peaks. In the Medium Range Order (MRO) range between ~10 and 20 Å, whilst crystalline 

modification retains the presence of sharp peaks, in the amorphous configuration the peaks become 

progressively broader and lower in magnitude. This is reflected in the intermediate values of 𝛽𝑘 

observed by Lunt et al. [37]. Finally, the apparent absence of the Long Range Order (LRO) in 

amorphous silica results in the convergence of 𝛽𝑘 values to unity for pairwise distances greater than 

~ 20 Å.   

 

Figure 4. a) and b) illustrate the radial pair distribution function 𝑮(𝒓) for crystalline and 

amorphous polytypes of 2D layer of silica on graphene, based on experimental observation 

[46]. c) The number of counts for n-membered atomic rings of different ‘size’ (number of Si 

atoms). d) Percentage of n-membered rings within amorphous silica. 
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 These observations allow further interpretation in the light of Figure 4c that reveals the 

presence of five- to eight-membered rings of Si atoms within amorphous silica. The mean diameter 

of an n-membered ring is approximately equal to 𝑛 Å. We draw the conclusion that in silica, the SRO 

structure is defined by these rings, whose principal deformation mode corresponds to ring distortion, 

that we describe in [37] in terms of Si-O-Si bond rotation. At interatomic distances in excess of 10 Å, 

transition to MRO occurs, with LRO setting in at the distances that correspond to ~3 ring diameters, 

which is reflected in the 𝛽𝑘 values converging to unity.      

2.2.4. PDF strain quantification 

Precise knowledge of 𝛽𝑘 values such as those provided by Lunt et al. [37] can serve as 

calibration for the quantification of unknown macroscopic strains from PDF measurements. This 

requires the quantification of the atomic strains through PDF peak fitting and 𝛽𝑘, as shown in 

Equation 3. In this study, following the data collection routine outlined in § 2.2.1, this approach has 

been used to provide 𝜀𝑘
𝑀 estimates within the veneer from the 𝜀𝑘

𝐴 determined experimentally, as 

outlined below. 

Table 1. Peak centre, correlation coefficient and macro-atomic strain proportionality 

coefficient for the four PDF peaks used in the porcelain veneer macroscopic strain 

quantification. The atomic pairs corresponding to each peak have been identified. 

Pairs 𝒌 𝒓𝒌
𝟎 (Å) 𝝈𝒓𝒌

𝟎  (Å) 𝜷𝒌 𝝈𝜷𝒌
 𝑹𝒌 

Si-O 1 1.65 9.31 × 10−6 0.44 5.73 × 10−2 0.88 

O-O 2 2.64 3.64 × 10−5 0.47 7.07 × 10−2 0.76 

Si-Si 3 3.10 4.44 × 10−5 0.45 9.03 × 10−2 0.79 

Si-Si / O-O * 4 5.11 2.17 × 10−5 0.43 8.17 × 10−2 0.90 

 
* The peak at 𝑟 = 5.11 corresponds to a combination of the peaks of the 2

nd
 nearest neighbours of silicon and oxygen 

Despite the similarities in elemental composition between Cerec 2 VITABLOC
®
 Mark II and 

e.max Ceram, differences were observed within the PDF patterns of the two materials. These 
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differences are likely to be associated with the differing manufacturing and thermal processing routes 

applied to the two compositions. Examination of the PDF profiles obtained from the two porcelain 

types revealed however that for small values of 𝑟, strong similarities were observed. For this reason 

the remainder of the residual strain quantification analysis was focused on the range of interatomic 

distances 𝑟 ≤ 5.5 Å. Within this radial distance, seven distinct peaks were observed which 

correspond to the nearest 1
st
 and 2

nd
 neighbour distances, primarily between Si and O atoms. It was 

found that four of these peaks showed good correlation between macroscopic and atomic strains, as 

shown in Table 1.  

Gaussian peak fitting was performed on the data collected from the porcelain veneer in 

directions parallel and perpendicular to the YPSZ-porcelain interface. The peak centre 𝑟𝑘 and 

confidence interval, 𝜎𝑟𝑘
, were obtained for each of the four peak positions given in Table 1. A small 

correction factor (0.73%) was applied to the 𝑟𝑘 values in order to accommodate minor experimental 

misalignment, or slight differences between the porcelain types, as outlined in the Appendix. 

Equations 2 and 3 were combined in order to convert the peak centre positions to macroscopic strain 

estimates for each peak: 

 
𝜀𝑘

𝑀 =
𝑟𝑘 − 𝑟𝑘

0

𝛽𝑘𝑟𝑘
0 . 

(4) 

The standard deviation of these macroscopic strain estimates were also obtained using the 

expression: 

 

𝜎𝜀𝑘
𝑀 =

√𝛽𝑘𝑟𝑘
0 (𝜎𝑟𝑘

2 + 𝜎
𝑟𝑘

0
2 ) + √(𝑟𝑘 − 𝑟𝑘

0)2 (𝑟𝑘
0𝜎𝛽𝑘

2 + 𝛽𝑘𝜎
𝑟𝑘

0
2 )

2

𝛽𝑘𝑟𝑘
0 . 

(5) 

In order to determine a single parallel and perpendicular strain estimate at each position, a weighted 

average of the four strain values was obtained using the standard deviation of each estimate.  
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2.3. Ring-core analysis 

2.3.1. FIB milling 

The sequential spatially resolved ring-core FIB milling and DIC technique [16,27,29] was 

applied across the surface of the prosthesis cross section. This approach was intended to provide 

comparative measurement validation of strain within the porcelain veneer at the locations previously 

investigated by PDF methods.  

The 2 mm prosthesis cross section was mounted onto an SEM stub using silver paint and 5 nm 

of gold-palladium was sputtered onto the surface of the sample to reduce the impact of charging 

during SEM imaging and FIB milling. The sample was then placed into the Tescan Lyra 3XM FIB-

SEM at the Multi Beam Laboratory for Engineering Microscopy (MBLEM), Oxford, UK. Tilt 

corrected 2048 × 2048 pixel SEM images were collected at a working distance of 9 mm and an 

accelerator voltage of 5 kV, using the configuration previously reported in the literature [27]. In order 

to generate the high contrast surface necessary for effective DIC, a single pass of the 30 keV ion 

beam was used to create a random surface texture pattern as shown in Figure 5. This approach, in 

combination with an automated brightness and contrast routine, has previously been shown to give a 

stable and effective contrast generation technique which is more reliable than deposition based 

contrast  [29,29,47,48]. 

 

Figure 5. SEM micrographs of ring-core FIB milling positions. 1. Milling position at the YPSZ-

porcelain interface. 2. Typical example of ring-core milling from the centre of veneer. 3. 

Overview of all milling positions. 
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Following the calibration of the FIB milling rate of porcelain, the first ring-core milling position 

was selected to lie at the interface between porcelain and YPSZ. A 5 μm diameter core and 1.5 μm 

trench width were selected as a balance between maximising the resolution of the measurements on 

one hand, and minimising the error associated with the strain measurement on the other. A nominal 

milling depth increment of 100 nm was implemented between the collection of each successive 

SEM image, and a total of 50 images were collected in around 35 minutes. This process was repeated 

across the entire porcelain veneer with the lateral position increment of 50 μm between successive 

measurement points. For a 5 μm diameter core, a step size of 50 μm is known to correspond to a 

maximum induced relief of less than 0.5% at the successive measurement point [27] which is much 

less than the typical error bounds associated with this technique. The final point was measured at a 

distance of 20 μm from the previous position in order to provide a measurement as close as possible 

to the edge of the sample. 

2.3.2. Digital image correlation for residual strain quantification 

Following the application of the ring-core FIB milling and SEM image collection routine, 

residual strain quantification was performed in directions parallel and perpendicular to the YPSZ-

porcelain interface using a modified version of the MATLAB DIC code developed by Eberl et al. 

[49]. The fundamental principles behind approach have been discussed in detail elsewhere in the 

literature [29,50,51] and therefore only the specific parameters implemented in this study are 

included here. 

 Low resolution DIC (reduction factor = 5) was initially applied to all image sets to correct for 

any bulk drift induced during milling [52]. Several thousand ‘DIC markers’ or image subsets were 

then placed across the central 60% of the core region where strain relief has previously been shown 

to be uniform [53]. A correlation window size of 10 by 10 pixels was used to maximise the precision 

of the tracking while minimising boundary effects [54]. Automated 2D tracking of the markers was 

performed for each image set in order to provide insight into the displacement (and thereby strain 
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relief) of each point as a function of milling depth. Outlier removal of poorly tracked markers was 

implemented using the multi-stage routine developed by Lunt et al.[29]; correlation coefficient 

thresholding was first used to remove markers in which noise had reduced this measure of quality 

below 0.5. Peak position standard deviation thresholding was next used to remove markers with a 

standard deviation 1.5 times greater than the mean value. Finally, any outliers to the expected 

displacement field were removed by thresholding markers at a distance greater than 1.5 times the 

average offset. This process ensured that only the well-tracked markers were used in the strain 

quantification analysis. 

  Next, linear total least squares fitting was used to obtain the estimates of strain relief at each 

milling depth in directions parallel and perpendicular to the YPSZ-porcelain interface. The resulting 

plots of strain relief against image number were then fitted with the Finite Element (FE) relief 

‘master curve’ outlined by Korsunsky et al. [16]. This process provides estimates of ∆𝜀∞
0°

 and ∆𝜀∞
90°

, 

the full strain relief at infinite depth in directions parallel (0°) and perpendicular (90°) to the 

interface. These two measurements represent the strain change within the core during the milling 

process and are the negative of the residual strains originally present within the material, i.e. an 

increase in the core size (positive strain change) is indicative of a pre-existing compressive residual 

strain. 

During this entire process, care was taken to propagate all sources of error in order to provide 

reliable confidence bounds on each of the residual strain relief estimates. This process combined the 

confidence intervals associated with each of the DIC markers and the multiple fitting processes 

implemented in this analysis, as previously reported elsewhere [29].  

3. Results 

The estimates of strain variation within the porcelain veneer obtained using PDF analysis and 

the FIB milling and DIC approach are shown as a function of distance from the YPSZ-porcelain 
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interface in Figure 6. Strains in directions parallel and perpendicular to the interface have been 

plotted separately and are shown in Figures 6a and 6b, respectively.  

 

Figure 6. Strain variation within the porcelain veneer as a function of distance from the 

interface. The results from PDF analysis and FIB milling and DIC are shown in directions a) 

parallel and b) perpendicular to the YPSZ-porcelain interface. The error bars indicate the 

95% confidence intervals of each data point. 

In order to draw reliable comparisons between the strain measurements obtained, consideration 

of the gauge volumes and stress states associated with the two techniques is required. The ring-core 

geometry generated as part of the FIB milling and DIC technique has a well-defined gauge volume 

that is contained within the 5 μm diameter core. This approach is a surface based technique and 

therefore the stress state contained with the measured region can be well approximated by plane 

stress conditions. 

 In the case of the PDF analysis study, the gauge volume has a cross section equal to the size of 

the incident beam ( =  70 µm) and is representative of an average through the thickness of the 

sample (2 mm). Therefore, the sampled volume contains both the near-surface region (which can be 

approximated by plane stress conditions) and the region far from the sample surface (close to plane 

strain conditions). The difference between the near-surface and through-thickness average stress 

states has been discussed in depth elsewhere [34,55]. A good approximation for the difference 

between plane stress and plane strain (under initially equivalent eigenstrain) is given by the square of 
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Poisson’s ratio. This means that the maximum difference between the stress states measured using 

the two techniques is less than ≈ 4% [35]. 

In the case of strains in a direction parallel to the interface (Figure 6a), it can be seen that despite 

the differing gauge volumes, the distributions show several similar trends. The porcelain is on 

average in a state of mild tension and within the first ~0.6 mm from the edge of the sample. A 

periodic distribution with a spacing of 0.2 − 0.3 mm is observed. This repeating pattern has 

maximum tensile strain of approximately 0.5 × 10−3 and a maximum compressive strain of ~0.25 ×

10−3 also present within the outer 50 − 75 μm at the edge of the sample. In contrast to this, tensile 

strains are present in the YPSZ-porcelain near interface region.  

Examination of the strain distributions obtained in a direction perpendicular to the interface 

(Figure 6b) reveals that the porcelain is predominately in a constant state of mild tension of ~0.5 ×

10−3. At the YPSZ-porcelain interface, a ~100 μm-wide band of compressive strain is observed and 

at the free edge a region of low magnitude compressive and tensile strains are present. 

For both strain orientations it can be seen that the strain estimates obtained through PDF 

analysis are generally less precise than those obtained using the FIB milling and DIC approach. 

Despite this, the majority of PDF strain estimates show 95% confidence interval overlap with 

neighbouring FIB milling and DIC strain estimates, suggesting that realistic approximations of the 

strain state have been identified. 

4. Discussion  

Throughout this article the concept of residual strain i.e. the change in the atomic spacing 

relative to the stress free state has been investigated and measured. This parameter is intrinsically 

related to residual stress, which expresses the force per unit area that is associated with this strain 

state. Conversion between these two measures can be performed by making use of Young’s modulus 

and Poisson’s ratio and well-established relationships [50,55]. Despite this, for residual strains within 

a given plane, the relationship with residual stress is dependent upon the out of plane state, which at 
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the two extremes can be well approximated by plane stress and plane strain conditions. Indeed, these 

two serve as upper and lower bounds on the residual stress estimates for a given strain state, and 

many techniques (such as hole drilling) intrinsically rely upon these approximations to provide stress 

estimates [56]. A similar approach could be used to provide residual stress estimates from the 

residual strain estimates provided by the ring-core approach in this study as the gauge volume is at 

the surface of the sample, and therefore plane stress conditions serve as a good approximation. 

However, as outlined in Section 3, the gauge volume sampled by the PDF approach contains regions 

both the surface and the bulk, which are best approximated by plane stress and plane strain 

conditions respectively. For this reason, the residual strain to stress conversion is less 

straightforward, and at best can provide upper and lower bounds of these values. Therefore, in this 

study this conversion has not been performed and instead, a direct and more valid comparison with 

the fundamental descriptor of the structure i.e. residual strain has been performed. 

Examination of the residual strain profiles reveals that in general the PDF and FIB based 

approaches give results that are comparable both in terms of magnitude and in terms of spatial 

variation. As outlined in Section 3, the maximum error associated with the difference between the 

plane strain and plane stress approximations is expected to be of the order of 4%, which is 

significantly lower than the average 95% confidence intervals obtained experimentally. This 

calculation is based on the approximation that a uniform residual strain state exists perpendicular to 

the plane of the sample, and significant deviations between the results obtained by the two 

techniques would indicate that this assumption was invalid. However, this appears not to be the case, 

thereby suggesting that a valid comparison can be drawn. 

The region which appears to show maximum difference between the two strain profiles is 

contained within the first 0.2 mm of the YPSZ-porcelain interface. This region is known to be the 

most influenced by coefficient of thermal expansion mismatch between the two materials [11] and 

contains the point at which failure of the system is most likely to occur [57]. The large gradients in 



20 

residual stress expected at this location ensure that the approximation of uniform stress through 

thickness is least reliable. 

The point of maximum difference between the two profiles occurs at the interface location 

where the FIB milling and DIC result suggests a state of high magnitude shear strain. Although 

similar high magnitude strains have previously been reported close to the interface location [17], this 

is the first reported application of ring-core residual stress analysis with a bi-material core. Material 

interaction within the core and non-uniform relaxation will influence the strain measurement at this 

location. Therefore, firm conclusions cannot be drawn from this position without further modelling 

of this distribution of mechanical properties. 

In order to understand the likely origins of the residual strain state of the porcelain, the 

manufacturing route of the veneer needs to be considered. To build up the required shape multiple 

layers of porcelain slurry are applied and heated to between 600 − 750℃ for a relatively short time 

period (less than 10 minutes). Furnace cooling is then used to return the coping to room temperature 

over a period of several tens of minutes. The spatial period of the tensile and compressive strains 

observed within the veneer corresponds closely to the typical thickness of these porcelain layers, and 

suggests that this is the origin of the strain variation in the veneer.  

Characteristic tensile and compressive strain distributions similar to those observed in the multi-

layer veneer are known to be induced in the surface of quenched metallic components [58]. This 

strain state is induced by the surface of cooling at a faster rate than the bulk material and the 

associated solidification which occurs before that of the underlying bulk material. Continual cooling 

of the component leads to shrinkage of the bulk and the induction of compressive strains in the 

surface layer. Stress equilibrium then ensures that tensile strains are induced in these sub-surface 

regions upon full solidification.  

In the case of the multi-layered porcelain veneer, this process occurs multiple times during the 

manufacture of the prosthesis, and therefore a characteristic alternating pattern of tension and 
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compression is induced in the porcelain. Similar tensile and compressive strain variations have 

previously been observed in veneers of the same overall thickness, with the period of the cyclic 

behaviour showing a strong dependence upon the thickness of the applied layers [15]. Another 

important consideration in this manufacturing process is the impact of repeated exposure to sintering 

temperatures of the underlying veneer layers. It can be seen that the layers nearest the YPSZ are 

exposed to larger number of thermal cycles, which may facilitate relaxation of the stress state within 

the veneer through porcelain creep [4,59]. Porcelain creep induced nanovoiding has recently been 

characterised and observed at the YPSZ-porcelain interface for the first time, providing further 

evidence for this behaviour [60] and would result in lower magnitude, smoother strain variation 

similar to that identified between 0.2 and 0.4 mm from the interface. 

Examination of the residual strains in the direction perpendicular to the interface indicates 

tensile residual stress acting in this orientation. Uniform tensile residual stresses within porcelain 

veneers have been widely reported in the literature [11,17,61]. This response is believed to be 

associated with the combined effects of thermal expansion mismatch and the geometry produced 

during veneer manufacture. 

The final stage of prosthesis manufacture involves manual multi-stage polishing with decreasing 

sizes of grinding medium in order to produce an aesthetically pleasing and lustrous finish. Polishing 

of this type is known to induce near-surface compressive stresses in prosthesis materials [62] and 

therefore may explain the compressive strains observed at the surface in both orientations. 

Improved understanding of the residual stress within the porcelain veneer of YPSZ dental 

prostheses is critical in minimising the failure rates of these components, and as such has been 

discussed at depth within the literature [15,17,56,61,63]. The insights provided by the experimental 

characterisation performed in this study serve as key inputs to effective analytical models and 

simulations of the production of these components [64,65]. These approaches are being used to tailor 

the production parameters and treatments applied in order to minimise prosthesis failure through 
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chipping. This methodology has already resulted in improvement to the reliability of prosthesis by 

improved design [2], and continues to be a major focus of dental implant research. 

The PDF approach is a new non-destructive residual strain quantification approach, and such it 

is important to discuss its relevance and suitability against existing residual stress/strain 

measurement techniques that have been outlined comprehensively in the literature [27,66,67]. There 

are several advantages of the methodology, which ensures that it has excellent applicability. Firstly, 

this approach provides insight into residual strain variation at the microscale. This resolution far 

surpasses that of conventional destructive and semi-destructive techniques such as hole-drilling [68], 

the slitting method [69] and the contour method [70], which although applicable to amorphous 

materials, are typically capable of resolving stresses at a spatial resolution in the order of millimetres.  

It is well known that microscale residual stress mapping is possible by making use of advances 

in the focusing optics of X-ray radiation in recent decades [71]. To-date, these methods all rely upon 

the sharp and well-defined Bragg peaks present in the diffraction patterns of crystalline materials and 

therefore cannot be applied to amorphous materials. In contrast, the PDF residual stress technique is 

applicable to materials composed of a disordered atomic arrangement, and therefore a new spectrum 

of samples and field of investigation will be possible by making use of this technique. 

 The only other techniques that have previously been able to resolve the residual stress variation 

at the microscale within amorphous systems, have been those techniques based on the introduction of 

microscale traction free surfaces through FIB milling and the assessment of the resulting relief 

through DIC [27]. Despite the many advantages of these methods, these approaches are intrinsically 

surface based methods, and ‘through sample’ averaging is not possible using these techniques. 

Therefore, for the first time, the PDF approach therefore offers the ability to probe the residual strain 

variation within the bulk regions of an amorphous substrate and provide insights that are critical in 

improving our understanding of a broad spectrum of materials and applications.   
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5. Conclusion 

In this study, a new technique for residual strain evaluation in amorphous materials based on 

PDF analysis has been developed and applied to a sample of commercial interest: porcelain veneer 

deposited on a partially stabilised zirconia dental prosthesis. This method offers a new tool for 

improved characterisation of strain distributions within a broad range of amorphous materials, 

including bulk metallic glasses and polymers. Despite the many benefits of this approach, the results 

have highlighted that in order to produce reliable strain estimates, careful calibration is required. 

Validation of the residual strain profiles within the porcelain veneer has been performed using 

the sequential ring-core FIB milling and DIC approach. The results obtained from this relatively new 

technique showed good comparison with those obtained by diffraction analysis of amorphous 

material, and have further demonstrated that this semi-destructive approach offers a rapid and precise 

cross-validation technique for problems of this type. 

In the direction parallel to the interface, the multi-stage veneering process used to manufacture 

the prosthesis has been shown to induce oscillatory tensile and compressive strains, while a purely 

tensile residual strain was observed in the perpendicular direction. At the interface between YPSZ 

and porcelain, the highest magnitude shear based residual strains are present. This is likely to be 

related to the shear based tetragonal to monoclinic YPSZ phase transformation and, when combined 

with external loading, leads to preferential porcelain chipping at this location.   

The insights gained in this study can be used to provide inputs to analytical and finite element 

modelling of prosthesis manufacture and thereby suggest new prosthesis manufacturing routes, e.g. 

in terms of the choice of veneer layer thickness or sintering temperatures. In turn, these can be used 

to minimise the residual strain build up and reduce the likelihood of failure in future designs. 

6. Appendix – Scaling of 𝒓𝒌 values 

Initial examination of the macroscopic strain estimates obtained by this analysis revealed that 

although the variation between terms seemed realistic, the magnitude of the estimates was far beyond 
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the yield strain of porcelain. Similar unrealistic strain magnitude offsets of this type can be found 

during lattice strain quantification of crystalline substrates due to incorrect value of the material-

dependent unstrained lattice parameter 𝑑0 [72]. One approach applied to overcome this problem has 

been to compare the lattice strain variation with distributions obtained by other independent 

experimental techniques, for example the ring-core FIB milling and DIC approach [27,73]. Adopting 

this approach, Equation 4 was modified to include a correction factor (𝛾) on 𝑟𝑘: 

 
𝜀𝑘

𝑀 =
𝛾𝑟𝑘 − 𝑟𝑘

0

𝛽𝑘𝑟𝑘
0 . 

(6) 

Optimisation of this scaling factor was performed by comparison with the strain estimates obtained 

in Section 6.2 in order to give a single value of 𝛾 = 1.0073 for the entire data set. This parameter 

may be indicative of the minor elemental and microstructural differences between the two porcelain 

types examined in this study, or alternatively may indicate a small (1.9 mm) error between the 

sample and calibrant position. 
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Captions to tables and figures 

Figure 1. Prosthesis cross section showing the location of line scan and the relative 

orientation of interface between YPSZ and porcelain.  

Figure 2. Constant of proportionality between atomic and macroscopic strain (𝛽𝑘 ) against the 

unstrained radial peak centre position 𝑟𝑘
0 as published by Lunt et al. [33]. The correlation 

coefficient between atomic and macroscopic strain at each point (𝑅𝑘) is indicated by the 

marker colour and the 95% confidence interval for each value is indicated by error bars. A 

region highlighting the general trends in the data the associated confidence intervals is shown 

in green. 

Figure 3. Simulated (left, colour) and experimentally determined (right, greyscale) atomic 

arrangements in amorphous silica (green/lighter coloured spots = silicon atoms, red/darker 

coloured regions = oxygen atoms). Note the presence of atomic rings consisting of 4-8 silicon 

atoms [42]. 

Figure 4. a) and b) illustrate the radial pair distribution function 𝐺(𝑟) for crystalline and 

amorphous polytypes of 2D layer of silica on graphene, based on experimental observation 

[42]. c) The number of counts for n-membered atomic rings of different ‘size’ (number of Si 

atoms). d) Percentage of n-membered rings within amorphous silica.   

Figure 5. SEM micrographs of ring-core FIB milling positions. 1. Milling position at the 

YPSZ-porcelain interface. 2. Typical example of ring-core milling from the centre of veneer. 

3. Overview of all milling positions. 

Figure 6. Strain variation within the porcelain veneer as a function of distance from the 

interface. The results from PDF analysis and FIB milling and DIC are shown in directions a) 

parallel and b) perpendicular to the YPSZ-porcelain interface. The error bars indicate the 

95% confidence intervals of each data point. 

 



 

 

Table 1. Peak centre, correlation coefficient and macro-atomic strain proportionality 

coefficient for the four PDF peaks used in the porcelain veneer macroscopic strain 

quantification. The silica pairs corresponding to each peak have been identified. 
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