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Abstract

Neural field models (NFMs) describe the spatio-temporal evolution of neuronal

populations as a continuous excitable medium. The resulting tissue-level description

can be employed to fit data from macroscopic recordings of electrocortical brain ac-

tivity like the electroencephalogram (EEG) and local field potentials (LFPs). The

standard neural field approach models the cortex as a two-dimensional sheet, ne-

glecting the actual cortical depth. Although a small number of studies have con-

sidered the anatomical cortical layers to model different connectivity patterns, their

mathematical description does not commonly use the cortical depth to determine

the model dynamics. Therefore, within the framework of neural field theory, the

impact of dendrites on brain activity remains far from being exhaustively explored.

In the present work, we extend the geometry of a two-dimensional (2D) NFM

to incorporate a dendritic dimension for the excitatory neural populations, repre-

senting the cortical depth. Dendritic trees are modelled as linear cables, spatially

discretized in multiple subsections (compartments). Spatio-temporal patterns of the

new cortical model are studied for systems consisting of either a single or multiple

microcolumns. A powerful approximation, extended from the one for the 2D NFM,

is introduced to predict the power spectral density of the mean membrane potential

from the Jacobian matrix of the linearized system evaluated at a singular point. Our

numerical analysis reveals a variety of dynamics, ranging from those characterized

by “flat” power spectra without alpha rhythmicity due to signal loss over the tree,

up to sharp alpha resonances corresponding to proximity to a Hopf bifurcation. The

research focuses on the identification of plausible EEG dynamics, e.g., those exhibit-

ing a dominant alpha activity, conceived as the central rhythm of spontaneous EEG.
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Crucial to this endeavour has been the careful tuning of key dendritic parameters

introduced with the three-dimensional (3D) geometry, such as the “synaptic factor”

(i.e. synaptic conductance) and the membrane length constant, and wider parame-

ter sweeps using the Particle Swarm Optimization (PSO) technique. The dynamics

are mainly studied for a single microcolum systems with different dendritic config-

urations (e.g. varying conductance and length constant) during synchronous and

asynchronous synaptic activation in either a single or multiple dendritic domains.

Our results explain the impact of key dendritic parameters on the 3D NFM dy-

namics. Heuristics characterizing these effects can be regarded as representative

of the well-known phenomenon of “dendritic democracy”, classically indicating the

normalisation of post-synaptic somatic potentials compensating for dendritic filter-

ing activity. While several experimental studies have investigated the genesis of

this compensation, to date this phenomenon has not been explored concerning a

potential interplay with the alpha rhythm. Our findings suggest that physiological

conditions enhancing the onset of action potentials in active models also promote

alphoid dynamics in our passive neural field models including the dendritic dimen-

sion. In particular, synaptic strength has to increase with distance from the soma.

We found several parameter configurations giving rise to alpha rhythmicity in the

3D geometry. Dynamical analysis highlights the impact of key dendritic parameters

at different cortical depths on the genesis of alpha rhythm, providing a clearer in-

sight into dendritic mechanisms and cortical dynamics. Indeed, the model can be

used as a valid starting point for NF studies aiming to encompass further dendritic

properties, implement more detailed connectivity schemes and incorporate data from

depth electrode recordings.
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8



Acknowledgements

Undertaking this PhD has been a truly life experience for me and it would not

have been achievable without the support and guidance I received from many people.

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Ingo

Bojak for his precious support of my PhD study, for his patience, enthusiasm and

inspiring knowledge. Ingo, thank you for encouraging my research in all the time,

especially during research challenges and difficulties, and thank you for providing

advice on both research as well as on my career. Your invaluable guidance allowed

me to grow as a research scientist and as a person.

My sincere thanks also go to my co-supervisor Etienne Roesch, who provided

help to use the CINN’s cluster and IT facilities of University of Reading. Without

this precious support it would not have been possible to conduct this research.

I would especially like to thank my PhD examiners Ying Zheng and Steven

Coombes for serving as committee members and for letting my defense be an en-

joyable moment. Your brilliant comments and suggestions improved my knowledge

widening my research from various perspectives. Ying, I would like to thank you for

the kind advice on both my research and my future career provided during our en-

joyable meetings. Your guidance has been a precious support during the correction

process.

I thank all the researchers I have met during this fantastic journey, at scientific

conferences, seminars and meetings. Thanks to my colleagues and labmates Mo-

hamad Alquoatli, Antonis Markakis, Jingjing Luo, Michael Haylett, Zhivko Stoy-
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e mi accompagni infondendomi gioia, amore, coraggio, speranza e tenacia. Lo hai

fatto durante il dottorato, quando credevo che non ce l’avrei fatta e invece ce l’ho

fatta! Lo hai fatto quando mi hai incitata ad ultimare le correzioni a fine luglio a

Londra. Lo fai sempre, in ogni cosa, in ogni dove e quando. Grazie ai miei nipoti

Elisa e Michele Fonte. Siete una inestimabile fonte di gioia e d’ispirazione! Grazie

per le avventure che abbiamo condiviso in questi anni a Londra, a Parigi e in Sicilia.

Grazie per volermi bene, io ve ne voglio tantissimo e mi diverto tanto con voi. Gra-

zie al mio amorevole e prezioso cognato Giuseppe Fonte, per la pazienza e l’affetto

dimostrati da quando ci conosciamo.

Sono grata a tutta la mia famiglia, ai miei zii e cugini che sono tantissimi. Silvana

e Tommaso Marchese, grazie per il vostro amore e il vostro costante esempio. La
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Chapter 1

Introduction

Studying the structural properties and the architecture of neural tissues and

cortex has been an important goal, partly achieved by biologists and neuroscientists

in the last century.

The neural cortex can be mathematically and computationally modelled at differ-

ent levels of description, each level relating to a particular set of neuroscientific data

[1–3]. Single model neurons capture important features of the complex neurophysi-

ological mechanisms of single cells, such as the role that ionic channels and synaptic

properties play in the cellular behaviour [4, 5]. To understand the importance of

these models, we need to highlight that the single cell level is the level at which the

exchange of information between the constitutional elements of the brain occurs [6].

Obviously, data recorder from single neurons are well reproduced and sometimes

predicted by such models [7]. Mesoscopic models [8–11] instead aim to reproduce

observations emerging from neuronal action and communication at the level of mi-

crocolumns, cortical columns and macrocolumns. Results from these models can be

compared to data from the electroencephalogram (EEG), the magnetoencephalo-

gram (MEG) and the local fields potentials (LFPs) [11]. Finally, macroscopic mod-

els investigate the interactions between brain regions and large-scale neural systems.

Dynamic Causal Modelling [12, 13] is a method for the interpretation of functional

neuroimaging data at this level of description.

At any spatial scale, the resulting models are complex systems. The analysis of

19



neural system dynamics is important for understanding the neurobiological phenom-

ena typically occurring in the cortex, both in normal and in pathological conditions.

The typical dynamic states occurring in the cortex underlie many physiological func-

tions, such as perception, learning and cognition [14–16] as well as pathological

behaviours of cortical tissues damaged by neurological disorders [17, 18].

Although researchers have been investigating neuronal and network mechanisms

for several decades, various questions remain far from resolved. For example, thanks

to both experimental studies [19–21] and digital reconstructions [22] much has been

learned about neuronal morphology. However, the molecular origin and functional

implications of neuronal shape remain enigmatic. From the perspective of neurode-

generative disorders, greater attention to understanding the mechanisms underlying

the cellular metabolism of neuronal and glial cells should enable progress on the

genesis and evolution of neurologic diseases. Despite the important studies on the

role of mithocondria [23, 24] and transport of metabolites, the energy and metabolic

intracellular mechanisms are poorly understood. One of the major unsolved ques-

tions in contemporary neuroscience concerns the mechanism underlying the synapse

formation. Despite several molecules have been identified as possible candidate for

synapse formation [25–27], many essential questions about the signals involved are

still unanswered [28]. Another well-known mechanism is the dendritic and synaptic

integration [29]: in most neurons, thousands of synaptic inputs converge to gener-

ate a postsynaptic responses, but the importance of the spatial organization, the

interaction and cooperation of the signals is still largely unexplained [28].

Dendrites act as filters for the incoming inputs [30], attenuating the somatic

postsynaptic responses to synapses located in distal dendritic regions. Several re-

cent studies provided evidence that this phenomenon is compensated by a variety

of mechanisms normalizing the somatic responses, making them insensitive to the

dendritic origin of the stimulus [31]. This compensation, often referred as “dendritic

democracy”, has been studied by many researchers [31–34] and, among all the pos-

sible underlying mechanisms, the synaptic strength scaling with distance seems to

have a predominant role. However, the intrinsic cellular mechanisms essential for

the genesis of the synaptic scaling are still largely unknown [31]. Moreover, incorpo-
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rating such dendritic properties in mesoscopic neural models would lead to a better

insight into the role of dendrites in cortical dynamics.

The core of the present work is the formulation of a computational cortical model.

It is a three-dimensional (3D) Neural Field Model (NFM) of the cortex, including a

dendritic dimension. So far, this issue has been addressed insufficiently in the field,

although the role of the dendrite has been demonstrated to be fundamental both in

synaptic integration and in neuronal transmission [30]. This work aims to bridge the

gap between the well known two-dimensional NFMs [35] and other works pointing

out the indispensability of considering the dendritic trees to explain the behaviour

of neural systems [30].

Our starting point is the two-dimensional (2D) NFM developed by Bojak and

Liley in 2005 [36]. They modelled the entire cortex as a two-dimensional sheet and

reproduced the cortical activity both at rest and during anesthesia. They described

cortical (both local and long-range) and extra-cortical connections between cortical

microcolumns. Each microcolumn consists of a population of about 104 to 105 neu-

rons and includes one inhibitory and one excitatory sub-populations. We extended

the geometry of this model to include a dendritic dimension for the excitatory pop-

ulations (while the inhibitory populations continue to be modelled as points in this

work at least) and studied the cortical activity at rest of a small square piece of

the cortex. The dimension of the cortical portion observed varies from 1 mm2 to 16

mm2, corresponding respectively to the activity of a single microcolumn extending

its dendritic tree through the 4 mm depth of the cortex, and of 16 microcolumns

distributed on the square sheet at a mutual distance of 1 mm, with their dendritic

trees extending through the 4 mm depth of the cortex.

In the second chapter we motivate the reasons leading to this kind of modelling

from literature. We firstly focus our attention on the scientific literature underlying

neural field theories. We illustrate the scientific reasons behind the NFM formula-

tion, briefly considering its scientific historical background. Several applications are

then mentioned, together with some important achievements of this theory. We also

outline the shortcomings and weaknesses of NFMs. Secondly, after having addressed
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the fundamental morphologic properties of the cortex and of pyramidal neurons, we

discuss the role that the dendrites can have in neural dynamics. The importance of

the dendritic tree in neural activity provides the motivation to include the dendritic

dimension in NFMs. The resulting models will exhibit a different behaviour, com-

pared to the dynamics of models neglecting the presence of the dendrite.

In Chapter 3, we illustrate both the mathematical formulation and the numerical

implementation (in Matlab), of the 2D and 3D cortical NFMs. We start providing

a full description (both the mathematical and numerical) of [36]. We then explain

all the physiological assumptions made to derive the mathematical equations of the

three-dimensional cortical NFM, and illustrate the numerical approximation used

for the implementation of the model as a system of ordinary differential equations

(ODEs). This includes an elucidation of the compartmental cable equation [37],

used to model the dynamics of the third dendritic dimension. Finally, we illustrate

the methods used to analyse the resulting dynamics of the model. Since we are

interested in reproducing the alpha rhythm typical for human cortical activity at

rest, the methods used to calculate the power spectral density (PSD) of the mean

membrane potential, both from the time series (non-linear spectrum) and from the

Jacobian matrix of the linearised system evaluated at a singular point (linear spec-

trum), will be carefully explained.

In the fourth chapter we study the spatiotemporal activity of both 2D and 3D

geometries at 4 different cortical depth, for systems consisting of 256 microcolumns

distributed on a square 16x16 grid. Time series, non-linear and linear power spectra

are studied for systems with either a single or multiple microcolumns, pointing out

the differences in between the dynamics of the two geometries. A 3D model naively

extending the 2D configuration,with all the parameters of the original model [36]

unchanged, results in a loss of alpha activity due the spread on signal along the den-

drite. Parameter modifications (within physiological bounds) are studied to restore

the alpha rhythmicity for single microcolumn systems, with a particular focus on

key dendritic parameters introduced in the 3D geometry, namely the electrotonic
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length constant and the synaptic strengthening factor. However, due to the high

number of parameters influencing the alpha rhythm of the system, we decided to use

a more sophisticated optimisation algorithm, to find optimal parameter sets giving

rise to alphoid dynamics.

In Chapter 5, we apply the Particle Swarm Optimisation (PSO) technique to de-

tect PSDs similar in shape to the ones encountered in humans. After reviewing the

PSO literature, we explain how we implemented the algorithm from scratch. Two

search-spaces and two fitness functions have been considered. Several different sets

of parameters leading to satisfactory PSDs have been found, for various locations of

the synaptic input along the dendrite.

In the sixth chapter, we study the behaviour of single microcolumn systems,

exploring the impact of the key dendritic parameters on the general dynamics and

on the occurrance of alpha rhythm. Firstly, we study in great detail the role of the

synaptic factor on the dendritic dynamics. The factor strengthening the synaptic

input is the main novelty introduced in the three-dimensional NF model, and we

dedicate particular attention to this topic. The dendritic behaviour is studied during

simulations where a single pulse input is provided to the systems and all the cortical

(local and long-range) and extra-cortical connections are switched off. This clarifies

the intrinsic dendritic dynamics and motivates the introduction of the synaptic fac-

tor in the 3D-NFM. The impact of the dendritic length constant on the dendritic

dynamics is also studied during pulse simulations, confirming the physiological role

of the length constant illustrated in Section 3.2.3. Secondly, the relationship between

the nature of the steady state of the system (equilibrium points or limit cycles) and

the linear spectra is illustrated. Finally, we systematically study the PSDs depend-

ing on the location of the synaptic inputs along the dendrite, on the synaptic factor

and on the dendritic length constant. Interesting configurations, with multiple si-

multaneous synaptic inputs in different dendritic locations, are briefly investigated,

together with a new search space explored with the PSO technique.
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In the final chapter we summarise our main contributions to the study of the

dynamics of 3D-NFMs, pointing out some interesting future investigations that could

be carried out on this topic.

The main functions and procedures implemented in MatLab to study the non-

linear and linear dynamics of the studied NFMs are reported, explained and com-

mented in the Appendix, for either single or multiple microcolumn 3D NFM systems.

The Appendix also illustrates the procedures implementing the Particle Swarm Al-

gorithm, together with the main fitness functions that have been considered in the

present work.
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Chapter 2

Literature Review

In this chapter we present the NFM formulation, considering some of the most

important scientific studies in the field. The central ideas of both neural mass and

neural field theories are briefly illustrated, together with some of their main appli-

cations. Secondly, after a brief discussion about the morphologic properties of the

cortex and a description of pyramidal neurons1, we motivate the importance of intro-

ducing a dendritic dimension in NFMs. Several dendritic mechanisms are considered

together with their impact on the cortical dynamics. In the present work, we have

inlcuded a dendritic dimension in a NF model. Although not all the mechanisms

illustrated in this chapter have been included in our model, the properties reviewed

here could be considered in any future work aiming to incorporate a more detailed

dendritic structure in NF models.

2.1 Mesoscopic and Neural Field Models.

Although single neuron models are fundamental to explaining the electric mech-

anism of communication between single neuronal cells, there are several factors

leading to the necessity to investigate the neural circuitry at a mesoscopic level of

organization [35, 38]. Firstly, several non-neuronal elements have been observed

1In the present work, we modelled both inhibitory and excitatory cortical populations. As

excitatory populations, we mainly modelled the activity of pyramidal neurons.
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to be crucial in determining the behaviour of neural systems. For example glial

cells, with their synaptic interactions with neurons, have a significant role in de-

termining the firing rate of the neurons [39, 40], and the neuronal interconnections.

Secondly, non-invasive measurement methods as electroencephalogram (EEG), mag-

netoencephalogram (MEG) and functional magnetic resonance imaging (fMRI) ob-

serve only field signals, emerging from neural masses instead of from single neurons.

For these reasons, networks of cortical neurons, with their connectivity and micro-

circuitry, explain the behaviour of neural systems without including single neuron

detailed properties, to avoid an explosion of the model complexity.

2.1.1 Bulk models, ensemble density approach, mass models

and neural field models

The basic idea of any type of mesoscopic description is to observe and study

neural systems as bulk models, describing the interactions between neural masses

or populations of neurons [10]. The idea is based on a couple of neurobiological

properties of brain communication: firstly most of neuronal cells use only one kind

of chemical neurtransmitter; secondly the cortex is spatially organised in localised

domains of population interacting with each other through synaptic transmission.

This homogeneity of characteristics makes it possible to adopt a model of description

in which neuronal populations can be regarded as excitatory or inhibitory masses,

leading to substitute the neural microcircuits of neural networks with the cortical

mesocircuit of a mesoscopic level of description.

The most natural descriptive approach, in this regard, is the ensemble theory,

used in statistical physics to deal with any complex system characterised by a mas-

sive number of elements. In our case, the approach of the classical mechanics fails

to account for the explosion of complexity of the systems, if one wants to describe

each neuron with all its physiological properties. On the contrary, it has been

demonstrated that, describing many particles systems in terms of their probabilistic

behaviour, leads to an efficient and tractable characterization. In the case of neural

systems, the common approach provides a statistical description of the quantities

that can be empirically measurable [41]. They typically are the mean soma mem-
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brane potential [42], or the mean neuronal firing rate [43, 44], and can be averaged

with respect to space or time, depending on which phenomenon is being described.

This averaged neuronal ensemble description can lead to two different types of

models: “neural mass models” and “neural field models”. The first description is

a discrete approach concerned with bulk models of spatially localized populations.

On the contrary, the second approach is continuous with respect to space and time

[41]. Neural populations in the cortex establish local and long-range connections,

influencing many other regions of the brain. In the perspective of the neural field

models, each neuronal ensemble defines its connectivity scheme, like a “field” prop-

agating its influence on to the other ensembles. Depending on the averaged variable

(firing rate of the neurons or somatic membrane potential), they can be respectively

activity-based models or conductance-based models. The voltage based models are

more suitable to represent data from EEG. In the present work we use this type of

formulation.

NFM studies, originally based on the works of Amari [45, 46], Wilson and Cowan

[43, 44], have been addressed by many scientists using slightly different approaches,

but all converging on similar formulations of the model, describing the mesoscopic

dynamics through a system of nonlinear integrodifferential equations, with an asso-

ciated kernel representing the spatial distribution of synaptic connectivity. Here, we

show the general formulation of neural field model equations, briefly mentioning the

goals that the scientists have achieved in the last decades. In fact, many biological

properties have been progressively included in these models to take into account

more and more relevant aspects. However, it has to be noted that in order to make

the integral equations mathematically and computationally more tractable, many

groups of scientists have managed to provide an equivalent formulation in terms of

partial differential equations (PDE).

One of the most important NFM formulation is due to Amari [45, 46]. It is a

voltage-based continuum model, considering m different neuronal populations. The

field equations have the form
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τi
∂ui
∂t

= si(x, t)− ui(x, t) +
m∑
j=1

∫
dx′wij(x,x

′, t)fj [ui(x
′, t)] (2.1)

where

- i = 1, ...m;

- ui(x, t) is the difference between the mean somatic and the resting membrane po-

tential of neurons of type i, at position x and time t;

- si is the extracortical input;

- wji(x,x, t) is the synaptic connectivity kernel, representing the synaptic connec-

tion that neurons of type j, at position x′, form to neurons of type i, at position x;

- fj is the averaged firing rate depending on the membrane potential uj.

This equation expresses that the neuronal mean membrane potential, in a specific

position and time, depends on the “field” of other populations (located in other

positions) through the non-linear firing rate f (that is a function of the membrane

potential) and the synaptic connectivity wji. The contribution of the m neuronal

population are considered in the equation, and integrated over time and space. In

this formulation the time delay has not been considered. Some other hypothesis are

commonly assumed for the synaptic connectivity such as the omission of the explicit

dependence on time t and the dependence of wji on only the distance between the

point x and x′, so that

wij(x,x) = wij(|x− x′|) ≡ wij(r). (2.2)

Moreover, the inverted Mexican hat is the shape that is usually adopted for the

connectivity: that is to say w(r) is considered to be positive (excitatory connectivity)

in the neighborhood of x, when r < r0 and zero (inhibitory connectivity) elsewhere.

We decided to mention this particular formulation of Neural Field Models because

it is similar to the formulation that we will introduce in the next chapter to present

our model.

Previous continuum neural field models, such as the works of Beurle [47] and

Griffith [48, 49], only include excitatory populations. Wilson and Cowan introduced

in their activity-based model the inhibitory populations [43, 44]. Their work is
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also important because they used a sigmoidally shapedfiring rate, and a mesocircuit

contemplating all the possible inhibitory and excitatory connections between the

populations. Freeman formulated a mass model to describe the olfactory bulb [10].

He elaborated a hierarchy of connections between neural populations, yielding to

a sets of third order differential equations. Other scientists investigated the role

that postsynaptic potential (PSP) delays have on the cortical neural field model

dynamics ([36, 50–53]).

Griffith [48] was the first who elaborated an equivalent formulation of NF integral

equations in terms of partial differential equations (PDE). However, it was with Jirsa

and Haken [54] that this approach became popular.

2.1.2 Applications and alpha-rhythm prediction

NFMs have been used to model electrocortical activity and large-scale neuronal

dynamics, providing an interesting description of some cognitive states. Instabilities

and spatio-temporal patterns have been modelled [55, 56] using PDE formulation of

NFMs. Many scientists used NFM theory to study the anaesthesia induced changes

in cortical activity [36, 57–59]. Other phenomena, explored using NFM descriptions,

are the human sleep cycles [60, 61], the consolidation of memory during sleep [62, 63]

and the neuronal activity during learning process [64–68]. Moreover, several stud-

ied have provided a continuum neural-field description of some dynamical states, as

non-equilibrium behaviour (metastability) [69–73], epileptic [36, 74–81] and gamma

activity [82–85]. Finally, NF formulations have been used to describe fMRI BOLD

recordings and simultaneous EEG/fMRI [12, 72, 86–103].

The alpha activity was first discovered by Berger in the 1920s [104], and later

confirmed by the studies of Andrian and Mathews in the 1930s [105]. While it is

classically defined as oscillatory activity recovered over occipital regions (which are

reactive to eyes opening and closing), with frequencies between 8 and 13 Hz, activ-

ity in the same range of frequency can be recorded from different cortical regions.

Indeed, alpha rhythm is the most common rhythm observed in scalp-recorded elec-

troencephalogram and it plays a fundamental role in explaining brain cognitive and
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behavioural functions. Two different approaches have emerged to explain the gene-

sis of the alpha rhythm. The first approach assumes that the alpha rhythm arises

from cortical neurons driven at alpha frequencies. This phenomenon can emerge

from the intrinsic oscillatory properties of cortical neurons [106, 107] or from the os-

cillatory activity of a feed-forward subcortical structure, as the thalamus [108, 109].

According to the second approach the alpha activity emerges from the interactions

between cortical neuronal populations synaptically connected, and from the inter-

actions between the cortex and the thalamus [110]. The second approach has been

supported by different theorethical and computational studies [42, 110–114, 114].

Here we want to highlight that, although discrete neural networks have been suc-

cessfully used to predict alpha activity [112] , the continuum or mean-field approach

is more suitable to describe alpha rhythm [42, 54, 114].

2.1.3 Advantages and drawbacks of neural field approach

Representing neural tissues through bulk models has several advantages: firstly

it allows to model some properties that cannot be addressed with single neurons

models, such as the influence that glial cells have on synapses and neuronal firing

rate; secondly behavioural patterns emerge from the interaction of populations of

neurons; finally, the spatial scale of description of NFMs is close to the spatial

resolution of neuroimaging data from EEG, MEG and fMRI, yielding the possibility

to easily compare NFM results with neuroscientific data.

However, there are some aspects that cannot be included in a NFM description,

such as the effects of fluctuations and correlations in single neuron activity [115],

and the synergetic effects that microscopic, mesoscopic and macroscopic activities

have on each other, when considered simultaneously [116]. Nevertheless, neural field

model theory can be considered as a fundamental starting point to develop a more

holistic approach, including multiscale levels of description.
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2.2 Cortical structure

The neocortex of human brain is the most developed of the brain tissues and

it is considered to be the structure where cognitive tasks take place. It is between

1 and 5 mm thick, and it has a surface of about ∼0.19m2 [117]. About ∼ 2 · 1010

neurons [118], each having on average 6,900 synaptic connections with other neu-

rons [119], are distributed in the neocortex, also containing the same number of

non-neuronal glial cells and microglia. The mammalian neocortex presents a well

organized structure at different spatial scale of observation and can be divided into

six horizontal layers, characterized by different cellular densities, types, morphology

and by different patterns of cellular connectivity with cortical and subcortical ele-

ments. Although several differences have been observed in the cortex of different

mammals [120], a number of common features can be identified, in terms of cellular

elements, spatial organization. All these features allows the formulation of tractable

models describing highly complex cortical tissues.

It has to be noted that the neural cortex is composed of two types of ontogenetic

structures: the homogenetic cortex, that is the neocortex; and the heterogenetic

cortex, that includes structure like the olfactory bulb, the amygdala and the hip-

pocampus, whose organization is different from the six layered neocortex.

Columnar organization of neocortex

It is widely accepted that the cortex can be divided into vertically oriented

columns. The presence of vertically stacked cellular laminae has been observed in

the cerebral cortex in many studies. Examples of vertical structures are the clusters

of apical dendrites of layer V pyramidal neurons [121], bundles of myelinated axons

of pyramidal cells (known as radiations of Meynert), columns of pyramidal cell

bodies and clusters of interneurons axonal collaterals. In the neocortex it is possible

to distinguish vertically well connected populations of neurons, whose horizontal

connectivity is defined by the lateral axonal ramifications, expanding over different

spatial scales [122]. The concept of columns had been hypothesised for the first

time by Mountcastle [123]. He formulated the idea of macrocolumns as aggregation
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of minicolumns bound together by short range excitatory and inhibitory horizontal

connectivity [124]. Cortico-cortical or neocortical columns, instead, can be identified

as cylindrical arborization volumes exhibiting long-range connections from a single

cortico-cortical fibre [125–128].

2.3 Pyramidal neurons

There are several kind of neurons in the brain, that differ for size, location,

morphology and functions [129]. In [130], Markram classifies dozens of neuronal

subtypes, all belonging to two fundamental classes of cellular elements: pyramidal

neurons, and non-pyramidal neurons. The former are the most numerous neuronal

class (between 65 and 80% of cortical neurons [122, 131]) and are excitatory. In the

neocortex they occur in all layers. On the contrary, the majority of non-pyramidal

neurons are inhibitory, although some excitatory neurons of this type have been

found. In the neocortex they occur in layers II to V. Since EEG signals are mostly

due to the activity of pyramidal neurons of layer V [132, 133], in the computational

model implemented here (see chapter 3) we consider this type of neurons. Moreover,

we also modelled inhibitory neurons.

Pyramidal neurons are characterized by two distinct domains: the basal and the

apical dendrites descending respectively from the base and the apex of the soma,

that has a pyramidal shape [134]. The basal dendrites are usually short. Typically

one main apical dendrite derives from the apex soma, bifurcates many times (giving

rise to oblique dendrites, each of them eventually bifurcating again) and terminates

with a tuft of dendrites in the distal region. Although they can widely vary between

different layers, brain regions and species [135, 136], the presence of the common

features in the dendritic tree shape, mentioned above, suggests that the distinct den-

dritic domains can be specialized to take on different functions. As explained in the

next section, each domain receives distinct synaptic inputs originating from distinct

brain regions and has a different excitability, integration and plasticity properties,

confirming the idea of specialized domains performing various functions. Moreover

variations in the structure and in the molecular composition of pyramidal neurons
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also suggests that different types of pyramidal neurons are specialized for different

functions.

2.4 Why include the dendrite in NFMs

Remarkably, the dendritic tree constitutes about 90% of the cellular surface. In-

cluding all the synapses and the spines, the tree is the most important volumetric

component of the cortex, consuming 60% of the energy of the brain [137]. The

dendritic tree can be regarded as a nonlinear information processor [137], that in-

fluences, with its complexity, not only the neuronal intrinsic microcircuits, but also

neural activity at level of local circuits and networks [3, 138].

There are fundamental reasons providing a strong motivation to include den-

drites in NFMs: first of all, it has been demonstrated that the presence of the

dendrite can considerably change the network dynamics. But for the studies of

Bressloff et al [3, 138], who explored the effects of the dendritic structure on single

neurons and neural populations, and for the work of Coombes [139], this issues has

not been targeted so far. However, Bressloff models including the dendritic tree

are not based on the NFM formulation. In [138] the authors used one dimensional

array of neurons with the dendritic tree modelled as a uniform cable, whereas in

[3] they studied some similarities between model of the dendritic tree and physi-

cal systems that are theoretically well known to all physicists. The dynamics of

one and two-dimensional continuum neural fields were also studied [140], without

including the dendritic dimension. Conversely, the work of Coombes at al [139],

which is providing an overview of dynamical system tools used to study patterns of

neural activity, discusses a particular NFM including both synaptic and dendritic

processing properties. Following the work of Bressloff [3], the scientists used the Rall

compartmental theory [141] to describe a cortical NFM with axo-dendritic patterns

of synaptic connectivity. The model studies the activity of one single population,

without considering spatial extensions in the direction transversal to the dendritic

tree. With the exception of the work of Coombes, in NFM theory the models so far

developed have neglected the presence of the dendritic tree.

33



Another important reason why we think it is essential to include the dendrites in

our NFM is the strong connection between dendrite structure and synaptic mech-

anisms. Synaptic spatial and temporal integration, synaptic filter role of the den-

drite, Hebbian learning, spikes generation, neuronal firing rate, synaptic plasticity,

the synaptic background noise are all example of mechanisms having a fundamen-

tal role in determining many of the most important brain functions, and they are

strictly related to dendritic organization. Other dendritic properties that can be

relevant in determining the behaviour of the networks are the distribution of the

ionic channels on the membrane surface and the role of the dendritic branches and

subunits. In the following sections we want to explore in more details the role that

dendrites can have on the dynamics of the networks and on neuronal and synaptic

mechanisms.

2.4.1 Dendrite and network dynamics

Although most of the models neglect the presence of the dendritic tree, it has

been demonstrated that it can change the dynamics of the network. Using lin-

ear stability analysis, bifurcation theory and numerical simulations, it has been

demonstrated that the effect of the diffusion along the dendritic tree can induce the

formation of dynamic spatial pattern [138]. In [3] the effects of dendritic structure

on single neurons and on neuronal populations are addressed. Analogies between

neuronal processes and some physics systems are explored, to highlight both the

organization of neuronal synaptic activity and the pattern formation and synchro-

nization phenomena in neuronal populations.

2.4.2 Dendrite and neuronal mechanisms

Some of the mechanisms mentioned in this section can concern many types of

neurons. Here, however, we are specifically referring to the properties of pyramidal

neurons.
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Dendrite morphology and synaptic integration

As previously explained, all pyramidal neurons share a common shape, in which

it is possible to distinguish the axon, the pyramidal shaped soma, and two dendritic

regions (basal and apical). Pyramidal neurons receive synaptic inputs in all the

region of the membrane, but inputs in different neuronal locations originate from

different brain regions. Usually proximal dendrites receive excitatory inputs from

local sources, while distant tuft dendrites receive inputs from distant cortical or

thalamic regions. For this reason, several studies distinguished in layer V pyramidal

neurons six distinct domains (somatic domain, three apical domains and two basal

domains). This distinction suggest that inputs from different domains may be inte-

grated differently [142, 143], as confirmed by the studies of Gasparini and Losonczy

on main apical and oblique dendrites inputs [144–146]. Some studies suggest that

there is also a connection between neuronal firing patterns and the geometry and

the organization of dendritic branches [147, 148].

Distance-dependent synaptic integration

The integration of synaptic inputs strongly depend on the location of the synapses

on the dendritic tree. Usually synapses at different distances from the soma con-

tributes differently to the initiation of action potentials in the axon. Distant synapses

have less strength in this mechanism because of the dispersion of charge along the

dendrite, from the eliciting site to the soma and axon [149, 150]. However, compensa-

tion mechanisms, consisting in the increase of distal synaptic conductance to balance

the loss of charge, have been observed in CA1 pyramidal neurons [151–153], but not

in layer V pyramidal neurons [154]. Other mechanisms involved in the initiation

of action potential, through their interactions with distal synapses are the voltage-

dependent dendritic channels, the high impedance of small-diameter dendrites, the

dendritic spikes and depolarization. These and other interaction mechanisms sug-

gest that synaptic integration is a complex process that may take advantage of the

different location and efficacy of the synapses to perform more specialized functions

[29].
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Time-dependent synaptic integration

Distance-dependent synaptic efficacy is strictly correlated with time-dependent

synaptic integration. Usually, to determine the axonal initiation of an action po-

tential a coincident activation and sum of several inputs is necessary. Coincident

distal synaptic inputs, spikes from multiple dendritic branches or domains need to be

summed to reach the action-potential threshold. The relative timing of activation of

the different mechanisms is fundamental for action-potential generation both during

asynchronous and synchronous activation. In the first case distal synaptic inputs

are integrated with proximal synaptic inputs. In the case of synchronous activation

dendritic spike can occur, triggered by distal synaptic activation [145, 155, 156]. In

layer V pyramidal neurons strong synaptic activation can lead to depolarizing spikes

in distal dendrites, due to Na+ and Ca2+ ionic currents [157, 158]. Ca2+ spikes in

basal or apical dendrites can also be triggered by high-frequency action potential fir-

ing [159, 160], or by backpropagating action potentials paired with distal excitatory

post-synaptic potentials (EPSPs) [161, 162].

Dendrite as spatio-temporal filter of synaptic inputs

Because of its role in the selection of incoming inputs, the dendritic tree is a

spatio-temporal filter of synaptic inputs. The response of the soma to synaptic in-

puts, in fact, strongly depends on the time it takes for signals to spread along the

dendritic tree. Consequently, the geometrical extension of the dendrite, its passive

electric properties, the location of spines and synapses, the relative time of activa-

tion of synapses at different locations receiving inputs from different brain regions

are all mechanisms that determine the filtering role of the dendrite [3]. Moreover,

mechanisms like the neuro-modulation and the background synaptic activity can

modify some electric properties of all or part of the dendritic tree. For example, the

activation of ionic channels in the spines can influence the synaptic response. This

dynamic behaviour of the dendrite with developmental changes can be involved in

learning and memory.

The passive spread of the signal along the dendrite can be efficiently described
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with a linear partial differential equation of second order in space and first order

in time [163]. Initially developed for a single branch nervous cell [164], it can be

modified to describe the geometry of a branched tree [163]. Rall was the first who

developed the idea of compartmental models: the dendritic cable can be segmented

in subsections or compartments that are sufficiently small, such that within the

subsection the membrane potential can be considered constant [37]. The finite

difference approximation can be used to calculate the membrane potential in the

compartments, leading to the reduction of the partial differential equations of cable

theory to a first order system of ordinary differential equations. This approach

allows one to include and model in each compartments many biological details, such

as different properties of synaptic inputs, dendritic properties depending on the

voltage and chemical gradients. Each dendritic branch can be modelled as a linear

cable and, knowing the synaptic distribution on the dendritic tree one can calculate

the synaptic current entering the soma.

Dendrite and synaptic plasticity

One of the most studied form of synaptic plasticity is the spike-timing-dependent-

plasticity (STDP). Long term potentiation (LTP) and long term depression (LTD)

of synapses occur when the excitatory postsynaptic potential (EPSP) is paired with

the backpropagating action potential from the initiation site in the axon back to the

synapse. The relative timing of the two mechanisms (eliciting EPSP and backprop-

agation of action potential) is responsible of the induction of plasticity mechanisms

[165–169]. Although many mechanisms remain unclear, especially the synaptic and

firing conditions in which LTP and LTD occur in vivo, many studies suggest that

dendritic spikes initiation have a significant role in plasticity induction in many phys-

iological conditions (strong synaptic stimulation [170, 171], postsynaptic [167, 172]

or presynaptic bursts [170]). In cortical pyramidal neurons of layer V, the amplifica-

tion of the backpropagating action potential by dendritic depolarization is necessary

to potentiate small EPSPs of distal synapses [173]. Moreover, depending on time
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and location of the two associative signals, Hebbian LTP2 can occur [174]. It has to

be noted that also the organization distribution and plasticity of the spines play a

fundamental role in determining neuronal excitability.

Dendritic intrinsic properties and neuronal firing

The distribution of voltage-gated ionic channels on the dendrites has an impor-

tant role in determining the neuronal firing. They in fact can modify some of the

intrinsic properties of the neuron, such as synaptic integration [175, 176], action-

potential threshold, afterhyperpolarization and afterdepolarization. Moreover, as

mentioned above, voltage-gated currents can compensate for the low efficiency of

distal synapses, eliciting local dendritic spikes. Other mechanisms that can influence

the neuronal firing rate are the homeostatic plasticity [177], the synaptic background

noise [3] and modulation of synaptic integration due to neurotransmitters.

2To explain the synaptic plasticity, Hebb’s rule claims that an increase in synaptic efficacy arises

from a presynaptic cell’s repeated and persistent stimulation of a postsynaptic cell.
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Chapter 3

Methods

In this chapter, the mathematical formulation of a three-dimensional (3D) cor-

tical NF model, extending the two-dimensional (2D) NF model [36], is illustrated.

Details are provided about the numerical implementation and methods used to anal-

yse the dynamics.

3.1 Two-dimensional Liley and Bojak model

Our starting point is the model of Liley et al. [42, 59] used by Liley and Bojak

[36] to model the effects of anesthesia on the electroencephalogram. It is a two-

dimensional NF model describing the activity of cortical macrocolumns, where each

microcolumn consists of 104−105 neurons. The description is made in terms of spa-

tial averages over all kinds of relevant parameters and variables, including the mean

membrane potential and the mean firing rate, while no averaging is considered with

respect to time. A schematic illustration of the model is given in Fig. (3.1). Each

macrocolumn contains one excitatory (E ) and one inhibitory (I ) subpopulation,

locally interacting with each other through their mean firing rate Sk. These inter-

actions also depend on the number of intracortical connections Nβ
lk, where l, k = e

(excitatory), i (inhibitory). The subscritps lk indicates that a population of type

l is acting on a population of type k. The macrocolumns also interact with each

other through the long-range cortical connections Φlk. Only the excitatory subpop-
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Figure 3.1: Schematic illustration of the Liley and Bojak two-dimensional model

[36]. Two cortical macrocolumns with their connections are represented. Each

macrocolumn includes one excitatory and one inhibitory sub-population.

ulations are considered to form long-range connections Φek to other macrocolumns,

both excitatory and inhibitory. Conversely, the inhibitory cortical connections are

set to zero Φik = 0. Each subpopulation also receives excitatory and inhibitory

inputs plk from extracortical regions (for example from the thalamus).

The following equations provide a mathematical formulation of this model:

τk
∂hk
∂t

(x, t) = −[hk(x, t)− hrk] +
∑
l

ψlk(hk)Ilk(x, t) (3.1)

(
∂

∂t
+ γlk

)2

Ilk(x, t) = eΓlkγlk

[
Nβ
lkSl(hl) + Φlk(x, t) + plk(x, t)

]
(3.2)

[(
∂

∂t
+ vΛek

)2

− 3

2
v2∇2

]
Φek(x, t) = v2Λ2

ekN
α
lkSe(he), (3.3)

Φik = 0 (3.4)
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The first equation of the Liley model describes the evolution of the mean somatic

membrane potential hk in response to synaptic inputs Ikl; x is the position on the

cortical sheet, hrk is the mean resting membrane potential (mV), and the function

ψlk takes into account the mean Nernst reversal potential heqlk (mV) through the

equation1:

ψlk(hk) =
heqlk − hk(x, t)∣∣heqlk − hrk∣∣ . (3.5)

The second equation describes all the contributes (local Sk, cortical Φlk and extra-

cortical plk connections, respectively) to the synaptic input Ilk. The extra-cortical

input plk is implemented as white noise. Finally, the third and the forth equations

describe the evolution of the cortical inputs Φlk. The firing rate Sk is described by

a sigmoidal function of the local mean membrane potential hk:

Sk(hk) = Smaxk

/{
1 + (1− rabsSmaxk )× exp

[
−
√

2
hk(x, t)− µk

σk

]}
. (3.6)

The derivation of Eq. (3.3) from the NFM theory will be discussed in Section 3.2.1.

The meaning of all parameters appearing in Eqs. (3.1)-(3.3), with the corresponding

units and physiological range of variability, are reported in Tables 3.1 and 3.2.

Bojak and Liley [36] implemented the model in MPI FORTRAN, to use parallel

computation. The entire cortex has been simulated, considering a square cortical

sheet of 51.2 x 51.2 cm2, implemented as a discretized grid of 512 x 512 points.

Each point represents a macrocolumn population, whose activity is described by

the system of Eqs. (3.1)-(3.3). As a result, the entire system describing the cortex

consists of 512 x 512 copies of the sub-system (3.1)-(3.3) and the spatial mean is

calculated over 1 mm2. The authors reduced Eqs. (3.1)-(3.3) to ordinary differential

equations (ODEs) of first order, solved using forward Euler method [178]. Equation

1A more detailed description of function ψee is provided in Section 4.5.

41



Parameter Min. Max.

Mean resting membrane potential hre -80 mV -60 mV

hri -80 mV -60 mV

Passive membrane decay time constant τe 5 ms 150 ms

τi 5 ms 150 ms

Postsynaptic potential amplitude Γee 0.1 mV 2 mV

Γei 0.1 mV 2 mV

Γie 0.1 mV 2 mV

Γii 0.1 mV 2 mV

Total number of intracortical connections Nβ
ee 2000 5000

Nβ
ei 2000 5000

Nβ
ie 100 1000

Nβ
ii 100 1000

Maximum mean firing rate Smaxe 50 s−1 500 s−1

Smaxi 50 s−1 500 s−1

Firing thresholds µe -55 mV -40 mV

µi -55 mV -40 mV

Std. deviation of firing thresholds σ̂e 2 mV 7 mV

σ̂i 2 mV 7 mV

Table 3.1: Physiological ranges of parameters of Liley and Bojak [36] model. Note

that the range of variability of other parameters of the model are reported in Tab.

3.2. This table has been reported from Liley and Bojak model [36], TABLE I.
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(3.3) is iterated in second order, using three time points

∂2Φek(t)

∂t2
=

Φek(t+ ∆t)− 2Φek(t) + Φek(t−∆t)

∆t2
. (3.7)

The Laplacian of Eq. (3.3) is numerically computed using the 5-points stencil ap-

proximation, i.e. considering the four nearest neighbours in two dimensions

∇2Φek(x) = [Φek(xu) + Φek(xr) + Φek(xd) + Φek(xl)− 4Φek(x)]
/

∆x2 (3.8)

where xu, xr, xd and xl are, respectively, the upper, right, down and left neigh-

bours of the point x in the two-dimensional spatial grid. This approximation makes

the sub-systems (3.1)-(3.3) spatially coupled. Since the connectivity in the cortex

is supposed to be isotropic, the points at the boundaries of the square grid are

geometrically connected to form a toroid.

Bojak and Liley found several sets of parameters yielding power spectra of fre-

quencies for he reproducing the main features of resting EEG activity of human

subjects, characterised by the presence of strong peaks in δ and α regions. Fur-

thermore, they found that a linear approximation of the system is able to predict

the non-linear system dynamics, providing enormous advantages with regards to

numerical computations.

3.1.1 Implementation of Liley and Bojak model

For the purpose of clarity, we illustrate in this section the set of mathematical

equations that have been implemented in MatLab to reproduce the 2D model [36],

using the assumptions and numerical approximations described above in this Section.

The set of parameters used in the simulations is shown in Table 3.3 and is one of

the fundamental parameter sets used in [36]. Setting

∂Ilk
∂t

= Ĩlk

∂Φek

∂t
= Φ̃ek,

(3.9)

and considering the 5-points stencil approximation for the Laplacian of the cor-

tical inputs, the original PDE system (3.1)-(3.3) is transformed into an ordinary
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Parameter Min. Max.

Mean Nernst heqee -20 mV 10 mV

reversal potential heqei -20 mV 10 mV

heqie -90 mV hre − 5 mV

heqii -90 mV hri − 5 mV

Postsynaptic potential γee 100 s−1 1000 s−1

rate constant γei 100 s−1 1000 s−1

γie 10 s−1 500 s−1

γii 10 s−1 500 s−1

Total number Nα
ee 2000 5000

of cortico-cortical connections Nα
ei 1000 3000

Cortico-cortical decay scale and Λ(ee=ei) 0.1 cm −1 1 cm −1

conduction velocity v 100 cm/s 1000 cm/s

Rate of extracortical pee(δpee/pee) 0 s−1 (0.1) 10000 s−1 (0.25)

(noise) input pei 0 s−1 10000 s−1

pie 0 s−1 (fixed)

pii 0 s−1 (fixed)

Mean synaptic delay ξ 0 ms (fixed)

Absolute refractary period rabs 0 ms (fixed)

Table 3.2: Physiological ranges of parameters of Liley and Bojak [36] model. Note

that the range of variability of other parameters of the model are reported in Tab.

3.1. This table has been reported from Liley and Bojak model [36], TABLE I.

44



differential equations (ODEs) system:

∂hk
∂t

=
1

τk

{
− [he(t)− hre] +

∑
l

ψlk(hk)Ilk(t)

}
∂Ilk
∂t

= Ĩlk

∂

∂t
Ĩlk(t) = −2γlkĨlk − γ2lkIlk +Nβ

lkSl(hl) + Φlk + plk(t)

∂Φek

∂t
= Φ̃ek

∂

∂t
Φ̃ek(x, t) = −vΛek

{
2Φ̃ek + vΛekΦek(t)− vΛekN

α
ekSe(he)

}
+

+
3

2

v2

∆x2
[Φek(xu, t) + Φek(xr, t) + Φek(xd, t) + Φek(xl, t)− 4Φek(x, t)]

(3.10)

where ∆x = 1 mm is the distance between two microcolums. The system above is

describing the temporal evolution of the 14-dimensional vector

S = (he, hi, Iee, Ĩee, Iei, Ĩei, Iie, Ĩie, Iii, Ĩii,Φee, Φ̃ee,Φei, Φ̃ei)
T (3.11)

corresponding to the activity of a single microcolumn. Multiple microcolumn sys-

tems are described considering several copies of the system (3.10).

3.2 Three-dimensional model

As discussed in Chapters 1 and 2, the dendritic properties play a fundamental

role in synaptic integration and generation of EEG signals. Therefore, including a

dendritic description in the 2D-NFM of Liley and Bojak can provide a deeper insight

in understanding synaptic connectivity and EEG activity.

NFMs describe both inhibitory and excitatory neuronal cortical activity. Pyra-

midal excitatory neurons of V layer are the most important in the generation of

EEG signals [133]. Therefore, in our 3D-NFM we included the description of the

dendritic trees of pyramidal cells, extending through the depth of the cortex. In-

hibitory neuronal populations continue to be modelled as point-shaped [179].
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hre -62.226 mV hri -65.666 mV

τe 132.55 ms τi 135.91 ms

heqee -18.038 mV heqei -16.554 mV

heqie -81.976 mV heqii -78.995mV

Γee 0.10631 mV Γei 0.64105 mV

Γie 46477 mV Γii 0.28663 mV

Nβ
ee 2185.8 Nβ

ei 3749.8

Nβ
ie 466.30 Nβ

ii 160.69

Nα
ee 4611.6 Nα

ei 1372.4

Λ(ee=ei) 0.92809 cm−1 v 684.24 cm/s

Smaxe 196.08−1 Smaxi 454.40 s−1

µe -45.104 mV µi -43.910

σ̂e 3.8420 mV σ̂i 4.5793 mV

pee 6603.4 s−1 δpee 660.34−1

pei 2625.7 s−1 pie,ii 0 s−1

ξ 0 ms rabs 0 ms

Table 3.3: Parameter set of the implemented 2D model [36]. This table has been

reported from Liley and Bojak model [36], TABLE III.
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Figure 3.2: Schematic illustration of the 3D-NFM geometry and connections of 2

macro-columns. Each macro-column consists of one excitatory (E ) and one in-

hibitory (I ) sub-populations. Excitatory populations extend their dendritic tree

through the 6 layers of the cortex, while inhibitory sub-populations are considered

point-like. Short Nβ
lk, long range (Φek) cortical connections as well as extracortical

(plk) connections are shown. Arrows in red represent connections from excitatory

(E ) subpopulations. Arrows in blue represent connections from inhibitory (I ) sub-

populations.
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A geometrical illustration of the 3D Neural Field Model, with its connections is

represented in Fig. 3.2. Two distinct macro-columns are illustrated in the figure.

As in [36], each macro-column contains one neuronal population (104 − 105 neu-

rons). Each population consists of one excitatory (E ) and one inhibitory (I ) sub-

population. Short Nβ
lk, long range (Φek) cortical connections as well as extracortical

(plk) connections are shown. Arrows in red represent connections from excitatory

(E ) subpopulations, while arrows in blue represent connections from inhibitory (I )

subpopulations.

To describe the dynamics of the 3D geometry illustrated in Fig. 3.2 the equations

of the 2D model have been opportunely modified. The introduction of a third spatial

dimension, representing the distance z along a dendritic tree, is necessary to model

the depth of the cortex. In the present work, we introduced a spatial dependence

of the mean membrane potential he from the z coordinate. Other variables are

described through same equations used in [36]. However, as explained in the next

paragraph, while the equation for the synaptic currents Ilk does not explicitly depend

on z, it is possible to include in the model specific locations for the synapses along

the dendrite.

3.2.1 Cortical connections

In this section, the derivation of the differential equation for the cortical input

Φlk in the three-dimensional model is illustrated. We first show how to derive equa-

tion (3.3) of the 2D NFM from neural field theory. Secondly, assuming particular

hypothesis, an analogous equation is derived for the three-dimensional model.

Cortical connections in the 2D model

Let Φlk(x, t) be the mean rate of presynaptic inputs arriving in x to population

of type k from neurons of type l, located in a generic position x′, at time t:

Φlk(x, t) =

∫
C

dx′
∫ ∞
0

dvflk(v|x,x′)wlk(x,x′)Sl
(

x′, t− |x− x′|
v

)
(3.12)
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where flk is the velocity distribution function 2 and wlk is the synaptic footprint.

Consider the Green’s function

Glk(x,x
′, t) =

∫ ∞
0

dvflk(v|x,x′)wlk(x,x′)δ
(
t− |x− x′|

v

)
. (3.13)

Then Eq. (3.12) can be written as

Φlk =

∫ ∞
−∞

dt′
∫
C

Glk(x,x
′, |t− t′| ) Sl(x

′, t′) dx′ (3.14)

where in the last passage the property of δ-function

f(x) =

∫ +∞

−∞
δ(x− α)f(α)dα (3.15)

has been used.

In fact we have

Φlk =

∫ ∞
−∞

dt′
∫
C

Glk(x,x
′, t, t′) Sl(x

′, t′) dx′

=

∫ ∞
−∞

dt′
∫
C

dx′
∫ ∞
0

dv flk(v|x,x′) wlk(x,x′) δ
(
t− |x− x′|

v
− t′

)
Sl(x

′, t′)

=

∫
C

dx′
∫ ∞
0

dv flk(v|x,x′) wlk(x,x′) Sl
(

x′, t− |x− x′|
v

)

As a common assumption, the synaptic connectivity is considered to be homogeneous

and isotropic in space3, so that

wlk(x,x
′) = wlk(|x− x′|)

flk(v|x,x′) = flk(v||x− x′|)

Glk(x,x
′, t− t′) = Glk(|x− x′|, t− t′)

(3.16)

Then Eq. (3.13) holds for every x,x′ and can be considered as a function of r =

|x− x′|:
Glk(x, t) = Glk(r, t) (3.17)

2the condition
∫∞
0
dvflk(v|x,x′) = 1 holds.

3This means that all populations at positions x′ having fixed distance r from x, have the same

effect of the population located at x.
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It is important to note that, under the particular conditions (3.16), the integral

(3.14) has a convolution structure. Thus, in the Fourier space, one has:

Φlk(k, ω) = Glk(k, ω)Sl(k, ω). (3.18)

Furthermore, we considered a connectivity exponentially decaying with the distance

r = |x− x′|, taking as Green’s function

Glk(r, t) =
Nlk

2πσ2
lk

exp(−r/σlk)δ
(
t− r

v

)
(3.19)

where

- Nlk is the number of connections originating from neurons of type l and termi-

nating on neurons of type k;

- v is the conduction velocity;

- 1/σlk = Λlk is the connectivity decay scale;

- the Dirac δ function expresses the distribution of delays.

Each pulse disturbance δ (τ − r/v) travels with the same velocity v, and is re-

duced by the exponentially decaying synaptic connectivity. Applying to Glk the

Fourier transform in time one has

G(x, ω) =

∫
dt exp

{
−iωt

}
G(x, t) =

=
w

2πσ2

∫
dt exp

{
−iωt− r

σ

}
δ
(
t− r

v

)
=

=
w

2πσ2
exp

{
−r
(

1

σ
+
iω

v

)} (3.20)

where in the last passage the properties of the δ-function have been used and, for

simplicity, the subscripts lk for σlk have been omitted. Applying the Fourier trans-
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form with respect to space one obtains

G(k, ω) =

∫ ∫
R2

dx2eik∗xG(x, ω) =

=
w

2πσ2

∫ ∞
0

∫ 2π

0

drdθeikr cos θG(x, ω) =

=
w

2πσ2

∫ ∞
0

dre−r(
1
σ
+ iω
v )r

∫ 2π

0

dθeikr cos θ =

=
w

σ2

∫ ∞
0

dre−αrrJ0(kr) =
w

σ2

α

(α2 + k2)3/2

(3.21)

where α = 1/σ + iω/v. In the second-last step it has been considered that∫ 2π

0

dθeikr cos θ = 2πJ0(kr) (3.22)

where J0 is the Bessel function of the first type. Finally, one can write

G(k, ω) =
N2
lkv

2

σ2

v
σ

+ iω[(
v
σ

+ iω
)2 (

1 + v2k2

( vσ+iω)

)]3/2 =

=
N2
lkv

2

σ2

1(
v
σ

+ iω
)2 [

1 + v2k2

( vσ+iω)
2

]3/2
Using Taylor expansion, one has

G(k, ω) =
N2
lkv

2

σ2

1(
v
σ

+ iω
)2

+ 3
2
v2k2

. (3.23)

Formula (3.23) is based on the common “long wavelength” assumption4 used in

[180]. Including this result in Eq. (3.18), substituting σ = Λlk and operating an in-

verse Fourier transform with respect to both space and time5, one obtains Eq. (3.3):[(
∂

∂t
+ vΛlk

)2

− 3

2
v2∇2

]
Φlk(x, t) = v2Λ2

lkN
α
lkSl(hl). (3.24)

where 1/σlk = Λlk.

4This assumption is considering small values for the wave number k.
5The Fourier replacements k2 → ∇2 and iω → ∂/∂t have been used here.
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Cortical connections in the 3D model

In the three-dimensional case one has:

Φlk(x,x
′, z, t) =

=

∫
R3

dx′ dz′
∫ ∞
0

dv f (v | x,x′, z, z′)w(x,x′, z, z′)S

(
x, t− |x− x′|

v

)
=

∫ ∞
−∞

dt

∫
R3

dx′dz′G(x,x′, z, z′, t− t′)S(x′, t)

where z is the dendritic coordinate and G is the Green’s function

G(x, z, t) =

∫ ∞
0

dv f (v | x,x′, z, z′)w(x,x′, z, z′)δ

(
t− |x− x′|

v

)
(3.25)

A variety of studies have revealed that the location of a synapse along the den-

drite is often correlated with the relative distance for the interacting cells in the

network. In particular, as the separation between neurons increases, the synapse

tends to be located further away from the soma [181–183]. Although more realistic

synaptic connectivity schemes [138, 140, 184] could be adopted to take into account

this phenomenon, in the present work we adopted a simple connectivity scheme

w(x,x′, z, z′) = w(z, z′)w(x,x′) (3.26)

where the factor w(z, z′) is 1 if the population at location x′ and depth z′ is creating

a connection with the population at x and depth z, and 0 otherwise6. The same

connection scheme has been considered for all neuronal populations. This particular

choice significantly simplifies the model allowing to adopt for the 3D long-range

cortical connections Φek a differential equation that is analogous to the 2D equation,

while more realistic and diversified connectivity schemes could be considered in the

future. For ease, it has also been assumed that the velocity distribution function f

does not depend on the dendritic coordinate z:

f (v | x,x′, z, z′) = f (v | x,x′) (3.27)

6As indicated in the next chapters, this corresponds to considering synaptic inputs located at

different compartments, i.e. at different depths z.

52



Consequently, the Green’s function (3.25) can be written as

G(x,x′, z, t) = w(z, z′)

∫ ∞
0

dvflk(v|x,x′)wlk(x,x′)δ
(
t− |x− x′|

v

)
(3.28)

Applying the Fourier transform, with respect to both time and space, one has:

G(k, ω) = w(z, z′)
N2
lkv

2

σ2

1[(
v
σ

+ iω
)2

+ v2k2
]3/2 (3.29)

and [(
∂

∂t
+ vΛlk

)2

− 3

2
v2∇2

]
Φlk(x, t) = w(z, z′) v2Λ2

lkN
α
lk Sl(hl). (3.30)

3.2.2 Dendritic dimension

To describe the mean membrane potential he along the dendrite, a dependence

on the dimension z has to be introduced in equation (3.1). An illustration of the

three-dimensional model with the implemented connections is given in Fig. 3.2. To

describe the diffusion of the signal along the dendrite, we used the Rall compart-

mental model [37, 185, 186], schematically illustrated in Figs. 3.3-3.5.

During the 1960s Wilfrid Rall proved that, given a certain set of assumptions

[187], a symmetrically branched dendritic tree can be reduced to an equivalent cylin-

der (Fig. 3.3) [185, 188]. Taking into account the complex dendritic morphology,

one should consider each dendritic branch as a cylinder of uniform passive mem-

brane. Each cylinder in turn is characterized through a number of parallel equivalent

membrane circuits (see Figs. 3.5 and 3.4), where the number of circuits depends on

the length of the cable and each local circuit represents a portion of iso-potential

membrane, corresponding to a “dendritic compartment”. This electric model of the

nerve membrane was known from a variety of previous studies [189–193] and can be

used to represent both passive (Fig. 3.4) and active membrane7.

7Differently from the passive circuits represented in Fig. 3.4, the active equivalent membrane

circuits also include active properties as the conductance and batteries for the ionic currents flowing

through the cell membrane [185].
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Figure 3.3: Diagram of a symmetrically branched dendritic tree, with

corresponding mapping to an equivalent cylinder and to a chain of

equal compartments. This figure has been adapted from wikipedia:

https://commons.wikimedia.org/wiki/File:Rall model - Equivalent cylinder.png
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Figure 3.4: Schematic illustration of the Rall model theory, as a chain of parallel

local equivalent membrane circuits. This figure has been reported from wikipedia:

https://en.wikipedia.org/wiki/Cable theory

Figure 3.5: Schematic illustration of cable and compartmental model. This figure

has been reported from [194], Fig.1, https://doi.org/10.1007/978-1-4939-3411-9 15.
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The partial differential equation used to describe the distribution of the membrane

potential along the cylinder [163, 185, 195, 196] is:

rmcm
∂V

∂t
= λ2

∂2V

∂z2
− V + rmI (3.31)

where:

• z is the distance along the dendrite (centimeters);

• t is the time (seconds);

• V = V (z, t) is the membrane depolarization (Volts), defined as the difference

between membrane potential Vm(z, t) and resting membrane potential Vr; V =

V (z, t) = Vm(z, t)− Vr;

• rm is the membrane resistance (Ohms centimeters);

• cm is the membrane capacitance (Farads per centimeter);

• λ is the membrane space constant (cm);

• I = I(z, t) is the applied current density (Amperes per centimeter).

If one wants to consider the complex dendritic morphology, analysis would require to

solve the cable equation for each dendritic segment, given boundary conditions at the

end of the compartments and initial conditions. Even considering a small number

of dendritic sections gives rise to unwieldy mathematical solutions [197]. By prov-

ing that the entire complex morphology can be modelled as an equivalent cylinder

[185, 188], Rall introduced a massive simplification, allowing tractable mathematical

analyses of neurite models and providing a valuable insight into dendritic function.

Performing a spatial discretization for the spatial second derivative of the mem-

brane potential (as shown in Section 3.2.4), one obtains the n equations describing

the potential of the n local circuits corresponding to the n dendritic compartments.

Conversely, the equations for single compartments (of length ∆z) can be obtained

by applying to each local equivalent circuit the Ohm’s law and the Kirchhoff’s cur-

rent law [163, 198]. Thus the cable equation can be obtained by taking the limit

∆z → 0.
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Most of the studies analysing the dendritic dynamics are based on the Rall model

compartmental theory. The softwares

NEURON (http://www.neuron.yale.edu/) and

GENESIS (http://www.genesis-sim.org/GENESIS/), designed to model neuronal

systems, use the principia of Rall theory to model the electric properties of nerve

membrane.

In the present work, the dendritic tree of each excitatory population is modelled

as a linear cable using Eq. (3.31). A schematic illustration of the compartmentalized

model is illustrated in Fig. 3.6, where the black points schematically represent the

equivalent membrane local circuits, i.e. the iso-potential dendritic segments (com-

partments).

soma 

basal dendriteapical dendrite

Figure 3.6: Schematic illustration of the linear cable representing the dendritic tree

of one excitatory population of neurons.

Defining the membrane time constant τm (seconds) as

τm = rmcm (3.32)

and rewriting the Eq. (3.31) for the resting membrane potential Vm = V + Vr, one

has

τm
∂Vm
∂t

= λ2
∂2Vm
∂z2

− [Vm − Vr] + rmI. (3.33)

Eq. (3.1) and Eq. (3.33) represent the same equation if one considers that:

- he is the membrane potential Vm;

- the sum
∑

l ψle(he) Ile(x, t) in Eq. (3.1) represents the applied current term rmI

in Eq. (3.33);
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- if a point-shaped neuron is considered instead of a neuron with extended dendritic

tree, then the term λ2 ∂
2Vm
∂z2

in Eq. (3.33) can be set to zero (since λ = 0).

Therefore, with the inclusion of the second derivative of the excitatory membrane

potential he, Eq. (3.1):

τe
∂he
∂t

(x, t) = −[he(x, t)− hre] +
∑
l

ψle(he)Ile(x, t)

is transformed into a cable equation:

τe
∂he
∂t

(x, z, t) = −[he(x, z, t)− hre] + λ2
∂2he
∂z2

(x, z, t) +

+
∑
l

ψle(he)Ile(x, z, t)
(3.34)

where z is the distance along the dendrite and x is the position on the two-dimensional

cortical sheet (transversal to the dendritic direction). A geometrical illustration of

x and z directions is provided in Fig. 3.7.

In our model, we used sealed end boundary conditions [163], meaning that no

current is flowing through both ends of the linear cable. Detailed equations for he

in the boundary compartments are discussed in Section 3.2.6.

3.2.3 Electrotonic length constant

The electrotonic dendritic length constant λ is used to quantify the distance

that a potential spreads along the dendrite via passive conduction [163]. A current

injection results in a local depolarization at the injection site. This depolarization

longitudinally spreads along the neural cable, depending on the electric properties

of the membrane. At the injection site, the depolarization V is following the Ohm’s

law

V = I ∗ rm (3.35)

where I is the injected current and rm is the membrane resistance (the force im-

peding the flow of electric ionic current across the membrane). A higher membrane
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resistance results in a larger difference of potential across the membrane, at the

injection site. The extent of depolarization falls off with distance from the initial

depolarization and can be described by the following equation:

V (x) = Vmaxe
− |x|

λ (3.36)

where x is the spatial position (x = 0 at the injection point) and λ is the length

constant. Setting for x = λ in Eq. (3.36), one can see that λ is the distance at which

V (x) has dropped to 37% of its original value Vmax. The greater the value of the

length constant, the farther the potential will travel.

Considering the intrinsic resistance properties of the cable, the length constant

can be defined [163] as:

λ =

√
rm
ra

(3.37)

where rm is the membrane resistance and ra is the axial resistance (the force im-

peding the current flow travelling along the dendrite). The membrane resistance rm

enhances the spread of voltage along the neural cable since it prevents losses across

the membrane, while the axial resistance impedes the current flow along the cable.

Given the variety of functions performed by neurons, there is a wide diversity

in their morphology, size and electrical mechanisms [6, 129]. The dendritic length

constant is one of the properties that highly depends on the geometry of the neu-

ron; it increases with both neuron size and dendritic branch radius [163, 199]. As

previously explained, in the present work we are mainly interested in the activity

of pyramidal neurons. The diameter of pyramidal dendrites varies from a few mi-

crons for the main apical trunk to less than half micron for the terminal branches,

while the linear distance from the basal to the apical tuft ranges from 0.2 to over

1 mm [30, 134]. Typical estimates for the length constant range from 0.1 to 1 mm

[200–204]. The description of electrotonic structure of a neuronal tree [205], ap-

proximated as an equivalent cylinder, usually refers to the electrotonic length L of

the neurite [206], defined as its physical length l (mm) divided by its electrotonic

space constant, L = l/λ. In [207, 208], Rall provided many formulas to theoretically

estimate the electrotonic length of a neurite, finding that it ranges approximately
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from 1 to 2. Over the years, Rall’s formulas have been applied in several studies

and in most cases the estimate for L is about 1 [205, 209–213].

In the present work we have considered excitatory populations extending their

“dendritic trees” through the entire cortex. Although pyramidal neurons have den-

dritic trees of about 1 mm [30, 134], the modelling scheme adopted here incorporates

entire microcolumns of neurons with their cell bodies in different layers [6] and trees

extending over the entire cortical depth (4 mm). The dendritic trees of one pop-

ulation are modelled as one linear cable and the spatio-temporal evolution of the

mean membrane potential of the entire microcolumn is described. For our analysis,

we mainly considered electrotonic distances in the physiological range, varying from

0.1 to 1 mm. Ideally, if one wants to enable a stimulus to spread over the entire

“dendritic length”, larger electrotonic constants (up to 4 mm, corresponding to ele-

crotonic length L = 1) could be considered. To take this into account, we extended

the explored range for the electrotonic length constant λ up to 2 mm.

3.2.4 Model discretization

To implement the 3D system in MatLab, a discretization on both x and z di-

rections is necessary. We maintained the same scheme for the spatial discretization

along the cortical sheet implemented in Section 3.1.1, transversal with respect to

the dendritic extension. This means, that the neuronal populations are distributed

on a square spatial grid, at a relative distance ∆x = 1 mm. The excitatory sub-

populations extend their dendritic trees through the depth of the cortex, along the

z direction, with soma located in layer V in correspondence of the two-dimensional

grid nodes, while inhibitory populations are modelled as points. A geometrical il-

lustration of the implemeted 3D-model, extending the 2D geometry is provided in

Fig. 3.7. As in [36], the boundaries of the grid are then connected to form a toroid.

The cable Eq. (3.34) for a specific point x on the two-dimensional can be written

as8:

8The synaptic factor fsyn will be introduced in the next section
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Figure 3.7: Transforming NFMs from 2D to 3D scheme. Left. Morphology of the

biological systems represented. Right. Illustration of the computational models

implementing the morphology in A. The purple points and their corresponding 3D

extension represent one neuronal macrocolumn with its excitatory (E ) and inhibitory

(I ) subpopulations.
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τ
∂he
∂t

(x, z, t) = −[he(x, t)− hre] + λ2
∂2he
∂z2

(x, z, t) +
∑
l

ψle(he)Ile(z, t) (3.38)

Dividing the dendrite into n subsections of length ∆z = l/n, where l is the length

of the cable, and denoting with hj, (j = 1, ..., n) the mean membrane potential in

the subsection j, the mean membrane potential along the dendrite can be described

by the n-dimensional vector h = [h1, ...hn]. Using the second order finite difference

approximation, the diffusion term of Eq. (3.38), for j = 1, ...n, can be written as

∂2hj
∂z2

' hj−1 − 2hj + hj+1

∆z2
. (3.39)

Thus, Eq. (3.38), for the particular subsection j, becomes:

τ
∂hj
∂t

= −[hj − hr] + λ2
hj−1 − 2hj + hj+1

∆z2
+
∑
l

ψl(hj)Il(z, t) (3.40)

where for simplicity he,j(z, t) has been denoted with hj. Let

J(hj, z) =


∑

l ψl(hj)Il(z, t) in dendritic subsections with synaptic inputs

0 elsewhere

(3.41)

then Eq. (3.40) becomes:

∂hj
∂t

= −
(

1

τ
+

2λ2

τdz2

)
hj +

λ2

τdz2
hj−1 +

λ2

τdz2
hj+1 +

1

τ
J(hj, z) +

hr

τ

= K hj−1 −B hj +K hj+1 +
1

τ
J(hj, z) + ce

(3.42)

where

K =
λ2

τ∆z2
, B =

(
1

τ
+ 2K

)
and ce =

hr

τ
(3.43)

As mentioned above, through Eq. (3.41), it is possible to specify the position of the

synaptic input along the dendrite.
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3.2.5 Synaptic factor in the discretised dendrite

As it will be discussed in Chapter 4, naively extending the 2D model to a 3D

geometry leads to a loss of signal along the dendrite. As a result, the somatic

response to single pulse input (discussed in Section 6.2) is lower in the 3D geometry

than in the 2D system. Besides this, such systems are characterized by a loss of

alpha rhythmicity. We refer to these systems as “less excitable”. Here, the notion of

“excitability” is used to indicate the system sensitivity to pulse and synaptic inputs

and the corresponding suitability to produce alpha rhythms (discussed in Section

6.2).

To restore the excitability, a synaptic factor strengthening the effect of the synap-

tic currents on the mean excitatory membrane potential has been introduced:

Isyn =
1

τe
fsyn

∑
l

ψle(hj)Ile(z, t) (3.44)

As seen in the previous section, the synaptic input (in its original formulation with-

out the synaptic factor)

Isyn =
1

τe

∑
l

ψle(hj)Ile(z, t) (3.45)

can be applied in one or more subsections of the compartmentalized linear cable.

While in the 2D model the synaptic input is applied to the entire point-shaped

neuronal population (without dendritic arborization), in the 3D geometry the input

is located in one specific region and then spreads along the z dendritic coordinate. As

a result, the he response elicited in the 3D system is expected to be lower than in the

2D geometry since the current is distributed over the cable. A schematic illustration

is provided in Fig. 3.8 A and B. This behaviour will be confirmed in Section 6.2,

where the response of both the 2D and 3D system to a single pulse synaptic input

will be analysed, for systems with different number of dendritic compartments.

Another important consideration concerns the relationship between the factor

fsyn, the location of the synaptic factor along the dendrite, and the extension of the

dendritic region where the current is applied. This is particularly important when

one compares the dynamics of systems with different number of compartments. As
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heIsyn he Isyn fsyn *  Isyn he

A B C

Figure 3.8: Schematic illustration of the he response to a single pulse synaptic input

in the 2D (A) and 3D (B) geometries. A factor fsyn strengthening the synaptic

current is introduced in the 3D system to elicit a similar response at the injection

site (C).

an illustrative example, we consider a case where the synaptic input is applied in

the distal region (apical dendrite) at a distance zs from the soma, in a system with

n compartments. A schematic illustration of the local and somatic responses hej and

hesoma to an input in the j-th compartment is provided in Fig. 3.9 A. Considering

a system with 3n subsections (Fig. 3.9 B), and locating the synaptic input in the

3j-th compartment at exactly the same distance zs from the soma, one can observe

a reduced he response both at the injection site and at the soma. Moving from

configuration A to B, the size of the compartment where the current is injected

is reduced by a factor of 3. This means that in the same time interval ∆t, a

different amount of charge is actually flowing into the systems respectively through

the compartments j and 3j. More in detail, in the first case a larger charge Q will

accumulate in the compartment j having length l/n and will propagate along the

cable in both directions. In the second case, compartment 3j having length l/3n,

will host a charge q < Q, that will spread in both directions evoking at the soma a

lower response. To elicit in B, the same response of A, the current Isyn needs to be

applied in 3 compartments (3j−1,3j,3j+1) as shown in figure C, or a factor fsyn = 3

needs to be introduced to strengthen the synaptic input applied in compartment j

(D). All these qualitative considerations will be numerically confirmed in Section
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A

B
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Isyn

he he

he he

he he

he he

Isyn

Isyn

Isyn IsynIsyn

Figure 3.9: Schematic illustration of the he local and somatic responses to a single

pulse synaptic input in 3D (B) geometries, with different numbers of compartments

(A vs B); for synaptic inputs located in one or more compartments (A vs C); with

and without synaptic factor fsyn (A vs D).

6.2.

3.2.6 Boundary conditions

Sealed end boundary conditions have been used for the dendritic cable. This

means that no current flows out of either ends of the cable. Thus, for the compart-

ments at both the ends of the cable, we have:

∂h1,l
∂z

= 0

∂hn,r
∂z

= 0

(3.46)
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where the subscripts l and r indicate that there is no current flowing through to

the left side of compartment 1 and through the right side of compartment n (see

illustration 3.6). Equation (3.42) for he in the j-th dendritic subsection, is computed

through the potential of the adjacent subsections j − 1 and j + 1. Let h1 and hn

be the potentials in the first and last compartment, respectively. Since there is no

current flowing (i.e. no change of the potential h along z), one has

h1 = h2

hn = hn−1
(3.47)

Equations for the boundary compartments then become 9:

∂he1
∂t

= (Ke +Be)h
e
1 +Keh

e
2 + ce

∂hen
∂t

= Keh
e
n−1 + (Be +Ke)h

e
n + ce

(3.48)

3.2.7 Dendritic system in matrix form

Equations (3.38), for the entire dendrite, can be written as

∂h

∂t
= A ∗ ĥ + c + J (3.49)

where ĥ is the n+ 2-dimensional vector ĥ = [h1, h1, h2, ...hn−1, hn, hn]T , c and J are

the n-dimensional vectors

c =

[
hr

τe
, ...,

hr

τe

]
,

J =

[
1

τe
J(h1, z), ...,

1

τe
J(hn, z)

]
, (3.50)

9Here, the equations for the boundaries are written considering that synaptic inputs are not

applied at the ends (i.e. J(h, z) = 0 at both the ends).
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and A is the (n− 2)xn matrix

A =



K B K 0 . . . . . . 0

0 K B K 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 K B K 0

0 . . . . . . . . . 0 K B K


.

3.2.8 Complete 3D system

In this section, the equations describing the full 3D model are reported, taking

into account the considerations and assumptions illustrated in previous sections.

The mathematical formulation of three-dimensional model is:

τe
∂he
∂t

(x, z, t) = −[hk(x, z, t)− hre] + λ2
∂2he
∂z2

(x, z, t)+

+ fsyn
∑
l

ψle(he)Ile(x, z, t)

τi
∂hi
∂t

(x, t) = −[hi(x, t)− hri ] +
∑
l

ψli(hi)Ili(x, t)

∂Ilk
∂t

= Ĩlk

∂

∂t
Ĩlk(t) = −2γlkĨlk − γ2lkIlk +Nβ

lkSl(hl) + Φlk + plk(t)

∂Φek

∂t
= Φ̃ek

∂

∂t
Φ̃ek(x, t) = −vΛek

{
2Φ̃ek + vΛekΦek(t)− vΛekN

α
ekSe(he)

}
+

+
3

2
v2∇2Φek(x, t)

(3.51)

Performing a spatial discretization and using the 5-point stencil approximation

for the cortical connections, the spatio-temporal evolution of the (n+13)-dimensional

state variable

S = (he, hi, Iee, Ĩee, Iei, Ĩei, Iie, Ĩie, Iii, Ĩii,Φee, Φ̃ee,Φei, Φ̃ei)
T (3.52)
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representing the activity of a single microcolumn, is described by the following sys-

tem of discretized equations:

∂he1
∂t

= (Ke +Be)h
e
1 +Keh

e
2 + ce

∂he2
∂t

= Keh
e
1 +Beh

e
2 +Keh

e
3 + ce

∂he3
∂t

= Keh
e
2 +Beh

e
3 +Keh

e
4 + ce

... ...

∂hej
∂t

= Keh
e
j−1 +Beh

e
j +Keh

e
j+1 + ce +

1

τe
fsyn

[
ψee(h

e
j)Iee + ψie(h

e
j)Iie

]
... ...

∂hen−1
∂t

= Keh
e
n−2 +Beh

e
n−1 +Keh

e
n + ce

∂hen
∂t

= Keh
e
n−1 + (Be +Ke)h

e
n + ce

(3.53)

for the membrane potential of the excitatory dendrite, with synaptic input located

at compartment j;

τk
∂hk
∂t

(x, t) = −[hk(x, t)− hrk] +
∑
l

ψlk(hk)Ilk(x, t) (3.54)

for the membrane potential of the inhibitory population;

68



∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓee

(
Nβ
eeSe(he) + Φee + pee(t)

)
∂

∂t
Iei = Ĩei(t)

∂

∂t
Ĩei(t) = −2γeiĨei − γ2eiIei + eγeiΓei

(
Nβ
eiSe(he) + Φei + pei(t)

)
∂

∂t
Iie = Ĩie(t)

∂

∂t
Ĩie(t) = −2γieĨie − γ2ieIie + eγieΓie

(
Nβ
ieSi(hi) + Φie

)
∂

∂t
Iii = Ĩii(t)

∂

∂t
Ĩii(t) = −2γiiĨii − γ2iiIii + eγiiΓii

(
Nβ
iiSi(hi) + Φii

)

(3.55)

for the synaptic inputs,

∂

∂t
Φee = Φ̃ee

∂

∂t
Φ̃ee(x, t) = −vΛee

{
2Φ̃ee + vΛeeΦee(t)− vΛeeN

α
eeSe(he)

}
+

+
3

2

v2

∆x2
[
Φu
ee(xu, t) + Φr

ee(xr, t) + Φd
ee(xd, t) + Φl

ee(xl, t)− 4Φee(x, t)
]

∂

∂t
Φei = Φ̃ei

∂

∂t
Φ̃ei(x, t) = −vΛei

{
2Φ̃ei + vΛeiΦei(t)− vΛekN

α
eiSe(he)

}
+

+
3

2

v2

∆x2
[
Φu
ei(xu, t) + Φr

ei(xr, t) + Φd
ei(xd, t) + Φl

ei(xl, t)− 4Φei(x, t)
]

(3.56)

for the cortical connections.

The cortical input pee(t) has been modelled as white noise. The functions S and

Ψ appearing in the 3D system above have been described in Section 3.1, and are
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repeated here for completeness:

ψlk(hk) =
heqlk − hk(x, t)∣∣heqlk − hrk∣∣ (3.57)

Sk(hk) = Smaxk

/{
1 + (1− rabsSmaxk )× exp

[
−
√

2
hk(x, t)− µk

σk

]}
(3.58)

Note that the term in square brackets (divided by ∆x2), in Eq. (3.56), is the 5 points

stencil approximation to compute the Laplacian ∇2Φek. This approximation makes

the points of the grid coupled. The (n+13) equations of the system (3.53)-(3.56), for

one particular point of the grid, describing the dynamics of the state variables (3.52),

contains 8 more variables for the cortical connections Φs
ek of the nearest neighbours

points, where s = u (upper), r (right), d (down), l (left).

Using a matrix description, the system (3.53)-(3.56) can be written as:

∂S

∂t
= F(S) + P (3.59)

where P is the vector for the extra-cortical inputs plk.

The description of the entire two-dimensional grid is provided by N = p · p systems,

analogous to the system (3.53)-(3.56), containing therefore C = N(n+13) equations.

Denoting with Sc the C-dimensional vector representing the state variable for the

entire system, and with Fs the corresponding ODEs, we obtain the full system of C

equations:
∂Sc

∂t
= Fc(Sc) + Pc (3.60)

where the vector Pc is the vector for all the extra-cortical inputs plk. Note that the

non zero components of P are:

{
Pc,n+3,Pc,(n+13)+(n+3), ...,Pc,(N−1)(n+13)+(n+3)

}
(3.61)

The functions implementing the 2D and 3D systems with a single or multiple

microcolumns are reported in the Appendix.
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3.2.9 Stable points

In order to numerically detect the steady state solutions for both 2D and 3D

systems, we run a test simulation (without noise) until all variables reach their

steady state. At a first stage, we run the test simulation for a fixed amount of time.

However, this was not successfully leading to correct results, since the transient time

needed for the convergence highly depends on the parameters of the simulation. For

this reason, the duration has been set automatically during the test simulation,

depending on the convergence rate of the membrane potential to its steady value.

Initial values for excitatory and inhibitory membrane potentials are set between −55

mV and −65 mV. Other variables are initially set to zero. After running the system

for 2 seconds, we consider the values the variables are converging to and set these

as new initial conditions. This procedure is repeated until the convergence rate is

less than 0.01%. More details are illustrated in the code reported in the Appendix.

3.2.10 Non-Linear Power Spectra Densities (PSDs)

The system (3.53)-(3.56) has been numerically solved using forward Euler method

[178]. Simulations are run for 20 to 400 s. From the he time series, the power spec-

trum of frequencies has been calculated using the Welch’s estimator [214]. For this

purpose, the Matlab function pwelch (with window size = 1000, overlap of 50% of

window length, number of sampling = 1000, sampling frequency = 500, ‘onesided’

option) has been employed. An equivalent function to calculate the spectrum has

been also implemented from scratch (details are provided in the Appendix, script

win spec full grid). The frequency range is 0-250 Hz. For systems modelling more

than one microcolumn, the non-linear spectrum is calculated considering the sig-

nals of the N microcolumns included in the model, i.e. the time series of the so-

matic membrane potential of all the N populations (shown in Appendix A, script

win spec full grid).
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3.2.11 Linear PSD prediction

Liley and Bojak [36] found several parameter sets yielding power spectra sim-

ilar in shape to the ones encountered in humans. In all the analysed cases, they

found that a linearisation of the system was possible. The enormous advantage of

linearisation consists in the simplification of mathematical analysis and in a mas-

sive reduction of the computational time. A method has been elaborated by the

two scientists to predict the spectrum of frequencies from the Jacobian matrix of

the linearised two-dimensional system evaluated at a singular point. In the present

work, this approach has been extended to the three-dimensional system (3.60).

Defining the perturbation s(x, t) = S(x, t)− S∗, where S∗ is the singular point,

and expanding F around S to first order in s, one obtains10:

∂S

∂t
=
∂(S∗ + s)

∂t
=
∂s

∂t

= F(S∗) +
∂F

∂S
(S− S∗) +O[(S− S∗)2] + P

= 0 + J s +O(s2) + P

' J s+ P

(3.62)

where J is the Jacobian matrix of the function F(S), evaluated at S∗:

J ≡ ∂F(S)

∂S

∣∣∣∣
S=S∗

(3.63)

In the last step we considered that F(S∗) = 0, since S∗ is a singular point.

The Jacobian matrix J, having dimension [N(n + 13)] × [N(n + 13)], is almost

a block matrix in the individual populations. Each block has dimension (n+ 13)×
(n+ 13). Other 8 non-zero elements occur for each macrocolumn, corresponding to

the derivatives of Eqs. (3.56) for Φ̃ek with respect to the cortical connections Φek of

10Please, note that the subscript c is omitted, but the full system (3.60) is considered here.
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the nearest neighbour points

∂

∂Φl
ek

∂Φek

∂t
=

3

2

v2

∆x2

∂

∂Φd
ek

∂Φek

∂t
=

3

2

v2

∆x2

∂

∂Φr
ek

∂Φek

∂t
=

3

2

v2

∆x2

∂

∂Φu
ek

∂Φek

∂t
=

3

2

v2

∆x2

(3.64)

for k ∈ {e, i}.
In order for Eq. (3.62) to be a good approximation of Eq. (3.60), it should be

stable. In other words, if we start our simulation from a point that is close to the

equilibrium point S∗, i.e. if we consider a small disturbance s, the system should

quickly return to the singular point S∗. To guarantee the stability we also need the

noise term P to be small. To ensure the stability of our approximation we need that

all the eigenvalues λn of the system have real part Re λn < 0. The Jacobian matrix

is not symmetric, so we need to decompose it with left L and right R eigenvectors

matrices:

LR = R diag(λn)

LJ = diag(λn) L

LR = diag(en)

(3.65)

Applying the Fourier transform with respect to space to Eq. (3.62), one obtains

∂s(k, t)

∂t
' J s(k, t) + P(k, t) (3.66)

where J is the Jacobian matrix of the function F(S), evaluated at S∗, with the

formal replacement ∇2 → −k2

J ≡ ∂F(S)

∂S

∣∣∣∣∇2→−k2

S=S∗
(3.67)
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Performing this Fourier transform, the coupling terms in square brackets of Eqs. (3.56)

are substituted with the term −k2Φek, and Eqs. (3.64) become:

∂

∂Φl
ek

∂Φek

∂t
= 0

∂

∂Φd
ek

∂Φek

∂t
= 0

∂

∂Φr
ek

∂Φek

∂t
= 0

∂

∂Φu
ek

∂Φek

∂t
= 0

(3.68)

Each macrocolumn is then formally decoupled from other macrocolumns and the

Jacobian matrix J is a pure block matrix in the single populations. The decompo-

sition in right and left eigenvectors matrices for the matrix J is analogous to Eqs.

(3.65):

LR = R diag(λn)

LJ = diag(λn) L

LR = diag(en)

(3.69)

The sign of the eigenvalues λn depends on the parameter set and on the value of k2

in Eq. (3.67).

Applying the temporal Fourier transform to Eq. (3.62), one obtains

iωs = J ∗ s + P

diag(iω − λn) ∗ L ∗ s = L ∗P

s = R diag

[
1

en(iω − λn)

]
∗ L ∗P ≡ P ∗P

(3.70)

Let he,s be the somatic mean membrane potential of the population with index s of

the three-dimensional grid. In order to compute the power spectrum of frequencies

we need to compute
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N∑
s=1

|he,s(x, ω)|2 =
N∑
s=1

∣∣∣∣∣
N∑
j=1

[Ps,n+3(x, ω)]j [Pn+3(x, ω)]j

∣∣∣∣∣
2

(3.71)

where the [Pn+3]j corresponds to the non zero component (j− 1)∗ (n+ 13) + (n+ 3)

of the vector Pc (3.61), and likewise the index j in [Ps,n+3(x, ω)]j addresses the

corresponding column elements of the row s.

If one considers small grids of 4 × 4 points (i.e. 4 × 4 mm), it can be assumed

the “same” cortical noise input pee(t) (i.e. white noise with the same standard

deviation) for all the points of the grid, since it represents the same cortico-cortical

fiber connection. Furthermore, Fourier transforming, the noise terms become the

same constant. Moreover, since all the points are the same, instead of using Eq.

(3.71), the PSD can be calculated from one single macrocolumn j:

N∑
s=1

|he,s(x, ω)|2 = N ·

∣∣∣∣∣
N∑
j=1

[Ps,n+3(x, ω)]j [Pn+3(x, ω)]j

∣∣∣∣∣
2

(3.72)

that, in the case of a one point grid simply becomes:

|he,s(x, ω)|2 = |Ps,n+3(x, ω)Pn+3(x, ω)|2 (3.73)

Operating also a spatial Fourier transform, the PSD can be calculated using the

formula:

N∑
s=1

|he,s(k, ω)|2 =
N∑
s=1

∣∣∣∣∣
N∑
j=1

[Ps,n+3(k, ω)]j [Pn+3(k, ω)]j

∣∣∣∣∣
2

(3.74)

or, since all the points of the grid are equivalent

N∑
s=1

|he,s(k, ω)|2 = N ·

∣∣∣∣∣
N∑
j=1

[Ps,n+3(k, ω)]j [Pn+3(k, ω)]j

∣∣∣∣∣
2

(3.75)

which, in the case of a single microcolumn system, simply becomes:

|he,s(k, ω)|2 = |Ps,n+3(k, ω) Pn+3(k, ω)|2. (3.76)
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Chapter 4

3D model spatio-temporal activity

4.1 Introduction

In this Chapter, the activity of two-dimensional (2D) [36] and three-dimensional

(3D) NFM with the dendritic dimension is studied in terms of power spectral densi-

ties (PSDs) of the excitatory membrane potential and spatio-temporal patterns aris-

ing during rest activity. The portion of cortical sheet observed varies from 1 mm2 to

256 mm2 and includes one or multiple microcolumns distributed on a square grid (1

to 16x16 points). Neuronal excitatory populations extend their dendrites through

the 4 mm cortical depth, while inhibitory populations are modeled as points. In this

study, the dendrites are spatially discretized in 30 dendritic subsection.

While alpha-band activity appears in single and multiple microcolumns 2D sys-

tems, the model including the extended dendrite dramatically loses this rhythmicity

if one keeps all the original parameters of the 2D geometry unchanged. To deal with

this, the impact of a range of parameters on the alphoid dynamics is evaluated for

single macrocolumn systems, providing evidence for the possible occurrence of alpha

rhythm in 3D NF models.

Details about the main procedures implemented to numerically solve and analyse

the ODE system modelling the different geometries are provided both in this Chapter

and in the Appendix.
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4.2 2D NFM spectra

The ODE system (3.10) formulated in [36] has been implemented in MatLab and

solved using the Euler method1.

Figure 4.1 shows 6s time series of the excitatory membrane potential he, for a

system including a single microcolumn. This corresponds to 14 ODEs of the form

(3.10) where the cortical inputs Φek of the neighbour populations are set to zero.

The corresponding non-linear (blue) and linear (green) PSDs are shown in Fig. 4.3.

The non-linear spectrum is computed from 200s time series, while the linear one

is calculated using Eq. (3.73). Figures 4.2 and 4.4 show 6s time series and the

corresponding PSD for a system of 16 microcolumns, distributed on a square grid.

This configuration is mathematically represented by a 4x4 ODE system

∂S

∂t
= F(S) + P

where the state variable S is obtained by a concatenation of 16 14-dimensional state

variables corresponding to single macrocolumns and P is the vector for the extra-

cortical input. The neural populations are spatially coupled through the Laplacian

of the cortical connections, calculated through the 5-points stencil approximation,

as shown in Eqs. (3.10). The time series represented in Fig. 4.2 corresponds to

one single microcolumn located in a central region of the grid, while the non-linear

spectrum is computed taking into account the time series of all the microcolumns2.

Furthermore, the linear spectrum is calculated using Eq. (3.71). The procedure used

to calculate the linear spectrum for both one and multiple microcolumn systems use

the MatLab function jacobian. Analogous procedures are defined for the 3D system

and reported in the Appendix.

1The MatLab procedures used for the 2D system are analogous to the ones used for the 3D

system, which are reported in the Appendix.
2The procedure applied to calculate the non-linear spectrum for the entire grid is analogous to

the procedure non linear spectrum full grid used for the 3D system and illustrated in the Appendix.
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Figure 4.1: he time series for the 2D NF model [36] with a single microcolumn.
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Figure 4.2: he time series for the 2D NF model [36] with 4x4 microcolumns. The

signal is from a single microcolumn located in the central region of the square grid.
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Figure 4.3: Linear and non-linear spectra for one macrocolumn 2D system.

0 5 10 15 20 25
Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

  S

non-linear
linear

2D
4x4 microcolumns

Figure 4.4: Linear and non-linear spectra for a 4x4 macrocolumns 2D system.
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4.3 3D NFM spectra

The ODE system (3.53)-(3.56), including 30 dendritic compartments, has been

implemented in MatLab and solved using the Euler method. The main procedures

and functions used to calculate the time series and the linear and non-linear PSD

are reported and explained in the Appendix, for systems with a single or multiple

microcolumns.

4.3.1 Dynamics and computational time

Figure 4.5 shows 6s time series of the excitatory membrane potential he, for a

system including a single microcolumn. This corresponds to 43 ODEs of the form

(3.53)-(3.56) where the cortical inputs Φek of the neighbour populations are set to

zero. The corresponding non-linear (blue) and linear (green) PSDs are shown in

Fig. 4.7. The non-linear spectrum is computed from 200s time series, while the

linear one is calculated using Eq. (3.73). Figures 4.6 and 4.8 show 6s time series

and the corresponding PSD for a system of 16 microcolumns, distributed on a 4x4

square grid. This configuration is mathematically represented by a 4x4 ODE system

∂S

∂t
= F(S) + P

where the state variable S is obtained by concatenation of 16 43-dimensional state

variables corresponding to single macrocolumns and P is the extra-cortical input

vector. The neural populations are spatially coupled via the Laplacian of the cor-

tical connections, calculated through the 5-points stencil approximation, as shown

in Eqs. (3.56). The system is run for 50 seconds and the time series represented in

Fig. 4.6 corresponds to a single microcolumn located in a central region of the grid,

while the non-linear spectrum is computed taking into account the time series of all

the microcolumns3. Furthermore, the linear spectrum is calculated using Eq. (3.71).

In the procedure used to calculate the linear PSD of both one and multiple micro-

column models, the state variable of the system is defined as a symbolic vector and

the Jacobian matrix is computed using the MatLab function jacobian.

3See procedure non linear spectrum full grid illustrated in the Appendix.
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Figure 4.5: Somatic he time series for the 3D implemented NF model (3.51).
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Figure 4.6: Somatic he time series from one central microcolumn on a 4x4 square

grid representing a 3D NF model (3.51) with 4x4 populations.
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Figure 4.7: Linear and non-linear spectra for one macrocolumn 3D system, with 30

dendritic compartments.
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Figure 4.8: Linear and non-linear spectra for a 4x4 macrocolumns 3D system, with

30 dendritic compartments.
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The mean computational time to simulate the non-linear time series together

with the PSD are 3.2567 × 104 s (corresponding to 200 s cortical activity) and

3.0841 × 103 s (corresponding to 200 s cortical activity) for 2D system with single

or multiple microcolumns (4x4 grid), while the corresponding simulations for a 3D

system with 30 dendritic compartments take about 3.3072× 104 s and 4.0900× 103

s. The linear prediction based on the MatLab function jacobian takes 3.1998 s and

541.7867 s for the 2D cases; 4.4261 s and 1.6026 × 104 s for the 3D simulation. To

improve the linear computational time, a procedure to calculate the linear PSD has

been implemented from scratch for single microcolumn systems. The procedure cal-

culates the Jacobian matrix of the linearized system by computing all the derivatives

∂

∂S

∂S

∂t

and does not employ the use of symbolic variables. The time needed to compute

the linear PSD is 0.0821 s and 3.3072 s respectively for the 2D and 3D cases. The

procedure is reported in the Appendix , for the 3D configurations.

Although single microcolumn systems only reproduce the activity of 104 − 105

neurons, they are able to capture the qualitative features of multiple microcolumn

systems (Figs. 4.1-4.8). Both in Chapters 5 and 6 we mainly analyse the dynamics

of a single microcolumn 3D systems with 30 dendritic compartments. As future

work, this investigation could be extended to multiple microcolumns 3D systems.

4.4 Loss of alpha rhythm

As it can be noted from Figs. 4.3-4.4 and 4.7-4.8, the PSDs of the 3D systems do

not exhibit a peak in the alpha band typical of spectra encountered in humans. This

phenomenon is due to the spread of the signal along the dendrites. As expected, the

PSD dynamics of a 3D single microcolumn system where the length constant has

been set to zero is identical to the one of the 2D geometry (Fig. 4.9). A progressively

increase in λ makes the alpha peak smaller and shifted towards higher grequencies

(see Fig. 4.9), until, for λ = 0.9 mm, the alpha rhythmicity is lost (see Figs. 4.7 and

4.9). However, we found that this behaviour can be modified by either strengthening
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Figure 4.9: Linear spectra for one macrocolumn 3D system, with 30 dendritic com-

partments and different values of λ.

the synaptic input and/or changing some of the parameters of the system. For a

3D system with 30 dendritic compartments and input located at the soma (l =

24), an increase in synaptic strength is sufficient to restore the alpha rhythm (see

black line in Fig. 4.13). Conversely, for increasing input distance a simultaneous

physiological modification of other parameters of the model is needed to produce

alphoid spectrograms (Chapters 5 and 6). In the next Section the impact of some of

the parameters of the system on the alpha rhythmicity is explored, while in the next

Chapter an optimization technique is used in order to find “suitable” parameters,

e.g. giving rise to aplhoid dynamics.
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4.5 Parameters to restore the alpha rhythm

In this section the role of some of the parameters of the model on the system dy-

namics is illustrated, with a particular focus on the effect on the alpha rhythm. This

study is useful to detect suitable search spaces to identify physiologically admissible

parameter sets giving rise to alpha activity (Chapters 5 and 6).

Mean resting membrane potential hre and passive membrane decay time

constant τe

Figure 4.10 shows the equilibrium membrane potential along the dendrite for

systems with an without synaptic inputs. The equilibrium value is constant and

equal to the mean resting membrane potential hre for the passive cable, while it

presents a peak in correspondence with the input location when synaptic currents

are active. If no inputs are applied to the system (3.51), the membrane potential
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Figure 4.10: Equilibrium membrane potential he over the dendrite for 3D systems

with (blue line) and without synaptic input (orange line) respectively; λ = 0.9 mm.

converges to its resting value hre, with a rate that is regulated by the decay time

constant τe (Fig. 4.11).
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Figure 4.11: Membrane potential he converging to the mean resting membrane

potential hre, in 3D systems without synaptic input and with different decay time

constants τe; λ = 0.9 mm.

In Fig. 4.12 we see that larger hre imply higher frequency and less damping of

the alpha peak, since the system becomes more excitable with rest closer to firing

threshold.

In Fig. 4.13 we see that large τe mean higher damping of the alpha peak and less

damping of the delta peak. The system becomes less responsive to rapid changes

but shows prolonged reactions, cf. Fig. ??.
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Figure 4.12: Alpha-rhythm for 3D systems with different values of hre. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.
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Figure 4.13: Alpha-rhythm for 3D systems with different values of τe. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.
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Mean Nernst reversal potential heqee

The synaptic currents Ilk are modulated by the functions ψlk, defined in Eq. (3.57)

as

ψlk(hk) =
heqlk − hk(x, t)∣∣heqlk − hrk∣∣ .

Function ψee is shown in Fig. 4.14. The post-synaptic potential (PSP) is normed

at resting potentials, i.e. ψee(he) = 1 if he(t) = hre, and scaled by the function

ψ(he) at other potentials. If he(t) < heqee then the modulating function drives the

membrane potential towards positive values, while for potentials higher than the

Nernst reversal potential, he is pushed towards depolarization, since ψee(he) becomes

negative. Figure 4.15 shows that higher heqee induce less damping of the alpha peak.
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Figure 4.14: Function Ψee modulating the synaptic current Iee in Eqs. (3.53).

89



0 5 10 15 20
Frequency (Hz)

0

0.05

0.1

0.15

0.2

S

h
ee
eq = -18.038 mV

h
ee
eq - 1.95 mV

h
ee
eq + 1.95 mV

Figure 4.15: Alpha-rhythm for 3D systems with different values of heqee. The input

is located at the soma with fsyn = 9 and λ = 0.9 mm.

Post-synaptic potential rate constants γlk

The post-synaptic potential rate constants γlk regulate the post-synaptic mem-

brane potential response. Figure 4.16 shows the responses to single pulse input of the

form (6.2) for different γee. The input is applied at the soma4 in a 3D system with

fsyn = 9 and λ = 0.9 mm. A significant change in γee (of about 100 s−1) is needed

to induce small variations (of about 0.6 mV) in the membrane potential response.

Figures 4.17-4.20 show the impact of varying γee, γei, γie, and γii, respectively, on

the alpha rhythm of 3D systems with the input located at the soma, fsyn = 9 and

λ = 0.9 mm. Larger γee mean lower frequency and more damping of the alpha peak.

The same effect is obtained for larger γii. Larger γei implicates less damping of the

peak, while larger γie implicates higher frequency and less damping.

4Responses to pulse input will be analysed in Chapter 6.
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Figure 4.16: he responses to pulse input for 3D systems with different values of γee.

The input is located at the soma with fsyn = 9 and λ = 0.9 mm.
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Figure 4.17: Alpha-rhythm for 3D systems with different values of γee. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.
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Figure 4.18: Alpha-rhythm for 3D systems with different values of γei. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.
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Figure 4.19: Alpha-rhythm for 3D systems with different values of γie. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.
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Figure 4.20: Alpha-rhythm for 3D systems with different values of γii. The input is

located at the soma with fsyn = 9 and λ = 0.9 mm.

4.6 Spatio-temporal patterns

The spatio-temporal dynamics of 2D and 3D systems consisting of 256 micro-

columns (distributed on a 16x16 square grid) is illustrated in this section. The mem-

brane potential of the 3D system has been observed at 4 different cortical depth:

at the soma (compartment 24), in a proximal region (compartment 22, distance

d = 0.2667 mm from the soma), in a central and distal apical domains (correspond-

ing to compartments 15 and 6, distances d = 1.2 mm and d = 2.4 mm, respectively).

For each configuration, the spatio-temporal patterns for the entire grid are repre-

sented, while the 6s time-series correspond to the activity of one of the macrocolumns

of the system. A factor fsyn = 9 has been introduced for the synaptc input located

at the soma. Results are shown in the following figures (4.21-4.30) and indicate

that as the distance from the soma increases, the amplitude and frequency of the

membrane potential oscillations is reduced.
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Figure 4.21: he time series for the 2D NF model [36] with 16x16 microcolumns. The

signal is from a single microcolumn located in the central region of the square grid.

Figure 4.22: he cortical activity for the 2D NF model [36] with 16x16 microcolumns.
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Figure 4.23: Somatic (compartment 24) he time series from a single microcolumn of

the 3D NF model (3.51) with 16x16 microcolumns.

Figure 4.24: Somatic (l = 24) he cortical activity for the 3D NF model (3.51) with

16x16 microcolumns.
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Figure 4.25: Proximal (compartment 21) he time series from a single microcolumn

of the 3D NF model (3.51) with 16x16 microcolumns.

Figure 4.26: Proximal he (l = 22) cortical activity for the 3D NF model (3.51) with

16x16 microcolumns.
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Figure 4.27: Central apical (compartment 15) he time series from a single microcol-

umn of the 3D NF model (3.51) with 16x16 microcolumns.

Figure 4.28: Central domain he (l = 15) cortical activity for the 3D NF model (3.51)

with 16x16 microcolumns.
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Figure 4.29: Distal apical (compartment 15) he time series from a single microcolumn

of the 3D NF model (3.51) with 16x16 microcolumns.

Figure 4.30: Distal he (l = 6) cortical activity for the 3D NF model (3.51) with

16x16 microcolumns.
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4.7 Discussion

The 3-dimensional cortical NFM including the dendritic dimension has been

developed starting from the 2-dimensional Liley and Bojak model [36]. Firstly,

the model [36] has been implemented and the alpha-rhythmicity typical of human

cortical activity at rest has been reproduced. Secondly, the dynamics of the 3D

model has been explored.

The technique to predict the power spectra density (PSD) from the Jacobian

matrix of the linearised system evaluated at a singular point was formulated by

Liley and Bojak in [36]. Having performed a Fourier transform of the linear system

with respect to both space and time, the authors calculated the PSD using equation

(3.74) considering all possible wave numbers k, while equations (3.56) are formally

decoupled5. In the present work, only the temporal Fourier transform is applied

and the PSD is computed taking into account the contribution of all microcolumns

(using Eq. (3.71)), spatially coupled through the cortical input6. Results show that,

in close proximity to a stable fixed point, the formula accurately predicts the PSD

for both 2D and 3D systems of 16 microcolumns distributed in a 4x4 grid.

Equally, close to the stable fixed point, the linear prediction matches the non-

linear spectrogram for systems consisting of one microcolumn. Moreover, under

the given condition of isotropic and homogeneous connectivity, our results show

that a single microcolumn exhibits spectra tipically similar to the ones of multiple

microcolumns.

Alpha-rhythmicity in the 3D model

Naively extending the 2D NF model to include a dendritic dimension keeping all

the parameters of the 2D model [36] unchanged, results in a 3D model that loses

the alphoid dynamics, as a consequence of the loss of signal along the dendrite.

5The Laplacian of the cortical input Φek of Eqs. (3.51) is formally replaced with the square of

the wave number, ∇2 → −k2. As a consequence, the cortical input Φek of each microcolumn is

not coupled with the cortical variable of neighbour populations.
6The Laplacian of the cortical input Φek of Eqs. (3.51) is computed using the cortical input of

neighbour populations through the 5-points stencil approximation (see Eqs. (3.56)).
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Our findings provide evidence that the alpha-rhythm can be restored by introduc-

ing a factor fsyn strengthening the synaptic inputs, and/or modifying some of the

parameters of the model.

Spatio-temporal patterns

The spatio-temporal activity of the 2D NFM has been compared with the one

of the 3D NFM, for 4 different cortical depths: at the soma, in a proximal domain,

in central and distal apical regions. The two models (2D and 3D) consist of 256

microcolumns distributed in a 16x16 square grid. In the specific configuration con-

sidered for the 3D model, a synaptic factor fsyn = 9 has been introduced for the

synaptic input located at the soma. Results show that, over the entire network, the

membrane potential of the proximal regions is slightly reduced both in amplitude

and oscillation frequency, while the activity is significantly reduced in the apical do-

mains. This behaviour can be regulated by modifying the dendritic length constant

and other parameters of the system.
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Chapter 5

Use of Particle Swarm

Optimization to find optimal PSDs

5.1 Introduction

In this chapter the use of the Particle Swarm Optimization (PSO) technique, ap-

plied to detect PSDs similar in shape to the ones observed in humans, is illustrated.

The approach is based on the optimization of some parameters of the model with

respect to an objective function measuring this similarity. Although this algorithm

have been applied in [36] with the same purpose, it is the first time it is used to

optimize the dendritic parameters of a 3D Neural Field Model in order to detect

“good” spectra.

The analysis of the results that followed the literature’s study and the imple-

mentation of the algorithm from scratch, has been particularly rich in terms of new

directions arose from my research. Different systems (in terms of distribution of

synaptic input along the dendrite) have been analyzed and optimal solutions have

been found for some specific configurations. The investigation on the cases where the

solutions were not optimal as expected required a deeper analysis and determined a

substantial improvement of my research. A deeper understanding of the dynamics

of the system has been acquired with respect to the functions and parameters of the

system. Different techniques have been developed to improve the performance of
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the algorithm, involving both the choice of the PSO parameters and a progressive

improvement of the algorithm’s objective function.

5.2 Particle Swarm Optimization (PSO) litera-

ture

The Particle Swarm Optimization (PSO) is a computational method used to find

best solutions to nonlinear global maximization and minimization numeric problems.

The PSO was first introduced in 1995 by James Kenney and Russell C. Eberhart

[215], to describe the social behaviour of bird flocking or fish schooling. It is based

on the idea that all the individuals (particles) work in the same way. Therefore

the global best solution, is provided by adjusting, at each step, the trajectory of

each individual toward its own best location and toward the best location among all

the particles of the entire swarm. Since its first appearance, PSO techniques have

gained increasing attention both in science and technology. The fields of applica-

tions include electric power systems [216], image clustering and pattern recognition

[217, 218], artificial intelligence based neural networks [219–222], nonlinear regres-

sion [223], system control [224], heating systems [225], geotechnical engineering [226],

Cloud workflow scheduling [227]. An extensive survey of PSO applications is pro-

vided in [228] and [229]. Due to the wide range of possible applications, the PSO

technique evolved in several developments and variants [230, 231]. A reviews on both

theoretical- experimental studies and recent developments can be found respectively

in [232] and [233].

The nature of PSO, its successful applications to solve nonlinear problems to-

gether with its suitability to optimize neural networks and find optimal solutions in

multidimensional parameter spaces, makes it a promising approach to my problem.

The nonlinear cortical system I developed in my thesis is particularly sensitive to

the wide variety of parameters included the model. As seen in previous chapters

the problem of finding specific values for the parameters leading to PSDs shapes en-

countered in humans, is particularly interesting for the purpose of the present work,

and can be approached only with sophisticated optimization techniques as the PSO.
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5.3 How the PSO algorithm works

The PSO technique is a computational method that iteratively improves the

candidate solutions with regard to a given fitness function (also called cost function

or objective function). The fitness function is the function that need to be optimised

(minimised or maximised). The positions of the particles in the search-space are the

candidate solutions. How “good” is the position of a certain particle is determined

by the evaluation of the fitness function in that position. At each iteration, the

particles adjust their positions and velocities in the search-space according to simple

rules: their movement is influenced by their local known best position and also by

the global best known positions in the entire search-space. This process is expected

to make the swarm eventually converge towards its best solution.

The basic version of the PSO algorithm is illustrated in this section. Formally,

let

f : Rm → R

be the fitness function to be minimized (or maximized). Let

S ⊂ Rm

be the m-dimensional search-space where the M particles are located, each having

a position xi ∈ S and a velocity vi ∈ Rm, for i ∈ {1, ...,M}. The goal is to find a

solution xbest ∈ S such that

f(xbest) < f(y) ∀y ∈ S.

We want to find the best solution within the search-space S. Let blo ∈ Rm and

bup ∈ Rm be respectively the lower and upper bounds defining the legal region

S for the positions xi. Let pi be the best known position of particle i among all

the positions visited by i, and let g be the best known global position of the entire

swarm (i.e. the position giving the smallest fitness evaluation among all the positions

visited by all the particles of the swarm).

The particles are initialized with uniformly distributed initial positions

xi,0 ∼ U([blo,bup]) ∀i ∈ {1, ...,M} (5.1)
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Each particle’s best position is initialized to its current initial positions

pi,0 = xi,0 ∀i ∈ {1, ...,M}, (5.2)

while the global best g is initially defined as

g0 = pj where f(pj) = min {f(pi,0) : i ∈ {1, ...,M}} . (5.3)

Finally the velocities can be initialized to zero or have a uniform random distribution:

vi,0 ∼ U([− | bup − blo |, | bup − blo |]) ∀i ∈ {1, ...,M}

At each step t+ 1:

• The particles are moving influenced by the best local position xi reached so

far and by the current best global position g. The formulas to update the

velocities vi(t+ 1) are discussed below, while the positions are updated to:

xi(t+ 1) = xi(t) + vi(t+ 1) (5.4)

• The fitness function is evaluated in all the positions xi and the best local

position pi (for each particle i) is updated if a better local evaluation of the

the fitness has been found:

pi(t+ 1) = xi(t+ 1) if f(xi(t+ 1)) < f(pi(t)), ∀ i ∈ {1, ...,M}

• The global best g is updated if among all the best local solutions a global

better evaluation has been found:

g(t+ 1) = pi(t+ 1) if f(pi(t+ 1)) < f(g(t)) ∀ i ∈ {1, ...,M}

that is equivalent to

g(t+ 1) = pj(t+ 1) where f(pj(t+ 1)) = min {f(pi(t+ 1)) : i ∈ {1, ...,M}} .

Different formulas have bee used in literature to update the values of the particles

velocities. The original formula introduced by [215] is:

vi(t+ 1) = W0 vi(t) + wsoc rand (pi(t)− xi(t)) + wcog rand (g(t)− xi(t)) (5.5)
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where rand is a random number in between 0 and 1; the parameter W0 (inertia

weight) has been proved to have a better control over the velocity of the swarm

particles [234]; finally, the factors wsoc and wcog, modulating respectively the social

and cognitive term in Eq. (5.5), control the behaviour and the efficacy of the PSO

method [234]. In the last two decades, a variety of studies have investigated on

the parameters of the swarm velocities, to improve the overall performance of the

algorithm. Clerc and Kennedy introduced in 2002 a new variant of PSO [235], based

on a constriction factor α ensuring a better convergence of the search procedure.

The velocity formula they introduced is:

vi(t+ 1) = α
(

vi(t) + wsoc rand (pi(t)− xi(t)) + wcog rand (g(t)− xi(t)
)

(5.6)

where

α =
2

2− w− |
√

(w − 4)w |
and w = wsoc + wcog. (5.7)

As other optimisation algorithms, the PSO is easy to fall into local optima in

high-dimensional spaces [236]. To deal with this problem, a great number of inves-

tigations have been carried out in the last decades, based on new “topologies” for

the PSO. The topology of the swarm defines the subset of particles with which each

particle can exchange information. At each iteration, the particles update their

positions and velocities according to the evaluation of the fitness function of the

“neighbours”. As previously explained, they tend to converge towards the parti-

cle located in the best position. The canonical version of the algorithm is based

on a global topology, meaning that all particles share the same global best position

and converge towards this unique best evaluation. Alternative local topologies have

been proposed, where the particles only share information with a subset of particles

[237] and therefore tend to converge towards local best positions. These subsets,

defining the new neighbourhood of the particles, can be geometrical [238] or social

[239]. Algorithms with local neighbourhood schemes take inspiration from realistic

swarms and generally provide more accuracy [240]. The reason behind the better

performance is the reduced probability to fall into local minima [234, 239, 241, 242].
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In fact, whenever a particle approaches a local minimum it only influences its neigh-

bourhood, while other particles explore the rest of the search space.

5.4 Applying PSO to neural fields

We used the PSO algorithm to detect possible “good solutions” for the 3D NFM,

in terms of PSD shapes encountered in humans. As seen in previous chapters, the

flat spectra obtained naively extending the 2D model [36] into a 3D configuration, is

mainly the consequence of the loss of signal along the dendritic tree that makes the

system overall “less excitable”. We remind the reader that, in the present work, the

notion of excitability, explained in Section 3.2.5, is highly related to the capability

of the system to generate alphoid spectra. In fact, as it will be explained in Section

6.2, systems that are more responsive to synaptic inputs are more likely able to give

rise to alpha rhythm.

As seen in Section 4.5, several parameters have an impact on the alpha rhyth-

micity of the system. A manual search of possible combinations leading to “good”

spectra would be intractable, due to the non-linear nature of the system. For this

reason, we decided to use the PSO technique to address this problem. We have

mainly studied two different parameter spaces, taking into account some of the pa-

rameters discussed in Section 4.5. The exploration of search spaces including other

parameters would be an interesting target for future work.

The boundaries of the search-spaces are defined according to the physiological

range of variability of the parameters. The particles positions represent particular

states of the system, defined by fixed values of the search-parameters. The particles

update their movement, in the parameter space, according to the evaluation of a

fitness function that measures the similarity of the resulting PSD to typical PSDs

observed in humans.

The procedure particle swarm implementing the PSO Algorithm with global

neighbourhood has been implemented from scratch and is reported and commented

in the Appendix.
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5.4.1 Assumptions

The analysis has been conducted on single microcolumn systems1, with standard

configuration:

– Inhibitory neuronal populations have point-shaped bodies.

– Excitatory neuronal populations have dendrites extending through the 4mm

cortical depth. Dendrites are modelled as linear cables divided in 30 compart-

ments and soma located in compartment 24.

The location of the synaptic input varies along the dendrite from the somatic

compartment up to distal compartments.

In cases where the swarm global best solution does not improve (i.e. the variation

in the fitness evaluation is less than a certain tolerance µ) for more than k consecutive

iterations, the PSO search is interrupted and the MatLab function “fminsearch”,

that is more efficient into finding local minima, is used.

Settings

The investigated search spaces involve some of the parameters influencing the

alpha rhythm discussed in Section 4.5. For each different location l of the synaptic

input and for every different value of the dendritic length constant λ, we run the

PSO algorithm in the search-space S1 defined by:

S1 =
{
heqee, γee, fsyn

}
(5.8)

The parameter γee modulates the response of the excitatory membrane potential to

a single excitatory pulse input: smaller values of γee corresponds to larger responses

of both the membrane potential he and the synaptic excitatory current Iee. The

parameter heqee is the mean Nernst reversal potential2. Results for this search space

are illustrated in this Chapter, for different input locations and electrotonic length

constants.

1This means that the velocity term in the equations for cortical connections (3.53) is zero.
2See Section 4.5 for more details about the parameters and their impact on the alpha rhythm.
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In addition, a number of PSO simulations have been run in the search space S2:

S2 =
{
τe, h

r
e, fsyn, λ

}
(5.9)

The time constant τe affects the time decay of the signal along the dendrite and

the mean resting membrane potential hre influences the steady states and the ex-

citability of the system3. Results are shown in Section 6.8, for different dendritic

configurations.

Lower and upper bounds for the parameters are illustrated in the table 5.1.

The parameters τe, γee, h
eq
ee and hre vary in their physiological ranges defined in Ta-

bles 3.1 and 3.2. The range of variability considered for the dendritic length constant

λ is [0.1, 2] mm (discussed in Section 3.2.3). We considered fsyn ∈ [8, 1000], where

both the bounds have been set heuristically based on observations of the results.

blo bup

Synaptic dendritic factor fsyn 8 1000

Postsynaptic excitatory potential rate constant γee 100s−1 1000s−1

Mean Nernst membrane potential heqee -20 mV 10 mV

Passive membrane decay time constant τe 5 ms 150 ms

Dendritic length constant λ 0.1 mm 2 mm

Mean resting membrane potential hre −80 mV −60 mV

Table 5.1: Range of variability of the parameters of the search-spaces for the PSO.

The swarm has a total of M = 40 particles and operates N = 500 iterations.

Thus, legal positions for the particles in an m-dimensional parameter space, are

m-dimensional vectors of the form

x = (x1, ...xm) ,where xj ∈ [blo,j, bup,j] ,∀j ∈ {1, ...,m}.

3See Section 4.5 for more details about the parameters and their impact on the alpha rhythm.
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The initial condition for the position of the particles is a matrix Xinit having

dimension M x m. The i-th row of the matrix contains the initial spatial coordinates

of the i-th particles in the search-space S. They are uniformly randomly distributed

in [blo,bup].

Xinit =



x11 x12 . . . x1j . . . x1m

x21 x22 . . . x2j . . . x2m
...

. . . . . . . . . . . .
...

xi1 xi2 . . . xij . . . xim
...

. . . . . . . . . . . .
...

xM1 xM2 . . . xMj . . . xMm


. (5.10)

The velocities are initialized to zero, while the local and global best are initialized

according to (5.2) and (5.3). We used the the classic version of the PSO Algorithm,

with a communication structure based on a global topology. Positions and

velocities are updates according to formulas (5.4) and (5.6) with a constriction

factor (5.7) to ensure convergence.

5.4.2 Fitness functions

We implemented two fitness functions to evaluate the similarity of the analysed

PSDs with PSDs encountered in humans:

1. The function f1 consists of different tests for the Jacobian prediction. Firstly,

the singular point solution should lead to excitatory and inhibitory firing rates

S between 0.1 and 20 s−1. The other tests evaluate the shape of the linear

eigenspectrum, based on the power in the δ (0-4 Hz), θ (4-7.5 Hz), α (7.5-13

Hz), and β (13-30 Hz) bands, and on maximum and minimum frequencies,

fmax and fmin, in each range. These criteria require that:

– 15-50% of total power is in δ band

– 10-25% of total power is in θ band

– 15-40% of total power is in α band

– 15-40% of total power is in β band

109



– power ratio θ/δ < 0.6

– power ratio θ/α < 0.7

– 12 Hz < SEF90 < 21 Hz, where SEF90 is defined as the frequency below

which 90% of power resides

– 1/3 f δmax < fαmin < 5 f δmax

– f θmin < 1/2 fαmax or f θmin < 1/2 f θmax

– f θmin < 0.9 f δmin

A cost is opportunely associated to each of these criteria. The cost is zero if

the criterium is satisfied, or positive if the spectrum does not meet the specific

criterium. More in detail, for each criterium an opportune interval [A1, A2]

is defined including the allowed regions of zero cost [B1, B2]. For example,

for the first criterium [B1, B2] = [15%, 40%] ⊂ [A1, A2] = [0%, 100%]. In

between the extrema [A1, B1] and [B2, A2] the cost increases linearly, with

a steepness varying depending on heuristic observation of the results. The

fitness evaluation is the sum of all the costs, and the swarm algorithm looks

for minimum evaluations of f1.

2. The fitness function f2 is a variation of the f1. We found that, in some observed

cases (but not in all cases), it performs better than the fitness f1. The test for

the firing rates S is the same as in f1. The last 4 criteria of f1 give an accurate

evaluation of the spectrum shape when the maximum peak of the spectrum

(after δ region) occurs at a frequency fmax in the α band. We then introduced

another criterium requiring fmax in the α band. Some requirements for the

total power in the bands have been also modified. All together, the criteria of

f2 are:

– 15-50% of total power is in δ band

– 8-25% of total power is in θ band

– 30-50% of total power is in α band

– 5-25% of total power is in β band

– power ratio θ/δ < 0.6
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– power ratio θ/α < 0.7

– 12 Hz < SEF90 < 21 Hz, where SEF90 is defined as the frequency

below which 90% of power resides

– If fmax ∈ α band

– 1/3 f δmax < fαmin < 5 f δmax

– f θmin < 1/2 fαmax or f θmin < 1/2 f θmax

– f θmin < 0.9 f δmin

– If fmax ∈ θ band or If fmax ∈ β band, we require

– 7.5 Hz = θmax < fmax < βmin = 30 Hz

In this chapter we mainly used the fitness function f1 (except for results shown in

Fig. 5.5), while further PSO simulations in search space S2 using the fitness function

f2 will be presented in Section 6.8. The implemented fitness functions are reported

in the Appendix.

5.4.3 Results

After testing formulas (5.5) and (5.6) for the velocity update, we found the latter

performs better with the 3D system, ensuring the existence of best solutions in most

proximal locations for the synaptic input. We also tried different social and cognitive

parameters (as wsoc = 1.5 and wcog = 1.5), finding that the values wsoc = 1.3 and

wcog = 2.8 used in [36] work better in all the analysed cases.

Best solutions for 3D system with λ = 0.9 mm

Figures 5.1 and 5.2 show the best spectra found running a set of PSO simulations

in the search space S1 for 3D configurations with electrotonic lentgh constant λ = 0.9

mm. The corresponding best positions and fitness evaluations are illustrated in

Tables 5.2 and 5.3.
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Figure 5.1: PSDs from PSO solutions (simulation A) in the search-space S1 with

fitness function f1, for different synaptic locations l.
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Figure 5.2: PSDs from PSO solutions (simulation B) in the search-space S1 with

fitness function f1, for different synaptic locations l.
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Table 5.2: Best positions from PSO simulation A.

best x

Input

location l
heqee γee fsyn

fitness

evaluation

24 −18.038 291.5 9 4.034

23 −20 856.22 871.573 42.91

22 −20 725.243 1,000 49.061

21 −12.065 620.807 300 48.451

20 −18.038 291.5 48 11.155

Table 5.3: Best positions from PSO simulation B.

best x

Input

location l
heqee γee fsyn

fitness

evaluation

19 −19.975 281.041 100 8.588

18 −19.975 281.041 680.34 6.753

17 −10 200 219.912 8.969

16 −7.982 150.631 753.682 8.955

15 9.967 157.471 917.758 9.927

14 10 127.591 1,000 22.829

As it can be noted from the graphs, optimal spectra are obtained for proximal

and distal region up to compartment 15 (corresponding to a distance from the soma

of 1.2 mm). Compared to proximal input configurations of Fig. 5.1, distal inputs
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induce higher frequency of the alpha peak (Fig. 5.2). We found that for dendritic

distances larger than 1.2 mm (compartments 14 to 1) the PSO algorithm does not

find any parameter set generating alphoid dynamics.

Best solutions for 3D system with λ = 1.6 mm

Our second set of PSO simulations has been carried out for configurations with

electrotonic length constant λ = 1.6 mm. Best spectra are shown in Figs. 5.3 and 5.4

and the corresponding best positions and fitness evaluation are reported in Tables 5.4

and 5.5. As for the first set of simulations, the frequency of the alpha peak is larger

for more distal input locations. Good spectra are obtained up to compartment 9 (2

mm from the soma). Despite the low fitness evaluation for input locations l = 23 and

l = 24 (see Table 5.5), the shape of the corresponding PSDs (Fig. 5.4) is not similar

to typical PSDs encountered in humans [36]. Moreover, although configuration

l = 13 has a “better” PSD, the corresponding fitness evaluation is larger than those

of configurations l = 23 and l = 24. To deal with this problem, we implemented the

fitness function f2 (Section 5.4.2). Results for these 3 configurations are shown in

Fig. 5.5 and Table 5.6. As mentioned before, however, the fitness function f2 does

not perform better than f1 for all configurations.

Computational time

The simulations have been carried out on the CINN’s cluster of the Department

of Psychology at University of Reading. In a 3-dimensional search space, each PSO

simulation for a specific input configuration takes on average 5.6× 104 s.
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Figure 5.3: PSDs from PSO solutions (simulation C) in the search-space S1 with

fitness function f1, for different synaptic locations l.
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Figure 5.4: PSDs from PSO solutions (simulation D) in the search-space S1 with

fitness function f1, for different synaptic locations l.
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Table 5.4: Best positions from PSO simulation C.

best x

Input

location l
heqee γee fsyn

fitness

evaluation

8 9.824 203.41 995.636 16.457

9 7.943 170.895 594.307 10.657

10 10 230.514 697.388 8.322

11 2.149 233.416 323.43 8.525

12 −20 214.895 951.747 7.137

Table 5.5: Best positions from PSO simulation D.

best x

Input

location l
heqee γee fsyn

fitness

evaluation

13 −16.442 275.309 468.525 7.182

14 −2.737 265.026 85.386 8.373

18 −19.139 1,000 489.761 20.621

23 −18.103 334.298 20.544 3.261

24 −20 331.454 17.012 2.005
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Figure 5.5: PSDs from PSO solutions (simulation E) in the search-space S1 with

fitness function f2, for different synaptic locations l.

Table 5.6: Best positions from PSO simulation E.

best x

Input

location l
heqee γee fsyn

fitness

evaluation

23 −19.65 331.096 22.478 0

24 −18.188 352.587 20.771 3.23 · 10−2

13 −16.442 275.309 468.525 2.6

5.5 Discussion

Although the PSO technique has been already used in [36] for 2D NFM to find

optimal parameters reproducing the alpha rhythm, in the present work it is applied
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for the first time to a 3D NF model. Dendritic parameters, namely the synaptic

factor and the dendritic length constant, not considered in [36], have been included

in the search space. Results suggest that 3D NF models can be used to explore the

role of the dendrite as filter for synaptic inputs.

Dendritic “democracy” and synaptic factor

Several morphological and physiological properties are diversified across the den-

dritic tree in order to maximise the current transfer to the soma [243, 244] and gen-

erally optimise neuronal processing. Examples are the progressive tapering of the

dendrites and protrusions and structural specializations frequently located at the

end of the dendrites [30], referred to as synaptic specializations. Other physiological

properties involve the distribution of ionic channels and currents along the mem-

brane [245–247], the filtering of synaptic inputs and the variation of the dendritic

length constant [163].

An important mechanism depending on the dendritic distance from the cell body

is the normalisation of the efficacy of synaptic inputs at the soma. This is often

referred to as “dendritic democracy” [31]. Due to the filtering behaviour of the

dendrite, somatic responses to inputs generated in the distal domains are much

more attenuated than those generated by more proximal synapses [150]. Recent

studies indicate that the democracy can be restored by a variety of mechanisms

compensating for the filtering in the synaptic input [31]. One of the possibilities is

the scaling of the synaptic strength (i.e. the synaptic conductance) with the distance

from the soma. In the present work, this corresponds to increasing the synaptic

factor fsyn of equation (3.34). Our results suggest that a synaptic factor is necessary

to reproduce the alpha rhythmicity encountered in human electroencephalogram

recordings. According to the basic idea of “democracy”, this factor tends to be

higher when the input arrives from synapses located in distal dendritic domains.

Another solution for the synaptic filtering is the synchrony with other distal inputs

or with input in different dendritic domains. The “democratic” role of both the

synaptic factor and the simultaneous synaptic activation will be more extensively

discussed in the next chapter.
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Our results suggest that higher values of the length constant are more likely

to give rise to alpha rhythmicity when synaptic inputs are located in more distal

regions (up to 2 mm from the soma corresponding to compartment 9; Figs. 5.3

and 5.4, Tables 5.4 and 5.5), while lower values of the length constant enhance the

alphoid dynamics in systems with synaptic inputs active in the proximal regions

(up to 1.2 mm from the soma corresponding to compartment 15; Figs. 5.1 and 5.2,

Tables 5.2 and 5.3)). This phenomenon and its implication on dendritic democracy

will be discussed in the next chapter.
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Chapter 6

Analysis of human spectra in a 3D

Neural Field Model

6.1 Introduction

The extended 3D Neural Field Model including the dendritic dimension presents

new and interesting scientific challenges, involving the dynamics analysis and the

use of complex methods to explore biologically relevant results. Facing and solving

a wide variety of numerical problems has led to a constant upgrade of the computa-

tional model. Simultaneously, many simulations have been carried out to examine

the role of biological parameters in the dynamics. A constant reflection on both

biological and numerical matters has oriented the direction of the research and es-

tablished new targets to be explored, also resulting in a progressive improvement of

the model.

The main novelty successfully introduced in the 3D extended model is the synap-

tic strengthening factor fsyn, indispensable to compensate the loss of signal along

the dendrite and reproduce Power Spectra of Density (PSD) typical of humans, i.e.

exhibiting a peak in the alpha band of frequencies. With the usage of sophisticated

algorithms (such as the PSO algorithm illustrated in Chapter 5), some regions in

the parameter space have been detected where the PSD exhibits a peak in the alpha

band of frequencies. The algorithm searches for optimal PSDs, predicted from the
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Jacobian of linearised system evaluated at a stable point.

However, the regions for “good” spectra in the parameter space are not com-

mon and their occurrence seems to be predominant for high values of the synaptic

strengthening factor.

In this chapter, the most important properties of the single microcolumn 3D

system are illustrated. Firstly, the role of the synaptic factor fsyn on the model

dynamics is explored when a single pulse input is applied to systems with differ-

ent number of compartments, confirming the behaviour qualitatively illustrated in

Section 3.2.5. The response of the system to single pulse input is also studied for

different values of dendritic length constant λ (in systems with a fixed number of

compartments). Results are consistent with the physiological description of the

dendritic length constant (provided in Section 3.2.3). Secondly, the relationship

occurring between the stable points (calculated with the procedure illustrated in

Section 3.2.9) and the linear spectra is illustrated, for some particular configura-

tions (i.e. for some specific values of λ and fsyn). The results will be confirmed in

the study conducted in Section 6.6, where the dynamics is systematically studied

for all possible values of λ and fsyn, for each possible location l of the synaptic

input. Finally, the findings illustrated in Section 6.6 will be further enhanced using

multiple inputs configurations and optimal variation of some parameters, through

the PSO technique with fitness function f2.

6.2 Role of the synaptic factor in single pulse re-

sponses

Most of my results confirm that, in all the 3D systems observed, a factor strength-

ening the synaptic input is required to reproduce an alpha rhythm in the PSD. The

strengthening factor is the most important novelty introduced with the 3D extension

of the pre-existent 2D Neural Field Model [36], and its crucial role on the dynamics

is here studied by looking at the responses of systems, with different number of

compartments, with or without this factor. As qualitatively described in Section
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3.2.5, the synaptic factor is strictly related to the extension of membrane surface

where the synaptic input is located. There are two important issues that need to be

considered here:

1. The synaptic input that in the 2D configuration was applied to the entire “neu-

ron”, in the 3D geometry it is located in one (or more) specific dendritic site,

and then spreads in both directions in the entire cable. It is then reasonable

to expect a lower response at the injection site of the 3D system compared to

the 2D response. If we want to elicit the same response in the 2D system and

at the injection site of the 3D system, we can then consider to strengthen the

synaptic input with a factor fsyn.

2. If we increase the number of dendritic compartments (from n to m, with m >

n), since the length of the cable is fixed (L = 4 mm), the dimension of the

actual compartment is reduced. As qualitatively explained in Section 3.2.5,

less current will flow in the system if the compartments are smaller. We will

now prove that we can correct this effect by simply multiplying the synaptic

input by a factor fsyn = m/n.

Point 1. will be explored (section 6.3.1) by analysing in detail the dynamics of the

membrane potential in the two geometries 2D and 3D with number of compartments

n = 17 and n = 31, when a single pulse synaptic input is applied. We will prove that

3D response is reduced with respect to the 2D response, and that the different 3D

responses with n = 17 and n = 31 are due to the different size of the compartment

(i.e. different n). The linear increase of the factor with the number of compartments

(Point 2.) will be clearly proved in Sections 6.3.2 and 6.3.3.

It must be noted that the problem of finding the “right” factor when moving from

the 2D to the 3D geometry (with a specific number of compartments) is not trivial.

First of all, we want to clarify that we considered, as ”right” synaptic factor, the

one that is leading to the presence of an α peak in the PSD. Secondly, we point out

that, rather than comparing the 2D response with the 3D response at the injection

site, we should compare the 2D response with the entire dynamics of the dendrite,

with particular attention to the soma (since we calculate the PSD for the somatic
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he). Finally and as a consequence, the factor would depend on the location of the

input and its distance from the soma. Even in the simplest case where the input is

located at the soma, we found that the right factor is not always the one that makes

the amplitude of the local 3D response similar to the amplitude in the 2D response.

In Section 6.3.4 it will be shown that once we know (from the swarm simulation)

the right factor fAsyn for a system A with nA compartments leading to a PSD with an

α peak, the same spectrum can be obtained in a k n compartment configuration B

when considering a factor fBsyn = k fAsyn. The same effect is achieved by considering

k synaptic inputs with factors fBsyn = fAsyn.

6.3 Single pulse
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Figure 6.1: Single pulse input

We studied the dynamics of the membrane potential when a single pulse input is

provided to the system, and all the connections (local, long-range and extra-cortical)

are switched off. This means that the firing rate function (3.58) describing the local
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Figure 6.2: Somatic he responses to a single pulse input (6.2) applied at the soma,

in 2D and 3D geometries. The excitatory dendritic cable, in the 3D system, has 30

compartments. The dendritic length constant is λ = 0.9 mm.

activity in the Eqs. for the synaptic currents (3.53-3.56), is

Se = 0, (6.1)

leading to long-range connections1 Φek = 0. The white noise component of pee

describing the extra-cortical activity is zero. The single pulse input is implemented

through the “extra-cortical” connection pee, here representing an external input,

modelled as a step function:

pee = c ∗ p̄ee for 0.5s ≤ t ≤ 0.51s (6.2)

pee = c ∗ p̄ee otherwise (6.3)

where, c is a constant. A typical pulse input is illustrated in Fig. 6.1, for c = 6.5.

1Eq. 3.56 with Se = 0 means that Φek has no spatial and temporal variation. As a consequence

Φek(t) = 0, since initial conditions are Φek(0) = 0. Note that, the same result is obtained when

v = 0 (i.e. when there is no spatial coupling in the system).
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Figure 6.3: he dendritic basal (compartments 25 to 30) responses to single pulse

input (6.2) applied at the soma (compartment 24). The excitatory dendritic cable

has 30 compartments. The dendritic length constant is λ = 0.9 mm.

Equations for the synaptic currents:

∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓee

(
Nβ
eeSe(he) + Φee + pee(t)

)
∂

∂t
Iei = Ĩei(t)

∂

∂t
Ĩei(t) = −2γeiĨei − γ2eiIee + eγeiΓei

(
Nβ
eiSe(he) + Φei + pei(t)

)
∂

∂t
Iie = Ĩie(t)

∂

∂t
Ĩie(t) = −2γieĨie − γ2ieIie + eγieΓie N

β
ieSi(hi)

∂

∂t
Iii = Ĩii(t)

∂

∂t
Ĩii(t) = −2γiiĨii − γ2iiIii + eγiiΓii N

β
iiSi(hi)

(6.4)

126



0.5 0.6 0.7 0.8 0.9
time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

h
e
 m

V
l = 24

other colors:
j = 1 to 23

Figure 6.4: he dendritic apical (compartments 1 to 23) responses to single pulse

input (6.2) applied at the soma (compartment 24). The excitatory dendritic cable

has 30 compartments. The dendritic length constant is λ = 0.9 mm.

then become
∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓeeN

β
ee pee(t)

∂

∂t
Iei = Ĩei(t)

∂

∂t
Ĩei(t) = −2γeiĨei − γ2eiIee + eγeiΓeiN

β
ei pei(t)

∂

∂t
Iie = Ĩie(t)

∂

∂t
Ĩie(t) = −2γieĨie − γ2ieIie
∂

∂t
Iii = Ĩii(t)

∂

∂t
Ĩii(t) = −2γiiĨii − γ2iiIii

(6.5)
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Initial conditions for all the variables, except the membrane potentials, are set to

zero. As a consequence, Eqs. (6.5) can be written as:

∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓeeN

β
ee pee(t)

∂

∂t
Iei = Ĩei(t)

∂

∂t
Ĩei(t) = −2γeiĨei − γ2eiIee + eγeiΓeiN

β
ei pei(t)

∂

∂t
Iie = 0

∂

∂t
Ĩie(t) = 0

∂

∂t
Iii = 0

∂

∂t
Ĩii(t) = 0

(6.6)

It is useful here to note how pee contributes to the “synaptic input” Iee (it is the

only contribution in the equation for Ĩee in (6.5)-(6.4), since Φee = 0 and Se = 0)

and, therefore, to the membrane he at the injection site:

∂he
∂t

(t) =
1

τe

{
−[he(t)− hre] + λ2

∂2he
∂z2

(t) + ψee(he)Iee(t)

}
(6.7)

Figure 6.2 shows the somatic response to a single pulse input of the form (6.2) in

the 2D and standard 3D systems (with 30 dendritic compartments and soma located

at compartment 24), with the input applied at the soma (control case). The depo-

larizations hj in other compartments (25 to 30, and 1 to 23) are shown in Figs. 6.3

and 6.4.

6.3.1 Dynamics with different number of compartments

In Section (6.2) we have seen that 2D systems and 3D systems exhibit different

responses to single pulse inputs of the form (6.2). Here, illustrate in detail the
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dynamics of the systems, to explicitly show how the 3D geometry and the number n

of dendritic subsections modify the equations for he to produce lower responses in the

3D geometry. Two 3D geometries will be considered, with 17 and 31 compartments.

For the purpose of clarity, the equations for synaptic currents and for the exci-

tatory membrane potential at the injection site at reported here, for both the 2D

and 3D geometries. As explained in previous section, the pulse input (6.2) consists

of a step current injected through the excitatory synaptic current Iee, while the in-

hibitory current Iie is set to zero, as well as the the local and long-range connections

(Slk = 0 and Φek = 0). Equations (3.55) for the excitatory synaptic current

∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓee

(
Nβ
eeSe(he) + Φee + pee(t)

) (6.8)

then become

∂

∂t
Iee = Ĩee(t)

∂

∂t
Ĩee(t) = −2γeeĨee − γ2eeIee + eγeeΓee ∗ p(t)

(6.9)

where p(t) is the pulse injection of the form (6.2).

The 2D and 3D Eqs. (3.1) and (3.38)

τe
∂he
∂t

(x, t) = −[he(x, t)− hre] +
∑
l

ψle(he)Ile(x, t)

τe
∂he
∂t

(x, t) = −[he(x, t)− hre] + λ2
∂2he
∂z2

(z, t) +
∑
l

ψl(he)Il(z, t)

(6.10)

simply become2:

∂he
∂t

(t) =
1

τe

{
−[he(t)− hre] + ψee(he)Iee(t)

}
(6.11)

2Please note that, in Eq. (3.1), the dependency on the position of the neural population x on

the grid has been removed, since only one population (i.e. one point of the 2 dimensional grid)

is considered here; also, Eq. (3.38) does not depend on the dendritic coordinate z, given that the

equation describes the potential of a single compartment (where z is fixed).
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∂h

∂t
(t) =

1

τe

{
−[he(t)− hre] + λ2

∂2he
∂z2

(t) + ψee(he)Iee(t)

}
(6.12)

Rearranging these equations, using the finite difference approximation

∂2hj
∂z2

' hj−1 − 2hj + hj+1

dz2
. (6.13)

and defining the excitatory synaptic current as

Ieesyn(t) =
1

τe
ψee(he)Iee(t) (6.14)

one has:

∂he
∂t

(t) = − 1

τe
he(t) + Ieesyn(t) + ce (6.15)

∂he
∂t

(t) = Ke hj−1(t)−Be hj(t) +Ke hj+1(t) + Ieesyn(t) + ce (6.16)

where

ce =
hre
τe

Ke =
λ2

τedz2
(6.17)

Be =

(
1

τe
+

2λ2

τedz2

)
=

(
1

τe
+ 2Ke

)
(6.18)

and j indicates the compartment of the injection site (j − 1 and j + 1 are adjacent

compartments).

We want to remind the reader that ∆z is defined as

∆z =
l

n
(6.19)

where l is the dendritic length (4 mm) and n is the number of compartments used in

the discretization of the neural cable. It is useful to note the quadratic dependence

of both Be and Ke on the number of compartments:
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Ke =
λ2 n2

τe l2
(6.20)

Be =

(
1

τe
+

2λ2 n2

τe l2

)
(6.21)

The dynamic of both Eqs. (6.15) and (6.16) are illustrated below, varying the

number n of compartments3 and evaluating the impact of each term contained in

the ODEs on the depolarization or hyperpolarization of the membrane. The values

of n considered in this study are n = 1 (2D), n = 17 and n = 31. The injection

site is always the central compartment, respectively j = 9 and j = 16. The local

responses in the three cases are illustrated in Fig. 6.5.
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Figure 6.5: Local responses to single pulse stimulus, for different number of com-

partments n.

When analysing the differential Eq. (6.15) one should observe that the synaptic

current is the force that is driving the depolarization of he, while the negative term

−he(t)
τe

is pushing the potential back towards negative values (resting membrane po-

tential is typically around −60 mV). The evolution of these driving forces over time

3As it is easy to note, Eqs. (6.15) and (6.16) are identical when λ = 0.
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is plot in Figs. 6.6 and 6.7, where, for clarity, the variables are plotted subtracting

their resting values. The resulting force (i.e. the time evolution of Eq. (6.15),
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Figure 6.6: Time evolution of the hyperpolarising term appearing in (6.15) (the

ODE for he in the 2D system).

including the constant term ce), is plotted in Fig. 6.8. As it can be noted from

the figure, the depolarising term corresponding to the synaptic excitatory current is

predominant on the hyperpolarization, given the difference in amplitude of the two

forces represented in Figs. 6.6 and 6.7. Figure 6.9 shows the same driving forces of

Fig. 6.8 for the 3D cases corresponding to n = 17 and n = 31. The time derivatives

of he have a lower amplitude when increasing the number of compartments n. This

explains the difference in amplitude of the solutions of Fig. 6.5, while their sharpness

and the extension over time are explained by the progressive shift of the derivatives

towards the left in Fig. 6.9. The reason for this dynamic lies in the depolarizing

and hyperpolarizing terms of Eq. (6.16) and in their dependence on the number of

compartments n. While the synaptic current has a similar amplitude in the 2D and

3D cases (see Fig. 6.10 for comparison between 2D and 3D with 17 compartments),

the hyperpolarising terms in (6.16) have an massive impact on the new dynamics.

To be more precise, the difference in between the depolarising “Ke terms” and the
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Figure 6.7: Time evolution of the depolarising term appearing in (6.15) (the ode for

he in the 2D system).
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Figure 6.8: Time evolution of Eq. (6.15) (ode for he in the 2D system).
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Figure 6.9: Time evolution of ODEs Eqs. (6.15) and (6.16) for different number of

compartments n.

hyperpolarising “Be term” result in a total hyperpolarization

Kehj−1(t)−Behj(t)+Kehj+1(t) = n2 λ2

τeL2
[hj−1(t)−2hj(t)+hj+1(t)]+

1

τe
hj(t) (6.22)

that is higher than the 2D hyperpolarization. Results are shown in Fig. 6.11. For

the 3D cases, the total hyperpolarization is comparable in size to the depolarization

due to the synaptic current. The values for Be and Ke in the three different systems

are illustrated in table 6.1.

Overall, this explains that the reduced 3D response, compared to the 2D re-

sponse, is due to an increased hyperpolarization term (6.22) in the equation for the

excitatory membrane potential. This term quadratically depends on the number of

compartments. As a consequence, systems with increasing number of compartments

will exhibit lower response to single pulse inputs.
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Figure 6.10: Time evolution of the depolarising terms (i.e. synaptic currents) ap-

pearing in (6.15) and (6.16) for n = 17 and n = 31.
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Figure 6.11: Time evolution of the hyperpolarising terms appearing in (6.15) and

(6.16) for n = 17 and n = 31.
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2D
3D

n = 17

3D

n = 31

λ (mm) 0 0.9 0.9

n 1 17 31

n2 1 289 961

∆z (mm) 0 0.0235 0.0129

Ke 0 110.378 367.036

Be -7.544 -228.301 -741.616

1/τe (ms−1) 7.544 7.544 7.544

Table 6.1: Cable equation constants of Eqs. (6.15) and (6.16) for n = 17 and n = 31.

6.3.2 Compensating the loss of signal

In this section, the dendritic response to single pulse input is explained, for

systems with different number of dendritic segments and with different synaptic

factors fsyn. For this analysis, the following configurations have been considered:

• System A has nA = 27 compartments;

• System B has nB = 3 nA = 81 compartments;

• The synaptic factor fsyn is 1 in both systems;

• The input is located in the central compartment, at a position p = 0.2 mm

along the dendritic coordinate z, corresponding to compartments jAP = 14 and

jBP = 41 in the two systems;

• In both systems the somatic compartment is located at a position s2 = 0.3185

mm along z. (This corresponds to jAsoma = 22 and jBsoma = 65);

• The he responses to the single pulse input (6.2) are checked in three different

positions: at the injection site p, at the soma s2 and at an intermediate position

between p and s2, s1 = 0.2741 mm, (with jAs1 = 19 and jBs1 = 56)
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Figure 6.12: Schematic representation of two dendritic systems A and B, having

n and 3n compartments, synaptic input (6.2) located at position p, and soma at

position s2.

A schematic representation of the two systems is provided in Fig. 6.12. Please,

note that figures are merely illustrative and the actual number of compartments

represented is reduced. The he responses of systems A and B, at the three locations,

are shown, respectively, in figures 6.13 and 6.14. The maximum peaks at p,s1 and s2

are [0.5978, 0.0958, 0.0451] mV in A and [0.2032, 0.0325, 0.0153] mV in B (the ratio

in between the maximum peaks in the two cases is [2.9416, 2.9445, 2.9533] mV).

We maintain the same number of compartments of B and add a synaptic factor

fsyn = 3, compensating for the reduction of the maximum peaks observed when

moving from system A to B. This new configuration C is illustrated in Fig. 6.15.

The responses of systems A and C are compared in Fig. 6.16. Peaks in C are

[0.6032, 0.0965, 0.0453] mV. A similar result is obtained in configuration D, where

3 inputs (6.2) with synaptic factor fsyn = 1 are located in 3 different compartments

(illustration in Fig. 6.17, results in Fig. 6.18).
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Figure 6.13: he responses (at positions p, s1 and s2) to a single pulse input (6.2)

applied p, in system A, i.e. nA = 27 compartments with synaptic factor fsyn = 1.
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Figure 6.14: he responses (at positions p, s1 and s2) to a single pulse input (6.2)

applied p, in system B, i.e. nB = 81 compartments with synaptic factor fsyn = 1.
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Figure 6.15: Schematic representation of two dendritic systems A and C, having n

and 3n compartments, soma at position s2, synaptic input (6.2) located at position

p with different synaptic factors, fsyn = 1 (A) and fsyn = 3 (C).
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Figure 6.16: he responses (at positions p, s1 and s2) to a single pulse input (6.2)

applied p, in system A (n compartments) without factor (fsyn = 1) and in system

C (3n compartments) with synaptic factor fsyn = 3.
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Figure 6.17: Schematic representation of two dendritic systems A and D, having n

and 3n compartments, soma at position s2, synaptic input (6.2) located at position

p in A and at positions p− 1, p, p+ 1 in D, synaptic factors, fsyn = 1 in both cases.
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Figure 6.18: he responses (at positions p, s1 and s2) to a single pulse input (6.2)

applied p, located at position p in A and at positions p − 1, p, p + 1 D, synaptic

factors, fsyn = 1 in both cases.
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6.3.3 General dependence of the synaptic factor on the num-

ber of dendritic compartments

The maximum depolarization at the injection site (during a pulse simulation) is

depending both on the length constant λ and on the number of compartments n. We

will explain in the next section (6.4) why the depolarization peak, at the injection

site, decreases with increasing λ. Typical values for the maximum depolarization

reached along the dendrite during a pulse simulation for systems with a different

number of compartments are illustrated in Fig. 6.19. In these simulations, the same

pulse input (6.2) is located in the central subsection and the length constant is fixed

at λ = 0.9 mm.

The maximum depolarisations (blu line) at the injection site, as functions of the

number of dendritic compartments n, are illustrated in Fig. 6.20. The figure shows

that the depolarisation decreases as 1/n (the orange line represents the funtion

f(n) = c/n, where c = hmax101 ∗ 101 and hmax101 is the maximum depolarization at the

injection site for the system with n = 101 dendritic subsections). As a consequence,

the factor to be considered when moving from n to m compartments is fsyn = m/n.

Some examples are illustrated in Fig. 6.21.
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Figure 6.19: Max depolarization along the dendrite during a pulse simulation (6.2),

for systems with different number of compartments n. The dendritic length constant

is fixed at λ = 0.9 mm.
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Figure 6.20: The max depolarization at the injection site, during a pulse simulation

(6.2), is inversely proportional to the number of compartments n; c = hmax101 ∗ 101

and hmax101 is the maximum depolarization at the injection site for the system with

n = 101 dendritic subsections.
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Figure 6.21: he response to a single pulse (6.2) for systems with n = 31 compart-

ments is the same as the responses of systems with m = 61 and m = 81 compart-

ments and factors fsyn = m/n.
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6.3.4 Effect of synaptic factor and multiple inputs on linear

spectra

In the previous sections, it has been shown that:

When moving from a system A with n compartments to a system B with m = k · n
compartments (k ∈ R), the he responses along the dendrite are preserved by simply

considering the linear relationships:

fBsyn = k · fAsyn, or fBsyn = fAsyn for k different inputs (6.23)

where fXsyn is the factor that multiplies the synaptic input in the system X, X ∈
{A,B}. Importantly, when using the relationships (6.23), also the PSD shape is

preserved (shown below).

An example is illustrated in Fig. 6.22, for a standard configuration (30 dendritic

compartments, input and soma located at compartment 24).
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Figure 6.22: Using the linear relationships (6.23), for the synaptic factor fsyn, the

PSD shape is preserved when moving from systems with n = 30 to m = k ·n = 2 ·30

compartments.
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6.4 Role of λ on the dendritic dynamics

In this section, the influence of λ on the dendritic dynamics is analysed in config-

urations where a single pulse input (6.2) is applied to the system. We consider here

the standard system with n = 30 dendritic compartments, soma and input located

at compartment 24. Both local (l = 24) and distal (j = 15) responses are plotted

respectively in the Figs. 6.23 and 6.24. As can be noted in the figures, lower values

of λ enhance the local response at the injection site (Fig. 6.23), while larger values of

λ improve the propagation of the signal, eliciting larger distal responses (Fig. 6.24).

This is confirming what explained in Section 3.2.3.
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Figure 6.23: Lower values of λ lead to higher responses to a pulse (6.2) at the

injection site. The system has 30 compartments and both soma and input are

located at compartment 24.
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Figure 6.24: Higher values of λ enhance the propagation of the signal along the

dendrite and lead to higher distal (j = 15) responses to a pulse (6.2) input located

at compartment 24. The system has 30 compartments and both soma and input are

located at compartment 24.
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6.5 Stable points and linear spectra

The prediction of the power spectrum of frequencies is made from the Jacobian of

the linearised system evaluated at a stable point. In this paragraph, the relationship

occurring between the stable points and the linear spectra is illustrated. As merely

illustrative cases, some spectra corresponding to limit cycles are shown at the end

of this section.

Figures 6.25 and 6.26 show the first 2 seconds time series for 3 different values

of the synaptic factor fsyn and the corresponding PSDs, for a system with the input

located at the soma (l = 24, control case). As it can be seen in the figures, the

convergence to a steady state solution and a corresponding spectrum with a peak

in the alpha region are obtained for fsyn = 9. Higher values of the factor lead to

self-sustained limit cycles (Fig. 6.25) and PSDs with peaks in the gamma band of

frequency (Fig. 6.26). For lower values of the factor, the time series always converge

to a stable point (see Fig. 6.27). The value fsyn = 9 is the critical value where a

Hopf bifurcation occurrs.
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Figure 6.25: Time series for 3 different values of the synaptic factor. The system

has 30 compartments and soma located at compartment 24. The input site is the

soma and the synaptic length constant fixed in the 3 simulations (λ = 0.09 mm).
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Figure 6.26: Linear PSDs, from Jacobian evaluation at stable (fsyn = 9) and unstable

points.

Interestingly, for increasing factors, lower that the critical value, the correspond-

ing spectra exhibit a peak that is progressively sharper and shifted towards higher

alpha frequencies (Fig. 6.28). This result is also confirmed for different locations of

the synaptic inputs, as shown in Fig. 6.29 where l = 20.
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Figure 6.27: 3 time series converging towards stable equilibria for synaptic factors

lower than the critical bifurcation value fsyn = 9. The system has 30 dendritic

subsections, soma and input located at compartment 24, λ = 0.09 mm.

0 5 10 15 20 25
Frequency (Hz)

0

0.05

0.1

0.15

0.2

0.25

  S

f
syn

 = 6

f
syn

 = 7

f
syn

 = 8

l = 24
i
soma

 = 24

n = 30
 = 0.9 mm

Figure 6.28: For increasing fsyn < 9 (corresponding to system configurations of

Fig. 6.27), PSD peaks are progressively shifted towards the right.
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Figure 6.29: PSD peaks progressively shifted to the right for increasing fsyn. The

system has 30 dendritic subsections with soma at compartment 24. The input is

located in the proximal dendritic region (l = 20); λ = 0.09 mm.
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As the location of the synaptic input is moved away from the soma, one can

observe that the bifurcation occurs for higher values of fsyn. Figures 6.30 and 6.31

show the time series and the corresponding PSDs for a system where the input is

located at compartment l = 20. The synaptic factor fsyn varies from 40 to 55. The

alpha peak progressively moves towards higher frequencies and becomes sharper for

values of fsyn approaching the critical value fsyn = 58. Figures 6.32 and 6.34 show

the results for fsyn ≥ 58 leading to self-sustained limit cycles. The sharp spectrum

corresponds to the critical value, while the other spectra present small peaks in the

beta range of frequencies. It must be noted, however, that in the case of limit cycles,

the linearisation is not suitable to predict the dynamics of the system.
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Figure 6.30: Time series for synaptic factors lower than the critical value. The input

is located in a dendritic region proximal to the soma (l = 20).
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Figure 6.31: Linear PSDs corresponding to configurations shown in Fig. 6.30; alpha

peaks move towards the right and become sharper for increasing fsyn approaching

the critical value.
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Figure 6.32: Time series obtained for synaptic factor greater or equal to the critical

value (fsyn ≥ 58) that are higher than the critical value. The input is located in a

dendritical region proximal to the soma (l = 20).
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Figure 6.33: Linear PSD corresponding the critical value (fsyn = 58). The input is

located in a dendritic region proximal to the soma (l = 20).
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Figure 6.34: Linear PSD corresponding for synaptic factor greater than thee critical

value (fsyn = 58). The input is located in a dendritic region proximal to the soma

(l = 20).
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6.6 PSDs depending on dendritic length constant,

synaptic factor and location

The presence of PSDs with a peak in the alpha range of frequencies has been

systematically investigated in this Section, with varying dendritic length constant

λ, synaptic factor fsyn, and synaptic input location l. For this systematic study,

the standard configuration (n = 30 dendritic compartments and soma located at

compartment 24) with input location varying along the dendrite has been considered.
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Figure 6.35: Frequency at which a peak in the PSD occurs, for a standard system

(n = 30 and soma at compartment 24) with input at l = 24.

In Fig. 6.35, the frequency at which a peak in the PSD occurs (we are not

considering the peaks in the δ region) is represented, as a function of the synaptic

factor fsyn and dendritic length constant λ, in the case l = 24. The red line in the

figure defines the up border of the “stable” region, i.e. the region where the steady
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states are stable equilibrium points and the Jacobian evaluation at the equilibrium

point is suitable to predict the system PSD. As expected, since the input is located

at the soma, lower values of λ enhance the local excitability and lead to PSD with

α peaks, for small values of synaptic factors (fsyn = 1.5− 2). For the same reason,

critical values of the synaptic factor (red line) are smaller for lower values of λ. For

λ = 2 mm, factors in between 12 and 16 lead to PSD with peaks in between 7 and

11 Hz. For each value of λ, factors higher than the critical points lead to linear

spectra with peaks in the β range. These results, confirm what we have illustrated

in Section 6.5.

Figure 6.36: Frequency at which a peak in the PSD is occuring, for a standard

system with input at l = 23.

Analogous graphs (Figs. 6.36-6.39) show the behaviour of the standard system,

respectively for synaptic input locations l = 23, 21, 20, 18. Moving the input away

from the soma progressively shifts the beginning of the unstable region towards

higher frequencies: in the figures, the region on the left of the graphs (small λ) is

stable for the represented values of the factor, and PSD have peaks at about 7 Hz.

Interestingly, compared to Fig. 6.35, in the case l = 23 (Fig. 6.36), the stable region
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Figure 6.37: Frequency at which a peak in the PSD is occuring, for a standard

system with input at l = 21.
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Figure 6.38: Frequency at which a peak in the PSD is occuring, for a standard

system with input at l = 20.
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Figure 6.39: Frequency at which a peak in the PSD is occuring, for a standard

system with input at l = 18.

border has a lower steepness (for λ > 0.4 mm). This slope almost falls to zero for

l = 21 (Fig. 6.37 for λ > 1.2 mm) and becomes negative for l ≥ 20 (Figs. 6.38-6.39,

for all values of λ). This is confirming that higher values of λ correspond to a better

propagation along the dendrite and enhance the “excitability” of the system when

the input is progressively moved away from the soma. As an example, for l = 18

(Fig. 6.39), when λ is increasing from 1.5 mm to 2 mm, smaller factors are gradually

needed to generate the α-rhythmicity, while for λ < 1.1 mm all factors considered

(25-50) do not lead to PSDs similar to the ones encountered in humans. In cases

as l = 18 (Fig. 6.39), to improve the excitability of the system and detect regions

for “good” spectra, it is possible to consider multiple inputs, (i.e. inputs located

in more than one compartment) and/or modify some parameters. In the following

sections both these techniques are briefly explored.
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6.7 Multiple synaptic inputs spectra

In the standard system (30 compartments, soma and input at compartment 24,

dendritic length constant λ = 0.9 mm), the right factor leading to a spectrum with

a shape typical of human spectra is f 3D
n=30 = 9. The system exhibits lower alpha

peaks or flat spectra for synaptic factors lower than 8 (see Section 6.5). However,

considering 2 or more additional inputs, located both in the apical and in the basal

regions, spectra with α-peaks are obtained for lower synaptic factors. Results are

shown in Figs. 6.40 and 6.41 for fsyn = 7 and fsyn = 4, respectively.
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Figure 6.40: The standard system (30 compartments, soma and input located at

compartment 24) with one single input exhibits an α-peak for fsyn = 9. Lower fac-

tors are needed if multiple inputs both in the apical and basal region are additionally

considered.
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Figure 6.41: The standard system (30 compartments, soma and input located at

compartment 24) with one single input exhibits an α-peak for fsyn = 9. Lower fac-

tors are needed if multiple inputs both in the apical and basal region are additionally

considered.
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6.8 New PSO spectra

Our results (Section 6.6) show that the standard system4 (n = 30, soma at

compartment 24) with synaptic input located at l = 18, presents spectra without

a “proper” alpha peak for λ < 1.1 mm and synaptic factors up to 50 (Fig. 6.39).

However, by changing some parameters, it is possible to enhance the “excitability”

of the system and obtain PSDs with α-peaks for some values of the synaptic factor.

The parameters that are modified in this study are the mean resting membrane

potential hre and the time constant τe, since hre influences the resting state of the

dendritic he, and both hre and τe affect the overall “excitability” of the system5.

Firstly, some good regions have been found manually. Secondly, the PSO algorithm

has been performed in the search-space S2 (defined in Section 5.4.1):

S2 = {τe, hre, fsyn, λ} (6.24)

using the fitness function f2, defined in Section 5.4.2.

The standard values for these two parameters are hre = −62.226 mV and τe =

132.55 ms. We found that, manually decreasing both parameters, within their phys-

iological range of variability, can lead to “good” spectra (for values of λ < 1.1 mm)

for factors that are lower for larger λ. Results are shown in Figs. 6.42 and 6.43, for

λ respectively 0.5 and 1 mm.

Similar results are obtained from the PSO search, as shown in Figs. 6.44 and

6.45. The range of variability of the parameters is defined in table 5.1. For λ

values lower than 1.1 mm have been used ( [0.6, 0.8] mm for simulation 1 shown

in Fig. 6.44, [0.4, 0.6] mm for simulation 2 shown in Fig. 6.45). The optima are

obtained respectively for

[τe, h
r
e, fsyn, λ] = [54.4 ms, − 60.0652 mV, 38.0582, 0.727 mm] and (6.25)

[τe, h
r
e, fsyn, λ] = [37.8 ms, − 60.00 mV, 31.7285, 0.60 mm] (6.26)

The spectra in the figures confirm that, by varying the parameters τe and hre,

good spectra can be obtained even for values of λ < 1.1 mm and input located

4The values for the parameters of the model are illustrated in Table 3.3.
5For a more detailed discussion about the impact of these parameters on the alpha rhythm, see

Section 4.5.
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at compartment l = 18. This result can likely be extended for configurations with

input located in the distal regions, opportunely varying the parameters in the search

spaces.
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Figure 6.42: Different values for hre and τe can lead to good spectra in the standard

systems, with input at l = 18 and fsyn = 30, while standard values hre = −62.226

mV and τe = 132.55 ms lead to flat spectra.
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Figure 6.43: Different values for hre and τe can lead to good spectra in the standard

systems, with input at l = 18 and fsyn = 30, while standard values hre = −62.226

mV and τe = 132.55 ms lead to flat spectra.
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Figure 6.44: Optimal spectrum obtained with the PSO in the search space S2 and

λ ∈ [0.6, 0.8] mm.
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Figure 6.45: Optimal spectrum obtained with the PSO in the search space S2 and

λ ∈ [0.4, 0.6] mm.
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6.9 Discussion

We have formulated a NFM with an extended dendritic tree that is able to cap-

ture the chief properties of human alpha activity, which is conceived as the main

rhythm of spontaneous EEG [248]. Pivotal to this endeavor has been testing the

new model dynamics to adopt plausible parameters. In particular, for the purpose

of characterizing alpha activity in terms of dendritic tree mechanisms, the research

effort has focused on dendritic parameters introduced in the 3D geometry. Our

study outlines plausible strength, density and distribution of synapses over the den-

dritic domains and points out the potential role in NF models of a dendritic length

constant varying with the distance from the soma. Furthermore, other parameters

of the model have been opportunely chosen, using the PSO technique, to give rise

to alpha rhythmicity. From a more generic perspective, we have proposed a possible

relation between the genesis of alpha activity and well known dendritic mechanisms

like dendritic democracy [31] and dendritic coincidence detection [134]. Moreover,

our results predict the role of a progressively increasing synaptic conductance on

the occurrence of abrupt changes in the alphoid dynamics [248], mathematically

corresponding to Hopf bifurcations.

Dendritic democracy and alpha-rhythm

The concept of dendritic democracy relies on the essential fact that the efficacy

of synaptic input is normalised at the soma [31]. To put it in another way, the

excitatory post-synaptic potentials (EPSPs) have the same somatic amplitude, in-

dependently of the location of the synapses where the EPSP is initiated. Dendrites

behave as leaky electric cables filtering the signals passing through them, causing

attenuation of EPSPs at the soma generated by inputs in the distal dendritic do-

mains [150]. Since the somatic response is nevertheless normalized, physiological

mechanisms compensating for the filtering behaviour of the dendrite are required.

The first evidence that synaptic efficacy could be scaled with the distance from the

soma has been provided by the pioneering work of Jack and Redman [249] on CA1

pyramidal neurons. After a couple of decades, the work of Magee and Cook [152]
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proved that the compensation is more likely due to an increase in synaptic conduc-

tance, precluding the hypothesis that voltage-gated channels could be responsible

for the genesis of this phenomenon. Nevertheless, voltage dependent channels have a

role in the amplification of synaptic responses when multiple synapses are activated

[152, 176]. Over the years a variety of studies have provided further experimen-

tal evidence for the scaling of synaptic efficacy with the distance from the soma

[32, 153, 250] and, although several mechanisms can be involved in the genesis of

the compensation, the scaling of synaptic strength over the dendritic membrane is

hypothesized to be the main cause underlying the dendritic democracy. The increase

of synaptic conductance could in turn originate from several intrinsic phenomena

like self-regulation activated through back propagation of action potential through

the dendritic tree [149] or synaptic plasticity [251, 252].

Independent of the intrinsic mechanisms responsible for the regulation of synaptic

efficacy with distance, the crucial strengthening effect of the synaptic conductance

can be reproduced through modelling choices boosting the synaptic inputs, especially

in the case of single synaptic inputs. The effect of a strengthened synaptic input with

distance has been studied here, proving that when a single pulse input is provided

to the 3D NF model, an increasing synaptic input is necessary to render the somatic

response independent of the dendritic input location.

Furthermore, the present work speculatively identifies the dendritic democracy

as a key mechanism responsible for the genesis of alpha-rhythmicity. Compared

to the 2D model [36], the present 3D NF model including the dendritic dimen-

sion necessitates an additional synaptic strengthening factor to reproduce the alpha

band activity, and this compensating mechanism has to increase with the distance

of the synaptic input. Our results also prove that the necessary factor linearly

increases with the number of dendritic compartments used for the spatial discretisa-

tion. Furthermore, multiplying the synaptic strength fsyn by a factor k is equivalent

to considering k simultaneuos inputs in adjacent locations, according to the idea

that synaptic democracy can be achieved by either increasing the synaptic conduc-

tance or by synchronous synaptic activation [31]. All these mechanisms (necessity

of intrinsic synaptic factor, linear increase of the factor with the number of com-
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partments and equivalence of strengthened and synchronous synaptic activation) are

preserving not only the somatic responses to pulse inputs but more importantly the

occurrence of alpha rhythmicity.

Our systematic study on the occurrence of alpha rhythm depending on synaptic

factor and dendritic length constant (Section 6.6) suggests that the synaptic strength

has to increase linearly in the proximal region, while for input in the central apical

domains the scale is likely to be faster than linear and other parameters of the

model have to be modified to achieve the alphoid PSD, as proved using the PSO

technique. These results are qualitatively in agreement with the work of Timofeeva

et al. [34], providing a mathematical exploration of the “democtratic” phenomenon.

In this paper, the scientists adopted a passive model of a dendritic tree and studied

a variety of key measures of synaptic compensation, finding that the linear scale

of synaptic strength required in the proximal region becomes supralinear in distal

region. Moreover, beyond some critical distance, besides the increase in the synaptic

strength, other mechanisms like active currents must be involved to compensate for

the input distance.

Dendritic coincidence detection

Our results suggest that, during asynchronous synaptic activation of proximal

and central dendritic domains, a factor strengthening the synaptic efficacy is essen-

tial to achieve the alphoid dynamics. However, beyond a critical distance6, a simul-

taneous modification of other parameters is needed to achieve PSDs with peaks in

the alpha-band (Section 6.8 and Chapter 5), together with significantly high fac-

tors7. Interestingly, during more synchronous activation of both basal and apical

domains, reasonably lower factors are sufficient for the genesis of alpha rhythm,

even without a further modification of other parameters of the system. Tipically,

dendritic coincident activation is studied for assessing the occurrence of action po-

6The critical distance from the soma is 0.8 mm, corresponding to an input located at compart-

ment 18. The parameters of the 3D NF model are illustrated in Table 3.3.
7In Chapter 5, the synaptic factor fsyn has value up to 1000 in many of the optimal solutions

provided by the PSO technique.
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tentials in single neuron models including active properties [134]. Here, coincidence

detection has been identified as a potential mechanism for the genesis of the alpha

activity. Broadly speaking, the general conditions that implicate the onset of action

potential in active models seem to promote the alpha activity in passive models of

the dendritic tree.

Dendritic length constant

Our study of physiologically admissible parameters giving rise to alpha-dynamical

states outlines possible inferences about the “suitable” value for the dendritic length

constant λ, i.e. values enhancing the onset of alpha rhythm. Both the exploration

of parameter spaces conducted in Chapter 5 and the numerical analysis illustrated

in Sections 6.4 and 6.6 provide good reasons to think that, in agreement with the

physiological role of λ [163], higher values of the length constant promote the alpha

rhythm when distal synaptic inputs are active, while lower values are more plausible

in the presence of proximal inputs. It is important to note that this observation is

pertinent in systems where inputs are activated in single dendritic domains and a

unique constant value of λ is assumed over the entire dendritic tree. This particular

estimation is coherent with the idea of dendritic democracy [31], in that a higher λ

enhances the propagation, preventing the loss of signal spreading towards the soma,

while lower values for the length constant impede the propagation of somatic inputs

towards the tree.

Synaptic strength and linear stability

Numerical analysis has revealed that increasing the synaptic strength generates

a progressive shift of the dominant PSD peak towards higher frequencies. This also

generally produces progressively sharper alpha resonances. If one further increases

the synaptic factor the equilibrium loses stability in a Hopf bifurcation, normally

occurring at a frequency of about 11-12 Hz. In [248], Liley and Bojak provided a

theory for the genesis of alpha rhythm, studying the dynamics of the Liley model

[36, 42, 253]. Although their model do not include a dendritic dimension, our results

are in agreement with their findings. The Liley model, in fact, exhibits an analogous

168



loss of stability in Hopf bifurcations if one increases the extra-cortical input pee. This

drives the model into oscillatory states at a frequency of about 11Hz. Indeed, both

the synaptic factor fsyn and the extra-cortical input pee strengthen the intensity of

the synaptic currents, driving the models into comparable dynamical states.
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Chapter 7

Conclusions and future work

Although some NF studies have partially explored the role of the denrite [138–

140, 140], NF theory has mainly used models in which the dendritic dimension

is collapsed into a point and the cortex is modelled as a two-dimensional sheet,

neglecting all the dendritic properties essential to model the cortical dynamics.

We have implemented and studied a three-dimensional cortical NF model in-

cluding the dendritic dimension. Our model represents the dynamics of a square

portion of the cortex (from 1 mm2 to 256 mm2) corresponding to the activity of a

number of cortical microcolumns (from 1 to 256). The model is an extension of the

2D NF model [36], and is capable of reproducing the alpha rhythmicity typical for

the human cortical activity at rest.

Both the non-linear and the linear power spectral densities (PSDs) of the mean

membrane potential have been calculated. The linear approximation of the PSD has

been found to be a good approximation of the non-linear one close to stable fixed

point, allowing a significant decrease of the computational time. The procedure

applied to find the linear PSD using the spatial Fourier transform is an extension to

the 3D geometry of the one used in [36] for a two-dimensional sheet. In the present

work, we have also developed a mathematical formulation to find the linear PSD,

without using the spatial Fourier transform. This formula is applied in systems

including several macrocolumns and it provides an accurate prediction as judged by
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comparing with spectra derived from a time series computation.

Naively extending the 2D NF model to a 3D geometry (with all the 2D param-

eters unchanged), leads to “flat” power spectra. However, we found that the alpha

rhythmicity can be reproduced by introducing a factor strengthening the synaptic

input. The impact of the factor on the dendritic dynamics has been investigated

in detail and its introduction has been motivated by taking into account the ef-

fective membrane surface where the input is applied. This allowed us to find an

important linear relationship between the strength of the synaptic input needed to

elicit a particular response and the extent of the surface where the input is applied.

Furthermore, by applying a simple conversion formula for the synaptic factor, it is

possible to elicit the same response in systems with different number of dendritic

compartments. Moreover, by applying the same formula, the alpha rhythm is also

preserved. The phenomenon of “dendritic democracy” [31] indicates the normaliza-

tion of inputs arriving at the soma from different dendritic locations. Our results are

in line with this mechanism compensating for the dendritic filtering [30] and suggest

that, to some extent, the dendritic democracy can be linked with the occurrence of

alpha rhythmicity.

Next, we have found that the alpha rhythm in the 3D model can be reproduced

by introducing the synaptic factor and simultaneously changing some of the 2D pa-

rameters. This simultaneous variation of some parameters is particularly needed in

configurations where the input is not located at the soma. The particle swarm op-

timization (PSO) technique has been used to detect these parameter sets for single

microcolumn 3D systems. We implemented from scratch the PSO algorithm and

explored different search spaces. The fitness function used has been progressively

improved to better evaluate the similarity of the spectra obtained with those encoun-

tered in humans. Additionally, this study could be extended by considering different

topologies for the communication of the particles in the swarm or by investigating

other parameter spaces. Moreover, further fitness functions could be developed and

the technique could be extended to multiple microcolumn systems.
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The alpha rhythm is easily reproduced if the synaptic input is located at the

soma or at locations proximal to the soma, for specific values of the synaptic fac-

tor f 3D
syn, depending on the intrinsic properties of the 3D model (in particular the

dendritic length constant and the extent of the area where the input is applied).

Interestingly, we found that synaptic factors lower than f 3D
syn can lead to spectra

with peaks in the alpha band if two simultaneous inputs are additionally applied

to the system, one in the basal domain and another in the distal dendrite. For

all the three synaptic inputs we have considered the same synaptic factor. Many

other configurations could be investigated involving simultaneous inputs in several

locations and with different intensity.

A systematic study on the PSDs has been carried out for different values of

synaptic factors, synaptic locations and dendritic length constant. This study re-

vealed that higher factors are needed to reproduce the alpha rhythmicity in systems

where the synaptic input is progressively moved away from the soma, and confirmed

the physiological role of the dendritic length constant in dendritic dynamics1. Re-

sults also suggest that higher factors, different parameters and multiple inputs can

generate alphoid spectrograms for distal synaptic input locations.

One of the topics that could be explored in the future is the implementation

of more realistic synaptic configurations where inhibitory and excitatory inputs are

applied separately in one or multiple locations. This would allow one to consider

inhibitory populations located in different cortical layers.

In addition, the results from NFMs including the dendritic dimension could be

compared to experimental data from local field potential (LFP) measurements.

Our 3D NF model is a valid starting point for any study that wants to include the

dendritic properties in the NF cortical dynamics. As an example, one can develop a

procedure for assimilating to the 3D-NFM experimental data from depth electrode

recordings. Other synaptic properties, depending on the dendritic tree, could be

1A larger dendritic length constant enhances the propagation of the signal along the cable.
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potentially included in the model, together with a more complex structure for the

dendritic cable. As an example, one could take into account different physiological

values for the dendritic length constant, depending on more realistic dendritic tree

geometries). Our expectation is that, due to their capability to incorporate a more

detailed dendritic microcircuitry and experimental depth data, 3D-NFMs will be

widely used in the future.
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Chapter 8

Appendix A

8.1 Time series, non-linear and linear prediction

The following scripts and functions illustrate how the 3D model with one or

multiple microcolumns have been implemented and their activity studied in terms

of non-linear and linear power spectral density.

8.1.1 single microcolumn 3D system

Script main 3D

• The parameters defining the dimension of the grid and the geometry of the

dendrite (number of compartments of the discretization, location of soma and

synaptic input) are assigned. Other parameters of the system are defined using

the function par set.

• The stable point of the system is calculated using the function sing point.

• Specifications for Euler method are assigned.

• Parameters for the cortical input modelled as white noise are defined. The

input is defined inside the function system 3D .

• Finally, the a 200s simulation in run using the forward Euler method.
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Function par set

The parameters of the system are defined, according to Table 3.3.

Function sing point

The stable point of the system is calculated using a procedure described in Sec-

tion 3.2.9.

• The parameters of the system are defined.

• The membrane potential, both excitatory and inhibitory, are initialised to

-62mV, while all the other variables are set to zero.

• The system is run for 3 seconds and temporary “stable” values are assigned to

all variables. Usually, the temporary value is the mean of the last 0.5 seconds

of the first test simulation.

• A loop of test simulation is run, until the convergence rate of the membrane

potential he is lower than 10−4 (this means that the difference in between the

new “stable” value for he and the current initial condition for he is less than

10−4). The initial condition for each simulation is the temporary “stable” point

of the previous test simulation. At each iteration a new stationary point is

calculated. The loop ends is the convergence condition is not satisfied within 5

iterations, meaning that the system most likely exhibiting a limit cycle, rather

than converging to a stable point.

Function forward euler

This function is implemented to numerically solve ordinary differential equation

(ODE) systems of the form

y(t)′ = F(t)

using forward Euler method [178]. The function F, the initial condition y(0), the

number N of iteration, the time interval and the size of the output y are opportunely

defined as input parameters (see comments in the code for more explanations). The

output are the solution y(T ) and the time vector T .
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Function system 3D

This function defines the 3D system

y(t)′ = F(t) + P

for one single microcolumn. The system is solved using the forward Euler method

(see script main 3D and function forward euler). The input parameters of the

function are

- variable “t” representing time

- the state variable “y”

- the set “param set” of parameters for the system

- the parameters “stdev pee, p eet, Noise” used to define the extracortical input

as white noise

For more details, see the comments in the code.

Function jacobian and linear PSD

This function calculates:

• the Jacobian matrix “J” of the linearized system

S′(t) = J s + P

where J is the Jacobian evaluated at the singular point “SP”, s is the per-

turbation defined as s = S− S∗ (S∗ is the singular point “SP”) and P is the

extracortical input vector. The state variable S is defined as a symbolic vector

(see more details in the code comments) and the Jacobian is calculated using

the MatLab function jacobian;

• the linear spectrum “Spe” of single microcolumn system using formula (3.73);

right and left eigen-matrices and eigen-values are previously computed using

the MatLab functions eig and diag ;

• the linear PSD “Spe norm”, normalised with respect to the area under the

spectrum curve.
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Input parameters are:

- the angular frequency “omega” defined as ω = 2πf , where f is the frequency

- the singular point “SP”

- the set of parameters “param set”

- the number “nex” of excitatory dendritic segments

- the input location “ind input”

- the somatic location “ihe soma”

- the electrotonic length constant “lam”

Function manual jacobian

This function calculates:

• the Jacobian matrix “J” of the linearized system

S′(t) = J s + P (8.1)

where J is the Jacobian evaluated at the singular point “SP”, s is the per-

turbation defined as s = S− S∗ (S∗ is the singular point “SP”) and P is the

extracortical input vector. The Jacobian is calculated from scratch, by com-

puting the all the derivatives
∂F(S)

∂S

• the linear spectrum “Spe” of single microcolumn system using formula (3.73);

right and left eigen-matrices and eigen-values are previously computed using

the MatLab functions eig and diag ;

• the linear PSD “Spec norm”, normalised with respect to the area under the

spectrum curve.

Input parameters are:

- the singular point “SP”

- the set of parameters “param set”

178























































8.1.2 Multiple microcolumn 3D system

Function system 3D full grid

This function defines the 3D system

Y(t)′ = F(t) + P

for a system with multiple microcolumns. The state variable Y is obtained by con-

catenation of state variables y describing single microcolumns. The system is solved

using the forward Euler method (see script main 3D and function forward euler).

The input parameters of the function are

- variable “t” representing time

- the state variable “Y”

- the set “param set” of parameters for the system

- the parameters “stdev pee, p eet, Noise” used to define the extracortical input

as white noise

- the matrix “F”, defining the coefficients for the 5-points stencil approximation

- the number “n var” of variables for each microcolumn

For more details, see the comments in the code.

Function spatial coupling matrix

This function is creating a matrix F to implement the 5-points stencil approxi-

mation for the cortical inputs Φek. Let

Φek = [Φ1
ek,Φ

2
ek, ...Φ

p∗p
ek ]

be the vector of the cortical connections of all the population (where Φi
ek is the

cortical connection of the microcolumn i) and Fi be the i-th row of F . Then the

multiplication Fi ∗ Φek gives the 5-points stencil approximation for microcolumn

i:

Fi ∗ Φek = [Φu
ek + Φr

ek + Φl
ek + Φd

ek − 4Φi
ek]i

where u, r, l, d stand for the upper, right, left, down nearest neighbour microcolomns.
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Function non linear spectrum full grid

This function calculates the non-linear PSD for a 3D multiple microcolumn sys-

tem. The spectrum is obtained by summing and then averaging the PSD of each

microcolumn calculated using the function win spec described above. Input param-

eters are: - the solution “Y” of the system Y′(t) = F(Y) solved with Euler method

(function forward euler)

- the time vector T (obtained solving the system with Euler method)

- the number “np” of microcolumns

- the number “nex” of excitatory dendritic segments

- the somatic location “ihe soma”

Both the PSD and the normalised PSD (with respect to the area under the

spectrum curve) are calculated. The output “f” is the frequency.

Function jacobian and linear PSD full grid

This function is used to compute the spectrum for a 3D system with multiple

microcolumn, using equation (3.71) and (3.72). The 2 evaluations give identical

spectra. The function, analogous to the function jacobian and linear PSD for one

microcolumn described above, calculates

• the Jacobian matrix “J” of the linearized system

S′(t) = J s + P

where J is the Jacobian evaluated at the singular point “SP”, s is the per-

turbation defined as s = S− S∗ (S∗ is the singular point “SP”) and P is the

extracortical input vector. The state variable S is defined as a symbolic vector

(see more details in the code comments) and is obtained by concatenation of

state variables of single microcolumns; the Jacobian is calculated using the

MatLab function jacobian;

• the linear spectra “spe371, spe372” are calculated using formulas (3.71) and

(3.72); right and left eigen-matrices and eigen-values are previously computed

using the MatLab functions eig and diag ;
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• the linear PSDs “spe371 norm, spe372 norm”, normalised with respect to the

area under the spectrum curve.

Input parameters are:

- the angular frequency “omega” defined as ω = 2πf , where f is the frequency

- the singular point “SPn” of the full grid system

- the set of parameters “param set”

- the matrix “F”, defining the coefficients for the 5-points stencil approximation

- the number “nex” of excitatory dendritic segments

- the number “np” of microcolumns

- the input location “ind input”

- the somatic location “ihe soma”

- the electrotonic length constant “lam”

For more details, see the code and comments below.
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8.2 Particle Swarm Optimization (PSO) algorithm

The following scripts and functions illustrate how the Particle Swarm algorithm

has been implemented and run.

Script run swarm fit1

This script is used to run the PSO algorithm varying the location of the synaptic

inputs.

• The geometry of the NFM is defined. Initial and final input locations are set

• The fitness function and the search space are defined

• Initial positions for the particles are set

• A loop of PSO simulations is run

• Outputs are stored in files

For more details, see comments embedded in the code below.

Function particle swarm

This function is the PSO algorithm described in Chapter 5, with global topology

defined in Section 5.3 and velocities updated using formula (5.6). The main steps

are illustrated below

• Initialization:

– The particles are initialized at uniform random positions x (corresponding

to “X” in the code)

– The best position p (“PX”) and the velocity v (“V”) of each particle

are initialized to zero

– The fitness evaluation f(p) (“FPX”) is initialized to Inf, for each particle

• At each iteration:
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– For all particles:

∗ The fitness function is evaluated at x; let f(x) be this evaluation

(FPX in the code)

∗ If f(x) < f(p) then both p and f(p) are updated (p = x and f(p) =

f(x))

– The global best position g (“bestx”) is calculated as the position corre-

sponding to the minimum evaluation (“fbestx”); f(g) = min(f(p))

– The positions x and velocities v are updated according to formula (5.6)

(particles converge towards the global best)

– If a particle is outside the allowable bounds then its position is set to the

closest bound and its velocity to zero

– The PSO stops if for more than n (“max stall iteration”) iterations the

best evaluation does not differ from the previous best evaluation more

than the tolerance µ (“tolerance”); see the code and comments for more

details

The inputs of the function are:

- the fitness function

- the number of parameters “n param”

- the number of particles “n particles”

- the initial positions for the particles “X init”

- the total number of PSO iterations “n iter”

- the tolerance “tolerance”

- the maximum number “max stall iteration” of allowed consecutive iterations

leading to a similar evaluations (see explanation above)

The outputs of the function are:

- the best position “bestx”

- the best evaluation “fbestx”

- the number of fitness calls “n fitness call”
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- the matrix “ALL” where the results of all iterations are stored (see embedded

comments for more details)

For a complete explanation of the algorithm see also Section 5.3; more details

about the implementation are illustrated in the comments embedded in the code

below.

Function fitness

The fitness function evaluates the similarity between the PSD at position x of

the search space and typical PSDs encountered in humans. This evaluation is based

on some criteria described in Section 5.4.2. A “cost” is associated to each criterium

and the fitness evaluation is the averaged sum of all the costs1.

The inputs of the functions are:

- the position x of the particle in the search space

- the number “nex” of excitatory dendritic segments

- the input location “ind input”

- the somatic location “ihe soma”

- the electrotonic length constant “lam”

The outputs are:

- the fitness evaluation “f min”

- the PSD for the current position x

- the vector of costs “all costs”

A number of preliminary conditions are checked before computing the best eval-

uation. These conditions correspond to cases where the linearization and linear PSD

prediction cannot be performed (see comments embedded in the code). For more

details about the criteria see both Section 5.4.2 and comments embedded in the code

below.

1The PSO algorithm make the particles converge towards the minimum fitness evaluation.
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[31] M. Häusser. Synaptic function: Dendritic democracy. Current Biology,

11(1):R10–R12, 2001.

[32] B. K. Andrasfalvy and J. C. Magee. Distance-Dependent Increase in AMPA

Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal

Neurons. J. Neurosci., 21(23):9151–9159, 12 2001.

[33] M. A. Smith, G. C. R. Ellis-Davies, and J. C. Magee. Mechanism of the

distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyrami-

dal neurons. The Journal of physiology, 548(Pt 1):245–258, 4 2003.

[34] Y. Timofeeva, S. J Cox, S. Coombes, and K. Josic. Democratization in a

passive dendritic tree: An analytical investigation. Journal of computational

neuroscience, 25:228–244, 3 2008.

[35] D. Liley, B. Foster, and I. Bojak. Co-operative populations of neurons: mean

field models of mesoscopic brain activity. Computational Systems Neurobiolo-

gyLiley, D., Foster, B., & Bojak, I. (2012). Co-operative populations of neu-

rons: mean field models of mesoscopic brain activity. Computational Systems

Neurobiology, 1–50. Retrieved from http://link.springer.com/chapter/10.,

pages 1–50, 2012.

[36] I. Bojak and D. Liley. Modeling the effects of anesthesia on the electroen-

cephalogram. Physical Review E, 71(4):041902, 4 2005.

[37] W. Rall. Theoretical significance of dendritic trees for neuronal input-output

relations. 1 1964.

252



[38] I. Bojak and M. Breakspear. Neuroimaging, Neural Population Models for. In

D. Jaeger and R. Jung, editors, Encyclopedia of Computational Neuroscience,

pages 1–29. Springer New York, New York, NY, 2013.

[39] G. Perea, M. Navarrete, and A. Araque. Tripartite synapses: astrocytes pro-

cess and control synaptic information. Trends in neurosciences, 32(8):421–31,

8 2009.

[40] G. Perea and A. Araque. GLIA modulates synaptic transmission. Brain

research reviews, 63(1-2):93–102, 5 2010.

[41] G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear, and K. Friston. The

dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS

computational biology, 4(8):e1000092, 1 2008.

[42] D. Liley, P. Cadusch, and M. Dafilis. A spatially continuous mean field theory

of electrocortical activity. 8 2009.

[43] H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in

localized populations of model neurons. Biophysical journal, 12(1):1–24, 1

1972.

[44] H. R. Wilson and J. D. Cowan. A mathematical theory of the functional

dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55–80, 9

1973.

[45] S. Amari. Homogeneous nets of neuron-like elements. Biological cybernetics,

17(4):211–20, 1 1975.

[46] S. Amari. Dynamics of pattern formation in lateral-inhibition type neural

fields. Biological cybernetics, 27(2):77–87, 8 1977.

[47] R. L. Beurle. Properties of a Mass of Cells Capable of Regenerating

Pulses. Philosophical Transactions of the Royal Society B: Biological Sciences,

240(669):55–94, 8 1956.

253



[48] J. S. Griffith. A field theory of neural nets: I: Derivation of field equations.

The Bulletin of Mathematical Biophysics, 25(1):111–120, 3 1963.

[49] J. S. Griffith. A field theory of neural nets: II. Properties of the field equations.

The Bulletin of Mathematical Biophysics, 27(2):187–195, 6 1965.

[50] F. H. Lopes da Silva, A. Hoeks, H. Smits, and L. H. Zetterberg. Model of

brain rhythmic activity. Kybernetik, 15(1):27–37, 1974.

[51] B. H. Jansen and V. G. Rit. Electroencephalogram and visual evoked potential

generation in a mathematical model of coupled cortical columns. Biological

cybernetics, 73(4):357–66, 9 1995.

[52] P. A. Robinson, C. J. Rennie, J. J. Wright, H. Bahramali, E. Gordon, and D. L.

Rowe. Prediction of electroencephalographic spectra from neurophysiology.

Physical review. E, Statistical, nonlinear, and soft matter physics, 63(2 Pt

1):021903, 2 2001.

[53] F. Wendling, A. Hernandez, J.-J. Bellanger, P. Chauvel, and F. Bartolomei.

Interictal to ictal transition in human temporal lobe epilepsy: insights from

a computational model of intracerebral EEG. Journal of clinical neurophys-

iology : official publication of the American Electroencephalographic Society,

22(5):343–56, 10 2005.

[54] V. Jirsa and H. Haken. Field Theory of Electromagnetic Brain Activity. Phys-

ical review letters, 77(5):960–963, 7 1996.

[55] S. Coombes, N. Venkov, L. Shiau, I. Bojak, D. Liley, and C. Laing. Model-

ing electrocortical activity through improved local approximations of integral

neural field equations. Physical Review E, 76(5):051901, 11 2007.

[56] S. Coombes. Large-scale neural dynamics: simple and complex. NeuroImage,

52(3):731–9, 9 2010.

[57] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and D. T. Liley. Theoreti-

cal electroencephalogram stationary spectrum for a white-noise-driven cortex:

254



evidence for a general anesthetic-induced phase transition. Physical review. E,

Statistical physics, plasmas, fluids, and related interdisciplinary topics, 60(6

Pt B):7299–311, 12 1999.

[58] M. L. Steyn-Ross, D. A. Steyn-Ross, and J. W. Sleigh. Modelling general

anaesthesia as a first-order phase transition in the cortex. Progress in bio-

physics and molecular biology, 85(2-3):369–85, 1 2004.

[59] D. T. Liley, P. J. Cadusch, and J. J. Wright. A continuum theory of electro-

cortical activity. Neurocomputing, 26-27:795–800, 6 1999.

[60] A. J. K. Phillips and P. A. Robinson. A quantitative model of sleep-wake

dynamics based on the physiology of the brainstem ascending arousal system.

Journal of biological rhythms, 22(2):167–79, 4 2007.

[61] D. A. Steyn-Ross, M. L. Steyn-Ross, J. W. Sleigh, M. T. Wilson, I. P. Gillies,

and J. J. Wright. The sleep cycle modelled as a cortical phase transition.

Journal of biological physics, 31(3-4):547–69, 12 2005.

[62] M. Steyn-Ross, D. Steyn-Ross, J. Sleigh, M. Wilson, and L. Wilcocks. Pro-

posed mechanism for learning and memory erasure in a white-noise-driven

sleeping cortex. Physical Review E, 72(6):061910, 12 2005.

[63] M. T. Wilson, M. L. Steyn-Ross, D. A. Steyn-Ross, and J. W. Sleigh. Going

beyond a mean-field model for the learning cortex: second-order statistics.

Journal of biological physics, 33(3):213–46, 6 2007.

[64] M. L. Steyn-Ross, D. A. Steyn-Ross, M. T. Wilson, and J. W. Sleigh. Modeling

brain activation patterns for the default and cognitive states. NeuroImage,

45(2):298–311, 4 2009.

[65] M. L. Steyn-Ross, D. A. Steyn-Ross, J. W. Sleigh, and M. T. Wilson. A

mechanism for ultra-slow oscillations in the cortical default network. Bulletin

of mathematical biology, 73(2):398–416, 2 2011.

255



[66] G. Deco and E. T. Rolls. Neurodynamics of biased competition and coopera-

tion for attention: a model with spiking neurons. Journal of neurophysiology,

94(1):295–313, 7 2005.

[67] E. Mavritsaki, D. Heinke, H. Allen, G. Deco, and G. W. Humphreys. Bridging

the gap between physiology and behavior: evidence from the sSoTS model of

human visual attention. Psychological review, 118(1):3–41, 1 2011.

[68] N. Brunel and X.-J. Wang. Effects of Neuromodulation in a Cortical Net-

work Model of Object Working Memory Dominated by Recurrent Inhibition.

Journal of Computational Neuroscience, 11(1):63–85.

[69] J. A. S. Kelso. Dynamic Patterns: The Self-organization of Brain and Behav-

ior. 1997.

[70] K. J. Friston. Transients, metastability, and neuronal dynamics. NeuroImage,

5(2):164–71, 2 1997.

[71] S. L. Bressler and J. A. Kelso. Cortical coordination dynamics and cognition.

Trends in cognitive sciences, 5(1):26–36, 1 2001.

[72] K. J. Friston. The labile brain. I. Neuronal transients and nonlinear coupling.

Philosophical transactions of the Royal Society of London. Series B, Biological

sciences, 355(1394):215–36, 2 2000.

[73] W. J. Freeman and M. D. Holmes. Metastability, instability, and state tran-

sition in neocortex. Neural networks : the official journal of the International

Neural Network Society, 18(5-6):497–504, 1.

[74] F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski, and

D. N. Velis. Dynamical diseases of brain systems: different routes to epileptic

seizures. IEEE transactions on bio-medical engineering, 50(5):540–8, 5 2003.

[75] F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel. Relevance of

nonlinear lumped-parameter models in the analysis of depth-EEG epileptic

signals. Biological Cybernetics, 83(4):367–378, 9 2000.

256



[76] P. Robinson, C. Rennie, and D. Rowe. Dynamics of large-scale brain activity in

normal arousal states and epileptic seizures. Physical Review E, 65(4):041924,

4 2002.

[77] M. Breakspear, J. A. Roberts, J. R. Terry, S. Rodrigues, N. Mahant, and P. A.

Robinson. A unifying explanation of primary generalized seizures through

nonlinear brain modeling and bifurcation analysis. Cerebral cortex (New York,

N.Y. : 1991), 16(9):1296–313, 9 2006.

[78] M. A. Kramer, H. E. Kirsch, and A. J. Szeri. Pathological pattern formation

and cortical propagation of epileptic seizures. Journal of the Royal Society,

Interface / the Royal Society, 2(2):113–27, 3 2005.

[79] P. Suffczynski, F. Lopes da Silva, J. Parra, D. Velis, and S. Kalitzin. Epileptic

transitions: model predictions and experimental validation. Journal of clinical

neurophysiology : official publication of the American Electroencephalographic

Society, 22(5):288–99, 10 2005.

[80] B. Molaee-Ardekani, P. Benquet, F. Bartolomei, and F. Wendling. Computa-

tional modeling of high-frequency oscillations at the onset of neocortical partial

seizures: from ’altered structure’ to ’dysfunction’. NeuroImage, 52(3):1109–22,

9 2010.

[81] F. Marten, S. Rodrigues, O. Benjamin, M. P. Richardson, and J. R. Terry. On-

set of polyspike complexes in a mean-field model of human electroencephalog-

raphy and its application to absence epilepsy. Philosophical transactions. Se-

ries A, Mathematical, physical, and engineering sciences, 367(1891):1145–61,

3 2009.

[82] I. Bojak and D. Liley. Self-organized 40Hz synchronization in a physiological

theory of EEG. Neurocomputing, 70(10-12):2085–2090, 6 2007.

[83] P. Robinson. Patchy propagators, brain dynamics, and the generation of spa-

tially structured gamma oscillations. Physical Review E, 73(4):041904, 4 2006.

257



[84] J. J. Wright. EEG simulation: variation of spectral envelope, pulse synchrony

and approximately 40 Hz oscillation. Biological cybernetics, 76(3):181–94, 3

1997.

[85] C. J. Rennie, J. J. Wright, and P. A. Robinson. Mechanisms of Cortical

Electrical Activity and Emergence of Gamma Rhythm. Journal of Theoretical

Biology, 205(1):17–35, 7 2000.

[86] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns. Network structure of

cerebral cortex shapes functional connectivity on multiple time scales. Pro-

ceedings of the National Academy of Sciences of the United States of America,

104(24):10240–5, 6 2007.

[87] G. Deco, V. Jirsa, A. R. McIntosh, O. Sporns, and R. Kötter. Key role

of coupling, delay, and noise in resting brain fluctuations. Proceedings of the

National Academy of Sciences of the United States of America, 106(25):10302–

7, 6 2009.

[88] A. Ghosh, Y. Rho, A. R. McIntosh, R. Kötter, and V. K. Jirsa. Noise during

rest enables the exploration of the brain’s dynamic repertoire. PLoS compu-

tational biology, 4(10):e1000196, 10 2008.

[89] G. Deco, V. K. Jirsa, and A. R. McIntosh. Emerging concepts for the dy-

namical organization of resting-state activity in the brain. Nature reviews.

Neuroscience, 12(1):43–56, 1 2011.

[90] C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli,

and P. Hagmann. Predicting human resting-state functional connectivity from

structural connectivity. Proceedings of the National Academy of Sciences of

the United States of America, 106(6):2035–40, 2 2009.

[91] A. Babajani, M.-H. Nekooei, and H. Soltanian-Zadeh. Integrated MEG and

fMRI model: synthesis and analysis. Brain topography, 18(2):101–13, 1 2005.

258



[92] A. Babajani and H. Soltanian-Zadeh. Integrated MEG/EEG and fMRI

model based on neural masses. IEEE transactions on bio-medical engineering,

53(9):1794–801, 9 2006.

[93] A. Babajani-Feremi, H. Soltanian-Zadeh, and J. E. Moran. Integrated

MEG/fMRI model validated using real auditory data. Brain topography,

21(1):61–74, 9 2008.

[94] A. Babajani-Feremi and H. Soltanian-Zadeh. Multi-area neural mass modeling

of EEG and MEG signals. NeuroImage, 52(3):793–811, 9 2010.

[95] J. Riera, E. Aubert, K. Iwata, R. Kawashima, X. Wan, and T. Ozaki. Fusing

EEG and fMRI based on a bottom-up model: inferring activation and effective

connectivity in neural masses. Philosophical transactions of the Royal Society

of London. Series B, Biological sciences, 360(1457):1025–41, 5 2005.

[96] J. J. Riera, X. Wan, J. C. Jimenez, and R. Kawashima. Nonlinear lo-

cal electrovascular coupling. I: A theoretical model. Human brain mapping,

27(11):896–914, 11 2006.

[97] J. J. Riera, J. C. Jimenez, X. Wan, R. Kawashima, and T. Ozaki. Nonlinear

local electrovascular coupling. II: From data to neuronal masses. Human brain

mapping, 28(4):335–54, 4 2007.

[98] R. C. Sotero, N. J. Trujillo-Barreto, Y. Iturria-Medina, F. Carbonell, and

J. C. Jimenez. Realistically Coupled Neural Mass Models Can Generate EEG

Rhythms. Neural Computation, 19(2):478–512, 2 2007.

[99] R. C. Sotero and N. J. Trujillo-Barreto. Biophysical model for integrating

neuronal activity, EEG, fMRI and metabolism. NeuroImage, 39(1):290–309,

1 2008.

[100] P. A. Valdes-Sosa, J. M. Sanchez-Bornot, R. C. Sotero, Y. Iturria-Medina, Y.

Aleman-Gomez, J. Bosch-Bayard, F. Carbonell, and T. Ozaki. Model driven

EEG/fMRI fusion of brain oscillations. Human brain mapping, 30(9):2701–21,

9 2009.

259



[101] T. Deneux and O. Faugeras. EEG-fMRI fusion of paradigm-free activity using

Kalman filtering. Neural computation, 22(4):906–48, 4 2010.

[102] I. Bojak, T. F. Oostendorp, A. T. Reid, and R. Kötter. Connecting mean

field models of neural activity to EEG and fMRI data. Brain topography,

23(2):139–49, 6 2010.

[103] I. Bojak, T. F. Oostendorp, A. T. Reid, and R. Kötter. Towards a model-

based integration of co-registered electroencephalography/functional magnetic

resonance imaging data with realistic neural population meshes. Philosophi-

cal transactions. Series A, Mathematical, physical, and engineering sciences,

369(1952):3785–801, 10 2011.

[104] D. Barwick. Hans Berger on the electroencephalogram of man. The fourteen

original reports on the human electroencephalogramTranslated and edited by

P. Gloor, xi + 350 pages, 175 illustrations, Elsevier, Amsterdam, 1969, Dfl

90.—. 13(4):507, 1 1971.

[105] E. D. Adrian and B. H. C. Matthews. The Berger Rhythm: potential changes

from the occipital lobes in man. Brain, 57(4):355–385, 1934.

[106] L. R. Silva, Y. Amitai, and B. W. Connors. Intrinsic oscillations of neo-

cortex generated by layer 5 pyramidal neurons. Science (New York, N.Y.),

251(4992):432–5, 1 1991.

[107] R. R. Llinás. The intrinsic electrophysiological properties of mammalian neu-

rons: insights into central nervous system function. Science (New York, N.Y.),

242(4886):1654–64, 12 1988.

[108] S. W. Hughes and V. Crunelli. Thalamic mechanisms of EEG alpha rhythms

and their pathological implications. The Neuroscientist : a review journal

bringing neurobiology, neurology and psychiatry, 11(4):357–72, 8 2005.

[109] S. W. Hughes and V. Crunelli. Just a phase they’re going through: the com-

plex interaction of intrinsic high-threshold bursting and gap junctions in the

260



generation of thalamic alpha and theta rhythms. International journal of

psychophysiology : official journal of the International Organization of Psy-

chophysiology, 64(1):3–17, 4 2007.

[110] P. L. Nunez, B. M. Wingeier, and R. B. Silberstein. Spatial-temporal struc-

tures of human alpha rhythms: theory, microcurrent sources, multiscale mea-

surements, and global binding of local networks. Human brain mapping,

13(3):125–64, 7 2001.

[111] C. Ciulla, T. Takeda, and H. Endo. MEG Characterization of Spontaneous

Alpha Rhythm in the Human Brain. Brain Topography, 11(3):211–222, 2 1999.

[112] D. T. Liley, D. M. Alexander, J. J. Wright, and M. D. Aldous. Alpha rhythm

emerges from large-scale networks of realistically coupled multicompartmental

model cortical neurons. Network (Bristol, England), 10(1):79–92, 2 1999.

[113] A. van Rotterdam, F. H. Lopes da Silva, J. van den Ende, M. A. Viergever,

and A. J. Hermans. A model of the spatial-temporal characteristics of the

alpha rhythm. Bulletin of mathematical biology, 44(2):283–305, 1 1982.

[114] P. Robinson, C. Rennie, and J. Wright. Propagation and stability of waves of

electrical activity in the cerebral cortex. Physical Review E, 56(1):826–840, 7

1997.

[115] J. Wolfe, A. R. Houweling, and M. Brecht. Sparse and powerful cortical spikes.

Current opinion in neurobiology, 20(3):306–12, 6 2010.

[116] K. W. Kaplan. H. Haken, Synergetics. An Introduction. Nonequilibrium Phase

Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd

Edition). XI + 355 S., 152 Abb. Berlin-Heidelberg-New York 1978. Springer-

Verlag. DM 66,00. Zeitschrift für allgemeine Mikrobiologie, 20(9):600–600, 1

2007.

[117] D. C. Van Essen. A Population-Average, Landmark- and Surface-based

(PALS) atlas of human cerebral cortex. NeuroImage, 28(3):635–62, 11 2005.

261



[118] B. Pakkenberg and H. J. Gundersen. Neocortical neuron number in humans:

effect of sex and age. The Journal of comparative neurology, 384(2):312–20, 7

1997.

[119] Y. Tang, J. R. Nyengaard, D. M. De Groot, and H. J. Gundersen. Total

regional and global number of synapses in the human brain neocortex. Synapse

(New York, N.Y.), 41(3):258–73, 9 2001.

[120] S. Herculano-Houzel. The human brain in numbers: a linearly scaled-up pri-

mate brain. Frontiers in human neuroscience, 3:31, 1 2009.

[121] K. Fleischhauer, H. Petsche, and W. Wittkowski. Vertical bundles of den-

drites in the neocortex. Zeitschrift für Anatomie und Entwicklungsgeschichte,

136(2):213–23, 1 1972.

[122] The Human Central Nervous System, 4th ed. American Journal of Neurora-

diology, 29(5):e39–e39, 2 2008.

[123] V. B. Mountcastle. Modality and topographic properties of single neurons

of cat’s somatic sensory cortex. Journal of neurophysiology, 20(4):408–34, 7

1957.

[124] V. B. Mountcastle. The columnar organization of the neocortex. Brain : a

journal of neurology, 120 ( Pt 4:701–22, 4 1997.

[125] E. G. Jones, H. Burton, and R. Porter. Commissural and cortico-cortical

”columns” in the somatic sensory cortex of primates. Science (New York,

N.Y.), 190(4214):572–4, 11 1975.

[126] J. Szentágothai. The modular architectonic principle of neural centers. Reviews

of physiology, biochemistry and pharmacology, 98:11–61, 1 1983.

[127] P. S. Goldman and W. J. Nauta. Columnar distribution of cortico-cortical

fibers in the frontal association, limbic, and motor cortex of the developing

rhesus monkey. Brain research, 122(3):393–413, 2 1977.

262



[128] H. Markram. Fixing the location and dimensions of functional neocortical

columns. HFSP journal, 2(3):132–5, 6 2008.

[129] Martini and F. E. Al. Anatomy and Physiology’ 2007 Ed.2007 Edition. Rex

Bookstore, Inc., 2007.

[130] H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and

C. Wu. Interneurons of the neocortical inhibitory system. Nature reviews.

Neuroscience, 5(10):793–807, 10 2004.
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rons in layer 5 of the rat visual cortex. I. Correlation among cell morphology,

intrinsic electrophysiological properties, and axon targets. The Journal of

comparative neurology, 339(4):459–74, 1 1994.

[137] B. W. Mel. Information Processing in Dendritic Trees. Neural Computation,

6(6):1031–1085, 11 1994.

263



[138] P. Bressloff and B. De Souza. Neural pattern formation in networks with

dendritic structure. Physica D: Nonlinear Phenomena, 115(1-2):124–144, 4

1998.

[139] P. R. Coombes S., beim Graben P. Tutorial on Neural Field Theory. Berlin,

Heidelberg, 2014.

[140] P. C. Bressloff. Spatiotemporal dynamics of continuum neural fields. Journal

of Physics A: Mathematical and Theoretical, 45(3):033001, 1 2012.

[141] I Segev and John Rinzel and GM Shepherd, editor. The theoretical foundation

of dendritic function: Selected papers of Wilfrid Rall with commentaries. MIT

Press, 1994.

[142] L. J. Cauller and B. W. Connors. Functions of very distal dendrites: experi-

mental and computational studies of layer 1 synapses on neocortical pyramidal

cells. pages 199–229, 4 1992.

[143] L. J. Cauller and B. W. Connors. Synaptic physiology of horizontal afferents

to layer I in slices of rat SI neocortex. The Journal of neuroscience : the

official journal of the Society for Neuroscience, 14(2):751–62, 2 1994.

[144] M. E. Larkum, W. Senn, and H.-R. Lüscher. Top-down dendritic input in-
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