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Abstract

A subset {x1, x2, . . . , xd} of a group G invariably generates G if {xg11 , x
g2
2 , . . . , x

gd
d } gen-

erates G for every d-tuple (g1, g2 . . . , gd) ∈ Gd. We prove that a finite completely reducible

linear group of dimension n can be invariably generated by
⌊
3n
2

⌋
elements. We also prove

tighter bounds when the field in question has order 2 or 3. Finally, we prove that a transitive

[respectively primitive] permutation group of degree n ≥ 2 [resp. n ≥ 3] can be invariably

generated by O
(

n√
logn

)
[resp. O

(
logn√
log logn

)
] elements.

1 Introduction

There is a continually growing body of literature which broadly concerns the various generation

properties in finite groups. This has involved the analysis of many “generation type” group

theoretic invariants, such as the minimal size d(G) of a generating set for the group G. In this

paper, we study a related invariant: the minimal size of an invariable generating set.

Definition 1.1. Let G be a group.

(a) We say that a subset {x1, x2, . . . , xd} of G invariably generates G if
{
xg11 , x

g2
2 , . . . , x

gd
d

}
generates G for every d-tuple (g1, g2 . . . , gd) ∈ Gd.

(b) Suppose that G is finite. Define dI(G) to be the smallest size of an invariable generating

set for G.

We remark that there exist infinite groups G in which
⋃
g∈GH

g = G for some proper

subgroup H of G. In this case G does not even have an invariable generating set, so dI(G)

is certainly not well-defined. Thus, the requirement that G is finite in Definition 1.1 Part (b)

really is necessary (of course one could also weaken this to “finitely invariably generated”).

Also, one may be tempted to study an even stronger generation property, by requiring that

〈
{
xg11 , x

g2
2 , . . . , x

gd
d

}
〉 = G for every d-tuple (g1, g2 . . . , gd) ∈ Aut(G)d. However, an arbitrary
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finite group G may not even contain such a generating set. For example, when G is elementary

abelian of order pa, for some prime p, then Aut(G) ∼= GLa(p) acts transitively on the non-

identity elements of G.

1.1 History, motivation and main results

The notion of invariable generation was first discussed by B.L. van der Waerden in 1934 [36].

Motivated by the problem of computing Galois groups, van der Waerden asked about proba-

bilistic invariable generation in the case G = Sym(n). For more information about this direction

see also [9].

Suppose that a subset X := {x1, . . . , xd} of the finite group G fails to invariable generate

G. Then X is contained in the union
⋃
g∈GM

g of conjugates of a maximal subgroup M of G.

In other words, no element of X acts fixed point freely in the action of G on the set of (right)

cosets of M in G. Thus, the study of invariable generation is closely related to the theory of

derangements in transitive permutation groups. This direction has seen a lot of recent attention,

particularly in the case when the group in question is a non-abelian simple group: see [31], [16],

[19], [18], [17], [32], and [10].

A more general analysis of invariable generation in finite groups was undertaken by Kantor,

Lubotzky and Shalev in [23]. This is, as far as we know, where the notation dI(G) first appeared.

Among many interesting results, they showed that while it is clear that dI(G) ≥ d(G), we have

dI(G) = d(G) when G is nilpotent [23, Proposition 2.4], but that dI(G)−d(G) can be arbitrarily

large in general [23, Propostion 2.5]. In fact, this is even true if we restrict to the case when G

is soluble (see [8, Corollary 10]). Thus, if one fixes a class of finite groups C, it is an interesting

(and open) problem to determine if bounds on d(G) carry over to comparable bounds on dI(G).

For instance, it has been proven independently in [13] and [23] that dI(G) = d(G) = 2 when G

is a nonabelian finite simple group.

In this paper, we investigate the “naturally occurring finite groups”, namely the permutation

and linear groups. A. Lucchini and E. Detomi (see Theorem 2.8) have proved that the “McIver-

Neumann half n bound”, which states that d(G) ≤ n
2 whenever G is a permutation group of

degree n, and (G, n)6= (S3, 3), holds when one replaces d by dI . Our first two main results deal

with the case when G is transitive and primitive, respectively.

Theorem 1.2. There exists an absolute constant ctrans such that

dI(G) ≤ ctransn√
log n

whenever G is a transitive permutation group of degree n ≥ 2.

Theorem 1.3. There exists an absolute constant cprim such that

dI(G) ≤ cprim log n√
log log n

whenever G is a primitive permutation group of degree n ≥ 3.
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When dI is replaced by d, Theorem 1.2 is [28, Theorem 1], while Theorem 1.3 is [29, Theorem

C].

We now move on to linear groups. For n even, we follow [15] and denote by Bn the completely

reducible group Bn := 3n/2 : 2 ≤ GLn(2), such that Z(Bn) = 1, and Bn ≤ GL2(2)n/2 acts

completely reducibly on a direct sum of 2-dimensional submodules.

We also require the following definitions.

Definition 1.4. Let F be a field. An subgroup R of GLn(F) is called imprimitive if the natural

R-module V ∼= Fn has a direct sum decomposition V = W1 ⊕W2 ⊕ . . . ⊕Wr, where r > 1

and R acts on the set {W1,W2, . . . ,Wr}. If no such decomposition exists, then R is primitive.

If every normal subgroup of R is homogeneous, then we say that R is quasiprimitive, while if

every characteristic subgroup of R is homogeneous then R is said to be weakly quasiprimitive.

A primitive group R ≤ GLn(F) is both quasiprimitive and weakly quasiprimitive, since a

decomposition of V into homogeneous components for a normal or characteristic subgroup of

R would yield an imprimitivity decomposition for V as given in Definition 1.4. The precise

statement of our theorem can now be given as follows.

Theorem 1.5. Let F be a field.

1. Let G ≤ GLn(F) be finite and completely reducible. Then dI(G) ≤ 3n/2. Furthermore,

if |F| = 2 then dI(G) ≤ n/2, unless G ∼= Bn as defined above, in which case we have

dI(G) = n/2 + 1; or G ∼= Sp4(2) ∼= S6, in which case we have dI(G) = 3. Also, if |F| = 3

then dI(G) ≤ n.

2. Let R ≤ GLn(F) be finite and weakly quasiprimitive. Also, let Z = R∩Z(GLn(F)), and let

H be a subnormal subgroup of R. Then dI(HZ/Z) ≤ 2 log n, unless R = H = Sp4(2) ∼=
S6, in which case we have dI(HZ/Z) = 3.

For the case |F| = 2 in Part 1 of Theorem 1.5, and the exceptional case G ∼= Bn, compare

Theorem 2.8 and its exceptional case, which, as mentioned above, is the corresponding result

for permutation groups.

If one replaces dI by d, then the first statement in Part 1 of Theorem 1.5 is proved in [24].

The second half, together with Part 2, is proved in [15, Theorem 1.2].

1.2 Strategy for the proofs and layout of the paper

Let G be a transitive permutation group [respectively irreducible linear group], of degree [resp.

dimension] n, and assume that G is imprimitive. Then G may be embedded as a certain

subgroup of a wreath product R o S, where R is a primitive permutation [resp. linear] group

of degree [resp. dimension] r, S is a transitive permutation group of degree s, rs = n, and

Gπ = S, where π : R o S → S denotes projection over the top group. Let B ∼= Rs be the base

group of R oS. Then G∩Bs is “built” from submodules of induced G-modules, and non-abelian

G-chief factors (see Lemma 3.8). We will use this to bound the contribution of G ∩ Bs to
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the invariable generator number for G. Since G = (G ∩ Bs).( G
G∩Bs ), we then need to bound

dI(G/G ∩Bs) = dI(S). This is done by induction to prove Theorem 1.2.

For Theorem 1.3, the affine case of the O’Nan-Scott Theorem is the most difficult to handle,

and this requires upper bounds for dI(G) for an irreducible linear group G. The approach

described in the above paragraph then gives us what we need (here, we bound dI(G/G ∩ Bs)

by using Theorem 1.2, rather than induction).

Theorem 1.5 Part 1 can easily be reduced to the irreducible case, and we again use the

approach described above. For the remaining parts, we use results on the structure of a weakly

quasiprimitive linear group from [1], [2], [12] and [29].

The layout of the paper is as follows: in Section 2 we first record some asymptotic results

concerning the composition length of finite permutation and linear groups. With the proof

strategy outlined above in mind, we will then discuss bounds on the size of a minimal generating

set for a submodule of an induced module for a finite group. We close Section 2 with a discussion

of the structure of a weakly quasiprimitive linear group, as mentioned above. In Section 3, we

partially generalise the module theoretic results from the introduction to certain subgroups of

wreath products, while Section 4 consists of upper bounds for the function dI on various classes

of finite groups. Finally, we complete the proof of Theorem 1.5 in Section 5, and Theorems 1.2

and 1.3 in Section 6.

Notation: We will adopt the ATLAS [6] notation for group names, although we will usually

write Sym(n) and Alt(n) for the symmetric and alternating groups of degree n. Furthermore,

these groups, and their subgroups, act naturally on the set {1, . . . , n}; we will make no further

mention of this.

The centre of a group G will be written as Z(G), the Frattini subgroup as Φ(G), and the

Fitting subgroup as F (G). The letters G, H, K and L will usually be used for groups, while V

and W will usually be modules. The letter M will usually denote a submodule.

Throughout, we will use the Vinogradov notation A � B, which means A = O(B). Also,

“log” will always mean log to the base 2.

Finally, I would like to thank Professors Derek Holt and Andrea Lucchini for their careful

reading of the paper. I would also like to thank an anonymous referee for a number of suggestions

which have significantly improved the paper.

2 Preliminary results

The purpose of this paper is to study upper bounds for the function dI on certain classes of

finite permutation and linear groups. As mentioned in Section 1, the proofs in the most difficult

cases essentially amount to using upper bounds on dI(G) for subgroups G of wreath products

R oS. Our main strategy for doing this will be to reduce modulo the base group B of R oS and

use either induction or previous results to bound dI(G/G ∩B). In this way, all that remains is

to investigate the contribution of G ∩B to dI(G).

As we will show in Lemma 3.8, the group G ∩ B is built, as a normal subgroup of G,
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from submodules of induced modules for G, and non-abelian chief factors of G. The following

lemma shows that, in the abelian case, it therefore suffices to study generator numbers for these

submodules as G-modules, rather than their invariable generator numbers as groups themselves.

More precisely, we have

Lemma 2.1 ([7], Lemma 2). Let G be a group and let N be a normal subgroup of G. Then

(i) dI(G) ≤ dI(G/N) + dI(N).

(ii) If N is abelian, then dI(G) ≤ dI(G/N)+dG(N), where dG(N) denote the minimal number

of generators required to generate N as a G-module;

With the above in mind, the purpose of this section is two-fold: to investigate the number

of “building blocks” in G ∩ B (this will, in most cases, come down to investigating the chief

length of the group R), and to investigate the contribution of each building block to dI(G). We

do this in Sections 2.1 and 2.2 respectively.

2.1 Composition length and invariable generation in permutation and linear

groups

In this section we record numerous results concerning invariable generation and composition

length in finite permutation and linear groups. We begin with composition length.

Definition 2.2. Let G be a group.

(a) Write a(G) to denote the composition length of G.

(b) Let aab(G) and anonab(G) denote the number of abelian and non-abelian composition factors

of G, respectively.

(c) Let cnonab(G) denote the number of non-abelian chief factors of G.

The first result is stated slightly differently to how it is stated in [33].

Theorem 2.3 ([33], Theorem 2.10). Let R be a primitive permutation group of degree r ≥ 2.

Then a(R)� log r.

Theorem 2.4 ([29], Proposition 9). Let F be a finite field, and let R ≤ GLr(F) be completely

reducible. Then a(R)� r log |F|.

We now consider permutation representations of finite simple groups.

Theorem 2.5 ([22], Lemma 2.6). Let T be a non-abelian finite simple group, and suppose

that T is contained in Sym(n), with n ≥ 2. Then |Out(T )| � log n.

Finally, we record a result of Cameron, Solomon and Turull concerning the composition

length of a finite permutation group. Note that we only give a simplified version of their result

here.
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Theorem 2.6 ([3], Theorem 1). Let G be a permutation group of degree n ≥ 2. Then

a(G)� n.

We now turn to invariable generation of certain classes of finite groups. We begin with the

following general result.

Theorem 2.7 ([23], Theorem 3.1). Let G be a finite group, and let M be a minimal normal

subgroup of G. Then dI(G) ≤ dI(G/M) + δ, where δ := 1 if M is abelian and δ := 2 if M is

nonabelian. In particular, dI(G) ≤ aab(G) + 2cnonab(G) ≤ 2a(G).

Next, we note the theorem of Lucchini and Detomi mentioned in Section 1.

Theorem 2.8 ([7], Theorem 1). Let G be a subgroup of Sym (n). Then dI(G) ≤
⌊
n
2

⌋
, except

when n = 3 and G ∼= Sym (3).

We also have the bound for simple groups, which was also mentioned previously.

Theorem 2.9 ([23], Theorem 5.1 and [13], Theorem 1.3). Let T be a non-abelian finite

simple group. Then dI(T ) ≤ 2.

Since the outer automorphism group of a nonabelian finite simple group is either isomorphic

to a subgroup of Sym(4) × Cf , or is an extension of at most three cyclic groups, the next

corollary follows immediately from Theorem 2.9.

Corollary 2.10. Let T be a non-abelian finite simple group, and let H ≤ Out(T ). Then

dI(H) ≤ 3. In particular, if T ≤ G ≤ Aut(T ), then dI(G) ≤ 5.

2.2 Generating submodules of induced modules for finite groups

In this section, we record a number of results from [35, Section 4] concerning generator numbers

in submodules of induced modules. We begin with some terminology.

Definition 2.11. Let M be a group, acted on by another group G. A G-subgroup of M is a

subgroup of M which is stabilised by G. We say that M is generated as a G-group by X ⊂M
and write M = 〈X〉G if no proper G-subgroup of M contains X. We will write dG(M) for the

cardinality of the smallest subset X of M satisfying 〈X〉G = M . Finally, write M∗ := M\{1}.

Note that this notation is consistent with our use of dG(M) in Lemma 2.1.

Definition 2.12. Let G be a group, acting on a set Ω. Write GΩ to denote the image of the

induced action of G on Ω, and write χ(G,Ω) for the number of orbits of G on Ω.

To avoid being cumbersome, we will also introduce some notation which will be retained for

the remainder of Section 2.2:

• Let G be a finite group.

• Fix a subgroup H of G of index s ≥ 2.
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• Let V be a module for H of dimension a, over a field F.

• Let K := coreG(H).

• Set W := V ↑GH to be the induced module.

• Denote the set of right cosets of H in G by Ω.

Next, define the constant b as follows,

b :=

√
2

π
.

We also have the following definitions.

Definition 2.13. For a positive integer s with prime factorisation s = pr11 p
r2
2 . . . prtt , set ω(s) :=∑

ri, ω1(s) :=
∑
ripi, K(s) := ω1(s)− ω(s) =

∑
ri(pi − 1) and

ω̃(s) =
s

2K(s)

(
K(s)⌊
K(s)

2

⌋).
Definition 2.14. For a positive integer s and a prime p, define sp to be the p-part of s. Also

define lpp (s) := maxp prime sp.

The first main result deals with the case when GΩ contains a soluble transitive subgroup.

Theorem 2.15 ([35], Theorem 4.13). Suppose that GΩ contains a soluble transitive subgroup,

and let M be a submodule of W . Also, denote by χ = χ(K,V ∗) the number of orbits of K on

the non-zero elements of V . Then

dG(M) ≤ min {a, χ} ω̃(s) ≤ min {a, χ}
⌊

bs√
log s

⌋
where b :=

√
2/π. Furthermore, if s = pt, with p prime, then

dG(M) ≤ min {a, χ}

⌊
bpt√
t(p− 1)

⌋
.

Remark 2.16. If K has infinitely many orbits on the non-zero elements of V , then we assume,

in Theorem 2.15, and whenever it is used in the remainder of the paper, that

min {a, χ} = a.

We now move on to general finite groups (i.e. those G for which GΩ does not necessarily

contain a soluble transitive subgroup). We retain the notation introduced at the beginning of

Section 2.2.

We begin with a definition. Recall the definitions of ω̃(s), sp, and lpp (s) from Definitions

2.13 and 2.14.
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Definition 2.17. For a prime p, set

E(s, p) := min


 bs√

(p− 1) logp sp

 , s

lpp (s/sp)

 and Esol(s, p) := min {ω̃(s), sp}

where we take
⌊
bs/
√

(p− 1) logp sp

⌋
to be ∞ if sp = 1.

The following is quickly proved after examining the functions Esol and E.

Proposition 2.18. Let p be prime. Then Esol(s, p) ≤ E(s, p).

Remark 2.19. For any finite group G and any G-module M , dG(M) is bounded above by

χ(G,M∗).

For the remainder of this section, we will make a further assumption: that the field F has

characteristic p > 0. The main result for general finite groups reads as follows.

Theorem 2.20 ([35], Corollary 4.25). For a prime q 6= p, let Pq be a Sylow q-subgroup of

G. Also, let P ′ be a maximal p′-subgroup of G. Let M be a submodule of W .

(i) If G is soluble, then

dG(M) ≤ min
{
a, χ(P ′ ∩K,V ∗)

}
sp.

(ii) Let N be a subgroup of G such that NΩ is soluble, and let si, 1 ≤ i ≤ t, be the sizes of the

orbits of N on Ω. Then

(a) We have

dG(M) ≤min

{
a, χ(N ∩ P ′ ∩K,V ∗)

}
×

t∑
i=1

ω̃(si).

(b) If N is soluble, and P ′N is a p-complement in N , then

dG(M) ≤min

{
a, χ(P ′N ∩K,V ∗)

}
×

t∑
i=1

Esol(si, p).

(iii) dG(M) ≤ min {a, χ(Pq ∩K,V ∗)} s/sq.

(iv) Assume that sp > 1. Then

dG(M) ≤ min {a, χ(K,V ∗)}

⌊
bs√
log sp

⌋
.

We also record some corollaries from [35].

Corollary 2.21. Define E′ to be Esol if GΩ contains a soluble transitive subgroup, and E′ := E

otherwise. Let M be a submodule of W . Then

(i) dG(M) ≤ aE′(s, p).
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(ii) Suppose that for some q 6= p, a Sylow q-subgroup of K acts transitively on the non-identity

elements of V . Then

dG(M) ≤ min

{⌊
bs√
log sp

⌋
,
s

sq
}

⌋
,

where the right hand side above is taken to be s
sq

if sp = 1.

Corollary 2.22. Let M be a submodule of W , and fix 0 < α < 1.

(i) If sp ≥ sα, then dG(M) ≤ aE(s, p) ≤ a

⌊
bs
√

1
α√

log s

⌋
;

(ii) If sp ≤ sα, then dG(M) ≤ aE(s, p) ≤ a
⌊

1
1−α s

c′ log s

⌋
;

(iii) We have

dG(M) ≤ aE(s, p) ≤


⌊

2as
c′ log s

⌋
, if 2 ≤ s ≤ 1260,⌊

abs
√

2√
log s

⌋
, if s ≥ 1261.

Corollary 2.23. Let M be a submodule of W . If G contains a soluble subgroup N , acting

transitively on Ω, then

dG(M) ≤min
{
a, χ(P ′N ∩K,V ∗)

}
E(s, p)

where P ′N is a p-complement in N .

2.3 The structure of a weakly quasiprimitive linear group

We close the preliminary section by recording some a series of lemmas from [15, Section 2]

concerning the structure of a weakly quasiprimitive linear group (see Definition 1.4).

Lemma 2.24 ([15], Lemma 2.13). Let F be a field, and let R ≤ GLr(F) be finite, irreducible

and weakly quasiprimitive. Then R has a characteristic subgroup K such that K is isomorphic

to a subgroup K1 of GLr/f (F1), for some divisor f of r and some extension F1 of F, with

[F1 : F] = f . All characteristic abelian subgroups of K1 are contained in Z(GLr/f (F1)), and K1

is weakly quasiprimitive. Moreover, R/K is abelian of order at most f , and embeds naturally

in Gal(F1 : F).

For a finite, irreducible, weakly quasiprimitive subgroupR ofGLr(F), we define (f(R),K1(R))

to be any pair consisting of a positive integer f = f(R) and a group K1 = K1(R) satisfying the

conclusion of Lemma 2.24, with f minimal.

We now record some results concerning the generalised Fitting subgroup of a finite group.

Lemma 2.25 ([15], Lemma 2.14). Let L := F ∗(R) be the generalised Fitting subgroup of a

finite group R. Then L is a central product of Z(R), the noncentral subgroups Oqi(R) for a set of

primes qi, and a collection of normal subgroups Uj of R. Each Uj is a central product of uj ≥ 1

copies of a quasisimple group Tj, and conjugation by R permutes these copies transitively. Also,

CR(L) = Z(L).
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Lemma 2.26 ([15], Lemma 2.15). Let R ≤ GLr(F) be finite and completely reducible, and

let L, qi and Uj be as in Lemma 2.25. Assume that F is a splitting field for each central factor of

L, and let C be a constituent of the natural L-module. Then C decomposes as a tensor product

of a one-dimensional module for Z(R), irreducible modules Mqi for each Oqi(R), and irreducible

modules MUj for each Uj.

Lemma 2.27 ([15], Lemma 2.16 or [30], Lemma 1.7). Let R be finite with cyclic centre

Z, and assume that all abelian characteristic subgroups of R are contained in Z. Then each

noncentral Oq(R) is the central product of its intersection with Z and an extraspecial q-group

E, of order q1+2m say. If q is odd, then E has exponent q. Any nontrivial absolutely irreducible

E-module has dimension qm, and R/CR(Oq(R)) ≤ q2m.Sp2m(q). Also, Oq(R/EZ) is trivial.

Finally, the action of R/EZ on EZ/Z is completely reducible.

Lemma 2.28 ([15], Lemma 2.17). Let R ≤ GLr(F) be finite and completely reducible, and let

L, Uj, uj, Tj and MUj be as in Lemmas 2.25 and 2.26. Assume that F is a splitting field for all

central factors of L, and that L acts homogeneously. Then MUj is a tensor product of uj copies

of some faithful irreducible F[Tj ]-module MTj , of dimension tj ≥ 2. Also, writing bars to denote

reduction modulo CR(Uj), Tj is a nonabelian simple group, and Tj
uj ≤ R ≤ (Tj .Aj) o Sym(uj),

where Aj is the subgroup of Out(Tj) that stabilises the module MTj .

Corollary 2.29. Let R ≤ GLr(F) be finite and completely reducible, and let Uj, uj, Aj, Tj and

tj be as in Lemma 2.28. Write bars to denote reduction modulo CR(Tj).

1. If Tj 6∼= Ω+
8 (q), with q odd, then Aj ≤ N.M , where |N | ≤ 2 and M is metacyclic. If

Tj ∼= Ω+
8 (q), with q odd, then Aj ≤ N.M , where N is cyclic and |M | divides 24;

2. Assume that tj = 2 for some j. Then R ≤ Tj
uj .(C2 o Sym (uj)).

Proof. If tj = 2, then [15, Lemma 2.10] implies that |Aj | ≤ 2, so (ii) immediately follows. If Tj

is not Ω+
8 (q), with q odd, then part (i) follows from examining the structure of Out (Tj) (see

[25, Chapter 2]). If Tj = Ω+
8 (q), with q odd, then Out (Tj) modulo its cyclic group of field

automorphisms, has order 24, by [25, Theorem 2.1.4 and Proposition 2.7.3].

Corollary 2.30. Let F be a finite field, let R ≤ GLr(F) be irreducible and weakly quasiprimitive,

let f = f(R), K1 = K1(R), let L be the generalised fitting subgroup of K1, and let Oqi(K1), Uj

be the central factors of L as in Lemma 2.25. Also, for each qi let mi be as in Lemma 2.27,

and for each Uj, let uj and tj be as in Lemma 2.28. Then

(i)
∏
i q
mi
i

∏
j t
uj
j divides r/f ;

(ii) Each qi divides |F|f − 1;

Proof. By definition, each characteristic abelian subgroup ofK1 is contained in Z := Z(GLr(Ff )).

Since qi divides |Z(Oqi(K1))| and |Z| = |F|f − 1, part (ii) follows.
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Table 1: Composition length of primitive linear groups

Table 1

(r, p) Maximum value of

a(R) among the

primitive irreducible

subgroups of GLr(p)

List of composition factors of a primitive irreducible subgroup

R of GLr(p) is contained in one of the lists below

(4, 2) 4 [2, 2, 3, 5] (f(R) = 4), [2, A5], [2, A6], [A7], [L4(2)]

(4, 3) 10 [2, 2, 2, 2, 2, 2, 2, 2, 3, 3], [2, 2, 2, 2, 2, 2, 2, 5], [2, 2, 2, 2, 2, A6],

[2, 2, 2, 2, 2, 2, A5], [2, 2, U4(2)], [2, 2, L4(3)]

(6, 2) 8 [2, 3, 3, 3, 7], [2, 2, 2, 2, 3, 3, 3, 3], [2, 3, 3, S], [3, 7, S], where S =

L2(7), L2(8), A6, A7, U3(3), A8, L3(4), U4(2), S6(2) or L6(2)

(6, 3) 7 [2, 2, 2, 2, 3, 7, 13], [2, 2, 2, 2, 3, 3, 13], [2, 2, 2, 2, A5],

[2, 2, 2, 2, L2(7)], [2, 2, 2, 2, 2, A6], [2, L2(p)] (p = 11,

13), [2, 2, A7], [2, 2, 2, 2, U3(3)], [2, 2, 2, 2, 3, L3(3)],

[2, 2, 3, 13, L2(27)], [2, 2, 2, L3(4)], [2,M12], [2, 2, 2, L4(3)],

[2, 2, 2, 2, U4(3)], [2, 2, 2, 2, L3(9)], [2, 2, S6(3)], [2, 2, L6(3)]

(8, 2) 7 [2, 2, 2, 3, 5, 17] (f(R) = 8), [2, 2, 3, 3, 5, S], [2, 2, 3, S, S],

[2, 3, 3, S, S], where S = A5, L2(7), A6, L2(8), L2(17), L2(16),

A7, U4(2), A8, A9, A10, S4(4), S6(2), Ω+
8 (2), Ω−8 (2), L4(4),

S8(2), L8(2)

Next, extend F1 := F|F |f so that F1 is a splitting field for all subgroups of L, and let Mqi

and MUj be as in Lemma 2.26. Then K1 may no longer be weakly quasiprimitive. In particular,

L may no longer be homogeneous, but its irreducible constituents are algebraic conjugates of

one another, so they all have the same dimension e. Hence, e divides r/f . Since Lemmas 2.26,

2.27 and 2.28 imply that e =
∏
i dimMqi

∏
j dimMUj =

∏
i q
mi
i

∏
j t
uj
j , part (i) follows.

The following is quickly computed using the database of irreducible matrix groups in MAGMA.

Proposition 2.31. Let R ≤ GLr(p) be primitive. If (r, p) = (4, 2), (4, 3), (6, 2), (6, 3) or (8, 2),

then the list of composition factors of R is contained in one of the lists in Table 1 below.

3 Wreath products

3.1 Wreath products as permutation and linear groups

Let R be a finite group, let S be a permutation group of degree s, and consider the wreath

product R oS, as constructed in [4]. Let B be the base group of R oS, so that B is isomorphic to

the direct product of s copies of R. Thus, for a subgroup L of R, B contains the direct product

of s copies of L: we will denote this direct product by BL (so that B1 = 1 and BR = B).
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Now, for each 1 ≤ i ≤ s, set

R(i) := {(g1, . . . , gs) ∈ B : gj = 1 for all j 6= i}EB.

Then R(i)
∼= R, and B =

∏
1≤i≤sR(i). Furthermore, NRoS(R(i)) ∼= R(i) × (R o StabS(i)). Hence,

we may define the projection maps

ρi : NRoS(R(i))→ R(i). (3.1)

We also define π : R o S → S to be the quotient map by B. This allows us to define a special

class of subgroups of R o S.

Definition 3.1. A subgroup G of R o S is called large if

(a) NG(R(i))ρi = R(i) for all i in 1 ≤ i ≤ s, and;

(b) Gπ = S.

Remark 3.2. Suppose, in addition, that R is a finite permutation [respectively irreducible

linear] group of degree [resp. dimension] r ≥ 1 [we exclude r = 1 in the permutation group

case]. If s > 1 and G is a large subgroup of R o S, then G is an imprimitive permutation [resp.

linear] group of degree rs, with a system of s blocks, each of cardinality [resp. dimension r]. (G

acts on the cartesian product {1, . . . , r} × {1, . . . , s} in the permutation group case.)

In fact, it turns out that all imprimitive permutation [resp. linear] groups arise as a large

subgroup of a certain wreath product.

Theorem 3.3 ([34], Page 12, Theorem 3). Let G be an imprimitive permutation group on

a set Ω1, and let ∆ be a block for G. Also, let Γ := ∆G be the set of G-translates of ∆, and set

Ω2 := ∆ × Γ. Denote by R and S the permutation groups StabG(∆)∆, and G∆G
, on ∆ and Γ

respectively. Then

(i) G ∼= GΩ2 is isomorphic to a large subgroup of R o S, and;

(ii) (G,Ω1) and (G,Ω2) are permutation isomorphic.

If G is an imprimitive permutation group, and the block ∆ as in Theorem 3.3 is assumed

to be a minimal block for G, then the group R = StabG(∆)∆ is primitive. When Ω is finite we

can iterate this process, and deduce the following.

Corollary 3.4. Let G be a transitive permutation group on a finite set Ω. Then there exist

primitive permutation groups R1, R2, . . ., Rt such that G is a subgroup of R1 oR2 o . . . oRt.

Remark 3.5. The wreath product construction is associative, in the sense that R o (S o T ) ∼=
(R o S) o T , so the iterated wreath product in Corollary 3.4 is well-defined.
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3.2 An application of the results in Section 2.2 to wreath products

We first make the following easy observation.

Proposition 3.6. Let A = T1 × T2 × . . . × Tf , where each Ti is isomorphic to the nonabelian

finite simple group T . Suppose that M ≤ A is a subdirect product of A, and suppose that M ′EM

is also a subdirect product of A. Then M ′ = M .

Proof. We prove the claim by induction on f , and the case f = 1 is trivial, so assume that

f > 1. Since M is subdirect, each M ∩Ti is normal in Ti. If M = A, then since the only normal

subgroups of A are the groups
∏
i∈Y Ti, for Y ⊆ {1, . . . , f}, the result is clear. So assume that

M ∩ Ti = 1 for some i. Then M ′ ∩ Ti = 1, and M ′Ti/Ti and MTi/Ti are subdirect products of∏
j 6=i Tj . It follows, using the inductive hypothesis, that M ′Ti = MTi. Hence M ′ = M , since

M ∩ Ti = 1, and the proof is complete.

We will now fix some notation which will be retained for the remainder of the section.

• Let R be a finite group (we do not exclude the case R = 1).

• Let S be a transitive permutation group of degree s ≥ 2.

• Let G be a large subgroup of the wreath product R o S (see Definition 3.1).

• Write B := R(1) ×R(2) × . . .×R(s) for the base group of R o S.

• write π : G→ S for the projection homomorphism onto the top group.

• Let H := NG(R(1)) = π−1(StabS(1)).

• Let Ω := H\G.

• Let K := G ∩B = coreG(H) = KerG(Ω).

Recall that for a subgroup N of R, BN ∼= N s denotes the direct product of the distinct S-

conjugates of N . In particular, if N E R, then BN E R o S. Throughout, we will view R as a

subgroup of B by identifying R with R(1). We also note that

• |G : H| = s; and

• S = GΩ.

In particular, the notation is consistent with the notation introduced at the beginning of Section

2.2.

Remark 3.7. If R is a transitive permutation group, acting on a set ∆, then G is an imprimitive

permutation group acting on the set ∆ × {1, 2, . . . , s}, and H = StabG((∆, 1)). Furthermore

H∆ = R, since G is large (see Remark 3.5).

Our strategy for proving Theorems 1.2 and 1.5 can now be summarised as follows:

13



Step 1: Show that K is “built” from induced modules for G, and non-abelian G-chief factors.

Step 2: Derive bounds on dI(G) in terms of the factors from Step 1 and dI(S).

Step 3: Use the results from Section 2.2, to bound the contributions from the factors in Step

1 to the bound from Step 2.

Step 4: Use induction/previous results to bound dI(S).

We begin with Step 1.

Lemma 3.8. Suppose that R > 1 and that 1 := N0 ≤ N1 ≤ . . . ≤ Ne = R is a normal series for

R, where each factor is either elementary abelian, or a nonabelian chief factor of R. Consider

the corresponding normal series 1 := G ∩BN0 ≤ G ∩BN1 ≤ . . . ≤ G ∩BNe = G ∩B for G ∩B.

Let Vi := Ni/Ni−1 and Mi := G ∩BNi/G ∩BNi−1.

(i) If Vi is elementary abelian, then Mi is a submodule of the induced module Vi ↑GH .

(ii) If Vi is a nonabelian chief factor of R, then Mi is either trivial, or a nonabelian chief

factor of G.

For the remainder of this section, suppose that 1 := N0 ≤ N1 ≤ . . . ≤ Ne = R is a chief

series for R, and let Vi := Ni/Ni−1 and Mi := G ∩BNi/G ∩BNi−1 . If Vi is abelian we will also

write |Vi| = paii , for pi prime.

We now have Step 2.

Corollary 3.9. We have

dI(G) ≤
∑

Vi abelian

dG(Mi) + 2cnonab(R) + dI(S)

Proof. We will prove the corollary by induction on |R|. If |R| = 1 then the bound is trivial,

since G ∼= S in that case, so assume that |R| > 1, and note that

G/M1 is a large subgroup of (R/V1) o S. (3.2)

Suppose first that V1 is abelian. Then M1 is a G-module, so

d(G) ≤ dG(M1) + dI(G/M1).

by Lemma 2.1. Since cnonab(R) = cnonab(R/V1), (3.2) and the inductive hypothesis give the

result.

So we may assume that V1 is nonabelian. Then M1 is either trivial or a minimal normal

subgroup of G, by Lemma 3.8 Part (ii). Hence, dI(G) ≤ dI(G/M1) + 2 by Lemma 2.1. The

result now follows, again from (3.2) and the inductive hypothesis.

Before stating our next corollary, we refer the reader to Definition 2.17 for a reminder of the

definitions of the functions E and Esol. The next two corollaries deal with Step 3.
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Corollary 3.10. Define E′ to be Esol if S contains a soluble transitive subgroup, and E′ := E

otherwise. Then

(i) dI(G) ≤
∑

Vi abelian aiE
′(s, pi) + 2cnonab(R) + d(S).

(ii) Suppose that |R| = 2 and s = 2mq, where q is odd, and that S has a tuple of primitive

components X = (R2, . . . , Rt), where blX,2(S) ≥ 1. Let Γ be a full set of blocks for S of

size 2blX,2(S), and set S̃ := SΓ. Then

dI(G) ≤
blX,2(S)∑
i=0

E′(2m−iq, 2) + dI(S̃).

Proof. By Corollary 3.9, we have

dI(G) ≤
∑

Vi abelian

dG(Mi) + 2cnonab(R) + dI(S).

Now, by Corollary 2.21, dG(Mi) ≤ aiE′(s, pi). This proves (i).

So we consider Part (ii). We will show that

dI(S) ≤
blX,2(S)∑
i=1

E(2m−iq, 2) + dI(S̃) (3.3)

by induction on blX,2(S). The result will then follow, since d(G) ≤ E′(2mq, 2)+d(S) by Part (i).

Now, by hypothesis, S has a tuple of primitive components X = (R2, . . . , Rt). Also, |R2| = 2

since blX,2(S) ≥ 1. Hence, by Theorem 3.3, S is a large subgroup of a wreath product R2 o S2,

where either S2 = 1, or S2 is a transitive permutation group of degree 2m−1q, with a tuple

Y := (R3, . . . , Rt) of primitive components. If S2 = 1 then the result follows, since s = 4 and

S̃ = 1 in that case. So assume that S2 > 1. By Part (i), we have

dI(S) ≤ E′(2m−1q, 2) + dI(S2) (3.4)

If blX,2(S) = 1 then S2 = S̃ and (3.3) follows from (3.4). So assume that blX,2(S) > 1. Then

blY,2(S2) = blX,2(S)−1 ≥ 1. The inductive hypothesis then yields dI(S2) ≤
∑blY,2(S2)

i=1 E(2m−1−iq, 2)+

dI(S̃) =
∑blX,2(S)

i=2 E(2m−iq, 2) + dI(S̃). The bound (3.3) now follows immediately from (3.4),

which completes the proof.

The following is immediate from Corollaries 2.22 and 3.10 Part (i).

Corollary 3.11. Suppose that |R| ≥ 2. We have

dI(G)� aab(R)s√
log s

+ 2cnonab(R) + dI(S) ≤ a(R)s√
log s

+ dI(S).

The next corollary will be key in our proof of Theorem 1.2 when G is imprimitive with

minimal block size 4.
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Corollary 3.12. Assume that R = S4 or R = A4. Define E′ to be Esol if S contains a soluble

transitive subgroup, and E′ := E otherwise. Then

dI(G) ≤ E′(s, 2) + min

{
bs√

log s2
,
s

s3

}
+ E′(s, 3) + dI(S).

Proof. We have

dI(G) ≤ dG(M1) + dG(M2) + dG(M3) + dI(S) ≤ 2E′(s, 2) + E′(s, 3) + dG(M3) + dI(S) (3.5)

by Corollaries 3.9 and 2.21 Part (i). Let ∆ := {1, 2, 3, 4}, so that R is transitive on ∆. We have

V1
∼= 22, V2

∼= 3, and V3
∼= 2 if R ∼= S4. Since K∆ is a normal subgroup of H∆ = R (see Remark

3.7), K∆ is isomorphic to either 22, A4, or S4. In the first two cases M3 is trivial. Hence, since

E′(s, 2) ≤ min

{
bs√

log s2
,
s

s3

}
,

the result follows from (3.5).

So we may assume that K∆ ∼= S4. Then a Sylow 3-subgroup P3 of K∆ acts transitively on

the non-identity elements of V1. Thus, χ(P3 ∩K,V ∗1 ) = 1, so

dG(M1) ≤ min

{
bs√

log s2
,
s

s3

}
by Corollary 2.21 Part (ii), with (p, q) := (2, 3). The result now follows after applying Corollary

2.21 Part (i) to dG(M2) and dG(M3).

Corollary 3.13. Let s ≥ 2, let S ≤ Sym (s) be transitive, and let R ≤ GL6(2) be primitive and

irreducible, with the following properties:

1. R has a characteristic subgroup K1, such that Z := Z(K1) has order dividing 3, and

K1 := K1/Z has shape shape N.X, with N E K1 elementary abelian of order 32, and

X ≤ Sp2(3) completely reducible;

2. |R/K1| ≤ 2.

That is, R ≤ ΓL3(4) ∼= GL3(4)oGal(F4/F2), where R∩GL3(4) ≤ E.Sp2(3), and E is extraspe-

cial of order 32+1 and exponent 3. Let G be a large subgroup of the wreath product R o S, and

let Y EX be the induced action of (G ∩Ks
1)/(G ∩ Zs) on N . Then

(i) dI(G) ≤ E(s, 2)+E(s, 2)+min
{
bbs/
√

log s2c, s/s3

}
+E(s, 3)+min

{
bbs/
√

log s3c, s/s2

}
+

E(s, 3)+dI(S), unless |Y | = 8, in which case dI(G) ≤ 4E(s, 2)+min
{
bbs/
√

log s3c, s/s2

}
+

E(s, 3) + dI(S).

(ii) If s = 2 then dI(G) ≤ 6.

Proof. Since Y ≤ Sp2(3) is completely reducible, |Y | must be 1, 2, 4, 8 or 24. Suppose

first that s 6= 2. If |Y | is 1, 2 or 4, then R is soluble of order dividing 2333, and the

result follows from Corollary 3.10 Part (i), since E(s, 2) ≤ min
{
bbs/
√

log s2c, s/s3

}
, and
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E(s, 3) ≤ min
{
bbs/
√

log s3c, s/s2

}
. If |Y | = 8, then Y acts transitively on the nonidentity

elements of N , and the result follows from Corollary 2.21 Part (ii) with (p, q) = (3, 2), and

Corollary 3.9. If |Y | = 24, then a Sylow 2-subgroup of Y acts transitively on the noniden-

tity elements of N ; furthermore, a Sylow 3-subgroup of Y/Z(Y ) ∼= A4 acts transitively on the

nonidentity elements of the Klein 4-subgroup of Y/Z(Y ). The result then follows, again from

Corollary 2.21 Part (ii) and Corollary 3.9.

Finally, assume that s = 2. We need to prove that G can be invariably generated by 6

elements. Let M ≤ K1 such that M/Z ∼= N . Also, let H ≤ K1 such that M ≤ H and

H/M = (K1∩Z(Sp2(3)))/M ≤ C2. Arguing as in the paragraph above, we have dI(G/G∩H2) ≤
E(2, 2) + 2/22 +E(2, 3) +dI(S) = 4 if |Y | = 24; dI(G/G∩H2) ≤ E(2, 2) + 2E(2, 2) +dI(S) = 4

if |Y | = 8; and dI(G/G ∩H2) ≤ E(2, 2) + E(2, 2) + dI(S) = 3 if |Y | < 8. Thus, we just need

to show that A := G ∩ H2 can be generated, as a G-group, by 2 elements if |Y | ≥ 8, and 3

elements if |Y | < 8. Now, by Corollary 2.21 Part (i), G∩Z2 can be generated, as a G-module, by

E(2, 3) = 1 element; let x be such an element, so that |x| = 3. Also, H/Z has shape N.L, where

L ≤ Z(Sp2(3)). Suppose first that |Y | ≥ 8. Since a Sylow 2-subgroup of Sp2(3) acts transitively

on the nonidentity elements of N , Corollary 2.21 Part (ii) implies that G ∩M2/G ∩ Z2 can be

generated, as a G-module, by 2/22 = 1 element. Say x1 ∈ G ∩M2 is the preimage of such an

element.

Next, suppose that |Y | < 8. Then again using Corollary 2.21 Part (ii) G ∩M2/G ∩ Z2 can

be generated, as a G-module, by 2E(s, 3) = 2 elements. Say x1, x2 ∈ G ∩M2 are preimages.

Now, using Corollary 2.21 Part (i), A/G∩M2 can be generated, as a G-module, by E(2, 2) =

1 element. Say y ∈ A is the preimage of such an element. Clearly we may assume that |y| is

a power of 2. Thus, since y ∈ CK1(x), it is now easy to see that {x1, xy} (or {x1, x2, xy} if

|Y | < 8) generates A as a G-group, and this completes the proof.

4 Minimal invariable generator numbers in certain classes of

finite groups

In this section, we consider upper bounds for the function dI on various classes of finite groups.

We begin with bounds on dI(G) for some transitive permutation groups G.

Proposition 4.1. Let G be a transitive permutation group of degree n.

(i) If n = 6, then dI(G) ≤ 2, except that dI(S6) = 3;

(ii) If n = 8, then dI(G) ≤ 4, and dI(G) = 4 if and only if G ∼= D8 ◦D8;

(iii) If n = 9, then dI(G) ≤ 3;

(iv) If n = 10, then dI(G) ≤ 3;

(v) If n = 12, then dI(G) ≤ 4;
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(vi) If n = 16, then dI(G) ≤ 6;

(vii) If n = 18, then dI(G) ≤ 4.

Proof. By [23, Lemma 2.1], a subset X of G invariably generates G if and only if the following

holds: for each maximal subgroup M of G, at least one element of X acts fixed point freely

on the G-cosets of M . Using this, and the database of transitive permutation groups of small

degree (see [5]), one can readily check that the result holds in each of the listed cases, using

MAGMA.

Next, we study subgroups of wreath products in which the bottom group is cyclic.

Proposition 4.2. Let G be a large subgroup in the wreath product Cm o S3, where Cm denotes

the cyclic group of order m. Then dI(G) ≤ 4.

Proof. Let B be the base group of W := Cm o S3, so that dI(G) ≤ dG(G ∩ B) + dI(G/G ∩ B).

Since dG(G ∩B) ≤ d(G ∩B) ≤ 3, we may assume that G/G ∩B ∼= S3.

Now, writing B in additive notation, we next set B1 := {(a, b, c) ∈ B ∩B : a+ b+ c = 0} ≤
B. Then B1 is a W -submodule of B. Furthermore, W1

∼= C2
m, so N1 := G ∩ W1 is meta-

cyclic. Hence, since Lemma 2.1 gives dI(G) ≤ dG(N1) + dI(G/N1), it will suffice to prove that

di(G/N1) ≤ 2.

Writing bars to denote reduction modulo N1, we have G ∼= (G ∩B).S3. Furthermore, it

is easily seen that G ∩B is cyclic, and is contained in Z(G); write G ∩B = 3k × t, where

(3, t) = 1, and let x and y be elements of G ∩B of order 3k and t, respectively. Also, let a and

b be elements of G of 2-power and 3-power order, respectively, which reduce to a 2-cycle and

a 3-cycle modulo G ∩B. Then clearly the set {xa, yb} invariably generates G, and the result

follows.

The next two results extend Lemmas 3.3 and 3.4 in [15]; indeed, our proofs use the same

techniques as used therein.

Proposition 4.3. Let G be a subgroup in the wreath product C2 o Sym (u). Then dI(G) ≤ u,

and if dI(G) = u, then G is a 2-group and u is even.

Proof. We prove the claim by induction on u, and the case u = 1 is clear, so assume that u > 1.

Since G ≤ Sym (2u), the claim dI(G) ≤ u follows immediately from Theorem 2.8. So assume

that dI(G) = u. We need to show that G is a 2-group and that u is even. Let π : G→ Sym (u)

denote the projection over the top group. If π(G) is intransitive, with an orbit ∆ of size v, then

the induced action of G on the preimage of ∆ in {1, . . . , 2u} is contained in C2 o Sym (v), with

kernel contained in C2 o Sym (u− v); hence, the result follows from the inductive hypothesis.

So assume that π(G) is transitive. If ker(π) is trivial, then G ≤ Sym (u), so dI(G) ≤
(u + δ3,u)/2 < u. Thus, G must be a transitive subgroup of C2 o Sym (u). If u = 3 then

dI(G) ≤ 2 by direct computation, so we must have u 6= 3. Using Corollary 3.10 and Theorem

2.8, we have u = dI(G) ≤ E(u, 2) + u/2. Using the definition of the function E, one easily sees
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that E(u, 2) < u/2 unless u = 2 or u = 4. If u = 2 then G ≤ D8. If u = 4, then dI(G) = 4

implies that G ∼= D8 ◦D8 by Proposition 4.1. The result follows.

Proposition 4.4. Let G ≤ Su3 . Then dI(G) ≤ u, except that dI(G) = u + 1 when G ∼= 3u : 2,

with Z(G) = 1.

Proof. We prove the claim by induction on u, and the case u = 1 is clear, so assume that

u > 1. Let K be the kernel of the projection of G onto the first u − 1 direct factors of

Su3 := B1 ×B2 × . . .×Bu.

Suppose first that G/K ∼= 3u−1 : 2, with Z(G/K) = 1. Then it is easy to see that G/K

is invariably generated by a set {Kb1,Kb2, . . . ,Kbu}, where |Kbi| = 3 for 1 ≤ i ≤ u − 1, and

|Kbu| = 2. Clearly we can assume that |K| > 1. If K = 〈x〉 with |x| = 2, then |xb1| = 6 and

{xb1, b2, . . . , bu} invariably generates G. If |K| = 6, then we may assume that the projection of

b1 onto B1 is a 2-cycle, and that the projection of bu onto B1 is a 3-cycle. Hence, {b1, b2, . . . , bu}
invariably generates G. If K = 〈y〉, with |y| = 3, and G centralises y, then {b1, b2, . . . , ybu}
invariably generates G. Finally, if K = 〈y〉, with |y| = 3, and G does not centralise y, then

G ∼= 3u : 2, with Z(G) = 1, and the claim follows.

Finally, assume that G/K is not of the form 3u−1 : 2 with trivial centre. Then, by induction,

G/K is invariably generated by a set {Kb1,Kb2, . . . ,Kbu−1}. If K is cyclic then the result is

clear, so assume that K ∼= S3. Then we may assume that b1 projects onto a 3-cycle in B1. Hence,

taking bu to be any 2-cycle in K, it is clear that {b1, b2, . . . , bu−1, bu} invariably generates G.

The result follows.

The following is easily checked using direct computation.

Proposition 4.5. Let G ≤ GLn(2) be irreducible, and assume that n ≤ 4 and dI(G) > n/2.

Then either n = 2 and G ∼= GL2(2) ∼= S3; or n = 3 and G ∼= 7 : 3 or L3(2); or n = 4 and

G ∼= Sp4(2) ∼= S6.

Lemma 4.6. Let H and K be groups with no common nontrivial homomorphic image, and let

G be a subdirect product of H ×K. Then dI(G) ≤ max {dI(H), dI(K)}.

Proof. The proof is almost identical to the proof of Lemma 2.4 in [15]; we give the details here for

the readers benefit. Let {h1, h2, . . . , hm} and {k1, k2, . . . , kn} be invariable generating sets for H

and K respectively, and assume, without loss of generality, that m ≥ n. Also, let g1, g2,. . .,gm ∈
G, with gi = xiyi (xi ∈ H, yi ∈ K), and let X = 〈hx11 k

y1
1 , . . . , h

xn
n kynn , h

xn+1

n+1 , . . . , h
xm
m 〉. We claim

that X = H×K = G. Indeed, if R is any subdirect product of H×K, then R/[(R∩H)×(R∩K)]

is a homomorphic image of both H and K. Thus, we must have R = (R ∩H)× (R ∩K), and

hence R = H×K. Since both X and G are subdirect products of H×K, our claim follows.

Proposition 4.7. Let G be a subdirect product of H×K, where 1 6= K is a finite group, and H

is isomorphic to either S3, S6, a nontrivial semidirect product 7 : 3, or the group L3(2). Then

(i) If H 6= S6, then dI(G) ≤ dI(K) + 1, and if H = S6, then dI(G) ≤ dI(K) + 2.
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(ii) Suppose that H = S3. If K = 7 : 3 or L3(2), then dI(G) = 2, while if K = S6, then

dI(G) = 3.

(iii) Suppose that H = S6. If K = 7 : 3 or L3(2), then dI(G) = 3, while if K = S6, then

dI(G) ≤ 4.

(iv) If H ≤ GL3(2) is irreducible, and K is isomorphic to a semidirect product 3t : 2, in which

the involutions are self-centralising, then dI(G) = t+ 1.

(v) If H ≤ GL4(2) is irreducible, and K is isomorphic to a semidirect product 3t : 2, in which

the involutions are self-centralising, then dI(G) = t+ 2.

Proof. We first prove (i). Since G ≤ H ×K is subdirect, G ∩H is a normal subgroup of H. If

G ∩H is cyclic, then dI(G) ≤ dI(K) + 1, as needed.

So assume that G ∩H is noncyclic, and suppose first that H 6∼= S6. Then G = H ×K; let

{k1, . . . , kt} be an invariable generating set for K. If H = L3(2), then take x to be any element

of H of order 7, and take y to be any element of H of order 4; if H = 7 : 3, then take x, y ∈ H
of order 3 and 7 respectively; and if H = S3, then take x, y ∈ H of order 2 and 3 respectively.

Then {x, yk1, . . . , kt} invariably generates G. Indeed, if H = L3(2), then H = 〈x, xy〉, since

y 6∈ NH(〈x〉), and the only proper subgroup of H containing x is of the form 7 : 3; if H = 7 : 3

or S3, then clearly H = 〈x, xy〉. Since our choice of elements, in each case, depended only on

the orders, replacing x and y by any H-conjugates yields the same result.

Assume now that H = S6. If G ∩H < S6, then G ∩H = A6, and the result follows from

Lemma 2.1 part (i). So assume that G = H ×K, and let x, y, z ∈ H be a 6-cycle, a 5-cycle

and a 3-cycle, respectively. Then {x, y, z} is an invariable generating set for H. Also, let g, h,

g1, g2, . . ., gt ∈ G. Note that X := 〈xg, yh, (zk1)g1 , kg22 . . . , kgtt 〉 ≤ G is a subdirect product of

G, with X ∩H > 1 and X∩ 6= A6 (since X ∩H contains a 6-cycle). Since X ∩H EH, we have

X ∩H = S6, so X = G and part (i) follows.

Next, we prove (ii). So assume that H = S3, and take h1, h2 ∈ H of orders 2 and 3

respectively. Assume first that K = L3(2) or 7 : 3. It is easily seen that the only subdirect

product of H ×K, in each case, is the full direct product. So G = H ×K. If K = L3(2), then

choose x and y in K of orders 7 and 4 respectively, and if K = 7 : 3 then choose x and y in K of

orders 3 and 7 respectively. Then one can easily see that {h1x, h2y} is an invariable generating

set for G, which gives us what we need. So assume that K = S6, and let x, y and z be cycles in

H of length 3, 5 and 6 respectively. Then it is easy to see that x, y and z invariably generate

K. If G ∩ H = 1, then the result is clear. If G ∩ H = A3, then take X = {x, h2y, z}, and if

G∩H = H, then take X = {x, h2y, z}. Clearly X invariably generates G in each case, and this

completes the proof of (ii).

We now consider (iii). So H = S6. If K = 7 : 3 or L3(2) then the result follows from

Proposition 4.6, so assume that K = S6. If G∩H = 1, then dI(G) = dI(K) = 3, so assume that

G ∩H = A6 or S6. Let k1, k2, k3 ∈ G such that (G ∩H)k1 is a 3-cycle, (G ∩H)k2 is a 5-cycle,

and (G ∩H)k3 is a 6-cycle in G/G ∩H ∼= S6. Then {(G ∩H)k1, (G ∩H)k2, (G ∩H)k3} is an

20



invariable generating set for G/G∩H. Now, since A6 ≤ G∩H, we my assume, by replacing k1,

k2 by suitable powers, that k1 and k2 ∈ G project onto a 5-cycle and a 3-cycle in H, respectively.

If G ∩H = H, then choose h ∈ H to be a 6-cycle in H; otherwise, set h := 1 ∈ G ∩H. Then

{k1, k2, k3, h} is an invariable generating set for G, and this proves (iii).

Finally, we prove (iv) and (v). So assume that H ≤ GLn(2) is irreducible, where n = 3

or 4, and that K ∼= 3t : 2 with Z(K) = 1. If H and K have no common nontrivial ho-

momorphic images, then the result follows from Proposition 4.6, so assume otherwise. Then,

since the only normal subgroups of K are the 3-subgroups, we conclude that H must have

a nontrivial homomorphic image of order 3j2, where j ≥ 0. Using the database of irre-

ducible matrix groups in MAGMA, we have n = 4, and G ∩ H E H contains elements x, y

and z with (|x|, 2) = (|y|, 3) = 1, such that {x, y, z} invariably generates G ∩ H. Choose

k1, . . ., kt, kt+1 ∈ G, such that |(G ∩ H)ki| = 3 for 1 ≤ i ≤ t, |(G ∩ H)ti| = 2, and

{(G ∩H)k1, (G ∩H)k2, . . . , (G ∩H)kt, (G ∩H)kt+1} invariably generates G/G∩H ∼= K. Also,

let L := (G ∩ H) × (G ∩ K), and suppose first that L = G. Then G = H × K, since G is

subdirect, and hence we may assume that the ki are elements of K. It now follows easily that

{z, yk1, k2, . . . , ktxkt+1} invariably generates G, which gives us hat we need.

So we may assume that L < G. Hence, G/L is a common nontrivial homomorphic image of

H and K. As mentioned above, we must have |G : L| = 3j2, some j ≥ 0. If G ∩H is cyclic,

then dI(G) ≤ dI(K) + 1 = t + 2, so assume also that G ∩ H is a noncyclic normal subgroup

of H. By direct computation, G/L ∼= H/G ∩H ∼= K/G ∩K is isomorphic to either C2 or S3.

Furthermore, apart from the case (H,G ∩H) = (32 : 2, 32), where |Z(H)| = 3, for each other

pair (H,G∩H) satisfying these conditions, by direct computation we may choose an invariable

generating set {x, y} for G ∩ H such that (|x|, 3) = 1. Then if {g1, . . . , gt−j} is an invariable

generating set for G∩K, then {y, xg1, . . . , gt−j} is an invariable generating set for L. Also, since

j = 0 or 1, it is clear that dI(G/L) ≤ j + 1. Hence dI(G) ≤ dI(G/L) + dI(L) ≤ t + 2. So we

may assume that (H,G ∩H) = (32 : 2, 32), where |Z(H)| = 3; choose an invariable generating

set {x, y} for G ∩H with Z(G ∩H) = 〈y〉. Also, take k1, k2, . . ., kt+1 to be as in the previous

paragraph; by replacing kt+1 by k3
t+1 if necessary, we may assume that kt+1 projects onto an

element of order 2 in H. Hence, {x, k1, k2, . . . , ykt+1} is an invariable generating set for G, and

this completes the proof.

Next, we consider the function dI on direct products of nonabelian simple groups. Phillip

Hall proves in [20] that if G is a direct product of r copies of a nonabelian finite simple group T ,

and m ≥ 2, then d(G) ≤ m if and only if r is bounded above by the number of orbits of Aut(T )

in its diagonal action on the set of generating m-tuples of T . However, in [23], it is shown that

this result does not hold in the setting of invariable generation. In fact, it is shown that for all

positive integers n there exists a 2-generated group G (which is a direct product of isomorphic

nonabelian simple groups), such that dI(G) > n. What we do have, however, is the following.

Theorem 4.8 ([23] Theorem 5.1). Let T be a nonabelian simple group.

21



(a) If T is not one of the groups Ω+(8, 2) or Ω+(8, 3), then there are two elements s, t ∈ T

such that T = 〈sg1 , tg2〉 for each choice of gi ∈ Aut (T ).

(b) If T = Ω+(8, 2) or Ω+(8, 3), and if T ≤ A ≤ Aut (T ), then there are elements t ∈ T , s ∈ A,

such that T ≤ 〈sg1 , tg2〉 for each choice of gi ∈ A.

We now prove a consequence of Theorem 4.8.

Corollary 4.9. Let G = T1×T2× . . .×Tr be a direct product of isomorphic nonabelian simple

groups Ti. If r is even then dI(G) ≤ r, and if r is odd then dI(G) ≤ r + 1.

Proof. By Theorem 4.8, our claim will follow if we can prove that dI(T1 × T2) = 2. So write

T = T1 and assume that G = T 2. If T is not Ω+(8, 2) or Ω+(8, 3), then let s, t ∈ T1 be as

in Theorem 4.8; if T = Ω+(8, 2), then by direct computation we can choose s, t ∈ T such

that |s| 6= |t|, and T is invariably generated by {s, t}. We claim that {(s, t), (t, s)} invariably

generates G. To see this, let (g1, g2), (h1, h2) ∈ G, and set X := 〈(sg1 , tg2), (th1 , sh2)〉. Let

ρi : G → Ti be the projection maps. Then ρi(X) = Ti for each i by Theorem 4.8, so either

X = G, or X is a diagonal subgroup of G.

So assume that X is a diagonal subgroup of G. Then X = {(y, yα) : y ∈ T1}, for some

α ∈ Aut (T1). But then, in particular, t = sg1αg
−1
2 . This contradicts part (a) of Theorem 4.8

when T 6= Ω+(8, 2), Ω+(8, 3), since T1 6= 〈s〉. The contradiction is also clear if T is one of

Ω+(8, 2), Ω+(8, 3). Indeed, |s| 6= |t| in these cases. The result now follows.

We now turn to the symmetric group.

Proposition 4.10. (i) Let G ∼= Sn. Then dI(G) ≤ 2, except that dI(S6) = 3;

(ii) Let A ∼= Aut (A6), PΓL2(8), PGL2(7), PGL4(3) or L3(4).m, where m = 2, 3 or 6. Then

dI(A) ≤ 2.

Proof. (i) If n ≤ 7 then the result is easy, so assume that n ≥ 8. Then we can choose a prime

p with n/2 < p < n− 2 (this is clear for 8 ≤ n ≤ 11, and follows from [11, Theorem 1.3] if

n ≥ 12); in particular, p is odd. Let x be any n-cycle in G, and let y be any p-cycle. If n

is even, then set z := 1 ∈ G; otherwise, let z be any transposition in G. Then G = 〈x, yz〉
by Lemma 8.20 and Theorem 8.23 in [21]. This completes the proof.

(ii) We prove the claim by direct computation, using MAGMA. In each of the cases A =

Aut (A6), PΓL2(8), PGL2(7), PGL4(3), L3(4).2, L3(4).3 = PGL3(4) or L3(4).6, A has

two elements x and y, which invariably generate G. The lists [|x|, i(x); |y|, i(y)], where i(t)

denotes the conjugacy class number of the element t of A in MAGMA, is [8, 11; 10, 13],

[7, 8; 9, 11], [6, 6; 8, 9], [26, 39; 40, 43], [5, 8; 14, 14], [15, 18; 21, 22] and [8, 14; 21, 20] respec-

tively.

Proposition 4.11. Let G ≤ GL4(3) be primitive and irreducible. Then dI(G) ≤ 4.
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Proof. Let f = f(G), K1 := K1(G). Then G ≤ GL4/f (3f ).f , K1 := G∩GL4/f (3f ) is irreducible

and weakly quasiprimitive, and all characteristic abelian subgroups of K1 lie in the scalar

subgroup Z of K1. Using Lemma 2.25 and Corollary 2.30, we know the possible structures of

K1/Z; we now consider each case.

Suppose first that f = 1. Then in particular, the centre of G lies in the scalar subgroup Z of

GL4(3). Assume that G has shape E.X, where E is extraspecial of order 21+4, and X ≤ Sp4(2)

is completely reducible. In particular, Z ≤ Φ(E) ≤ Φ(G), so we have dI(G) = dI(G/Z).

Now, if one of the irreducible constituents of X ≤ Sp4(2) has dimension 2, then we have G/Z ≤
22.S3×22.S3

∼= S4×S4. Hence, dI(G) = dI(G/Z) ≤ 4, as needed. Similarly, if such a constituent

has dimension 3, then we have G/Z ≤ 2× 23.GL3(2). The irreducible subgroups of GL3(2) are

easily seen to be invariably 2-generated, so it follows again that dI(G) = dI(G/Z) ≤ 2. The

case when an irreducible constituent of X has dimension 1 follows from the two cases above.

Hence, we may assume that X is irreducible. Then dI(G) = dI(G/Z) ≤ 1 + dI(X) ≤ 4, where

the bound dI(X) ≤ 3 follows from Theorem 2.8, and the fact that Sp4(2) ∼= S6.

When f = 1, the only remaining possibility is that G/Z is almost quasisimple. That is, G is

perfect, and G/Z(G) is almost simple. Then, using the ATLAS of finite simple groups [6], we

have G/Z ≤ S5, A6.2
2, or L4(3).2 = PGL4(3). Each of these groups is invariably 2-generated

by Proposition 4.10, so dI(G) ≤ 4.

So we may assume that f = 2. Then K1/Z ≤ S4 or K1/Z is almost simple. Since G/K1 is

cyclic, it suffices to prove that dI(K1/Z) ≤ 2, and this is clear when K1/Z ≤ S4. So assume that

K1/Z is almost simple. Again using [6], we have (K1/Z) ≤ S5, A6.2
2, or L4(3).2 = PGL4(3).

The claim now follows from Proposition 4.10, and this completes the proof.

5 Completely reducible linear groups and the proof of Theorem

1.5

Before proceeding to the proof of Theorem 1.5, we need a lemma which is analogous to [15,

Lemma 4.1]. We remark that our proof follows the same strategy of the proof of the afore

mentioned lemma in [15].

Lemma 5.1. Let G be a finite group, with a normal elementary abelian subgroup N of order

pm, such that N = CG(N), and the action of G/N on N is completely reducible. Let H be

a subnormal subgroup of G, and assume that Theorem 1.5 holds for F = Fp and dimensions

n ≤ m. Then

(i) If p = 2, then dI(H) ≤ m;

(ii) If p = 3, then dI(H) ≤ 3m/2 if m > 1, and dI(H) ≤ 2 if m = 1;

(iii) If p > 3, then dI(H) ≤ 2m.

Proof. As shown in the first paragraph of the proof of Lemma 4.1 in [15], it suffices to prove the

result for groups G as in the statement of the lemma, rather than their subnormal subgroups.
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Let M be the direct sum of the one-dimensional G-submodules of N , so that |M | = pl, for

some l ≤ m.

Suppose first that p = 2. Then M is a trivial G-module, so M = Z(G) (since N is

self-centralising). It follows that G/N acts faithfully on N/M , and hence, by complete re-

ducibility, and since dI(M) = l, it suffices to prove the result for G/M . That is, we may

assume that M = 1. So all irreducible constituents of N have dimension at least 2, and

hence dG(N) ≤ m/2. The result now follows from Theorem 1.5, unless G/N ∼= Bm, where

Bm = 3m/2 : 2 ≤ GL2(2)m/2 is as defined in Theorem 1.5. In this case, let g1, g2, . . ., gm/2,

g be elements of G, with the gi of 3-power order, and |Ng| = 2, such that G/N is invariably

generated by Ng1, . . ., Ngm/2, Ng. Now, choose a generating set x1, . . ., xm/2 for N as a

G-module, with x1 ∈ CG(g1). We claim that the set
{
g1x1, g2, . . . , gm/2, g, x2, . . . , xm/2

}
in-

variably generate G. So let h, h1, h2, . . ., hm/2, y2 ,. . ., ym/2 be elements of G. We need to

prove that G = H := 〈(g1x1)h1 , gh22 , . . . , g
hm/2
m/2 , g

h, xy22 , . . . , x
ym/2
m/2 〉. Now, xh11 = [(g1x1)h1 ]|g1| ∈

H, and (g2
1)h1 = [(g1x1)h1 ]2 ∈ H since x1 centralises g1, and g1 has 3-power order. Since{

Ng2
1, Ng2, . . . , Ngm/2, Ng

}
is an invariable generating set for G/N , and

{
x1, x2, . . . , xm/2

}
generates N as a G-module, the claim follows, and hence dI(G) ≤ m, as needed.

So assume now that p > 2, and let L be a G-submodule of N which complements M . Let

C := CG(L). Then dI(G/C) ≤ ε(m − l), by Theorem 1.5, where ε = ε(p) := 1 if p = 3 and

ε := 3/2 if p > 3. Now, C/N acts faithfully on N/L ∼= M , so C/N ≤ GL(M) ∼= (p−1)l. Hence,

dI(C/L) ≤ dI(C/N) + dI(M) ≤ 2l. Also, if p = 3 then C/L is isomorphic to a subgroup of

3l : 2l ∼= Sym (3)l, so Proposition 4.4 implies that dI(C/L) ≤ l + 1 in that case. Thus, since

dG(L) ≤ (m− l)/2, we have dI(G) ≤ (ε(p) + 1/2)(m− l) + l+ δ(p), where δ(p) := 1 if p = 3 and

δ(p) := l otherwise. The result now follows, except when p = 3 and l ≤ 1. If l = 0, then L = N

and dI(G) ≤ dG(L) + dI(G/N) ≤ 3m/2 follows from Theorem 1.5. If l = 1 and C/L is cyclic,

then we’re done. So we may assume that C/L ∼= S3. Now let Y be a subset of G, of size m− 1,

whose image modulo C invariably generates G/C; let x1, x2, . . ., x(m−1)/2 be a generating set

for L as a G-module; let σ be an element of C which reduces to a 3-cycle modulo L; and let τ

be an element of C of order 2. It is now easy to see that Y ∪
{
σ, x1τ, x2, . . . , x(m−1)/2

}
is an

invariable generating set for G, and this gives us what we need.

Proposition 5.2. Let T be a nonabelian finite simple group, and let H be a subgroup of Out (T ).

Then dI(H) ≤ 3.

Proof. The structures of the outer automorphism groups of the finite simple groups are well

known. When T is an alternating group, |Out (T )| ≤ 4. When T is a simple classical group

(see [25, Chapter 2]), Out (T ) modulo its (cyclic) group C of field automorphisms is either

metacyclic (T 6= Ω+
8 (q), for q odd), or isomorphic to S4 (T = Ω+

8 (q)). Finally, if T is an

exceptional group then [25, Table 5.1.B] implies that |Out (T )/C| ≤ 6, while if T is a sporadic

group then |Out (T )| ≤ 2, using [25, Table 5.1.C]. The result now follows in each case.

The preparations are finally complete. We will prove both parts of Theorem 1.5 together
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by induction on n. If n = 1 then G is cyclic, and Parts 1 and 2 clearly hold. So assume, below,

that n > 1, and that Theorem 1.5 holds for dimensions less than n. We may also assume that

for fixed n, the theorem holds for fields of order less than |F |.

Proof of Part 2 of Theorem 1.5. Since R is homogeneous, it acts faithfully on each of its irre-

ducible constituents, so we may assume that R is irreducible. Let f := f(R) and K1 := K1(R)

be as defined after Lemma 2.24, and let K and F1 be as in Lemma 2.24, so that K1
∼= K ≤ R.

If f > 1, then K1 satisfies the inductive hypothesis, so H ∩K1 modulo its scalar subgroup can

be invariably generated by 2 log (r/f) elements. Also, HK/K is abelian of order at most f .

Hence, dI(H) ≤ log f + 2 log (n/f) + 1 ≤ 2 log n.

So we may assume that all characteristic abelian subgroups of R are contained in Z. Let qi,

mi, tj , Tj , uj and Uj be as in Corollary 2.30. Then Z = Z(R) is the intersection of the groups

CR(Oqi) and CR(Uj) over all i, j. Thus, since log x + log y = log xy, and since
∏
i q
mi
i

∏
j t
uj
j

divides n, it will suffice to prove that, for each i, j, each subnormal subgroup of R/CR(Oqi(R))

can be invariably generated by log qmii elements, and that each subnormal subgroup of R/CR(Uj)

can be invariably generated by log s
tj
j elements.

To this end, we first consider a subnormal subgroup H of R/CR(Oq(R)), where q is a prime

such that Oq(R) is not contained in Z. By Lemma 2.27, R/CR(Oq(R)) has shape q2m.X, where

X is a completely reducible subgroup of Sp2m(q), for some m ≥ 1. We need to prove that

dI(H) ≤ 2m log q. If 2m < n, then since Theorem 1.5 (including Part 1) holds for dimensions

less than n, we can apply Lemma 5.1 and conclude that dI(H) ≤ 2δm, where δ := 1 if q = 2,

δ := 3/2 if q = 3 and δ := 2 otherwise. In particular, δ ≤ log q, which gives us what we need.

So assume that 2m ≥ n. Since 2m ≤ qm ≤ n, we must have q = 2 and m ≤ 2. If m = 1, then

R/CR(Oq(R)) ≤ 22.S3, and hence every subnormal subgroup of R/CR(Oq(R)) can be invariably

generated by 2 elements. If m = 2, then R/CR(Oq(R)) ≤ 24.Sp4(2), and hence every subnormal

subgroup of R/CR(Oq(R)) can be invariably generated by 4 elements, by Lemma 5.1

Next, let H be a subnormal subgroup of R := R/CR(U), where U is a central product of u

copies of a quasisimple group T , and T has a faithful irreducible representation of degree t over

F . We need to show here that dI(H) ≤ 2u log t. By Lemma 2.28, T
u ≤ R ≤ T

u
.(A o Sym (u)),

where A ≤ Out (T ). Furthermore, |A| ≤ 2 if t = 2. Since H ∩ T u is a subnormal subgroup of

T
u
, it follows that H ∩ T u ∼= T

v
for some v ≤ u. If u = 1, then R ≤ Aut (T ), so dI(H) ≤ 5

by Proposition 5.2 and Corollary 4.9. Using Corollary 4.8 and Proposition 5.2, we get dI(H) ≤
2 + 6 + 1 = 9 if u = 2, and dI(H) ≤ 4 + 9 + 2 = 15 if u = 3. If u ≥ 4, then Proposition 5.2,

Corollary 4.9 and Theorem 2.8 imply that dI(H) ≤ u+ 1 + 3u+ u/2 = 9u/2 + 1 < 5u. If t > 5,

then 5 < 2 log t, and the result follows, so assume that t ≤ 5. Suppose first that t = 2. Then

H/Soc (H) ≤ 2 oSym (u), and hence either u is even, or dI(H/Soc (H)) ≤ u−1, by Proposition

4.3. If u is even, then dI(Soc (H)) ≤ u by Corollary 4.9. Otherwise, dI(Soc (H)) ≤ u+ 1. Thus,

in either case, we have dI(H) ≤ 2u, as needed.

Suppose next that t = 3. Then |A| ≤ 3 by [14, 27], so dI(H) ≤ u + 1 + 3u/2 + δ3,u/2 by

Theorem 2.8, and this is less than (2 log 3)u, except when u = 1. But in this case H ≤ T .A, so
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dI(H) ≤ 3 < 2 log 3 by Corollary 4.9, since A is cyclic, which gives us what we need. Assume

now that t = 4. Then |A| = 1, 2 or 4 by [14, 27], so H/Soc (H) ≤ Sym (4) oSym (u) ≤ Sym (4u),

and hence dI(H) ≤ 3u + 1 ≤ 4u using Theorem 2.8 and Corollary 4.9. Finally, suppose

that t = 5. Then by [14, 27], A is metacyclic, so every subgroup of A can be invariably

generated by 2 elements. Hence, if u = 1 then dI(H) ≤ 4 < 2 log 5, and if u > 1 then

dI(H) ≤ u+ 1 + 2u+ u/2 + 1/2 ≤ 9u/2 < 2u log 5, again using Corollary 4.8 and Theorem 2.8,

as needed.

Proof of Part 1 of Theorem 1.5. Define ε = ε(F ) to be 1/2, 1 or 3/2 according to whether

|F | = 2, |F | = 3 or |F | > 3, respectively. We need to prove that dI(G) ≤ εn.

Suppose first that G is reducible, let U be an irreducible submodule of the natural module

V , and let W be a G-complement for U in V . Then G embeds as a subdirect product of

GU ×GW , where GU , GW denote the induced actions of G on U and W respectively. Since the

embedding is subdirect, G/G ∩GW is isomorphic to GU , and G ∩GW is a normal subgroup of

GW (here, we are viewing G as a subgroup of GU ×GW . Thus, G∩GW is completely reducible

by Clifford’s Theorem. Since dI(G) ≤ dI(G/G∩GW )+dI(G∩GW ), the result now follows from

the inductive hypothesis, except when |F | = 2 and G has irreducible constituents of dimension

2, 3 or 4. So assume that |F | = 2.

Suppose first that dimU = 2, so that GU ≤ S3, and dimW = n−2. If dI(G
W ) ≤ bn−2

2 c, then

dI(G) ≤ n−2
2 + 1 = n

2 , as needed, by Proposition 4.7 (i). So assume that dI(G
W ) > n−2

2 . Then

Proposition 4.5, together with the inductive hypothesis, implies that GW is isomorphic to either

S3, Bn−2, 7 : 3, L3(2) or Sp4(2) ∼= S6. If GW ∼= S3, then the result follows from Proposition 4.4.

If GW is isomorphic to 7 : 3 or L3(2), then dI(G) ≤ 2, while if GW ∼= Sp4(2), then dI(G) ≤ 3,

by Proposition 4.7 (ii). So assume that GW ∼= Bn−2. If G is the full direct product GU ×GW ,

then the result follows from Proposition 4.4. So assume that G ∩ GU < S3. If |G ∩ GU | = 1

then dI(G) = dI(K) = n
2 . Otherwise, |G ∩GU | = 3, so G ∼= Bn and dI(G) =

⌊
n
2

⌋
+ 1.

Assume now that dimU = 3. Then GU ∼= 7, 7 : 3 or GL3(2). If dI(G
W ) ≤

⌊
n−3

2

⌋
, then

the result follows from Proposition 4.7 (i). So assume that GW is isomorphic to one of S3,

7 : 3, L3(2), Sp4(2), or Bn−3. The result then follows, from Lemma 4.6 if GW ∼= S3, Sp4(2);

Proposition 4.7 (i) if GW ∼= 7 : 3, GL3(2); and from part Proposition 4.7 (iv) otherwise.

Finally, suppose that dimU = 4. If dI(G
W ) ≤ bn−4

2 c, or if GW ∼= Bn−4, then the result

follows, from Proposition 4.7 parts (i) and (v). So assume that GW ∼= S3, 7 : 3, L3(2) or

Sp4(2). If GU 6∼= Sp4(2), then dI(G) ≤ dI(G
U ) + 1 = 3 by Propositions 4.5 and 4.7 (i). If

GU ∼= Sp4(2), then the required upper bound follows from Proposition 4.6 if GW 6∼= S3, Sp4(2),

and Proposition 4.7 parts (ii) and (iii) otherwise.

So we may assume that G is irreducible. If G is imprimitive, let ∆ be a minimal block

for G, of dimension r say, let R := G∆
∆ be the induced action of the stabiliser G∆ on ∆,

and let S be the induced action of G on the set of G-conjugates of ∆. If G primitive, set

∆ := V , r := n, R := G and S := 1. Since G is irreducible, R ≤ GLr(F ) is irreducible, and

S ≤ Sym (s) is transitive, where s := n/r. The minimality of ∆ implies also that R is primitive.
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In particular, each subnormal subgroup of R can be invariably generated by h(r) elements,

where h(r) := 2 log r+1 if |F | > 2 or if (r, |F |) := (4, 2), and h(r) := 2 log r otherwise, by part 1

of Theorem 1.5. Hence, dI(G) ≤ h(r)s+ (s+ δs,3/)2, and this yields dI(G) ≤ εrs, except when

|F | = 2 and r ≤ 17; when |F | = 3 and r ≤ 7; and when |F | > 3 and r ≤ 3.

We deal with these exceptional cases as follows. Throughout, we write f = f(R) and

K1 = K1(R), and we take F1 = F1 to be a degree f extension of F , as in Lemma 2.24. We

also identify K1 as a characteristic subgroup of R with R/K1 abelian of order at most f (see

Lemma 2.24). If f = r, then dI(G) ≤ 2s+ bs/2c, which is less than rs/2 when r ≥ 3. Thus, in

our case by case analysis below, we may assume that if r ≥ 3, then f < r.

1. r = 1. If G is primitive then G is cyclic (or trivial when |F | = 2), and the result is clear,

so assume that G is imprimitive. If |F | = 2 then R is trivial, and hence G is reducible, a

contradiction. So |F | > 2. In any case, R is cyclic, so Proposition 4.2 if s = 3, or Theorem

2.8 otherwise, implies that dI(G) ≤ s+ s/2 = 3s/2. If |F | = 3, then Corollary 3.10 yields

dI(G) ≤ E(s, 2) + dI(S). Now, E(s, 2) ≤ s/2 for all s, so by Theorem 2.8 we may assume

that s = 3. But in this case dI(G) ≤ E(3, 2) + 2 = 3, as needed.

2. r = 2. Suppose first that |F | = 2, so that R ≤ S3. If G is primitive, then dI(G) ≤ 2,

which gives us what we need. So we may assume that G is imprimitive. Then dI(G) ≤
E(s, 2)+E(s, 3)+dI(S), by Corollary 3.10. If s = 3, and either R < S3 or S < S3, then we

get dI(G) ≤ E(3, 2)+2 or dI(G) ≤ E(3, 2)+E(3, 3)+1, which in each case yields dI(G) ≤ 3,

as needed. If s = 3 and R = S = S3, then G is a transitive subgroup of Sym (9), and the

result follows from Proposition 4.1. So assume that s 6= 3. Then dI(S) ≤ s/2, and the

result follows from the bound dI(G) ≤ E(s, 2) +E(s, 3) + dI(S) if E(s, 2) +E(s, 3) ≤ s/2.

It is easily seen, from the definition of E, that E(s, 2) + E(s, 3) > s/2 only when 3 6= s

is 2, 4, 6 or 12. However, when s = 2, 4 or 6, then G is transitive of degree 6, 12 or 18,

respectively (and G < S6 when s = 2), so the result follows from Proposition 4.1. When

s = 12, dI(S) ≤ 4 by the same proposition, and hence dI(G) ≤ E(12, 2)+E(12, 3)+4 = 11,

which gives us what we need.

Next, assume that |F | = 3. Then R ≤ GL2(3). If G is primitive, then G is either cyclic or

quaternion of order 8, or isomorphic to SD16, SL2(3) or GL2(3). All of these groups are

easily seen to be invariably 2-generated, so we may assume that G is imprimitive. Then

dI(G) ≤ 4E(s, 2) + E(s, 3) + dI(S), by Corollary 3.10. Since E(3, 2) = E(3, 3) = 1, the

case s = 3 follows if either R < GL2(3) or S < S3. Thus we may assume that if s = 3, then

R = GL2(3) and S = S3. Then G/G∩Zs ≤ S4 oS3 is transitive of degree 12, and hence can

be invariably generated by 4 elements, by Proposition 4.1. Thus, dI(G) ≤ E(3, 2)+4 = 5,

which gives us what we need. So assume that s 6= 3. If s is not 2, 4, 6, 8 or 16, then

4E(s, 2) + E(s, 3) ≤ 3s/2, so dI(G) ≤ 2s by Theorem 2.8. If s = 16, then dI(S) ≤ 6 by

Proposition 4.1, so dI(G) ≤ 4E(16, 2) + E(16, 3) + 6 = 31, which gives us what we need.

Suppose now that s = 6 or 8, and let AK be the induced action of G ∩ Rs on a minimal
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block. If AK < GL2(3), then dI(G) ≤ max {4E(s, 2), 3E(s, 2) + E(s, 3)} + s/2, which

gives the result in each case. So assume that R = GL2(3). Then G/G ∩ SL2(3)s ≤ 2 o S
is transitive of degree 2s, so by Proposition 4.1, dI(G/G ∩ SL2(3)s) is less than or equal

to 4 if s = 6 and 6 if s = 8. Thus, dI(G) ≤ 3Esol(s, 2) +Esol(s, 3) + s− 2, which gives the

result in each case.

Finally, suppose that s = 2 or 4. Then R/Z is a subgroup of S4, and if it is intransitive,

then it must have order 1, 2 or 6, in which case dI(G) ≤ 2E(s, 2) + E(s, 3) + s/2 by

Corollary 3.10 and Theorem 2.8. This yields the result in each case, so assume that

R/Z ≤ S4 is transitive. Then G/G∩Zs ≤ Sym 4 oSym (s) is transitive of degree 4s. Thus,

using Proposition 4.1, if s = 4 then dI(G/G ∩ Zs) ≤ 6, so dI(G) ≤ E(4, 2) + 6 = 8, as

needed. If s = 2 and dI(G/G ∩ Zs) = 4, then G/G ∩ Zs, and hence G, is a 2-group, by

Proposition 4.1 so dI(G) = d(G) ≤ 2s by [23, Proposition 2.4], and [15, Theorem 1.2].

Otherwise, dI(G/G ∩ Zs) ≤ 3, so dI(G) ≤ E(2, 2) + 3 = 4, as needed.

So we may assume that |F | > 3. Then either f = 2 and R is metacyclic, or f = 1 and

either R/Z ≤ 22.S3
∼= S4, or R/Z ≤ T.2, for some nonabelian simple group T , by Lemmas

2.27 and 2.28. If G is primitive, then dI(G) ≤ 3, since S4 and T are both invariably

2-generated.

So assume that G is imprimitive. In the case f = 2 we have dI(G) ≤ 2s + s/2 + 1 ≤ 3s,

using Theorem 2.8. Otherwise, Corollary 3.10 yields dI(G) ≤ 3E(s, 2) +E(s, 3) + s+ s/2.

It is easy to see that 3E(s, 2) + 9E(s, 3) ≤ 3s/2 (from which the result follows), except

when s = 2 or 4. Furthermore, if s = 2 or 4 and R/Z ≤ T.2 for a nonabelian simple group

T , then dI(G) ≤ E(s, 2) + 1 + s/2, by Corollary 3.10 which is less than 3s in each case.

Thus, writing bars for reduction modulo Zs, we may assume that R = R/Z has shape

N.X, where N is elementary abelian of order 4, and X = 1, A3 or S3. Then G/G ∩ N s

is either transitive of degree s or 3s. It follows that dI(G/G ∩ N s) ≤ s in each case, by

Proposition 4.1 (since s = 2 or 4). It follows that dI(G) ≤ 2E(s, 2)+s+s = 3s, as needed,

in each of the cases s = 2 and s = 4.

3. r = 3. We first consider the case |F | = 2. Then R ≤ GL3(2) is primitive and irreducible,

so either R = GL3(2) is simple or |R| divides 21. In particular, dI(G) ≤ 2 if G is primitive.

So assume that G is imprimitive. Then dI(G) ≤ E(s, 3) +E(s, 7) + s/2 + 1, by Corollary

3.10 and Theorem 2.8, and the result follows since E(s, p) ≤ s/2 for all primes p.

Assume now that |F | = 3. Here R ≤ GL3(3) is primitive and irreducible, so either R has

a nonabelian simple normal subgroup T of index at most 2, or R ≤ ΓL1(33). Using the

ATLAS [6], we moreover have SL3(3)ER ≤ GL3(3). It follows from Lemma 2.1 part (iii)

that dI(G) ≤ 3 if G is primitive. Otherwise, Corollary 3.10 and Theorem 2.8 imply that

dI(G) ≤ E(s, 2)+E(s, 3)+E(s, 13)+s/2+1 ≤ 2s+1 < 3s, as needed (since E(s, p) ≤ s/2
for all primes p).

So assume that |F | > 3. Since f = 1, either R/Z ≤ 32.Sp2(3) or R/Z ≤ T.A, where T
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is a nonabelian simple group with a projective irreducible representation of degree 3, and

A ≤ Out (T ). By [14, 27] and [6], |A| ≤ 3. Thus, G primitive implies that dI(G) ≤ 3 by

Lemmas 2.1 and 5.1, and Corollary 4.9, in either case. So assume that G is imprimitive.

In either case we have dI(G) ≤ 3E(s, 2) + 3E(s, 3) + s + dI(S), by Corollary 3.10. Since

E(s, p) ≤ s/2 for all primes p, and E(3, 2) = E(3, 3) = 1, and dI(S) ≤ (s + δ3,s)/2, the

result follows for all s.

For the remaining cases below, we may assume that |F | = 2 or |F | = 3.

4. r = 4. Suppose first that |F | = 2. Then, since (r, 2f − 1) = 1 and f < r, Corollary 2.30

implies that R is insoluble. The ATLAS [6] then implies that R ≤ GL4(2) is isomorphic

to either A5, 3.A5, S5, 3.S5, A6, S6, A7, Ω−4 (2) ∼= A5 or GL4(2). Suppose first that G is

primitive. If G = S6, then dI(G) = 3, as needed, so assume otherwise. Then Corollary 4.9

and Proposition 4.10 yield dI(G) ≤ 2 in each case, except when G ∼= 3.A5 or G ∼= 3.S5. So

assume that we are in one of these cases. Note that a 5-cycle and a 3-cycle [respectively a

5 cycle and a 2-cycle] invariably generates A5 [resp. S5]. Let MEG be of order 3. Clearly

any element x of a Sylow 5-subgroup of G reduces to a 5-cycle modulo M , and centralises

M . Thus, if M = 〈z〉, with |z| = 3, and y ∈ G with My a 3-cycle [resp. a 2-cycle], then

{xz, y} invariably generates G.

So assume that G is imprimitive. Corollary 3.10 then yields dI(G) ≤ E(s, 2)+E(s, 3)+2+

dI(S), and the result now follows whenever s ≥ 4, since E(s, p) ≤ s/2 for all primes p, and

dI(S) ≤ (s+ δs,3)/2 by Theorem 2.8. If s = 3, then dI(G) ≤ E(3, 2) +E(3, 3) + 2 + 2 = 6,

as needed. If s = 2, then the result follows from using Table 1 and Corollary 3.10, except

when R ∼= 3.S5. But in this case, if M is a minimal normal subgroup of R of order 3, then

since G is large, G/G∩M2 is isomorphic to a transitive subgroup of S5 oS2 ≤ S10. Hence

dI(G/G∩M2) ≤ 3 by Proposition 4.1. Corollary 3.10 then gives dI(G) ≤ E(2, 3) + 3 = 4

as needed.

Assume now that |F | = 3. If G is primitive, then the result follows from Proposition

4.11, so assume that G is imprimitive. Then Corollary 3.10, together with Table 1, yields

dI(G) ≤ max {8E(s, 2) + 2E(s, 3), 7E(s, 2) + E(s, 5)}+ dI(S). By using Theorem 2.8 (or

Proposition 4.1 when s = 6), and the definition of the function E, it is easy to see that

this yields dI(G) ≤ 4s in all cases, except when s = 2 or s = 4.

So assume that s is 2 or 4. If R is insoluble, then the result follows easily in each case,

using Corollary 3.10 and Table 1, except when R has 6 composition factors of order 2,

and one composition factors isomorphic to A5, and s = 2. But in this case, the ATLAS [6]

quickly shows R/O2(R) ∼= S5. Thus, G/G∩O2(R)2 is isomorphic to an transitive group of

degree 10, and hence dI(G/G∩O2(R)) ≤ 3, by Proposition 4.1. It follows from Corollary

3.10 that dI(G) ≤ 5E(2, 2) + 3 = 8, as needed.

So assume that R is soluble. Since f < r, Corollary 2.30 implies that there are two

possibilities:
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(a) f = 2 and K1/Z ≤ 22.S3
∼= S4. Then dI(G) ≤ 4E(s, 2) + E(s, 3) + s + s/2, by

Corollary 3.10 and Theorem 2.8. This gives us what we need in each case.

(b) f = 1 and R/Z has shape N.X, where N is elementary abelian of order 24 and

X ≤ Sp4(2) ∼= S6 is completely reducible. Recall also that Y := AKN/N ≤ Sp4(2) is

also completely reducible, since AK a normal subgroup of R. By direct computation,

the possibilities for |X| and |Y | are 1, 3, 5, 6, 9, 10, 18, 20, 36 and 72. We also compute,

for each possible Y , the number j of orbits of Y on the nonidentity elements of N .

Then, by Corollary 3.9 and Theorem 2.20 Part (iv) we have

dI(G) ≤ E(s, 2) + (i+ min {j, 4})bbs/
√

log sc+ kE(s, 3) + lE(s, 5) + dI(S) (5.1)

where i, k and l denote the number of composition factors of Y of order 2, 3 and 5,

respectively. Apart from two cases, this gives us what we need whenever s = 2 or

s = 4.

The two exceptions occur when |X| = 36 or 72, and (|Y |, j) = (36, 3) or (72, 2). In

these cases, the result follows from (7.1) when s = 4, so assume that s = 2. Then

(by direct computation) X has a core-free subgroup of index 6. Hence, G/G ∩ N2

is transitive of degree 12, and hence dI(G/G ∩ N2) ≤ 4 by Proposition 4.1, where

bars denote reduction modulo Z2. Also, since j = 3, Corollary 3.9 and Theorem

2.20 Part (iv) imply that dG(N) ≤ 3b2bc = 3. Hence, by Corollary 3.10, we have

dI(G) ≤ dG(G ∩ Z2)+

dG(G∩N2) + dI(G/G∩N2) ≤ E(s, 2) + 3b2bc+ 4 = 8, which gives us what we need.

5. r = 5, 7, 11, 13 or 17. Here, since f = 1, all characteristic abelian subgroups of R are

contained in Z(R), which has order 1 or 2, depending on whether |F | has order 2 or 3

respectively. Hence, Corollary 2.30 implies that R/Z ≤ T.A, where T is a nonabelian

simple group with a projective irreducible representation M of degree r over F , and A

is the subgroup of Out (T ) which stabilises M . Suppose first that r = 5 or r = 7, and

|F | = 2. Then direct computation implies that R = R/Z ∼= Lr(2). Hence, dI(G) ≤ 2

if G is primitive, and dI(G) ≤ 2 + s/2 + 1/2 by Corollary 3.10 and Theorem 2.8 if G is

imprimitive. This gives the required upper bound in each case.

So we may assume that (r, |F |) 6= (5, 2), (7, 2). If G = R is primitive, then G/Z is

almost simple, so dI(G) ≤ 6, and dI(G) ≤ 5 if |F | = 2 by Corollary 4.9 and Proposition

5.2. So assume that G is imprimitive; we will prove that dI(G) ≤ 5s, which will give us

what we need. To see this, Corollary 3.10, Theorem 2.8 and Proposition 5.2 imply that

dI(G) ≤ 2 + 3s+ E(s, 2) + (s+ δs,3)/2. This yields dI(G) ≤ 5s, since E(s, 2) ≤ s/2.

6. r = 6. Suppose first that |F | = 2, and that G is primitive. If G is soluble, then since

f < r, the only possibility is that f = 2, and that R ≤ 31+2.GL2(3). In this case, it

is easily checked by direct computation that dI(G) ≤ 3. So assume that G is insoluble.

Let a be the number of abelian chief factors of G ≤ GL6(2), and let b be the number
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of nonabelian chief factors. By Lemma 2.1, dI(G) ≤ a + 2b, and by direct computation

(using the database of irreducible matrix groups in MAGMA), this gives dI(G) ≤ 3, except

when G’s number i in the MAGMA database is 44, 47, 52, 60, 61 or 62. Suppose first that

i = 47. Then G has a normal subgroup N ∼= C3 such that G/N ∼= S6. Let P be a Sylow

5-subgroup of G, and let x ∈ P such that Nx is a 5-cycle in S6. Also, let y and z be

elements of G which reduce modulo N to a 3-cycle and a 6-cycle, respectively, and let w

be a generator for N . Then, since x centralises w, and Nx,Ny,Nz invariably generates

G/N , we see that wx, y, z invariably generates G, as needed. So assume that i 6= 47. In

each of these cases, G has a subnormal series 1 E N E G, in which one of the factors is

cyclic, and the other is isomorphic to either PGL2(7), PΓL2(8) or L3(4).m (m = 2, 3 or

6). Thus, dI(G) ≤ 3 by Proposition 4.10.

So assume that G is imprimitive. Using Table 1 and Corollary 3.10, if R is insoluble then

we have dI(G) ≤ max {E(s, 2) + 2E(s, 3), E(s, 3) + E(s, 7)} + 2 + dI(S). Since E(s, p)

and dI(S) are bounded above by s/2, the result follows. So assume that R is soluble.

Then, since f < 6, Lemma 2.25 implies that f = 2 and K1/Z has shape N.X, where N

is elementary abelian of order 32, and X ≤ Sp2(3) is soluble and completely reducible. It

follows from Corollary 3.13 that dI(G) ≤ 6 if s = 2, as needed, and that

dI(G) ≤E(s, 2) + min
{

2E(s, 3), bbs/
√

log s3c, s/s2

}
+ E(s, 2)

+ min
{

2E(s, 2), bbs/
√

log s2c, s/s3

}
+ δs,8E(s, 2) + (1− δs,8)E(s, 3) + E(s, 3) + dI(S)

in general. Using the definition of the function E, one can easily see that this latter bound,

together with Theorem 2.8, yields the result whenever s ≥ 3.

Next, assume that |F | = 3. If G is primitive, then dI(G) ≤ b2 log 6c+ 1 = 6 by Theorem

1.5, as needed. Suppose, then, that G is imprimitive. Using Table 1 and Corollary 3.10,

we have

dI(G) ≤ {4E(s, 2) + 2E(s, 3) + E(s, 13), 4E(s, 2) + E(s, 3) + E(s, 7) + E(s, 3)}+ dI(S)

Using the definition of the function E, this bound, together with Theorem 2.8 yields the

result for all s.

For the remaining cases below we assume that |F | = 2.

7. r = 8. Since f < r, Lemma 2.25 implies that R ≤ GL8(2) is insoluble, and using Table 1,

together with Corollary 3.10, we have

dI(G) ≤ max {2E(s, 2) + E(s, 3) + 4, E(s, 2) + 2E(s, 3) + 4, 2E(s, 2) + 2E(s, 3) + E(s, 5) + 2}+dI(S)

when G is imprimitive. Theorem 2.8, together with the bound E(s, p) ≤ s/2 now gives us

what we need.

So we may assume that G is primitive. If f ≥ 4, then dI(G) ≤ 1 + 2 log 8/f + 1 = 4

as needed, so assume that f = 1 or f = 2. Suppose first that f = 1. Then R = R/Z
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is almost simple, with a projective irreducible representation of degree 4 or 8. Hence,

R/Soc (R) is cyclic, using the list in [15, proof of Lemma 4.2], and the result follows from

Proposition 5.2 and Corollary 4.9.

So we may assume that f = 2. Then G ≤ GL4(4).2, and K1 = G ∩GL4(4) is irreducible

and weakly quasiprimitive; let L be the generalised fitting subgroup of K1. Using the list

in [15, proof of Lemma 4.2] and Lemma 2.25, L has l quasisimple central factors, where

l = 1 or 2. If l = 1, then K1/Z ∼= L2a(4), S2a(4) (a = 1 or 2), or U4(2). In particular,

dI(G) ≤ 1 + dI(K1/Z) + 1 ≤ 4 by Corollary 4.9. So all that remains is the case when

L/Z is a direct product of simple groups T1, T2, where each Ti has a projective irreducible

representation of degree 2 over F4. By again using the list in [15, proof of Lemma 4.2],

we see that Ti ∼= L2(4) ∼= A5 for each i. By using the database of irreducible matrix

groups in MAGMA, we see that the only possibility for G ≤ GL8(2) is to have number

j = 165, 172, 185, 197 or 203 in the database. However, in each of these cases, we find that

either G/L is cyclic, or dI(G/L) = 2 and Z = 1. Hence, dI(G) ≤ 2 + dI(L/Z) = 4, in

each case by Corollary 4.9.

8. r = 9. Again, since we are assuming that f < r, Lemma 2.25 implies that R is insoluble

(since any qi as in Lemma 2.25 divides r/f and 2r/f − 1). The database of irreducible

matrix groups implies that the list of chief factors of R form a sublist of either [3, 7, T ] or

[2, 3, T ], for a nonabelian simple group T , or [2, L2(7) × L2(7)]. Thus, if G is primitive,

then dI(G) ≤ 4 by part (iii) of Lemma 2.1. If G is imprimitive, then Corollary 3.10 gives

dI(G) ≤ E(s, 2) + E(s, 3) + E(s, 7) + 2 + dI(S), and the result again follows easily, using

Theorem 2.8, and the fact that E(s, p) ≤ s/2.

9. r = 10, 14 or 15. As in the cases r = 8 and r = 9 above, R must be insoluble in each case,

by Lemma 2.25. Now, r divides uv, where u and v are prime, so either K1/Z is almost

simple, or Z = C1 ∩ C2 where C1, C2 are two normal subgroups of K1, and K1/Ci is

almost simple, for i = 1, 2, whose socles have projective irreducible representations over

F1 of degree u and v respectively over. Also, R/K1 is cyclic of order 1, u, or v (since

f < r). Note also that, using Corollary 2.29 and [14, 27], if T is a nonabelian simple group

with a projective irreducible representation of degree d, and A is as in Lemma 2.25, then

d 6= 2, 3 if f = 1; |A| ≤ 2 if d = 2; |A| ≤ 3 if d = 3; and |A| = 1 if d = 5, using the list in

[15, proof of Lemma 4.2] (∗).

Suppose first that r = 10. By (∗), K1/Z is an almost simple group, whose socle has a

projective irreducible representation of degree 2 or 5 over F1. Hence, if G is primitive

then dI(K1/Z) ≤ 3 by (∗). Thus, dI(G) ≤ dI(G/K1) + dI(K1/Z) + dI(Z) ≤ 5, as needed.

Otherwise, Corollary 3.10 and (∗) imply that dI(G) ≤ max {E(s, 2), E(s, 5)} + E(s, 2) +

s+ 2 + s+ dI(S). This is less than 5s, using Theorem 2.8, and the bound E(s, p) ≤ s/2.

Assume now that r = 14 or r = 15. It follows, from the first paragraph above and

Corollary 3.10, that K1/Z is almost simple. Hence, dI(G) ≤ 1 + dI(K1/Z) + 1 ≤ 7 if G is
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primitive. So we my assume that G is imprimitive. Then dI(G) ≤ max {E(s, u), E(s, v)}+
E(s, 2) + 2s + 2 + s + dI(S), by Corollary 3.10. By using the bound E(s, p) ≤ s/2, and

the bound of Theorem 2.8, the result now follows.

10. r = 12. Suppose first that K1 has a q-core not contained in Z, for some prime q. Then

q divides r/f and 2f − 1, so f = 2 or f = 4. Thus, r/f divides 6, so q = 3 is the

only possibility. Hence, using Lemma 2.25, we have K1/CK1(O3(K1)) ≤ 32.Sp2(3). The

generalised fitting subgroup L of K1 has at most one another central factor, and if it

has such a central factor U , then f = 2 and U is insoluble, with K1/CK1(U) ≤ T.2,

for a nonabelian simple group T , by Lemmas 2.27 and 2.28. In this case, T has a pro-

jective irreducible representation of degree 2 over F4, so we must have T = A5. Hence,

dI(K1/CK1(U)) = 2 by Proposition 4.10, and the result now follows if G is primitive, since

Z = CK1(O3(K1))∩CK1(T ), dI(G/K1) ≤ 1 and every subnormal subgroup of 21+2.Sp2(3)

is invariably 3-generated by direct computation. If G is imprimitive, then Corollary 3.10

implies that

dI(G) ≤ 5E(s, 2) + 4E(s, 3) + E(s, 5) + dI(S)

The result now follows, since E(s, p) ≤ s/2, and dI(S) ≤ (s+ δs,3)/2.

So we may assume that all central factors of L are quasisimple. If f ≥ 4, then dI(G) ≤
5s+dI(S) by Part 2 of Theorem 1.5, so we may assume that f = 1, 2 or 3 (using Theorem

2.8. Then K1 has normal subgroups C1, . . ., Ct, with t ≤ 3, such that K1/Ci has shape

specified in the following table. Furthermore, in each case, K1/Ci is either almost simple

with a projective irreducible representation over F2f of degree ti dividing r/f , or f = 3,

t = 1, and K1/C1 has shape T 2
1 .D8, where T1 is a nonabelian simple group. To list all of

the possibilities for the groups K1/Ci, we use the list in [15, proof of Lemma 4.2]. The

possibilities are as follows: Thus, if G is primitive, then dI(G/K1), dI(K1/Z) ≤ 1 − δf,1,

and going through each of the cases in Table 2 above, and applying Corollary 4.8 and

Propositions 5.2 and 4.10 where necessary, we get dI(G) ≤ 6. If G is imprimitive using

Corollary 3.10 we get dI(G) ≤ 2E(s, 2) + 2s+ 4 + max {E(s, 2), E(s, 3)}+ dI(S), which is

less than or equal to 6s, using the bound E(s, p) ≤ s/2 and Theorem 2.8.

11. r = 16. If G is primitive, then dI(G) ≤ 2 log 16 = 8 by Part 2 of Theorem 1.5, so assume

that G is imprimitive. If f > 1, then Part 2 of Theorem 1.5 implies that dI(G) ≤ 7s+dI(S)

which is less than 8s, by Theorem 2.8. So assume that f = 1. Then each central factor Uj

of the generalised Fitting subgroup L of R is insoluble; let Tj , Sj , tj , and sj be as in Lemma

2.28, for 1 ≤ j ≤ l. Then l ≤ 4,
∏l
i=1 s

tj
j divides 16, and R/CR(Tj) ≤ S

tj
j .(Aj o Sym (tj)),

where Aj ≤ Out (Sj). Furthermore, |Aj | ≤ 2 if sj = 2. Assume first that R = R/Z has

shape T 4.(2 oX), where X ≤ S4 is the induced action of R on the four direct factors in

T 4. If X is intransitive, then |X| has order 1, 2, 3 or 6. If X is transitive, then T 4 is a

minimal normal subgroup of R, so T 4 is a chief factor of R. Hence, Corollary 3.10 implies

that dI(G) ≤ max {7E(s, 2) + E(s, 3) + 2, 5E(s, 2) + E(s, 3) + 8} + dI(S), and this gives

33



Table 2: Structure of the groups K1/Ci

Table 2

f K1/C1 K1/C2 K1/C3

1 A L3(2).2 - A ∼= Am, Sm, or L4(2), where 5 ≤ m ≤ 7.

1 T1.A1 - - T1 is a nonabelian simple group, and A1 ≤ Out (T1).

2 A A′ - A ∼= A5 or S5; A′ ∼= L3(4), PGL3(4) or A6.

2 A - - A ∼= L6(4).3 = PGL6(4), S6(4), U6(3).2, A7, M22, U4(3).2,

L4(4).2, U4(4).2, G2(4), J2, L2(13).

3 L2(8) L2(8) - Ti is a nonabelian simple group.

3 T 2
1 .D8 - - Ti is a nonabelian simple group.

3 T1.A1 - - T1 is a nonabelian simple group, and A1 ≤ Out (T1) of order

at most 4.

dI(G) ≤ 8s, using Theorem 2.8, and the bound E(s, p) ≤ s/2.

Going through each of the remaining possibilities for the pairs (sj , tj) (as in the case r = 12

above), and applying Corollary 3.10, we get dI(G) ≤ max {4E(s, 2) + 2s+ 6, 2E(s, 2) + 4s+ 4}
+dI(S), which gives us what we need, using the bounds from Theorem 2.8, and the bound

E(s, p) ≤ s/2.

6 The proof of Theorems 1.2 and 1.3

Throughout the remainder of the paper, we will make use of the Vinogradov notation defined

in Section 1: recall, A� B means that A = O(B). We begin with a useful observation.

Lemma 6.1. Suppose that n = ab, with a and b at least 2. Then

b log a√
log b

� ab√
log ab

where the implied constant is independent of a, b, and n.

Proof. We have
b log a√

log b
≤ b log a ≤ ba√

log a
.

It follows that
b log a√

log b
≤ ba√

log max{a, b}
=

n√
log max{a, b}

.

Since ab = n, either a or b must be greater than or equal to
√
n. The result follows.
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Proof of Theorem 1.2. We will prove the theorem by induction on n. For the initial step,

assume that G is primitive. Then by Theorems 2.3 and 2.7, we have dI(G) ≤ 2a(G)� log n�
n/
√

log n, as required.

The inductive step concerns imprimitive G. Then G is a large subgroup in a wreath product

R o S, where R is a primitive permutation group of degree r ≥ 2, S is a transitive permutation

group of degree s ≥ 2, and rs = n. In particular, a(R) � log r by Theorem 2.3, and dI(S) �
s/
√

log s by the inductive hypothesis. Hence, by Corollary 3.11 we have

dI(G)� a(R)s√
log s

� s log r√
log s

. (6.1)

The result now follows immediately from Lemma 6.1.

Proposition 6.2. Let G ≤ GLm(p) be irreducible. Then

dI(G)� log pm√
log log pm

.

Proof. The proof here follows the same strategy as the proof of Theorem 1.2 above. Suppose

first that G is primitive. Then dI(G) ≤ 2 logm+ 1 by Theorem 1.5 Part(ii). Since m ≤ log pm,

it follows that

dI(G)� log log pm ≤ log pm√
log log pm

as needed.

So we may assume that G is imprimitive. Thus, G is a large subgroup in a wreath product

R o S, where R ≤ GLr(p) is primitive, S ≤ Sym(s) is transitive of degree s ≥ 2, and rs = n.

Since a(R) � log pr by Theorem 2.4, and dI(S) � s/
√

log s by Theorem 1.2, Corollary 3.11

yields

dI(G)� a(R)s√
log s

� s log pr√
log s

. (6.2)

As in the proof of Theorem 1.2 above, the result now follows immediately from Lemma 6.1.

Proof of Theorem 1.3. We will consider each of the cases of the O’Nan-Scott Theorem for prim-

itive permutation groups; the form of the theorem we use is from [26].

(I) G is a subgroup in the affine general linear group AGLm(p), and n = pm, p prime. Here,

G has a unique minimal normal subgroup B, which is elementary abelian of order pm,

and G/B is isomorphic to an irreducible subgroup of GLm(p). The result now follows

from Proposition 6.2 and Lemma 2.1 Part (ii).

(II) G is almost simple. Then dI(G) ≤ 5 by Corollary 2.10.

(III) (a) Simple diagonal action. Here, n = |T |k−1, where T is a non-abelian finite simple

group, and k ≥ 2. Furthermore, B := Soc (G) ∼= T k, and if P ≤ Sym (k) is the

induced action of G on on the direct factors of B, then one of the following holds:
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(i) P is primitive, B is the unique minimal normal subgroup of G, and G/B has

shape E.P where E ≤ Out(T ), or;

(ii) k = 2, P = 1, and G ∼= B.

Suppose first that case (i) holds. Then since any subgroup of Out(T ) is invariably

3-generated, Lemma 2.1 and Theorem 1.2 yields

dI(G) ≤ 2 + dI(G/B)� 5 +
k√

log k
� k√

log k
.

Since k ≤ log n and k/
√

log k is an increasing function, the result follows.

In the second case, G ∼= T 2, so dI(G) ≤ 3 by Corollary 4.9, and the result again

follows.

(b) Product action. Let R ≤ Sym(r) be a primitive permutation group of type (II) or

(III)(a), and let S be a transitive permutation group of degree s. Then, with the

product action, G is a large subgroup of the wreath product R o S. In particular,

n = rs. Hence, we have

dI(G)� a(R)s√
log s

+ 2cnonab(R) + dI(S). (6.3)

by Corollary 3.11.

Now, by Proposition 2.5, aab(R)� log log r and cnonab(R) = 1 if R is of type (II). If

R is of type (III)(a)(i), then adopting the same notation as used in that case above,

we have aab(R) = a(R/B), and R/B ≤ Out (T )×P projects onto the primitive group

P of degree k = log|T |(r) + 1� log r. Then

aab(R) = aab(R/B) ≤ log |Out (T )|+ aab(P )� log log r + log k � log log r

and

cnonab(R) = 1 + cnonab(R/B) = 1 + cnonab(P )� 1 + log k � log log r

by Proposition 2.5 and Theorem 2.3. Finally, aab(R) = 0 and cnonab(R) = 2 if R is

of type (III)(a)(ii).

Thus, by (6.3) and Theorem 1.2 we have

dI(G)� s log log r√
log s

+
s√

log s
� s log log r√

log s
. (6.4)

Let x := log r. It now follows immediately from Lemma 6.1 that

dI(G)� xs√
log xs

=
log rs√

log log rs

as needed.

(c) Twisted wreath action. Here, G is a semidirect product T soS, where S is a transitive

permutation group of degree s ≥ 1, and T is a non-abelian simple group. Further-

more, n = |T |s, and T s is the unique minimal normal subgroup of G. If s = 1, then
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dI(G) = dI(T ) ≤ 2 by Corollary 4.9, so assume that s ≥ 2. Lemma 2.1 and Theorem

1.2 then give

dI(G)� dI(G/T
s)� s√

log s
≤ log |T |s√

log log |T |s

and the proof is complete.
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