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Tumors employ strategies to escape immune control. The principle aim of most

cancer immunotherapies is to restore effective immune surveillance. Among the different

processes regulating immune escape, tumor microenvironment-associated soluble

factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional

activity of tumor-specific CD8+T cells. These dynamic immunosuppressive networks

prevent tumor rejection at several levels, limiting also the success of immunotherapies.

Nevertheless, the recent clinical development of immune checkpoint inhibitors or of

molecules modulating cellular targets and immunosuppressive enzymes highlights the

great potential of approaches based on the selective disruption of immunosuppressive

networks. Currently, the administration of different categories of immunotherapy in

combination regimens is the ultimate modality for impacting the survival of cancer

patients.With the advent of immune checkpoint inhibitors, designed tomount an effective

antitumor immune response, profound changes occurred in cancer immunotherapy:

from a global stimulation of the immune system to a specific targeting of an immune

component. This review will specifically highlight the players, the mechanisms limiting

an efficient antitumor response and the current immunotherapy modalities tailored

to target immune suppressive pathways. We also discuss the ongoing challenges

encountered by these strategies and provide suggestions for circumventing hurdles to

new immunotherapeutic approaches, including the use of relevant biomarkers in the

optimization of immunotherapy regimens and the identification of patients who can

benefit from defined immune-based approaches.

Keywords: immunotherapy, immunosuppression, tumor escape, soluble factors, tumor microenvironment,

immune checkpoint inhibitors, immunosuppressive enzymes

Cancer growth and progression is controlled by the immune cells infiltrating the tumor
microenvironment (TME). Several reports provide clear evidence that activation of an antitumor
immune response in the host results in tumor regression and translates into better clinical outcomes
in animal and human cancers (1, 2). However, more often than not, the interactions between the
immunological players and the tumor cells in the TME lead to immune evasion contributing to
tumor progression (3). Importantly, the immune selection inadvertently favors the emergence of
tumors with reduced immunogenicity. The stromal compartment is required to create a permissive
environment for the extravasation and spread of genetically and epigenetically altered tumor cells
(4), and maintain the inactivation of various components of the immune system, preventing their
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adequate functioning (5). The major role of the immune system
in oncology has been highlighted by the identification of one of
the cancer hallmarks: “tumor evasion from immune surveillance”
(4). Instead of using specific inhibitors to target tumor cells,
immunotherapy drugs facilitate either the generation of anti-
tumor immune responses or the unleashing of the patient’s
immune system against cancer through immune checkpoint
blockade (ICB). Co-inhibitory molecules are crucial players in
the regulation of T cell responses by modulating the signaling
cascade initiated by T cell receptor (TCR) engagement. An
antigen-independent “second signal” is required to counteract T
cell activation and to induce a down-modulation of the immune
system activation toward a resting state (6). ICB functions as
tumor suppressing factors through the modulation of immune
cell-tumor cell interaction, preventing an effective tumor attack.
Immunotherapy strives to improve immune system functions,
and therefore potentiate immune surveillance of cancer resulting
in effective tumor control. Unfortunately, the response to
treatment and the course of the disease can be influenced by
several elements including the capacity of the tumor to adapt
through loss of immunogenicity, the impairment of tumor
antigen processing, and presentation, and the modulation of
the TME toward immunosuppression. The immune contexture
defined by the presence of immune-suppressive or -regulatory
cell types of the adaptive and innate immune system, or the
production of immunosuppressive factors may result in the
impairment of local tumor effector cells that can result also
in limited systemic anti-tumor immune responses and tumor
progression (7). The tumor progression is primarily due to the
deleterious effects of tumor- and cell- derived factors and co-
inhibitory molecules present in the TME. Understanding and
overcoming these tumor escape mechanisms remain a challenge
for the successful treatment of cancer. In this review, factors and
molecules in the TME, and the strategies that neutralize their
effects will be addressed. Results from ongoing immunotherapy
clinical studies and agents that have been recently identified as
standard care for some type of tumors will be summarized.

Abbreviations: ICB, Immune checkpoint blockade; TME, Tumor

microenvironment; Tregs, regulatory T cells; CTL, cytotoxic T lymphocytes

IFN-γ, interferon-γ; IDO, indoleamine 2,3- dioxygenase; CCL, C-C Motif

Chemokine Ligands; TGF- β, Transforming growth factor- β; NK, natural killer;

DC, dendritic cells; NSCLC, non-small-cell lung carcinoma; MDSCs, myeloid-

derived suppressor cells; mAb, monoclonal antibodies; OS, overall survival; IL,

Interleukin; APC, antigen presenting cells; TLR, Toll-like receptor; MHC-II,

major histocompatibility complex II; TAMs, tumor-associated macrophages;

VEGF, Vascular endothelial growth factor; FDA, Food and Drug Administration;

PFS, progression free survival; NSCLC, Non-small-cell lung carcinoma; M-CSF,

macrophage colony-stimulating factor; CAF, cancer-associated fibroblasts; ICIs,

immune checkpoint inhibitors; TNF-α, tumor necrosis factor; iNOS, inducible

nitric oxide synthase; PDE-5, Phosphodiesterase type 5 inhibitors; cAMP,

cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate;

HNSCC, Head and neck squamous cell carcinoma; SHP2, Src homology 2

domain-containing tyrosine phosphatase 2; PD-1, Programmed cell death

protein 1; PD-L1, programmed death-ligand 1; RCC, renal cell carcinoma;

LXR, liver X receptor; TIM-3, T cell immunoglobulin and mucin 3; LAG-3,

Lymphocyte-activated gene-3; ITIM, immunoreceptor tyrosine-based inhibition

motif; VISTA, V-domain Ig-containing suppressor of T cell activation or PD-1

homologue; TIGIT, T cell immunoglobulin and immunoreceptor tyrosine-based

inhibitory domain.

SOLUBLE FACTORS

Interleukin-10 (IL-10)
IL-10, identified as cytokine synthesis inhibitory factor (CSIF) is
a potent anti-inflammatory cytokine which is structurally related
to interferon (IFN)-γ (8). IL-10 is produced by various types
of immune cells, including T regulatory cells (Tregs), T helper
cells (Th)-1, Th17, B cells, activated monocytes, macrophages,
mast cells, granulocytes, dendritic cells (DC) and tumor cells,
thus preventing the inflammatory environment created by cancer
(9, 10). Recognized as a Th2 cytokine, IL-10 secretion influences
the dysfunction of innate and adaptive immunity to allow the
escape of malignant cells from immune surveillance by inhibiting
the Th1 immune response and the T cell cytotoxic activity
(11). IL-10 signaling suppresses T cell function by stimulating
the transcription of genes known to suppress toll-like receptor
(TLR)-dependent and IFN-γ-dependent signaling in antigen
presenting cells (APCs), and thus limiting their function. In
already activated DCs, IL-10 has no effect, but in activated
monocytes/macrophages IL-10 induces March-I, an ubiquitin
ligase that affects antigen presentation by limiting the expression
of the major histocompatibility complex (MHC)-II and CD86
(12). In a spontaneously metastatic 4T1 mammary carcinoma
mouse model, the increase in myeloid-derived suppressor
cells (MDSCs) production of IL-10 decreased the macrophage
production of IL-12, and thereby impaired tumor immunity (13).
In murine models of inflammatory bowel disease, the frequency
of DNA mutations in the colon was 4- to 5-fold greater in IL-
10 deficient mice than in IL-10-sufficient mice (14). Treatment of
IL-10 deficient mice with a pegylated (PEG) form of recombinant
human IL-10 increased the cytotoxic activity of CD8+ T cells and
controlled tumor growth. Moreover, when cured by PEG IL-10,
mice had a long-lasting immunity (15, 16).

A meta-analysis revealed that there is a strong correlation
between high levels of circulating IL-10 and poor prognosis
of various patients with most types of solid tumors and
hematological malignancies (17). Using biopsies from
patients with oral squamous cell carcinoma, tumor-associated
macrophages (TAMs) expressing CD163+CD204+ promoted
T cell apoptosis and immunosuppression via IL-10 and PD-L1
production, thus predicting an unfavorable prognosis (18).
Clinical trials are ongoing for evaluating pegylated recombinant
human IL-10 (AM0010, pegilodecakin) in combination with
pembrolizumab in metastatic non-small-cell lung carcinoma
(NSCLC) (ClinicalTrials.gov Identifier: NCT03382899). After a
favorable phase Ib trial in pancreatic cancer, a phase III study
is evaluating the safety and efficacy of AM0010 in combination
with FOLFOX compared to FOLFOXmonotherapy in metastatic
pancreatic cancers as a second-line therapy (NCT02923921).
Up to date, no IL-10 receptor agonist has received regulatory
approval for its use.

Vascular Endothelial Growth Factor (VEGF)
The VEGF family of growth factors includes the splice variant
forms: VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental
growth factor (PLGF) (19). VEGF-A, often referred to as VEGF,
is the predominant ligand for VEGF receptor 2 (VEGFR2, KDR).
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VEGF-A exerts a potent proangiogenic effect that stimulates
endothelial cell proliferation, migration, and survival in both
normal and pathological angiogenesis (19, 20). Both tumor and
stromal cells in the TME can produce VEGF (19). VEGF affects
lymphocyte-endothelium interactions by altering the adhesion
molecule clustering process at the endothelial cells surface,
thus controlling lymphocyte trafficking (21). Secondly, VEGF
has a systemic immunosuppressive effect. Intratumoral VEGF
production limits T cell recruitment into tumors, promote T
cell exhaustion and induces accumulation of immune-regulatory
cells, such as immature DCs, MDSCs, Tregs, and TAMs (22, 23).
Increased VEGF serum levels or tumor expression are associated
with a poor prognosis in patients with malignancies including
metastatic colorectal cancer (24). Interestingly, DCs matured in
the presence of VEGF express less human leukocyte antigen-
DR (HLA-DR) and CD86. This expression can be restored by
VEGF inhibitors, bevacizumab, and sorafenib. VEGF increases
also the expression and activity of indoleamine 2,3- dioxygenase
(IDO) in DCs, which has a suppressive effect on antigen (Ag)-
specific and mitogen-stimulated lymphocyte proliferation (25).
Tumor-produced VEGF-A attracts Nrp1-expressing Tregs and
this interactionmediates Tregs infiltration into the tumor (26). In
ovarian cancer patients, VEGF enhances expression of PD-1 and
other inhibitory checkpoints involved in CD8+ T cell exhaustion
(27). A preclinical report demonstrated in vitro inhibition of the
tumor growth with a decrease in the density of vessels in tumor-
bearing mice treated with monoclonal antibodies targeting and
neutralizing VEGF-A (28).

Based on preclinical evidences, bevacizumab (Avastin,
Genentech, Inc.) has been approved in 2004 by the U. S. Food
and Drug Administration (FDA) for the first-line treatment of
metastatic colorectal cancer (29). Although, several inhibitors
of VEGF/VEGFR2 (i.e., bevacizumab, pazopanib, sunitinib,
sorafenib) are commonly used in the clinic, they are beneficial
only to a subset of patients. The limitations are due to several
relapse mechanisms occurring during the anti-angiogenic
therapies, including an upregulation of PD-L1 by cytotoxic
T lymphocytes (CTL)-secreted IFN-γ (30), and abnormalities
in the tumor endothelium (31). Multiple trials are currently
investigating combinations of angiogenesis inhibitors and
immunotherapies in multiple cancers [(32), NCT02443324],
and in patients with advanced diseases (NCT02348008,
NCT01633970). Bevacizumab treatment combined with
carboplatin and paclitaxel received FDA approval in June
2018 for post-surgery treatment of patients with stage II or IV
epithelial ovarian, fallopian tube, or primary peritoneal cancer,
followed by single-agent bevacizumab. In metastatic melanoma
patients, the combination of bevacizumab and ipilimumab
induced changes in tumor vasculature, inflammation status,
lymphocyte trafficking, and immune regulation. Analysis of the
46-patient cohort demonstrate a median survival >2 years with
significant antitumor activity at the maximum tolerated dose
(33). Maintenance nivolumab plus bevacizumab has been tested
vs. nivolumab monotherapy and showed improved progression
free survival (PFS) results (NCT01454102, CheckMate 012).
However, in this comparison the nivolumab monotherapy arm
comprise patients with squamous and non-squamous histology,

while the nivolumab plus bevacizumab arm included only
patients with non-squamous histology (median PFS of 16 weeks
in squamous patients and 21.4 weeks in non-squamous patients
in the nivolumab monotherapy arm compared to a median PFS
of 37.1 weeks in the combination arm). No significant variance
in the overall survival (OS) was observed in the two different
treatment groups. Another phase III clinical trial, comparing the
PFS and the OS of nivolumab combined with ipilimumab vs.
the VEGF signaling inhibitor sunitinib in previously untreated
advanced renal cell carcinoma (RCC) so far showed so far
minimal toxicities and a reduction of the frequency of Tregs
[NCT02231749, CheckMate 214, (34)].

Prostaglandin E2 (PGE2)
The bioactive lipid PGE2, product of the conversion of
arachidonic acid by cyclooxygenase 2 (COX-2) is synthesized
by various cell types, including cancer, stromal, and infiltrating
myeloid cells. In the TME, PGE2 mediates its effects by acting
on a group of G protein-coupled receptors (EP1-EP4) (35). The
involvement of each receptor in regard to immunosuppression
has been studied and revealed that EP1 and EP2 are low-
affinity receptors and require significantly higher concentrations
of PGE2 for effective signaling. EP3 and EP4 are high affinity
receptors (35). Most of the immunomodulatory effects of
PGE2 on immune cells are mediated through EP2 and EP4
receptors. EP2 and EP4 are Gαs coupled protein and stimulate
adenylyl cyclase to raise the intracellular level of cAMP, and
thus protein kinase A (PKA) which activate various types of
signaling molecules. However, only EP4, mainly expressed on
myeloid cells, T lymphocytes, and tumor cells is known to
induce T cell factor–mediated transcriptional activity through
phosphatidylinositol 3-kinase (PI3K) as well as PKA (36). EP4,
additionally contributes to PGE2-mediated enhancement of
tumor survival pathways and suppression of antitumor immune
responses. PGE2 induces immunosuppression by inhibiting
effector functions of macrophages, neutrophils, CTL, Th1 and
natural killer (NK) cell-mediated immunity and by directly
downregulating the production of Th1 cytokines. PGE2 also
stimulates the development of suppressive types of Tregs,
Th17, MDSCs and upregulates Th2-associated cytokines (36).
PGE2 has the ability to suppress the production of IL-12 in
monocytes and DCs, which is essential to Th1 responses (37). In
RCC patients, PGE2 induces arginase I production by MDSCs.
Subsequently arginine is depleted and T cell signal transduction
and function impaired (38). A positive feedback loop between
PGE2 and COX2 leads to redirect the differentiation of DCs
toward monocytic MDSCs and locally promote the development
of suppressive MDSCs (39). Moreover, in the ascites, MDSC
precursors locally accumulate in a CXCR4-dependent manner
that requires COX2 activity and autocrine PGE2 production (40).
Mice deficient in EP2 significantly develop less tumors compared
with tumors in wild-type mice (41). In animal models, E7046,
a selective small-molecule inhibitor of EP4 showed an immune
dependent growth inhibitory activity, and moreover showed
synergistic antitumor activity when combined with anti-CTLA-4
antibodies (42).
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The recently completed phase I study NCT02540291 assessed
the potential of E7046 in patients with cancers that harbor
high levels of myeloid infiltrate cells in the TME. The results
showed that although the maximum tolerated dose was not
reached, E7046 demonstrated an antitumor activity, and immune
modulation in tumors and peripheral blood. Another EP4
antagonist, AAT 008, more potent in pharmacokinetic and
pharmacodynamic modeling than Grapiprant (AT-001, AAT-
007, CJ-023,423) has not yet been tested in clinic (43).

Colony-Stimulating Factor (CSF-1)
The proinflammatory cytokine CSF-1, also known as
macrophage-CSF (M-CSF) binds to the CSF-1 receptor (CSF1R),
which belongs to the Type III protein tyrosine kinase receptors.
The axis CSF-1/CSF1R is crucial for the differentiation and
survival of the mononuclear phagocyte system, and in particular
macrophages. Its expression correlates with diminished survival
in some cancers, including breast cancer (44, 45). Moreover,
elevated CSF-1 levels in the serum of early breast cancer
patients predicts poor survival (46). Macrophages are recruited
into tumors following activation of CSF1R by either CSF1 or
IL-34, two high-affinity ligands. Interestingly, in a cohort of
lung cancer patients, the co-expression of CSF-1 with IL-34
in primary tissues correlates with advanced disease stages and
poor survival (47). In addition to TAMs, CSF1R is expressed on
DCs, neutrophils, and MDSCs. In murine models of cervical
and breast carcinomas, inhibition of CSF1R by a highly selective
small molecule inhibitor attenuates the turnover rate of TAMs
while increasing the number of CD8+T cells that infiltrate the
tumors (48). Other preclinical studies suggest that targeting of
CSF1R pathway in combination with standard of care treatment
may strategically be more effective for activating antitumor
responses (49).

Inhibition of CSF-1/CSF-1R pathways suppresses the
recruitment of circulating monocytes at the tumor site,
and the blocking of TAMs activation, as the major survival
factors for these macrophages. Small molecules or clinical
antibodies against CSF-1, and CSF-1R belong to a new
class of immune-modulatory drugs. Several clinical trials
evaluating those inhibitors (PLX3397, RG7155, Durvalumab)
alone or in combination with immunotherapy agents (anti-
PD-1, -PD-L1) or chemotherapies (paclitaxel, fluorouracil,
gemcitabine, oxaliplatin, irinotecan) have been completed
(NCT02452424, NCT01494688, NCT01346358, NCT02718911).
Recently, a study was launched to measure PFS for patients
with advanced pancreatic cancer with poor prognosis treated
with the IgG4 monoclonal antibody (mAb) blocking CSF-1R
(cabiralizumab) combined with nivolumab, with or without
chemotherapy (NCT03336216).

Transforming Growth Factor (TGF)-β
TGF-β is the prototype of the superfamily containing over
forty members, including TGF-βs, Nodal, Activin, and bone
morphogenetic proteins (BMPs) (50). TGF-βs are composed of
a group of three members (TGF-β1, -β2, and -β3) normally
involved in a variety of biological processes (50). Frequently,
TGF-β refers to the isoform TGF-β1, which represents the most

widely studied. Produced in large amounts within the TME by
every leukocyte lineage, including lymphocytes, macrophages,
and DCs, TGF-β1 is crucial for protecting the body from
the development of excessive immune responses, therefore
maintaining immune homeostasis (51). Active TGF-β binds to
dimeric TGF-β type 2 receptor (TβRII), which recruits and
activates a second dimeric type 1 receptor (TβRI) through
its serine/threonine kinase to form a complex. The activated
receptor initiates the signaling pathways and phosphorylates
the transcription factors SMAD2 and SMAD3 that subsequently
form a complex with SMAD4 and cofactors to translocate into the
nucleus and modulate the expression of target genes. In addition,
depending on the pleiotropic nature of TGF-β actions, activated
TGF-β receptor complexes can also trigger a SMAD-independent
pathway, including MAPK, PI3K/AKT, and Rho-like GTPase
signaling pathways. (52). In the context of cancer, TGF-β play
a pivotal role depending on the stage of the tumor (50). In
the phase of pre-malignant cells, the tumor suppressive role
of TGF-β interferes with tumor proliferation and progression.
TGF-β promotes the immunological tolerance by directly
suppressing the cytolytic activity of NK and CTLs, repressing the
transcription of genes encoding key proteins (such as perforin,
granzymes, and cytotoxins), and controlling the inflammatory
responses through the regulation of chemotaxis, activation, and
survival of lymphocytes, macrophages, granulocytes, NK cells,
DCs and mast cells (53, 54). TGF-β is also instrumental for
converting conventional CD4+ T cells to “induced” FoxP3+

Tregs (55), recruiting and stimulating the expansion of the
mediators of in vivo suppression, MDSCs and Tregs. Recently,
it has also been suggested that tumor immune evasion can
occur by TGF-β-driven conversion of NK cells into type 1
innate lymphoid cells by an unknownmechanism (56). However,
in late stage of cancer development, elevated levels of TGF-β
favors tumor progression via effects on the stroma, induction of
angiogenesis and/or promotion of the epithelial-to-mesenchymal
transition (57–59). The explanation for these contradictory roles
is that some tumors develop TGF-β-inactivating mutations and
progress in a TGF-β-independent manner, while other tumors
accumulate mutations in tumor suppressor genes downstream of
TGF-β signaling. Cancer cells that acquire these mutations gain a
great advantage over their non-mutated counterparts, as they can
exploit the wide range of pro-tumorigenic effectors downstream
of TGF-β stimulation (60). Increased systemic ligand levels
of TGF-β and aberrant TGFβ signaling are often correlated
with aggressive disease and poor prognosis (61). In preclinical
studies, targeting the TGF-β pathway may be achieved through
the use of several agents, including antisense oligonucleotides,
TGF-β-neutralizing antibodies and TGF-β receptor kinase
inhibitors (52). In some models of tumor-bearing mice, blockade
of the immunomodulator TGF-β with antibodies or genetic
manipulation decrease the number of induced Tregs (62). Inmice
expressing the four main mutations associated with colorectal
cancer, the blockade of TGF signaling sensitized the tumor to the
action of anti–PD-L1 antibodies (63). In a model replicating the
immune-excluded phenotype, co-administration of anti-PDL1
and anti-TGF-β therapies reduced TGFβ signaling in stromal
cells, and thus increased the ability of T cells to infiltrate
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tumors (64). Although, the microenvironment-targeted strategy
targeting TGF-β pathway is being well tolerated in preclinical
studies, translation into patients remains challenging and raises
concerns, which include the development of autoimmune
toxicities, the targeting of other homeostatic functions such as
angiogenesis, and the risk of developing new malignancies.

Early phases clinical trials using TGF-β monotherapy have
yielded conflicting results. While, one study using a monoclonal
blocking antibody specific for TGF-β1 reported no clear
evidences of antitumor effects in patients despite no major
adverse side effects (65), other evaluations showed encouraging
results. An mAb neutralizing all isoforms of TGF-β1, GC1008
(Fresolimumab) demonstrated preliminary evidence of anti-
tumor effects in a subgroup of patients with advanced malignant
melanoma and RCC (66). Interestingly, metastatic breast
cancer patients treated with high dose fresolimumab during
radiotherapy had a favorable systemic immune response, and
thus, a better prognosis (67). Preliminary data from a phase
I dose-escalation study suggested that M7824 (MSB0011359C),
a bifunctional fusion protein composed of a chimeric version
of an anti-PD-L1 mAb with a fragment of TGF-βR4 to entrap
active TGF-β, has demonstrated a favorable safety profile in
patients with pre-treated advanced solid tumors [NCT02517398,
(68)]. Galunisertib (LY2157299), a small molecule antagonist
of TGFβ-R1 is being studied in combination with an anti-
PD-L1 in NSCLC, hepatocellular carcinoma, pancreatic cancer
(NCT02423343, NCT02734160) and with paclitaxel in triple
negative breast cancer (NCT02672475).

ENZYMES

Indolamin 2, 3-Dioxygenase
IDO is an IFN-γ-inducible metabolic enzyme localized in the cell
cytoplasm. IDO catalyzes the breakdown of tryptophan (Trp), an
essential amino acid for lymphocyte proliferation, to kynurenine
(Kyn), highly toxic for effector cells. This enzyme exists in
two isoforms (IDO-1, IDO-2). IDO-1 is mainly responsible
for tryptophan degradation and highly expressed in multiple
types of human cancer, including acute myeloid leukemia (69,
70). Although IDO-2 is expressed in some human tumors,
its function still remains to be clarified (71). IDO-1 can be
induced in immune cells recruited by the tumor, especially
APCs through canonical and non-canonical pathways including
NF-κB, Jak/STAT, PKC and TGF-β signaling pathways (72).
The rise in the Kyn/Trp ratio in cancer patients suggested an
increase in IDO activity and low concentrations of tryptophan
in serum/plasma is a reflection of the chronic activation of IDO-
1 in the TME, which correlates with tumor progression and
poor patient outcomes (73). The Trp shortage, which results
in mTORC1 inhibition and general control non-derepressible
2 (GCN2) activation, leads to an anergic status of effector
T cells (72). IDO-1 also reduces cytokine release, favors the
expansion of Tregs andMDSCs, (74), regulates the differentiation
of tolerogenic DCs (75), and along with PGE2, mediates the
inhibitory effect of major NK receptors (NCRs and NKG2D),
creating a consequent impairment of NK cell-mediated cytolytic
activity (76). Using a mouse pregnancy model, IDO-1 highly
expressed in the placenta, or products of tryptophan catabolism

play a role in maternal T-cell activity suppression, hence
protecting the mouse fetus from the maternal immune rejection
(77). This effect of rejection was observed in the context
of cancer. The expression of IDO by immunogenic murine
tumor cells prevents their rejection by preimmunized mice due
to a lack of specific T cell accumulation at the tumor site.
This can be reverted by systemic treatment of mice with an
inhibitor of IDO (78). These preclinical data led to a rapid
clinical development of the first generation IDO-1 inhibitors
(indoximod, 1-MT, NLG8189), which has been demonstrated to
relieve IDO-mediated immunosuppression in vitro and in vivo
by the creation of a critical Trp-sufficiency signal that bypasses
activation of GCN2 and inhibition of mTOR in conditions of Trp
deprivation (79).

The US FDA has approved the clinical registration
applications of IDO inhibitors, in 2016, PF-06840003 in
the completed trial NCT02764151; in 2017, NLG802 in
NCT03164603 and HTI-1090, respectively, in NCT03208959.
Furthermore, combinational regimens with other treatment
modalities are under evaluation (80), and some of them such as
the phase I/II trial of indoximod combined with temozolomide,
have shown promising results in patients with primary malignant
brain tumors (NCT02052648). The completion of the safety
and efficacy study evaluating indoximod in combination with
gemcitabine and nab-paclitaxel in patients with metastatic
pancreatic cancer (NCT02077881) revealed a promising activity
as shown by the increased in intratumoral CD8+ T-cell density
(poster presentation at the annual meeting of the American
Society of Clinical Oncology 2018). In a phase II trial, indoximod
plus ICB in patients with advanced melanoma (NCT02073123)
showed a favorable overall response rate compared to
pembrolizumab alone. The combination of the potent and
selective oral inhibitor of IDO-1, epacadostat (INCB024360)
with nivolumab demonstrated safety, tolerability, and efficacy for
treatment of patients with naïve advanced melanoma and head
and neck squamous cell carcinoma (HNSCC) in a phase I/II trial
(ECHO-204, NCT02327078). Another phase I/II trial evaluating
epacadostat plus pembrolizumab (ECHO-202, NCT02178722)
demonstrated activity in patients with advanced NSCLC. Though
in a phase III clinical trial, epacadostat plus pembrolizumab did
not meet the primary endpoint of improving PFS in patients
with unresectable or metastatic melanoma when compared to
pembrolizumab monotherapy (ECHO-301/KEYNOTE-252,
NCT02752074). Despite some promising results, concerns have
been raised regarding the use of IDO inhibitors which can
result in severe autoimmune reactions. Indeed, as IDO can be
activated by many stimuli such as IFN-γ and tumor necrosis
factor (TNF)-α, IDO inhibitors may not work in a patient with a
cold tumor, not infiltrated by T cells.

Arginase and Inducible Nitric Oxide
Synthase (iNOS)
The semi-essential amino acid arginine, also known as L-arginine
is a precursor for several metabolites and a critical regulator of
lymphocyte proliferation and function. The arginases (Arg1 and
2) and nitric oxide synthetases (NOS1-3) are the major enzymes
responsible for arginine metabolism in inflammatory immune
responses (81, 82). Arg1 and 2 induce the same reaction but
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differ in tissue distribution and intracellular localization (83).
Tumor arginase deprives immune cells within the local TME
of arginine by catalyzing the hydrolytic conversion of arginine
into L-ornithine and urea, resulting in dysfunctional immune
cells (81, 84). This degradation of extracellular arginine affects
CD3 ζ chain, the main signaling chain of the TCR, resulting in
T cell anergy (84). The depletion of L-arginine also induces a
blockade in infiltrating T-cells and cell cycle progression (81).
The immunosuppressive enzyme from the NOS family, NOS2
(inducible NOS or iNOS) is inducible by inflammatory cytokines
and metabolizes L-arginine to produce reactive free radical NO
and L-citrulline (81). The cellular signaling molecule NO was
found to be actively associated with tumors as well as the tumor
environment and in addition to its role in cancer initiation
and progression, NO contributes to the anti-tumor immune
response and limits T cell proliferation and activity by promoting
apoptosis and by inhibiting cytokine and chemokine production
(85, 86). NOS2 is expressed by various cell types involved in
inflammation, including neutrophils, M2 macrophages, MDSCs,
DCs, NK cells, endothelial and tumor cells (87). Upregulation
of arginase prevents NOS2 activity, whereas arginase inhibition
causes enhanced NOS2 expression and leads to increased NO
production. TAMs and MDSCs overexpress and secrete Arg1
and NOS2 to deplete intracellular and extracellular arginine
facilitating the T cell impairment. Moreover, in MDSCs, the
expression of ARG1 and iNOS is regulated by cyclic GMP levels,
which is in turn controlled by the activity of phosphodiesterase
type 5 (PDE5). Therefore, the agents that can elevate intracellular
cGMP levels, such as PDE5 inhibitors, reduce MDSC-mediated
immune suppression (88).

Decreased circulating arginine levels in cancer patients are
considered indicative of elevated plasma levels and high Arg1
expression in tumors (89). Up to date, only a few studies have
been conducted with arginase inhibitors in different human
cancers, mostly to avoid complications related to the conversion
of highly toxic ammonia to urea which will be excreted. However,
in late 2017, the first cohort of patients with advanced/metastatic
solid tumors was treated with INCB01158 (an Arg1 inhibitor
formerly known as CB-1158) monotherapy or combined with
pembrolizumab (NCT02903914). PDE-5, initially used for the
treatment of erectile dysfunction, brings clinical benefits in
a range of cancers by acting on the NO/cyclic guanosine
monophosphate (cGMP) signaling pathway (90). Tadalafil, a
PDE-5 inhibitor decreases circulating MDSCs, lowers iNOS
and arginase expression in these cells, and enriches tumor-
specific T cells in HNSCC patients (91) and it is being clinically
tested in patients with multiple myeloma in combination with
lenalidomide (NCT01858558) and in patients with HNSCC in
combination with mucin 1 vaccine (NCT02544880).

Ectonucleotidases CD39 and CD73
The accumulation of adenosine, an extracellular
immunosuppressive metabolite, is a strategy used by tumors to
evade immunosurveillance. Extracellular adenosine triphosphate
(ATP) and adenosine are abundant metabolites and have
an important autocrine/paracrine role. ATP is catabolized
to adenosine in the TME by two ectonucleotidases: CD39
and CD73, anchored in cancer cells, regulatory immune

and endothelial cells from the vasculature (88). CD39 and
CD73 can be recognized as “immune checkpoint mediators”
since they interfere with anti-tumor immune responses (92).
CD39 reversibly produces AMP from ATP or ADP, which is
subsequently converted into extracellular adenosine by CD73
(93). The hypoxic TME maintains elevated levels of adenosine
due to the high-level expression of CD73 by tumor cells, which
results in a chronic suppression of immune cells (88). In addition
to tumor cells, adenosine can also be the product of immune
cells. CD56bright NK cells release adenosine in the presence
of autologous CD4+ T cells (94). Tregs overexpress CD39
and CD73 responsible of the sequential conversion of pro-
inflammatory extracellular ATP into AMP and adenosine (95).
Among the four adenosine-binding G protein-coupled receptors,
A2A receptor is the most expressed subtype on immune cells:
T, NK, NKT, macrophages, and DCs (96). Upregulation and
activation of A2A receptor switches macrophages from an M1
to an M2 phenotype and induces the production of VEGF and
IL-10 (97). When binding to A2B receptor, adenosine promotes
the expansion and functions of MDSCs (98), and induces high
expression levels of angiogenic, proinflammatory, immune
suppressor, and tolerogenic factors (99). Using an A2aR-null
mouse model, several melanoma and T cell lymphoma lines were
rejected in a CD8+T cell dependent manner, and addition of a
pharmacologic blockade of A2aR could enhance T cell mediated
tumor regression in a sarcoma and LL-LCMV tumor model
(100). Other preclinical studies have focused on blocking the
adenosine pathway by targeting CD73 and/or CD39. CD73- null
mice significantly induce tumor rejection in a variety of syngeneic
tumormodels (101) and, CD39-null mice were resistant to tumor
metastases in B16/F10 mouse melanoma and MCA-38 colorectal
models (102). In addition, weakening of upstream tumor
hypoxia by supplemental oxygenation decreases the intensity of
downstream A2AR-mediated immunosuppression in mice (103).
Co-inhibition of CD73 and A2ARs in mice with spontaneous or
transplantable tumors improve the inhibition of tumor initiation,
growth, and metastasis (104).

It has been reported that CD39-expressing-melanoma cells
inhibit both T cell proliferation and generation of cytotoxic
effectors in an adenosine-dependent manner (105). Recently, in a
phase I/Ib clinical trial CPI-444, an oral small molecule targeting
the adenosine-A2A receptor combined with the intravenous PD-
L1 inhibitor atezolizumab demonstrated an OS of 88% at more
than 20 months follow-up in treatment-refractory RCC patients
(NCT02655822). Another agent targeting A2A receptor, NIR178
(PBF-509) in combination with an anti-PD1 is currently under
investigation for the treatment of advanced NSCLC. Clinical
benefits were reported in immunotherapy-exposed and -naïve
patients irrespective of PD-L1 status (NCT02403193).

CO-INHIBITORY MOLECULES

Cytotoxic T-Lymphocyte Antigen-4
(CTLA-4)
Member of the immunoglobulin superfamily, CTLA-4 (CD152)
was the first discovered co-inhibitory receptor (106). CTLA-
4 shares the same ligands with CD28, namely CD80 (B7.1)
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and CD86 (B7.2) but with less affinity, thus counteracting the
stimulatory effects of CD28 ligation (107). Mice deficient in
CTLA-4 develop generalized lymphoproliferative syndrome with
a lymphocytic infiltration of all organs (108). Using mice bearing
partially immunogenic tumors, the Allison group showed that
CTLA4 blockade could enhance the endogenous anti-tumor
response after tumor implantation (109). CTLA-4 was then
clinically targeted, and the following relevant investigations of
its role in modulation of the amplitude of the early stages of T
cell activation represent the breakthrough of cancer immunology
(110). The proposed mechanism is the direct inhibition at
the TCR immune synapse, inhibition of CD28 or its signaling
pathway, or increase in mobility of T cells that are less prone
to interact with APCs (111). CTLA-4 is expressed by effector T
cells and constitutively expressed by Tregs (112). To prevent T
cell activation, Tregs primarily target APC via the engagement of
CTL-4 with CD80 and/or expression on APCs and transmitting
inhibitory signals (113). The mobilization of CTLA-4 from the
intracellular protein stores to the cell surface happen as early as an
hour after antigen engagement, thus allowing the occurrence of a
feedback inhibition. The balance of CD28 and CTLA-4-derived
signals is critical for maintaining the equilibrium between T cell
activation or tolerance. When administered to patients, mAbs
that block the binding of CTLA-4 to its ligands were able to
unleash antitumor responses (114).

A pivotal phase III clinical trial launched in 2010 showed
that ipilimumab, a fully humanized anti-CTLA-4 mAb, alone or
in combination with gp100 peptide vaccine, improved survival
in metastatic melanoma patients (115). Ipilimumab was the
first FDA-approved checkpoint immunotherapy in patients with
advanced melanoma. Afterwards, this agent was approved by the
European Medicines Agency (EMA) and is currently indicated
for the first line treatment of melanoma and in adjuvant settings.

Programmed Death 1 (PD-1)/PD-L
PD-1 (CD279) negatively regulates the activity of effector T cell
within tissues and tumors, where the immune response is already
ongoing, while CTLA-4 is expressed only expressed in T and
pro-B cells, the member of the immunoglobulin superfamily
is more broadly expressed. (116). PD-1 can bind two ligands
from the B7 protein family: PD-L1 (B7-H1, CD274) expressed
by macrophages, DCs, activated T and B cells, tumor cells, and
tissues, such as heart, lung, spleen and PD-L2 (B7-DC, CD273),
which is mainly expressed on DCs and tumor tissues. Unlike
CTLA-4, PD-1 acts in the secondary immune response and its
expression on the surface of activated T cells is delayed (6–
12 h) due to the need of transcriptional activation. PD-1 binds
to its ligands directly overexpressed on cancer cells, clusters
with TCR and recruits the inhibitory phosphatase SHP2 (Src
homology 2 domain-containing tyrosine phosphatase 2) via
its immunoreceptor tyrosine inhibitory motif, which induces
dephosphorylation of the proximal TCR signaling molecules,
thus suppressing T cell activation (117). High levels of PD-1
expression on T cells induces a state of anergy and exhaustion, as
shown by in vitro and in vivo models (118). PD-L1 is expressed
by different tumor types (breast, ovary and colon carcinomas),
and its expression is up-regulated in the presence of IFN-γ that

is released in the TME. The binding of PD-1 to PD-L1 generates
an immunosuppressive effect, impairs T cell activation (119) and
in addition, increases the proliferation of the tumor infiltrating
Tregs (120). A preclinical study in glioblastoma showed that
targeting factors responsible for themyeloid PD-L1 upregulation,
such as IL-6 enhance the anti-tumor activity exerted by PD-
1 therapy. Thus, interfering with IL-6 signaling diminished
myeloid immunosuppression, tumor growth, and increase mice
survival (121).

In 2014, nivolumab (OPDIVO, Bristol-Myers Squibb
Company), an anti-PD-1 mAb was approved by the FDA
for melanoma patients and marked the start of several other
approvals in other cancer types. In 2015, the FDA approved
nivolumab for the management of advanced metastatic RCC
after progression on first-line therapy or following prior
anti-angiogenic therapy (approval based on an extension
in OS in the CheckMate-025 trial, NCT668784), squamous
NSCLC as a second-line treatment across all histologies
(approval based on data from the phase III CheckMate-
057 trial, NCT01673867), advanced or metastatic urothelial
carcinoma (phase II CheckMate-275 trial, NCT02387996) and
hepatocellular carcinoma after sorafenib treatment (CheckMate
040 trial, NCT01658878). Nivolumab became the first and
only immuno-oncology treatment option for patients with
metastatic small cell lung cancer progressed after platinum-
based chemotherapy and at least one other line of therapy.
Interestingly, in the adjuvant setting, results from the phase
III, NCT02388906 (CheckMate 238) comparing the efficacy of
nivolumab vs. ipilimumab in patients with resected stage III/IV
melanoma at high risk of recurrence showed that nivolumab
provides superior safety and survival compared to ipilimumab,
regardless of tumor PD-L1 status. Several trials combined
nivolumab with other cancer therapies. Combination with
gemcitabine, which induces the killing of MDSCs, increases the
efficacy of nivolumab in metastatic NSCLC (NCT03302247). The
trial NCT02922764 is evaluating the combination of RGX-104,
agonist of the nuclear receptor liver X receptor (LXR) with
nivolumab in advanced solid malignancies and lymphoma.
This interaction between LXR and RGX-104 induces depletion
of both MDSCs and endothelial cells. The clinical study
NCT01454102 (CheckMate 012) testing the combination of
nivolumab plus ipilimumab as first line treatment for advanced
NSCLC patients showed durable efficacy and resulted in a
significantly longer OS than ipilimumab alone in a phase III
trial involving patients with advanced melanoma [CheckMate
067, NCT01844505, (122)]. The trial NCT01472081 (CheckMate
016) evaluated the safety and efficacy of nivolumab combined
with ipilimumab in patients with metastatic RCC (123). And in
April 2018, nivolumab has been approved in combination with
ipilimumab as first-line treatment for patients with advanced
RCC. Another anti-PD-1 agent, pembrolizumab (KEYTRUDA,
Merck & Co., Inc.) was approved for advanced melanoma
in 2014, followed by several other approvals in other cancer
types, such as advanced NSCLC in 2015, Hodgkin lymphoma
and urothelial carcinoma in 2017. Interestingly, in May 2017,
for the first time, the FDA approved a cancer drug based on
tumor genetics rather than tissue type or tumor site. Indeed,
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pembrolizumab was granted approval for the treatment of
any unresectable or metastatic solid tumor with specific genetic
features (mismatch repair deficiency or microsatellite instability).
In 2018, the FDA granted the approval of pembrolizumab for
treating recurrent or metastatic cervical cancer whose tumor
expresses PD-L1 and refractory or relapsed mediastinal large
B-cell lymphoma. The clinical trial identified as NCT03241927
is currently investigating the effect of pembrolizumab on NK
cell exhaustion in melanoma based on the idea that releasing
the PD-1 immune checkpoint in NK cells may help them to
infiltrate the tumor and exert their effector functions against
the tumor. Results from the phase III study (NCT02252042)
assessing the antitumor activity and toxicity of pembrolizumab
in patients with recurrent or metastatic HNSCC showed
a lower risk of death in patients with high tumor PD-L1
expression, and this despite missing predetermined endpoints.
The combination of the histone deacetylase inhibitor entinostat
with pembrolizumab is currently under investigation in patients
with advanced solid tumors (NCT02909452), and so far,
resulted in a reduction in monocytic MDSCs across all the
treatment arms. Hypothetically, treating patients resistant to
anti-PD-1 with a TLR agonist injected into the tumor may
allow the TME to be more immunogenic and thus, more
sensitive to PD-1 inhibition. In this context, pembrolizumab
combined with CPM-001, an agent that activates TLR-9 is
being tested in patients with advanced melanoma resistant to
PD-1 inhibition (NCT02680184). Reports are showing objective
and durable tumor responses. A phase I/II study combining
pembrolizumab with targeted molecule inhibitors (BRAF plus
MEK) is ongoing in melanoma and other solid tumor patients
(NCT02130466). Other clinical studies are evaluating the efficacy
of pembrolizumab plus chemotherapy (cisplatin, capecitabine
or 5-fluorouracil) (NCT02494583). Recently, the FDA granted
approval for pembrolizumab in combination with chemotherapy
(pemetrexed and platinum) for first line treatment of metastatic
non-squamous NSCLC, with no EGFR or ALK genomic tumor
aberrations. Several anti-PD-L1 mAbs are under investigation
in various cancers including melanoma, multiple myeloma,
leukemia, lymphoma, glioblastoma as well as gastric, renal cell,
bladder, colorectal, hepatocellular, cutaneous, breast and NSCLC
cancers. Atezolizumab (Tecentriq, Genentech) is currently
being tested in combination with bevacizumab and/or with
chemotherapy in patients with locally advanced or metastatic
solid tumors (NCT01633970). In 2016, the FDA approved
atezolizumab as first line treatment for cisplatin resistant
metastatic urothelial carcinoma andmetastatic NSCLCs. In April
2017, atezolizumab became the first cancer immunotherapy
approved by the FDA for patients with advanced bladder
cancer and thus is employed as a standard of care. Avelumab
(Bavencio, EMD Serono, Inc.) is a fully human anti-PD-L1 mAb
which received FDA approvals in March and May 2017 for the
treatment of patients with metastatic Merkel-cell carcinoma
and advanced or metastatic urothelial carcinoma during
or after treatment with platinum-containing chemotherapy
administered in neoadjuvant or adjuvant setting. Recently
discovered through a novel genome-scale T cell activity array,
the immune suppressor Siglec-15 which is highly expressed on

tumor cells and tumor-infiltrating myeloid cells can serve as
a biomarker for predicting the outcomes of anti-PD-1/PD-L1
therapy. Siglec-15 has been shown to continuously inhibit T
cell activity. Thus, using anti-Siglec-15 therapy may offer an
alternative strategy to PD-1/PD-L1 pathway and lead to tumor
immune normalization (124).

Lymphocyte-Activated Gene-3 (LAG-3,
CD223)
LAG-3 is a surface molecule structurally related to CD4
(125). LAG-3 consists of four extracellular immunoglobulin
superfamily-like domains (D1-D4) and binds to MHC class II
molecules with greater affinity than CD4, utilizing an additional
30 amino acid loop (126). Like the CTLA-4/CD28 subfamily,
the LAG-3/CD4 subfamily represents an inhibitory/stimulatory
receptor subfamily modulating TCR signaling. LAG-3 is
expressed in activated CD4+ and CD8+ T cells 3–4 days post
activation (127), on a subset of NK cells (128) and on activated
Tregs (129). LAG-3 does not feature an immunoreceptor
tyrosine-based inhibition motif (ITIM) but possesses in its
cytoplasmic tail two distinct motifs mediating the intrinsic
negative inhibitory signal: a repetitive “EP” motif consisting
of a series of glutamic acid-proline dipeptide repeats, and
a single lysine residue (K468) within the conserved KIEELE
motif in the cytoplasmic domain (130). The interaction between
highly constitutive expression of MHC class II molecules at
the surface of melanoma cells and LAG-3 greatly expressed
on melanoma-specific CD4+ T cells elicits a local TNF-rich
inflammatory environment, reducing the cytotoxic CD8+ T
cell responses (131). LSECtin, expressed on melanoma is a
type II transmembrane protein which belongs to the C-type
lectin receptor superfamily and has been identified as a ligand
of LAG-3. When LSECtin interact with the co-regulatory
molecule LAG-3, and limits CD8+ T cell- specific responses
in a LAG-3-dependent fashion (132). Galectin-3, an S-type
lectins is a carbohydrate-binding protein that plays a key role
in tumor escape from immunosurveillance (133, 134). Galectin-
3-mediated suppression of CD8+T cells occurs upon binding to
LAG-3 (135). Interestingly, co-expression of LAG3 with CD49b
defines a subset of peripherally induced CD4+ Th1 regulatory
cells secreting high amounts of IL-10 (136), and it is also involved
in the maturation and activation of DCs (137) and plasmacytoid
DCs (138). Recently, fibrinogen-like protein 1 (FGL1) has been
shown to be a key ligand of LAG-3. Abundantly produced by
cancer cells, FGL1 plasma level is increased in cancer patients
and correlates with poor prognosis (139). Preclinical studies
exploring the immune regulatory role of LAG-3 on various
types of lymphocytes have showed its cooperation with other
inhibitory receptors, such as PD-1/PD-L1. The association of
LAG-3 and PD1 contributes to their rapid trafficking to the
immunological synapse, leading to the synergistic inhibitory
effect on T cell signaling in several tumor murine models
(140, 141). In addition, LAG-3 and PD-1 are co-expressed on
tumor infiltrating lymphocytes (TIL)-specific CD8+ T cells in the
peripheral blood and tumors of ovarian cancer patients resulting
in T cell dysfunction (142).
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LAG-3-targeted immunotherapy started in 2006 with a
toxicology study aiming to determine the dosage and frequency
of the preclinical grade human soluble LAG-3 protein named
IMP321 (143). In 2013, a phase I clinical trial with the anti-
LAG3 mAb (BMS-986016) was initiated. There are now
several LAG3 modulators at various stages of preclinical
and clinical development for the treatment of relapsed or
refractory hematologic malignancies (NCT02061761), and
advanced cancers, alone or in combination with anti-PD1
in patients with (NCT02966548, NCT03005782). A phase
I/IIa study (NCT01968109) evaluating efficacy and safety
of the combination therapy with the anti-LAG-3 antibody
BMS-986016 (relatlimab) and nivolumab in patients with
melanoma that progressed during or after anti-PD-1/PD-L1
immunotherapy has reported a safety profile similar to that of
nivolumab alone, but with superior efficacy.

T Cell Immunoglobulin and Mucin 3 (TIM-3)
TIM-3 is a surface negative regulator of CD4+ Th1, CD8+
T cytotoxic 1 cells, and innate immune cells and contain an
immunoglobulin and a mucin-like domain (144, 145). TIM-
3 regulates Th1 and Th17 responses when interacting with
its ligands, thus inhibiting the expression of proinflammatory
cytokines such as INF-γ and TNF-α (145, 146). Galectin-9
(Gal-9), expressed in various tumors has a key role in tumor
immunity (147). Gal-9 was the first TIM-3 identified ligand
and binds the Tim-3 immunoglobulin variable domain to
regulate Th1 immunity in TIM-3-deficient mice (148). Other
identified ligands of TIM-3 include: carcinoembryonic antigen
cell adhesion molecule 1 (CEACAM-1), high-mobility group
protein B1 (HMGB1), and phosphatidylserine (PS) (149). TIM-
3 contain two of its more membrane-proximal cytoplasmic tail
tyrosines which can directly bind to the Src family tyrosine
kinase Fyn and the PI3K adaptor but no any known inhibitory
signaling motifs. Expressed on tumor-infiltrating DCs, TIM-3
plays a critical role in suppressing innate antitumor immune
responses through the recognition of tumor-derived nucleic acids
(150). Interestingly, the inhibition of the antitumor responses via
TIM-3 mediates T cell exhaustion, a phenomenon that was first
identified in vitro in patients withHIV-1 infection (151), and later
in cancer patients (152).

In RCC, TIM-3 expression has been shown to be elevated on
tumor and myeloid cells of patients (153), and its upregulation
on CD8+T cells lead to immune evasion at relatively early stage
(154). Furthermore, prostate-specific antigen cells expressing
high levels of TIM-3 are exhausted, influencing a patient’s
response to therapy (155). In patients with advanced melanoma,
a majority of CD8+ TILs co-express PD-1 and TIM-3 (156).
The co-expression of both checkpoint molecules reflected
a more exhausted phenotype characterized by reduced T
cell proliferation and IFN-γ, IL-2, and TNF-α secretion
(116). In addition, overexpression of TIM-3 can function
as an NK-cell exhaustion marker in advanced melanoma
and is associated with a poor prognosis (157). A phase I
study is evaluating TSR-022, an anti-human TIM-3 blocking
antibody as monotherapy and in combination with an anti-
PD-1 antibody for patients with advanced solid tumors who

had limited available treatment options (NCT02817633). The
safety and effectiveness of the anti-TIM-3 mAb (MBG453) is
being evaluated in patients with solid tumors, either alone
or combined with another immunotherapy (NCT02608268)
and the combination MBG453-decitabine in patients with
hematologic cancers (NCT03066648). The clinical results are not
yet reported.

V-Domain Ig-Containing Suppressor of T
Cell Activation (VISTA)
VISTA, also known as PD1 homolog (PD-1H), belongs to the
B7 family members. VISTA contains a single IgV domain with
three additional cysteine residues, which differs structurally
from the other B7 family members (158). VISTA is known
to play a central role in the regulation of T cell responses
and its extracellular domain has some similarities with PD-L1
(159). While VISTA does not contain ITIM/ immunoreceptor
tyrosine-based activation motif (ITAM), it has a conserved Src
homology 2 (SH2) and its cytoplasmic tail domain contains
two potential protein kinase C binding sites and proline
residues that could function as docking sites for adaptor
proteins. VISTA transcription is partially controlled by p53
(160). VISTA has been shown to have a dual functionality
as a co-inhibitory receptor on T cells (161) and as a co-
inhibitory ligand for T cells (158, 159). Recently reported,
blocking the interaction of VISTA with its ligand VSIG-3
inhibits human T cell functions in vitro, as well as cytokine
and chemokine production in colorectal, gastric cancers, and
hepatocellular carcinomas (162). In humans and mice, VISTA
is expressed mainly on hematopoietic cells with high levels
on myeloid APCs, a weak density on T cells and NK cells,
and no expression on B cells (158, 159, 163). In addition
to immune cells, it has been demonstrated that high levels
of VISTA are also expressed on human and murine tumor
cells (158, 164). Anti-VISTA monotherapy with an mAb
significantly reduces the growth of the tumor in multiple
transplantable or inducible tumor models of melanoma and
bladder carcinoma (163). Furthermore, combining blockades of
VISTA together with CTLA-4 is more efficient than the PD-
1 and VISTA combination in the HNSCC model (165). While
in primary cutaneous melanoma patients, VISTA expression is
considered as an independent negative prognostic factor (166),
its overexpression on immune cells, especially macrophages, that
infiltrated pancreatic tumors has been highlighted as a potential
immunotherapeutic target (167). VISTA upregulation in prostate
cancer may represent a compensatory inhibitory pathway after
ipilimumab administration (168).

Blocking the interactions between PD-1/PD-L1 and VISTA
using CA-170, a small molecule that antagonizes the PD-L1/PD-
L2 and VISTA pathways improves the anti-tumor responses in
certain tumor models and highlights their distinct and non-
redundant functions in regulating the immune response to
tumors (169). Preclinical data demonstrated VISTA’s ability to
independently suppress T cell responses, thus supporting the
starting of a phase I dose escalation trial in patients with
advanced tumors and lymphomas in 2016 (NCT02812875).
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So far, in toxicology studies, CA-170 showed a favorable
safety profile when multiple dose levels were administered
orally once daily, and preliminary evidence of antitumor

activity. Interestingly, a recent immunotherapy clinical trial
using CA-170 has been launched in mesothelioma patients.

Currently, CA-170 is the only human mAb against VISTA

being studied in a clinical trial in advanced cancers, since the

recruitment for the trial NCT02671955 evaluating JNJ-61610588
(Onvatilimab) has been stopped due to a business decision done
by Janssen.

T Cell Immunoglobulin and
Immunoreceptor Tyrosine-Based Inhibitory
Domain (TIGIT)
TIGIT (also known as WUCAM, Vstm3, VSIG9) is a type 1
transmembrane protein containing an IgV extracellular domain
and two ITIMs in its cytoplasmic tail. These motifs mediate
the recruitment of the phosphatase SHIP-1, thus providing a
mechanism by which TIGIT can dampen activating signals (170).
Engagement of CD155 (poliovirus receptor, PVR) ligand with the
co-inhibitory receptor TIGIT leads to T cell inhibition responses,

FIGURE 1 | Immunosuppressive mechanisms common in the tumor microenvironment. Several mechanisms are developed by the tumor to limit an efficient tumor

immunosurveillance, and therefore an unfavorable environment. This explains that a portion of epithelial cancers displays modest responses to immune checkpoint

blockade therapy and other modulators of immunity. All the mechanisms known to interfere with these immunotherapies do not operate simultaneously in these

cancers. This figure illustrates only a few common mechanisms of immune resistance to different tumors: (1) production and secretion of immunosuppressive factors

into the microenvironment (such as TGF-β, IL-10, adenosine); (2) co-expression and/or upregulation of inhibitory receptors (LAG3, TIGIT, TIM-3,TIGIT) by

immunosuppressive cells (Tregs, MSDCs and TAMs) and effector cells (CD8T+ and NK); (3) release of the chemokines CCL17 and CCL22 by the tumor which triggers

the accumulation of Tregs and MDSCs to tumor sites; (4) release of IL-10 and TGF-β by Tregs which inhibit the functions of CD8+ T cells; (5) IDO expression by TAMs

metabolizes tryptophan to kynurenine and limits T-cell function. Additionally, the tumor can also gain additional immunosuppressive properties, such as the expression

of PD-L1, PD-L2, and secretion of suppressive cytokines (e.g., IL-10, TGF-β).
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TABLE 1 | Clinical studies testing agents targeting soluble factors, enzymes and metabolic inhibitors.

Inhibition Study ID

number

Drug name Indication(s) (cancer

type/subtype)

Setting Stage of development

and status

IL-10 pathway NCT03382899 AM0010

(pegilodecakin)

Metastatic non-small-cell lung

carcinoma

Combination:

• Pembrolizumab

Phase II, recruiting

NCT02923921 AM0010 Metastatic pancreatic cancers Combination:

• FOLFOX (Folinic acid+ 5-

Fluorouracil+Oxaliplatin)

Phase III, recruiting

VEGF pathway NCT02443324 Ramucirumab

(anti-VEGFR2)

Locally advanced and

unresectable or metastatic

gastric or gastroesophageal

junction adenocarcinoma,

non-small cell lung cancer,

transitional cell carcinoma of the

urothelium, or biliary tract cancer

Combination:

• Pembrolizumab

Phase I, active not

recruiting

NCT02348008 Bevacizumab Metastatic renal cell carcinoma Combination:

• Pembrolizumab

(MK-3475)

Phase Ib/II, active not

recruiting

NCT01633970 Bevacizumab Advanced or metastatic solid

tumors

Combination

• Atezolizumab

• Atezolizumab+Oxaliplatin+5-

Fluorouracil

Phase I, active not

recruiting

NCT01454102

(Checkmate

012)

Bevacizumab

maintenance

Newly diagnosed or pretreated

stage IIIB/IV NSCLC

Combination:

• Nivolumab

Phase I, active not

recruiting

NCT02231749

(CheckMate

214)

Sunitinib Advanced or metastatic renal cell

carcinoma

Monotherapy Phase III, active not

recruiting

CSF-1 pathway NCT03336216 Cabiralizumab

(anti-CSF-1R)

Advanced pancreatic cancer Combination

• Nivolumab + gemcitabine

and Nab-paclitaxel

• Nivolumab + oxaliplatin/5-

Fluorouracil/leucovorin

Phase II, recruiting

TGF-β pathway NCT02517398 MSB0011359C

(M7824) bifunctional

fusion protein (PD-L1

fused to the soluble

extracellular domain of

TGF-β receptor II)

Metastatic or locally advanced

solid tumors

Monotherapy Phase I, recruiting

NCT02423343 Galunisertib Solid tumors, non-small cell lung

cancer recurrent, hepatocellular

carcinoma recurrent

Combination

• Nivolumab

Phase I/II, active not

recruiting

NCT02734160 Galunisertib Metastatic pancreatic cancer Combination

• Durvalumab

Phase I, active not

recruiting

NCT02672475 Galunisertib Triple negative breast cancer Combination

• Palcitaxel

Phase I, recruiting

IDO NCT03164603 NLG802 Advanced solid tumors Monotherapy Phase I, active not

recruiting

NCT03208959 HTI-1090 Advanced solid tumors Monotherapy Phase I, active not

recruiting

NCT02052648 Indoximod Primary malignant brain tumors Combination:

• Temozolomide

(bevacizumab-naive

patients)

• Temozolomide with

bevacizumab

• Temozolomide with

stereotactic radiation

Phase I /II, active not

recruiting

NCT02073123 Indoximod Metastatic melanoma Combination with checkpoint

inhibitors (ipilimumab or

nivolumab or pembrolizumab)

Phase I, active not

recruiting

(Continued)
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TABLE 1 | Continued

Inhibition Study ID

number

Drug name Indication(s) (cancer

type/subtype)

Setting Stage of development

and status

NCT02327078

(ECHO-204)

Epacadostat Selected solid tumors and

lymphoma

Combination:

• Nivolumab

• Nivolumab

+ chemotherapy

Phase I /II, active not

recruiting

NCT02178722

(ECHO-202)

Epacadostat Selected cancers Combination: Pembrolizumab

(MK-3475)

Phase I /II, active not

recruiting

NCT02752074

(ECHO-301,

KEYNOTE-252)

Epacadostat Unresectable or metastatic

melanoma

Combination

• Pembrolizumab

Phase III, active not

recruiting

Arg/iNOS NCT02903914 INCB001158

(CB-1158, arginase 1

inhibitor)

Advanced / metastatic solid

tumors

Monotherapy

Combination:

• Pembrolizumab

Phase I /II, recruiting

NCT01858558 Tadalafil (PDE5

inhibitor)

Multiple myeloma patients who

receive a standard autologous

stem cell transplant

Combination:

Pevnar vaccine (pneumococcal

7-valent conjugate) +

Lenalidomide, with or without

activated marrow infiltrating

lymphocytes (MILs)

Phase II, recruiting

NCT02544880 Tadalafil (PDE5

inhibitor)

Head and neck squamous cell

carcinoma

Combination:

• Anti-Tumor Mucin 1

(MUC1) and anti-influenza

vaccine

Phase I /II, recruiting

Adenosine NCT02655822 CPI-444 Advanced cancers Monotherapy

Combination:

• Atezolizumab (anti-PD-L1)

Phase I, recruiting

NCT02403193 PBF-509 Advanced non-small cell lung

cancer

Monotherapy

Combination: PDR001

(programmed cell death 1

receptor antibody)

Phase I, recruiting

while the interaction of CD155 with the co-stimulatory receptor
CD226 (DNAM-1) leads to T cell activation (171). TIGIT
is associated with human cancers and expressed on NK and

lymphoid cell populations (activated and memory T cells, and a

subset of Treg). This provide an opportunity to target both the
adaptive and innate arms of the immune system (172, 173). In

murine cancer models, TIGIT+ Tregs may drive a dysfunctional

phenotype in CD8+T cells via their high production of IL-10

(174). Interestingly, due to cellular stress within the TME, the

expression of CD155 increase at the surface of APCs during

the malignant transformation (175). Moreover, the interaction

between TIGIT and CD155 on mature DCs induces a switch
into a tolerogenic phenotype in DCs (171). TIGIT deficiency in
NK cells alone has been reported to be sufficient to delay tumor
growth in multiple tumor-bearing mouse models, and anti-
TIGIT mAbs reverse NK cell exhaustion (176). Other preclinical
data demonstrated that anti-TIGIT treatment reduced the
abundance of Tregs within tumors in animal models (Abstract
5627, AACR annual Meeting 2018).

Preclinical studies demonstrated its efficacy in in vivo tumor
models and higher effectiveness when combined with other
checkpoint inhibitors. Initial evaluation of the anti-TIGIT mAb,

OMP-31M32 (Etigilimab) in a phase Ia/b showed preclinical
in vivo anti-tumor effects as a single agent and in combination
with anti-PD-1 (NCT03119428) results presented at the

Society for Immunotherapy of Cancer 2018). In an ongoing
phase I/II trial, the experimental medication BMS-986207
is evaluated for its safety and effectiveness as monotherapy
or in combination with nivolumab for the treatment of
advanced or metastatic solid cancers (NCT02913313).
Soon, EOS884448, an anti-TIGIT antibody disrupting the
immunosuppressive binding of CD155 to TIGIT in the TME
and mediating the restoration of T cell effector functions
and the preferentially depleting Tregs is expected to enter
the clinic.

The main immunological abnormalities conferring tumor
evasion are illustrated in Figure 1. Some of the ongoing clinical
trials aiming to assess the role of soluble factor inhibitors,
enzymes and metabolic inhibitors and immune checkpoint
inhibitors alone or in various combination with other cancer
therapeutics are summarized in the Tables 1–3.

CONCLUSION

In contrast to chemotherapy or oncogene-targeted therapies,
cancer immunotherapy relies on promoting an anti-cancer
immune response, a dynamic process involving several
mechanisms and cross-talks between different cellular
compartments. When neutralizing immune factors, one
of the major issues is the off-target effects, which lead to
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TABLE 2 | Anti-PD-1 and anti-PD-L1 agents in clinical trials as mono- and/or combination therapies.

Target Study ID number Drug name Indication(s) (cancer

type/subtype)

Setting Stage of development

and status

PD-1 NCT01668784

(CheckMate 025)

Nivolumab

(BMS-936558,

MDX-1106)

Advanced or metastatic (medically or

surgically unresectable) clear-cell

renal cell carcinoma

Monotherapy (Comparison to

Everolimus)

Phase III, active, not

recruiting

NCT01673867

(CheckMate 057)

Nivolumab Metastatic non-squamous NSCLC Monotherapy

Combination:

• Docetaxel

Phase III, active, not

recruiting

NCT02387996

(CheckMate 275)

Nivolumab Urotherial cancer (metastatic or

unresectable bladder cancer)

Monotherapy Phase II, active, not

recruiting

NCT01658878

(CheckMate 040)

Nivolumab Advanced liver cancer Monotherapy

Combination:

• Sorafenib

• Ipilimumab

• Cabozantinib

Phase I / II, active, not

recruiting

NCT02388906

(CheckMate 238)

Nivolumab Advanced Melanoma Monotherapy Phase III, active, not

recruiting

NCT03302247 Nivolumab Metastatic non-small cell lung cancer Monotherapy

Combination:

• Gemcitabine

Phase II, terminated last

June 2019 (unable to

accrue subjects)

NCT02922764 Nivolumab Advanced solid malignancies and

lymphoma

Combination:

• RGX-104

Phase I, recruiting

NCT01454102

(CheckMate 012)

Nivolumab Non-small cell lung cancer Monotherapy

Combination

• Gemcitabine + Cisplatin

• Pemetrexed + Cisplatin

• Paclitaxel + Carboplatin

• Bevacizumab maintenance

• Erlotinib

• Ipilimumab

Phase I, active, not

recruiting

NCT01844505

(CheckMate 067)

Nivolumab Untreated advanced melanoma Monotherapy

Combination:

• Ipilimumab

Phase III, active, not

recruiting

NCT01472081

(CheckMate 016)

Nivolumab Metastatic renal cell carcinoma Combination

• Sunitinib (Anti-VEGF)

• Pazopanib (Anti-VEGF)

• Ipilimumab

Phase I, active, not

recruiting

NCT03241927 Pembrolizumab

(MK-3475)

Melanoma Monotherapy Phase II, terminated last

July 2019, difficult

enrollment

NCT02252042 Pembrolizumab Head and neck squamous cell cancer Monotherapy Phase III, active, not

recruiting

NCT02909452 Pembrolizumab Advanced solid tumors Combination:

• Entinostat (histone

deacetylase inhibitor)

Phase I, active, not

recruiting

NCT02680184 Pembrolizumab Advanced Melanoma Combination: CMP-001 (TLR9

activator)

Phase I, recruiting

NCT02130466 Pembrolizumab Advanced Melanoma Monotherapy

Combination:

• Trametinib

• Dabrafenib

• Trametinib and Dabrafenib

Phase I / II, active, not

recruiting

NCT02494583 Pembrolizumab Advanced gastric or

gastroesophageal junction

adenocarcinoma

Monotherapy

Combination:

• 5-FU

• Cisplatin

Phase III, active, not

recruiting

PD-L1 NCT01633970 Atezolizumab Locally Advanced or Metastatic Solid

Tumors

Combination:

• Bevacizumab

• Bevacizumab + 5-FU

• Carboplatin + Paclitaxel

• Carboplatin + Pemetrexed

• Carboplatin + Nab-paclitaxel

• Nab-paclitaxel

Phase I, active, not

recruiting

Frontiers in Oncology | www.frontiersin.org 13 January 2020 | Volume 9 | Article 1554

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Guerrouahen et al. Immunosuppression in Cancer

TABLE 3 | Anti-LAG-3, anti-TIM-3, anti-PD-L1, -L2, -VISTA and anti-TIGIT immune checkpoint blockade tested in clinical trials as mono- and/or combination therapies.

Target Study ID

number

Drug name Indication(s)

(cancer

type/subtype)

Setting Stage of

development

and status

LAG-3 NCT02061761 BMS-986016 Hematologic

malignancies

Monotherapy

Combination:

• Nivolumab (BMS-

936558)

Phase I / II,

recruiting

NCT02966548 BMS-986016 Advanced solid

tumors

Monotherapy

Combination:

• Nivolumab (BMS-

936558)

Phase I, recruiting

NCT03005782 REGN3767 Advances cancers Monotherapy

Combination:

• REGN2810 (anti-

PD1)

Phase I, recruiting

NCT01968109 BMS-986016 Solid tumors Monotherapy

Combination:

• Nivolumab (BMS-

936558)

Phase I / II,

recruiting

TIM-3 NCT02817633 TSR-022 Advanced solid

tumors

Monotherapy

Combination:

• anti-PD-1

Phase I, recruiting

NCT02608268 MBG453 Advanced

malignancies

Combination:

PDR001

(anti-PD-1)

Phase I / II,

recruiting

NCT03066648 MBG453 Hematologic

malignancies

Monotherapy

Combination:

• PDR001

(anti-PD-1)

• and/or

PDR001

combined

with decitabine

Phase I, recruiting

PD-L1, PD-L2,

VISTA

NCT02812875 CA-170 Advanced solid

tumors and

lymphomas

Monotherapy Phase I, active,

not recruiting

TIGIT NCT03119428 OMP-313M32 Locally advanced

or metastatic solid

tumors

Monotherapy

Combination:

• Nivolumab

Phase Ia/b, active,

not recruiting

NCT02913313 BMS-986207 Advanced or

metastatic solid

cancers

Monotherapy

Combination:

• Nivolumab

Phase I/II,

recruiting

unforeseen complications for patients. Many soluble factors
are involved in several signaling pathways, thus the targeting
of one specific soluble factor may disturb signaling pathways
that were not initially meant to be targeted. Moreover, they
are not unique to the tumor and TME, but mandatory for
maintaining homeostasis. Following a series of breakthroughs,
we are witnessing an acceleration of the research in the field
of cancer immunotherapy, which can simultaneously target
several TME abnormalities in the clinical setting. For instance,
optimal cancer therapy with inhibition of the PD-1/PD-L1 axis
should include: (1) modulation at the tumor site due to the
localized expression pattern of PD-L1 in the TME, (2) targeting
of elevated immune inhibitory cytokines (IL10, TGF-β), tumor
metabolites and regulatory cells, and (3) rescue of the tolerated
tumor immunity (177). Since 2011, the FDA has approved
several agents as a standard of care therapy in oncology and
hematology (Supplementary Table 1). Active research focuses

on the integration of combinations that may boost the response
rate to immunotherapy, which still remains low. An unmet need
is the identification of predictive biomarkers for immunotherapy
that could optimize patients’ stratification and administration of
combination therapies. This can be done through the discovery
of “biomarkers of response” in patients that showed clinical
benefit. Predictive factors for immunotherapy are being actively
investigated for establishing an “immune signature” of tumors
that defines genetic, molecular and functional profiles of immune
cells present in the TME (178). The patient-specific landscape
of the TME can be appreciated by using “immunograms” as
integrated biomarkers, obtained by capturing the immune
profile with next-generation sequencing data. The development
of personalized biomarker profiles, and thus, the characterization
of microenvironmental features and their changes during
treatment, represents a comprehensive knowledge which
will become a valuable resource for optimal personalized
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immunotherapy and patient monitoring (179). In the era of
precision medicine, tailoring cancer immune-interventions
combined with other comprehensive approaches may pave the
way toward an appropriate modulation of anti-cancer immune
responses, on the basis of the genetic and immunological
analyses in each patient. Combination approaches altering
the TME and/or decreasing immunosuppression along
with strategies that are countervailing insufficient tumor
immunogenicity and antigenicity may be required to achieve
effective tumor control.
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