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ABSTRACT: Controlling the microstructure of polymers through chemical reactivity is key to 

control the material properties of synthetic polymers. Herein, we investigate the ring-opening 

copolymerization of a mixture of lactide and 2-ethyl-2-oxo-1,3,2-dioxaphospholane, promoted by  

an aluminum pyrrolidine monophenolate complex or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). 

This monomer mixture provides fast access to amphiphilic copolymers. The reaction conditions 



 2 

control the copolymer microstructure, which has been determined via a combination of 1H and 31P 

NMR spectroscopy. The choice of initiator has a profound impact: both initiators produce tapered 

block copolymers, but with reverse monomer selectivity. While the aluminum initiator favors the 

cyclic phosphonate monomer, DBU favors lactide polymerization. Moreover, a sequential control 

of temperature facilitates the preparation of block copolymers in one-pot. Thermal properties 

measured by TGA and DSC correlate to copolymer architectures. This methodology is the first 

report of copolymerization between cyclic phosphonates and lactide, and opens the possibility to 

tune the thermal properties, solubility and degradation rates of the resulting materials. 

INTRODUCTION 

Poly(lactic acid) (PLA) is arguably one of the most promising commodity plastics, derived from 

renewable feedstock and industrially compostable, which has penetrated a highly unsustainable 

market of non-degradable polymers based around crude-oil feedstocks.1–3 The production of PLA 

was close to 220 000 tonnes in 2017 and is predicted to increase by 50% by 2022.4 Much research 

has been directed towards improving the thermal properties of PLA, in particular through the 

development of stereoselective ring-opening polymerization (ROP) catalysts for lactide.5 In 

parallel, increasing efforts have focused on improving the biodegradability of PLA and its 

composites in natural and landfill environments.6–8 Notable strategies have included the 

development of PLA-based polymer blends,9–14 as well as copolymerization methods to 

incorporate more degradable linkages into the PLA polyester backbone.15,16  

In that regard, phosphorus(V) based monomers, such as phosphoesters {P(=O)(OR)2OR’}, 

phostones or phosphonates {P(=O)(OR)2R’} are of interest due to their low toxicity and facile 

hydrolysis. Furthermore, whilst they have been polymerized via step-growth esterification and 
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acyclic diene metathesis,17,18 cyclic phosphoesters, phostones and phosphonates are also amenable 

to ROP,19,20 which allows copolymerization with lactide. 

Penczek and coworkers first investigated polyphosphoesters (–[P(=O)(OR’)ORO]n–) in 1976, 

as precursors for polyelectrolytes.21 Since then, these polymers and related polyphosphates have 

been widely studied for biomedical applications and as flame retardants.20,22–24 Catalytic ROP of 

five-membered cyclic phosphoesters has been demonstrated to produce well-defined 

polyphosphoesters,25,26 with recent catalyst development (e.g. the combination of thioureas (TUs) 

and 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU))27–30 overcoming the broad molecular weight 

distributions from initial studies.31–36 Block copolymers of cyclic phosphoesters and lactide 

synthesized via sequential addition have been studied and applied for tissue engineering and drug 

delivery, 37–40 these systems showing high rates of enzymatic degradation under physiological 

conditions.37 

Polyphosphonates (–[P(=O)R’ORO]n–) are another class of phosphorus(V) based polymers 

which differ from polyphosphates in their alkyl side arm (R’), which alters polymerization kinetics 

and degradation rates compared to phosphates analogs.41–43 Wurm and coworkers have thus 

recently synthesized copolymers of phosphonates (PPn) with hydrophilic and hydrophobic 

segments, which have both lower and upper critical solution temperatures, yielding a route to self-

assembled and degradable polymersomes.44 Compared to polyphosphates, polyphosphonates are 

less susceptible to transesterification, so that simple ROP initiating systems such as DBU/alcohol 

can be used in a controlled manner with cyclic phosphonates. A few metal catalytic systems have 

also been reported, with comparable control and faster rates than organocatalysts.36,45 As 

polyphosphonates give fast access to hydrophilic and low-Tg polymers with a low tendency 

towards transesterification, copolymerization with lactide would be a straightforward way to 
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amphiphilic PLA-derivatives with adjustable thermal properties. The variety of catalytic strategies 

that have been developed for lactide ROP could further enable the control of the comonomers 

reactivity and the production of polyesters with defined sequence and enhanced, tailored 

degradability. However, to date copolymers of cyclic phosphonates and lactide have not been 

investigated. 

Herein, we have explored the formation of copolymers of rac-LA and L-LA with 2-ethyl-2-oxo-

1,3,2-dioxaphospholane (EtPPn) using a pyrrolidine salan Al complex or DBU (see Figure 1). We 

have investigated the influence of the catalyst on the copolymerization kinetics and copolymer 

microstructure. We also report how a temperature switch can be exploited in combination with the 

Al system to control comonomer reactivity and prepare, in one pot, PLA-EtPPn block copolymers. 

We have investigated how the different initiators and polymerization conditions affect the thermal 

properties (in particular the Tg) of the resulting copolymer. 

 

Figure 1. Initiators for the ROP of EtPPn. 

RESULTS AND DISCUSSION 

Homopolymerization of EtPPn. To date EtPPn has only been polymerized with a few catalytic 

systems (Figure 1 and Table 1, entries 7-8). We first tested its polymerization with Al pyrrolidine 

complex 1 in the presence of benzyl alcohol (BnOH) as co-initiator, a system that we have recently 
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reported for the ROP of lactide.46 Initiator 1 was active at both 25 °C and 80 °C for the ROP of 

EtPPn. Under solvent free conditions, at 25 °C and a [EtPPn]0:[1]0:[BnOH]0 feed ratio of 50:1:1 

([1]0 = 0.86 mol L–1), 90% monomer conversion was observed within 5 minutes, with excellent 

control of the molecular weight (Table 1, entry 1). Reactions under dilute conditions ([EtPPn]0 = 

0.35 mol L–1), in either CH2Cl2 or toluene, maintained good conversion (89-96%), albeit after 

longer reaction times (Table 1, entries 2-3). Furthermore, increasing initial monomer concentration 

from 0.35 to 0.7 mol L–1 increased conversion (Table 1, Entry 3-6). 

Table 1. Ring-Opening Polymerization of EtPPna 

 

Entry I T (°C) Solvent  
Time 

(h) 

[EtPPn] 

(mol L1) 

Conv 

(%)c 

Mn
theo  

(kg mol1)d 

Mn
SEC (kg mol1) 

[Ð]e 

1 1 25 N/A 0.08 Bulk 90 6.2 4.3 [1.11] 

2 1 25 DCM 3 0.35 96 6.6 5.3 [1.14] 

3 1 25 Tol 24 0.35 89 6.2 4.9 [1.32] 

4 1 80 Tol 4 0.35 55 3.8 3.1 [1.20] 

5 1 25 Tol 24 0.7 99 6.8 4.8 [1.38] 

6 1 80 Tol 4 0.7 90 6.2 5.3 [1.21] 

7 241 25 DCM 16 4 90 6.2 5.4 [1.07] 

8b 3 –20 THF 1 2 89 12.2 14.2 [1.46] 

a I: Initiator, [EtPPn]0:[I]0:[BnOH]0 = 50:1:1; b [EtPPn]0:[3]0 = 100:1, 3 = 

[(BHT)Mg(OBn)(THF)]2;
36 c Conversion calculated from 1H NMR by relative integration of the 

CH2 signals in the polymer (1.74 – 1.85 ppm) and in the monomer (1.93 – 2.03 ppm); d 

[((Conversion [M]/100 × [M]0:[I]0) × 136.03) + 108];  e Determined by SEC in DMF at 60 °C. 
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Sequential polymerization of EtPPn and lactide. Copolymerization of L-lactide (L-LA) and 

EtPPn was next investigated using 1 in toluene with a total monomer concentration of 0.7 mol L–

1. Initially, sequential addition of monomers was investigated to produce block copolymer. 

Complete conversion of L-LA (96%) with 1 was found to require 24 hours at 80 °C (for [LA]0 = 

0.35 mol L–1 and [LA]0:[I]0:[BnOH]0 = 50:1:1). Cooling down the active solution to 25 °C 

followed by addition of 50 equivalents of EtPPn (0.35 mol L–1) yielded high conversions of EtPPn 

after one hour (88%). Conversions of both monomers were determined by relative integration of 

polymer signals in the 1H NMR spectra of the crude reaction mixture (following quenching). 

Relative integration of the 31P NMR spectra further confirmed EtPPn conversions. 

1H and 31P DOSY NMR experiments indicated only one diffusing polymer species (Figures S8 

and S16), supporting the formation of a copolymer. Size-exclusion chromatography (SEC) also 

revealed a unimodal trace, with molecular weights in good agreement with expected values (Mn
theo 

= 13.0 kg mol1, Mn
SEC = 10.5 kg mol1). Insight into the poly(phosphonate-b-lactide) chain 

microstructure was determined via 31P NMR spectroscopy, which revealed two phosphorus 

environments. Based on previous experiments, the main broad signal between 34.3 and 35.2 ppm 

was attributed to a polyphosphonate sequence.47 A much smaller signal (~2% relative intensity) 

was also apparent between 35.2 and 36.0 ppm, evidence of the enchainment between a lactide and 

a phosphonate unit. This was later confirmed by the analysis of more random poly(phosphonate-

co-lactide) copolymers (vide infra).  

Triblock poly(phosphonate-b-lactide-b-phosphonate) copolymers could be synthesized in a 

similar way by using a bifunctional initiator, 1,4-benzenedimethanol, at feed ratios of 100:100:2:1 

([EtPPn]0:[LA]0:[1]0:[C6H4(CH2OH)2]0). In this case, a more intense resonance corresponding to 
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lactide-phosphonate enchainment was observed in the 31P NMR spectrum, as expected from a 

monomer switch on both sides of the centrally growing polymer (Figure S12).  

 

Figure 2. Stacked 31P NMR spectra for copolymers of LA-EtPPn. Triad sequences shown 

identified as PPL, PPP, and LPL (left to right). 

One-pot copolymerization of EtPPn and lactide. Copolymerization was then performed in 

one pot, from a monomer mixture of rac-LA and EtPPn ([rac-LA]0 = [EtPPn]0 = 0.7 mol L1), in 

toluene at 80 °C. Using 1, complete conversion of EtPPn and high conversion of LA were achieved 

after 16 h (Table 2, entry 1). The formation of a true copolymer was confirmed by DOSY and 

unimodal SEC traces (Đ < 1.27). It was possible to vary the percentage of EtPPn incorporated into 

the copolymer (Table 2, Entry 1-4) with a good fit to that of the initial feeds. Molecular weights 

obtained via SEC (most copolymers were soluble in THF) and 1H NMR showed good agreement 

with expected values (calculated based on monomers conversions). The copolymer microstructure 



 8 

was further probed via 31P NMR spectroscopy, which revealed three phosphorus environments, 

consistent with the three possible sequence triads involving a central phosphonate linkage: P-P-L 

(or L-P-P), P-P-P and L-P-L (Figure 2). Based on the polyphosphonate and poly(lactide-b-

phosphonate) polymers prepared previously, the P-P-P and P-P-L triads were identified as the 

signals at 34.3-35.2 and 35.2-36.0 ppm, respectively. The additional resonance between 33.0 and 

34.3 ppm was therefore assigned to L-P-L triad. The 31P NMR for the polymer obtained from 

Table 2 entry 1 indicated the P-P-P triad was the dominant resonance, albeit with significant P-P-

L and L-P-L signals, indicative of a copolymer of a blocky nature. By increasing the LA:EtPPn 

ratio, the amount of lactide containing triads increased compared to the P-P-P triad, yet without 

removing it completely, supporting further the blocky nature of the phosphonate linkages in the 

synthesized copolymers (Table 2 entry 4). 

Table 2. Copolymerization of EtPPn with LA to produce copolymers with adjustable 

microstructure 

 

Entry I 

Feed ratio 

[LA]:[EtPPn]

:[I]:[BnOH] 

Conv. of 

LA/EtPPn 

(%)f 

EtPPn 

content 

in 

polymer 

(%)g 

Mn
SEC  

(kg 

mol1) 

[Ð]h 

Mn
NMR 

(kg 

mol1)j 

Mn
theo 

(kg 

mol1)
k 

Tg 

(°C) 

P triads 

ratios 

PPL:PPP

:LPL 

1a 1 50:50:1:1 75/100 57 
15.6 

[1.06] 
13.3 12.3 –9.7 22:51:27 

2a 1 100:50:1:1 77/98 39 
12.5 

[1.02] 
8.6 18.0 –3.1 28:59:13 

3a 1 100:20.1:1 83/100 19 
16.2 

[1.27] 
16.6 14.8 19.6 28:45:27 
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4a 1 100:10.1:1 95/100 10 
12.9 

[1.23] 
11.7 15.2 27.4 44:15:41 

5b 1 50:50.1:1 73/100 58 
21.0 

[1.12] 
9.5 12.2 18.7 21:62:17 

6b 1 100:50:1:1 75/100 40 
20.6 

[1.06] 
20.1 17.6 23.3 29:38:33 

7c 1 50:50:1:1 30/96 76  
6.1 

[1.31]i 
7.7 8.8 –35.8 8:87:5 

8b 2 50:50:1:1 85/67 45 
4.3 

[1.10] 
8.6 10.5 2.9 30:45:25 

9d 2 50:50:1:1 81/46 35 
4.8 

[1.18] 
8.6 9.4 7.9 32:35:34 

10e 2 50:50:1:1 91/18 17 
3.2 

[1.10] 
7.2 7.9 18.1 40:14:46 

a [rac-LA]0 = 0.7 mol L1, [EtPPn]0 varies; b [L-LA]0 = 0.7 mol L1, [EtPPn]0 varies; c [L-LA]0 = 

[EtPPn]0 = 0.35 mol L1, at 25 °C for 120h; d [L-LA]0 = [EtPPn]0 = 0.35 mol L1; e [L-LA]0 = 

[EtPPn]0 = 0.35 mol L1, in CH2Cl2 at 25 °C for 16h; f Conversions calculated from 1H NMR by 

relative integration of the side chain CH2 signals corresponding to EtPPn and poly(EtPPN), and of 

the methine region of LA and PLA; g Calculated from the ratio of polymer units in the crude 

product; h Determined by SEC, carried out in THF at 35 °C; i Determined by SEC, carried out in 

DMF at 60 °C; j Calculated from the integration of polymer signals against the BnO- end group; k 

Calculated from conversion of each monomer (M) multiplied by [M]0/[I]0. 

To gain further insight, copolymerization kinetics were monitored in situ in toluene-d8 at 80 °C, 

and the microstructure of the copolymer evaluated as a function of time, using 1H and 31P NMR 

spectroscopy (Figure 3a). In these experiments, temperature equilibration, lactide dissolution in 

toluene, and data acquisition delay means that the first 10 minutes of the reaction cannot be reliably 

quantified. However, within this period, 70% of EtPPn and 17% of lactide has polymerized, so 

that a copolymer with a high proportion of P-P-P linkages (66%) is already present at the start of 

the monitoring. Next, EtPPn continues to be incorporated preferentially into the copolymer: the 

conversion of individual monomers can be successfully modelled using a pseudo first order 

kinetics approach,46 but EtPPn reacts twice as fast compared to L-LA (kobs(EtPPn)= 9.0 × 10–3 min–1 
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and kobs(LA)= 4.4 × 10–3 min–1 (Figure S40)). As the conversion of EtPPn plateaus, at 88%, and 

[EtPPn] decreases, the proportion of PLA linkages in the copolymer increases and lactide 

polymerization becomes dominant. This results in a gradient copolymer with poly(EtPPn) as the 

first block, followed by a tapered segment of LA and EtPPn, and finally a PLA homopolymer 

block. 

 

Figure 3. NMR monitored copolymerization of EtPPn and L-LA in toluene-d8, [L-LA]0 = [EtPPn]0 

= 0.35 mol L–1, [L-LA]0:[EtPPn]0:[1]0:[BnOH]0 = 50:50:1:1, 80 °C, 16h: a) conversion and 

microstructure composition calculated from 31P NMR vs. time; b) calculation of EtPPn and L-LA 

reactivity ratios using Meyer-Lowry fits. 

DBU (2) was also trialed for the one-pot copolymerization of EtPPn and L-LA. Compared to 

when using 1, a stark difference was observed in the reactivity of the comonomers and in the 

microstructure of the resulting copolymers, with lower EtPPn incorporation and more random 

phosphorus-containing linkages obtained (Table 2 entries 8–10). Under the conditions used 

previously, initial rate kinetic analysis showed a much faster propagation rate for L-LA (kobs= 6.5 

× 10–3 min–1) than for EtPPn (kobs= 6.3 × 10–4 min–1) (Figure 4a and Figure S30). With low EtPPn 

conversion (around 25% after 14h) is it likely that this system feature a dispersion of EtPPn 

throughout the PLLA chain, with an increase in tapering as [EtPPn] exceeds [L-LA]. This yields 
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a polymer with thermal properties closer to that of PLLA with a glass transition temperature Tg = 

18.1 °C, whilst distributing the more biodegradable units throughout. 

 

Figure 4. NMR monitored copolymerization of EtPPn and L-LA in toluene-d8, [L-LA]0 = [EtPPn]0 

= 0.35 mol L–1, [L-LA]0:[EtPPn]0:[2]0:[BnOH]0 = 50:50:1:1, 80 °C, 16h: a) conversion and 

microstructure composition calculated from 31P NMR vs. time; b) calculation of EtPPn and L-LA 

reactivity ratios using Meyer-Lowry fits. 

The reactivity ratios of each monomer (EtPPn = r1, L-LA = r2) was calculated from kinetic data 

and supports the formation of tapered block copolymers with both 1 and 2 (r1 >> 1 >> r2 and r1 << 

1 << r2, respectively). Using 1, the high speed of reaction limited the recording of data at low 

monomer conversions, so that a data fit was applied to the experimental results (Figure S46 and 

S47). From Meyor-Lowry methodologies, values of r1 = 18.41 and r2 = 0.83 are obtained for 1, 

while reverse reactivity is seen when 2 is the initiator (r1 =0.19, r2 = 19.74) (Figures 3b and 4b).48 

Meyer-Lowry log, Jaacks and Direct Numerical Integration methods agree with these trends, albeit 

some variations on r values are observed (Figure S50-S57, Table S4 and S5).48–51 This analysis 

further confirms that initiator choice has a profound impact on the microstructure of the copolymer. 
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Temperature sequence for the preparation of block copolymers from a mixture of EtPPn 

and lactide. The gradient strength of one-pot copolymers was further increased by a sequential 

temperature protocol. As LA is poorly soluble but EtPPn undergoes rapid ROP in toluene at room 

temperature, the selectivity for EtPPn should be increased under such copolymerization conditions. 

A temperature sequence was therefore applied to a copolymerization experiment in toluene-d8 

([EtPPn]0:[L-LA]0:[BnOH]0:[1]0 = 50:50:1:1): 2 hours at 25 °C, then 16 hours at 80 °C. The 

reaction was monitored in-situ by 1H and 31P NMR spectroscopy. During the first phase of this 

protocol, 66% of EtPPn and less than 5% of L-LA conversion reacted, yielding a polymer with 

almost exclusively (>99%) P-P-P linkages, i.e. an almost pure polyphosphonate first block (Figure 

5). When the temperature was increased to 80 °C, simultaneous conversion of both monomers was 

seen, with all possible linkages observed, indicative of statistical copolymerization. As in previous 

examples, once the conversion of EtPPn reached a plateau, polymerization of L-LA occurred with 

the formation of a pure PLLA block, without further incorporation or EtPPn. 

 

Figure 5. NMR monitored copolymerization of EtPPn and L-LA in toluene-d8 ([L-LA]0 = 

[EtPPn]0 = 0.35 mol L–1, [L-LA]0:[EtPPn]0:[1]0:[BnOH]0 = 50:50:1:1), using the temperature 

sequence: 1) 25 °C, 2h, 2) 80 °C, 14h. Final copolymer:  P triad composition P-P-L:P-P-P:L-P-L 

= 12:73:15; Mn
SEC = 11750 g mol1, Ð = 1.09.  
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Increasing the time of the initial 25 °C phase did not increase the conversion of EtPPn or L-LA, 

whether the reaction was monitored in-situ or via sampling from a stirred solution (Figures S43 

and S44).  

Whilst pure blocks are not accessible yet with this methodology, a significant reduction in the 

statistical enchainment of monomers (P triads ratios P-P-L:P-P-P:L-P-L = 12:73:15 in comparison 

to 21:61:17 (Table 2 entry 5)) shows the potential of temperature sequencing to exacerbate 

differences in reactivity ratios and lead to clean block poly(phosphonate-co-lactide) copolymers 

in one-pot. Through the same temperature sequencing, but at higher monomer concentrations of 

3.4 mol L–1, a further reduction in tapering was achieved (P triads ratios P-P-L:P-P-P:L-P-L = 

9:84:7), whilst also granting a significant increase in polymerization rate (Entry 10, Table S3). 

Thermal analysis. DSC analysis of poly(phosphonate-co-lactide) copolymers synthesized with 

1 showed a negative correlation between the molar fraction of EtPPn incorporated and the glass 

transition temperature. The Al initiator thus give access to copolymers with a range of glass 

transitions between that of the homopolymers (Figure 6). This behavior is expected for random 

copolymer systems as expressed in the Fox equation.52 A similar trend has been observed with the 

copolymerization of cyHexPPn and iPrPPn.43 Copolymers produced by temperature sequencing 

also yielded copolymers with only one transition (Figures S61 and S62). Only copolymers from 

sequential addition exhibited two distinct thermal transitions at 63.9 and –48.0 °C, indicating that 

monomer misinsertion is then low enough to form polymer blocks capable of phase separation. 
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.  

Figure 6. Tg of poly(phosphonate-co-lactide) tapered block copolymers depending on EtPPn 

content (type of lactide unit: ● rac-LA, ● L-LA). 

Thermal gravimetric analysis (TGA) showed poly(phosphonate-co-lactide) copolymers to 

degrade within a wide temperature range (130–350 °C), with degradation profiles eluding to their 

microstructure (Figures 6 and S61–68). Tapered block copolymers thus showed only one 

degradation step, closer to that of pure P(EtPPn) or PLA, depending on the use of initiator 1 or 2 

respectively. Block polymers synthesized from sequential addition displayed two distinct 

degradation steps, with derivative maxima at 227 °C and 336 °C, indicative of P(EtPPn) and PLLA 

blocks respectively, with an initial onset at 138 °C (Figure S65). Triblock poly(phosphonate-b-

lactide-b-phosphonate) copolymer showed similar features but proved more stable, with 

degradation derivative maxima at 269°C (corresponding to 63% mass loss) and 352°C (further 

37% mass loss) (Figure S68). This is likely a result of the greater degree of polymerization in this 

system. For block copolymers, peak deconvolution also yielded an associated % mass loss for each 

degradation step (e.g. 63 and 37 % mass loss in the case of the triblock), which could be linked to 

the content of each monomer in the copolymer (60% of EtPPn units and 39% of L-LA units). This 
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aligned well with polymer ratios (EtPPn:L-LA = 58:42) calculated through NMR spectroscopic 

analysis of the purified sample, providing an additional method for the analysis of block 

copolymers. 

  

Figure 7. TGA analysis of poly(phosphonate-co-lactide) copolymers of various microstructure. 

Tapered P(EtPPn-co-LLA) (1) was made using 1, tapered P(LLA-co-EtPPn) (2) was made using 

2, see details in ESI (Figures S61-68). 

Conclusion 

Copolymers of a cyclic phosphonate (2-ethyl-2-oxo-1,3,2-dioxaphospholane) and lactide have 

been prepared for the first time. We were able to control the microstructure of the copolymer 

(determined by 1H and 31P NMR spectroscopy), via judicious choice of initiator (Al complex (1) 

or DBU (2), in combination with benzyl alcohol), and via the polymerization conditions 

(sequential addition or one-pot copolymerization, concentration, temperature). Block copolymers 

were obtained by sequential monomer addition and tapered block copolymers were obtained by 

one-pot copolymerization. Interestingly, the choice of the catalyst inverted the reactivity ratios of 

the comonomers. The degree of tapering could also be reduced using a temperature sequence 
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protocol, providing a route to one-pot block copolymer synthesis and an additional handle to tune 

the properties of the resulting poly(phosphonate-co-esters). Such amphiphilic copolymers with 

adjustable thermal properties are interesting candidates for future applications in drug delivery or 

materials science, including because they are likely to also exhibit tunable degradation patterns. 

Future work will focus on investigating the hydrolytic degradation profiles of the copolymers.  
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