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We introduce an integral model of a two-dimensional neural field that includes a third dimension
representing space along a dendritic tree that can incorporate realistic patterns of axo-dendritic
connectivity. For natural choices of this connectivity we show how to construct an equivalent brain-
wave partial differential equation that allows for efficient numerical simulation of the model. This
is used to highlight the effects that passive dendritic properties can have on the speed and shape of
large scale traveling cortical waves.
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I. INTRODUCTION

Ever since Hans Berger made the first recording of the
human electroencephalogram (EEG) in 1924 there has
been a tremendous interest in understanding the physio-
logical basis of brain rhythms [1]. This has included the
development of so-called neural field models, recently re-
viewed in [2], for the forward generation of EEG signals
as well as the use of techniques from spatio-temporal pat-
tern formation [3], and nonequilibrium phase transitions
[4] for their analysis. These neural field models are often
formulated in terms of delayed integro-differential equa-
tions posed on appropriate surfaces, including lines [5],
planes [6], and folded cortical structures [7].

At heart modern biophysical theories assert that EEG
signals from a single scalp electrode arise from the coor-
dinated activity of ∼ 108 pyramidal cells in cortex [8].
These are arranged with their dendrites roughly in par-
allel and perpendicular to the cortical surface. Synaptic
activation at the dendrites creates a net ionic membrane
current representing a sink (source) for excitatory (in-
hibitory) synapses with a negative (positive) extracellular
potential. Because there is no long-term accumulation of
charge in the tissue, this synaptic current flowing inside
the cell escapes across the membrane again as a return
current, in particular in places with large surface area
like the soma. This creates a distributed extracellular
source in the case of a synaptic sink and vice-versa for a
synapse that acts as a source. Due to the elongated mor-
phology of pyramidal neurons, the separation of sink and
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source typically leads to the effective formation of a cur-
rent dipole. Hence, at the population level the potential
field generated by a synchronously activated population
of cortical pyramidal cells behaves like that of a current
dipole layer. Although the important contribution that
single dendritic trees make to generating extracellular
electric field potentials has been realized for some time,
and can be calculated using Maxwell’s equations [9], they
are typically not accounted for in neural field models. For
example in the Nunez model [10] for the generation of
the α-rhythm neuronal cell types are arranged in sheets,
with no representation of dendritic processing. A recent
study of standing and traveling waves in the Nunez model
posed on a sphere can be found in [11]. Interestingly the
Nunez model has a representation of space-dependent de-
lays arising from the finite speed of action potential prop-
agation along axons, and for certain patterns of decaying
strength of non-local connectivity it can be formulated as
a damped inhomogeneous wave equation [12]. This brain-
wave equation, and variants thereof, has played a major
role in the interpretation of EEG signals since the 1970s
[13–17]. Moreover, the local nature of such models means
that they are amenable to analysis with standard numer-
ical techniques for partial differential equations (PDEs),
circumventing the challenges of evolving delayed integro-
differential models [12, 18].

With the advent of laminar electrodes to record from
different layers of cortex [19] it is now timely to build
on the original work of Bressloff, reviewed in [20], and
develop neural field models that incorporate a notion
of dendritic depth. Moreover, given the benefits of the
brain-wave equation it is sensible to look for generaliza-
tions that can incorporate both axons and dendrites, as
well as the patterns of connectivity between them. This
is the topic that we address in this paper. We show
how to develop the cable modeling approach of Rall [21]
to describe a firing rate cortical tissue model with axo-
dendritic patterns of synaptic connectivity, allowing for a
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mixture of excitatory and inhibitory synapses across the
model of the dendritic tree. In doing so we obtain a nat-
ural extension of two-dimensional neural field models to
include a third dimension representing position along a
dendritic cable. The firing rate in the somatic (cell body)
layer is taken to be a smooth sigmoidal function of the
cable voltage at the soma, which is in turn determined
by the spatio-temporal pattern of synaptic currents on
the cable.

In §II we describe the formulation of the model in terms
of a generalized neural field, prescribed by a given pat-
tern of axo-dendritic connectivity. This tissue model is
a continuum description of cell bodies arranged in a sur-
face with each point fibrated by a simple one-dimensional
model of a dendritic tree. The dynamics of the cell bodies
is described with a delayed integro-differential equation.
In turn this is used to drive activity in the dendrite along
connected structural axonal pathways. The dynamics of
the dendritic tree is considered to be passive and is mod-
eled using the PDE approach of cable theory. Next, in
§III, we exploit the fact that the strength of connections
in large scale cortical structures is known to fall off expo-
nentially with distance to reformulate the model as a set
of coupled PDEs. These generalize the traditional brain-
wave equation to include a notion of dendritic depth.
Numerical simulations of this local PDE formulation are
presented in §IV, with our numerical scheme validated
against an exact traveling front solution that can be con-
structed in the limit of a steep sigmoidal firing rate.
These simulations are used to highlight the effect that
known correlations between the distance of connection
along the dendrite and separation between cell bodies
can have on the speed and shape of traveling waves. Fi-
nally in §V we discuss natural extensions of the work in
this paper.

II. THE MODEL

We take as our model dendrite the standard one di-
mensional unbranched uniform cable equation, and dis-
tinguish between pyramidal cells and interneurons by in-
troducing the labels P (for pyramidal) and I (for in-
terneuron). The voltage Va(x, r, t) at position x ∈ R
along an infinite passive cable of neuron type a ∈ {P, I}
with somatic coordinate r ∈ R2 can then be written:

∂Va
∂t

= −Va
τa

+Da
∂2Va
∂x2

+ Ia(x, r, t). (1)

Here, τa is recognized as the membrane time-constant of
the dendrite, and Da as the cable diffusion coefficient.
The electrotonic length

√
Daτa of a dendrite is typically

in the range 0.1−1mm. Here, Ia(x, r, t) is the synaptic in-
put, which we shall split into an excitatory and inhibitory
part:

Ia = gaP (V+ − Va) + gaI(V− − Va), (2)

where V+ = V+(x) and V− = V−(x) are positive and neg-
ative synaptic reversal potentials respectively that can
vary across the dendritic cable. The conductance changes
gab evolve according to a slightly modified neural field
prescription as [2, 22]

gab(x, r, t) =

∫ t

−∞
dsηab(t− s)×∫

R2

dr′Wab(x, r, r
′)fb(hb(r

′, s− |r− r′|/vab)). (3)

Here ηab(t) is an α-function synaptic filter

ηab(t) = α2
abte

−αabtH(t), (4)

where H is the Heaviside step function. The time-to-
peak for the α-function ηab(t) is α−1ab , and the parameter
αab can be used to control the speed of the synapse. A
fast synapse would have a typical time-to-peak of around
1ms, whilst a slow synapse would have a time-scale of
around 100ms. The function Wab(x, r, r

′) describes the
axo-dendritic connectivity pattern between populations
a and b, whilst vab is the velocity of the action potential
propagated from population b to a. This speed can range
from around 0.5m/s in unmyelinated axons to 150m/s
in myelinated axons (in the peripheral nervous system),
and typical values for cortico-cortical axonal speeds in
humans are distributed, and appear to peak in the 5−10
m/s range [23] though speeds in callosal fibres can range
from 7−19 m/s [18]. The field ha is taken as a measure of
the somatic activity in population a, whilst fa describes
the firing rate of population a. This latter function is
often chosen to have a simple sigmoidal form, and we
shall work with the choice fa(h) = [1 + exp(−βa(h −
θa))]−1, where βa > 0 controls the steepness of fa, and θa
is a threshold. As a model of ha we shall take the somatic
potential, namely the voltage on the cable at the point
where the cell body lies. We fix this to be the coordinate
where x = 0 so that ha(r, t) = Va(0, r, t). A schematic of
the neural field model incorporating dendrites is shown
in Fig. 1 .

Assuming vanishing initial data, we may write the so-
lution to (1) in the form

Va(x, r, t) = (Ga ⊗ Ia)(x, r, t), (5)

where Ga(x, t) is the Green’s function

Ga(x, t) =
1√

4πDat
e−x

2/(4Dat)e−t/τaH(t), (6)

and the operator ⊗ denotes spatio-temporal convolution
over the (x, t) coordinates. Unfortunately equation (5)
does not provide an explicit formula for Va (and hence
ha) since Ia itself depends on Va. However, by repeated
substitution and truncating terms at second order in the
conductances we have that

ha(r, t) = (Ga ⊗ [gaPV+ + gaIV−])(0, r, t) (7)

− (Ga ⊗ {[gaP + gaI ]Ga ⊗ [gaPV+ + gaIV−]}) (0, r, t),
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FIG. 1: A schematic of the neural field model
incorporating dendrites. Here the dendrites are shown
with realistic structure, though for simplicity we only
consider idealized unbranched dendrites in the model
formulation. The black filled circles indicate the
position of the cell body or soma.

which shows that the dendrite acts to mix conductance
changes (if input currents are shunted). The formula
for ha in equation (7) is in fact the first two terms in
a Neumann series expansion and see [20] for a further
discussion of this in the context of dendritic modeling.

To model cortical anatomy in a biologically plausi-
ble fashion we choose the distribution Wab(x, r, r

′) =
Wab(x, |r− r′|) with

Wab(x, r) = W 0
abwab(r)δ(x− dab − κabr), (8)

where r = |r|, dab, κab ∈ R and W 0
ab > 0, which incorpo-

rates the fact that synapses are located further away from
the soma as the separation between neurons increases
[24]. For κab = 0 there is no correlation between somatic
and dendritic coordinates and synapses occur at a fixed
distance dab from the soma. To complete the description
of the neural tissue model we need only specify the form
of the anatomical connectivity function wab(r) that de-
scribes how the strength of the interactions changes with
separation between cell bodies. Most long-range synap-
tic interactions are excitatory, with excitatory pyramidal
cells sending their myelinated axons to other parts of
the cortex. Inhibitory interactions, on the other hand,
tend to be much more short-ranged. For excitatory con-
nections between cortical areas in macaque monkeys the
weight of connection between two areas decays approxi-
mately exponentially with their wiring distance, with a
characteristic distance of ∼ 11mm [25], and for a nice

overview of brain structure and dynamics across scales
we recommend the article by Wang and Kennedy [26].
Hence, it is natural to choose an exponential form:

wab(r) =
1

2πσ2
ab

exp(−r/σab), (9)

with σaP > σaI to respect the fact that in neocortex the
extent of excitatory connections waP is broader than that
of inhibitory connections waI .

III. GENERALIZED BRAIN-WAVE EQUATION

To numerically analyze the nonlinear integro-
differential equation model with space-dependent delays
given in §II, it is convenient to consider the development
of a PDE model where evolution is expressed in terms
of differential, rather than integral, operators. This is a
common approach in analyzing neural field models that
lack dendrites [27] because such models are numerically
easier to simulate than non-local integral equations.
This re-formulation in terms of a PDE essentially relies
on the specific choice of the kernel (9) having certain
properties, and the main one being that its Fourier
transform can be well approximated by a rational
function.

We make use of the fact that an α-function is the
Green’s function of a linear differential operator to write
Qabηab = δ(t), where Qab = (1 +α−1ab ∂/∂t)

2. Hence from
(3) we obtain a PDE for gab as

Qabgab = ψab, (10)

with gab(x, r, 0) = 0, ∂gab/∂t|t=0 = 0 and

ψab(x, r, t) =

∫ ∞
−∞

ds

∫
R2

dr′Ωab(x, |r− r′|, t− s)

×fb(hb(r′, s)), (11)

where Ωab(x, r, t) = Wab(x, r)δ(t − r/vab). Introducing
a Fourier transform over the dendritic spatial coordinate
allows us to represent a function φ(x, r, t) in the form

φ(x, r, t) =

∫ ∞
−∞

dp

2π
eipxφ̂(p, r, t). (12)

Using (8) we find that

ψ̂ab(p, r, t) =

∫ ∞
−∞

ds

∫
R2

dr′Hab(p, |r− r′|, t− s)

×fb ◦ hb(r′, s), (13)

with

Hab(p, r, t) = W 0
abe
−ip[dab+κabr]wab(r)δ(t− r/vab). (14)

Taking further Fourier transforms with respect to (r, t)
and introducing spectral parameters (k, ω) we exploit the
convolution structure of (13) to obtain

ψ̂ab(p, k, ω) = Ĥab(p, k, ω)ρ̂b(k, ω), (15)
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where ρb = fb ◦hb and the Fourier transform of Hab may
be evaluated as

Ĥab(p, k, ω) =
W 0
ab

σ2
ab

Aab(p, ω)

(A2
ab(p, ω) + k2)3/2

e−ipdab , (16)

and Aab(p, ω) = 1/σab + iω/vab + ipκab. After cross
multiplying and using the long-wavelength approxima-

tion (namely expanding Ĥab(p, k, ω) around k = 0) and
taking the inverse Fourier transform we obtain a PDE in
3 spatial dimensions (two for the somatic sheet and one
for the dendritic cable):[

A2
ab −

3

2
∇2

]
ψab(x, r, t) =

W 0
ab

σ2
ab

×

δ(x− dab)fb ◦ hb(r, t), (17)

where

Aab =
1

σab
+

1

vab

∂

∂t
+ κab

∂

∂x
. (18)

We interpret (17), coupled to (10) and (7), as the nat-
ural generalization of previous brain-wave equations of
Nunez type, such as those in [28–30], to include den-
dritic processing. To work without the small conduc-
tance assumption one should use the PDE (1), instead
of (7), with ha(r, t) = Va(0, r, t). A similar analysis can
be carried out for a model with a one-dimensional so-
matic space. Using z as the coordinate in the somatic
space and choosing an anatomical connectivity function
wab(z) = exp(−|z|/σab)/(2σab) we obtain, following the
same approach as above, the PDE in 2 spatial dimensions
(one for the somatic space and one for the dendritic ca-
ble): [

A2
ab −

∂2

∂z2

]
ψab(x, z, t) =

W 0
ab

σab
×[(

1

σab
+ κab

∂

∂x
+

1

vab

∂

∂t

)
δ(x− dab)

]
fb ◦ hb(z, t).

(19)

Unlike its higher dimensional counterpart this equation
is exact since the long-wavelength approximation is not
needed.

IV. NUMERICAL SIMULATIONS

To numerically evolve the new type of brain-wave
equation described in §III it is natural to consider a
finite-difference scheme to approximate spatial deriva-
tives using central difference operations for second order
derivatives, backward difference operations for first order
derivatives and time-stepping that can be performed us-
ing an adaptive solver. For the latter we use a routine
from the Julia package – DifferentialEquations.jl [31, 32].
The spatial domain is discretized into uniform rectan-
gles with size ∆x×∆z for the 2 dimensional model and

(a)

0.0 0.1 0.2 0.3 0.4 0.5

d

1

2

3

4

5

6

7

8

c

Theoretical Speed

Numerical Speed

(b)

0.02 0.04 0.06 0.08 0.10

θ

2.0

2.5

3.0

3.5

4.0

c

Theoretical Speed

Numerical Speed

FIG. 2: Front wave speed (m/s) comparison of theory
vs. numerical simulation for the model in 2 spatial
dimensions (one somatic and one dendritic) with a
Heaviside firing rate. Here the dendritic input current is
I(x, z, t) = g(x, z, t) and κ = 0 when (a) the input
position d changes, and (b) the threshold of the
Heaviside function θ changes. Parameters: W 0 = 1,
v = 8 (m/s), α = 1, ∆x = 0.01, with X± = ±1, (a)
θ = 0.001, and (b) d = 0.

cuboids with size ∆x×∆r1 ×∆r2 for the 3 dimensional
model. The Fourier transforms in the derivation of the
brain-wave equation rely on infinite spatial domains and
therefore we need to consider carefully the boundary con-
ditions employed in a practical setting. It is natural to
consider a periodic somatic domain with a large period,
using a ring for the model with a one-dimensional so-
matic space and a torus when the somatic space is two-
dimensional. The cable equation may be imposed on a
large finite domain with x ∈ [X−, X+], and it is nat-
ural to choose closed end boundary conditions (so that
the current is zero), that can be implemented as Neu-
mann boundaries at x = X±. The Dirac-delta function
in (19) can be approximated with a thin narrow Gaus-

sian δε(x) = exp(−x2/ε2)/
√
πε2 with a fixed value of

ε as the small dendritic spatial discretization size ∆x.
Further discussion of the numerical method is provided
in Appendix A.
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To validate our numerical approach it is useful to con-
sider a restriction of the model that allows for an exact
solution, so that theory and numerics can be easily com-
pared. One such reduction is to focus on the model in 2
dimensions given by (19), and treat only a single excita-
tory population with a Heaviside firing rate and with a
large spatially uniform synaptic reversal potential. This
latter restriction means that inputs are no longer state
dependent, and, after absorbing a factor of V+ within
gPP , that we may write IP = gPP . In this case, and
fixing κPP = 0, it is possible to construct a traveling
front solution whose speed cPP is given by the implicit
solution of

θP =
1

2
G̃ (dPP , λ) η̃ (λ) , λ =

cPP vPP
σPP (vPP − cPP )

. (20)

Here θP is the threshold in firing rate function fP (h) =
H(h− θP ), σPP is the spatial length scale for the expo-
nential decay of connection strength, vPP is the speed
of the action potential, and dPP is the contact distance
of the synapse on the dendrite (as measured from the

soma). The functions G̃(·, λ) and η̃(λ) are the Laplace
transforms t 7→ λ of GP and ηPP given respectively by
(6) and (4). These can be calculated explicitly as

G̃(dPP , λ) =
e−γ(λ)dPP

2DP γ(λ)
, γ2(λ) =

1/τP + λ

DP
, (21)

η̃(λ) =
α2
PP

(αPP + λ)2
. (22)

The derivation of (20) is given in Appendix B.
For the following numerical simulations we remove

physical units by measuring space in units of σPP (the
spatial scale for anatomical connectivity) and time in
units of τP (the membrane time-constant of the cable).
Thus we replace DP = D ·σ2

PP /τP , αPP = α/τP , dPP =
d·σPP and vPP = v·σPP /τP in our equations and re-scale
x→ x ·σPP , r → r ·σPP and t→ t · τP . This means also
derived variables like ∆x are to be considered as re-scaled
in the following, e.g., ∆x = 0.1 means 0.1 ·σPP . For con-
creteness we shall consider σPP = 10mm and τP = 10ms.
Conveniently, in this case σPP /τP = 1m/s and thus front
wave speed cPP = c ·σPP /τP has the same numeric value
in units of m/s as the unit-free c. In figure captions we
will show the physical units in brackets “(m/s)” as equiv-
alent for our specific choice. Unless otherwise stated, we
shall also fix the electrotonic distance

√
DP τP =

√
DσPP

to be 0.1σPP = 1mm, i.e., D = 0.01.
In Fig. 2 we show a plot of the theoretical wave front

speed, using (20), against direct numerical simulations
obtained using the numerical scheme described above.
The periodic somatic spatial domain is chosen sufficiently
large to allow for the full formation of fronts, whilst the
size of the dendritic domain is chosen in relation to its
electrotonic length such that |d − X±| >

√
D. There is

excellent agreement between theory and simulations un-
der parameter variation in both d (the dendritic contact

distance of the synapse from the soma) and θ (the thresh-
old in the Heaviside firing rate function). We take this as
validation of the proposed finite difference scheme, and
re-use the same numerical methodology to explore the
behaviour of the model in more general settings, with a
sigmoidal firing rate, finite synaptic reversal potential,
and non-zero correlation parameter κ.

In Fig. 3 we further consider the 2 dimensional model
(with a one-dimensional somatic space) using a sigmoidal
firing rate. Here we observe travelling waves in both the
conductance and voltage. Activity clearly spreads along
the somatic space and decays in the dendritic space (as
expected from the diffusive nature of the cable equation).
The effect of increasing κ on the speed of the front for

FIG. 3: Travelling wave in the model with 2 spatial
dimensions (one somatic and one dendritic) shown for
conductance (left) and voltage (right) with a shunted
current I(x, z, t) = (V+ − V (x, z, t))g(x, z, t) and a
sigmoidal firing rate. Parameters: V+ = 70mV, W 0 = 1,
κ = 0.1, v = 8 (m/s), α = 1, ∆x = 0.01, d = 0.02,
X± = ±0.8, β = 100, and θ = 0.15.

a Heaviside firing rate is quantified in Fig. 4. The re-
sults from these numerical experiments show that the
wave speed decreases with increasing κ (for all values of
d). In Fig. 5 the effects of changing the time-to-peak of
the synapse α−1 is shown. Here we see that the wave
front speed decreases as the synapse becomes slower. In
Fig. 6 we show that an increase in the excitatory synap-
tic reversal potential causes an increase in wave front
speed. When considering the variation of the correla-
tion strength κ we find that for κ = 0 the peak of the
wave response along the dendrite occurs at a distance d
from the soma, as expected. However, with an increase



6

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

κ

2.0

2.5

3.0

3.5

4.0

4.5

c

d = 0

d = 0.02

d = 0.04

d = 0.06

FIG. 4: Wave front speed (m/s) as the correlation
strength κ is increased for various values of the synaptic
contact parameter d with I(x, z, t) = g(x, z, t) and a
Heaviside firing rate function. Parameters: W 0 = 5,
v = 8 (m/s), α = 1, ∆x = 0.02, X± = ±1, and θ = 0.01.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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D = 1× 10−4

D = 9× 10−4
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FIG. 5: Wave front speed (m/s) with an increase in the
synaptic time-to-peak α−1 with I(x, z, t) = g(x, z, t), a
Heaviside firing rate, and three differing electrotonic
lengths. Parameters: W 0 = 3, κ = 0, v = 8 (m/s),
∆x = 0.01, d = 0.03, X± = ±0.5, and θ = 0.01.

in κ this peak response shifts slightly away from d to
a larger distance from the soma. We illustrate this ef-
fect in Fig. 7, where we also see an increase in the width
of the activity that spreads into the dendrite away from
the contact point at x = d. Finally, in Fig. 8 we con-
sider the 3 dimensional model (with a two-dimensional
somatic space) using a sigmoidal firing rate. Here we
show a traveling wave propagating from the centre of the
domain. Similarly as for the 2 dimensional model, see
Fig. 3, the activity clearly spreads through the somatic
layer, and decays along the dendrite at large distances
from the cell body.
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FIG. 6: Wave front speed (m/s) in a model with a
shunted current I(x, z, t) = (V+ − V (x, z, t))g(x, z, t) as
a function of the excitatory synaptic reversal potential
V+ (mV), with a sigmoidal firing rate. Parameters:
W 0 = 4, κ = 0.1, v = 8 (m/s), α = 1, ∆x = 0.01,
d = 0.04, X± = ±0.5, β = 100, and θ = 0.15.
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48
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41
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31

x

V

κ = 0

κ = 0.25

κ = 0.5

κ = 1

FIG. 7: Slices along the x dimension of a voltage front
where it can be seen that increasing κ causes the peak
response to shift away from d (marked as the red
vertical dotted line) and away from the soma.
Parameters: V+ = 70mV, W 0 = 4, v = 8 (m/s), α = 1,
∆x = 0.01, d = 0.02, X− = −2, X+ = 6, β = 100, and
θ = 0.1.
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FIG. 8: Travelling wave in the 3 dimensional model
(two somatic and one dendritic), with a sigmoidal firing
rate, shown for conductance (left) and voltage (right)
with I(x, z, t) = (V+ − V (x, z, t))g(x, z, t). Parameters:
V+ = 70mV, W 0 = 1, κ = 0.1, v = 8 (m/s), α = 1,
∆x = 0.01, d = 0.02, X± = ±0.5, β = 100, and
θ = 0.15.

V. DISCUSSION

In this paper we have introduced a generalization of
the Nunez brain-wave equation to account for passive
dendritic processing. This is potentially important for
the understanding of real EEG data given that this is
known to arise from the addition of dipole moments gen-
erated by sinks and sources on dendrites. The generalised
model bridges multiple scales, combining local models
of dendrites with global models of synaptic and firing
rate activity with both distributed (synaptic) and space-
dependent (axonal) delays, emphasising that dendritic
response (Green’s) functions can lead to another form of
distributed delay that shapes emerging spatio-temporal
network patterns. As well as being relevant to EEG the
finer detail of the local model (with a spatially extended
dendrite) makes it relevant to recorded potentials aris-
ing in electrocorticography (ECoG) and local field poten-

tial (LFP) recordings, with spatial resolution of 2−5mm
for ECoG and 0.1 − 1mm for LFP, contrasting with the
20− 30mm of (high resolution) EEG.

We have shown that the model is readily simulated us-
ing standard finite difference schemes for PDEs, and val-
idated one proposed scheme against an exact traveling
front solution. We have performed parameter studies for
the effects of system parameters on the speed of travel-
ing fronts, and shown that correlations between somatic
and dendritic coordinates in axo-dendritic connectivity
patterns can strongly affect the speed of a wave. With
an increase in the correlation parameter κ we see a slow
down in the speed of the wave and the peak response
shifts further away from the soma.

For deployment in a neuroscience setting it is interest-
ing to consider further work to optimize parameters of
the model to fit real data. In this regard it is natural
to extend previous work of Bojak and Liley, using Parti-
cle Swarm Optimization, to generate EEG power spectra
densities (PSDs) similar in shape to the ones observed in
humans [33]. Such PSDs can be generated analytically
using a noise-driven linear response theory as well as nu-
merically thorough simulation of the full PDE model,
after the inclusion of a noise source in equation (2). Im-
portantly this would shed light on how real patterns of
axo-dendritic connectivity can shape PSDs, as well as the
known scaling of synaptic strength with distance from the
soma that underlies so-called dendritic democracy [34].
Moreover, the model can also be used to generate a more
direct measure of EEG, by recognising that the currents
along the dendrites can be used to construct electromag-
netic fields [9, 35]. The transmembrane current Imem

a at a
point on the cable is equal to 1/ra∂

2Va/∂x
2, where ra is

the (constant) specific resistance per unit length for cur-
rents flowing along the dendrite (and ra = 4Ra/(πd

2),
where d is the diameter of the dendrite and Ra its ax-
ial resistivity). If the extracellular medium is assumed
to be homogeneous, purely resistive and infinite in ex-
tent with conductivity σe, then the potential Φ arising
from the transmembrane currents is (in the quasi-steady
approximation to Maxwell’s equations) given by

Φ(x, r, t) =
1

4πσe

∑
a

∫ ∞
−∞

dx′
∫
R2

dr′
Imem
a (x′, r′, t)
d(x, x′, r, r′)

,

(23)

where d(x, x′, r, r′) =
√

(x− x′)2 + |r− r′|2 is a simple
notion of distance. Indeed Φ might give a more apt de-
scription of the fields observed using laminar implanted
electrodes [36]. One final generalization of the work in
this paper would be to treat more realistic models of
dendrites. From a morphological perspective this could
be incorporated by replacing the Green’s function of the
simple cable by one for a branched system. This can be
constructed analytically using the sum-over-trips formal-
ism, that itself can also cope with quasi-active membrane
models (describing the resonance properties of dendrites
associated with certain nonlinear ionic currents) [37]. All
of the above are topics of ongoing research and will be
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reported upon elsewhere.

Appendix A: Numerical Method

Here we describe the numerical scheme for evolving a
single population with only excitatory interactions. This
allows us to suppress the indices a, b, although the ex-
tension to include inhibition is straightforward by gener-
alising the scheme below (and using the index notation
of §II). We note that expanding the differential operator
A2 in equations (17) and (19) gives rise to a ‘negative
diffusion’ term, that, if not handled sensibly, could give
rise to numerical instabilities. To circumvent this poten-
tial issue we write A2ψ in the coupled form A2ψ = Ay,
where y = Aψ. After discretizing in space the model in 2
spatial dimensions given by (19) takes the form of a sys-
tem of coupled first order ordinary differential equations
that we can write as

dY1
dt

= −v
(

1

σ
U + k∆(b)

x U −∆(c)
zz ψ (A1)

−W
0

σ2
f(V0 − h)δ(x− d)− W 0κ

σ
∆(b)
x f(V0 − h)δ(x− d)

)
,

dψ

dt
= −v

(
1

σ
ψ + k∆(b)

x ψ − U
)
, (A2)

dY2
dt

= α(ψ − Y2), (A3)

dg

dt
= α(Y2 − g), (A4)

dV

dt
= −V

τ
+D∆(c)

xxV + I, (A5)

where I = g(V+ − V ), U = Y1 + W 0f(V0 − h)δ(x −
d)/σ, V0 = V (0, z, t), and ∆

(b)
x is the first order back-

wards difference operator acting on x, and ∆
(c)
xx and

∆
(c)
zz are the second order central difference operators in

the x and z directions respectively. Here the variables
(Y1, ψ, Y2, g, V ) are interpreted as vectors on the corre-
sponding (uniform) spatial meshes.

A similar approach may be taken for the 3 dimensional
model given by (17) and yields essentially the same equa-
tions with finite-difference operators along the z direction
replaced by the Kronecker sum of the second order cen-
tral difference operators along the r1 and r2 directions

which we denote by ∆
(c)
rr , and the further replacement:

dY1
dt

= −v
(

1

σ
Y1 + k∆(b)

x Y1 −
3

2
∆(c)

rr ψ− (A6)

W

σ2
f(V0 − h)δ(x− d)

)
,

dψ

dt
= −v

(
1

σ
ψ + k∆(b)

x ψ − Y1
)
. (A7)

Here V0 = V (0, r, t). The time integration was performed
using an adaptive solver from the Julia package – Differ-
entialEquations.jl [31, 32].

Appendix B: Front speed in the Heaviside limit

Here we consider an idealized dendritic neural field
model in a one dimensional cortex model with a Heaviside
firing rate and only excitatory interactions. In the ab-
sence of any shunts (namely setting the input to the cable
to be directly proportional to the conductance change)
this allows an exact calculation of the speed of a front.
The cable voltage evolves according to (1) with input
I = IP :(

1 +
1

α

∂

∂t

)2

I(x, z, t) =

∫ ∞
−∞

dz′w(z − z′)×

δ(x− d− κ|z − z′|)f ◦ h(z′, t− |z − z′|/v), (B1)

where h(z, t) = V (0, z, t), we have fixed W 0 = 1 and
f(h) = H(h− θ). Above and throughout this Appendix
we drop all subscripts P and PP for ease of notation.
However, the quantities in this Appendix are not to be
confused with the unit-free notation introduced in §IV,
and for clarity the subscripts are used there, cf. equations
(20) to (22). Using the Green’s function (6) the solution
for V (x, z, t) is given by (dropping initial data)

V (x, z, t) =

∫ ∞
−∞

dy

∫ t

−∞
dsG(x−y, t−s)I(y, z, s). (B2)

Hence, combining the above, we may write the evolution
equation for the somatic potential h(z, t) in the integral
form

h(z, t) =

∫ ∞
−∞

dy

∫ ∞
−∞

dz′
∫ ∞
0

ds

∫ ∞
0

ds′×

G(y, s)w(z′)δ(y − d− κ|z′|)η(s′)×
f ◦ h(z − z′, t− s− s′ − |z′|/v), (B3)

where η(t) = α2te−αtH(t). We now look for traveling
wave solutions of the form h(z, t) = h(ξ), where ξ =
z − ct. These satisfy the integral equation

h(ξ) =

∫ ∞
0

dsη(s)ψ1(ξ + cs), (B4)

where

ψ1(ξ) =

∫ ∞
−∞

dz

∫ ∞
0

dsG(d+ κ|z|, s)w(|z|)×

f ◦ h(ξ − z + cs+ c|z|/v). (B5)

For the choice κ = 0 the double integral in (B5) simplifies
to give

ψ1(ξ) =

∫ ∞
0

dsG(d, s)ψ2(ξ + cs), (B6)

where

ψ2(ξ) =

∫ ∞
−∞

dzw(z)H[h(ξ − z + c|z|/v)− θ]. (B7)



9

We now consider traveling front solutions with h(ξ) > θ
for ξ < 0 and h(ξ) ≤ θ for ξ ≥ 0. In this case we may
evaluate (B7) as

ψ2(ξ) =


∫∞

ξ
1−c/v

dzw(z) ξ ≥ 0∫∞
ξ

1+c/v
dzw(z) ξ < 0

. (B8)

The speed of the front is then determined self-
consistently from the condition h(0) = θ. This gives an
implicit equation for the wave speed c as the solution to

θ =

∫ ∞
0

dsη(s)ψ1(cs). (B9)

To calculate the above we need only calculate ψ2(ξ) for
ξ ≥ 0. For an exponentially decaying anatomical connec-
tivity function w(z) = exp(−|z|/σ)/(2σ) we have that

ψ2(ξ) =
1

2
exp

(
− ξ

σ(1− c/v)

)
, ξ ≥ 0. (B10)

After introducing the Laplace transform G̃(d, λ) =∫∞
0

dsG(d, s)e−λs this means that we may construct
ψ1(ξ) from (B5) in the form

ψ1(ξ) =
1

2
G̃

(
d,

c

σ(1− c/v)

)
exp

(
− ξ

σ(1− c/v)

)
.

(B11)
Substitution of (B11) into (B9) yields equation (20),
where η̃(λ) =

∫∞
0

dsη(s)e−λs is the Laplace transform
of η(t).
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