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The examination of model error is fundamental to improve
weather forecasts at any time scale. Here, model errors for
two forecast lead times (12, 24 h) at the grid-point level
are analysed using (i) the total Eulerian changes in variables,
such as potential temperature and potential vorticity (PV),
both conserved under adiabatic, frictionless conditions; and
(ii) Lagrangian diabatic tracers. The latter refines the Eu-
lerian analysis by decomposing the total Eulerian changes
into materially-conserved and diabatically-generated com-
ponents. For both analyses the behaviour of a theoretical
unbiased model, for which the only assumption is that fore-
cast error is zero when averaged over a large number of
cases, is used as a reference. Deviations from this theoret-
ical behaviour are used to highlight conditions leading to
large errors. The analyses are performed on a set of fore-
casts produced with the United Kingdom’s Met Office Uni-
fiedModel for a 25-day period during the NAWDEX (North
Atlantic Waveguide and Downstream Impact Experiment)
field campaign (16 September–22 October 2016). The Eu-
lerian approach indicates that changes in potential temper-
ature and PV are underestimated with respect to the the-
oretical behaviour of an unbiased model. The grid points
with the largest changes in 12-h forecasts have the largest
underestimation in the 24-h forecast, highlighting the im-
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2 Martínez-Alvarado and Sánchez

portance of the underestimation for the most dynamically
and thermodynamically active grid points. The Lagrangian-
tracer investigation reveals very large deviations from the
theoretical behaviour of an unbiased model regardless of
the level of Eulerian change, in particular for PV, and an un-
realistic similarity in magnitude between parametrised dia-
batic changes of PV in the 24-h and 12-h forecasts. This is
at odds with what would be otherwise required to obtain
unbiased behaviour. Addressing the deviations from the be-
haviour of a theoretical unbiased model found in this work
could be a step forward towards an operational unbiased
model.

K E YWORD S

Model error, Eulerian flow description, Lagrangian flow
description, diabatic processes, diabatic tracers, potential
vorticity, potential temperature

1 | INTRODUCTION1

Numerical Weather Prediction is an initial value problem where the numerical representation of our current under-2

standing of the physical laws governing atmospheric processes is integrated to a given validation time. A perfect3

forecast can be conceived as one which predicts with 100% accuracy the future state of the atmosphere, i.e. for a4

perfect forecast, forecast error ε ≡ 0. Due to the chaotic nature of atmospheric dynamics, which for example makes5

the atmosphere’s evolution sensitive to intial contitions, routine perfect forecasts could be obtained if and only if both6

the numerical model and the initial conditions were perfect, i.e. if and only if the relevant laws of physics were com-7

pletely known and their numerical representation was 100% accurate, and the initial conditions fed into the model8

were completely free of error. None of these conditions are or will ever be met in reality and therefore routine perfect9

weather forecasts are impossible to obtain.10

Given the impossibility to obtain routine perfect weather forecasts, we ask whether it is at all possible to achieve11

unbiased forecasts, i.e. forecasts free of systematic error. The definition of unbiased forecasts can only be done in12

statistical terms. Thus, an unbiased forecast model can be defined as one for which13

〈ε 〉 = 0, (1)

where 〈·〉 is the mean over a large number of forecast-analysis pairs. Evidently a perfect forecast model is also an14

unbiased model, but an unbiased model is not necessarily a perfect model. Besides the practical benefits of having un-15

biased forecasts, there are theoretical consideration for which having such a tool would also be desirable. For example,16

estimations of the intrisic limit of predictability of the atmosphere can only be carried out under the assumption of a17

perfect model (e.g. Selz, 2019). However, the atmosphere and a numerical model of the atmsphere are two different18

dynamical systems, and therefore model-based estimations of intrinsic predictability might not be valid for the actual19



Martínez-Alvarado and Sánchez 3

atmosphere. An unbiased model would ensure that forecast errors only arise from an accurate representation of the20

atmosphere’s intrinsic variability and not from the tendency of the model to move towards its own climatology.21

The constant improvement of operational forecast models has allowed these models to become virtually un-22

biased at forecasting certain aspects of the atmopsheric system. For example, the systematic underestimation of23

Rossby-wave ridge area in forecasts produced by the Met Office Unified Model (MetUM) (Gray et al., 2014) has virtu-24

ally disappeared for lead times of up to seven days over the North Alantic and Europe with the upgrade of the model’s25

dynamical core (Martínez-Alvarado et al., 2018). However, there are other aspects for which biases remain. For exam-26

ple, the systematic underestimation of tropopause potential vorticity (PV) isentropic gradient in forecasts produced by27

the MetUM (Gray et al., 2014) remains despite the dynamical core’s upgrade (Martínez-Alvarado et al., 2018), leading28

to erroneous Rossby-wave propagation in the forecasts (Harvey et al., 2016). Biases in forecasts of upper-level Rossby29

waves are not exclusive of the MetUM. Similar biases in operational forecasts produced by the European Centre for30

Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction were identified31

by Gray et al. (2014), and in the Korean Meteorological Administration (using a different configuration of the MetUM)32

by Martínez-Alvarado et al. (2018). Related biases can also be identified using different diagnotics such as the object-33

based forecast verification approach by Giannakaki and Martius (2016), which showed that the ECMWF Integrated34

Forecast System underestimated the area and strength of Rossby waveguides. Associated with upper-level forecast35

errors, there are long-standing systematic errors in forecasts of atmospheric blocking, whose frequency tends to be36

underestimated in forecasts atmedium-range lead times (7–14 days) (Matsueda, 2009;Martínez-Alvarado et al., 2018).37

The biases related to Rossby waves and blocking at short lead times remain and evolve as lead time increases towards38

the sub-seasonal range. Even though these biases improve as model resolution increases, they are also dependent on39

the model representation of physical processes (Quinting and Vitart, 2019).40

If we knew the sources and development mechanisms of forecast errors, we could devise means of disabling41

the sources and inhibiting the development of forecast error. Therefore, understanding forecast errors in numerical42

weather prediction models is critical for the improvement of models’ accuracy. The dynamics of forecast error in43

terms of PV can be described through the formulation of a forecast error tendency equation (Davies and Didone,44

2013). Developing this apprach further, Baumgart et al. (2019) have shown that tropopause forecast error growth45

follows the three-stage error growth model of Zhang et al. (2007) (see also Selz and Craig (2015)). At the third and46

final stage the tropopause forecast error growth is chiefly determined by near-tropopause dynamical processes rather47

than errors in tropospheric baroclinc wave development (Baumgart et al., 2018, 2019).48

From a dynamical systems perspective, forecast errors arise as a consequence of imperfections in the models’49

initial state (initial condition error), the nonlinearity of the atmospheric dynamics (inherent predictabiltiy) and the imper-50

fect numerical representation of atmospheric processes in the model (model error). The present work is concerned51

with the assessment of the latter. Model error arises from errors in the model tendencies computed by the model’s52

components, namely the dynamical core, i.e. the numerical discretisation and solution of the equations of motion,53

and the parametrisation of physical processes, which represent processes which are not explicitly resolved by the dy-54

namical core alone. The effects of these processes can be described by the changes they produce on variables, such55

as potential temperature (θ) or potential vorticity (Q ), which would be conserved under adiabatic conditions. The aim56

of this study is to indirectly assess model error, by contrasting the changes sustained by θ and Q in an operational57

forecast model against those expected in a theoretical unbiasedmodel, i.e. a model whose forecasts satisfy (1). Rather58

than focussing on tendencies over a single model time step (7.5 min, representing the discrete version of a continuous59

time differential), we have chosen to study the changes in θ andQ over a finite time interval ( of the order of 12 hours).60

Themethodology consists of the comparison between short (T+12) and long (T+24) forecasts for the changes in θ61

andQ under two descriptions. The long forecasts lead time is chosen to one day to avoid large drifts in the atmospheric62
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flow that may affect the comparison of tendencies with the short forecast. The first description is Eulerian, in which63

the variables under investigation are the total changes in θ and Q at a given grid point with respect to the variables’64

values at the start of the forecast at that same grid point. The second description is based on Lagrangian diabatic65

tracers which track changes in potential temperature (Martínez-Alvarado and Plant, 2014; Martínez-Alvarado et al.,66

2014; Martínez-Alvarado et al., 2016a,b) and PV (Stoelinga, 1996; Gray, 2006; Chagnon and Gray, 2009; Chagnon67

et al., 2013; Chagnon and Gray, 2015; Martínez-Alvarado et al., 2016a,b; Saffin et al., 2016, 2017) along trajectories68

following the resolved winds. We call this description the Lagrangian-tracer description. Under this description, the69

changes in θ and Q are computed with respect to the variables’ values characterising the air parcel, currently located70

at the grid point of interest, at the start of the forecast (in general at a different location). Thus, the Lagrangian-tracer71

description allows the decomposition of the Eulerian changes in θ and Q into diabatically-generated and materially-72

conserved components. In both cases, the results obtained with the operational forecast model are compared against73

the behaviour expected from a theoretical unbiased model.74

The methodology is applied to hindcasts produced for the North Atlantic Waveguide and Downstream Impact75

Experiment (NAWDEX, Schäfler et al., 2018). NAWDEX was a large international field campaign to investigate the76

importance of diabatic processes for the development, evolution and predictability of upper-level Rossby waves over77

the North Atlantic and for their impacts downstream. NAWDEX involved the collaboration of several institutions78

in Europe and North America and the coordinated use of four research aircraft during the observation period that79

took place between 17 September and 22 October 2016. Several weather systems were observed during this period,80

including warm conveyor belts (WCBs), atmospheric rivers, extratropical transition of tropical cyclones, tropopause81

polar vortices and long-lived atmospheric blocking.82

The rest of the article is organised as follows: The methodology and data are described in Section 2; the results,83

presented separately for each description, are shown in Section 3, in which the relationship between descriptions is84

discussed. The conclusions of the study are given in Section 4.85

2 | METHODOLOGY AND DATA86

2.1 | Methodology87

A method that has proven useful in the identification of systematic forecast error is the comparison of forecasts at88

different initialisation times to highlight the effect of modelled processes on the evolution of the flow. In this method,89

a value of the target variable at analysis time (T+0) for a given forecast is determined. This value can then be used as90

a reference to compare those obtained at other forecast lead times. Given the atmosphere’s inherent unpredictability,91

the values at other forecast lead times in a single-member forecast (either a so-called deterministic forecast or a92

single member of an ensemble forecast) are not expected to match those at analysis time. However, if the model93

was unbiased, the expected value over a large number of cases would match analysis-time value. Deviations from94

this behaviour reveal systematic errors and the drift of the forecast model towards its own climatology (e.g. Martínez-95

Alvarado, 2014). This method has been used in the identification (Gray et al., 2014) and further study (Martínez-96

Alvarado et al., 2018) of systematic errors in forecasts of Rossby-wave ridge areas and isentropic gradient of PV at97

the tropopause.98

The method is relatively simple to implement if the variable of interest is an instantaneous variable, whose values99

can be determined unambiguously for a given validation time. However, if the variable of interest depends not only on100

validation time, but also on forecast lead time, the computation of appropriate forecast values corresponding to a given101

forecast lead time becomes more challenging. This is the case when the variable of interest represents the cumulative102
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change undertaken by an atmospheric variable, as this change will depend not only on the time of measurement, but103

also on the time when the accumulation started. To address this issue, the variable changes are investigated at the104

grid-point level, using two alternative descriptions of the flow. In the first one, we focus on the total changes that the105

variables undergo, following a purely Eulerian description of the flow. In the second one, Lagrangian diabatic tracers106

are used to separate the total Eulerian changes into changes due to advection only and changes due to the combined107

effect of advection and the parametrisation of sub-grid-scale diabatic processes.108

The Eulerian approach is related to the initial tendencies (Klinker and Sardeshmukh, 1992; Rodwell and Palmer,109

2007; Klocke andRodwell, 2014) and analysis tendencies (Mapes andBacmeister, 2012)methods to evaluate numerical110

models in that those methods also look at the total variable changes at a grid-point level. In the initial tendencies111

method, average forecast error is equated to average initial tendencies; in the analysis tendencies method, analysis112

tendencies are equated to the negative of model physics tendency error. By identifying similar patterns between113

forecast errors or analysis tendencies and the parametrised physical tendencies directly output from the models,114

model error can be assessed. In this work, model error is detected by identifying variable changes in short (12-h)115

forecasts and the corresponding changes in long (24-h) forecasts. These changes are then compared against each116

other and against those expected from the behaviour of a theoretical unbiased forecast model. Deviations between117

the theoretical model and the operational model highlight conditions leading to large errors. The Eulerian method is118

complemented by the Lagrangian-tracer approach by adding details about the physical (advective, frictional, mixing119

or diabatic) and numerical processes that lead to the Eulerian changes in the numerical model. The Lagrangian-tracer120

method was used by Saffin et al. (2017) to investigate the effects of processes that affect tropopause sharpness,121

known to be increasingly underestimated as forecast lead time increases (Gray et al., 2014). In this work we use the122

method in a different way, by again comparing corresponding Lagrangian variable changes in short and long forecasts123

and contrasting these to the behaviour we would expect in a theoretical unbiased forecast model.124

2.1.1 | Eulerian description125

Let ϕs
k
= ϕs

k
(x) denote a generic variable ϕ (either θ or Q in this work) at forecast time step k from forecast base time126

s at a given grid point x. To acknowledge the temporally discrete character of a numerical forecast, times are given127

in terms of arbitrary, but carefully chosen time steps as follows: To recover the actual times we define a reference128

time t0 and assume that the forecast is initialised every Tb time units. Thus, the actual forecast base time is given by129

tb = t0 + sTb . Assuming that the forecast is output every Tf time units, the validation time is given by t = tb + kTf =130

t0 + kTf + sTb . If ϕmn and ϕqp are valid at the same time, then131

p = n + (m − q )
Tb
Tf
.

For simplicity, we assume thatTb = Tf = T in which case p = n +m − q for two forecasts valid at the same time. As it132

will be explained in Section 2.2, in this workT is set to be 12 h.133

We can write ϕs
k
in terms of the values of the variable at analysis time ϕs0 by introducing an increment computed134

through a numerical forecast model ∆ϕs
k
so that (see Fig. 1)135

ϕsk = ϕ
s
0 + ∆ϕ

s
k . (2)

The term ϕs0 in (2) remains constant at each grid point during the forecast length. Note that, by definition, ∆ϕs0 ≡ 0,136
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i.e. the forecast increment at the start of the forecast is zero . Forecast error εs
k
can be defined through137

ϕs+k0 = ϕsk + ε
s
k . (3)

Note that εs0 ≡ 0, i.e. the forecast error at the start of the forecast is zero.138

We seek a relationship between ∆ϕs
k+1
− ∆ϕs

k
, i.e. the increment during one time step in a given forecast, and139

the first increment in a shorter forecast, ∆ϕs+k1 , where the forecasts are k > 0 time steps apart. This objective can be140

achieved by writing the analysis valid at time n + s + k in terms of two forecasts, namely ϕs+kn and ϕs
n+k

, as follows:141

ϕn+s+k0 = ϕs+kn + εs+kn = ϕsn+k + ε
s
n+k . (4)

The forecasts can then be expanded using (2) to yield142

ϕn+s+k0 = ϕs+k0 + ∆ϕs+kn + εs+kn = ϕs0 + ∆ϕ
s
n+k + ε

s
n+k . (5)

Similarly, for the subsequent forecast time step n + 1143

ϕn+s+k+10 = ϕs+k0 + ∆ϕs+kn+1 + ε
s+k
n+1 = ϕ

s
0 + ∆ϕ

s
n+k+1 + ε

s
n+k+1 . (6)

Subtracting (6) from (5) and making n = 0 yields144

(∆ϕsk+1 − ∆ϕ
s
k ) − ∆ϕ

s+k
1 = εs+k1 − εsk+1 + ε

s
k . (7)

Equation (7) gives a relationship between the change inϕ between two consecutive steps k and k +1 in a long forecast145

(with forecast base time s ) and the change during the first step in a shorter forecast (with forecast base time s + k ).146

This relationship is illustrated in Fig. 1. Taking the mean of (7) over a large number of cases and assuming that the147

forecast error mean is zero (unbiased-model assumption), we have148

〈∆ϕsk+1 − ∆ϕ
s
k 〉 − 〈∆ϕ

s+k
1 〉 = 0, (8)

where 〈·〉 denotes the mean over a large number of cases. Equation (8) shows that on average the changes in ϕ149

between two consecutive validation times (k + s and k + s + 1) should be the same for a forecast that just started150

(〈∆ϕs+k1 〉) and one that has been running for longer (〈∆ϕs
k+1
− ∆ϕs

k
〉) if the model was unbiased. In contrast, if the151

model was biased, then the right-hand side of (8) would not be zero, indicating a systematic mismatch between the152

changes in variable ϕ for the same interval between two forecasts of different length. Following Leutbecher and153

Palmer (2008) we note that (8) is satisfied by an unbiased model for suficiently large subsamples conditioned on the154

size of the changes in the short-forecast.155

2.1.2 | Lagrangian-tracer description156

Diabatic tracers are sets of tracers describing the changes in θ (e.g. Martínez-Alvarado and Plant, 2014; Martínez-157

Alvarado et al., 2014) andQ (e.g. Stoelinga, 1996;Gray, 2006; Chagnon andGray, 2009; Chagnon et al., 2013; Chagnon158

and Gray, 2015; Saffin et al., 2016) due to parametrised diabatic processes in a Lagrangian sense. These tracers have159
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been implemented in the Met Office Unified Model (MetUM, Walters et al., 2017). Tracers for Q have been used to160

study the decay in the sharpness of the tropopause by Saffin et al. (2017), while tracers for θ and Q have been used161

for the study of the development of forecast error in a case study by Martínez-Alvarado et al. (2016b) and for the162

comparison of the evolution of extratropical cyclones (Martínez-Alvarado et al., 2016b). Diabatic tracers for a given163

variable can be classified in two types. The first type, materially-conserved tracers, are affected by advection only164

and function as Lagrangian labels for the parcels in a Q -θ space. The second type, diabatically-generated tracers, are165

affected by advection and by local modifications due to parametrised tendencies. Thus, the variableϕs
k
can be written166

in terms of diabatic tracers as167

ϕsk = ϕ
s
0,k + δϕ

s
k , (9)

whereϕs
0,k

is conserved following trajectories and thus serves as a Lagrangian label for the trajectory and the air parcel,168

and δϕs
k
represents the cumulative effect of diabatic, frictional and other parametrised processes on the air parcel.169

Notice that even though we refer to these changes as diabatic in the rest of the paper, they do include these other170

effects. While diabatic tracers have been described previously in e.g. Martínez-Alvarado et al. (2016a) the notation171

here is different from that in previous work to accommodate for forecasts with different base times. Comparing their172

Eq. (1) with (9), their ϕ, ϕ0 and ϕd intialised at base time tb = tb (s) and evaluated at valid times t = t (k , s) become173

our ϕs
k
, ϕs

0,k
and δϕs

k
, respectively. Note that their Eq. (1) includes a residual term rϕ , which for the forecast lead174

times we are using here (up to 24 hours) remains small and can be neglected (Martínez-Alvarado et al., 2016a). Thus,175

computing ϕs
0,k

and δϕs
k
, requires the solution of the governing equations (Martínez-Alvarado et al., 2016a)176

Dϕ0
Dt

= 0 and Dϕd
Dt

= Sϕ , (10)

with initial conditionsϕ0(tb (s)) = ϕs0 andϕd(tb (s)) = 0, where Sϕ represents diabatic and frictional sources ofϕ. These177

equations are solved within the MetUM, using the same numerical machinery that is used by the model to solve the178

evolution equations of its prognostic variables (Davis et al., 1993; Wood et al., 2014; Walters et al., 2017).179

By definition, δϕs0 ≡ 0, i.e. the diabatically-generated tracer at the start of the forecast is zero. Consequently,180

ϕs0 ≡ ϕ
s
0,0, i.e. the materially-conserved tracer matches the variable at analysis time at the start of the forecast. The181

structure of (9) is similar to that of (2). However, there are fundamental differences. Unlike ϕs0 in (2), which remains182

constant at each grid point during the forecast, ϕs
0,k

in (9) varies as new air masses are advected into a particular grid183

point as the forecast evolves. Unlike ∆ϕs
k
, which represents the accumulated changes inϕ in a given grid point from its184

value at the start of the forecast, δϕs
k
represents changes inϕ within the air parcel, which having started at a different185

location x0 is currently at the grid point under study at position x.186

Equating (2) and (9) we find the relationship between ∆ϕs
k
and δϕs

k
:187

∆ϕsk = δϕ
s
k +ϕ

s
0,k→0, (11)

where ϕs
0,k→0

= ϕs
0,k
−ϕs0 represents the replacement of the value ϕs0 , at a given grid point at the start of the forecast,188

by the value ϕs
0,k

, advected by the resolved winds to be at the given grid point at the forecast time step k . Indeed,189

if the atmosphere was frictionless and adiabatic then δϕs
k
≡ 0, by definition. Therefore, ∆ϕs

k
= ϕs

0,k→0
, by (11), and190

ϕs
k
= ϕs

0,k
, by (2). This short-hand notation can be generalised. Thus,191

ϕs0,k→l = ϕ
s
0,k −ϕ

s
l , k > l , (12)
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represents the replacement of the value ϕs
l
, at a given grid point at time step l , by the value ϕs

0,k
, advected by the192

resolved winds to be at the given grid point at time step k .193

Using (11), we can rewrite (7) as194

(ϕs0,k+1→k −ϕ
s+k
0,1→0) + (δϕ

s
k+1 − δϕ

s+k
1 ) = εs+k1 − εsk+1 + ε

s
k . (13)

where (9) and (12) have been used. This relationship is illustrated in Fig. 2. Taking the mean of (13) over a large number195

of cases and using the unbiased-model assumption, we find that for an unbiased model196

〈ϕs0,k+1→k −ϕ
s+k
0,1→0 〉 + 〈δϕ

s
k+1 − δϕ

s+k
1 〉 = 0. (14)

Both terms in the first bracket represent advective replacement between two consecutive time steps (from s + k to197

s + k + 1), but the first term refers to the forecast starting at s , while the second refers to the forecast starting at the198

later time s + k . Similarly, the terms in the second bracket represent cumulative changes due to parametrised diabatic199

processes with the accumulation taking place from time s in the first term and from time s + k in the second. The200

terms in the first and second brackets in (14) will be called hereafter Advective Replacement Difference (ARD) and201

Diabatic Modification Difference (DMD), respectively. To refer to ARD or DMD for a particular variable, the relevant202

variable will appear in brackets immediately after, e.g. ARD(θ) = θs
0,k+1→k

− θs+k0,1→0 and DMD(Q ) = δQ s
k+1
− δQ s+k1 .203

While DMD(ϕ) involves a difference between the modification of ϕ along trajectories, ARD(ϕ) involves a dif-204

ference between the materially-conserved values of ϕ at the start of the trajectories. Thus, under frictionless and205

adiabatic conditions DMD(ϕ) = 0 while ARD(ϕ) , 0, correctly indicating that forecast errors would only stem from206

errors in the advection as represented in the forecast model (by the so-called dynamical core). To aid the physical207

interpretation of the more complex and more realistic case, in which friction and diabatic changes are allowed, i.e.208

δϕmn , 0, let us consider the case of a grid point in a theoretical perfect forecast model with perfect initial conditions,209

for which forecasts at any lead time coincide with the analyses at the corresponding validation times. This situation is210

illustrated in Fig. 3, which represents the same situation as that illustrated in Fig. 1 (and Fig. 2), but now the Eulerian211

and Lagrangian increments correspond to perfect-forecast conditions. Notice that in this case the Eulerian forecast212

(black line) passes through the analyses, while the Lagrangian parcels’ evolutions (red and blue lines) follow the same213

path regardless of the temporal point at which they start. Let us consider the relationships between the states in the214

forecasts and analyses in Fig. 3. By writing down two alternative expressions for the difference inϕ between the state215

at time s + k and that at time s + k + 1 we obtain216

δϕsk+1 + (ϕ
s
0,k+1 −ϕ

s+k
0 ) = δϕs+k1 + (ϕs+k0,1 −ϕ

s+k
0 ), (15)

which after after reorganising terms becomes217

(ϕs0,k+1 −ϕ
s+k
0,1 ) + (δϕ

s
k+1 − δϕ

s+k
1 ) = 0, (16)

which is the perfect-forecast version of (14). This equation can be interpreted as follows: If we stood at a given218

point in the atmosphere and followed a parcel that will occupy that point, the changes in the value of an atmospheric219

variable at that point will be due to two effects, namely the advection of the parcel and the changes it undergoes as it220

travels from its origin to the selected point. If we compare these two changes between weather forecasts of different221

lengths, their differences must remain in balance, i.e. if the difference in the changes due to advection (quantified by222
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the ARD) is positive, then the difference in the changes along the trajectory (quantified by the DMD) must be of the223

samemagnitude, but negative, and vice versa. If in Fig. 3 the value at the start of the red trajectory at time s was closer224

to the value of the analysis at time s + k +1, the total diabatic modification δϕs
k+1

would be smaller. If everything else225

remained the same, then both ARD(ϕ) and DMD(ϕ) would have increased in magnitude to compensate the effect of226

the changes at time s .227

It is worth pointing out that while in the Eulerian description, (8) measures an error between a reference value228

(the change in θ or Q in the short forecasts) and a proxy (the change in θ or Q in the long forecast), in the Lagrangian-229

tracer description (14) does not measure any error. Instead, it represents a balance between terms: ARD and DMD230

are allowed not to be zero (on average) as long as one is the same size as the other, but with opposite sign (on average).231

2.2 | Data232

The data is taken from a dataset comprising forecasts produced using the MetUMGeneral Atmospheric configuration233

version 6.1 (GA6.1, Walters et al., 2017) covering the field campaign period of NAWDEX (Schäfler et al., 2018) that234

took place between 17 September 2016 and 22October 2016. The present study includes the 25-day period compris-235

ing the forecasts from 0000 UTC 20 September 2016 to 1200 UTC 14 October 2016 every 12 hours, which includes236

the three storyline sequences of trigger, interaction, development and high-impact weather in Europe described in237

Schäfler et al. (2018, see their Fig. 6). Accordingly, the reference time t0 was set to 0000 UTC 20 September 2016 and238

T = 12 h, which is the minimum T for the available data. The long forecast is set to be the forecast starting T = 12 h239

after the start of the short forecast (i.e. k = 1 througout this work ).240

The forecasts include diabatic tracers of θ and Q , so that ϕm0,n and δϕmn in (9) are part of the model’s output, in241

addition to other more commonly used meteorological fields such as mean sea level pressure. The fields are output on242

a domain bounded by 80◦W and 40◦E in longitude and by 20◦N and 80◦N in latitude comprising 514 × 385 grid points243

on each vertical model level. The investigation here has been carried out using one set of ten vertical model levels244

(31 ≤ lm ≤ 40, where m l is model level index). These MetUM terrain-following model levels are nominally located245

between 6.8 km and 11.2 km, i.e. in the upper troposphere/lower stratosphere. Thus, the statistical robustness of246

the results are ensured by including around 2× 106 grid points for each date included in the study, and around 9× 107247

grid points for the whole forecast series. Samples of this size ensure statistical significance in one-sample t tests by248

producing very small variances of the means therefore leading to a large test statistic (Wilks, 2011). This is indeed the249

case for all the results involving means presented here. However, there is a caveat in that statistical independence250

cannot be ensured given that the grid points are correlated in both space and time. In order to address this issue we251

have sub-sampled the original datasets to produce 100000 smaller samples with 1000 data values each, and used252

the bootstrap method to compute statistical significance. With this method we have confirmed that our results are253

statistically significant.254

3 | RESULTS255

3.1 | Eulerian description256

The results arising from the Eulerian description are shown in Fig. 4, in which the two terms in angular brackets in (8)257

are plotted. Considering T = 12 h and k = 1, the terms in (8) are interpreted as follows: ∆ϕs+k1 is the 12-h Eulerian258

change in ϕ in a forecast initialised just 12 hours before validation time, and ∆ϕs
k+1

and ∆ϕs
k
are the 24-h and 12-h259

Eulerian changes inϕ in a forecast initialised 24 hours before validation time, respectively. A common feature between260
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the Eulerian changes in the 12-h forecasts, ∆θs+k1 and ∆Q s+k1 , is that their marginal histograms are centred, and largely261

concentrated, around zero (hinted by Fig. 4, but not explicitly shown). Therefore, in order to reveal a deviation from262

the behaviour of an unbiased forecast model, represented by the identity line, the data has been binned in ten equally263

populated bands between the p-th and (p + 1)-th deciles of ∆ϕs+k1 , for p = 0, 1, . . . , 9.264

The only bin for which zero is included in the 95% confidence interval of 〈∆ϕs
k+1
−∆ϕs

k
〉− 〈∆ϕs+k1 〉 is when∆ϕs+k1 is265

between its fifth and sixth deciles, for bothϕ = θ andϕ = Q , according to the bootstrapmethod used to test statistical266

significance. However, for values of ∆ϕs+k1 between its second and eighth deciles, 〈∆ϕs
k+1
− ∆ϕs

k
〉 falls so close to267

〈∆ϕs+k1 〉 that it can be said that the forecast model behaves like an unbiased model, for bothϕ = θ (Fig. 4a) andϕ = Q268

(Fig. 4b). For values below the second decile or above the eighth decile, there is an underestimation of 〈∆ϕs
k+1
−∆ϕs

k
〉269

as a function of 〈∆ϕs+k1 〉 with respect to the behaviour of an unbiased forecast model. Furthermore, the position of270

the first and third quartiles of (∆ϕs
k+1
− ∆ϕs

k
) conditioned on ∆ϕs+k1 indicates that the whole distributions are shifted271

towards the horizontal axis, showing the tendency of the forecast model to underestimate the change in θ and Q in272

24-h forecasts with respect to 12-h forecasts. Since this occurs for large absolute values of ∆ϕk+s1 , it can be argued273

that the deviation from the behaviour of an unbiased model occurs on the most dynamically and thermodynamically274

active grid points, thus having a larger influence on the future state of the atmosphere.275

The results described so far, which include all the 12-h–24-h forecast pairs in the dataset, were found to be276

qualitatively similar to those obtained from a single 12-h–24-h forecast pair, regardless of the time within the period277

under study. This assertion is also valid for the results pertaining to the Lagrangian-tracer description (Section 3.2).278

This allows us to relate our findings to specific meteorological features in a case study, for which we investigate a279

single forecast pair (s = 23), corresponding to a 24-h forecast with base time 1200 UTC 1 October 2016 and a 12-280

h forecast with base time twelve hours later, i.e 0000 UTC 2 October 2016. The single forecast pair corresponds281

to the development phase of the ‘Stalactite cyclone’ (Maddison et al., 2019), which developed over the North At-282

lantic between 1 October and 4 October 2016 (Schäfler et al., 2018). The cyclone was observed during the NAWDEX283

Intensive Observation Period 6, which consisted of a coordinated flight of the Deutsches Zentrum für Luft- und Raum-284

fahrt (DLR) Falcon 20 and the French Service des Avions Français Instrumentés pour la Recherche en Environnement285

(SAFIRE) Falcon 20 (Schäfler et al., 2018). The synoptic situation was characterised by a prominent ridge extending286

from Greenland to Scandinavia and northwards beyond Iceland (e.g. Fig. 5). The Stalactite cyclone itself was a very287

deep system, which reached its maximum intensity in terms of mean sea level pressure around 0600 UTC 3 October288

2016, when it exhibited a central pressure of 956 hPa, according to the analysis from the Met Office. The results are289

shown for validation time 1200UTC 2October 2016when the cyclone’s central pressure was 962 hPa located around290

55◦N, 27◦W, according to the Met Office analysis. The synoptic situation is illustrated in the maps shown in Fig. 5 by291

means of mean sea level pressure, at low levels, and by the dynamic tropopause, represented by the 320-K 2-PVU292

(1 PVU = 1 K mm2 kg−1 s−1) PV contour, at upper levels. Using these fields as a frame of reference, the location of293

those grid points that exhibit the largest magnitude of ∆ϕs+k1 can be tied to specific synoptic features.294

The geographical distribution of the grid points for which |∆θs+k1 | is maximal is related to the location of the295

Rossby-wave troughs and ridges (Fig. 5(a,b)). For ∆θs+k1 < 0, the grid points are located around the upstream trough,296

mainly on the stratospheric side (Fig. 5a); for ∆θs+k1 > 0, the grid points are located around the eastern edge of the297

downstream ridge, mainly on the tropospheric side (Fig. 5b).298

Like in the case of θ, in the case of Q the dynamic tropopause is the synoptic feature that provides a reference299

to understand the geographical distribution of grid points for which |∆Q s+k1 | is maximal (Fig. 5(c,d)). Regardless of300

whether∆Q s+k1 is positive or negative, the grid points tend to be aligned along the dynamic tropopause. For∆Q s+k1 < 0,301

the grid points tend to be located mainly on the tropospheric side (Fig. 5c). These grid points correspond to locations302

where the ridge is growing, i.e. strongly reducing Q from stratospheric to tropospheric values at those grid points.303
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This highlights that in a ridge (tropospheric air), the model tends to produce negative potential voricity increments,304

whose magnitude is too small. However, there are also several points that appear away from the tropopause, mainly305

on the stratospheric side. For ∆Q s+k1 > 0, the grid points are located mainly on the stratospheric side (Fig. 5d). There306

are several of these grid points within troughs, as the stratospheric air mass, carrying high PV, replaces tropospheric307

air characterised by low PV at those locations. This shows that in a trough (stratospheric air) , the model tends to308

produce positive PV increments, whose magnitude is again too small.309

The results from the Eulerian description show that the statistical mismatch between changes in 24-h and 12-310

h forecasts for both θ and Q is small around the most frequent values of the changes in the 12-h forecasts. This311

shows that model error is small most of the time for most grid points. However, it is not the most common values312

that matter the most for the evolution of the atmosphere. The extreme values are those that have a larger influence313

on atmospheric dynamics and it is there where the largest mismatch between the 24-h and 12-h forecasts occurs.314

PV offers the clearest illustration of this point (Fig. 4b). The most frequent value of ∆Q s+k1 (in the 12-h forecasts) is315

zero. When this occurs, the model adequately produces very small values of ∆Q s
k+1
− ∆Q s

k
(in the 12-h forecasts).316

However, when the changes in Q are expected to be large, the model tends to underestimate these changes. Larger317

changes in Q lead to larger effects on the atmosphere’s state. At upper levels, those points for which changes in318

Q are large are concentrated around Rossby-wave troughs and ridges (Fig. 5(c,d)), which are important features for319

the subsequent development of the Rossby waves themselves (e.g. Davies and Didone, 2013; Baumgart et al., 2018),320

for the development of other synoptic scale feature, such as precipitation (Martínez-Alvarado et al., 2018), and for321

downstream effects on the surface (e.g. Piaget et al., 2015). Therefore, a systematic underestimation of these large322

changes (larger model errors) could be the source of large forecast errors, such as forecast busts (e.g. Rodwell et al.,323

2013; Grams et al., 2018). As described by Schäfler et al. (2018), the period between 29 September and 3 October324

2016 was one of three periods of reduced forecast skill during the NAWDEX field campaign. A natural question to ask325

is "What is the origin of the Eulerian discrepancy between the 12-h and the 24-h forecasts?" The answer is related to326

the origin of forecast error via (7). For upper-level Rossby waves, forecast error is closely related to the way in which327

θ and Q are modified within extratropical cyclones’ WCBs and how this process is represented in numerical models328

(Martínez-Alvarado et al., 2016b; Baumgart et al., 2019). We can then hypothesise that the Eulerian discrepancy arises329

at least in part from the representation of WCBs (Grams et al., 2018) and possibly other mesoscale systems, such as330

mesoscale convective systems (e.g. Rodwell et al., 2013) and tropical cyclones undergoing tropical transition (Grams331

and Archambault, 2016, e.g.), with the ability to produce sufficiently large latent heat release to modify the upper332

tropospheric environment.333

3.2 | Lagrangian-tracer description334

In Section 3.1 we have shown that the largest mismatch between changes in 24-h and 12-h forecasts occur when335

the 12-h-forecast changes are large. We use the Lagrangian-tracer description to shed new light onto these findings,336

by presenting the analysis for those grid points for which ∆ϕs+k1 is below its first decile, between its fourth and sixth337

deciles and above its ninth decile. These grid points correspond to those in the leftmost, the two central and the338

rightmost bins in Fig. 4.339

The results of the Lagrangian-tracer analysis are shown in Fig. 6. Model assessment under the Lagrangian-tracer340

description involves a balance relationship between changes due to the materially-conserved tracers and changes341

due to parametrised diabatic processes. This relationship is given by (14), which states that, if the forecast model342

is unbiased, the Advective Replacement Difference (ARD(ϕ) = ϕs
0,k+1→k

− ϕs+k0,1→0) is on average equal in magnitude,343

but opposite in sign, to the corresponding Diabatic Modification Difference (DMD(ϕ) = δϕs
k+1
− δϕs+k1 ). This is the344



12 Martínez-Alvarado and Sánchez

relationship that we shall test in this Section. The test is carried out by binning the data in ten equally populated345

bands between the p-th and (p + 1)-th deciles of ARD(ϕ), for p = 0, 1, . . . , 9 to reveal tendencies dependent on the346

magnitude of these differences.347

The behaviour of 〈DMD(θ)〉 as a function of 〈ARD(θ)〉 depends on the ∆θs+k1 bin (Fig. 6(a–c)). For the two central348

∆θs+k1 bins (Fig. 6b), the behaviour is close to the theoretical unbiased forecast model, which is consistent with the349

Eulerian findings. However, for the most extreme ∆θs+k1 bins (Fig. 6(a, c)), the DMD(θ) values are underestimated by350

up to 2.5 K with respect to those required by the unbiased-model assumption for grid points above the first decile of351

ARD(θ). Furthermore, the whole distribution of DMD conditioned on ARD also exhibit a very strong underestimation,352

so that the theoretical mean behaviour of an unbiased model almost always falls outside the interval between the first353

and third quartiles of DMD(θ). The deviation is especially noticeable for the grid points for which ARD(θ) > 0.354

The deviation from the theoretical behaviour of an unbiased model is even larger in the case of Q (Fig. 6(d–f)).355

There are only bins forwhich zero is included in the 95%confidence interval of 〈DMD(Q )〉+〈ARD(Q )〉 is whenARD(Q )356

is between its third and fourth deciles in Fig. 6d, between its fourth and fifth deciles in Fig. 6e, and between its sixth357

and seventh deciles in Fig. 6f, according to the bootstrap method used to test statistical significance. 〈DMD(Q )〉 as a358

function of 〈ARD(Q )〉 describe lines with slopes between −0.11, for ∆θs+k1 above its ninth decile (Fig. 6f), and −0.37,359

for ∆θs+k1 between its fourth and sixth deciles (Fig. 6e). These slopes are much greater than the slope of −1 expected360

from an unbiased model, and lead to deviations with respect to this model of more than 3 PVU, for the most extreme361

∆Q s+k1 bins (Fig. 6f). Even though the slope of 〈DMD(Q )〉 as a function of 〈ARD(Q )〉 is small with respect to that of362

the unbiased model for the central ∆Q s+k1 bins (Fig. 6e), the ARD(Q ) values are located closer to zero than those in the363

extreme ∆Q s+k1 bins (i.e. |ARD(Q ) | < 1 PVU). This limits the magnitude of the deviation with respect to the behaviour364

of an unbiased model to around 0.4 PVU (for ARD(Q ) = ±0.5 PVU), which is consistent with the Eulerian findings.365

Moreover, the distribution of DMD(Q ) conditioned on ARD(Q ) exhibits a noticeable underestimation of the whole366

distribution with respect to the unbiased case, as indicated by the positions of the first and third quartiles of DMD(Q ).367

These results show that the differences in diabatic modification between the 24-h and 12-h forecasts should have368

been much larger in order to match the magnitude of the differences in the changes due to advection, as required for369

the forecasts to be unbiased (See Fig. 3 and its discussion in Section 2.1.2).370

3.3 | Combined effects of deviations in θ and Q and relationship to Eulerian description371

Up to this point we have analysed the deviations in θ and Q separately. To show the combined effect of these de-372

viations on both variables, we turn again to the Stalactite cyclone as a case study and we concentrate on those grid373

points that exhibit maximum deviation from the behaviour of a theoretical unbiased model. Thus, we restrict the anal-374

ysis to those grid points for which the magnitudes of the Eulerian increments ∆θs+k1 and ∆Q s+k1 are greater than their375

respective sixth decile. Given the symmetry of the distribution of ∆ϕs+k1 , for both ϕ = θ and ϕ = Q (see Fig. 4), by376

using this threshold we are essentially selecting the same grid points as those shown in Figs. 5(a,b) and 5(c,d) for θ and377

Q , respectively. We also only include points for which ARD(Q ) is greater than its eighth decile, as these exhibit the378

maximal Lagrangian-tracer deviation as illustrated in Fig. 6(d–f). Furthermore, we restrict the data to the troposphere379

only (i.e. grid points for which Q < 2 PVU at the end of the 12-h forecast). These grid points are mainly concentrated380

within the large-amplitude Rossby-wave ridge, upstream of the Stalactite cyclone. The number of grid points per col-381

umn satisfying these conditions in the 10-level column (recall 31 ≤ m l ≤ 40) is close to 10 towards the ridge’s eastern382

flank (Fig. 7). Taking the average over these grid points for ϕs+10,1→0 and δϕ
s+1
1 (corresponding to the 12-h forecast) and383

using (9), we can compute the average Eulerian increments between the two consecutive time steps s +k and s +k +1384
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TABLE 1 Average terms in the Stalactite cyclone case study (see text for specification of data points).

〈θs+k0,1→0 〉 > 0 〈θs+k0,1→0 〉 < 0

θ (K) Q (PVU) θ (K) Q (PVU)

12-h advective replacement 〈ϕs+k0,1→0 〉 5.55 -2.43 -5.64 -4.64

12-h diabatic modification 〈δϕs+k1 〉 -0.90 -0.04 -0.26 -0.07

ARD(ϕ) 〈ϕs
0,k+1→k

−ϕs+k0,1→0 〉 -4.48 1.23 -0.03 1.43

DMD(ϕ) 〈δϕs
k+1
− δϕs+k1 〉 4.20 -0.29 0.45 -0.31

Normalised Eulerian difference 〈∆ϕs
k+1
−∆ϕs

k
〉−〈∆ϕs+k

1
〉

〈∆ϕs+k
1
〉

-0.06 -0.38 -0.07 -0.24

for the 12-h forecast as385

∆ϕs+k1 = ϕs+k0,1→0 + δϕ
s+k
1 . (17)

By additionally taking the average over those same grid points for ARD and DMD and considering the definitions of386

these two diagnostics, we can compute the corresponding Eulerian increments for the 24-h forecast as387

∆ϕsk+1 − ∆ϕ
s
k = ∆ϕ

s+k
1 + ARD(ϕ) +DMD(ϕ), (18)

where (17) has been used. Equation (18), obtainable also by equating (7) and (13), provides the link between the388

Eulerian and the Lagrangian-tracer descriptions, by explicitly showing that the imbalance between ARD and DMD389

give rise to the error between the Eulerian changes in the 12-h and the 24-h forecasts.390

For the grid points used in this part of the study, the advective replacement in Q in the 12-h forecasts is generally391

negative, i.e. the parcel at a given location at time s + k + 1 is characterised by a Q -value at the start of the 12-h392

forecast (at time s + k ), which is generally lower than the Q -value of the air parcel at the same location at time s + k .393

The corresponding replacement in θ can be either positive or negative, i.e. the parcel at a given location at time s+k +1394

is characterised by a θ-value at the start of the 12-h forecast (at time s + k ), which can be either lower or higher than395

the θ-value of the air parcel at the same location at time s +k . We present results for these two alternatives in Table 1.396

The first two data columns in Table 1 correspond to a positive advective θ-replacement. In this case, the differences397

in the Eulerian increments, 24-h minus 12-h forecasts, normalised by the increments in the 12-h-forecast are −0.06398

for θ and −0.38 for Q . The last two data columns in Table 1 correspond to a negative advective θ-replacement. In this399

case, the differences in the Eulerian increments, 24-h minus 12-h forecasts, normalised by the increments in the 12-h400

forecast are −0.07 for θ and −0.24 for Q .401

These results show that for θ the balance between the advective replacement and the changes due to parametrised402

processes produce similar Eulerian θ-increments in the last 12-h periods in both forecasts. By contrast, the relative403

difference between EulerianQ -increments is much larger. This is a direct effect from the mismatch between forecasts404

demonstrated using the Lagrangian-tracer description. A potential explanation for these results is that the diabatic405

changes in the long forecast are too small. An alternative explanation is that the wrong parcel is being advected to406

these grid points, leading to an artificially inflated ARD(Q ). Deciding which explanation is the correct one is not an407

easy task as advection and diabatic changes do influence each other (Martínez-Alvarado et al., 2016a). It is generally408

accepted that errors related to the dynamical core are small (e.g. Mapes and Bacmeister, 2012). If this is the case, then409
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the former explanation is correct. However, recent work has highlighted mismatch issues arising from differential ad-410

vection depending on which variable is being advected (Whitehead et al., 2015; Saffin et al., 2016), which does not411

allow the ruling out of the alternative explanation. This is further supported by the forecast-bust case study by Grams412

et al. (2018), in which a forecast WCB which was too strong led to enhanced modification of PV at the WCB outflow413

region, suggesting the importance of both diabatic processes and advection in the development of forecast error.414

4 | CONCLUSION415

The evolution of potential temperature and PV from operational forecasts initialised at different times was studied416

under two descriptions. The first one is the Eulerian description, in which the investigation was focused on the total417

changes in potential temperature and PV at the grid-point level. The second description is based on Lagrangian418

tracers, which allow for the decomposition of the changes in two parts, a materially conserved part, which served as a419

Lagrangian label, and a diabatically generated part due to the combined action of the parametrised diabatic processes420

and advection.421

The conceptual model that arises is rather complex, but we try to simplify it by considering the perfect-forecast422

case (which would require a perfect model and perfect initial conditions). In this case, the Eulerian analysis tells us423

that if we stood at a given point in the atmosphere and simulated the change an atmospheric variable would undergo424

in a particular time interval (with a defined start and end), this change would be the same regardless of when we425

started the simulation. Still considering the perfect-forecast case, the Lagrangian-tracer analysis tells us that, if we426

followed the parcel that will occupy the point in the atmosphere at which we are standing, the changes in the value427

of an atmospheric variable will be due to two effects: the advection of the parcel and the changes it undergoes as it428

travels from its origin to the selected point. If we compare these two changes between weather forecasts of different429

length, their differences must remain in balance. Thus, if the changes due to advection are smaller in the short forecast430

than in the long forecast, then the changes along the trajectory must be larger in the short forecast than in the long431

forecast and vice versa. Wehave formalised these relationships by introducing the concepts of Advective Replacement432

Difference (ARD(ϕ) = ϕs
0,k+1→k

− ϕs+k0,1→0) and Diabatic Modification Difference (DMD(ϕ) = δϕs
k+1
− δϕs+k1 ), defined433

through (14) and the discussion that follows that equation.434

As we explicitly state in Section 1, obtaining a perfect forecast is not possible and therefore we assume a less435

restrictive unbiased-forecast scenario and ask how close the behaviour of a state-of-the-art forecast model is to436

that of the theoretical unbiased model. Thus, the statistical expressions that we present in this work disregard the437

unrealistic expectation of a perfect forecast and lessen the constraints by considering instead the unbiased-forecast438

case. These unbiased-model relationships were tested on a dataset of 12-h and 24-h forecasts initialised at 00Z and439

12Z from a 25-day period during September-October 2016, corresponding to the NAWDEX field campaign (Schäfler440

et al., 2018).441

Using the Eulerian description, it was found that the operational forecast model tends to produce changes in the442

24-h forecast which underestimate the corresponding changes in the 12-h forecast. This effect was displayed by both443

potential temperature and PV, and in both cases, the largest underestimation took place on the most dynamically and444

thermodynamically active regions characterised by the largest changes in both variables. In this study the regions of445

large changes in θ and Q corresponded to the location of Rossby-wave troughs and ridges, which are known to be446

important for the downstream development of thesewaves themselves (e.g. Davies andDidone, 2013; Baumgart et al.,447

2018) and have been linked to the occurrence of forecast busts (Rodwell et al., 2013; Grams et al., 2018). Forecast448

error in these regions is closely related to the way in which θ and Q are modified within extratropical cyclones’ WCBs449
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and how this process is represented in numerical models (Martínez-Alvarado et al., 2016b; Baumgart et al., 2019). We450

have hypothesised that the underestimation in the Eulerian changes of θ and Q arises at least in part from the model’s451

representation of systems with the ability to modify the mid-latitude upper tropospheric environment via latent heat452

release, such as WCBs (Grams et al., 2018), mesoscale convective systems (e.g. Rodwell et al., 2013) and tropical453

cyclones undergoing tropical transition (Grams and Archambault, 2016, e.g.). However, further work is needed to454

confirm this hypothesis.455

The underestimation of changes in θ and Q found with the Eulerian description was further investigated using456

the Lagrangian-tracer description: For potential temperature, it was shown that small Eulerian changes were charac-457

terised by a Lagrangian behaviour closer to that of a theoretical unbiasedmodel; however, large Eulerian changeswere458

accompanied by large Lagrangian deviations from the unbiased model’s behaviour, manifest as the underestimation459

of DMD(θ) for a given ARD(θ). For PV, it was shown that a clear underestimation of DMD(Q ) for a given ARD(Q )460

with respect to the behaviour of a theoretical unbiased model was present regardless of the level of Eulerian change.461

Thus, the better approximation to the unbiased model’s behaviour for small-magnitude Eulerian changes was due to462

these changes being associated to small-magnitude ARD(Q ) rather than to a better Lagrangian behaviour per se.463

In this work we have studied forecasts at a maximum lead time of 24 hours. Forecast error at these lead times464

is generally very small, leading to forecast skill possibly around 98% (See e.g. Fig. 1 in Bauer et al., 2015). On the465

other hand, forecast busts, i.e. occasional episodes of noticeably low forecast skill (e.g. Rodwell et al., 2013), occur466

at lead times of the order of five days. Therefore, connecting our results to episodes of large forecast error is not467

straightforward. However, we can hypothesise that the cumulative effect of the deviations from the behaviour of468

an unbiased model contribute to the growth of forecast error and, under certain circumstances, to the occurrence of469

forecast busts.470

While the whole 25-day dataset was used to ensure the results’ statistical robustness, it was found that single471

12-h–24-h forecast pairs exhibit the same qualitative behaviour as the whole dataset. This suggests that deviations472

from the unbiased model’s behaviour in the changes of potential temperature and PV do not depend on the synoptic473

situation, recalling that the NAWDEX field campaign period was characterised by a diversity of synoptic situations474

including extratropical transition of tropical cyclones, strongWCBs, tropopause polar vortices and atmospheric block-475

ing (for a more complete account see Schäfler et al., 2018). Assuming a direct relationship between these changes476

and model error, understood as error in the model tendencies, these results suggest that the statistics of model error477

are flow-independent to a large extent in contrast to forecast error, which is widely known to be flow-dependent (e.g.478

Ferranti et al., 2015). In this work, we studied total changes in potential temperature and PV. A natural next step479

would be to study the separate effects of individual parametrisations and their interactions.480

Given the flow-independence of the statistical results, we were able to use single 12-h–24-h forecast pairs as481

case studies. Thus, the Stalactite cyclone, which developed during the first days of October 2016, was used to illus-482

trate the relationship between changes in potential temperature and PV and particular meteorological features. It was483

shown that most grid points exhibiting large Eulerian deviations from the unbiased model’s behaviour were also part484

of dynamically and thermodynamically active regions at upper levels, such as Rossby-wave troughs and ridges. This485

reinforces the idea of the dynamical importance of the deviations from the unbiased model’s behaviour for the accu-486

racy of the forecasts and provides motivation for further investigation. Restricting the analysis to the troposphere, the487

Lagrangian-tracer analysis revealed that, while the Eulerian θ-increments in the 24-h forecast were close to those in488

the 12-h forecast, the corresponding Q -increments in the 24-h forecast were underestimated with respect to those489

in the 12-h forecast. This mismatch could arise from several potential sources. Given the location of these grid points,490

mainly along the Rossby-wave ridge, we hypothesise that the underestimation in the Q -increments could be related491

to the reduction in PV gradient as identified by Gray et al. (2014) and further studied by Harvey et al. (2016) and Saffin492
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et al. (2017). However, more work is needed to firmly establish this link. From a Langrangian point of view, the mis-493

match could be a consequence of an underestimation in the depletion of PV in the 24-h forecast, which would point494

to errors in the parametrisation of diabatic processes. Alternatively, it could result from the advection of the wrong495

parcels into the affected regions, which could yield inaccurate estimations in the 24-h-minus-12-h forecast differences.496

Determining the correct explanation can prove a challenging task as advection and parametrised diabatic processes497

are intimately related both in reality and within the machinery of numerical forecast models (Martínez-Alvarado et al.,498

2016a). The role of the intricate relationship between diabatic processes and advection has been demonstrated in499

case studies of large forecast error (e.g. Grams et al., 2018). We argue here that this is not exclusive of these episodes,500

but pervasive throughout the performace of themodel and an expression of errors inmodel formulation. Thus, despite501

the challenge that explaining the mismatch between advection and diabatic modification in models poses, unveiling502

the relative importance of these factors and their systematic occurrence could lead to important improvements in fore-503

cast skill. Another important remaining unsolved aspect is the development of the deviations as forecasts progress.504

In this work we have investigated 12- and 24-hour forecasts starting every 12 hours, but it would be worth reducing505

both lead time and time interval to investigate how the deviations evolve.506
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F IGURE 1 Schematic illustrating the relationships between the terms in the Eulerian description at a given grid
point. Crosses and circled crosses represent forecasts and analyses, respectively.
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F IGURE 2 Schematic illustrating the relationships between the terms in the Lagrangian-tracer description.
Crosses and circled crosses represent forecasts and analyses, respectively. Concentric circles represent the ϕ-value,
at analysis time, belonging to parcels which will be advected to the grid points of interest in the forecasts. The red
lines represent the evolutions of these parcels in the forecasts.
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F IGURE 3 Schematic illustrating the behaviour of a perfect model with perfect initial conditions. Circled crosses
represent analyses. Concentric circles represent the ϕ-value, at analysis time, belonging to the parcel which will be
advected to the grid point of interest in the forecast. The red and blue lines represent the evolutions of these parcels
in the long and short forecast, respectively.
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F IGURE 4 〈∆ϕs
k+1
− ∆ϕs

k
〉 versus 〈∆ϕs+k1 〉 (black circles) for (a) ϕ = θ (in K) and (b) ϕ = Q (in PVU) for k = 1

within ten equally populated bands according to ∆ϕs+k1 . Small squares represent the median, and crosses represent
the 1st and 3rd quartiles of (∆ϕs

k+1
− ∆ϕs

k
) in each of those bands. The data points are plotted at the position of

〈∆ϕs+k1 〉 within the corresponding band. For emphasis, the black line joins the means and the light blue shading
highlights the position of the interquartile range.
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F IGURE 5 Grid points for which ∆ϕs+k1 is (a,c) less than its second decile, and (b,c) greater than its eighth decile
for (a,b) ϕ = θ and (c,d) ϕ = Q . The grid points in the figure correspond to model level 35 (∼ 8.6 km) for k = 1 for a
single long forecast with base time at 1200 UTC 1 October 2016 (s = 23) shaded by (∆ϕs

k+1
− ∆ϕs

k
) − ∆ϕs+k1 . Thin

lines represent mean sea level pressure contours, in hPa, with a separation of 4 hPa; bold lines represent the 320-K
2-PVU PV contour. Both sets of contours correspond to validation time 1200 UTC 2 October 2016.
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F IGURE 6 〈DMD(ϕ)〉 versus 〈ARD(ϕ)〉 (circles) for (a,b,c) ϕ = θ (in K) and (d,e,f) ϕ = Q (in PVU) for k = 1 within
ten equally populated bands according to ARD(ϕ) for grid points for which ∆ϕs+k1 is (a,d) below its first decile (b,e)
between its fourth and sixth deciles, and (c,f) above its ninth decile. Small squares represent the median, and crosses
represent the first and third quartiles of DMD(ϕ) in each band. The data points are plotted at the position of
〈ARD(ϕ)〉 within the corresponding band. The black line with slope −1 passing through the origin describes the
expected mean behaviour of an unbiased forecast model. For emphasis, the black line joins the means and the light
blue shading highlights the position of the interquartile range.
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F IGURE 7 Number of tropospheric grid points in each model column, out of ten model levels (31 ≤ m l ≤ 40,
nominally between 6.8 km and 11.2 km), for which |∆θs+k1 | and |∆Q s+k1 | are greater than their respective sixth decile
and ARD(Q ) is greater than its eighth decile. The grid points in the figure correspond to k = 1 for a single 24-h
forecast with base time at 1200 UTC 1 October 2016 (s = 23). Bold lines represent the 320-K 2-PVU PV contour at
validation time 1200 UTC 2 October 2016.


