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Abstract 1 

The reduced efficacy of voluntary imitation in autism is suggested to be underpinned by 2 

differences in sensorimotor processing. We examined whether the imitation of novel atypical 3 

biological kinematics by autistic adults is enhanced by imitating a model in a predictable 4 

blocked practice trial order. This practice structure is expected to facilitate trial-to-trial 5 

sensorimotor processing, integration and encoding of biological kinematics. The results 6 

showed that neurotypical participants were generally more effective at imitating the 7 

biological kinematics across all experimental phases. Importantly, and compared to a pre-8 

test where imitation was performed in a randomised (unpredictable) trial order, the autistic 9 

participants learned to imitate the atypical kinematics more effectively following an 10 

acquisition phase of repeatedly imitating the same model during blocked practice. Data from 11 

the post-test showed that autistic participants remained effective at imitating the atypical 12 

biological kinematics when the models were subsequently presented in a randomised trial 13 

order. These findings show that the reduced efficacy of voluntary imitation in autism can be 14 

enhanced during learning by facilitating trial-to-trial processing and integration of 15 

sensorimotor information using blocked practice. 16 

 17 

Key words: autism spectrum disorder, imitation, biological motion kinematics, sensorimotor 18 

integration, blocked practice 19 

  20 
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Introduction 1 

Learning novel actions through voluntary imitation is a fundamental part of human 2 

development, and is facilitated by intentional, attentional and sensorimotor processes. 3 

During voluntary imitation (henceforth imitation), an individual observes a model that 4 

typically prescribes a higher-order action-goal (e.g., to use chop sticks), as well as the lower-5 

level kinematic properties (e.g., velocity of the digits) constraining the means of achieving 6 

the action-goal. In the action-observation phase of imitation, an action-goal and lower-level 7 

kinematics are encoded within a sensorimotor system linking perception to action (Prinz, 8 

1997). After observation, processes associated with sensorimotor planning are engaged to 9 

control the specification of forces required for initial execution of the to-be-imitated 10 

movement pattern. During, and after, movement execution, efferent and afferent 11 

sensorimotor information is integrated and processed (by feedforward and feedback control 12 

mechanisms) to support encoding (Wolpert, Diedrichsen & Flanagan, 2011). Over repeated 13 

imitation trials, an action-representation is developed and refined so that an imitated 14 

movement becomes similar to the observed biological motion characteristics displayed by 15 

the model. While the process of imitation is operational across typical development 16 

(Anisfeld, 2005; Jones, 2009; Ray & Heyes, 2011), it has been claimed that autistic 17 

individuals show difficulty imitating the lower-level biological kinematic properties of an 18 

observed action (DeMyer et al., 1972; Hayes, Andrew, Elliott, Gowen, & Bennett, 2016; 19 

Hobson & Lee, 1999; Rogers, Bennetto, McEvoy, & Pennington, 1996; Stewart, McIntosh, & 20 

Williams, 2013; Wild, Poliakoff, Jerrison, & Gowen, 2012). 21 

 In a previous examination of the imitation of biological kinematics in autism, we 22 

randomly presented two models that displayed the same movement amplitude and 23 

movement time goal (1700 ms), but different underlying kinematics (Hayes, Andrew, et al., 24 

2016). A control model had typical kinematics with a bell-shaped velocity profile (peak 25 

velocity that occurred at ~50% of the movement trajectory). This model could be imitated by 26 

rescaling a typical movement profile from an existing motor repertoire (Carmo, Rumiati, 27 

Siugzdaite, & Brambilla, 2013; Rumiati et al., 2005). As predicted, we showed no difference 28 
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between the autistic and neurotypical groups imitation of movement kinematics displayed in 1 

the control model. An experimental model had a novel atypical kinematic profile, where peak 2 

velocity occurred at 18% of the movement trajectory. This model required participants to 3 

represent the atypical kinematics during action-observation in order to reorganise the 4 

sensorimotor system to plan and execute the appropriate motor response during imitation. 5 

Unlike the neurotypical group that successfully imitated the atypical kinematics (Hayes, 6 

Andrew, et al., 2016), the autistic group produced a movement more similar to the 7 

kinematics of the typical model. Still, despite failing to imitate the novel atypical kinematics, 8 

the autism group became significantly more accurate and consistent at imitating the 1700 9 

ms movement time goal. This specific adaptation effect associated with learning the overall 10 

movement time goal indicates the autistic participants were actively engaged in imitation 11 

learning and therefore likely to have followed the task instructions to ‘‘watch and then copy 12 

the movement displayed by a white dot on the computer monitor’’. Accordingly, we can infer 13 

that attention (to the stimuli) and intention (to produce the observed action), which both 14 

modulate voluntary imitation (Hayes et al., 2014), were not factors that limited imitation of 15 

the movement time goal.  16 

 Further insight into the operation of sensorimotor processes in autism is evident from 17 

automatic imitation studies (Bird, Leighton, Press, & Heyes, 2007; Edey et al., 2016; 18 

Hamilton, Brindley, & Frith, 2007; Press, Richardson, & Bird, 2010; Schulte‐Rüther et al., 19 

2017; Sowden, Koehne, Catmur, Dziobek, & Bird, 2016; Spengler, Bird, & Brass, 2010) in 20 

which autistic adults have been shown to generate sensorimotor response times similar to 21 

matched-controls when observing task irrelevant biological action stimulus (e.g., a human 22 

hand lifting an index finger). In other words, movement observation had a direct automatic 23 

influence on motor execution (Brass, Bekkering, & Prinz, 2001), thereby confirming the 24 

sensorimotor processes responsible for processing biological motion during action-25 

observation are operational in autism (Nackaerts et al., 2012; Saygin, Cook, & Blakemore, 26 

2010). The implication for voluntary imitation is that the difficulty imitating atypical biological 27 

kinematics is not solely associated with a specific imitation mechanism that directly 28 
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represents and encodes biological motion during the action-observation phase (Bernier, 1 

Dawson, Webb, & Murias, 2007; Williams, Whiten, & Singh, 2004; Williams, Whiten, 2 

Suddendorf, & Perrett, 2001). Rather, there may be differences in how other general 3 

sensorimotor learning processes (Chetcuti, Hudry, Grant, & Vivanti, 2019; Hamilton, 2013; 4 

Leighton, Bird, Charman, & Heyes, 2008) are engaged to represent and refine the observed 5 

and executed biological kinematics during repeated imitation trials.  6 

For example, by presenting the typical and atypical kinematic models in a 7 

randomised trial order (Hayes, Andrew, et al., 2016), sensorimotor information from trial n 8 

(e.g., atypical model) would often be different to trial n+1 (e.g., typical model). Therefore, 9 

executing different sensorimotor actions would have led to 'intratask interference' (Battig, 10 

1972). In a motor learning context, this form of interference is called the contextual 11 

interference effect, which is defined 'as the effect on learning of the degree of functional 12 

interference found in a practice situation when several tasks must be learned and practiced 13 

together' (Magill & Hall, 1990, p. 244). Although practising multiple task variations of a 14 

sensorimotor action engages processes that facilitate long-term retention and transfer of the 15 

action (Brady, 1998; Edwards, Elliott, & Lee, 1986; Magill & Hall, 1990; Shea & Morgan, 16 

1979), motor performance during the practice period is often attenuated (i.e., decrease in 17 

accuracy; increase in variability). Attenuation occurs because intratask interference affects 18 

the efficacy of integrating, and consolidating, different sensorimotor information sources 19 

across trials because the expected (efference) and actual (reafferent) sensorimotor 20 

consequences are different (Immink & Wright, 2001). In addition to a contribution from 21 

processes underlying integration and consolidation, performance may have been affected 22 

because imitating the typical and atypical models in a random trial order would have 23 

engaged greater attention-demanding and effortful motor planning processes (Li & Wright, 24 

2000), which are already known to be compromised in autism (Glazebrook, Elliott, & Lyons, 25 

2006; Rinehart, Bradshaw, Brereton, & Tonge, 2001). 26 

 Therefore to further examine sensorimotor planning and integration processes in 27 

voluntary imitation in autism, we investigated imitation learning (pre-test, acquisition-phase, 28 



 6 

and post-test) of a novel motor behaviour using a blocked practice protocol. Compared to 1 

random practice (Hayes, Andrew, et al., 2016), the acquisition-phase was arranged such 2 

that the same atypical model is presented consecutively across all practice trials. We 3 

expected imitation performance to be facilitated because functional task difficulty is lower 4 

during blocked practice (i.e., see 'Challenge Point' framework; Guadagnoli & Lee, 2004), 5 

with only one sensorimotor action plan (i.e., the atypical movement) being represented 6 

across all trials. In addition to lower task difficulty, the blocked trial order should optimise 7 

(Magill & Hall, 1990; Immink & Wright, 2001; Kantak & Winstein, 2012) the comparison and 8 

processing of expected (efference copy - feedforward control) and actual (reafference - 9 

feedback control) sensorimotor consequences from trial n to trial n+1 (Elliott et al., 2001; 10 

Wolpert et al., 2011). Over repeated trials, an internal action model is expected to be refined 11 

and encoded so that the movement imitated by an observer becomes similar to the atypical 12 

biological kinematics displayed by the model. 13 

In the present study, autistic and neurotypical participants completed a learning 14 

protocol where they imitated two models that displayed either atypical or typical biological 15 

kinematics. Because we were principally interested in the effects of practice structure on 16 

imitation performance, we quantified attention (Wild et al., 2012) by recording the eye 17 

movements of participants to ensure that overt visual attention was located on the model 18 

during the action observation phase of imitation. Specifically, in a pre-test and post-test, both 19 

models were presented in a randomised trial order such that imitation context was 20 

unpredictable. Following the pre-test, participants performed an acquisition phase where 21 

they imitated the atypical and typical models presented in a blocked practice trial order 22 

where each model was repeatedly imitated for a set number of trials (i.e., they trained on 23 

one profile before being trained on the other). This design was implemented to establish 24 

whether blocked practice allows autistic participants to learn to imitate the atypical 25 

kinematics (imitation training was performed in a random trial order in Hayes, Andrew, et al., 26 

2016). Moreover, by transferring imitation from a blocked (acquisition) to random (post-test) 27 

trial order, we aimed to evaluate if the processing benefits developed during blocked 28 
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practice generalise to a test where imitation of typical and atypical kinematics are required in 1 

a random trial order.  2 

To this end, we specified five sets of a priori hypotheses to test separate aspects of 3 

imitation via orthogonal planned comparisons (see below). This statistical technique allowed 4 

us to be very clear on what questions we wanted to answer by a priori isolating differences 5 

between sets of specific means within these planned contrasts. This approach offers an 6 

advantage because it provides more statistical power against making type-II errors, 7 

therefore leading to a greater likelihood of detecting real differences between means of 8 

interest while still protecting alpha (see Thompson, 1990). The first set of planned 9 

comparisons tested the hypothesis that autistic individuals will in general be less effective at 10 

voluntary imitation than neurotypical individuals. The second and third sets of planned 11 

comparisons examined whether imitating in a blocked practice trial order underpins 12 

sensorimotor adaptation in autism by facilitating the integration and encoding of atypical 13 

biological kinematics. We compared imitation of the atypical model in the pre-test 14 

(randomised trial order) against the middle-acquisition (blocked practice), as well as early-15 

acquisition (blocked practice) against late-acquisition (blocked practice). If the blocked 16 

practice trial order facilitates sensorimotor adaptation in autism, we expect imitation of 17 

atypical kinematics to be significantly different (i.e., closer to the atypical model) when 18 

compared to imitating in the random trial order (pre-test), and when comparing imitation after 19 

completing all blocked practice trials (i.e., late-acquisition). Finally, the fourth and fifth sets of 20 

planned comparisons examined whether imitating the atypical model in a blocked practice 21 

trial order facilitated sensorimotor planning and learning in autism. For sensorimotor 22 

planning, we compared imitation during the late-acquisition block (blocked trial order) 23 

against the post-test (random trial order). If voluntary imitation differences in autism are a 24 

result of sensorimotor integration rather than planning, we expect to find no significant 25 

change in imitation performance from the late-acquisition block to the post-test. For 26 

sensorimotor learning, we compared imitation during the pre-test (random trial order) against 27 

the post-test (random trial order). If imitating in a blocked practice trial order facilitates 28 
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sensorimotor adaptation and the refinement of an internal action model, we expect to show a 1 

significant change in imitation performance, and therefore learning, between the pre-test and 2 

post-test. 3 

 4 

Method 5 

Participants 6 

Twenty neurotypical participants (15 male; 5 female) and 20 autistic participants (15 7 

male; 5 female) volunteered for the study. The participants were recruited from an autistic 8 

society, and the host university. The participants were provided with a participant information 9 

sheet and given the opportunity to consent to be part of the study. All volunteers were right-10 

handed, which was established via an in-house self-report process where a researcher 11 

asked the participants a set of pre-experimental questions ("which hand do you write with"; 12 

"which hand do you throw with"; which hand do you use to brush your teeth"). Furthermore, 13 

participants were screened, via self-report, for the following exclusion criteria: dyspraxia, 14 

dyslexia, epilepsy and other neurological or psychiatric conditions. The autistic participants 15 

had a diagnosis of autism, Asperger’s syndrome or autism spectrum disorder by an 16 

independent clinician. Diagnosis was confirmed by a researcher trained (with research-17 

reliability status) in the administration of module 4 of the Autism Diagnostic Observation 18 

Schedule 2 (ADOS-2) (Lord et al., 2012). All autistic participants met the threshold for autism 19 

spectrum disorder on the ADOS-2 total classification score, and on the communication and 20 

social interaction subscales. Groups were equated for age, as well as full-scale, verbal and 21 

performance IQ, which was measured via the Wechsler Abbreviated Scale of Intelligence 22 

(WASI) (Wechsler, 1999). Sample characteristics are presented in Table 1. In addition to the 23 

autistic volunteers who participated in the study, we also engaged with a group (n = 6; 1 24 

female; 5 male) of autistic advocates who helped to develop the experimental methods via a 25 

participatory research process (Fletcher-Watson et al., 2019, Nicolaidis et al., 2011). During 26 

engagement, advocates offered their opinion on the apparatus, number of trials, task 27 

instructions, how the participant information sheets were constructed, as well as the 28 
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proposed research question. Feedback from the participatory engagement process was 1 

used to refine the methods of the current experiment. Finally, the experiment was designed 2 

in accordance with the 1964 declaration of Helsinki and approved by the local research 3 

ethics committee. 4 

 5 

Table 1. Characteristics of autism and neurotypical participants. 6 

 
Autism (n = 20) 

 
Neurotypical (n = 20) t test  

p value 
Mean (SD) Range  Mean (SD) Range 

Chronological 

age in years 
27 (8) 18-48  25 (8) 18-46 p = 0.509 

Full scale IQ 110 (10) 93-129  110 (10) 85-128 p = 0.893 

Verbal IQ 112 (12) 87-134  111 (8) 92-122 p = 0.858 

Performance IQ 106 (10) 89-123  105 (10) 82-128 p = 0.803 

Gender 15M : 5F   15M : 5F   

 7 
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Apparatus 9 

Participants sat facing a 21-inch CRT monitor (Iiyama Vision Master 505), operating 10 

with a resolution of 1280 x 1024 pixels and a refresh rate of 85 Hz, located on a table at a 11 

viewing distance of 900 mm. Connected to the monitor was a desktop PC (Hewlett Packard 12 

Compaq 8000), graphics tablet and a hand-held stylus (Wacom Intuos Pro XL). 13 

Experimental stimuli were generated on the host PC using the COGENT toolbox (developed 14 

by John Romaya at the Laboratory of Neurobiology at the Wellcome Department of Imaging 15 

Neuroscience) implemented in MATLAB (Mathworks Inc.). Movement of the left eye was 16 

recorded at 250 Hz using an EyeLink eye tracker (SR Research) with remote optics. The 17 

host PC and EyeLink were synchronized using a TTL signal. 18 
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 1 

Stimuli 2 

To examine the imitation of biological kinematics, participants observed point-light 3 

models that displayed a single white-dot (diameter = 6.25 mm) that moved from the home-4 

position on the left-hand side of the screen to the right-hand end-position (Figure 1a). The 5 

movement occurred in the horizontal axis only, with an amplitude of 200 mm and total 6 

movement time duration of 1700 ms. Two models, which were created by a human 7 

volunteer, displayed typical or atypical velocity profiles. The method of using a human 8 

volunteer to generate both models was critical because it ensured the kinematics were 9 

biological and could be reproduced by the participants. The typical model displayed a bell-10 

shaped velocity profile (Elliott et al., 2010; Flash & Hogan, 1985), which is characteristic of 11 

most upper-limb movements (displacement time-series is displayed as the dashed trace in 12 

Figure 1b), and had a magnitude of peak velocity that was 0.19 mm/ms and a peak that 13 

occurred at 44 % of the movement duration. The atypical model (black trace in Figure 1b) 14 

had a magnitude of peak velocity that was 0.33 mm/ms that occurred at 18 % of the 15 

movement duration.  16 

 17 

Insert Figure 1 around here. 18 

 19 

Procedure 20 

The imitation task consisted of a familiarisation period, a pre-test, an acquisition-21 

phase and a post-test. The familiarisation period simulated the general experimental 22 

conditions and instructions used during the experimental imitation trials. Participants were 23 

instructed to “watch and pay attention to the dot’s trajectory, with the intention to then copy 24 

the trajectory”. The dot was a single point-light white dot (diameter = 6.25 mm) that 25 

displayed a horizontal left to right movement (Figure 1a), that had the same movement 26 

duration (1700 ms), and amplitude (200 mm), as the two experimental models, but had a 27 

constant velocity profile. The constant velocity (0.18 mm/ms) model ensured construct 28 
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validity by preventing participants experiencing biological kinematics before the experimental 1 

imitation trials in the three follow-up phases. Participants were not informed about the 2 

duration of the movement or the type of stimuli. After observing the model, the participants 3 

practised imitation by moving a stylus on a graphics tablet so that a cursor, representing the 4 

stylus on a CRT monitor, moved from a home-position red target (diameter = 12.50 mm) 5 

located on the left-hand side of the monitor and ended on the right-hand side of the monitor 6 

as per the movement displayed by the model. Participants confirmed they understood the 7 

model, the instruction regarding how to imitate a model, and the sensorimotor relationship 8 

between the movement of the stylus on the graphics tablet and the corresponding 9 

movement of the cursor on the CRT monitor. 10 

Following the familiarisation period, and prior to the experimental phases, 11 

participants performed a standardised set-up routine in order to record eye movements 12 

whilst observing a model. First, an automated system ‘calibration’ procedure recorded the 13 

raw eye data to gaze position on the CRT monitor. Participants were required to fixate gaze 14 

on a small white spot at the centre of a black circular target, which appeared randomly for 15 

1000 ms at each location of a standard 9-point grid. Following calibration, an experimenter 16 

performed a visual ‘validation’ procedure within the software package to confirm the 17 

accuracy of the fixations during calibration. Calibration was only accepted if the average 18 

error was < 1° of visual angle.  19 

Following the eye recording set-up, the pre-test consisted of 12 imitation trials (6 20 

atypical, 6 typical) presented in a randomised trial order that reduced the predictability of an 21 

upcoming model. Participants were instructed to “watch and pay attention to the dot’s 22 

trajectory, with the intention to then copy the trajectory”. In the acquisition-phase, the groups 23 

performed a block of 30 imitation trials of the atypical model, and 30 imitation trials of the 24 

typical model. The presentation order of the two blocks was counterbalanced across 25 

participants. Participants received the same instructions to “watch and pay attention to the 26 

dot’s trajectory, with the intention to then copy the trajectory”. The blocked practice trial order 27 
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was used to facilitate trial-to-trial sensorimotor integration and planning. Finally, participants 1 

completed a post-test that replicated the exact procedures of the pre-test.  2 

 3 

Data Reduction 4 

Behavioural Data 5 

To quantify imitation of movement kinematics we focused the analysis on x-axis data 6 

only (Hayes, Andrew, Elliott, Roberts, & Bennett, 2012; Hayes, Elliott, & Bennett, 2010, 7 

2013; Hayes, Roberts, Elliott, & Bennett, 2014). The perpendicular deviation in the y-axis for 8 

the atypical model and typical model was minimal as confirmed by a root mean square error 9 

of 0.9 mm for the atypical model and 1.55 mm for the typical model. We identified within the 10 

x-axis position data the start and end of the movement. The start was defined as the 11 

moment the centre of the cursor moved beyond the perimeter of the home-position, and end 12 

equated to the moment the participant clicked the upper-button on the stylus. For each 13 

imitation trial, the resulting position data were filtered using a low pass 4th order 14 

autoregressive filter with an 8 Hz cut-off. The filtered data were then differentiated using a 15 

central difference algorithm to obtain velocity. A MATLAB routine extracted percentage time 16 

to peak hand velocity (tPHV) from each trial. This dependent variable provides a discrete 17 

kinematic measure/marker that accurately represents whether participants imitated a key 18 

timing characteristic (peak velocity) of the atypical and typical models (Hayes et al., 2014).  19 

 20 

Eye Movement Data 21 

To quantify eye behaviour during the action-observation phase of imitation we 22 

focused the analysis on the x-axis data recorded from the left-eye. Synchronisation signals 23 

(TTL from host computer) were used to identify the start and end of stimulus presentation 24 

and the corresponding eye movement during each trial. Saccades were identified in the x-25 

axis eye position data using the proprietary algorithm in the EyeLink software. The criterion 26 

for saccade identification was a velocity threshold of 30 deg/s, acceleration threshold of 27 

8000 deg/s2, and a motion threshold of 0.15 deg. Saccades plus an additional five data 28 
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points (equivalent to 20 ms) at the beginning and end of the identified saccade trajectory 1 

were then removed from the eye velocity trace. The removed data were replaced by a linear 2 

interpolation routine based on the smooth eye velocity before and after the saccade (Bennett 3 

& Barnes, 2003). The desaccaded smooth eye velocity was then low-pass filtered using a 4 

moving average zero-phase filter (40 ms window). To quantify how well the eye matched the 5 

velocity trajectory of the observed model, we extracted percentage-time-to-peak smooth eye 6 

velocity for each trial. This discrete measure of smooth eye movement provides a means to 7 

quantify pursuit of the observed model, and thus the locus of overt visual attention, which 8 

normally coincides with the moving model (Lovejoy et al., 2009), albeit sometimes with a 9 

slight lead (Van Donkelaar et al., 2002). Covertly attending to other areas or locations would 10 

be possible, although effortful and unlikely given that there were no other relevant cues 11 

within the model presentation. Therefore, a good match between the temporal occurrence of 12 

peak smooth eye velocity and peak velocity of the model stimulus, would provide a simple 13 

and clear indication that participants pursued the observed model stimuli and thus engaged 14 

with the task. 15 

  16 

Data Analysis 17 

For all dependent variables, intra-participant means were calculated from the 18 

kinematic data in the imitation phases, and from the eye movement data in the action-19 

observation phases. For the pre-test and post-test, means were calculated from the 6 trials 20 

performed during the imitation of atypical, and typical biological kinematics. For acquisition, 21 

means were calculated from trials that represented the early (1-6), middle (13-18) and late 22 

(25-30) stages of acquisition. In order to examine the a priori questions associated with 23 

imitation learning, each dependent variable was first submitted to a separate 2 Group 24 

(autism; neurotypical) x 2 Model (atypical; typical) x 5 Phase (pre-test; early-acquisition; 25 

middle-acquisition; late-acquisition; post-test) mixed design ANOVA. We then conducted 5 26 

sets of orthogonal planned comparisons to address specific a priori hypotheses/questions 27 

for each dependant variable. The first set of planned comparisons are associated with 28 
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variance pooled from all phases of the imitation protocol. The second set of separate 1 

planned comparisons compared imitation behaviour from the pre-test (random trial order) to 2 

middle-acquisition (blocked trial order) for the autism and neurotypical groups. The third set 3 

of planned comparisons examined imitation behaviour across acquisition by comparing 4 

early-acquisition (blocked trial order) against the pooled behaviour of the middle/late-5 

acquisition (blocked trial order) for the autism and neurotypical groups. The fourth set of 6 

planned comparisons examined imitation behaviour from the late stage (blocked trial order) 7 

of acquisition to the post-test (random trial order). The final set of planned comparisons 8 

investigated learning by examining imitation behaviour from the pre-test (random trial order) 9 

to the post-test (random trial order). Alpha was set at p < 0.05, and Cohen’s d was used to 10 

express the size of the effect. 11 

To establish whether the degree of sensorimotor learning measured in the final set of 12 

planned comparisons (i.e., pre-test to post-test) was related to the magnitude of 13 

sensorimotor adaptation across acquisition (i.e., planned comparison three), we first 14 

computed the percentage change (%) between the mean percentage-time-to-peak-hand-15 

velocity in the pre-test and post-test (i.e., % = ((post x̅ - pre x̅) / pre x̅)*100) for both the 16 

atypical and typical models. The same was also completed for the mean percentage-time-to-17 

peak-hand-velocity in early-acquisition compared to the pooled behaviour of the middle/late-18 

acquisition periods (i.e., Mid/Late = (Mid + Late) / 2; % = ((Mid/Late x̅ - Early x̅) / Early 19 

x̅)*100). We then correlated the percentage change scores (%) for the autism and 20 

neurotypical groups separately. A significant positive correlation demonstrates that greater 21 

adaptation from pre-test to post-test is related to becoming more accurate during the 22 

blocked acquisition period. Whereas a nonsignificant relationship would suggest the blocked 23 

trial order during acquisition is not contributing towards imitation learning. 24 

 25 

Results 26 

Percentage time to peak hand velocity (tPHV) 27 
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tPHV data for both groups across all phases of the imitation learning protocol are 1 

illustrated in Figure 2 (a, atypical; b, typical). The first set of planned comparisons are 2 

associated with variance pooled from all phases of the imitation protocol for each group. 3 

First, there was a significant difference in general imitation behaviour between the autism 4 

and neurotypical groups [F (1, 38) = 7.05, p = 0.01, d = 0.47]. When examining imitation 5 

across the two models, the autism [F (1, 38) = 17.95, p < 0.001, d = 0.90] and neurotypical 6 

[F (1, 38) = 47.73, p < 0.001, d = 1.63] groups showed significant differences in behaviour 7 

when imitating the atypical (autism M = 28.46 ± 8.98; neurotypical M = 20.99 ± 7.67) and 8 

typical (autism M = 36.76 ± 9.88; neurotypical M = 34.52 ± 9.29) models.  9 

 10 

Insert Figure 2 around here. 11 

 12 

The second set of separate planned comparisons compared imitation behaviour from 13 

the pre-test (random trial order) to middle-acquisition (blocked trial order) for the autism and 14 

neurotypical groups. Middle-acquisition was selected as it was deemed an appropriate stage 15 

to examine sensorimotor adaptation following the completion of half of the imitation trials. 16 

For the neurotypical group, there was no significant differences in behaviour when imitating 17 

either model across the two phases [atypical: F (1, 38) = 0.40, p = 0.53, d = 0.14; typical: F 18 

(1, 38) = 0.09, p = 0.76, d = 0.10]. The percentage change when imitating the atypical model 19 

was %∆ = 5, and the typical model was %∆ = 2. Although the autism group demonstrated no 20 

significant change (%∆ = 2) in behaviour when imitating the typical model [F (1, 38) = 0.11, p 21 

= 0.75, d = 0.08], there was a significant change (%∆ = 17) leading to peak velocity 22 

occurring earlier in the movement when imitating the atypical model [F (1, 38) = 9.47, p = 23 

0.004, d = 0.66].  24 

The third set of planned comparisons examined imitation behaviour across 25 

acquisition by comparing early-acquisition (blocked trial order) against the pooled behaviour 26 

of the middle/late-acquisition (blocked trial order) for the autism and neurotypical groups. 27 

There were no significant changes across these phases for the neurotypical group when 28 
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imitating either model [atypical: F (1, 38) = 0.88, p = 0.36, d = 0.08; typical: F (1, 38) = 0.04, 1 

p = 0.84, d = 0.09]. The percentage change when imitating the atypical model was %∆ = 5, 2 

and the typical model was %∆ = 1. Although the autism group demonstrated no significant 3 

change (%∆ = 3) in behaviour when imitating the typical model [F (1, 38) = 0.26, p = 0.61, d 4 

= 0.14], there was a significant change (%∆ = 9) leading to peak velocity occurring earlier in 5 

the movement when imitating the atypical model [F (1, 38) = 4.62, p = 0.04, d = 0.31]. 6 

The fourth set of planned comparisons examined imitation behaviour from the late 7 

stage (blocked trial order) of acquisition to the post-test (random trial order). There were no 8 

significant changes across these phases for the neurotypical group [atypical: F (1, 38) = 9 

0.67, p = 0.42, d = 0.13; typical: F (1, 38) = 2.11, p = 0.15, d = 0.24] or the autism group 10 

[atypical: F (1, 38) = 3.29, p = 0.08, d = 0.22; typical: F (1, 38) = 2.60, p = 0.12, d = 0.30] 11 

when imitating either model. The percentage change when imitating the atypical model was 12 

%∆ = 7 for autism group and %∆ = 4 for the neurotypical group. When imitating the typical 13 

model, the autism group showed %∆ = 7, and the neurotypical group %∆ = 7. 14 

The final set of planned comparisons investigated learning by examining imitation 15 

behaviour from the pre-test (random trial order) to the post-test (random trial order). There 16 

was no overall learning effect in the neurotypical group for either model [atypical: F (1, 38) = 17 

0.38, p = 0.54, d = 0.13; typical: F (1, 38) = 0.43, p = 0.52, d = 0.20]. Although the autism 18 

group showed no learning of the typical model [F (1, 38) = 0.07, p = 0.79, d = 0.07], they 19 

demonstrated a significant learning effect for the atypical model [F (1, 38) = 6.29, p = 0.02, d 20 

= 0.47]. The percentage change when imitating the atypical model was %∆ = 13 for autism 21 

group and %∆ = 5 for the neurotypical group. When imitating the typical model, the autism 22 

group showed %∆ = 2, and the neurotypical group %∆ = 5. 23 

 24 

Percentage time to peak smooth eye velocity (tPSEV)  25 

tPSEV data for both groups across all phases of the imitation learning protocol are 26 

illustrated in Figure 3 (a, autism; b, neurotypical). The first set of planned comparisons are 27 

associated with variance pooled from all phases of the imitation protocol.  First, there was no 28 
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significant difference in tPSEV when examining behaviour at the group level [F (1, 29) = 1 

0.04, p = 0.84, d = 0.02]. When examining tPSEV as a function of observing the different 2 

models, the autism [F (1, 29) = 169.93, p < 0.001, d = 2.81] and neurotypical [F (1, 29) = 3 

243.44, p < 0.001, d = 4.97] groups showed significant differences in behaviour when 4 

observing the atypical (autism M = 31.67 ± 6; neurotypical M = 30.37 ± 4.03) and typical 5 

(autism M = 50.55 ± 7.55; neurotypical M = 52.25 ± 5.03) models. 6 

 7 

Insert Figure 3 around here. 8 

 9 

The second set of separate planned comparisons compared tPSEV from the pre-test 10 

(random trial order) to middle-acquisition (blocked trial order) for the autism and neurotypical 11 

groups. There were no significant changes across these phases when observing either 12 

model for the neurotypical group [atypical: F (1, 29) = 0.05, p = 0.83, d = 0.10; typical: F (1, 13 

29) = 0.001, p = 0.97, d = 0.01] or the autism group [atypical: F (1, 29) = 0.18, p = 0.68, d = 14 

0.11; typical: F (1, 29) = 2.31, p = 0.14, d = 0.45]. The percentage change for the 15 

neurotypical group when observing the atypical model was %∆ = 2, and the typical model 16 

was %∆ = <1, and for the autism group when observing the atypical model was %∆ = 2, and 17 

the typical model was %∆ = 6. 18 

The third set of planned comparisons examined tPSEV across acquisition by 19 

comparing early-acquisition (blocked trial order) against the pooled behaviour of the 20 

middle/late-acquisition (blocked trial order) for the autism and neurotypical groups. There 21 

were no significant changes across these phases when observing either model for the 22 

neurotypical group [atypical: F (1, 29) = 0.15, p = 0.70, d = 0.15; typical: F (1, 29) = 0.83, p = 23 

0.37, d = 0.26] or the autism group [atypical: F (1, 29) = 3.55, p = 0.07, d = 0.57; typical: F 24 

(1, 29) = 0.001, p = 1.00, d =0.001]. The percentage change for the neurotypical group when 25 

observing the atypical model was %∆ = 3, and the typical model was %∆ = 3, and for the 26 

autism group when observing the atypical model was %∆ = 13, and the typical model was 27 

%∆ = <1. 28 
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The fourth set of planned comparisons examined tPSEV from the late stage (blocked 1 

trial order) of acquisition to the post-test (random trial order). When observing the atypical 2 

model, tPSEV occurred earlier (%∆ = 10) for the autism group in the post-test compared to 3 

the late stage of acquisition [F (1, 29) = 4.31, p = 0.05, d = 0.53]. The autism group did not 4 

demonstrate a significant change (%∆ = 3) when observing the typical model [F (1, 29) = 5 

0.53, p = 0.47, d = 0.18]. There were no significant changes across these phases when 6 

observing either model for the neurotypical group [atypical: F (1, 29) = 0.01, p = 0.93, d = 7 

0.04; typical: F (1, 29) = 0.34, p = 0.57, d = 0.23]. The percentage change when observing 8 

the atypical model was %∆ = <1, and the typical model was %∆ = 2. 9 

The final set of planned comparisons investigated learning by examining tPSEV from 10 

the pre-test (random trial order) to the post-test (random trial order). When observing the 11 

atypical model, peak-smooth-eye-velocity occurred earlier (%∆ = 8) for the autism group in 12 

the post-test compared to the pre-test [F (1, 29) = 6.75, p = 0.01, d = 0.66]. The autism 13 

group did not demonstrate a significant change (%∆ = 4) when observing the typical model 14 

[F (1, 29) = 2.06, p = 0.16, d = 0.48]. There were no significant changes across these 15 

phases when observing either model for the neurotypical group [atypical: F (1, 29) = 0.70, p 16 

= 0.41, d = 0.36; typical: F (1, 29) = 2.25, p = 0.14, d = 0.41]. The percentage change when 17 

observing the atypical model was %∆ = 3, and the typical model was %∆ = 4. 18 

 19 

Relationship between changes in imitation accuracy across acquisition, and changes in 20 

imitation accuracy from pre-test to post-test. 21 

Pearson's correlation analyses indicated a significant relationship between the 22 

magnitude of adaptation (%) during acquisition, and magnitude of adaptation (%) from 23 

pre-test to post-test, for the imitation of the atypical model by the autism group (r = 0.454, p 24 

= 0.04; Fig. 4a) but not the neurotypical group (r = -0.145, p = 0.54; Fig. 4c). As illustrated in 25 

Figure 4, there was a positive relationship whereby autistic participants who demonstrated 26 

the greatest (or lowest) magnitude of sensorimotor adaptation across acquisition (see Y-axis 27 

on Figure 4a) also exhibited a greater (or lower) change in imitation from pre-test to post-test 28 
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(see X-axis on Figure 4a). There were no significant relationships for either group (autism 1 

(Fig. 4b: r = 0.053, p = 0.83; Fig. 4d neurotypical: r = 0.390, p = 0.09) when imitating the 2 

typical model.  3 

 4 

Insert Figure 4 around here. 5 

 6 

Discussion 7 

Although voluntary imitation is generally different in autistic compared to neurotypical 8 

individuals (DeMyer et al., 1972; Rogers & Pennington, 1991; Vivanti & Hamilton, 2014), 9 

there is evidence that certain general sensorimotor processes underlying imitation are 10 

operational (Bird et al., 2007; Hamilton et al., 2007; Hayes, Andrew, et al., 2016). To better 11 

understand how sensorimotor processes function during the imitation, we examined 12 

performance in autistic and neurotypical volunteers following a period of blocked practice at 13 

learning to imitate a biological model with an atypical velocity profile. Learning was assessed 14 

by measuring performance change from the pre-test to post-test where imitation was 15 

performed in random trial orders. Any significant adaptation effects following of blocked 16 

practice would be generalised to a trial order that was randomised in the post-test.  17 

The first set of planned comparisons confirmed a general difference in imitation 18 

behaviour between autistic and neurotypical participants, thereby suggesting certain 19 

sensorimotor processing operations in autism impact the efficacy of how novel actions are 20 

imitated (DeMyer et al., 1972; Hayes, Andrew, et al., 2016; Hobson & Lee, 1999; Rogers et 21 

al., 1996; Stewart et al., 2013; Wild et al., 2012). Nonetheless, both groups did scale hand 22 

and eye kinematics such that peak velocity occurred earlier in the movement trajectory when 23 

imitating the atypical compared to the typical model. As well as replicating previous findings 24 

in neurotypical participants (Andrew, Bennett, Elliott, & Hayes, 2016; Hayes, Dutoy, Elliott, 25 

Gowen, & Bennett, 2016), this is the first evidence showing that autistic individuals can 26 

imitate novel atypical biological kinematics that would not have existed in their motor 27 

repertoire. 28 
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The results from the second and third sets of planned comparisons suggest that the 1 

imitation of atypical kinematics demonstrated by the autism group was underpinned by 2 

processes that facilitated sensorimotor integration and adaptation across blocked practice 3 

(Magill & Hall, 1990). Compared to the neurotypical group that successfully imitated the 4 

atypical model at pre-test and middle-acquisition, the second planned comparison indicated 5 

the autism group exhibited a significant 17% change (5 units of tPHV; pre-test, M = 32; 6 

middle, M = 27) in imitation behaviour at the middle-acquisition phase of imitating the 7 

atypical model during blocked practice. This significant change is important because in our 8 

previous work (Hayes, Andrew, et al., 2016) where a group of comparable autistic adults 9 

imitated atypical, typical and constant velocity kinematics presented randomly across 84 10 

trials, we showed no adaptation effects across a similar number of practice trials (tPHV; pre-11 

test, M = 33; late phase, M = 33). The third planned comparison, which examined changes 12 

in imitation from early-acquisition to middle/late-acquisition where trials were received only in 13 

a blocked practice trial order, indicated the autism group significantly adapted tPHV by 9%. 14 

This finding indicates that the imitation adaptation effects observed in the second and third 15 

planned comparisons were not merely a consequence of switching the learning environment 16 

from a randomised to blocked practice trial order. Moreover, the fact that we showed no 17 

such change in our previous work (Hayes, Andrew, et al., 2016) indicates that the 18 

sensorimotor adaptation effect found here is unlikely to be underpinned by processes 19 

governing general practice effects. 20 

Before interpreting the adaptation effects associated with the hand kinematics, it is 21 

noteworthy to comment that our measure of smooth pursuit eye velocity (tPSEV) was 22 

appropriately scaled to the different models by both groups [atypical (autism M = 32; 23 

neurotypical M = 30); typical (autism M = 51; neurotypical M = 52)]. These data show that 24 

the high-acuity region of the fovea was maintained within the vicinity of both models during 25 

pursuit (see Lovejoy et al., 2009), and would have provided retinal and extra-retinal input on 26 

the observed biological kinematics that could contribute to subsequent configuration of the 27 

limb movement. Second, neither group significantly changed tPSEV when imitating the 28 
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atypical model in the pre-test (random trial order) compared to middle-acquisition (blocked 1 

trial order), or from early-acquisition to middle/late-acquisition (NB. both had blocked trial 2 

order). At 13%, the change in tPSEV from early-acquisition to middle/late-acquisition for the 3 

autism group was close to significance (p = 0.07). This change was based on tPSEV 4 

occurring later in the middle/late phase (33%) compared to the early phase (29%). 5 

Conversely, the significant 9% change in hand kinematics for autism group indicated the 6 

opposite effect, with tPHV equal to 26% in the middle/late phase and 29% in the early 7 

phase. The implication is that the significant adaptation effect in our measure of hand 8 

kinematics by the autism group when imitating the atypical model (across acquisition) is 9 

unlikely to simply be related to smooth pursuit eye movements. 10 

Together with our previous work (Hayes, Andrew, et al., 2016), we suggest the 11 

imitation adaptation effect observed for the hand kinematics was underpinned by the way 12 

the blocked practice trial order engaged the underlying sensorimotor processes over 13 

repeated attempts at imitating the atypical model. Along with decreasing functional task 14 

difficulty because only one sensorimotor action plan is represented (Guadagnoli & Lee, 15 

2004), the trial order most likely facilitated imitation by optimising sensorimotor control and 16 

integration processes engaged to specify the forces required to initially execute the 17 

movement (Magill & Hall, 1990). Moreover, by keeping sensorimotor information similar 18 

between consecutive trials, the comparison and processing of expected (efference copy; 19 

feedforward control) and actual (reafference; feedback control) sensorimotor consequences 20 

from trial n can be integrated more effectively. This blocked practice structure therefore 21 

optimises feedforward and feedback control mechanisms during motor execution (Kantak & 22 

Winstein, 2012), and subsequent sensorimotor consolidation and planning for trial n+1 23 

(Elliott et al., 2001; Wolpert et al., 2011), which enables an internal action model 24 

representing the atypical kinematics to be refined and encoded. 25 

Further evidence that sensorimotor adaptation was optimised by facilitating the 26 

integration and encoding of atypical biological kinematics is apparent from the fourth and 27 

fifth sets of planned comparisons. The fourth set indicated no significant changes in 28 
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behaviour for either group when imitation was compared from late-acquisition (blocked trial 1 

order) to the post-test (randomised trial order). This is in contrast to the significant change 2 

found in the fifth set, where the autism group successfully imitated the atypical kinematics at 3 

post-test compared to pre-test. These combined effects indicate the processing changes 4 

that occurred during blocked practice underpinned the encoding of an internal action model 5 

that was operational when the autism group was transferred back to a randomised trial order 6 

in the post-test. This learning effect and subsequent positive transfer indicate that 7 

differences in voluntary imitation in autism (DeMyer et al., 1972; Rogers & Pennington, 8 

1991; Vivanti & Hamilton, 2014) are not solely due to sensorimotor planning problems 9 

(Glazebrook, Elliott, & Lyons, 2006; Rinehart, Bradshaw, Brereton, & Tonge, 2001) 10 

associated with imitating a novel action (Hayes, Andrew, et al., 2016; Stewart et al., 2013; 11 

Wild et al., 2012). Rather, it would seem that while the underlying visuomotor system 12 

activated during voluntary imitation in autism is functional, operational imitation of atypical 13 

biological kinematics requires the practice conditions to be structured optimally (e.g., 14 

'Challenge Point' framework; Guadagnoli & Lee, 2004) in order to facilitate sensorimotor 15 

integration, and learning. 16 

In summary, we have shown that the imitation difficulties in autism (i.e., pre-test 17 

difference between the autism and control groups) are in part related to sensorimotor 18 

processing and integration. Despite there being general differences in imitation efficacy 19 

between autistic and control individuals, we have shown for the first time that the autistic 20 

sensorimotor system can be modulated by structuring the voluntary imitation environment in 21 

a predictable manner that enhances trial-to-trial sensorimotor processing, integration and 22 

encoding of atypical biological motion. The fact that the significant adaptation effect occurred 23 

from a very short period of training raises the possibility for creating other types of 24 

sensorimotor protocols (i.e., autism specific motor interventions used in pre-school and 25 

educational settings) based on the processing benefits of blocked practice.  26 

  27 
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Table/Figure Legends 1 

Table 1. Characteristics of autism and neurotypical participants. 2 

 3 

Figure 1. (a) A schematic representation of the laboratory/experimental set-up for the 4 

imitation task. The black outlined rectangle represents a graphics tablet. The white circle 5 

displayed on the CRT monitor represents the model. The single-segment movement is 6 

depicted by the arrow (i.e., from the start position to the final position). (b) Displacement 7 

time-series displaying the typical (dashed trace) and atypical (black trace) velocity models. 8 

 9 

Figure 2. Percentage-time-to-peak-hand-velocity for the imitation task (error bars represent 10 

standard error of the mean) presented as a function of group and phase for the atypical 11 

model (a) and the typical model (b). Dashed line represents the model. 12 

 13 

Figure 3. Percentage-time-to-peak-smooth-eye-velocity for the eye during imitation task 14 

(error bars represent standard error of the mean) presented as a function of group and 15 

phase for the atypical model (a) and the typical model (b). Dashed line represents the 16 

model. 17 

 18 

Figure 4. Correlation between the magnitude of sensorimotor adaptation across acquisition 19 

(y-axis) and the magnitude of sensorimotor adaptation from pre-test to post-test (x-axis) 20 

when imitating the atypical model (autism: A; neurotypical: C) and the typical model (autism: 21 

B; neurotypical: D). 22 
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