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Abstract 

Animal experiments have been the standard method to assess the safety of chemicals used 

in cosmetic products for decades. However, public opinion has continued to demand that 

in vivo hazard identification methods conducted on animals are replaced with alternative 

methods. Research on alternative methods to replace in vivo toxicity testing continually 

increased over the past few decades with different alternatives developed, such as in vitro, 

in chemico and in silico approaches.   

Although different alternative techniques can be employed, no single technique can solely 

replace the complexity and an in vivo test, especially for chronic effects. Therefore, 

integrated testing strategies that can utilise the information from all available alternative 

testing approaches have been developed. Within the Adverse Outcome Pathway (AOP) 

paradigm, the molecular initiating event(s) MIE can be induced by several chemical key 

features which can be captured by structural alerts. When structural alerts for a MIE are 

compiled and supported by mechanistic and toxicity information confirming the induction 

of the same MIE, then they can be considered as an in silico profiler. 

The overall aim of the work presented in this thesis was to assess the current in silico 

profilers for carcinogenicity (both genotoxic and non-genotoxic), mutagenicity and skin 

sensitisation through assessment using multiple high-quality experimental databases. The 

research presented herein demonstrates the ability to assess the positive predictivity of two 

types of structural alert, mechanism- and chemistry-based that pertain to the endpoints and 

proposes ways to improve the overall accuracy of these profilers. In this context, this study 

has given an insight to those alerts that may be found equally in endpoint-positive or 

negative compounds, and those which may be more effectively utilised to form groups of 

analogues for read across predictions. A detailed analysis of positive predictivity of the 

available mutagenicity, carcinogenicity and skin sensitisation structural alerts and profilers 
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within the OECD QSAR Toolbox against experimental data is presented. This 

investigation showed the structural alerts that are accurate as such, and those that may need 

further refinement, or their use may need to be reconsidered. In addition, the relationship 

between scaffolds of a range of diverse compounds and carcinogenicity showed that a total 

of 17 carcinogenicity scaffolds could be identified from the available databases and could 

be used as a base for an in silico profiler. 

This work has also determined the need for further in-depth research in this area to study 

the suitability and merits of each of the alerts within the profilers currently included in the 

OECD QSAR Toolbox, and other in silico toxicity platforms, to identify the possibilities 

for improvement in their performance. This will, by implication, also improve the 

reliability of chemical read-across and grouping/categorisation for classification, labelling 

and risk assessment for regulatory use of the in silico methods.   
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Chapter 1: Introduction 

Cosmetics and personal care products are amongst the everyday consumer products that are 

used by the vast majority of world’s population. Whilst they offer a number of aesthetic benefits, 

the intimate nature of their application on the body, and repeated exposures due to frequent use, 

mean that the presence of any harmful substance in a cosmetic product can also pose a risk of 

adverse health effects to the user. Ensuring safety of cosmetics is therefore of utmost 

importance for both the industry and the regulatory authorities. Whilst the range of cosmetic 

products is seemingly endless, they can be broadly categorised as oral-care (e.g. toothpaste, 

mouthwash), hair-care (e.g. shampoo/conditioner, hair dye), skin-care (e.g. lotion, cream), 

make-up (e.g. mascara, lipstick), deodorant/antiperspirant, perfume and fragrance products.   

 

1.1: Risk assessment and risk management 

Risk assessment and risk management are crucial elements for the development of a cosmetic 

product that help to assess and mitigate possible adverse health effects to consumers. At the 

regulatory level, these two issues are kept independent of each other. The outcome of risk 

assessment, however, provides a basis for devising appropriate risk management strategies. 

Generally, risk assessment of a cosmetic ingredient requires data and information on the 

following aspects: 

- The physicochemical characterisation of the ingredients intended to be used in a cosmetic 

product. The knowledge of physicochemical properties of the substance may provide useful 

pointers to its potential behaviour, interactions and effects in biological systems.  

- The identification and dose‒response characterisation of toxicological hazards. The 

toxicological endpoints measured for risk assessment relate to both the local and systemic 

effects that may manifest over short, medium or long terms. 
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- An exposure assessment for reasonably foreseen conditions of use. This includes 

assessment of both external exposure and internal (systemic) exposure. The latter is usually 

derived from the external exposure on the basis of the level of absorption through relevant 

routes (dermal, oral, and/or inhalation) and distribution through the body. 

All of the above data and information are used together to assess the overall risk to an average 

consumer, keeping in mind certain vulnerable groups - such as infants and children. 

Amongst the toxicological endpoints that are studied for the safety assessment of cosmetics, 

carcinogenicity is one of the most difficult to measure or predict accurately. Historically, 

testing for carcinogenicity of cosmetic ingredients has been performed using the rodent 

carcinogenicity assay (OECD 2008), whilst organ level toxicity is studied in rodents using 28 

day or 90-day using repeated-dose exposures (OECD 1995, OECD 1998). These studies are 

also used to derive a No Observed (Adverse) Effect Level (NO(A)EL), which is “the highest 

exposure level at which there are no biologically significant increases in frequency or severity 

of adverse effects between the exposed population and it appropriate control.” (EPA 1995, 

Lewis et al. 2002). For instance, a 28 or 90-day inhalation, oral or dermal repeated dose study 

in rodents can provide data to derive a N(O)AEL value for use in risk assessment. Where some 

effects are observed in these tests, a Lowest Observed (Adverse) Effect Level (LO(A)EL) may, 

instead, be derived. The LO(A)EL is “the lowest exposure level at which there are biologically 

significant increases in frequency or severity of adverse effects between the exposed population 

and its appropriate control group.” (EPA 1995, Lewis et al. 2002). The NO(A)EL value (or 

the LO(A)EL value after applying appropriate safety factor) is used along with the estimates 

of internal (systemic) exposure to estimate the Margin of Safety (MoS) for the specific 

substance. In view of the possible toxicokinetics/ toxicodynamics differences between the test 

species (generally rodents) and humans, and the variability within the human population, an 
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uncertainty factor of 100 (10 x 10 respectively) is generally applied and substances with a MoS 

equal to, or greater than, 100 are considered safe for use in cosmetic products.     

 

1.2: European Union regulation 

In Europe, safety of cosmetics is regulated under the European Union’s Cosmetic Regulation 

[Regulation (EC) No 1223/2009]. Article 2 of the Regulation regards a cosmetic product as a 

substance or mixture intended to be placed in contact with the external parts of the human body 

(epidermis, hair system, nails, lips and external genital organs) or with the teeth and the mucous 

membranes of the oral cavity with the exclusive or main purpose of cleaning or perfuming 

them, changing their appearance, protecting them, keeping them in good condition or 

correcting body odours.  

In Europe, safety assessment of cosmetics is carried out by industry, which is then assessed by 

the regulatory authorities. At the industry level, all the information relating to safety is 

maintained in a Product Information File (PIF) by the company’s Responsible Person (RP). At 

the regulatory level, the safety of cosmetic ingredients is overseen by the European 

Commission, whereas that of the final products by competent authorities in the European Union 

(EU) Member States. The European regulatory framework for cosmetic safety requires pre-

market notification of the intended use of any ingredients that fall within the regulated 

categories (the so-called Annex substances), assessment of the safety, regulatory approval and 

appropriate labelling of the final products.  

The safety data on cosmetic ingredients submitted to the European Commission are reviewed 

by a committee of independent experts (the Scientific Committee on Consumer Safety (SCCS)), 

who advise the Commission on the safety of the substance. Depending on level of the assessed 

risk to the consumer, the Commission may allow an ingredient at the levels proposed by the 
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industry, allow it with restrictions on the use levels or the types of uses, or ban its use in 

cosmetic products. As such, the Commission may place a cosmetic ingredient in one of the 

Annexes of Regulation (EC) 1223/2009: Annex II (list of prohibited substances); Annex III 

(list of restricted substances III); Annex IV (list of colourants); Annex V (list of preservatives; 

or Annex VI (list of UV-filters). 

Since 11 March 2013, the EU Cosmetic Regulation has banned animal testing of any cosmetic 

ingredient or a finished product in the EU, as well as the marketing of any cosmetic 

ingredient/product that has been tested on animals after the ban took force. This has placed a 

lot of emphasis on alternative non-animal methods to obtain data and information for risk 

assessment (Rogiers, 2019). 

 

The Registration, Evaluation, Authorisation and restriction of Chemicals (REACH) is another 

(and most influential) EU regulatory framework relating to safety of the workers and the 

environment from the chemicals that are produced and/or used at industrial scales. Since 

implementation in 2007, REACH has progressed in various phases on the basis of tonnage of 

the chemicals produced and now requires that substances imported or produced in the EU at 

one tonne per year or more should be registered with the European Chemicals Agency (EChA). 

Some cosmetic ingredients are produced or imported into the EU at high tonnages and hence 

will also be safety assessed under REACH based on data relating to physicochemical properties, 

toxicological effects and estimates of exposure. REACH also encourages the use of alternatives 

methods and the use of animal experimentation only as the last resort. Part of this is due to the 

commitment to the so-called '3Rs' principle (Reduction, Refinement, and Replacement of 

animals used in laboratory procedures) (Russell and Burch 1959).  
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1.3: Toxicological testing of cosmetic ingredients 

Toxicology is an inter-disciplinary subject that brings knowledge together from chemistry, 

pharmacology and biology. The harmful effect(s) of a test chemical observed at the organism, 

organ, (sub)cellular or molecular level are termed the toxic endpoint or adverse effect/ outcome. 

Determining the nature and the extent of an adverse effect is generally based on: 

a. Data from tests conducted in vivo on animals (e.g. rodents), as well as the information 

drawn from epidemiological studies or clinical trials on human volunteers. These data 

provide a basis for determining the levels below which the substance may be considered 

non-toxic (such as the NOAEL). 

b. Data from tests carried out in vitro using cultures of bacterial, animal or human cells, 

cultured tissues or organoids. 

c. Estimates drawn from computational (in silico) models that are based on structure-

activity rules, algorithms and / or structural alerts for toxic potential that have been 

derived from experimental data on related group(s) of chemicals. Such models allow 

for the prediction of toxicity of untested substances. 

In vivo testing has long been considered the most appropriate method for toxicological 

assessment of chemical substances to predict their potential effects in humans – albeit with 

consideration of the relevance of animal data to humans due to interspecies differences. 

Toxicological data for cosmetic safety assessment have also been historically derived from 

tests on animals in the form of measured values against specific endpoints that depict both 

short- and long-term effects in humans. These included: 

• dermal/ percutaneous absorption; toxicokinetics; acute toxicity; irritation and corrosivity 

(skin and eye); skin sensitisation; mutagenicity/genotoxicity; repeated dose toxicity; 
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• where data indicated potential long term effects, further studies on carcinogenicity and 

reproductive toxicity could be required;  

• data on photo-toxicity may be required for substances that are photo-reactive and the final 

products are intended for application on the skin exposed to sunlight;  

• where available, data from exposure to humans, e.g. data from epidemiological studies or 

clinical trials are also taken into consideration.  

 

1.4: Testing for carcinogenicity, mutagenicity or reproductive toxicity 

Although the toxicological data required for safety assessment of cosmetic ingredients cover a 

range of short- and long-term endpoints, more emphasis is placed on identifying and avoiding 

the use of those substances that may be Carcinogenic, Mutagenic or Reproductive toxicants 

(so-called “CMRs”), or may be persistent and accumulative in the body. This is because acute 

and short-term toxic effects are relatively straightforward to detect and mitigate, unlike long-

term effects, such as the risk of cancer. The current classification of CMR substances used in 

the EU is as follows: 

• Carcinogenic substances are categorised either as 1A (known to have carcinogenic potential 

for humans), 1B (presumed to have carcinogenic potential for humans); or 2 (suspected 

human carcinogen). 

• Mutagenic substances are categorised either as 1A (known to induce heritable mutations in 

the germ cells of humans); 1B (can induce heritable mutations in the germ cells of humans); 

or 2 (may cause concern for humans owing to the possibility to induce heritable mutations 

in the germ cells of humans). 

• Reproductive toxicants are categorised either as 1A (known human reproductive toxicant); 

1B (presumed human reproductive toxicant); or 2 (suspected human reproductive toxicant) 
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Under the current regulations, CMR 2 substances may be allowed in cosmetic products where 

they, in view of the exposure and concentration, have been found safe. CMR 1A or 1B 

substances are allowed only in exceptional cases that is when they comply with food safety 

requirements, inter alia as a result of their natural-occurrence in food, and that no suitable 

alternative substances exist, on the condition that such use has also been found safe (see 

Chapter 4 for more details). 

 

1.5: Alternative (non-animal) methods 

With the animal testing/marketing ban for cosmetic products under the EU Cosmetic 

Regulation, and emphasis on the 3Rs principles under other regulatory frameworks, there is an 

increasing focus on the use of alternative (non-animal) methods to obtain toxicological data for 

safety assessment (Balls, 2019). This is, in part, due to ethical reasons over, and public pressure 

opposing, the use of animals to assess the toxicity of chemicals (including cosmetic 

ingredients). In addition, scientific progress is driving the change with new approaches to 

toxicology that are more relevant to humans as well as environmental species. In particular, 

non-testing methods, such as in silico models and tools, provide a far cheaper and quicker 

option for the primary screening of chemicals for hazard identification compared to other 

methods. For instance, the average cost of a 90-day repeat-dose rodent study for a single 

chemical can be between $125,000-175,000 and requires the use of approximately 80 animals. 

Testing for long-term effects - such as carcinogenicity - may cost many times that amount. 

Thus, the use of alternatives non-animal methods offers the opportunity to reduce the cost of 

product development, the use of animals in toxicological studies, and can make the hazard 

identification process more rapid (Worth, 2019).  

By banning in vivo testing of cosmetics under Cosmetic Regulation, the EU has opened the 

door for the use of scientifically-valid alternative methods. The main approaches used for this 
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purpose are based on in vitro tests using cultures of cells, tissues or organoids, in chemico 

approaches and computational (in silico) models that are based on structure-activity based rules, 

algorithms, and structural alerts (EC 2003, EC 2006, EC 2006). The capacity of a molecule to 

react and covalently link with significant biological macromolecules, such as proteins, is 

studied by in chemico testing. An example of this technique is the measurement of the 

capability of a compound to bind to a thiol group, such as contained on the amino acid cysteine, 

by the depletion of glutathione in a standard assay (Aptula et al. 2006). In vitro assays provide 

another non-animal route to assessment of toxicological hazards. The bacterial Ames Test is 

an example of an in vitro technique which is used to assess the mutagenic potential of 

compounds with the use of a mutant strain of the bacterium Salmonella typhimurium which is 

not able to generate histidine but will revert back to the wild type in the presence of a mutagen 

(Ames et al. 1973, OECD 1997). A range of in silico models and tools that can estimate 

different toxicological endpoints, e.g. mutagenicity, skin sensitisation, teratogenicity (Enoch et 

al. 2008a, Enoch et al. 2008b, Enoch et al. 2009, Enoch et al. 2011a) is now available. These 

are used to derive toxicity estimates based on (Quantitative) Structure-Activity Relationships 

((Q)SARs), category formation (grouping) and read-across. The principles of structure-activity 

relationships (SARs) are based on the notion that biological activity (including toxicity) of a 

chemical substance is dependent on certain physicochemical and structural parameters. Thus, 

the toxicity of a yet-untested chemical may be predicted on the basis of models developed from 

SARs of groups of related substances, or through extrapolation of data from close structural 

analogues of the untested compound (the premise of category formation and read-across).   

There are, however, certain limitations to each of the different alternative methods and as such 

they cannot entirely replace the results obtained from in vivo tests in a live functional animal. 

Despite much recent scientific progress, the assessment and prediction of many complex 

toxicological endpoints, especially chronic effects, is difficult. Thus, to obtain sufficient weight 
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of evidence for risk assessment a combination of several approaches need to be employed as a 

part of an integrated testing strategy (ITS) (Hartung et al. 2013). 

 

1.5.1 Adverse Outcome Pathways and Molecular Initiating Events 

The Adverse Outcome Pathway (AOP) paradigm provides a framework that enables the 

information provided by different testing methods to be integrated and organised cohesively 

and transparently (Ankley et al. 2010, OECD 2013, Vinken 2013, Vinken et al. 2013a, Vinken 

et al. 2014). The knowledge within an AOP provides a mechanistic link between data and 

information derived from different approaches. Knowledge can be provided for the upstream 

Molecular Initiating Event (MIE) and a potential downstream adverse outcome that may be 

relevant for risk assessment. AOPs are defined by a number of key testable events at different 

levels of biological organisation - including the organ, cellular or organism level (Ankley et al. 

2010, Schultz 2010, OECD 2013, Przybylak and Schultz 2013). The progression of an AOP is 

towards the adverse event that is initiated by the interaction of a chemical and the site of action 

(the MIE), which is the primary event in the sequence. The primary interaction between the 

biological and chemical system may be obtained from the mechanistic information described 

by the MIE. The physicochemical properties and structural fragments of molecules that can 

interact via the MIE can be analysed and rationalised in terms of their mechanistic information 

and relevance. The sequential progression of toxicity from one level of biological complexity 

to another is represented in Figure 1.1. It is also recognised that the elicitation of the adverse 

effect in a biological system is a complex process which may have been provoked by multiple 

key effects at the cellular level following a single event upstream. Many, often unrelated, events 

in a pathway may combine to bring about the same adverse effect, as described by Vinken et 

al. (2013b) for the AOP for cholestasis. Other AOPs, e.g. for weak acid respiratory uncoupling, 

oestrogen receptor-mediated reproductive toxicity, voltage-gated sodium channel-mediated 
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neural toxicity, skin sensitisation and cholestasis have been developed accounting for a wide 

variety of adverse outcomes (Ankley et al. 2010, Schultz 2010, OECD 2011, Landesmann et 

al. 2012, OECD 2012). A more comprehensive list of the available AOPs is accessible from 

the AOP-Wiki via the AOP Knowledge Base (available from https://aopkb.org/, accessed 

17.2.2017). To assist in their implementation, the AOP framework has been standardised in an 

OECD guidance document which indicates the process by which AOPs should be developed 

and assessed for reliability and robustness (OECD 2013).  

Figure 1.1. Summary of the steps within an adverse outcome pathway and examples of the type 

of effect or activity (adapted from Ankley et al. (2010)) 

 

1.5.2 In silico profilers 

In silico methods can also be used to define and capture the MIE from an AOP pathway (Cronin 

and Richarz, 2017). The molecular fragments and chemical structures that are found to be 

responsible for inducing toxicity can be identified by these methods. One method of capturing 

2-D information relating to, e.g. DNA or protein binding, is the use of structural alerts. A 
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collection of structural alerts that predict the same MIE have been considered to be used as an 

in silico profiler (Enoch and Cronin 2010, Enoch et al. 2011b). The profilers can be classified 

into two main types, namely mechanistic and non-mechanistic profilers (the latter described as 

chemistry-based profilers in this thesis). A profiler that is associated with a particular endpoint 

induced by a group of structural alerts related to an MIE is termed a mechanistic profiler. Thus, 

protein binding can be indicative of skin sensitisation as it is the MIE in this AOP. Ideally, 

structural alerts that are present in the mechanistic profiler should be associated with 

experimental data that exhibit the generation of toxicity as a result of the particular MIE. In 

vivo, in vitro and/or in chemico methods can provide such experimental data. These types of 

profiler are also used for the formation of categories and hence allow for read-across from 

tested analogous chemicals to fill data gaps for toxicity prediction (Enoch et al. 2011b).  

A profiler for a particular endpoint that is based on a group of structural alerts related to 

chemistry is termed a non-mechanistic profiler. Such a profiler does not provide any 

mechanistic information about the initiation of toxicity. Instead, they may be based on 

cheminformatics, or a simple analogue/ homologue approach which indicates that a particular 

common structural group is responsible for the toxicity of the compound (Enoch and Cronin 

2010). Even when the alerts are related directly to toxicity, the nature of the chemical alerts 

obtained by this approach does not identify the mechanism by which the observed toxicity is 

brought about. The reason for this is that small molecular fragments may initiate toxicity 

through different mechanisms whereas each profiler is used in an endpoint- and context-

dependent manner. Chemistry-based profilers are nevertheless helpful in screening large 

datasets to identify which chemicals should undergo initial in vitro or in chemico tests (Cronin 

and Richarz, 2017).  
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        1.5.3 Category formation and read-across 

A set of chemicals having common properties may be assigned to a category according to the 

technique of chemical category formation (ECHA 2008, OECD 2011). The identification of 

chemicals having the same mechanism of action, or MIE, is one of the key means of forming 

a chemical category. Thus, a chemical category can be formed based on a structural alert for a 

particular mechanism where the same alert is present in the target chemical as well as its 

analogues. The Organisation for Economic Co-operation and Development’s (OECD’s) QSAR 

Toolbox software has been developed as a result of the need to form chemical categories for a 

wide range of toxicological endpoints with the aid of mechanistic profilers (available from 

www.qsartoolbox.org) (Schultz et al., 2018). The read-across approach uses appropriate data 

and assumes that the biological and chemical activity of similar chemicals will be similar 

(Jaworska and Nikolova-Jeliazkova 2007). This allows the prediction of activity of the target 

chemical with the help of toxicological data for chemicals belonging to the same category. This 

approach may allow for both qualitative and quantitative predictions by analysing the data 

available for analogous chemicals belonging to a specific category.  

 

1.5.4 Profiling inventories for prioritisation 

A library of information about a set of chemicals with their identities is termed a “chemical 

inventory”. Chemical inventories are created and maintained for many purposes including 

regulatory use - such as the industrial chemicals registered under REACH. The inventories 

generally do not contain toxicological data associated with the chemicals but some free-access 

and commercial databases do provide such information. In silico profilers made up of relevant 

structural alerts can be used to screen inventories - for example to identify chemicals that may 

induce certain toxicity(ies). Although chemistry-based profilers lack mechanistic information, 

they are generally still useful for read-across (Alves et al., 2016). As such, chemistry-based 

http://www.qsartoolbox.org/
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profilers may be used to screen inventories, large datasets and chemicals that contain one, or 

more, structural alerts. The presence of a chemistry-based alert in a cosmetic ingredient could 

indicate that the chemical would require in chemico, in silico and/or in vitro analysis to gain 

further insights into the mechanism of toxicity. Thus, the chemistry-based alert can lead to 

further investigations into the possible mechanistic basis (Limban et al., 2018).   

 

1.5.5 Expert systems 

In addition to the chemistry- and mechanistically-based profilers in the OECD QSAR Toolbox 

(and other freely available software such as Toxtree), there are a number of software packages 

termed expert systems that are available on a commercial basis e.g. ChemTunes, TIMES-SS 

and DEREK Nexus (formerly DEREK for Windows). Expert systems can be based on one or 

more different approaches to predicting toxicity, such as decision trees based on rules, 

structural alerts for particular toxicity endpoint and / or nested QSARs (Dearden et al., 1997). 

Structural alerts can identify endpoints, such as skin irritation/ sensitisation, mutagenicity and 

carcinogenicity. Using expert systems, a user can quickly identify chemicals that may have the 

potential to elicit a toxic effect. Expert systems are commonly used by cosmetics and 

pharmaceutical companies to screen datasets for toxicity at early stages of product development. 

Knowledge of the potential toxicity of the lead compound(s) helps to avoid safety issues at 

later stages of the R&D pipeline. Such information can help in the development of 'safer' 

compounds where fragments associated with potential toxicity can be substituted with other 

moieties (Limban et al., 2018).  

 

1.6:  Molecular initiating events for (sub)chronic repeat dose toxicity 

Sub-chronic and chronic adverse effects of a particular substance can be identified with the 

help of repeated dose toxicity testing. In repeated dose toxicity testing, the organism is exposed 
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to the chemical to be tested either over a stipulated period of time (28 or 90 day) or for the 

complete lifespan of the organism (e.g. 2 year study in rat). Initiating events for some of the 

toxicological endpoints are known, e.g. covalent binding of the substance with a protein and 

DNA (de Groot and Noll 1983, Woodward and Timbrell 1984, Aptula and Roberts 2006, 

Aptula et al. 2006, Enoch et al. 2008a, Enoch et al. 2008b, Enoch and Cronin 2010, Enoch et 

al. 2011a, OECD 2012, Hewitt et al. 2013), however, for more complex endpoints relevant to 

this thesis, such as non-genotoxic carcinogenicity, there may only be limited clues to the MIEs.   

 

1.7: Carcinogenicity - the use of SAR approaches to identify suspect carcinogens 

In western countries, cancer is considered as one of the main causes of death after circulatory 

disease (Frankish, 2003). The National Cancer Institute (NCI) defined cancer as “a term for 

disease in which abnormal cells divide without control and can invade nearby tissues and can 

also spread to other part of the body”. Whilst substantial effort and funds have been devoted 

to research into cancer in the recent decades, cancer is still one of the main diseases causing 

death. Numerous causes for cancer have been postulated, most notable amongst them are 

exposure to carcinogens in the environment, through diet, at the work place or due to lifestyle 

(Lichtenstein et al., 2000).  

The potential of a chemical to elicit carcinogenicity and mutagenicity can be tested using a 

range of in vitro and/or in vivo test methods (Table 1.1). For genotoxicity testing, the endpoints 

are related mainly to gene mutations and chromosomal damage. In vitro methods in bacteria 

(i.e. the Ames test) or in mammalian cells are suitable and widely used to identify potential 

genotoxic chemicals. In the Ames test, the assay is usually performed both in the absence and 

the presence of an S9 fraction from rat liver to mimic the metabolic function of mammalian 

systems (Cartus and Schrenk, 2016). 
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A compound or its metabolite(s) may bind directly with DNA or exert indirect effects through 

interaction with the function of DNA leading to a positive outcome for genotoxicity. This may 

lead to an irreversible change in the DNA base sequence or a damage to the cellular genome. 

These changes, together with other effects in the cancer multistep process, e.g. suppression of 

apoptosis or DNA repair, are frequently linked to an increase in tumour rate. Rats and mice are 

primarily used to detect carcinogenic effects and general toxicity respectively, under chronic 

exposure conditions and over the lifespan of the animals. If there is a carcinogenic response in 

vivo, further in vitro and in silico investigations can provide crucial information as to whether 

the compound is carcinogenic as a result of genotoxic mode of action.  

 

Table 1.1. A summary of selected in vivo and in vitro tests to assess the possible genotoxic 

effects of a compound according to OECD TGs (OECD, 2015) 

Endpoint 
In vitro test methods 

Test Species 

Mutagenicity (reverse 
mutation) 

Ames test, Ames fluctuation test Bacteria (Salmonella 
typhimurium, Escherichia coli) 

Mutagenicity (forward 
mutation) 

Hprt test Mammalian cell lines 

Mutagenicity (forward 
mutation)/Chromosomal 
damage 

Thymidine kinase-/Mouse lymphoma 
assay 

TK6 human lymphoblastoid 
cell line; L5178Y mouse 
lymphoma cell line 

Chromosomal damage Chromosome aberration test in vitro Mammalian cell lines 
DNA strand breaks Comet assay Cells and cell lines 
In vivo test methods 
Mutagenicity Transgenic rodent somatic and germ 

cell gene mutation assays 
Transgenic rats or mice 

Chromosomal damage Micronucleus test in vivo Mammalian erythrocytes/blood 
cells 

Chromosomal damage Chromosome aberration test in vivo Mammalian bone marrow and 
mammalian spermatogonial 
cells 
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Although human cancer risk might be predicted from long-term carcinogenesis studies in 

rodents (mainly rat and mice), the cost and time required are quite high and there are ethical 

issues for the use of animals in such studies (Huff et al., 1996). Attempts have therefore been 

made to develop alternative models - including short-term biological tests (such as the tests for 

mutagenicity), or structure-based in silico models (Benigni, 2012). Understanding the 

mechanisms of chemical carcinogenesis is crucially important to design prevention plans 

(Belpomme et al., 2007). As more details of the molecular basis of carcinogenic activity 

become known, the identification of potential carcinogens by SAR analysis is also becoming 

increasingly reliable (Benigni and Bossa, 2011).  

From a mechanistic point of view, carcinogens can be regarded as being either genotoxic or 

non-genotoxic (epigenetic). As illustrated in Table 1.2, when chemicals or their metabolite(s) 

are capable of directly inducing cancer by altering genetic material in the target cells, they are 

classified as being a 'genotoxic carcinogen'. The term 'non-genotoxic carcinogen' is generally 

used for chemicals that are capable of inducing cancer by secondary mechanisms that do not 

involve direct damage to the genetic material. Whilst there are many data and much knowledge 

on the mechanisms leading to genotoxicity, it is more difficult to classify non-genotoxic 

carcinogens on the basis of mechanisms of action due to lack of specific mechanistic 

information (Hayashi, 1992). In fact, the differentiation between genotoxic and non-genotoxic 

carcinogenicity is rarely absolute as most potent genotoxic carcinogens also possess non-

genotoxic activities that could act synergistically to lead to carcinogenic process. A unifying 

feature that can help identify genotoxic carcinogens is that they are either intrinsically 

electrophiles, or are transformed to electrophilic reactive intermediates. This, however, cannot 

be said for non-genotoxic carcinogens that can act through a range of different mechanisms 

that have no apparent unifying basis (Anastas et al., 2012). 
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Table 1.2. A summary of the main differences between genotoxic and non-genotoxic 

carcinogens. 

Feature Genotoxic carcinogen Non-genotoxic carcinogen 

DNA alteration Direct Indirect (secondary) 

Mechanism  Known Multiple 

Structural Feature  Electrophiles No unifying concept 
(several) 

 

In order to gain a better understanding of the role of non-genotoxic carcinogenicity and its 

specific mechanisms of action, a thorough review is required. The outcome of this review is 

presented below as Section 1.8. 

 

1.8: Non-genotoxic carcinogenicity 

Predicting the carcinogenic potential of chemicals that act through non-genotoxic mechanisms 

is one of the major challenges in toxicology. Historically, events that could not be described 

by normal genetic principles of heritability were termed as being epigenetic. In a broad sense, 

epigenetic refers to the alteration of gene expression without changing the basic DNA sequence. 

Thus, non-genotoxic (epigenetic) carcinogenicity includes the actions of all natural or synthetic 

chemicals that may induce carcinogenic effects without involving mutation(s) in the DNA 

sequence. There has recently been huge growth in the scientific literature on the mechanisms 

of action of non-genotoxic (epigenetic) carcinogenicity; this is as a result of the greater 

importance being placed on gaining more knowledge about its mechanistic understanding and 

the molecular basis of chemical carcinogenicity (Benigni et al., 2013). Unlike genotoxic agents, 

cancer induction by non-genotoxic carcinogens may occur through alteration of multiple 

pathways. Therefore, the activities of non-genotoxic carcinogens could include the molecular 

targeting of different cellular and extracellular constituents of various organs, but not DNA 
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(Yamasaki, 1995). Cytokines and hormones that operate through cell membrane receptors and 

intracellular communication processes - such as enhancing cell proliferation and abnormal cell 

cycle kinetics – may potentially alter sensitivity to a wide variety of cell growth mediators. As 

such, they have been considered the main determining factors for the carcinogenic response 

(Klein and Costa, 1997). Mechanisms of action of non-genotoxic carcinogens are mostly 

heterogeneous and often tissue, species and gender specific. The main non-genotoxic 

mechanisms, with an emphasis on those with features amenable to interpretation by SARs, are 

illustrated in the following section. The available information is used to support a unifying 

theory that can, at least in principle, be translated to an in silico tool for interpretation through 

predictive toxicology.    

As noted above, there is a need to identify the key mechanisms of action of non-genotoxic 

carcinogenicity. Those that are known so far, along with examples of structural alerts and 

exemplar compounds that may be of use, are discussed below: 

 

1.8.1 Peroxisome proliferation 

One of the main groups of non-genotoxic carcinogens comprises a group of diverse chemicals 

that have been collectively termed as “peroxisome proliferators” (PP). Almost all eukaryotic 

cells contain cytoplasmic organelles called peroxisomes (or microbodies), that vary between 

tissues in terms of size, number and tissue profile (de Duve, 1983).  Peroxisomes play an 

important role in β-oxidation of very-long-chain fatty acids and in the biosynthesis of 

cholesterol and bile acid (Mannaerts and van Veldhoven, 1993). The possibility to induce 

noticeable peroxisome proliferation was first demonstrated in rodent liver cells after 

administration of the hypolipidemic drug clofibrate (Paget, 1963). Since then, a number of 

other compounds have been identified as peroxisome proliferators. These include herbicides, 

solvents, plasticisers, leukotriene antagonists, as well as natural compounds (Gonzalez et al., 
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1998). There is a noticeable increase in both the size and the number of peroxisomes and 

hepatomegaly after administration of the non-genotoxic agents to rodents due to hypertrophy 

and enhanced cell proliferation (Reddy et al., 1986). Administration of peroxisome 

proliferators over longer periods of time to rats and mice has been shown to result in the 

development of hepatocellular carcinomas (Rusyn et al., 2006).  

 
Figure 1.2. Peroxisome proliferation: consequences of PPARα activation in the liver and the 

proposed underlying mechanisms (adapted from Michalik et al., 2004). 

 

As shown in Figure 1.2, the exact process of how peroxisome proliferators cause tumours in 

rodent liver it is not fully understood. However, two factors are thought to be the main inducers 

of hepatocarcinogensis in rodents: 

 (i) induction of oxidative stress that leads to DNA damage; and  

(ii) enhanced cell proliferation or decreased apoptosis that alters the growth control of 

hepatocytes (Corton et al., 2000).  
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The imbalance between the production and degradation of hydrogen peroxide (H2O2) resulting 

from oxygen radical generation is the main cause of oxidative injury. H2O2 is a by-product of 

acyl-CoA oxidase, the level of which increases by 10-30 fold during the induction of 

peroxisomes, while there is only a two-fold increase in the level of catalase, which is not 

sufficient to degrade all of the H2O2 produced (Reddy et al., 1986). Additionally, it is believed 

that peroxisome proliferation increases the rate of fixation of DNA in the genome leading to 

changes in gene expression, such as increased expression of oncogenes or silencing of the 

tumour suppressor genes.   

 
Figure 1.3. Mechanism of action of peroxisome proliferation. 

 

Peroxisome Proliferator Activated Receptors (PPARs) were identified in the early 1990s as 

novel members of the steroid receptor superfamily (Schmidt et al., 1992). Figure 1.3 shows 

that binding of peroxisomes proliferators to PPARs leads to dimerisation with the Retinoid X 

Receptor (RXR). This heterodimer (PPAR-RXR) binds to DNA in a specific sequence element 

called the Peroxisome Proliferator Response Element (PPRE) that initiates gene expression and 

the production of proteins involved in fatty acids metabolism (Green and Wahli, 1994). 
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Collectively, each isotype of the PPAR family has a specific function in lipid homeostasis, as 

there are different isotypes of PPAR including PPARα, PPARβ/δ, and PPARγ (Green, 1995). 

Of particular chemical interest is the mediation of biological effects for peroxisome 

proliferators, which is mostly performed by PPARα. The primary natural ligands of PPARα 

are saturated and unsaturated fatty acids and it is highly expressed in liver, heart, kidney and 

muscle which all have higher rates of mitochondrial fatty acid oxidation. It is essential to have 

PPARα to mediate the carcinogenic response to a peroxisome proliferator in rodents, but its 

relevance to humans has been debated intensively. Noticeable differences in the response of 

peroxisome proliferators among species have been reported ranging from being highly 

susceptible in rats and mice to being highly intractable in dogs, guinea pigs, non-human 

primates and humans to short term effect of PP exposure (Bentley et al., 1993). In the case of 

humans, it is not entirely understood how resistance to peroxisome proliferators occurs while 

there is functional PPARα. The differences in PPARα expression is likely to be a probable 

explanation for the species-specific effects of PP (Tugwood et al., 1996). It was concluded that 

peroxisome proliferators are unlikely to cause human liver cancer at the expected exposure 

levels (Cattley et al., 1998). However, it cannot be disregarded that there is a dependency 

between PPARα mediated rodent liver cancer and differential PP exposure (Lai, 2004). The 

following sections discuss two special classes of the effects that have been attributed to 

peroxisome proliferators: (a) inhibition of gap junction intercellular communications and (b) 

DNA methylation.  

1.8.1.1 Inhibitors of Gap Junction Intercellular Communication: 

Gap junction intracellular communication has been shown to be inhibited by several non-

genotoxic carcinogens including agonists of PPARα (Upham et al., 2008). Adjacent cells are 

connected internally by the channels formed by the plasma membrane, termed Gap junctions 

(Klaunig et al., 2003). The channels have the same structure irrespective of which tissue cells 
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they are present in. In a typical gap junction, six subunits of connexin protein form a 

hemichannel connexon. Two connexions, one from each cell, dock to form a gap junction. 

Small ions and molecules such as calcium, glucose or growth regulators can diffuse directly 

through the gap junction between the cells and this process is known as Gap Junction 

Intercellular Communication (GJIC) (Yamasaki, 1990). GJIC is a normal phenomenon 

required for homeostatic maintenance in multicellular organisms, normal growth, development 

and tissue differentiation. Gap junction regulation can occur at the translational, post-

translational or transcriptional level. Stable or transient up or down regulation of GJIC can 

occur at any of these three levels by exogenous or endogenous chemicals involving many 

mechanisms. It has been observed that stable normal gap junction regulation is linked with 

tumour suppressor genes and abnormal gap junction regulation is linked with activated 

oncogenes. GJIC has also been shown to be reduced by many carcinogens (Trosko, 1998). 

Heterologous or homologous alteration (either connexins localisation or aberrant expression) 

of GJIC has been reported in almost all malignant cells (Yamasaki, 1990). Although the 

mechanisms underlying the relationship between GJIC inhibition and carcinogenic response 

are ambiguous, GJIC is still considered to be important in tumour promotion and hence 

carcinogenesis.  

1.8.1.2 DNA Methylating Agents:  

Altered DNA methylation patterns have been reported following exposure to peroxisome 

proliferators such as dibutyl phthalate, dichloroacetic acid, Wy-14, trichloroethylene, 

trichloroacetic acid and gemfibrozil (Tao, 2000). DNA methylation is an epigenetic 

modification which affects regulation of transcription. It is covalent addition of a methyl group 

at the 5th position of the cytosine ring within the CpG island (which is the region within DNA 

with a high frequency of CpG sites, i.e. the area where a cytosine nucleotide (C) is followed 

by guanine nucleotide (G) within the linear sequence of bases). DNA methylation is considered 
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to be a non-genotoxic mechanism involved in the promotion and initiation of carcinogenesis 

(Watson and Goodman, 2002). In both tumour tissues and cells, the altered DNA methylation 

patterns have been observed as compared to normal cells. It has been observed in the genome 

of various animal and human cancers that hypermethylation (region specific) and 

hypomethylation (global) can coexist. The most important clue is that the CpG islands are 

hypermethylated in tumour cells, however, there is no methylation at all in the CpG islands in 

normal cells. The CpG islands have more CpG regions as compared to other regions of the 

genome which are associated with coding regions or promotors of genes. Hypermethylation of 

these regions may result in transcriptional alteration or silencing of associated genes which, in 

turn, may result in inactivation of tumour suppressor genes. Alternatively, proto oncogenes, 

such as c-Jun or c-Myc can be abnormally activated by hypomethylation. Moreover, 

methylcytosine to thymine deamination can also occur by hypermethylation, which can result 

in cytosine to thymine point mutations (Robertson, 2000). In short, different changes after 

DNA methylation, such as hypermethylation, hypomethylation, altered gene expression, and 

mutation may lead to carcinogenesis. A number of structural alerts have been identified for 

peroxisome proliferation as shown in Table 1.3. 
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Table 1.3.  The main structural alerts for peroxisome proliferation (Benigni et al., 2013) 

N Alert name Structural alert An example molecular containing the 
alert that elicits peroxisome proliferation 

 
 
1 

 
Substituted 
phenoxy acids  

 
 

 
 
2 

Substituted N 
alkyl 
carboxylic acid 

  
 
 
 
 
 
3 

 
 
 
 
 
Phthalate (or 
butyl diesters 
and 
monoesters) 
 

 

 
  

4 Perfluorooctan
oic acid 
(PFOA) 

  
5 Phenoxy 

herbicide 

  
  

 

 

 

1.8.2 Inducers of oxidative stress  

Oxidative stress has been implicated in carcinogenesis in many ways (Halliwell, 2007). It is 

caused by the imbalance between the antioxidant capability of the target cell and the production 

of Reactive Oxygen Species (ROS). The short-lived ROS - such as ·OH (hydroxyl), O2
- 

(superoxide anion) and non-radical oxygen derivatives such as H2O2 (hydrogen peroxide) - are 

highly reactive towards many biological entities, including lipids, proteins, nucleic acids and 

O

Cl

O

O

R

R

R Cl

O
O

O

clofibrate

O

O R

O

O

O

O

DEHA 
di-(2-ethylhexyl) adipate

O

O

O

O
R

R
O

O

O

O

butyl benzyl phthalateR
O

O

O

O
R

O

F F

FF

F F

FF

F F

FF

F
F

F

O

OH

F F

FF

F F

FF

F F

FF

F
F

F

O

O

O
R

O

O
O

O

ON

FCl

clodinafop-propargyl



Chapter 1 

      Page 33  

membranes. A decrease in cell’s antioxidant resistance leads to increase in the level of ROS 

and consequently to oxidative stress and oxidative damage. Both endogenous sources 

(peroxisomes, inflammation in cell and mitochondria) and exogenous sources (radiation, 

industrial chemicals, drugs and environmental agents) can produce ROS (Klaunig et al., 2009). 

Oxidative metabolism in mitochondria and enzymes, such as cyclooxygenases, xanthine 

oxidases, lipoxygenases and NADP oxidase endogenously produces superoxide anions (Valko 

et al., 2004). The enzyme superoxide dismutase (SOD) depletes superoxide anions and the 

resulting H2O2 is removed by glutathione peroxidases and catalases. However, in the presence 

of metal ions, hydrogen peroxide can be converted to the hydroxyl radical through The Haber-

Weiss (Fenton) reaction. The hydroxyl radical is more reactive and aggressive in terms of 

modifying DNA and the production of several oxidation products (Valko et al., 2005). 

However, the hydroxyl radical cannot diffuse within cells because of its high reactivity. It is 

hypothesised that free radical hydrogen must be produced from hydrogen peroxide in the 

immediate vicinity of DNA and can easily cross cell membranes (Klaunig et al., 1995).  

 

ROS can damage DNA in several ways including DNA cross-linking, at apurinic/apyrimidinic 

sites, deoxyribose modification, breakage in single or double strands and deoxyribose 

modification. Normal in cellular DNA, repair machinery mends this damage by nucleotide 

excision and base excision repair. Where this is left unrepaired before replication, it could lead 

to genome instability, cell death or DNA mutation (Cooke, 2003). 8-Hydroxy-2′-

deoxyguanosine (8-OHdG) is the most studied oxidative DNA lesion that is produced by the 

hydroxyl radical at the C-8 position of deoxyguanosine residues. It is also a commonly used 

biomarker of oxidative stress along with its keto-enol tautomer 8-oxo-7,8-dihydro-2′-

deoxyguanosine (8-oxodG) (Valavanidis et al., 2009). In addition, 8-OHdG is highly 

mutagenic due to mispairing of adenine in the replication process (Cheng et al., 1992). High 
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levels of 8-OHdG have been observed in many studies on human cancers and animal tumours 

(Klaunig et al., 1995).  

 

ROS have also been found to induce genetic changes, such as chromosomal rearrangements 

and DNA mutations, which are the basis for the initiation of cancer (Cooke, 2003). ROS cannot 

only cause cell damage, but they can also affect cell regulation and intracellular signalling 

(Allen and Tresini, 2000). The stress activated signalling cascade starts in cells due to a change 

in the redox potential of cells by oxidative stress, which in turn activates transcription factors 

related to redox potential (Adler et al., 1999). Mitogen activated protein kinase (MAPK) 

pathways are the signalling pathways initiated by ROS. These pathways activate many factors 

including hypoxia-inducible factor-1(HIF-1), nuclear factor of activated T cells (NFAT), 

nuclear factor (NF) -κB, p53, and activator factor-1(AP-1). The expression of many DNA 

damage protective genes is controlled by these pathways, including the genes involved in DNA 

repair, induction of apoptosis, damage cell proliferation arrest and the ability of the immune 

system to repair damage (Valko et al., 2006). ROS start signalling initially by the release of 

intracellular calcium, which in turn activates the protein C kinase, a serine threonine kinase 

which regulates cell survival, migration, death and proliferation. These epigenetic effects play 

an important role in tumour promotion (Gopalakrishna and Jaken, 2000).  

 

Many epigenetic carcinogens (phenolic compounds such as o-phenylphenol, 

pentachlorophenol, and quercetin-type flavonoids) cause cancer by the induction of oxidative 

stress. A common pathway in drug transformations is oxidation of the phenols by CYP450 

enzymes that lead to the production of hydroquinone, which is oxidised into quinone. The semi-

quinone radical formed by the reduction of one electron is followed by superoxide anion 
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formation by autoxidation in the presence of oxygen and ultimately quinone regeneration 

(Bolton et al., 2000). This redox cycle produces ROS, which could lead to oxidative stress 

(Kovacic and Jacintho, 2001). 

 

Oxidative stress is also an important mode of action for toxic metals including copper, cobalt, 

aluminium and iron. These metals are collectively involved in hydroxyl radical production in 

vivo by activation in Fenton reactions and are thus termed carcinogenic metals (Valko et al., 

2005). Other metals such mercury, lead and cadmium increase ROS production indirectly by 

depleting thiol containing enzymes and antioxidants which are the major cellular antioxidants 

(Leonard et al., 2004). Chromium exists in three oxidative states - Cr(0), Cr(III), and Cr(VI). 

Cr(III) compounds are not carcinogenic to humans (Hopkins, 1991). The International Agency 

for Research on Cancer (IARC) classified Cr(VI) compounds as group 1 carcinogens to humans 

(Straif et al., 2009). Cr(VI) uses the anion channel to enter the cells as chromates interact with 

physiological phosphate and sulphate (Zhitkovich, 2005). Inside the cells, biological reducers 

(cysteine, glutathione and ascorbate) reduce Cr(VI) into Cr(III) (Standeven et al., 1992). The 

reductive reactions produce several products including radicals based on carbon, sulphur and 

Cr(V) (O'Brien, 2003). Moreover, Fenton type reactions also produce hydroxyl radicals by Cr 

forms (Shi et al., 1993). Oxidative stress is produced by two main factors: the oxidising abilities 

of Cr(V) and the formation of ROS. Besides ROS, the carcinogenicity of Cr(VI) is more 

dependent upon its DNA mutagenesis ability (Zhitkovich, 2011). These compounds can cause 

damage to DNA in different ways, including DNA-DNA cross linking, oxidative damage, Cr-

DNA adducts and DNA protein cross-linking (O'Brien, 2003). The reduction of Cr(VI) to 

Cr(III) is required for the interaction with DNA, Although that there are some recent studies 

have shown the cellular uptake of reduced Cr which was produced by extracellular redox 
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reactions (Valko et al., 2005). Cr(III) compounds are poorly permeable to the cell membrane 

and are therefore non-toxic (Costa, 1997).  

 

Arsenic is also a Group 1 carcinogen to humans (Shi et al., 2004). Inorganic arsenic, such as 

arsenate V and arsenite III, is methylated to form MMA (monomethylarsonic) and DMA 

(dimethylarsinic) in the body as a result of detoxification process (Vaskenaposhian, 2004). 

Trivalent arsenite can interact with thiol containing enzymes and proteins in their reduced state 

and inhibit several biochemical pathways. Pentavalent arsenate is less active than trivalent 

arsenite (Huang et al., 2004) but it may be reduced to arsinite in the body after absorption 

(Rosen, 2002). Arsenite has been found to cause multilocus deletion mutations in human-

hamster hybrid cells (Hei et al., 1998). Dose-dependent transformation of BALB/3T3 cells and 

Syrian hamster embryo cells was induced by sodium arsenite and sodium arsenate (Bertolero 

et al., 1987; Lee et al., 1985). Ultraviolet radiation and inorganic arsenic have also been 

reported to cause co-mutagenicity and carcinogenicity (Hughes, 2002). A number of 

mechanisms have been proposed for arsenic carcinogenesis in humans. Several studies have 

indicated different types of ROS production during arsenic metabolism including singlet 

oxygen (1O2), nitric oxide (NO•), arsenic-mediated generation of superoxide (O2•−), peroxyl 

radical (ROO•), dimethylarsinic radical [(CH3)2As•], dimethylarsinic peroxyl radical [(CH3) 

2AsOO•] and hydrogen peroxide (H2O2) (Shi et al., 2004). The mode of action of arsenic 

carcinogenesis has been linked to other effects including altered DNA repair, possibly as a 

result of oxidative stress, enhanced cell proliferation, gene amplification, cell 

progression/promotion, p53 suppression and DNA methylation (Hughes, 2002).  
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1.8.3 Inducer of hormonal imbalance  

Epigenetic carcinogenesis has also been linked to increased expression of trophic hormones 

due to hormonal imbalance. Increases in both exogenous and endogenous hormones can 

stimulate cell proliferation which, in turn, can result in the formation of tumours by greater cell 

division and random genetic errors (Henderson et al., 1988). There is a negative feedback 

regulation mechanism amongst trophic hormone target tissues and hypophysis; this acts to stop 

target gland secretion and the elimination of secreted hormones which together overproduce 

the respective pituitary hormone. If this mechanism continues for a long time it results into the 

development of tumours in over-stimulated target glands or over-reactive hypophysis. 

Many goitrogenic xenobiotics are associated with non-genotoxic mechanisms through 

hormonal imbalance. These chemicals may disrupt any biosynthesis steps including thyroid 

hormone biosynthesis, metabolism and secretion, and induce thyroid tumours from follicular 

cells (Capen, 1992). Xenobiotics use several methods to decrease thyroid activity by either 

increased excretion of the thyroid hormone in bile, interference with thyroid secretion and 

synthesis in the thyroid gland, T4 to T3 conversion disruption and hepatic mixed-function 

induction (Capen, 1992). The pituitary gland negative feedback system regulates thyroid 

stimulating hormone (TSH) secretion and synthesis, and results in sustained expression of TSH. 

Stimulation of TSH results in hyperplasia, hypertrophy and neoplasia in rodents by 

proliferation of follicular cells (Hill, 1989). However, it is believed that thyroid pituitary 

disruption mechanisms of tumorigenesis are less relevant in humans than tumorigenesis in 

rodents (Hill et al., 1998).  

Hypothalamo-pituitary-testis (HPT) axis disruption and hormonal imbalance in rodents are the 

epigenetic mechanisms which lead towards the induction of tumours in Leydig cells (interstitial 

cells that produce testosterone). These cells are stimulated by leuteinising hormone (LH) to 

produce testosterone. Negative feedback of testosterone results in the production of LH from 
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the pituitary gland (Clegg et al., 1997). In rodents this feedback is blocked by different 

chemicals with different mode of actions including oestrogen agonism, androgen antagonism, 

testosterone biosynthesis inhibition, gonadotropin releasing hormone (GnRH) agonism, 5α-

reductase inhibition, dopamine agonism and aromatase inhibition. The chemicals that are 

involved in HPT axis disruption, with the exception of dopamine agonists and GnRH, may 

pose a risk to human health. Rodents are more sensitive than humans to Leydig cell tumours 

induced by chemicals (Cook et al., 1999). 

The carcinogenic action of oestrogens is an epigenetic mechanism as well as having genotoxic 

effects. Cells expressing receptors for oestrogen, i.e. in the breast, liver and endometrium, start 

proliferating as a result of prolonged expression of oestrogen from exogenous and endogenous 

sources. The organs, whose normal growth is under hormonal control, develop hyperplasia to 

neoplasia as a result of proliferation induced by oestrogen (Henderson et al., 1988).  

 

 

1.8.4 Agonists and antagonists of the aryl hydrocarbon receptor. 

Aryl hydrocarbon receptor (AhR) mediation by different natural and synthetic chemicals can 

have many toxicological and biological effects on cells, including carcinogenesis. AhR belongs 

to the superfamily of basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) proteins and is a ligand 

activated transcription factor. AhR agonists consist of halogenated and planar aromatic 

hydrocarbons including biphenyls, heterocyclic plant constituents, dibenzofurans and related 

chemicals and polychlorinated dibenzo-p-dioxins (Denison et al., 2002). Until now, no 

authentic AhR high affinity endogenous agonists have been identified, although there are 

studies which indicate that endogenous physiological ligands are involved in the activation of 

AhR itself and the signalling pathways of AhR. Unbound AhR complexed with co-chaperons 
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and chaperone HsP90 has been found in cellular cytosol, which translocates into the nucleus 

after binding with the ligand. In the nucleus, HsP90 and other chaperons are released and it 

associates with Ah receptor nucleus translocator (Arnt) forming an AhR:Arnt heterodimer 

(Bock and Köhle, 2006). Special DNA binding sites called Ah-responsive element (AhRE), 

dioxin responsive element (DRE), or xenobiotic responsive element (XRE) present in the target 

genes regulatory regions are recognised by this heterodimer and it binds to this site (Rowlands 

and Gustafsson, 1997). The target genes may include proliferation regulatory genes, genes 

involved in differentiation and development and Phase 1 and 2 biotransformation enzymes 

coding genes (Beischlag et al., 2008).  

 

Enhanced DNA binding results in corepressors and coactivators recruitment, chromatin 

structure remodelling and target genes transcriptional machinery activation. Constant exposure 

to agonists (for example exposure to TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)) leads 

towards toxic tissue- and species-specific effects including teratogenicity, chloracne, wasting, 

liver tumour promotion, carcinogenicity and immunotoxicity (Bock and Köhle, 2006). 

Although the role of AhR in producing these responses is observed, the underlying molecular 

mechanisms are still unknown. It is hypothesised that inappropriate or sustained activation of 

AhR results in the TCDD mediated toxicities and deregulated physiological functions (Poland 

and Knutson, 1982). In another experiment on rodents expressing mutant AhR, the role of this 

receptor in hepatocarcinogenesis promotion was demonstrated (Moennikes, 2004). It has been 

hypothesised that at the tumour initiation stage sustained AhR signalling is involved which 

facilitates the genotoxically injured cells selective survival. Nuclear proteins and signalling 

factors, AhR/Arnt crosstalk have also been described (Puga et al., 2009). Specifically, crosstalk 

with the oestrogen receptor. 
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1.8.5 Summary of the findings on mechanisms of non-genotoxic carcinogenicity 

 

As described in Section 1.8, most carcinogenic chemicals associated with a non-genotoxic of 

action have been reported to act through one or more of the following mechanisms: 

1. Peroxisome proliferation, which may result from either induction of oxidative stress; 

enhanced cell proliferation or decreased apoptosis; inhibition of gap junction intercellular 

communication; or DNA methylation.  

2. Induction of oxidative stress, that may result from either an increase in the production of 

oxyradicals, or a decrease in the cell’s antioxidant capacity that may lead to DNA damage 

in several ways - such DNA cross-linking, at apurinic/apyrimidinic sites, breakage in single 

or double strand and deoxyribose modification. 

3. Induction of hormonal imbalance 

4. Agonist and antagonist of aryl hydrocarbon receptor (AhR), which is a ligand activated 

transcription factor.  

Knowledge of these key mechanisms of action has the capability to provide a basis for further 

evaluation and in silico analysis of these important effects 

 

1.9:  The potential use of in silico tools for the identification of non-genotoxic carcinogen 

With regard to developing in silico tools for the prediction of the toxic effects of cosmetics 

ingredients, there has been a great deal of research undertaken. For instance, Safety Evaluation 

Ultimately Replacing Animal Testing-1 (SEURAT-1) was a cluster of European projects 

created in response to the Seventh Amendment of the final deadline for the Cosmetic Directive 

in January 2011. It comprised a collaboration of one co-ordination project and six research 

projects encompassing 70 European Universities, commercial companies and research 
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institutes. The SEURAT-1 Cluster operated for five years (2011-2015) with the aim of reducing 

the reliance on in vivo repeated dose toxicity tests by beginning the process of replacing it with 

in silico and in vitro methods. The COSMOS Project was one of the six research projects of 

SEURAT-1; the main objectives of COSMOS were as follows: 

a. The formation of an inventory of cosmetic ingredients including their chemical 

structures as well as, where possible, toxicological data. 

b. The collection and compilation of recent sources of the toxicological data from the 

literature and regulatory sources. 

c. The development of new software to be applied in the analysis of the repeated dose 

toxicity of the cosmetics towards humans. 

The safety of cosmetics ingredients within the European Union was supported by the 

development of new tools with the aid of the COSMOS project and other collaborative projects 

associated with SEURAT-1. It was also envisaged that the results of the six research projects 

could help provide a basis for alternative techniques and tools in the identification of toxicity 

of chemicals used in pharmaceutical industry (Cosmostox.eu, 2019).   

The main outputs from the COSMOS Project were the development of the COSMOS database 

(https://cosmosdb.eu/cosmosdb.v2/) which focussed on repeated dose toxicity data for 

cosmetics ingredients, amongst other endpoints and data. The data were used to enrich and 

enhance the datasets available for derivations of Threshold for Toxicological Concern (TTC) 

values (Yang et al., 2017). In addition, a number of innovative computational approaches for 

the assessment of chronic toxicity endpoints (notably liver toxicity) were developed in the 

COSMOS Project. The new modelling approaches were developed around the use of 

knowledge of MIEs for endpoints such as hepatic steatosis (Mellor et al., 2016) and PPARγ 

dysregulation (Al Sharif et al., 2017). Overall, the COSMOS Project illustrated the possibility 

https://cosmosdb.eu/cosmosdb.v2/
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of modelling a complex endpoint when appropriate and mechanistically based in silico models 

were developed. 

Taken as a whole, the SEURAT-1 Cluster enabled better use of the data from new methods. 

There were at least two major contributions including development of a set of read-across case 

studies proposed by Berggren et al., (2015). The case studies provided a number of learnings 

for the development collation of data and justification of similarity hypotheses (Schultz and 

Cronin, 2017) as well as the definition of uncertainties in read-across (Schultz et al., 2019). In 

addition, the SEURAT-1 Cluster developed a workflow, or strategy or safety assessment in the 

case of no data, with decisions made on an exposure basis in the first place, then leading to use 

of new types of data. The type of sequential approach was termed an ab initio chemical safety 

assessment workflow and demonstrated the utility of combining together different types of 

information (Berggren et al., 2017). Overall the SEURAT-1 philosophy, and COSMOS Project 

in particular, demonstrated that information on chemistry can be used to make assessments of 

complex and subtle toxicities, especially when combined into integrated frameworks of data 

gathering.  

 

1.10:  Context and research aims of this thesis: 

The safety of cosmetic products is of utmost importance in relation to consumer health because 

of the large variety of products, the frequency of use and the intimate nature of applications on 

the body. In Europe, ensuring safety of cosmetics is jointly undertaken by industry and 

regulatory authorities. The European regulatory framework for cosmetic safety requires pre-

market notification of the intended use of any ingredients that fall within the regulated 

categories, assessment of safety, regulatory approval, and appropriate labelling of the final 

products. At the regulatory level, safety of cosmetic ingredients is assessed by an independent 

committee of experts (the Scientific Committee on Consumer Safety, SCCS) before they are 
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allowed by the European Commission to be used in cosmetic products. The safety assessment 

of final products is overseen by the competent authorities in the EU Member States. Ensuring 

overall safety of the final products placed on the market, nevertheless, remains responsibility 

of the industry.  

Safety assessment of cosmetic ingredient/products requires detailed information and data 

relating to the physicochemical properties and toxicological hazard of ingredients, as well as 

the possible route(s) and the extent of consumer exposure. The toxicological data for hazard 

identification/ characterisation are generally drawn from a systematic scheme that involves 

testing against set endpoints that can provide information on potential acute (short-term) and 

chronic (long-term) adverse effects. The most difficult endpoints to measure accurately in this 

regard are those that are indicative of long-terms effects, such as reproductive and 

developmental effects and carcinogenicity. The available tests for gene mutation and DNA 

damage can indicate the potential of a cosmetic ingredient to be a genotoxic carcinogen. 

However, identifying non-genotoxic carcinogens is a particular challenge due to the lack of a 

single mode of action. As non-genotoxic carcinogens can act through alteration of multiple 

pathways, and generally without a change in DNA sequence, predicting the potential 

carcinogenicity of a non-genotoxic chemical is one of the current major challenges in 

toxicology, although as shown in Section 1.8 the main mechanisms can be defined.  

The EU Cosmetic Regulation (EC) No 1223/2009 has also resulted in a ban on animal testing 

of cosmetics ingredients since 11 March 2013. This means that all toxicological data for 

cosmetic ingredients and products need to be drawn from alternative (non-animal) methods. 

This has made testing of cosmetic ingredients for non-mutagenic carcinogenicity even more 

challenging. A battery of in vitro tests is available for certain endpoints but results from 

different tests may generate contradictory or equivocal results. In this context, the use of in 

silico models and read-across tools provides a useful alternative means to obtain additional 
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supporting evidence which, when used in conjunction with other lines of evidence, can 

strengthen the overall weight of evidence for safety assessment. In silico approaches can also 

provide important clues to the mode of action of a chemical to inform in vitro testing and the 

models and structural alerts can enable toxicological assessment of other substances. In this 

regard, the European SEURAT-1 Cluster went some way to demonstrate a reduction in the 

reliance on in vivo repeated dose toxicity tests and providing a strategy to replace it with read-

across, in silico and in vitro methods. As part of the SEURAT-1 cluster, the COSMOS project 

specifically aimed to use new alternative tools for safety assessment of cosmetic ingredients.  

In keeping with the research aims of the COSMOS project, the overall aim of this research was 

to evaluate and develop in silico models for the human health effects of cosmetic ingredients, 

focussing on read-across and (Quantitative) Structure-Activity Relationships ((Q)SARs) for 

carcinogenicity and skin sensitisation. The specific objectives to achieve this aim were: 

i. To review the state of the art of grouping approaches, (Q)SARs and available software 

to predict the toxicity of cosmetic ingredients, including the mechanisms of 

carcinogenicity and their relationship to existing Adverse Outcome Pathways (AOPs) 

with an emphasis on non-genotoxic mechanisms.  

ii. To identify and evaluate existing data for the carcinogenic potential of the chemicals, 

as well as repeated dose toxicity, skin sensitisation, dermal absorption and metabolism, 

assessing quality of both physicochemical and toxicological data. 

iii. To assess existing structural alerts for human health effects allowing for the formation 

of chemical categories, read-across supported by ToxCast data and (Q)SARs supported 

by data for key events in AOPs.  

iv. To study the chemical space of cosmetics ingredients and materials utilising and 

building on the COSMOS inventory through the analysis of descriptors of molecular 

structure and physicochemical properties. 
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v. To develop relevant case studies to provide a proof of concept for cosmetics-related 

materials focussing on relevant classes of chemicals such as aluminium and the 

phthalates. 

An extensive literature search was performed as part of this thesis and this indicated that a 

range of in silico models, read-across tools and expert systems is available. These are discussed 

in more detail in Chapters 3 and 5. In addition, certain structural alerts have been identified for 

some known non-genotoxic mechanisms of carcinogenicity. For example, a small number of 

structural alerts have been associated with peroxisome proliferation, e.g. substituted phenoxy 

acids, substituted N-alkyl carboxylic acids, phthalates (or butyl diesters and monoesters), 

perfluorooctanoic acid and phenoxy herbicides. These are discussed in more detail in Chapter 

2. A general comparison between the performance of genotoxic and non-genotoxic carcinogen 

structural alerts was also conducted in Chapter 2. This comparison showed that the positive 

predictivity for genotoxic carcinogen structural alerts was more accurate and effective 

compared to non-genotoxic carcinogen alerts. A detailed analysis of positive predictivity of all 

available mutagenic structural alerts and profilers within the OECD QSAR Toolbox when 

compared to experimental mutagenicity data from the CCRIS dataset was conducted in Chapter 

3. In Chapter 4, the relationship between scaffolds of a range of diverse compounds and 

carcinogenicity (both genotoxic and non-genotoxic) was analysed using a dataset of Ames 

assay data for 10,543 compounds from the SAR genotoxicity database, and carcinogenicity 

data for 2,870 compounds from the SAR carcinogenicity in the Leadscope® database 

(Leadscope.com, 2018). Chapter 5 illustrates how essential it is to know the accuracy of the 

different profilers within the OECD QSAR Toolbox for carcinogenicity, mutagenicity and skin 

sensitisation in terms of sensitivity, specificity and accuracy, and to investigate possibilities for 

improvement.



 

Chapter 2: Assessment of currently available structural alerts for genotoxic and non-
genotoxic carcinogens 

 

2.1: Introduction:  
 

Mutagenicity and carcinogenicity are considered amongst the most significant toxicological 

concerns for human health. As such, they are part of the standard information requirements for 

regulatory and other risk assessment. To understand the mechanistic basis of these endpoints, 

Miller et al. (1977; 1981) described the electrophilic theory of chemical carcinogenesis which 

helped rationalise a wide variety of carcinogenic chemicals identified during the 1970s. 

Miller’s theory gave a mechanistic basis for these chemicals to act as mutagens (i.e., in the 

Ames test). It also stated that various carcinogenic compounds possessed alkylating and 

electrophilic characteristics. Thus, electrophilic acylating agents are one of the key groups of 

chemicals that can be considered as direct-acting carcinogens. In addition, Miller et al. also 

reported that there are other carcinogenic chemical compounds, other than acylating agents, 

such as aromatic amines, which may undergo electrophilic reaction following metabolism. In 

this way, the (chemical) structural basis of genotoxic carcinogens began to be established.  

It is now well known that a significant proportion of the direct acting chemical carcinogens are 

electrophilic in nature. However, many genotoxic carcinogenic chemicals that are not 

electrophilic behave as such in vivo, as they can react with nucleophilic groups of proteins and 

nucleic acids present in cells and tissue (Miller and Miller, 1981). Miller’s work inspired 

different researchers to work further in this field. For instance, different strains of genetically 

engineered Salmonella typhimurium have been developed to test specific individual chemical 

classes, such as alkylating or intercalating chemical carcinogens (Maron and Ames, 1983). The 

Salmonella, or Ames, Test is an in vitro model for detecting chemical mutagenicity and consists 

of different bacterial strains that are susceptible to a large array of DNA damaging agents 
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(Ames, 1984). The Ames Test was developed from mutant forms of the bacterium S. 

typhimurium, whereby when the bacterial DNA interacts with a potential genotoxic chemical, 

the change in DNA provides evidence for mutagenicity of the chemical.  

Miller’s hypothesis supporting the use of Salmonella in the Ames Test was relevant at that time 

in relation to the mechanism of action as carcinogens were thought to be mainly the result of 

genotoxic interactions (Ashby, Tennant, 1988). In due course, the theory regarding the 

electrophilic activity of many chemical carcinogens has also been incorporated into a more 

general theory of chemical carcinogenesis. According to the theories at that time, the initiation 

of cancer was due either to genetic mutation, or a carcinogen's ability to damage DNA directly 

(Arcos and Argus, 1995). However, there is yet another type of carcinogen termed “epigenetic” 

which does not bind covalently to DNA and hence does not damage DNA directly. As a result, 

epigenetic (non-genotoxic) carcinogens are negative in the most commonly and frequently used 

assays for mutagenicity (Woo, 2003). As discussed in Chapter 1, there are a number of diverse 

mechanisms of action of epigenetic carcinogens.  

Structural alerts  

The term ‘structural alert’ was defined by Dr John Ashby, who also contributed to the 

compilation of a list of structural alerts following the electrophilicity theory proposed by Miller 

(Ashby, 1985; Ashby and Tennant, 1988). Structural alerts are defined as being a definable 

fragment within a molecule (i.e., a functional group or substructure) representing a structure-

activity relationship (i.e., inducing carcinogenic activity). Thus, the potential classes of 

chemicals that can induce cancer can be identified by structural alerts for carcinogenicity. 

Depending on their definition, structural alerts for genotoxic carcinogenicity are considered 

suitable to identify mutagenic compounds, as the main mode of action of this type of carcinogen 

(i.e., genotoxic carcinogen) is modification and direct interaction with DNA. Structural alerts 
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for carcinogenicity have been identified from experimental data on animals or from 

observations on human epidemiological studies.  

There are many reasons why the majority of carcinogenic structural alerts were obtained from 

data derived from rat and mice toxicological studies. These animals are preferred as 

investigational models because of their relatively low cost and ease of maintenance (compared 

to other non-rodent assays), short life span and higher susceptibility to tumour induction, as 

well as the accessibility of characterised strains (Huff et al., 1991; Fung et al., 1995; Huff and 

Haseman, 1999). Whilst short-term mutagenicity assays help in the detection of potential 

genotoxic carcinogens within a much shorter timeframe, non-genotoxic carcinogens cannot be 

identified easily or exclusively by the use of long-term carcinogenicity studies. These rodent 

bioassays, in conjunction with bacterial Ames and other in vitro tests for mutagenicity, provide 

an indication of carcinogenicity.  

Models based on structural alerts play a major role in predictive toxicology. Software platforms, 

both commercial (e.g., DEREK Nexus from Lhasa Ltd) and non-commercial (e.g., Oncologic 

by the US EPA) use structural alerts as the basis to predict mutagenicity/carcinogenicity. 

Whilst structural alerts generally predict genotoxic carcinogens well, their ability to identify 

non-genotoxic carcinogens is still in infancy. (Woo, 2003) reported different characteristics of 

non-genotoxic carcinogens as well as relating them to structural alerts. As mentioned in 

Chapter 1, non-genotoxic carcinogens have different modes of action and cannot be explained 

by a clear unifying theory. The main non-genotoxic mechanisms of carcinogenicity can be 

mainly grouped into the following mechanisms (see Section 1.8 for more details):  

1) Peroxisome proliferation, which includes: 

a) Inhibitors of gap junction intercellular communication 

b) DNA methylating agents 
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2) Inducers of oxidative stress  

3) Inducers of hormonal imbalance 

4) Agonists and antagonists of aryl hydrocarbon receptor. 
 

Relationship of mechanism of action to structural alerts: 

In general, if a single structural alert represents the same or similar chemical class, then it may 

be assumed to exhibit a similar mode of toxic action. The major chemical groups identified by 

the structural alerts responsible for direct acting genotoxic carcinogens are sulphur-compounds, 

epoxides, aziridines, α-haloethers and lactones (Benigni et al., 2008). For the purposes of this 

Chapter, the mode of action of epoxides will be analysed in detail as a representative example.  

Epoxides alkylate DNA and this may lead to carcinogenic effects. The strained epoxide ring 

breaks open easily to form a carbonium ion, which is responsible for the initiation of this 

alkylation reaction. This, in turn, leads to the substance being able to react with a nucleophilic 

site, such as DNA, forming 2-hydroxy-2-alkyl adducts (Singer and Grunberg, 1983). Thus, 

chemicals containing epoxide groups are strongly associated with the induction of mutations 

in cells and/or cancer induction. The chemical mechanism of the reaction of an epoxide with 

DNA is shown in Figure 2.1: 

C
C

O
δ+

δ- O- C C+
DNA

 

Figure 2.1. Mechanism of epoxide attack on DNA (Benigni et al., 2008). 

 

There are other structural alerts for functional groups relating to genotoxic carcinogens that are 

not directly acting, but may become genotoxic following metabolic activation. Due to the 
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complexity of some of the metabolic pathways e.g. involving more than a single metabolic step, 

a structural alert could point to a range of final toxicological outcomes. For instance, aromatic 

imines and amines may be metabolically activated to electrophiles and hence have the potential 

to induce carcinogenicity. A study in mice revealed that the oxidation of aromatic amides and 

amines formed N- hydroxyarylamines and N-hydroxyarylamides, respectively induced by 

cytochrome P-450 c (BNF-B) and d (ISF-G). The metabolic conversion of nitroso, nitro, and 

hydroxylamine derivatives also generates amine groups. Another example of the complexity 

of metabolic activation is that seven nitroaromatic hydrocarbons are generated through the 

formation of N-hydroxyarylamine as an intermediate in the presence of cytosolic and 

microsomal enzymes that act as a catalyst.  

The process of the reduction of nitro groups in microsomes can be replicated experimentally 

in the presence of a cytochrome P-450 complex obtained from rat liver isozymes, namely c 

(PB-B), d(PB-B), b (PB-B), and e (PB-D). The enzymes responsible for cytosolic 

nitroreductase activity include DT-diaphorase, alcohol dehydrogenase and enzymes having 

xanthine and aldehyde groups. The main activation pathway is the nitrogen oxidation and 

reduction reaction as shown in Figure 2.2. However, there are certain aromatic amines, as well 

as aromatic nitro compounds, that are converted to electrophilic compounds through a ring 

oxidation pathway. Unlike other direct electrophilic metabolites, such as hydroxyarylamines, 

epoxides, and iminoquinones, N-hydroxyarylamides need to go through the esterification 

process to be capable of reacting with DNA (Benigni, 2005).  
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Figure 2.2. The main oxidation pathway of aromatic amines leading to potentially carcinogenic 

metabolites (Benigni, 2005). 

Using more than a single SA is appropriate for some chemical classes as it the mechanism of 

action of certain groups, such as the aliphatic halogens, is more complicated. As shown in 

Figure 2.3, the mechanism of action of aliphatic halogens may switch from genotoxic to non-

genotoxic pathways depending on the degree of halogenation and the whether the carbon 

skeleton is a cyclic or linear. The short chain mono-halogenated alkanes, as well as alkenes and 

dihalogenated alkanes, act directly as alkylating agents (as genotoxic mechanism) either 

without, or after, conjugation with GSH. Conversely, the mechanism of action of poly-

haloalkanes is either a non-genotoxic or a free radical mechanism.  
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With regard to halogenated cycloalkanes (and cycloalkenes), it is more appropriate to use 

multiple structural alerts as the mechanism of action of carcinogenicity is still unclear and 

possibly genotoxic (i.e., alkylation) either directly or after metabolic activation, although non-

genotoxic mechanisms have also been proposed. For example, Woo et al. (2002) suggested 

non-genotoxic mechanisms for halogenated cycloalkanes to involve: 

a. Hormonal imbalance 

b. Degranulation of the rough endoplasmic reticulum 

c. Inhibition of other intercellular mechanisms. 

    

 

Figure 2.3. The complexity of carcinogenicity mechanism of actions for aliphatic halogens 

(Benigni, 2005). 

In contrast to complex carcinogenicity testing, in silico toxicology offers an extremely 

attractive option in terms of being a rapid and low cost methodology. It also provides the 

possibility to reduce animals use and make tests more directed and mechanistically based. As 
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such, structural alerts also provide a means to understand and interpret the mechanisms of 

genotoxicity and therefore help in the classification of potential carcinogens. The structural 

alerts published by Benigni et al. (2013) and summarised in Tables 2.1 and 2.2 are considered 

the most advanced list to evaluate both the genotoxic and non-genotoxic carcinogenicity 

potential of chemicals. These structural alerts have also been implemented as a rule-base 

system in the Toxtree software and the OECD QSAR Toolbox.  

Table 2.1. Currently identified non-genotoxic carcinogen structural alerts (Benigni et al., 2013). 

 

NO 
 

 Mechanism of action* 
 

Alert Name 
1 HI Thiocarbonyl  
2 HI Poly halocycloalkane 
3 AHR Halogenated benzenes 
4 AHR Halogenated dibenzodioxines 
5 HI Steroidal oestrogen  
6 PP Substituted phenoxy acids 
7 PP Substituted n-alkylcarboxylic acids 
8 PP Phthalates 
9 PP Perflourooctanoic acid (PFOA) 

10 PP Tri, tetraflouroethylene 
11 AHR Indole-3-carbonyl 
12 OXS Pentachlorophenoles 
13 OXS 2-Phenylphenols 
14 OXS Quercetin flavonoid 
15 HI Benzimidazolea 
16 HI Imidazoles ,benzamidazoles 
17 HI Dicarboximides 
18 HI Dimethylpyridinse 
19 OXS Metals 
20 HI Benzsulfonic ether 
21 OXS 1,3-Benzdioxole 
22 PP Phenoxy herbicides 
23 HI Alkyl halides 

 

  
*PP: peroxisome proliferator, OXS: oxidative stress, HI: hormonal imbalance, AHR: 

aryl hydrocarbon receptor agonist and antagonist. 
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Table 2.2. Currently identified genotoxic carcinogen structural alerts (Benigni et al., 2013). 

 

NO 
 

 Mechanism of action 
 

Alert Name 
1  

 
 
 
 

Direct DNA 
Alkylation  

 

Alkyl (C5) or benzyl esters of sulphonic or phosphonic acid 
2 N-methylol derivatives 
3 S- or N- mustards 
4 Propiolactones and propiolsulfones 
5 Epoxides and arizidines 
6 Aliphatic halogens 
7 Alkyl nitrites 
8 α, β-Unsaturated carbonyls 
9 Simple aldehydes 

10                Quinones 
11                Alkyl and aryl N-nitroso groups 
12  

 
 
 

Indirect DNA 
Alkylation  

 

Monohaloakenes 
13 Hydrazines 
14 Aliphatic azo and azoxys 
15 Alkyl carbamate and thiocarbamates 
16 Azide and triazene groups 
17 Aliphatic N-nitro groups 
18 α, β-Unsaturated alkoxy group 
19 Pyrrolizidine alkaloids 
20 Alkenylbenzenes 
21 Steroidal oestrogen (genotoxic and non genotoxic) 
22 Direct Acylation Isocyanate and isothiocyanate groups 
23  

 
Amino aryl DNA 

adduct formation 

Aromatic ring N-oxides 
24 Aromatic nitroso groups 
25 Nitro Aromatics 
26 Aromatic amines and hydroxyl amine & its derived esters 
27 Aromatic mono and dialkylamino groups 
28 Aromatic N-acyl amines 
29 Aromatic diazo groups 
30 DNA adduct 

formation by 
Intercalation 

Polycyclic Aromatic Hydrocarbons 
31 Heterocyclic Polycyclic Aromatic Hydrocarbons 
32 Coumarins and Furocoumarins 

 

Given the utility of structural alerts for all toxic endpoints, and potential benefits in using them 

for the prediction of carcinogenicity, it is perhaps surprising that there have been no, or few, 

systematic assessments of their performance, coverage and relevance. This is particularly 

pertinent to non-genotoxic carcinogens where an assessment of the available structural alerts 
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could assist in the identification of their strengths, but also clarification of chemical or 

mechanistic space that is not well covered. The aim, therefore, of this chapter was to assess the 

currently available structural alerts and in silico models for both genotoxic and non-genotoxic 

carcinogenicity. The analysis focussed on four main mechanisms of non-genotoxic carcinogens: 

peroxisome proliferation, hormonal imbalance, oxidative stress, and aryl hydrocarbon receptor 

agonism/antagonism as well as the five main mechanism of action of genotoxic carcinogen: 

direct DNA alkylation, indirect DNA alkylation, direct acylation, amino aryl DNA adduct 

formation and DNA adduct formation by intercalation. In this study, the performance of the 23 

structural alerts for non-genotoxic carcinogenicity described by Benigni et al. (2013), listed in 

Table 2.1 and as implemented within the Toxtree software, has been assessed by comparison 

with experimental cancer data compiled in the Carcinogenic Potency Database (CPDB).  

 

 

2.2:  Methods:  

2.2.1 Dataset used: 

Carcinogenic Potency Database (CPDB) 

Data relating to cancer causing chemicals were compiled from the Carcinogenic Potency 

Database (CPDB), which is freely available from http://toxnet.nlm.nih.gov/cpdb/cpdb.html. 

This database is a widely used and unique international resource comprising the results of 6,540 

chronic, long-term animal carcinogenicity tests on 1,547 chemicals in rats, mice, dogs, 

hamsters and non-human primates. All important information is included for each experiment 

to interpret the bioassay, such as strain, species and sex of the test animal along with other 

details relating to the experimental protocol used, e.g. the route of administration, average daily 

dose and duration of dosing. Information is also provided on the tumour type, tumour incidence, 

carcinogenic potency (TD50) and statistical significance of the results. TD50 can be very useful 
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for comparison and analysis of the relative carcinogenicity of compounds as it provides a 

standard qualitative measure.  

2.2.2:  Review process of non-genotoxic structural alerts 

The workflow shown in Figure 2.4 outlines the steps in the assessment of the current non-

genotoxic structural alerts discussed in this chapter. This workflow is split into two sections: 

the first section is related to the filtering and extraction of CPDB cancer data. The second 

section is related to the review process using the rule-based expert system Toxtree version 

2.6.13 (downloaded in April 2016) which is freely available from 

http://toxtree.sourceforge.net. Toxtree predicts different types of toxicological hazard and 

modes of action by applying decision tree approaches; it can be used for initial hazard 

assessments (Pavan and Worth, 2008). The review process was conducted after converting the 

extracted structures from SMILES format to SD/SDF format using the Open Babel programme 

version 2.3.2 (downloaded in April 2016) which is freely available from 

https://openbabel.org/docs/dev/Installation/install.html.  
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 Figure 2.4. Workflow for the process undertaken to assess structural alerts for non-genotoxic              

carcinogenicity. 

The individual steps of the workflow summarised in Figure 2.4 are described below.  

Step 1: CPDB downloaded as an Excel datasheet: 

Results were downloaded from the CPDB for the full list of 6,540 experiments on 1,547 

chemicals as an Excel spreadsheet. The information downloaded included the full details 

regarding the diversity of bioassay designs in the CPDB, e.g., dose ranges tested, number of 

dose groups and the frequency of testing per chemical. 

 

Step 2: Chemicals filtered according carcinogenic activity, mutagenicity and species 

The process of filtering the downloaded CPDB data is detailed below.  

1. Using the “sort & filter” tool in Excel, the 1,548 chemicals were filtered to select only 

those chemicals that are negative (inactive) in the Ames test in the column 

2. Chemicals filtered according to carcinogenic 
activity, mutagenicity and species 

3. SMILES extracted for non-genotoxic  
carcinogens, genotoxic carcinogens, genotoxic 

non-carcinogens and non-genotoxic non-
carcinogens. 

4. SMILES converted to a SDF file in Open Babel 
for use in the Chemotyper and Toxtree 

5. Dataset run through Toxtree to review the 
Benigni et al. (2013) structural alerts  

1. CPDB downloaded as an Excel datasheet  
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(ActivityOutcome_CPDBAS_Mutagenicity), as shown in  Figure 2.5. This indicates 

which chemicals have a higher probability of an epigenetic carcinogenicity mechanism. 

 

Figure 2.5. Screenshot of the Excel spreadsheet showing filtrated carcinogenic data that are 

inactive in the Ames test in order to extract non-genotoxic carcinogens from the CPDB. 

 

2. Only data for rats were included in the filtered dataset from the “species” column. Data 

for other species, such as mice and rhesus and cynomolgus monkeys, were excluded 

from the dataset, as shown in Figure 2.6. 

3. Only “active” chemicals that initiate carcinogenicity were selected from the 

“ActivityOutcome_CPDBAS_Rat” column, resulting in the selection of 150 non-

genotoxic carcinogenic chemicals to the rat.  

4. All mixtures and inorganic substances were excluded from the list using the column 

“STRUCTURE_ChemicalType”. 
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5. The same process was conducted using the same filtering process as described above 

to produce three additional groups for comparison. This produced 240 genotoxic 

carcinogens, 108 genotoxic non-carcinogens and 242 non-genotoxic non-carcinogens. 
 

 

Figure 2.6. Screenshot of the Excel spreadsheet showing the exclusion of data for species other 

than the rat to select rat carcinogens only from the activity outcome column.  

 
Step 3: SMILES strings extracted for non-genotoxic carcinogens, genotoxic carcinogens, 

genotoxic non-carcinogens and non-genotoxic non-carcinogens. 
 

One hundred and fifty non-genotoxic carcinogenic chemical structures, in SMILES strings, 

were copied from the column “STRUCTURE_SMILES” using the “find & select” tool, 

selecting only visible cells as shown in  Figure 2.7. The same process was performed for 

the other three groups of compounds. Once selected, SMILES strings were pasted into a 

new Excel sheet and saved as a txt file. 
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Figure 2.7. SMILES strings copied from the “STRUCTURE_SMILES” column in the CPDB 

Excel spreadsheet. 

 

Step 4: SMILES converted to a SDF file in Open Babel for use in the Chemotyper and 

Toxtree. 

The most important information about chemicals is easily exchanged using the SDF file format. 

SDF files include all necessary information about training/test set molecules (i.e., identifiers of 

all compounds, CAS/ InChI/ name/ formula, 3D structures, experimental and predicted values 

of target properties/parameters and the values of the molecular descriptors utilised). 

In order to convert and store the filtered list of chemical structures, the open source Open Babel 

programme version 2.3.2 was used. This program is designed to search, convert and store 

chemical data from molecular modelling. Open Babel version 2.3.2 for Windows is freely 

available at http://openbabel.org/. Open Babel was used as follows: 
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1. The SMILES strings of the non-genotoxic carcinogens and the three other groups 

were saved as a .txt file to act as the input into Open Babel – its content was 

visualised to confirm it was recorded correctly. 

2. In order to save the output as a SDF file, the name and the path of the output file 

were specified as shown in Figure 2.8.  

3. In case of an error occurring for certain chemical structures during the conversion 

process, Open Babel offers a choice to continue and override to the next structure 

in the input SMILES list to avoid any delays or error in structure conversion process 

which was activated before the conversion process.   

4. All four resultant SDF files were saved in separate files to be used in Toxtree. 

 

Figure 2.8. Screenshot of the Open Babel software showing the input (SMILES) and output 

(SDF) format. 
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Step 5: The data sets were run through Toxtree to review Benigni et al.’s (2013) structural 
alerts: 

Toxtree is a programme developed by IDEAconsult Ltd. (Sofia, Bulgaria) for researchers and 

other stakeholders (especially in industry) to predict various types of toxic effects using 

decision trees to place chemicals into appropriate categories. It includes Benigni et al.’s (2013) 

rules for mutagenicity and carcinogenicity. Chemical structures can be entered into Toxtree 

using SMILES strings, SDF files, and over 110 other chemical file formats. If a structural alert 

is present in a molecule this is highlighted and can be recorded. The Toxtree software was used 

as described below. 

1. First, it is essential to choose the correct decision tree to predict carcinogenicity and 

mutagenicity. This was selected by clicking on method from the main tabs and then 

choosing the desired tree from “select decision tree”. 

2. As illustrated in  Figure 2.9, a list of available decision trees was shown, including 

that required to use Benigni et al.’s (2013) structural alerts, under the name of 

“carcinogenicity (genotox & nongenotox) by ISS”.  

 

Figure 2.9. The choice of decision tree for “Carcinogenicity prediction by ISS”. 
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3. The 150 chemicals determined to be non-genotoxic to rat were entered into Toxtree 

as a SDF file and the alerts run on them using the (estimate) tab for each chemical. 

This   process was also applied to the 240 chemicals determined to be genotoxic 

carcinogen to rat. 

4. All structures containing one or more of Benigni et al.’s (2013) structural alerts for 

either genotoxic or non-genotoxic carcinogenicity were highlighted in Toxtree with 

a brown warning message for non-genotoxic carcinogen and red for genotoxic 

carcinogen under the estimation tab, as shown in Figure 2.10. The presence of an 

alert was counted as a positive result. 

 

 

 

Figure 2.10. Structural alert for the non-genotoxic carcinogenicity for benzyl butyl phthalate. 
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5. The SDF files for the third and fourth groups of chemical structures (non-

carcinogens) were also entered Toxtree to evaluate the negative predictivity of the 

“carcinogenicity (genotox & nongenotox) by ISS” decision tree. 

 

 

 

2.2.3 Statistical analysis  

The results of the predictions were analysed in Excel using a four-way contingency table. The 

performance of 23 non genotoxic carcinogen structural alerts, 32 genotoxic carcinogen 

structural alerts and the overall performance of ISS carcinogenicity profiler which includes 

both genotoxic and non-genotoxic structural alerts was assessed against the two groups of 

substances, 390 carcinogens and 350 non carcinogens. The true positive rate (sensitivity) was 

calculated for both non genotoxic and genotoxic carcinogens alone and then compared with the 

true positive rate of the ISS carcinogenicity profiler which includes both. All substances among 

the 390 carcinogenic group that were correctly predicted either by non-genotoxic or genotoxic 

carcinogenic structural alerts were counted as true positives, if it failed to predict the 

carcinogenic substances, then it was counted as a false negative. Among the group of 350 non 

carcinogenic substances, the true negative rate (specificity) was calculated for both non-

genotoxic and genotoxic carcinogenic for structural alerts alone and then calculated for ISS 

carcinogenicity profiler as a whole. All substances among the group of 350 non carcinogens 

that were falsely predicted as carcinogenic will be counted as false positive and, if not, were 

counted as true negative predictions. 
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2.3. Results and discussion: 

 

The aim of this chapter was to assess the currently available structural alerts for both genotoxic 

and non-genotoxic carcinogenicity, focussing on the main four mechanisms of action of non-

genotoxic carcinogenicity: peroxisome proliferation, hormonal imbalance, oxidative stress, 

and aryl hydrocarbon receptor agonism/antagonism and the main five mechanisms of action of 

genotoxic carcinogenicity: direct DNA alkylation, indirect DNA alkylation, direct acylation, 

amino aryl DNA adduct formation and DNA adduct formation by intercalation. In this Chapter, 

the performance of 23 structural alerts for non-genotoxic carcinogenicity and 32 structural 

alerts for genotoxic carcinogenicity as described by Benigni et al. (2013) and coded within 

Toxtree version 2.6.13, was assessed by comparison with experimental data for carcinogenicity 

which were compiled in, and retrieved from, the CPDB.  

Analysis of the CPDB found 390 substances in the CPDB to be experimentally determined to 

be carcinogenic in rats. Of these 390 substances, 150 were non-genotoxic (i.e., negative in the 

Ames test). The remaining 240 substances were positive in the Ames test, i.e., rat genotoxic 

carcinogens. The analysis also found 350 substances to be experimentally determined to be 

non-carcinogenic in the rat. All 740 substances were assessed using Toxtree version 2.6.13, 

applying the carcinogenicity rules by ISS. The predictions were compared with the 

experimental results.  

The number of correct predictions for the carcinogenic compounds is reported in Table 2.3. 

For positive prediction of non-genotoxic carcinogenic substances, only 41 out of the total 150 

were correctly assigned as being carcinogenic. Thus, the predictively of Toxtree with regard to 

the positive identification of non-genotoxic carcinogens was only 27.3%. This is in a sharp 

contrast to 91% predictivity for genotoxic carcinogenic compounds (223 positively predicted 
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out of 240) and shows the limitation of the currently available structural alerts in relation to the 

identification of non-genotoxic carcinogenic chemicals.  

Table 2.3. Prediction of genotoxic and non-genotoxic carcinogenicity using the ISS Rulebase 

in Toxtree v2.6.13. 

 

2.3.1 Genotoxic carcinogen structural alerts: 

The most common structural alerts to predict genotoxic carcinogens were for the aromatic 

amines and nitro aromatics, with 51 and 40 hits respectively. These substances become 

carcinogenic through the aminoaryl DNA adduct formation as an indirect acting agent (Benigni, 

2005). The structural alerts for compounds that exert their action by alkylating mechanisms 

were also predictive, as the indirect acting agent alkyl and aryl N-nitroso groups were found in 

 
 

Name and classification 
of substances’ groups  

 
Number of substances 

predicted by the 23 
structural alerts as non-
genotoxic carcinogen in 

Toxtree 
 

 
Number of substances 

predicted by the 32 
structural alerts as 

genotoxic carcinogen in 
Toxtree 

 
ISS carcinogenicity 

profiler (genotoxic and 
non-genotoxic) 

 

 
Carcinogen 
390 Substances 

Non-Genotoxic 
150 Substance 

 
       41 True Positive  

 
     223 True Positive 
 

264 
True 

positive 

126 
False 

Negative Genotoxic  
240 Substance 

 
Non-carcinogen 
350 Substances 

Genotoxic  
108 Substance 

 
     11 False Positive 
 
 

 
    114 False Positive 
 
 

125 
False 

positive 

225 
True 

Negative Non-Genotoxic 
242 Substance 

 
 

 
 
 
True positive rate (sensitivity) % 

 

Positive Predictive Value: 
 

78.8% 
 

Sensitivity among 150 
non-genotoxic 
carcinogens:  

 
27.3% 

 

Positive Predictive 
Value: 

 
66.1% 

 
Sensitivity among 240 
genotoxic carcinogens:  

 
92% 

 
 
 

68% 

 
True negative rate (specificity) % 

  

64% 
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39 out of 240 genotoxic substances. Direct acting agents (i.e. aliphatic halogens) were found 

in 20 genotoxic substances. The other structural alerts listed in Table 2.5 were present in 

different substances; however, they were limited in number compared to aromatic amines and 

nitro aromatic structural alerts. The alerts were grouped in Table 2.5 based on the main 

mechanisms of action, as some of the alerts were poorly represented among the experimental 

carcinogens. 

As shown in Table 2.4, seventeen experimentally determined genotoxic carcinogenic 

substances were not flagged by genotoxic carcinogenic structural alerts out of the total of 240; 

however, some were obviously carcinogenic, including formaldehyde, selenium sulfide, 

sodium nitrite and tetra-nitromethane. Nevertheless, there was no common link that could be 

used to group these structures to derive a new rule. 

One of these seventeen carcinogenic substances is selenium sulfide which is used as an anti-

dandruff in shampoos. It is believed that selenium sulfide controls dandruff via its anti-

Malassezia effect, rather than by its antiproliferative effect although it has an effect in reducing 

cell turnover (Milani et al., 2003). Malassezia is a genus of fungi that is naturally found on the 

skin surfaces of many animals, including humans. It has anti-seborrheic properties as well as 

cytostatic effect on cells of the epidermal and follicular epithelium. Excessive oiliness after use 

of this agent has been reported in many patients as adverse drug effect (Ranganathan and 

Mukhopadhyay, 2010). 

Selenium sulfide is reasonably anticipated to be a human carcinogen based on sufficient 

evidence of carcinogenicity from experimental studies in animals. Oral exposure of selenium 

sulfide caused tumours in two rodent species and at two different tissue sites. Administration 

of selenium sulfide by stomach tube caused liver cancer (hepatocellular carcinoma) in rats of 

both sexes and in female mice. In female mice, it also increased the combined incidence of 
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benign and malignant lung tumours (alveolar/bronchiolar adenoma and carcinoma) (NCI 

1980b). When applied topically, selenium sulfide and selsun, an antidandruff shampoo 

containing 2.5% selenium sulfide, did not cause tumors in mice; however, these studies were 

considered inconclusive, because the study length was limited to 88 weeks by the animals’ 

early death resulting from amyloidosis (NCI 1980a,c). 

Another chemical substance that has been determined experimentally as being a non-genotoxic 

carcinogen, and not identified by non-genotoxic carcinogenic alerts, was potassium bromate 

(KBrO3). This is an oxidising agent that has been used as a food additive and in the cosmetic 

industry. Although adverse effects are not evident in animals fed bread-based diets made from 

flour treated with KBrO3, the agent is carcinogenic in rats and nephrotoxic in both man and 

experimental animals when given orally. It has been demonstrated that KBrO3 induces renal 

cell tumours, mesotheliomas of the peritoneum and follicular cell tumours of the thyroid. In 

addition, experiments aimed at elucidating the mode of carcinogenic action have revealed that 

KBrO3 is a complete carcinogen, possessing both initiating and promoting activities for rat 

renal tumorigenesis. However, the potential seems to be weak in mice and hamsters. Active 

oxygen radicals generated from KBrO3 were implicated in its toxic and carcinogenic effects, 

especially because KBrO3 produced 8-hydroxydeoxyguanosine in the rat kidney (Kurokawa 

et al., 1990).  

In general genotoxic carcinogen structural alerts showed a high sensitivity rate among large 

number of carcinogenic substances compared to non-genotoxic alerts.  
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Table 2.4. Identity of 17 out of 240 experimentally genotoxic carcinogen which were not 

identified by the ISS genotoxic rule base 

Numb
er 

Chemical Name IUPAC SMILES String 

1 acrylonitrile C=CC#N 
2 4-amino-1-β-D-

ribofuranosyl-1,3,5-
triazin-2(1H)-one 

N/C1=N/C(=O)N(/C=N1)[C@@H]2O[C@H](CO)[C@@H](
O)[C@H]2O 

3 potassium bromate Br(=O)(=O)[O-].[K+] 

4 buta-1,3-diene C=CC=C 
5 naphthalen-1-yl 

methylcarbamate 
O=C(OC1=C2C(=CC=C1)C=CC=C2)NC 

6 trichloro(nitro)methane ClC([N+](=O)[O-])(Cl)Cl 

7 2,6-dimethyl-1,3-
dioxan-4-yl acetate 

CC1CC(OC(O1)C)OC(=O)C 

8 dimethyl phosphonate O=P(H)(OC)OC 

9 formaldehyde C=O 
10 sodium nitrite O=N[O-].[Na+] 

11 1,4-benzoquinone 
dioxime 

ON=C1C=CC(=NO)C=C1 

12 selenium sulfide [Se]=S 
13 8-hydroxy-6-

(methyloxy)-3a,12c-
dihydro-7H-
furo[3',2':4,5]furo[2,3-
c]xanthen-7-one 

O=C1C2=C(C=C3C(=C2OC4=CC=CC(=C14)O)C5C(O3)OC
=C5)OC 

14 styrene C=CC1=CC=CC=C1 

15 tetranitromethane O=[N+](C([N+](=O)[O-])([N+](=O)[O-])[N+](=O)[O-])[O-] 

16 propane-1,2,3-triyl 
trioctanoate 

O=C(OC(COC(=O)CCCCCCC)COC(=O)CCCCCCC)CCCC
CCC 

17 zinc 
bis(dimethyldithiocarba
mate) 

S=C([S-])N(C)C.[S-]C(N(C)C)=S.[Zn+2] 
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Table 2.5. Percentage of structural alerts flagged among the group of genotoxic carcinogens 

organised according to chemical reactivity domain.  

 
Mechanism 
of Action 

 
 

Structural Alert 

Number of 
genotoxic 

carcinogens 
containing 
this alert 

Total number of 
genotoxic 
carcinogen 

structural alerts by 
this mechanism  

Percentage of the 
genotoxic 
carcinogen 

structural alerts of 
this mechanism  

out of total  
 
 
 
 

Alkylating 
(Direct acting 

agent) 
 
 
 
 

Alkyl (C5) or benzyl esters 
of sulphonic or phosphonic 

acids 

4  
 
 
 
 
 
 

91 

 
 
 
 
 
 
 

35% 

N-methylol derivatives 0 

S- or N- mustards 4 

Propiolactones and 
propiolsulfones 

3 

Epoxides and arizidines 10 

Aliphatic halogens 20 

Alkyl nitrite 1 

α, β-Unsaturated carbonyls 2 

Simple aldehydes 1 

Quinones 7 

Alkyl and aryl N-nitroso groups 39 

 
 

Alkylating 
(Indirect 

acting agent) 
 

Monohaloakenes 7  
 
 
 
 

32 

 
 
 
 
 

  13% 

Hydrazines 10 
Aliphatic azo and azoxy 2 
Alkyl carbamate and 
thiocarbamate 

4 

Azide and triazene groups 3 
Aliphatic N-nitro groups 1 
α, β-Uunsaturated alkoxy 
groups 

0 

Pyrrolizidine Alkaloids 3 
Alkenylbenzenes 2 
Steroidal oestrogens 
(genotoxic & non-
genotoxic) 

0 

Acylating 
(Direct acting 

agent) 

Isocyanate and 
isothiocyanate groups 

 
3 

 
3 

 
2% 
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Amino aryl 

DNA adduct 
forming 
(indirect 

acting agent) 

Aromatic ring N-oxides 0  
 
 
 

119 

 
 
 
 

43% 

Aromatic nitroso groups 1 
Nitro aromatic 40 
Aromatic amines and 
hydroxyl amine and their 
derived esters 

51 

Aromatic mono and 
dialkylamino groups 

7 

Aromatic N-acyl amines 7 
Aromatic diazo groups 14 

Intercalating 
and DNA 

adduct 
forming 
(indirect 

acting agent) 

Polycyclic Aromatic 
Hydrocarbons 

5  
 

19 

7% 

Heterocyclic Polycyclic 
Aromatic Hydrocarbons 

11 

Coumarins and 
furocoumarins 

4 

 

2.3.2: Non genotoxic structural alerts:  

Table 2.6 shows, among the 150 non-genotoxic carcinogens, hormonal balance and oxidative 

stress structural alerts were more often detected among the total group, with more than 46% 

and 24% hits respectively. Thiocarbonyl and alkyl halides were the highest detected alerts 

amongst the hormonal imbalance group, while metals and benzodioxol were detected more 

amongst the oxidative stress group. Nearly 71% of all non-genotoxic carcinogens were detected 

by hormonal imbalance or oxidative stress. Aryl hydrocarbon agonist and antagonist and 

peroxisome proliferator structural alerts were less detectable compared to hormonal imbalance 

and oxidative stress, as shown in Figure 2.11. The number of structural alerts for aryl 

hydrocarbon and peroxisome proliferator is still limited and there is a need to do more research 

to produce new structural alerts based on experimental results for additional chemical 

substances. 

Only 41 non-genotoxic carcinogen substances, out of 150, were identified correctly by these 

23 non-genotoxic carcinogen structural alerts. This means that 109 substances experimentally 

determined as non-genotoxic carcinogen were not identified by these structural alerts. These 
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109 non-genotoxic carcinogen substances are listed in Table 2.7 in order to allow investigation 

of why these non-genotoxic carcinogens are not identified and to develop the structural alerts 

further. 

As shown in Table 2.6 (alert number 10, oxidative stress), there are only three non-genotoxic 

carcinogens containing a structural alert for a metal. These three substances are 

dicopper:tetrasodium 3,3'-[(3,3'-dihydroxybiphenyl-4,4'-diyl)di(E)diazene-2,1-diyl]bis(5-

amino-4-hydroxynaphthalene-2,7-disulfonate), mercury(2+) dichloride and dimethylarsenic 

acid. The three substances contained copper, mercury and arsenic respectively and thus they 

were flagged by the structural alert for metals to be non-genotoxic carcinogens. However, after 

reviewing the list of 109 experimentally non-genotoxic carcinogenic substances that were not 

identified by the non-genotoxic carcinogen alerts in Table 2.7, there are another three 

substances containing heavy metals and not identified by the alert for metals. These three 

substances were cadmium dichloride, lead(2+) diacetate and zinc ethane-1,2-

diylbis(dithiocarbamate). This indicates that the structural alert for metals was only predicting 

copper, mercury and arsenic as non-genotoxic carcinogens but it was failed to predict 

substances that contain other metals such as lead, cadmium and zinc although that they have 

known carcinogenic activity with the same oxidative stress mechanism.  

The low true positive rate for non-genotoxic carcinogen shows the need to include more 

structural alerts to give more coverage for this type of carcinogen. Further detailed assessment 

of the performance of both genotoxic and non-genotoxic carcinogen structural alerts is 

performed in the next chapters. 
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Table 2.6. Percentage of non-genotoxic structural alerts flagged among the non-genotoxic 

carcinogen experimental group of chemicals based their mechanism of action. 

 

 
 

No 

 

 
 

Mechanism of 
action  

 

 
 

Structural Alert Name 

Number of 
nongenotoxic 
carcinogens 
containing 
this alert 

Total number of 
non-genotoxic 

carcinogen structural 
alerts by this 
mechanism  

Percentage of non 
genotoxic carcinogen 
structural alerts of this 

mechanism 
Out of total  

1  
 
 
 

Hormonal 
Imbalance 

Thiocarbonyl  6  
 
 
 
 

19 

 
 
 
 

46.3% 
 

 
 

2 Poly halocycloalkane 3 
3 Benzimidazole 1 
4 Imidazole,benzamidazole 1 
5 Dicarboximide 1 
6 Dimethylpyridine 0 
7 Benzsulfonic ether 3 
8 Alkyl halide 4 
9 Steroid oestrogen M/N 0 

10  
 

 Oxidative Stress 

Metals 3  
 

10 

 
 

24.4% 
11 1,3-Benzdioxole 4 
12 Pentachlorophenole 1 
13 2- Phenylphenol 1 
14 Quercetin flavonoid 0 
15  

Aryl 
Hydrocarbon 

Agonist-
Antagonist 

Halogenated benzene 3  
8 

 
19.5% 16 Halogenated 

dibenzodioxine 
1 

17 Indole-3-carbonyl 0 

18  
 
 

Peroxisome 
Proliferator 

 
 

Phenoxy herbicide 0  
 
 

4 

 
 
 

9.8% 

19 Substituted  phenoxyacid 1 
20 Substituted  N-

alkylcarboxylic acid 
2 

21 Phthalate 2 
22 Perflourooctanoic acid 

(PFOA) 
0 

23 Tri and tetraflouro 
ethylene 

3 
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Figure 2.11. Percentage of structural alerts flagged on non-genotoxic carcinogenic chemicals 

based on their mechanism of action. 

Table 2.7. List of 109 out of 150 experimentally non-genotoxic carcinogens which were not 

identified by the ISS genotoxic rule base structural alerts for non-genotoxic carcinogenicity. 

Number Chemical Name SMILES String 

1 acetaldehyde CC=O 

2 acetamide CC(=O)N 

3 N-(4-hydroxyphenyl)acetamide C1(=CC=C(C=C1)O)NC(C)=O 

4 acrylamide NC(=O)C=C 

5 

2-amino-4,6-dimethyl-3-oxo-N,N'-
bis[(6S,9R,10S,13R,18aS)-2,5,9-trimethyl-
6,13-bis(1-methylethyl)-1,4,7,11,14-
pentaoxohexadecahydro-1H-pyrrolo[2,1-
i][1,4,7,10,13]oxatetraazacyclohexadecin-
10-yl]-3H-phenoxazine-1,9-dicarboxamide 

C12C(OC3=C(N=1)C(=CC=C3C)C(N[C@@H]4C(N[C@@H](C(N5[C@@
H] 
(CCC5)C(N(CC(N([C@H](C(O[C@H]4C)=O)C(C)C)C)=O)C)=O)=O)C(C)
C)=O)=O)=C(C(C(=C2C(N[C@@H]6C(N[C@@H](C(N7[C@@H](CCC7)
C(N(CC(N([C@H](C(O[C@H]6C) 
=O)C(C)C)C)=O)C)=O)=O)C(C)C)=O)=O)N)=O)C 

6 allyl 3-methylbutanoate O=C(CC(C)C)OCC=C 

7 1H-1,2,4-triazol-3-amine C1(N=CNN=1)N 

8 11-aminoundecanoic acid OC(=O)CCCCCCCCCCN 

9 aniline hydrochloride NC1=CC=CC=C1[H]Cl 

10 2,2',3,3',4-pentachlorobiphenyl ClC2=C(C=CC(Cl)=C2Cl)C1=C(Cl)C(Cl)=CC=C1 

11 
6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-
2,4-diamine 

ClC1=NC(=NC(=N1)NC(C)C)NCC 

12 benzene C1=CC=CC=C1 

13 1-benzofuran C1=COC2=C1C=CC=C2 

14 
2,2'-{[2-(5-nitro-2-thienyl)quinazolin-4-
yl]imino}diethanol 

C1=CC=C2C(=C1)N=C(N=C2N(CCO)CCO)C3=CC=C(S3)[N+]([O-])=O 

15 2-methylpropan-2-ol CC(C)(C)O 

16 benzyl butyl phthalate C1(=C(C=CC=C1)C(OCCCC)=O)C(OCC2=CC=CC=C2)=O 

46%

24%

20%

10%

Total hits out of 150 substances

Hormonal Imbalance

Oxidative Stress

Preoxisome Proliferator

Aryl Hydrocarbone Agonist-
Antagonist
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17 2-(1,1-dimethylethyl)-4-(methyloxy)phenol OC1=CC=C(C=C1C(C)(C)C)OC 

18 cadmium dichloride [Cl-].[Cd+2].[Cl-] 

19 (2E)-3-(3,4-dihydroxyphenyl)acrylic acid OC1=C(C=CC(=C1)/C=C/C(=O)O)O 

20 [(aminocarbonyl)(nitroso)amino]acetic acid N(C(=O)N)(N=O)CC(=O)O 

21 pyrocatechol OC1=C(C=CC=C1)O 

22 1,2,3,4,6,7,10-heptachlorododecane ClC(CC(Cl)C(Cl)CCC(Cl)CC)C(Cl)C(Cl)CCl 

23 2-chloro-1,1,1-trifluoroethane C(CCl)(F)(F)F 

24 chloro(methoxy)methane ClCOC 

25 3-(4-chlorophenyl)-1,1-dimethylurea O=C(N(C)C)NC1=CC=C(C=C1)Cl 

26 2-chlorobuta-1,3-diene C=C(Cl)C=C 

27 2,4,5,6-tetrachloroisophthalonitrile ClC1=C(C(=C(C(=C1C#N)Cl)Cl)Cl)C#N 

28 
(2E)-3-phenylprop-2-en-1-yl 2-
aminobenzoate 

NC1=C(C=CC=C1)C(=O)OC/C=C/C2=CC=CC=C2 

29 

(3S,4R)-8-hydroxy-3,4,5-trimethyl-6-oxo-
4,6-dihydro-3H-isochromene-7-carboxylic 
acid 

CC1=C2C(=CO[C@H]([C@@H]2C)C)C(=C(C1=O)C(=O)O)O 

30 
4-(2,2-dimethylhydrazino)-4-oxobutanoic 
acid 

O=C(CCC(=O)O)NN(C)C 

31 4,4'-sulfonyldianiline O=S(=O)(C1=CC=C(C=C1)N)C2=CC=C(C=C2)N 

32 2,2'-oxydiethanol OCCOCCO 

33 4,4'-(3E)-hex-3-ene-3,4-diyldiphenol OC2=CC=C(C=C2)/C(CC)=C(CC)/C1=CC=C(O)C=C1 

34 chroman-2-one O=C1OC2=C(C=CC=C2)CC1 

35 dimethyl methylphosphonate CP(=O)(OC)OC 

36 dimethyl morpholin-4-ylphosphonate P(=O)(OC)(OC)N1CCOCC1 

37 N,N-dimethylaniline CN(C1=CC=CC=C1)C 

38 1,4-dioxane C1COCCO1 

39 
N,N-dimethyl-2-(1-phenyl-1-pyridin-2-
ylethoxy)ethanamine succinate 

C(CC(=O)O)C(=O)O.C(OCCN(C)C)(C)(C1=CC=CC=C1)C2=CC=CC=N2 

40 

6',7',10,11-tetramethoxyemetan 
dihydrochloride 

[C@@]12(C3=C(C=C(OC)C(=C3)OC)CCN1C[C@H](CC)[C@H](C2)C[C
@@]4(C5=C(C=C(OC)C(=C5)OC)CCN4)[H])[H].[H]Cl.[H]Cl 

41 

4-[(1R)-1-hydroxy-2-
(methylamino)ethyl]benzene-1,2-diol 
hydrochloride 

C1(=C(C=CC(=C1)[C@H](CNC)O)O)O.[H]Cl 

42 
(17beta)-17-ethynylestra-1(10),2,4-triene-
3,17-diol 

[H][C@]14[C@@]([C@]3([H])CC[C@@](O)(C#C)[C@](C)3CC4)([H])CC
C2=CC(O)=CC=C12 

43 S-ethyl-L-homocysteine N[C@@H](CCSCC)C(=O)O 

44 S-ethylhomocysteine NC(CCSCC)C(=O)O 

45 1-(4-ethoxyphenyl)urea NC(NC1=CC=C(C=C1)OCC)=O 

46 ethyl acrylate O=C(OCC)C=C 

47 ethanol CCO 

48 ethylbenzene CCC1=CC=CC=C1 

49 furan C1=COC=C1 

50 2-furylmethanol C1=C(CO)OC=C1 

51 glycine NCC(O)=O 

52 
(6aR,11bS)-7,11b-dihydroindeno[2,1-
c]chromene-3,4,6a,9,10(6H)-pentol 

OC1=C(O)C=C4C(C[C@](COC2=C3C=CC(O)=C2O)([C@@]34[H])O)=C
1 

53 hexachlorobenzene ClC1=C(C(=C(C(=C1Cl)Cl)Cl)Cl)Cl 

54 
N,N,N',N',N'',N''-hexamethylphosphoric 
triamide 

CN(C)P(=O)(N(C)C)N(C)C 

55 hydroquinone OC1=CC=C(C=C1)O 

56 2-methylprop-1-ene CC(C)=C 
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57 3,5,5-trimethylcyclohex-2-en-1-one CC1(CC(=CC(=O)C1)C)C 

58 isoprene CC(=C)C=C 

59 lead(2+) diacetate C([O-])(C)=O.[Pb+2].[O-]C(C)=O 

60 
(4R)-1-methyl-4-(1-
methylethenyl)cyclohexene 

CC(=C)[C@@H]1CCC(=CC1)C 

61 sodium (1E)-3-oxoprop-1-en-1-olate C(=C/C=O)\[O-].[Na+] 

62 1,3,5-triazine-2,4,6-triamine NC1=NC(=NC(=N1)N)N 

63 1,3-benzothiazole-2-thiol SC1=NC2=C(C=CC=C2)S1 

64 

N,N-dimethyl-N'-pyridin-2-yl-N'-(2-
thienylmethyl)ethane-1,2-diamine 
hydrochloride 

CN(C)CCN(CC2=CC=CS2)C1=NC=CC=C1.Cl 

65 4-methoxyphenol COC1=CC=C(C=C1)O 

66 1,1-dimethylethyl methyl ether CC(OC)(C)C 

67 methyl carbamate NC(=O)OC 

68 1-phenylethanol C1=CC=C(C(O)C)C=C1 

69 4-methylbenzene-1,2-diol OC1=C(C=CC(=C1)C)O 

70 4-allyl-1,2-dimethoxybenzene O(C)c1cc(CC=C)ccc1OC 

71 

(3R,4R,5R,13aR,13bR)-4,5-dihydroxy-
3,4,5-trimethyl-4,5,8,10,12,13,13a,13b-
octahydro-2H-
[1,6]dioxacycloundecino[2,3,4-
gh]pyrrolizine-2,6(3H)-dione 

O=C1O[C@@H]3CCN2C\C=C(\COC(=O)[C@](C)(O)[C@](C)(O)[C@H]1
C)[C@@H]23 

72 
1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-
naphthyridine-3-carboxylic acid 

O=C1C2=C(N=C(C=C2)C)N(C=C1C(=O)O)CC 

73 naphthalene C1=C2C(=CC=C1)C=CC=C2 

74 2,2',2''-nitrilotriacetic acid OC(=O)CN(CC(=O)O)CC(=O)O 

75 trisodium 2,2',2''-nitrilotriacetate hydrate N(CC(=O)[O-])(CC(=O)[O-])CC(=O)[O-].[Na+].[Na+].[Na+].O 

76 nitrobenzene O=[N+](C1=CC=CC=C1)[O-] 

77 nitromethane [O-][N+](C)=O 

78 
2,6-dimethyl-4-nitroso-1-
(phenylcarbonyl)piperazine 

N1(CC(N(C(C1)C)C(C2C=CC=CC=2)=O)C)N=O 

79 N-nitroso-N-phenylaniline O=NN(C1=CC=CC=C1)C2=CC=CC=C2 

80 4-[methyl(nitroso)amino]butanoic acid O=C(CCCN(C)N=O)O 

81 1-methyl-2-nitrobenzene [N+](=O)([O-])c1ccccc1C 

82 1-methyl-4-nitrobenzene O=N(=O)c1ccc(C)cc1 

83 

N-{[(3R)-5-chloro-8-hydroxy-3-methyl-1-
oxo-3,4-dihydro-1H-isochromen-7-
yl]carbonyl}-L-phenylalanine 

O=C(O[C@H](C)C2)C1=C2C(Cl)=CC(C(N[C@@H](CC3=CC=CC=C3)[C
@@](O)=O)=O)=C1O 

84 
17-Hydroxy-2-(hydroxymethylene)-17-
methyl-5-alpha-17-beta-androst-3-one 

O=C3C[C@@H]4CC[C@@H]1[C@H](CC[C@]2(C)[C@@](C)(O)CC[C
@@H]12)[C@@]4(C)C\C3=C\O 

85 
1,5-dimethyl-2-phenyl-1,2-dihydro-3H-
pyrazol-3-one 

CN1N(C2=CC=CC=C2)C(=O)C=C1C 

86 
3-[(E)-phenyldiazenyl]pyridine-2,6-diamine 
hydrochloride 

NC1=CC=C(/N=N/C2=CC=CC=C2)C(N)=N1.Cl 

87 

(3β)-cholest-5-en-3-yl {4-[bis(2-
chloroethyl)amino]phenyl}acetate 

O=C(O[C@@H]5CC([C@@](CC5)(C)[C@]([H])3CC4)=CC[C@@]3([H])[
C@@]2([H])[C@@]4(C)[C@]([C@H](C)CCCC(C)C)([H])CC2)CC1=CC=
C(N(CCCl)CCCl)C=C1 

88 
sodium 5-ethyl-4,6-dioxo-5-phenyl-1,4,5,6-
tetrahydropyrimidin-2-olate 

C1(C2=CC=CC=C2)(C(NC(=NC1=O)[O-])=O)CC.[Na+] 

89 
3,3-bis(4-hydroxyphenyl)-2-benzofuran-
1(3H)-one 

O=C1OC(C2=C1C=CC=C2)(C3=CC=C(C=C3)O)C4=CC=C(C=C4)O 

90 4-butyl-1,2-diphenylpyrazolidine-3,5-dione O=C1N(C2=CC=CC=C2)N(C3=CC=CC=C3)C(=O)C1CCCC 

91 
(11β)-11,17,21-trihydroxypregna-1,4-diene-
3,20-dione 

[C@]13([C@@](C(=O)CO)(CC[C@H]1[C@@H]2CCC=4[C@@]([C@H]2
[C@H](C3)O)(\C=C/C(C=4)=O)C)O)C 

92 
N-(1-methylethyl)-4-[(2-
methylhydrazino)methyl]benzamide 

CNNCC1=CC=C(C=C1)C(=O)NC(C)C 
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93 

N-(1-methylethyl)-4-[(2-
methylhydrazino)methyl]benzamide 
hydrochloride 

CNNCC1(=CC=C(C=C1)C(=O)NC(C)C).[H]Cl 

94 pyridine N1=CC=CC=C1 

95 

disodium 3-hydroxy-4-[(E)-(2,4,5-
trimethylphenyl)diazenyl]naphthalene-2,7-
disulfonate 

CC1=CC(C)=C(/N=N/C2=C(C(S([O-])(=O)=O)=CC3=C2C=CC(S([O-
])(=O)=O)=C3)O)C=C1C.[Na+].[Na+] 

96 

trisodium 3-hydroxy-4-[(Z)-(4-
sulfonatonaphthalen-1-
yl)diazenyl]naphthalene-2,7-disulfonate 

C12(C(=CC(=C(C=1/N=N/C3=C4C(=C(C=C3)S(=O)(=O)[O-
])C=CC=C4)O)S(=O)(=O)[O-])C=C(C=C2)S(=O)(=O)[O-
]).[Na+].[Na+].[Na+] 

97 

methyl (3β,16β,17α,18β,20α)-11,17-
bis(methyloxy)-18-({[3,4,5-
tris(methyloxy)phenyl]carbonyl}oxy)yohim
ban-16-carboxylate 

O=C(C4=CC(OC)=C(OC)C(OC)=C4)O[C@@H]1C[C@@]3([H])[C@@](
C[C@](N5C3)([H])C2=C(CC5)C(C=C6)=C(C=C6OC)N2)([H])[C@H]([C
@](OC)=O)[C@H]1OC 

98 tetrahydrofuran C1CCCO1 

99 toluene CC1=CC=CC=C1 

100 2-methylbenzenesulfonamide CC1=C(C=CC=C1)S(=O)(=O)N 

101 tributyl phosphate CCCCOP(=O)(OCCCC)OCCCC 

102 2,4,6-trichlorophenol OC1=C(C=C(C=C1Cl)Cl)Cl 

103 tris(2-chloroethyl) phosphate O=P(OCCCl)(OCCCl)OCCCl 

104 pyrimidine-2,4(1H,3H)-dione O=C1NC(=O)NC=C1 

105 vinyl acetate CC(=O)OC=C 

106 4-vinylcyclohexene C=CC1CCC=CC1 

107 1-vinylpyrrolidin-2-one O=C1N(C=C)CCC1 

108 m-xylene CC1=CC=CC(C)=C1 

109 zinc ethane-1,2-diylbis(dithiocarbamate) S=C([S-])NCCNC([S-])=S.[Zn+2] 

 

 

 

2.4: Conclusions:  

The aim of Chapter 2 was to assess the currently available structural alerts for both genotoxic 

and non-genotoxic carcinogenicity, focussing on the main mechanisms of action of both 

genotoxic and non-genotoxic carcinogenicity. An existing database of information (i.e. the 

CPDB) was downloaded and the data curated and cleaned. From this, 240 genotoxic 

carcinogens and 150 non-genotoxic carcinogens were identified. A well-used rule base for ISS 

carcinogenicity in Toxtree version 2.6.13 was utilised to investigate the usefulness of the alerts. 

Out of the 240 genotoxic carcinogens, the true positive rate of the genotoxic carcinogens was 

92% with 223 predicted correctly. The majority of genotoxic carcinogens were associated with 

aromatic amines and nitro aromatics, with 51 and 40 hits respectively. These substances 
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become carcinogenic through the aminoaryl DNA adduct formation as an indirect acting agent. 

This high positive predictivity is due to the clear mechanistic information of the molecular 

initiating event (MIE) which can be used as structural alert and gives a more accurate result. 

For non-genotoxic carcinogens, the alerts only identified 41 of 150 non genotoxic substances 

correctly, giving a true positive rate of 27%. The most influential alerts were for hormonal 

imbalance and oxidative stress mechanism, which accounted for more than 71% of the positive 

hits, as compared to peroxisome proliferators and aryl hydrocarbon agonists and antagonists 

with lower hit rates. It was also shown that the structural alert for metals was poorly defined 

and not able to identify other metals that caused carcinogenicity through oxidative stress e.g. 

lead, zinc and cadmium. Therefore, better definition of existing alerts, and greater coverage 

with new alerts is needed. More detailed assessment of individual structural alerts for both 

genotoxic and non-genotoxic carcinogens will be undertaken in the next chapters. 

 

 



 

Chapter 3: Assessment of current profilers and structural alerts for mutagenicity provided in 
the OECD QSAR Toolbox. 

 

3.1 Introduction 

Assessment of the mutagenic potential of the ingredients used in cosmetic products and 

preparations is one of the priorities of the safety assessment process. Safety assessment is based, 

in part, on regulatory requirements. For instance, the SCCS Notes of Guidance for the Testing 

of Cosmetic Ingredients and their Safety Evaluation (10th revision, SCCS/1602/18), indicate 

that mutagenicity refers to the induction of permanent transmissible changes in the amount or 

structure of the genetic material of cells or organisms. These changes may involve a single 

gene or gene segment, a block of genes or whole chromosomes. Effects on whole chromosomes 

may be structural and/or numerical. Genotoxicity, on the other hand, is a broader term and 

refers to processes which alter the structure, information content or segregation of DNA and 

are not necessarily associated with mutagenicity (SCCNFP, 2003).   

As stated in the SCCS “Notes of Guidance for Testing of Cosmetic Ingredients for their Safety 

Evaluation” (9th revision, SCCS/1564/15), the safety evaluation procedure refers to the 

ingredients in the Annexes III, IV, VI and VII of Directive 76/768/EEC as summarised in Table 

3.1. The ingredients listed in Annexes III-VII may pose a risk to human health because their 

use in cosmetic products may lead to high exposure of the consumer because of potentially 

extensive and routine use over a long period of the time. These Annex ingredients, therefore, 

require detailed toxicological information, including studies on the mutagenicity potential.  
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Table 3.1. Ingredients in cosmetic products that require safety evaluation by the Scientific 

Committee on Cosmetic Product and Nonfood Product (SCCNFB) under Directive 

76/768/EEC 

 

As stated in section 1.7, a mutagenic effect can take place via several different mechanisms 

(Hsu et al., 2016). For instance, a compound's reactivity toward DNA can result in the 

formation of DNA adducts or base deletions, which distort the structure and function of DNA. 

Non-reactive compounds may also be converted to DNA-reactive metabolites through enzyme-

catalysed metabolic activation (Plošnik, Vračko and Dolenc, 2016). DNA distortion can also 

be caused by intercalation, a process of reversible, non-covalent fixation of a molecule into the 

DNA (SCCNFP, 2003). For example, compounds with an aromatic polycyclic backbone can 

intercalate, that is, insert themselves between, or parallel to, base pairs of the DNA double helix, 

thus form π stacking interactions (Garrett and Grisham, 1995). The distortion of the structure 

of DNA through DNA reactivity and/or intercalation can disrupt enzymatic DNA repair and 

replication, which increases the chances of erroneous base replacements or deletions or 

insertions of base pairs, in other terms mutations (Garret and Grisham, 1995).  

In section 2.1, a brief explanation was given about definition and use of the Ames test. The 

Ames test has become one of the standard tests for mutagenicity determinations as it is 

relatively simple, fast and inexpensive. Ames tests use a histidine-free medium with an 

engineered strain of the Salmonella typhimurium bacterium that can only proliferate into 

colonies after certain mutations restore its ability to synthesise histidine (Mortelmans and 

 

Annex III 
list of substances which cosmetic products must not contain except 
subject to restrictions and conditions laid down 

Annex IV list of colouring agents allowed for use in cosmetic products 

Annex VI list of preservatives which cosmetic products may contain 

Annex VII list of UV filters which cosmetic products may contain 
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Zeiger, 2000). A chemical is considered Ames positive when its addition to the assay causes a 

significant increase in the number of bacterial colonies with respect to a control experiment. A 

metabolic activation mixture termed “S9”, generally comprising (rat) liver microsomes, can be 

added to this test to mimic in vivo metabolism (Benigni and Bossa, 2008). The term Ames test 

does not, however, refer to a single unique assay, as evidenced by the different standardised 

experimental methods, bacterial strains and metabolic activation mixtures that are available 

(Mortelmans and Zeiger, 2000). 

 

Several factors can limit the reproducibility of the Ames test, such as the purity of the tested 

chemicals, the variation in the interpretation of dose-response curves, differences in the 

methodology employed and the materials used (bacterial strains and mixtures for metabolic 

activation) as well as interference from other toxic side effects, including cytotoxicity (Kazius 

et al., 2006). It has been determined that average inter-laboratory reproducibility for a series of 

Ames tests is around 85% (Benigni and Bossa, 2011). The Ames test has also been applied to 

predict rodent carcinogenicity because of the high predictive power of the positive Ames that 

ranges from 77% to 90% depending on the various factors discussed (Kazius et al., 2006). This 

predictive performance makes it superior to any other in vitro genotoxicity assay, all of which 

have lower performance in terms of predicting genotoxicity (Kazius et al., 2006). One of the 

main databases that contains a large number of chemical records with mutagenicity test results 

is the Chemical Carcinogenicity Research Information System (CCRIS) database. This 

database contains Ames test data for approximately 7,000 compounds and mixtures that have 

been curated and evaluated in terms of their validity. These high-quality data for the Ames test 

has been reviewed by experts in mutagenesis. The National Cancer Institute (NCI) has 

developed this database from various studies cited in primary journals, NCI reports and current 

awareness tools (TOXNET, 2019). 
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An important research focus of predictive toxicology has been on the identification of the 

chemicals that are able to bind covalently to DNA (Benigni and Bossa, 2008). Recent 

legislation such as REACH and the Cosmetics Regulation in the European Union is intended 

to ensure that all chemicals either manufactured or imported (some of which may be used in 

cosmetic products) at significant tonnage must have appropriate information relating to safety 

to human health and environment (EC, 2003, 2006). It is well established that there is a 

significant ethical responsibility and a high cost when using animal testing to gather the 

required toxicological information to perform a risk assessment for regulatory purposes (van 

der Jagt et al., 2004). Alternative means for filling the data gaps in the available toxicological 

information have therefore been sought, including in silico models and tools for developing 

chemical categories (van Leeuwen et al., 2009; Enoch and Cronin, 2010).  

Based on the assumption that chemicals that have similar structures are likely to have similar 

toxicological profiles (Enoch et al., 2008, 2009a), the chemical category principle can be used 

to predict a range of toxicological endpoints when populated with suitable data through the so-

called process of “read-across”. Utilising a common mechanism of action is one of the most 

powerful methods to group chemicals on the basis of structural/functional similarities, which 

is the key step in the process of developing chemical categories (EC, 2007; OECD, 2007). In 

order to group chemicals, the mechanism of action needs to be defined in relation to chemical 

structure.  

Mutagenicity mechanisms involve the formation of a covalent adduct between an exogenous 

chemical and biological macromolecule such as DNA, RNA or proteins; the covalent 

interaction may be defined as the MIE.  It is important to note that other factors can also 

determine whether the chemical is mutagenic or not, in addition to those that are defined by an 

AOP. These factors include any biological repair mechanisms e.g. within the genetic DNA. 

Therefore, placing a chemical into a mechanistic category, such as those derived from MIEs 
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for the ability to bind covalently with DNA, or other biological macromolecule, does not 

necessarily mean that the chemical will be toxic. The read-across of an adverse outcome is, as 

such, a skilled procedure which involves the compilation of information and expert judgment 

to form an overall weight of evidence.  

The first compilation of covalently reactive structural alerts based on the analysis of 

mutagenicity data by Ashby and Tennant (1988) defined a board range of reactive structural 

features responsible for the formation of DNA adducts. Ashby and Tennant (1988) also defined 

a hypothetical 'super molecule' which was the first attempt to define the potential MIE for 

genotoxicity (see Figure 3.1). Additional structural alerts for covalent binding to DNA have 

been suggested by other workers (Benigni and Bossa, 2008; Kazius et al., 2005, 2006), and 

Enoch and Cronin, (2010) who compiled the alerts into a single, mechanistically based, profiler 

describing the chemistry associated with binding to DNA. 

 

Figure 3.1. Super molecule suggested by Ashby and Tenant (1988) for structurally reactive 

features that may bind covalently with DNA. 

. 
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It is important to know that, aside from structural features, other factors may also contribute to 

the potential of a compound to be mutagenic and/ or carcinogenic. For example, some 

cosmetics ingredients may contain one or more structural alerts associated with toxicity; 

however, the compound may be metabolically inactive. Metabolic inactivity may be caused by 

the compound’s molecular weight, solubility, reactivity, stability and state of matter, or the 

geometry of the chemical structure, amongst other factors (Plošnik, Vračko and Dolenc, 2016). 

Elucidation of the mechanism for electrophilic reactions with biological nucleophiles is 

founded on basic substitution, conjugation and addition reactions that are characterised by the 

reaction between electron-deficient and electron-rich moieties. Enoch and Cronin (2010) 

categorised genotoxic carcinogenic structural alerts according to chemistry into the main 

known mechanistic domains of organic reaction chemistry. The six main organic chemistry 

mechanisms relevant to toxicology are Michael addition (MA), acylation (AC), Schiff base 

formation (SB) and nucleophilic domain reactions (SN) which include unimolecular aliphatic 

nucleophilic substitution (SN1), bimolecular aliphatic nucleophilic substitution (SN2) and 

aromatic nucleophilic substitution (SNAr). The key genotoxic structural alerts linked to 

chemically mechanistic domains are depicted in Table 3.2. The definition of the chemistry 

associated with the mechanisms has enabled the grouping of electrophiles depending on their 

potential to bind covalently with DNA (and hence potential mutagenicity). Some of the aspects 

of chemistry associated with the mechanisms are illustrated in Table 3.3.  

 

One of the most beneficial computational toxicology applications that has been used by 

regulators, industry, researchers and many others is OECD QSAR Toolbox (or simply referred 

to as the ‘Toolbox’). This software package was developed by the Organisation for Economic 

Cooperation and Development (OECD) and has now reached its 10th anniversary              

(Schultz et al., 2018). The Toolbox has number of advantages over the other QSAR prediction 
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tools including that it is freely available, continuously updated and mainly designed to assess 

the safety of organic substances (Nicolotti, 2018). The Toolbox was designed to offer a 

comprehensible and transparent predictions including ‘read-across’ for the user (Cronin and 

Madden, 2011).   

The Toolbox, and other computational toxicology applications, can identify structural 

analogues by providing the information on chemicals in standardised, structure-searchable files 

that are associated with chemical and toxicity data. Toxicity assessment and testing methods 

are changing and improving through time, which raises the need of computational toxicology 

software, such as the Toolbox, to integrate new datasets, e.g. the next generation of in vitro 

tests (Nicolotti, 2018). 

Fundamentally, grouping substances into chemical categories and using the data from tested 

chemicals to fill the gaps of untested chemicals was considered as a long-term goal of the 

Toolbox, thus ensuring its usefulness in regulatory assessment. In order to be useful in a 

regulatory setting, the Toolbox user must be confident that the predictions coming from this 

tool are reliable, consistent and correct. This can be achieved by ensuring accuracy in chemical 

and biological information and, when appropriate, adding statistical assurance. Unlike other 

QSAR-based software which failed to achieve regular regulatory use, the Toolbox used a 

unique approach that provided mechanical understanding and high transparency through the 

category approach and read-across. For other QSARs using descriptors and modelling 

approaches, putting statistics ahead of chemistry and biology often resulted in “black box” 

predictions which did not give a mechanical understanding to the user. 

The Toolbox predictions are based on the category approach (OECD, 2007). In this approach, 

one or more chemicals are grouped based on their similarity which is not only defined in terms 

of their chemical structure and physiochemical properties but also includes similarity in 

mechanism of interaction with different biomolecular targets (e.g., DNA, protein),  as well as 
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similarity in toxicokinetic and toxicodynamic properties. The available experimental data for 

one or more members of the category, the source substances, are used to fill the data gap(s) of 

other unknown chemical substances of the category, the target substances. 

The six modules in the Toolbox are based on the category approach that guide the user through 

a logical workflow (OECD, 2009). These six modules (i.e., Chemical Input, Profiling, 

Endpoints, Category Definition, Filling Data Gap, and Report) are employed in a sequential 

workflow as suggested by the Toolbox guidance (Dimitrov et al., 2016).  

A number of in silico profilers are available in the Toolbox for various toxicological endpoints. 

Of these profilers, the following are relevant to the investigation of mutagenicity in this chapter:  

1. DNA binding by OASIS v1.4. This profiler is a mechanistic profiler developed from an 

analysis of Ames mutagenicity data. It contains 85 structural alerts that have been 

separated into eight mechanistic domains. Each of the mechanistic domains comprises 

mechanistic alerts that have been shown to be related to established electrophilic 

reaction chemistry known to be important in covalent DNA binding. (Mekenyan et al. 

2004; Serafimova et al. 2007). 

2. DNA binding by OECD. This profiler is based on structural alerts for the electrophilic 

reaction chemistry associated with covalent DNA binding (Enoch and Cronin 2010). 

The profiler is made up of 60 structural alerts that contain electrophilic centres or those 

that can be metabolically activated to electrophiles. 

3. Carcinogenicity (genotoxic and non-genotoxic) alerts by ISS. This profiler is based on 

a list of 55 structural alerts from the Toxtree software (http://toxtree.sourceforge.net/). 

Approximately 20 of the alerts are for non-genotoxic carcinogenicity, and the 

remainder for genotoxic carcinogenicity (mutagenicity). 

http://toxtree.sourceforge.net/
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4. DNA alerts for AMES, MN and CA by OASIS v.1.1. This is a refinement of the DNA 

binding by OASIS profiler described above. The profiler is based on the 85 structural 

alerts responsible for interaction of chemicals with DNA extracted from chromosomal 

aberrations data. There is a slight difference between DNA alerts in the in vitro Ames 

and CA models justified by the different local training set chemicals in both models. 

The scope of this profiler is to investigate the presence of alerts within the target 

molecules responsible for interaction with DNA related to chromosomal aberration and 

micronucleus tests. 

5. In vitro mutagenicity (Ames test) alerts by ISS. The present list of structural alerts is a 

subset of the original Toxtree list, obtained by eliminating the structural alerts for non-

genotoxic carcinogenicity and is a refinement of the Carcinogenicity (genotoxic and 

non-genotoxic) alerts by ISS profiler. 

6. In vivo mutagenicity (Micronucleus) alerts by ISS. This profiler is based on the ToxMic 

rule-base within the Toxtree software. This rule-base provides a list of 35 structural 

alerts for a preliminary screening of potential in vivo mutagens. These structural alerts 

are molecular functional groups or substructures that are known to be linked to the 

induction of effects in the in vivo micronucleus assay. 

 

A number of statistical analyses are appropriate to evaluate the predictive performance of the 

in silico profilers against the experimental data. Key amongst these are the Cooper statistics 

and Mathews Correlation Coefficient. The Cooper statistics (Cooper et al., 1979) are useful to 

assess the predictions against the experimental values given in the databases, by calculating the 

sensitivity, specificity, positive predictivity and accuracy of the alert triggers. Sensitivity is 

defined as the percentage of correctly classified positive predictions among the total number 
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of positive instances. Specificity is the percentage of correct negative predictions compared to 

the total number of negatives. Accuracy (concordance or “Q”) is defined as the total number 

both positive and negatives correctly predicted among the total number of compounds. The 

positive predictive value (PPV) or precision is defined as the as the proportion of positives or 

toxic chemicals that are correctly predicted (see Table 3.4; Pradeep et al., 2016) and can be 

considered as an estimate of the likelihood that following a positive prediction (i.e., the 

presence of a structural alert), that the substance will truly be positive (Eriksson et al., 2003). 

The Matthews Correlation Coefficient (MCC) is a weighted value that overcomes any 

imbalance in the data classes which might lead to over optimistic values of Q (Matthews, 1975). 

An MCC value of 1 indicates that the model can predict the data classes of unknown 

compounds perfectly, whilst a MCC value of 0 indicates that the predictions are no better than 

random guessing, and a MCC value of -1 indicates total disagreement between the predicted 

data and the actual data. 

Since there have been few, or no, attempts to evaluate the statistical performance of the in silico 

profilers, the aim of this chapter was to provide a detailed analysis for positive prediction of 

each structural alert in six mutagenicity profilers within the OECD QSAR Toolbox against 

experimental mutagenicity data from the CCRIS dataset. Analysis of the results from this 

investigation aimed to increase the reliability and accuracy of mutagenicity predictions by these 

profilers. 
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Table 3.2. A selection of structural alerts which belong to reactive electrophilic mechanistic 

domains relating to mutagenicity (Enoch and Cronin, 2010). 

Mechanism domain Structural alert 
 
 
 
 

SN2 

• Alkyl esters of either phosphonic or sulphonic acids 
• Monohaloalkenes 
• S- or N- mustards 
• Propiolactones and propio sulphones 
• Epoxides and arizidines 
• Aliphatic halogens 
• Alkyl nitriles 

 
 
 

SN1 

• Aromatic nitro groups 
• Alkyl hydrazines 
• Alkyl and aryl N-nitroso groups 
• Aliphatic N-nitro groups 
• Aromatic nitroso groups 
• Aromatic amines and hydroxyl amine 
• Halogenated polycyclic aromatic hydrocarbons 
• Halogenated dibenzodioxins 

 
Acylation 

• Aromatic diazo groups 
• Acyl halides 

Schiff base 
formation 

• Simple aldehydes 
• N-methylol derivative 

 
Michael addition 

• Quinones 
• Aromatic N-oxides 

SNAr • Aromatic mono and dialkylamino groups 
• Halogenated benzenes 
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Table 3.3.  Mechanisms of covalent binding to cellular nucleophiles (DNA, proteins) *Nu- 

nucleophilic site of molecule and how this may be translated into usable structural fragments 

(Enoch and Cronin, 2010) 

Type of 
reaction 

illustration 

 
 

SN2 
reaction 

 

  
 

 
 
 

SN1 
reaction 

 

  
 

 
 
 
 

Acylation 

  

 
 

 
 

Michaels 
addition 

 
 

 
 
 

SNAR 

  

 
 
 

Schiff 
base 

formation 
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3.2 Methods 

3.2.1 Dataset used 

The main resource to obtain data for this study was the Chemical Carcinogenicity Research 

Information System (CCRIS) database which was available uploaded in the Leadscope 

Personal software Version 4.4 (Leadscope.com, 2018). The version of CCRIS used in this study 

was updated in 2011 and it has not been updated since that time. CCRIS provides historical 

information from 1985 – 2011 and contains Ames test data for approximately 7,000 compounds 

and mixtures, the results of which have been curated and evaluated in terms of their validity. 

The compounds were identified with a CAS registry number and/or chemical name(s). 

Additional mutagenicity data, although fewer in number, were available from other public 

toxicity databases, including CPDB, GENETOX, National Toxicology Program Dataset NTP 

and the genetic activity profile dataset (EPA/ IARC). Compounds whose CCRIS data showed 

contradictory categorisations with the NTP data were removed from the dataset. In total, a 

dataset of 8,130 compounds with corresponding molecular structures and toxicity 

categorisations (3,838 mutagens and 2,861 non-mutagens) was constructed. The chemical 

structures of the dataset were obtained as in the SDF file format using the Leadscope software 

so that they may be used in the OECD QSAR Toolbox. 

 3.2.2 The OECD QSAR Toolbox 

For this study, version 4.1 (downloaded in April 2018) of the OECD QSAR Toolbox was used 

throughout for the profiling process. The Toolbox is freely available and downloaded from 

qsartoolbox.org.  
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3.2.3 Data analysis:  

 

The following workflow was implemented in order to assess and evaluate the accuracy of the 

following six mutagenicity profilers as implemented in the OECD QSAR Toolbox (details on 

the profilers is given in Section 3.1). 

 

1. DNA binding by OASIS v1.4  

2. DNA binding by OECD  

3. Carcinogenicity (genotoxic and non-genotoxic) alerts by ISS 

4. DNA alerts for AMES, MN and CA by OASIS v.1.1 

5. In vitro mutagenicity (Ames test) alerts by ISS 

6. In vivo mutagenicity (Micronucleus) alerts by ISS 

 

The workflow below allowed for detailed analysis of the positive predictivity for each 

structural alert within each profiler.    

 

 

Step 1 – Within the Leadscope personal version 4.4 software, the latest (2011) high-quality 

version of the CCRIS database was selected. The database was searched to identify and extract 

all experimental results for each substance. A screenshot of this process is shown in Figure 3.2. 
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Figure 3.2. Screenshot from Leadscope database with the CCRIS mutagenicity database 

uploaded. 

Step 2 - Bacterial mutagenicity and Salmonella experimental results were identified for each 

chemical substance in the database, the file containing these data was exported as molecular 

spreadsheet sheet as shown in Figure 3.3. 

 

Figure 3.3. Screenshot from the Leadscope software showing the list of substances from the 

CCRIS database with experimental mutagenicity data. 
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Step 3 – A SDF version of CCRIS database was profiled through the OECD QSAR Toolbox 

using the six mutagenic profilers noted above. The results of this profiling were exported as an 

excel spreadsheet. A screenshot of the profiling in the Toolbox is shown in Figure 3.4. 

Step 4 – The data from the Leadscope software and predictions from the OECD QSAR Toolbox 

were merged into a single spreadsheet so that experimental data and the profiling results for 

each structural alert triggered could be compared. A screenshot of the spreadsheet is shown in 

Figure 3.5.  

 

Figure 3.4. Screenshot showing the profiling of a list of 8,210 substances from the CCRIS 

database. 

 

Step 5 – A separate column for each of the six Toolbox profilers assessed was created in the 

merged spreadsheet. If the structural alert was triggered, the compound was given a score of 1, 

if no alerts were triggered, a score of 0 was allocated. The results were compared with the 

assigned binary activity for mutagenicity from the CCRIS database (positive=1, negative=0). 
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Figure 3.5. Final excel spreadsheet where both profiling and experimental results for each 

substance from CCRIS database were merged in one single file. 

 

Step 6 - The results from the six profilers within the OECD QSAR Toolbox were assessed 

statistically against the experimental results value given in CCRIS database. This was 

performed by calculating sensitivity, specificity, accuracy, precision, negative predictive value, 

false positive rate, false negative rate, false discovery rate, false omission rate, F1 score, 

informedness, markedness, and the Mathews correlation coefficient (MCC) of each alert. These 

statistical parameters are described in Section 3.1 and their definitions provided in Table 3.4. 
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Table 3.4. 13 statistical assessment parameters of the results from six profilers within the 

OECD QSAR Toolbox against the experimental results value given in CCRIS database. 

Sensitivity (True positive rate)  = TP/ TP+FN 
Specificity (True negative rate)       =     TN/TN+FP 

Accuracy    =     (TN+TP)/(TN+FP+FN+TP) 

PPV (Positive predictive value) or (precision)    =          TP/ TP+FP 

NPV (negative predictive value)              =           TN/TN+FN 
FNR (false negative rate) or (miss rate)   =           1- sensitivity 
FPR (false positive rate) or (fall out) =           1- specificity 
FDR (false discovery rate)                         =           1- PPV 
FOP (false omission rate)                          =           1- NPV 
F1 score                                                      =          2 x (PPV x TPR) / (PPV +TPR) 

Informedness (BM)                                       =          TPR+TNR -1 

Markedness (MK)          =            PPV + NPV -1 
MCC =  (TPxTN)-(FPxFN)/√(TP+FN)(TP+FP)(TN+FN)(TN+FP) 

Where TP=True positive, TN=True negative, FP=False positive, FN=False negative 

 

Step 7 - A detailed analysis of the positive predictivity value (PPV) for each structural alert 

within each profiler were conducted. Only substances with one structural alert triggered were 

assessed, this was to avoid any interference of other structural alerts in cases of substances with 

multiple structural alerts triggered.  

Step 8 - Structural alerts that were triggered in more than 10 substances and showed less than 

0.5 positive predictivity were considered to be of limited significance. 
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3.3: Results and Discussion 

The aim of Chapter 3 was to evaluate the performance of six commonly used in silico profilers 

for mutagenicity from the OECD QSAR Toolbox with a view to identifying strongly 

performing alerts and those in need of more refinement or development. 

3.3.1 Data Collection  

A dataset of 8,130 compounds with corresponding molecular structures and toxicity 

categorisations (3,838 mutagens and 2,861 non-mutagens) was constructed. The dataset 

included data from four mutagenicity tests for each chemical substance, namely bacterial 

mutation, Salmonella, female rat and male rat. No information about metabolism was available 

for any chemical substance. The major uses for these chemicals varied from drugs (anti-

infectives and anti-viral), pesticides (herbicides and plant growth regulators), intermediates 

(dyes), analytical reagents and solvents. The chemical structures for use in the OECD QSAR 

Toolbox were obtained as a SDF file from the Leadscope software.  

 

3.3.2 Evaluation of the overall performance of the six in silico profilers for mutagenicity.  

The results of the assessment of the profilers against the measured values for mutagenicity are 

shown in Table 3.5 and Figure 3.6 respectively.  
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Table 3.5. Performance statistics for the six mutagenicity profilers provided within the OECD 

QSAR Toolbox against experimental data. 

Profiler Genotox and 
nongenotox 
alerts by ISS 

DNA alerts 
for AMES, 
MN and CA 
by OASIS 

Ames test 
alerts by 
ISS 

Micronucleus 
alerts by ISS 

DNA 
binding by 
OASIS 
v.1.4 

DNA 
binding by 
OECD 

CCRIS database 

Sensitivity  0.84 0.52 0.83 0.90 0.71 0.70 

Specificity  0.60 0.91 0.69 0.37 0.73 0.62 

Accuracy (Q) 0.74 0.69 0.77 0.67 0.72 0.67 

Precision (PPV) 0.73 0.88 0.78 0.65 0.77 0.71 

Negative predictive value (NPV) 0.74 0.59 0.75 0.74 0.66 0.61 

False positive rate (FPR) 0.40 0.09 0.31 0.63 0.27 0.38 

False negative rate (FNR) 0.16 0.48 0.17 0.10 0.29 0.30 

False omission rate (FOR) 0.26 0.41 0.25 0.26 0.34 0.39 

False discovery rate (FDR) 0.27 0.12 0.22 0.35 0.23 0.29 

F1 score 0.78 0.65 0.8 0.76 0.74 0.7 

Informedness (BM) 0.44 0.43 0.52 0.27 0.44 0.32 

Markedness (MK) 0.47 0.47 0.53 0.39 0.43 0.32 

MCC 0.46 0.45 0.52 0.33 0.43 0.32 

Sensitivity = True positive rate; Specificity = True negative rate; MCC = Matthews Correlation Coefficient;  
__= MCC below 0.33;  __= High sensitivity or specificity ;  __= Low sensitivity or specificity  
 

Table 3.5 shows that the accuracy (Q) (percentage of positives and negatives correctly 

predicted) of the mutagenicity profilers varies for the profilers from 67% to 77%. Clearly, a 

profiler with an accuracy of 67% has a significant margin of error that may affect the profiler's 

ability to predict adequately, whereas 77% is a more acceptable level of prediction that is in 

line with the experimental error level in the measured data. These accuracy of the profilers 

reflects the known average interlaboratory reproducibility of Ames tests, which is known to be 

at least 15%. As such it was concluded that these profilers can be applied to risk assessment 

processes and can guide the design of chemical libraries for hit and lead optimisation (Kazius 

et al., 2005).  
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Considering individual profilers in more detail, the true positive rate (sensitivity) was relatively 

high for Micronucleus alerts with a low specificity (true negative rate) which indicates an over 

prediction of mutagenicity. In contrast, the true negative rate for DNA-binding alerts for the 

Ames, MN and CA profiler was high (91%) but with a poor ability to distinguish positive 

mutagenicity results (52%). The sensitivity rates of the other four profilers ranged from 70% 

to 84%, which is an acceptable. However, two profilers (genotoxicity and non-genotoxicity 

alerts (ISS) and OECD DNA binding profilers) failed to adequately predict the non-mutagenic 

compounds with a true negative rate of only 60%. The positive prediction value (PPV), which 

measures the ability of the alerts to predict mutagenic compounds, was high (88%) for the 

“DNA alerts for AMES” profiler, however this profiler showed the lowest Negative predictive 

value (NPV) of 59%. The PPV and NPV of the other five mutagenicity profilers ranged from 

65% -78% and 61%-75% respectively. 

The Mathews correlation coefficient (MCC) is more informative than other confusion matrix 

measures (such as F1 score and accuracy) in evaluating binary classifications. This is because 

it takes into account the balanced ratios of the four confusion matrix categories (true positives, 

true negatives, false positives and false negatives). MCC did not exceed 0.52 for any of the six 

profilers for mutagenicity and the lowest MCC value was 0.32 for the “DNA binding profiler 

by OECD” and 0.33 for “Micronucleus alerts by ISS”. The Ames alerts was the only profiler 

that showed a MCC value greater than 0.5, which indicates that the performance is independent 

of skewed sample categories. The statistics for individual profilers, and any weak predictive 

alerts within them, are discussed below. 

Whilst good predictivity is desirable, it is should not be expected that any profiler is able to 

predict all mutagenic compounds. The profilers considered in this analysis are likely to have 

limited predictive capability for a number of different reasons. Firstly, they are not profilers for 

mutagenicity in its entirety, but for different aspects (i.e. mechanisms or modes) of it. Secondly, 
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some or all of the profilers were not designed to be predictive but for grouping allowing for 

read-across. For a predictive profiler, the desired level of predictivity would be in line with the 

error level seen in measured data. When this level of predictivity is achieved and demonstrated, 

these profilers can be considered a more valid substitute for experimental studies. With this in 

mind, this study seeked to refine those structural alerts that have lower predictivity by analysing 

which compounds they hit erroneously. Ultimately, such analyses and knowledge will lead to 

increased reliability and confidence in the predictive ability of these profilers. 

155 chemicals, known to be mutagenic experimentally were not identified by any of the six 

mutagenicity profilers. Of these, 43 chemicals, which represent 30% of these non-identified 

mutagens, were inorganic chemical substances such as cadmium chloride, manganese 

dichloride, selenium sulfide, titanium chloride etc. The remaining 112 mutagenic substances 

were varied organic chemicals that did not have any unifying characteristics for grouping or 

that could be used to formulate a new rule for a new chemical structural alert. The list of all 

155 mutagens that were not identified, including both inorganic and organic chemicals, is 

available in Appendix I. 
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Figure 3.6. Column chart of the sensitivity and specificity rates for each of the six mutagenicity 

profilers in the OECD QSAR Toolbox when compared against experimental results taken from 

the CCRIS database. 
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3.3. Evaluation of individual structural alerts within the six in silico profilers for mutagenicity 

Further detailed analysis was conducted on each structural alert within the six mutagenicity 

profilers. The purpose here was to identify structural alerts that are over-predictive i.e. when 

the precision or PPV is lower than 0.5. These over-predictive structural alerts were excluded 

to increase the sensitivity and overall accuracy of the profiler and are listed in Tables 3.6 - 3.11 

respectively. The results for the individual profilers are described in more detail below and a 

final list of 28 structural alerts with low predictivity, obtained from the six mutagenicity 

profilers, is summarised in Table 3.12. 

3.3.1 Genotox and Nongenotox alerts by ISS profiler:  

The sensitivity and accuracy of this profiler were fairly acceptable (see Table 3.6) with a 84% 

true positive rate and 74% accuracy. The analysis of positive predictivity of the alerts within 

this profiler revealed that eight alerts showed low predictivity for positive mutagens; five were 

non-genotoxic carcinogenicity (1,3-benzodioxoles, benzenesulfonic ethers, halogenated 

benzene, substituted n-alkylcarboxylic acids and thiocarbonyl) and three were genotoxic 

carcinogenicity structural alerts (alkenylbenzenes, α,β-unsaturated carbonyls and simple 

aldehydes).  As shown in Table 3.6, the alert for α,β-unsaturated carbonyls was the highest 

triggered alert being found in 187 substances with 102 false positives and hence a low PPV of 

45%. The alert for substituted n-alkylcarboxylic acids had the lowest PPV value (12%) with 

23 false positive result out of 26 substances triggered. Halogenated benzenes and simple 

aldehydes alerts were flagged in 82 and 74 substances respectively, but they were over 

predictive amongst negative substances with PPVs of 23% and 38% respectively. This 

indicates that they may be not suitable to be used to predict mutagenic substances. The 

remaining four alerts with low PPV ranged in their predictivity from 23% for benzenesulfonic 

ethers to 42% for 1,3-benzodioxoles. However, Table 3.6 shows some of the alerts in the 
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profiler showed high positive predictivity values for many positive mutagens including the 

alert for nitroso-aromatic with 82% of 395 substances and that for Polycyclic Aromatic 

Hydrocarbons with 91% among 271 mutagenic substances. 

Table 3.6. Positive prediction analysis (PPV) for each structural alert within the 

“Carcinogenicity (genotox and nongenotoxic) alerts by ISS” profiler. 

alert TOTA
L 

TP FP PP
V 

N
on

 g
en

ot
ox

ic
 c

ar
ci

no
ge

n 
st

ru
ct

ur
al

 a
le

rt 

(Poly) Halogenated Cycloalkanes  14 2 12 0.1
4 

1,3-Benzodioxoles  12 5 7 0.4
2 

Alkyl halides  17 13 4 0.7
6 

Benzenesulfonic ethers, methylation  13 3 10 0.2
3 

Halogenated benzenes  82 19 63 0.2
3 

Halogenated dibenzodioxins 4 1 3 0.2
5 

Imidazoles, benzimidazoles  37 17 20 0.4
6 

Indole-3-carbinols 1 1 0 1.0
0 

Metals, oxidative stress  51 27 24 0.5
3 

o-Phenylphenols  13 6 7 0.4
6 

Pentachloro phenols  2 1 1 0.5
0 

Quercetin type flavonoids  5 3 2 0.6
0 

Substituted n-alkylcarboxylic acids  26 3 23 0.1
2 

Thiocarbonyls  17 6 11 0.3
5 

Trichloro (or fluoro) ethylenes and Tetrachloro (or fluoro) ethylenes 
(Nongenotox)  

10 9 1 0.9
0 

   
   

   
   

ge
no

to
xi

c 
ca

rc
in

og
en

 st
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ur
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l
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Acyl halides  17 12 5 0.7
1 

Aliphatic azo and azoxys  21 20 1 0.9
5 

Aliphatic halogens  214 162 52 0.7
6 

Aliphatic N-nitro groups  13 11 2 0.8
5 

Alkenylbenzenes  17 4 13 0.2
4 

Alkyl (C<5) or benzyl ester of sulphonic or phosphonic acid  49 31 18 0.6
3 

Alkyl and aryl N-nitroso groups  96 83 13 0.8
6 
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Alkyl carbamate and thiocarbamates 17 8 9 0.4
7 

Alkyl nitrites  7 7 0 1.0
0 

α,β-Unsaturated aliphatic alkoxy groups  16 14 2 0.8
8 

α,β-Unsaturated carbonyls  187 85 10
2 

0.4
5 

Aromatic diazos 74 41 33 0.5
5 

Aromatic mono-and dialkylamines  52 31 21 0.6
0 

Aromatic N-acyl amines  42 23 19 0.5
5 

Aromatic nitroso groups  23 23 0 1.0
0 

Aromatic ring N-oxides  9 3 6 0.3
3 

Azide and triazene groups  52 51 1 0.9
8 

Coumarins and Furocoumarins  22 16 6 0.7
3 

Epoxides and aziridines  235 186 49 0.7
9 

Heterocyclic Polycyclic Aromatic Hydrocarbons  98 82 16 0.8
4 

Hydrazines  50 34 16 0.6
8 

Isocyanate and isothiocyanate groups  3 3 0 1.0
0 

Monohaloalkenes  10 6 4 0.6
0 

Nitro-aromatics (Genotox) 395 322 73 0.8
2 

Polycyclic Aromatic Hydrocarbons  271 246 25 0.9
1 

Primary aromatic amine,hydroxyl amine and its derived esters  311 211 10
0 

0.6
8 

Propiolactones or propiosultones  5 4 1 0.8
0 

Pyrrolizidine alkaloids  4 4 0 1.0
0 

Quinones  111 82 29 0.7
4 

S or N mustards  19 15 4 0.7
9 

Simple aldehydes  74 28 46 0.3
8 

 TOTAL PPV 2818 196
4 

85
4 

0.7
0 

 GENOTOXIC CARCINOGEN PPV 2514 184
8 

66
6 

0.7
4 

 NON GENOTOXIC CARCINOGEN PPV 304 116 18
8 

0.3
8 

Total = number of  substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   
FP= False positive  (non-mutagens identified positive by alert) , PPV= Positive Predictivity value  



 

3.3.2 DNA alerts for AMES, MN and CA by OASIS profiler: 

In contrast to other profilers, the DNA alerts for Ames profiler showed low true positive 

(sensitivity) and high true negative rates (see Table 3.7). This indicates that there is a lack of 

alerts that can predict mutagens and those that are available are unspecific and have a high 

number of false negatives (48%).  

 

Table 3.7. Positive predictivity analysis for each structural alert among the “DNA alerts for 

AMES, MN and CA by OASIS” profiler.  

DNA alerts for CA and MNT by OASIS TOTAL TP FP PPV 

AN2|AN2 >> Schiff base formation|AN2 >> Schiff base formation >> 

Dicarbonyl compounds 

15 11 4 0.73 

Non-covalent interaction|Non-covalent interaction >> DNA 

intercalation|Non-covalent interaction >> DNA intercalation >> DNA 

Intercalators with Carboxamide and Aminoalkylamine Side Chain 

3 2 1 0.67 

Non-covalent interaction|Non-covalent interaction >> DNA 

intercalation|Non-covalent interaction >> DNA intercalation >> Quinolone 

Derivatives 

17 10 7 0.59 

SN2|SN2 >> Alkylation, direct acting epoxides and related|SN2 >> 

Alkylation, direct acting epoxides and related >> Epoxides and Aziridines 

181 166 15 0.92 

SN2|SN2 >> Alkylation|SN2 >> Alkylation >> Alkylphosphates, 

Alkylthiophosphates and Alkylphosphonates 

47 19 28 0.40 

SN2|SN2 >> Coordination with nucleoside bases|SN2 >> Coordination with 

nucleoside bases >> Short-Chain Alkyltin and Alkylgermanium Halides 

7 1 6 0.14 

Total = number of substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   

FP= False positive  ( non-mutagens identified positive by alert) , PPV= Positive Predictivity value  

 
 

The only alert that showed low PPV was the (SN2| Alkylphosphates, Alkylthiophosphates and 

Alkylphosphonates) alert which was incorrectly predicted 28 mutagenic substances out of 47 

substances with 40% PPV. On the other hand, as illustrated in Table 3.7, the alert for epoxides 

and aziridines ( SN2|SN2 >> Alkylation, direct acting epoxides and related|SN2 >> Alkylation, 
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direct acting epoxides and related >> Epoxides and Aziridines) was accurate as it correctly 

detected 166 mutagenic substances out of 181 with 91% PPV. DNA alkylation of epoxides is 

caused by the epoxidation reaction when three-membered epoxide ring opened with 

nucleophilic DNA centre via substituted nucleophilic reaction SN2 (Figure 3.7). Epoxidation 

is a common ring-opening reaction leading to DNA alkylation (Sawatari, 2001). Importantly, 

reactive epoxides can be produced after the metabolism of a range of alkenes, resulting in DNA 

reactivity. Overall, the predictive power of this profiler showed that there should be a high 

confidence in a hit from this profiler for mutagenicity.  

 

 

Figure 3.7. Epoxide ring opening reaction (Enoch and Cronin, 2010) 

 

3.3.3 In vitro mutagenicity (Ames test) alerts by ISS profiler: 

In the ISS profiler the true positive and true negative rates were reasonably good at 83% and 

69% respectively. Compared to the other profilers for mutagenicity, the Ames test alerts had 

the highest MCC value, which was greater than 0.5 which is a good indicator for predicting 

both positive and negative mutagens. The positive prediction of mutagenicity for the structural 

alerts in this profiler was acceptable (78%) and well balanced with the negative prediction 

value (75%). Four structural alerts were over-predictive and showed false positive results in 

more than 60% of triggered substances. Three of these four alerts with low PPV values were 

analogous to poorly performing alerts in the genotoxic and non-genotoxic by ISS profiler. 

These four alerts were alkenyl benzenes, α,β-unsaturated carbonyls, aromatic ring N-oxide and 
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simple aldehydes. The highest error rate was for the α,β−unsaturated carbonyl alerts with only 

44% positive predicated substances among 192 substances as shown in Table 3.8. 

 

Table 3.8. PPV analysis for each structural alert among “in vitro mutagenicity (Ames test) 

alerts by ISS” profiler. 

In vitro mutagenicity (Ames test) alerts by ISS TOTAL TP FP PPV 
Acyl halides 22 16 6 0.73 
Aliphatic halogens 224 166 58 0.74 
Aliphatic N-nitro groups 12 10 2 0.83 
Alkenylbenzenes 21 3 18 0.14 
Alkyl (C<5) or benzyl ester of sulphonic or phosphonic acids 55 36 19 0.65 
Alkyl and aryl N-nitroso groups 98 84 14 0.86 
Alkyl carbamate and thiocarbamates 20 10 10 0.50 
Alkyl hydroperoxides 10 9 1 0.90 
α,β-Unsaturated aliphatic alkoxy groups 2 0 2 0.00 
Alkyl nitrites 7 7 0 1.00 
α,β-Unsaturated carbonyls 192 84 108 0.44 
Anthrones 3 1 2 0.33 
Aromatic diazos 78 44 34 0.56 
Aromatic mono-and dialkylamines 53 32 21 0.60 
Aromatic N-acyl amines 45 22 23 0.49 
Aromatic ring N-oxides 10 4 6 0.40 
Azide and triazene groups 55 54 1 0.98 
Coumarins and Furocoumarins 22 16 6 0.73 
Epoxides and aziridines 219 165 54 0.75 
Flavonoids 5 3 2 0.60 
Heterocyclic Polycyclic Aromatic Hydrocarbons 107 88 19 0.82 
Hydrazines 50 33 17 0.66 
Hydroxamic acid derivatives 9 8 1 0.89 
Monohaloalkenes 10 6 4 0.60 
N-aryl-N-acetoxyacetaamides 4 3 1 0.75 
Nitro-aromatics 427 347 80 0.81 
Polycyclic Aromatic Hydrocarbons 287 258 29 0.90 
Primary aromatic amine,hydroxyl amine and its derived esters 340 227 113 0.67 
Propiolactones or propiosultones 5 4 1 0.80 
Quinones 35 18 17 0.51 
S or N mustards 24 17 7 0.71 
Simple aldehydes 80 29 51 0.36 
Steroidal estrogens 5 0 5 0.00 
Xanthones, Thioxanthones, Acridones 31 24 7 0.77 

Total = number of substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   
FP= False positive  ( non-mutagens identified positive by alert) , PPV= Positive Predictivity value  
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In contrast, other structural alerts in this profiler showed high and accurate precision (PPV) e.g. 

the alerts for nitro-aromatics, Polycyclic Aromatic Hydrocarbons as shown in Table 3.8. The 

mechanism of mutagenicity of compounds containing aromatic amine, nitro, nitroso or 

hydroxylamine moieties can be explained by partially overlapping metabolic activation 

pathways (Cronin, 2010). Although an aromatic nitro group requires enzymatic reduction 

(catalysed by both cytosolic and microsomal enzymes) to form an aromatic hydroxylamine 

intermediate, the analogous reduction of an aromatic nitroso group is probably non-enzymatic. 

An aromatic amine moiety, on the other hand, requires enzymatic oxidation to form the same 

aromatic hydroxylamine intermediate. Subsequent activation of aromatic hydroxylamine 

intermediates by O-acetylation, O-sulfation, or O-protonation is suggested to form electrophilic 

intermediates that covalently bind to DNA as shown in Figure 3.8 (Enoch and Cronin, 2010). 

This shows that the performance of the structural alerts is better when the chemical relationship 

that explains the mutagenicity is clear and well known. 

 

Figure 3.8. Metabolic conversion of aniline to the electrophilic nitrenium ion (Enoch and 

Cronin, 2010). 
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3.3.4 In vivo mutagenicity (Micronucleus) alerts by ISS: 

The results of the analysis of the “in vivo mutagenicity (Micronucleus) alerts by ISS” profiler 

are provided in Table 3.9 and show an imbalance between true positive rate (sensitivity) 90% 

and true negative rate (specificity) 37%. Five alerts in this profiler are over-predictive, namely 

H-acceptor-path3-H-acceptor, 1-phenoxy-benzene, α,β-unsaturated carbonyls, aromatic N-

acyl amine and simple aldehydes. The majority of false positive results were from the H-

acceptor-path3-H-acceptor alert among non-mutagenic substances. This alert was triggered in 

1114 substances and incorrectly predicts 791 non-mutagenic substances as mutagenic with a 

PPV of only 29%. This also explains the high value of true positive rate (sensitivity) caused by 

this alert. This alert explores the possibility that a chemical interacts with DNA and/or proteins 

via non-covalent binding, such as DNA intercalation or groove-binding (Snyder et al. 2006) 

which may not be relevant to Ames test data, however, it suggests that this alert should go 

under detailed further investigation using Micronucleus data (this was undertaken in Chapter 

5). Clearly, this alert significantly affects the performance of the profiler’s ability to predict the 

mutagenicity, as the profiler has the lowest MCC value (0.33) of the six profilers considered. 

This indicates removing this alert from the profiler would improve the overall performance of 

the profiler. The unsaturated carbonyl and simple aldehyde alerts also showed low positive 

predictivity, 47% and 18% respectively, confirming the similar conclusion from the genotoxic 

and nongenotoxic profilers and Ames test by ISS profiler. The alert for “Simple aldehydes” is 

based on the theory that all compounds containing an aldehydic group can potentially undergo 

Schiff base formation with a primary amine. They are to be considered potentially genotoxic, 

as demonstrated by their ability to react in vivo with nucleobases, without metabolic activation, 

forming adducts, interbase cross-links (both intra and inter-strand) and DNA-protein crosslinks. 

The carbon chain length of aliphatic aldehydes and, in general, molecular size can strongly 

modulate the formation of every type of cross-link and even the accessibility of the DNA 
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nucleobases. DNA-protein crosslinks have been reported as the primary DNA damage induced 

by formaldehyde (Speit et al. 2007). Thus, the overall analysis has indicated that the alert for 

simple aldehdyes, whilst valid mechanistically, requires further and detailed definition to 

enable it for use. On the other hand, alerts for primary aromatic amines, nitro aromatics, 

epoxides and aziridines had high mutagenicity predictivity with PPV ranging from 75% to 90%. 

Table 3.9. Positive predictivity analysis for each single structural alert within the in vivo 

mutagenicity (Micronucleus) alerts by ISS profiler. 

in vivo mutagenicity (Micronucleus) alerts by ISS TOTAL TP FP PPV 
H-acceptor-path3-H-acceptors 1114 323 791 0.29 
1,3-dialkoxy-benzenes 2 1 1 0.50 
1-phenoxy-benzenes 14 3 11 0.21 
Acyl halides 21 15 6 0.71 
Aliphatic azo and azoxys 9 9 0 1.00 
Aliphatic halogens 173 131 42 0.76 
Aliphatic N-nitro groups 5 4 1 0.80 
Alkyl (C<5) or benzyl ester of sulphonic or phosphonic acids 47 33 14 0.70 
Alkyl and aryl N-nitroso groups 30 27 3 0.90 
Alkyl carbamates and thiocarbamates 12 7 5 0.58 
Alkyl nitrites 7 7 0 1.00 
α,β-unsaturated aliphatic alkoxy groups 7 5 2 0.71 
α,β-unsaturated carbonyls 60 28 32 0.47 
Aromatic diazos 8 6 2 0.75 
Aromatic mono- and dialkylamines 35 19 16 0.54 
Aromatic N-acyl amines 26 10 16 0.38 
Aromatic nitroso groups 17 17 0 1.00 
Aromatic ring N-oxides 6 2 4 0.33 
Azide and triazene groups 22 21 1 0.95 
Carbodiimides 2 1 1 0.50 
Coumarins and Furocoumarins 5 1 4 0.20 
Epoxides and aziridines 140 103 37 0.74 
Heterocyclic Polycyclic Aromatic Hydrocarbons 71 62 9 0.87 
Hydrazines 15 12 3 0.80 
Isocyanate and isothiocyanate groups 3 3 0 1.00 
Monohaloalkenes 6 6 0 1.00 
Nitro-aromatics 218 174 44 0.80 
Polycyclic Aromatic Hydrocarbons 247 221 26 0.89 
Primary aromatic amine, hydroxyl amine and its derived esters 174 123 51 0.71 
Propiolactones or propiosultones 5 4 1 0.80 
S or N mustards 15 11 4 0.73 
Simple aldehydes 33 6 27 0.18 
Total = number of substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   
FP= False positive  ( non-mutagens identified positive by alert) , PPV= Positive Predictivity value  
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3.3.5 DNA binding by OASIS v.1.4 Profiler: 

The DNA binding by OASIS profiler showed reasonably acceptable overall sensitivity and 

specificity values, 71% and 73% respectively. Accuracy was also good (72%), but MCC was 

still low at 0.43. Table 3.10 shows three alerts had a low PPV (19%, 43% and 30% respectively), 

namely: carboxamides and aminoalkylamines via non covalent interaction, thiols via a radical 

mechanism and alkylphosphates, alkylthiophosphates and alkylphosphonates via alkylation. 

The structural alert for alkylphosphates was triggered in 69 substances with only 21 true 

positives predicted. This alert is based on the theory that some of the organophosphorus 

fragments are known to be strongly electrophilic (mainly phosphonic and phosphoric acid 

derivatives). Two chemo-toxicological mechanisms have been suggested: phosphorylation and 

alkylation of the biological macromolecules. Compared to the carbon atom of the alkyl group, 

the phosphorus atom is more electron-deficient and susceptible to attack by nucleophiles 

(Braun et al., 1982). This mechanism may be not relevant to the Ames test which could explain 

the low predictivity of this alert. Other alerts in this profiler, such as those for epoxides and 

aziridines showed high PPVs for a large proportion of substances (92% of 181 substances were 

identified correctly). 
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Table 3.10. Positive predictivity analysis (PPV) for each structural alert with the DNA binding by OASIS profiler. 

 Total = number of substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   FP= False positive  ( non-mutagens identified positive by 
alert) , PPV= Positive Predictivity value  

DNA binding by OASIS TOTAL TP FP PPV 
AN2|AN2 >> Michael-type conjugate addition to activated alkene derivatives|AN2 >> Michael-type conjugate addition to activated 
alkene derivatives >> Alpha-Beta Conjugated Alkene Derivatives with Geminal Electron-Withdrawing Groups 

2 0 2 0 

AN2|AN2 >> Schiff base formation|AN2 >> Schiff base formation >> Dicarbonyl compounds 17 12 5 0.71 
Non-covalent interaction|Non-covalent interaction >> DNA intercalation|Non-covalent interaction >> DNA intercalation >> DNA 
Intercalators with Carboxamide and Aminoalkylamine Side Chain 

32 6 26 0.19 

Non-covalent interaction|Non-covalent interaction >> DNA intercalation|Non-covalent interaction >> DNA intercalation >> 
Quinolone Derivatives 

23 15 8 0.65 

Radical|Radical >> Radical mechanism by ROS formation (indirect) or direct radical attack on DNA|Radical >> Radical 
mechanism by ROS formation (indirect) or direct radical attack on DNA >> Organic Peroxy Compounds 

34 28 6 0.82 

Radical|Radical >> Radical mechanism via ROS formation (indirect)|Radical >> Radical mechanism via ROS formation (indirect) 
>> Anthrones 

3 1 2 0.33 

Radical|Radical >> Radical mechanism via ROS formation (indirect)|Radical >> Radical mechanism via ROS formation (indirect) 
>> Thiols 

23 10 13 0.43 

SN2|SN2 >> Alkylation, direct acting epoxides and related|SN2 >> Alkylation, direct acting epoxides and related >> Epoxides and 
Aziridines 

280 223 57 0.80 

SN2|SN2 >> Alkylation|SN2 >> Alkylation >> Alkylphosphates, Alkylthiophosphates and Alkylphosphonates 69 21 48 0.30 
SN2|SN2 >> Coordination with nucleoside bases|SN2 >> Coordination with nucleoside bases >> Short-Chain Alkyltin and 
Alkylgermanium Halides 

7 1 6 0.14 

SN2|SN2 >> Direct acting epoxides formed after metabolic activation|SN2 >> Direct acting epoxides formed after metabolic 
activation >> Quinoline Derivatives|SN2 >> SN2 at an activated carbon atom|SN2 >> SN2 at an activated carbon atom >> 
Quinoline Derivatives 

85 47 38 0.55 

SN2|SN2 >> Direct acylation involving a leaving group|SN2 >> Direct acylation involving a leaving group >> Acyl Halides 20 16 4 0.80 
SN2|SN2 >> DNA alkylation|SN2 >> DNA alkylation >> Vicinal Dihaloalkanes|SN2 >> Internal SN2 reaction with aziridinium 
and/or cyclic sulfonium ion formation (enzymatic)|SN2 >> Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion 
formation (enzymatic) >> Vicinal Dihaloalkanes 

34 19 15 0.56 

SN2|SN2 >> SN2 at sulfur atom|SN2 >> SN2 at sulfur atom >> Sulfonyl Halides 2 0 2 0.00 



 

3.3.6 DNA binding by OECD profiler: 

The true negative rate (specificity) for the “DNA binding by OECD” profiler was, to some 

extent, less than acceptable at 62%. The poorer performance was also reflected in the MCC 

value of 0.32 which was the second lowest value amongst the six profilers. Six alerts in this 

profiler showed low PPV including one through the acylation mechanism (1,1-dihaloalkanes), 

three alerts for the Michael addition mechanism (furan, α,β−unsaturated ester, α,β-unsaturated 

ketone), one Schiff base former mechanism (mono aldehyde) and two alerts for unimolecular 

aliphatic nucleophilic substitution SN1 reactions (aromatic phenyl urea and aliphatic tertiary 

amines). Of the six alerts with low PPV, that for aliphatic tertiary amines was the most triggered 

hitting 218 substances. However, this alert falsely predicted 149 positives out of 218 with only 

30% PPV, as shown in Table 3.11. The alert for aliphatic tertiary amines was described in this 

profiler as relating to a mechanism of action whereby P450 metabolism converts the aliphatic 

tertiary amine to a reactive iminium species. This has been suggested as a potential pathway to 

DNA adducts via an SN1 mechanism, the reaction shown in Figure 3.9 (Kalgutkar and Soglia, 

2005). The relatively unspecific nature of the chemical relationship supporting this structural 

alert seems to be broad, this results in many false positive predictions and eventually lower 

accuracy of the overall profiler. 

 

Figure 3.9. DNA adduct formation mechanism of aliphatic tertiary amine (Kalgutkar and 
Soglia,  2005) 
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Table 3.11. Positive predictivity analysis for DNA binding by OECD profiler 

DNA binding by OECD TOT

AL 

T

P 

FP PP

V 

Acylation|Acylation >> Direct Addition of an Acyl Halide|Acylation >> Direct 

Addition of an Acyl Halide >> Acyl halide 

18 16 2 0.9 

Acylation|Acylation >> Isocyanates and Isothiocyanates|Acylation >> Isocyanates 

and Isothiocyanates >> Isocyanates 

11 7 4 0.6 

Acylation|Acylation >> Isocyanates and Isothiocyanates|Acylation >> Isocyanates 

and Isothiocyanates >> Isothiocyanates 

2 2 0 1.0 

Acylation|Acylation >> P450 Mediated Activation to Acyl Halides|Acylation >> 

P450 Mediated Activation to Acyl Halides >> 1,1-Dihaloalkanes 

16 4 12 0.3 

Acylation|Acylation >> P450 Mediated Activation to Isocyanates or 

Isothiocyanates|Acylation >> P450 Mediated Activation to Isocyanates or 

Isothiocyanates >> Formamides 

7 5 2 0.7 

Michael addition|Michael addition >> P450 Mediated Activation of Heterocyclic 

Ring Systems|Michael addition >> P450 Mediated Activation of Heterocyclic Ring 

Systems >> Furans 

20 7 13 0.4 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> 5-alkoxyindoles 

4 1 3 0.3 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> Alkyl phenols 

41 23 18 0.6 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> Arenes 

119 55 64 0.5 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> Hydroquinones 

87 42 45 0.5 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> Methylenedioxyphenyl 

8 2 6 0.3 

Michael addition|Michael addition >> P450 Mediated Activation to Quinones and 

Quinone-type Chemicals|Michael addition >> P450 Mediated Activation to 

Quinones and Quinone-type Chemicals >> Polycyclic (PAHs) and heterocyclic 

(HACs) aromatic hydrocarbons-Michael addition 

51 47 4 0.9 
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Michael addition|Michael addition >> Polarised Alkenes-Michael addition|Michael 

addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated 

aldehydes 

23 15 8 0.7 

Michael addition|Michael addition >> Polarised Alkenes-Michael addition|Michael 

addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated 

amides 

4 1 3 0.3 

Michael addition|Michael addition >> Polarised Alkenes-Michael addition|Michael 

addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated esters 

55 9 46 0.2 

Michael addition|Michael addition >> Polarised Alkenes-Michael addition|Michael 

addition >> Polarised Alkenes-Michael addition >> Alpha, beta- unsaturated 

ketones 

24 9 15 0.4 

Michael addition|Michael addition >> Polarised Azo Compounds|Michael addition 

>> Polarised Azo Compounds >> Azocarbonamides 

1 1 0 1.0 

Michael addition|Michael addition >> Quinones and Quinone-type 

Chemicals|Michael addition >> Quinones and Quinone-type Chemicals >> 

Quinones 

16 14 2 0.9 

Schiff base formers|Schiff base formers >> Chemicals Activated by P450 to 

Glyoxal |Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> 

Ethanolamines (including morpholine)|Schiff base formers >> Chemicals 

Activated by P450 to Glyoxal  >> Ethylenediamines (including piperazine) 

1 1 0 1.0 

Schiff base formers|Schiff base formers >> Chemicals Activated by P450 to 

Glyoxal |Schiff base formers >> Chemicals Activated by P450 to Glyoxal  >> 

Ethanolamines (including morpholine) 

4 0 4 0.0 

Schiff base formers|Schiff base formers >> Direct Acting Schiff Base 

Formers|Schiff base formers >> Direct Acting Schiff Base Formers >> Alpha-beta-

dicarbonyl 

10 7 3 0.7 

Schiff base formers|Schiff base formers >> Direct Acting Schiff Base 

Formers|Schiff base formers >> Direct Acting Schiff Base Formers >> Mono 

aldehydes 

35 15 20 0.4 

SN1|SN1 >> Carbenium Ion Formation|SN1 >> Carbenium Ion Formation >> 

Aliphatic N-Nitro 

11 10 1 0.9 

SN1|SN1 >> Carbenium Ion Formation|SN1 >> Carbenium Ion Formation >> 

Allyl benzenes 

6 3 3 0.5 

SN1|SN1 >> Carbenium Ion Formation|SN1 >> Carbenium Ion Formation >> 

Polycyclic (PAHs) and heterocyclic (HACs) aromatic hydrocarbons-SN1 

110 10

3 

7 0.9 

SN1|SN1 >> Iminium Ion Formation|SN1 >> Iminium Ion Formation >> Aliphatic 

tertiary amines 

218 69 149 0.3 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Aromatic azo 

30 14 16 0.5 
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SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Aromatic N-hydroxylamines 

27 24 3 0.9 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Aromatic nitro 

481 39

6 

85 0.8 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Aromatic phenylureas 

10 2 8 0.2 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Aromatic nitroso 

21 21 0 1.0 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Primary (unsaturated) heterocyclic amine 

66 53 13 0.8 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Primary aromatic amine 

265 18

9 

76 0.7 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Secondary (unsaturated) heterocyclic amine 

11 1 10 0.1 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Secondary aromatic amine 

34 16 18 0.5 

SN1|SN1 >> Nitrenium Ion formation|SN1 >> Nitrenium Ion formation >> 

Tertiary aromatic amine 

59 36 23 0.6 

SN2|SN2 >> Direct Acting Epoxides and related|SN2 >> Direct Acting Epoxides 

and related >> Aziridines 

36 35 1 1.0 

SN2|SN2 >> Direct Acting Epoxides and related|SN2 >> Direct Acting Epoxides 

and related >> Epoxides 

184 14

4 

40 0.8 

SN2|SN2 >> Direct Acting Epoxides and related|SN2 >> Direct Acting Epoxides 

and related >> Sulfuranes 

3 1 2 0.3 

SN2|SN2 >> Episulfonium Ion Formation|SN2 >> Episulfonium Ion Formation >> 

1,2-Dihaloalkanes 

27 23 4 0.9 

SN2|SN2 >> Epoxidation of Aliphatic Alkenes|SN2 >> Epoxidation of Aliphatic 

Alkenes >> Halogenated polarised alkenes 

14 8 6 0.6 

SN2|SN2 >> SN2 at an sp3 Carbon atom|SN2 >> SN2 at an sp3 Carbon atom >> 

Aliphatic halides 

103 80 23 0.8 

SN2|SN2 >> SN2 at an sp3 Carbon atom|SN2 >> SN2 at an sp3 Carbon atom >> 

Phosphonic esters 

5 0 5 0.0 

 Total = number of  substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   

FP= False positive  ( non-mutagens identified positive by alert) , PPV= Positive Predictivity value  



 

3.4. Conclusion 

This chapter provides detailed analysis of the positive predictions of each structural alert in six 

mutagenicity profilers within the OECD QSAR Toolbox, as compared to experimental 

mutagenicity data from the CCRIS dataset. The analysis of the results from this investigation 

aimed to increase the reliability and accuracy of mutagenicity predictions by these profilers. 

All six mutagenicity profilers showed reasonably acceptable overall sensitivity and specificity 

ranging from the excellent predictive performance of the “Ames test alert by ISS” profiler to 

an acceptable predictive performance with the remaining five mutagenicity profilers. The 

OECD QSAR Toolbox mutagenicity profilers play an important role in read-across from the 

expermintal data to predict mutagenicity for untested compounds. Knowing and investigating 

the accuracy and senstivity of these profilers will highlight which strucutral alerts need to be 

kept or ignored, to improve the overall preformance of the profilers.  

As this study has shown, 28 strucutural alerts were found to be too inaccurate to be used as an 

indicator for mutagenicity and need more refinment and evaluation, these are summarised in 

Table 3.12. The alert “Hacceptor-path3-Hacceptor” in the micronucleus profiler was the 

highest triggered alert amongst the total 28 alerts for 1114 subsatances. The positive 

predicitvity of this alert was too low (30%) and removing this alert may improve the overall 

preformence of the profiler. Similarly, aliphatic tertiary amines in the DNA binding profiler by 

OECD was the second highest alert to be triggered among the 28 alert list. This alert was 

triggered in 219 substances and correctly predicts only 30% of the substances, which raises the 

need to remove it to improve the overall accuracy of the profiler in addition to the other low 

PPV alerts suggested in each profiler in Table 3.12. 
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Table 3.12. A list of 28 structural alerts showing low mutagenicity predictivity among the six 

mutagenicity profilers within the OECD QSAR Toolbox. 

ALERT TOTAL TP FP PPV 

genotox and nongenotox alerts by ISS 

1,3-Benzodioxoles  12 5 7 0.42 

Benzenesulfonic ethers, methylation  13 3 10 0.23 

Halogenated benzenes  82 19 63 0.23 

Substituted n-alkylcarboxylic acids  26 3 23 0.12 

Thiocarbonyls  17 6 11 0.35 

Alkenylbenzenes  17 4 13 0.24 

α,β-unsaturated carbonyls  187 85 102 0.45 

Simple aldehydes 74 28 46 0.38 

DNA alerts for AMES, MN and CA by OASIS 

SN2| Alkylphosphates, Alkylthiophosphates and Alkylphosphonates 47 19 28 0.40 

in vitro mutagenicity (Ames test) alerts by ISS 

Alkenylbenzenes 21 3 18 0.14 

alpha,beta-unsaturated carbonyls 192 84 108 0.44 

Aromatic ring N-oxides 10 4 6 0.40 

Simple aldehydes 33 6 27 0.18 

in vivo mutagenicity (Micronucleus) alerts by ISS 

H-acceptor-path3-H-acceptors 1114 323 791 0.29 

1-phenoxy-benzenes 14 3 11 0.21 

alpha,beta-unsaturated carbonyls 60 28 32 0.47 

Aromatic N-acyl amines 26 10 16 0.38 

Simple aldehydes 33 6 27 0.18 

DNA binding by OASIS v.1.1 
Non-covalent interaction| DNA Intercalators with Carboxamide and Aminoalkylamine Side Chain 32 6 26 0.19 

Radical|Radical >> Radical mechanism via ROS formation (indirect)| Thiols 23 10 13 0.43 

SN2|SN2 >> Alkylation| Alkylphosphates, Alkylthiophosphates and Alkylphosphonates 69 21 48 0.30 

DNA binding by OECD 

Acylation >> P450 Mediated Activation to Acyl Halides| 1,1-Dihaloalkanes 16 4 12 0.3 

Michael addition| >> P450 Mediated Activation of Heterocyclic Ring Systems| Furans 20 7 13 0.4 

Michael addition| >> Polarised Alkenes| Alpha, beta- unsaturated esters 55 9 46 0.2 

Michael addition| >> Polarised Alkenes-| Alpha, beta- unsaturated ketones 24 9 15 0.4 

Schiff base formers >> Direct Acting Schiff Base >> Mono aldehydes 35 15 20 0.4 

SN1|SN1 >> Iminium Ion Formation| Aliphatic tertiary amines 218 69 149 0.3 

SN1|SN1 >> Nitrenium Ion formation| Aromatic phenylureas 10 2 8 0.2 

 Total = number of  substances  flagged  by alert  , TP=  True positive  (mutagens identified positive by  alert) ,   FP= False 

positive  ( non-mutagens identified positive by alert) , PPV= Positive Predictivity value  
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Overall Chapter 3 confirms the need, and value derived from, the study of the suitability and 

merits of each of the alerts within the profilers in the OECD QSAR Toolbox. This is equally 

applicable to other in silico toxicity platforms e.g. knowledge-based expert systems for 

predictive toxicology. These analysis are important to identify possibilities to improve the 

performance of the profilers, as well as to provide estimates of confidence in the alerts. This 

will, by implication, also improve the reliability of chemical read-across and 

grouping/categorisation for classification, labelling and risk assessment.   
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Chapter 4: Identification of the core structural features of genotoxic and non-genotoxic 
carcinogens in cosmetic ingredients using scaffold analysis. 

 

 

4.1. Introduction:  

As described in Chapter 1, safety of cosmetics in Europe is regulated under the Cosmetic 

Regulation (EC) No 1223/2009. The Regulation prohibits the use of any carcinogenic, 

mutagenic and reproductive toxicant (CMR) substances in cosmetic products. The CMR 

classifications can be summarised as follows (see Section 1.4 for more details): 

Carcinogenic 
• Cat. 1A: Known to have carcinogenic potential for humans 
• Cat. 1B:  Presumed to have carcinogenic potential for humans 
• Cat. 2:  Suspected human carcinogen  
 

Mutagenic 
• Cat. 1A:  Substance known to induce heritable mutations in the germ cells of humans 
• Cat. 1B:  Substance to be regarded as if it induces heritable mutations in the germ cells 

of humans 
• Cat. 2:  Substance which causes concern for humans owing to the possibility that it 

may induce heritable mutations in the germ cells of humans 
 

Reproductive toxicants 
• Cat. 1A:  Known human reproductive toxicant 
• Cat. 1B:  Presumed human reproductive toxicant 
• Cat. 2:  Suspected human reproductive toxicant 

 

.As a consequence of the regulatory pressures and ethical considerations discussed in Chapter 

1, the use of alternative testing methods, such as computational toxicology and QSAR 

modelling, have considerably increased for the assessment of toxic hazards (Nendza et al., 

2013; Plošnik, Zupan and Vračko, 2015). At the same time, the incidence of cancer has 

increased by 70% during the last two decades and this has put cancer as the second leading 

cause of mortality worldwide (Stewart and Wild 2017). The use of any carcinogenic chemical 

ingredient in a cosmetic product is considered as of high concern as all personal products 

provide direct exposure to the consumer and a route of emission to the environment. In order 
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to develop in silico models, a mechanistic basis is strongly encouraged. As discussed the 

preceding Chapters 1 and 2, two mechanisms that can initiate cancer – these are based around 

genotoxic and non-genotoxic pathways and these need to be considered for modelling 

purposes.  

In this chapter, the word “scaffold” is used primarily to describe the core structure of 

compounds. This chapter focused mainly on the identification of the core structural “scaffold” 

through which the potential of other (untested) carcinogenic chemical agents may be assessed. 

This chapter encompassed chemical substances with either genotoxic or non-genotoxic 

carcinogenic mechanisms of action. In accordance with the European Cosmetic Regulation, the 

emphasis of this study was to explore QSARs as an alternative (non-animal) method for 

assessment of the potential carcinogenicity for the chemicals that are intended to be used as 

cosmetic ingredients. The QSAR field has seen much progress in the past couple of decades, 

and a number of high quality in silico models, expert systems and read-across tools based on 

both Ames test and experimental rat carcinogenicity test data are now available (Mostrag-

Szlichtyng et al., 2010). In addition to the predictivity (from chemical structure) of the in silico 

models and tools, they also provide very useful information in regard to mechanistic pathways 

or structure-activity relationships (Cronin and Madden, 2011). 

Various structural alerts have also been derived for mutagenicity/carcinogenicity. For example, 

the Benigni-Bossa rules are utilised by various expert systems i.e. Derek Nexus and Toxtree to 

predict the carcinogenicity or mutagenicity of unknown chemicals (Benigni, 2008). On the 

other hand, QSAR based approaches illustrate the relationship between the carcinogenicity of 

the chemicals and physicochemical properties of the molecules such as lipophilicity, electron 

density, etc by linear or non-linear models (Schultz et al., 2006). One of the main examples of 

programmes that use the QSAR approach is Leadscope Model Applier (LSMA) which has been 
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used in this study to generate the main structural scaffolds for grouping of the chemicals 

according to mutagenic/carcinogenic potential. 

A major limitation in using QSAR or structural alerts to predict carcinogenicity is that neither 

of the approaches (structural alerts or QSAR) can link a core structural “scaffold” with the 

ability of a chemical substance to be carcinogenic. Structural alerts mainly depict the outcomes 

of an evaluation linked to functional group(s), whereas QSAR approaches derive estimates 

from a series of similar (analogous) chemicals in their properties and their activity (Kho et al., 

2005). As a result, neither of the approaches can precisely flag the carcinogenic potency when 

it arises from a certain core structural feature (scaffold). Different carcinogenic chemicals may, 

however, share one or more structural features (i.e. the scaffold) contained within the functional 

groups or side chains and the scaffold analysis approach was therefore investigated in this 

Chapter to seek clues to find a link between a compound's chemical structure and potential 

carcinogenicity. For this, the relationship between scaffolds of a range of diverse compounds 

and carcinogenicity (both genotoxic and non-genotoxic) was analysed using a dataset of Ames 

assay for 10,543 compounds from the SAR genotoxicity database, and carcinogenicity data for 

2,870 compounds from the SAR carcinogenicity database both within the Leadscope® 

database (Leadscope.com, 2018). The scaffold generation feature in Leadscope® was utilised 

to generate hierarchical relationships of scaffolds between these compounds and the activities. 

Through analysis of scaffold relationships, lists of the scaffolds with potential mutagenicity or 

carcinogenicity were established. These scaffolds can be used as the basis for predicting the 

carcinogenic potency of new chemicals planned to be used in cosmetic product which helps to 

prevent using potentially carcinogenic chemicals. The knowledge of scaffolds implicated in 

carcinogenic effects may also make it possible to redesign some of the compounds by replacing 

them with non-carcinogenic scaffolds. 
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4.2. Materials and Methods: 

4.2.1: Leadscope SAR carcinogenicity and genotoxicity databases:  

Leadscope SAR carcinogenicity and genotoxicity databases are high-quality data resources that 

can be used to build a predictive model and for the 'read-across' of data for other chemicals to 

determine their potential to be carcinogenic or mutagenic. Both databases contain summarised 

data for in vitro and in vivo cancer and mutagenicity endpoints along with chemical structures. 

These databases are used by the Leadscope program to build predictive models. To ensure 

high-quality data for SAR, analyses of various salt forms of chemical compounds and their 

respective toxicity data have also been carried out to derive an overall endpoint for the active 

portion of the chemical. Several sources of experimental test results have been included in these 

databases, such as from FDA, NTP, CCRIS, CPDB and other primary sources. All chemical 

structures have been provided in SAR in the neutral and, if appropriate, tested form and 

confirmed for accuracy.  

The SAR carcinogenicity database contains 1,948 SAR structures. The database includes 3,598 

compounds with 11,538 test results and provides carcinogenicity study endpoints for male and 

female rats (1,774 and 1,725 compounds respectively) and male and female mice (1,640 and 

1,675 compounds respectively). The SAR genotoxicity database provides compound-level 

calls for 46 genetic toxicity endpoints. These include 32 bacterial mutagenicity endpoints, 4 in 

vitro mammalian, 5 in vitro chromosomal aberration and 6 in vivo micronucleus results. An 

overview of the datasets is presented in Table 4.1. 
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Table 4.1. An overview of the number of compounds and the endpoints total results for both 

SAR genetox and SAR carcinogenicity databases. * = (Number of tests) 

SAR genotoxic database  (10543)* Mutagenic (positive) Non-mutagenic (negative) 

Bacterial mutation 4530 4173 

Salmonella 4235 4180 

In vivo micronucleus 274 912 

SAR carcinogenic database (2870)* carcinogenic (positive) Non-carcinogenic (negative) 

Male rat 745 869 

Female rat  686 892 

 

4.2.2 Scaffold generation feature in Leadscope: 

The scaffold analysis feature for a large dataset of bioactivity values in the Leadscope personal 

Ver 4.4 programme was used in this study to generate hierarchical structuring and visualisation 

of the main carcinogenic scaffolds covering both genotoxic and non-genotoxic mechanisms. 

This feature was also used to navigate and explore the chemical space of different complex 

structures in both the SAR carcinogenicity and SAR genotoxicity databases. The carcinogenic 

scaffolds were extracted by removing all side chains except the linking double bonds and 

exocyclic groups to generate chemically meaningful compound scaffolds. Using the scaffold 

generating parameters, the level of quality of the extracted scaffolds from the database was 

selected by choosing the minimum compounds per scaffold and the minimum atoms per 

scaffold. Choosing higher numbers yields lower number of scaffolds but of higher quality. In 

this study, the criteria used were that a carcinogenic scaffold has to cover at least 10 compounds 

and therefore the minimum compounds number per one scaffold was set to 10, and the same 

number was set for the minimum number of atoms per scaffold.  
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The scaffold generation feature in Leadscope has another advantage in that it arranges scaffolds 

to form a tree of “virtual scaffolds” that are constructed in silico. This tree is built in hierarchical 

arrangement of parent and child scaffolds (see Figure 4.1). The smaller size scaffold (parent), 

which covers a larger number of compounds, yields bigger sized (child) scaffolds that cover 

fewer compounds but have more specificity in terms of activity. Child scaffolds that share the 

same substructure of parent scaffold are usually termed as sibling scaffolds since they are all 

linked to one parent scaffold. 

 

Figure 4.1. A screenshot of the Leadscope program which shows the virtual scaffolds tree in 

hierarchical arrangement of parent and child carcinogenic scaffolds. 

 

In this study, the scaffold generation feature in Leadscope was used to construct a scaffold tree 

of both carcinogenic and mutagenic scaffolds extracted from the SAR carcinogenicity and 

genotoxicity databases. This approach also helped to illustrate any relationship(s) between 

carcinogenicity and mutagenicity scaffolds since visual analysis of the structural relationship 

between parent and child scaffolds was easier using the hierarchical arrangement tree. 
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4.2.3 Cut-offs for Selecting Carcinogenic and Mutagenic Scaffolds: 

Carcinogenicity and mutagenicity values were assigned to each scaffold within a scaffold tree. 

In the case of the SAR carcinogenicity database, this value was defined as the ratio of 

carcinogenic compounds to the total compounds that are contained in that scaffold. While in 

the SAR genotoxicity database, this value was defined as the ratio of mutagenic compounds to 

the total compounds that are contained in that scaffold. Cut-off values were then specified in 

order to select the representative carcinogenicity or mutagenicity scaffold. If the value of 

mutagenicity or carcinogenicity of any scaffold was equal or greater than the cutoff value, it 

was considered as a representative active scaffold (carcinogenicity or mutagenicity) whereas 

the scaffolds less than the cut-off value were defined as non-active (non-carcinogenic or non-

mutagenic). In addition, each scaffold had to cover at least 10 compounds to be selected to the 

scaffold group. The main goal of adjusting the cut-off value was to select the minimum number 

of carcinogenicity and mutagenicity scaffolds that would cover the largest possible number of 

carcinogenic and mutagenic compounds. The ratio of activity (carcinogenicity or mutagenicity) 

(C1/S), where C1 represent total active compounds (carcinogenic or mutagenic) and S 

represent the number of active compounds that contain this scaffold, was adjusted to be 0.7 

based on selection criteria discussed above. All the values between 0.7-0.3 were considered 

equivalent while values below 0.3 were considered as non-active scaffolds (non-

carcinogenicity or non-mutagenicity). 

On the other hand, the non-active compounds’ ratio was also adjusted to select the minimum 

number of non-active (non-carcinogenicity or non-mutagenicity) scaffolds that would cover 

maximum number of non-active compounds. The ratio of non-activity (C2/S), where C2 

represent the total non-active compounds (non-carcinogenic or non-mutagenic) and S  

represent the number of non-active compounds that contain this scaffold, was adjusted to be 

0.7 based on selection criteria discussed above, which is equal to 0.3 in ratio of activity.  
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All scaffolds that were equal or more than the activity ratio (0.7) in carcinogenicity and equal 

or more than activity ratio (0.7) in mutagenicity and covered more than 10 structures were 

classified as genotoxic carcinogenicity scaffolds. On the other hand, all scaffolds that are more 

than or equal to activity ratio (0.7) in carcinogenicity and less than or equal to non-activity ratio 

(0.3) in mutagenicity were classified as non-genotoxic carcinogenicity scaffolds. 

4.3. Results and Discussion: 

The aim of the study presented in this chapter was to investigate the relationship between 

structural scaffolds and carcinogenicity or mutagenicity for diverse chemical substances using 

experimental data from the SAR carcinogenicity and genotoxicity database. A scaffold is 

defined as “fixed part of a molecule, on which functional group or other side chain can be 

substituted or changed” (Hsu et al., 2016). The experimental toxicity data on which this 

analysis was based included the results of both genotoxic and non-genotoxic carcinogenicity 

studies.  

Through application of stringent selection criteria, 17 carcinogenicity scaffolds (C/S scores 

greater than or equal to 0.7), 21 mutagenicity scaffolds (C/S scores greater than or equal to 0.7), 

and 7 non-mutagenicity scaffolds (C/S scores lower than or equal to 0.3) were identified. Each 

scaffold has two values: score-1 for carcinogenicity obtained from the SAR carcinogenicity 

database and score-2 for mutagenicity obtained from the SAR genotoxicity database. Some 

scaffolds showed a high carcinogenicity score with the absence of a mutagenicity scaffold(s) 

obtained from SAR genotoxicity database confirming that the mode of action was non-

genotoxic carcinogen.   

To determine the main structural features for carcinogenicity the structure-activity 

relationships for the 17 carcinogenic scaffolds were examined. Any structural similarity or 

common features in the carcinogenic scaffolds were grouped together and a scaffold tree was 
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build. Of the 17 carcinogenic scaffolds, 12 scaffolds shared the same structural feature(s) and 

were categorised into three groups 1) phenanthrenes, 2) 9H- fluorene and 3) nitronaphthalene. 

The other five carcinogenic scaffolds were listed as a separate (fourth) group.  

All children scaffolds listed under these three main groups met the selection criteria - i.e. they 

had carcinogenicity scores equal or greater than 0.7, and covered more than 10 compounds. 

The fourth group, which contained five parent scaffolds with no children scaffolds, comprised 

anthracene-9,10-dione, benzidine, 1-methylnaphthalene, estradiol and 5-methylbenzodioxole. 

The statistics concerning the carcinogenicity value and the number of compounds covered by 

the scaffold are shown in Table 4.1. The analysis demonstrated that it is highly probable that 

any chemical structure containing one of these carcinogenic scaffolds would induce 

carcinogenicity regardless of the attached functional group or side chain to the scaffold.  

In the following section, the structural feature(s) of all of the carcinogenicity scaffolds are 

discussed in detail and their classification based on mode of action (genotoxic or non-genotoxic) 

is presented at the end of the chapter. 
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4.3.1 Major carcinogenicity scaffold (1): Phenanthrene:  

In the SAR carcinogenicity database, more than 70% of compounds containing phenanthrene 

as the main core structure were carcinogenic. 86% of these compounds (in 108/125) were tested 

carcinogenic in female rat. Phenanthrene was, therefore, considered one of the major 

carcinogenic scaffolds. The scaffold tree for phenanthrene consists of six child scaffolds 

(shown in Table 4.2). These were: (2) tetraphene, (3) benzo[pqr] tetraphene, (4) chrysene, (5) 

3a,5a-dihydropyrene, (6) 1,2,2a,3a,tetrahydrochryseno[3,4-b]oxirene and (7) methyl-

phenantherene. All of the child scaffolds were considered as major carcinogenic scaffolds 

because all compounds containing these scaffolds were carcinogenic with a carcinogenicity 

value more than 0.7. From the total of 48 compounds containing tetraphene, 100%, were 

carcinogenic in both female and male rats. For the other compounds containing scaffolds the 

carcinogenicity value were as follows:  benzo[pqr] tetraphene (100%, 16/16) , chrysene (100%, 

37/37),   3a,5a dihydropyrene (100%, 43/43), tetrahydrochryseno oxirene (100%, 11/11) and 

methyl phenantherene (100%, 12/12). 
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Table 4.2. First major carcinogenic scaffolds (phenanthrene) with six child scaffolds identified 

from the SAR carcinogenicity database (includes both genotoxic and nongenotoxic 

mechanisms) that are equal or more than 0.7 c/s ratio.*F: female rat M: male rat. 

Phenanthrene 
Frequency: 125   C/S:  M:0.7, F:0.86 

 
Frequency: 48 
C/S: M:1, F:1 

Frequency: 16 
C/S: M:1 , F:1 

Frequency: 37 
C/S: M:1 , F:1 

Frequency: 43 
C/S : M:1 , F:0.7 

 
tetraphene 

 

benzo[pqr] tetraphene 
 

chrysene  

3a,5a dihydropyrene 

Frequency: 11 
C/S : M:1 , F:1 

Frequency: 12 
C/S : M:1 , F:1 

 

1,2,2a,3a,tetrahydrochryseno[3,4-b]oxirene 

 

 

4 methylphenanthene 
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The differences between the parent scaffold of phenantherene and its children scaffolds were: 

three of the children scaffold, tetraphene, chrysene and 3a,5a dihydropyrene, have an additional 

benzene ring compared to the parent scaffold. The fourth child scaffold, benzo[pqr]tetraphene, 

has additional two benzene rings, the fifth child scaffold, tetrahydrochryseno oxirene, has an  

additional oxirene group, and the sixth child scaffold methyl phenantherene had an additional 

methyl group compared to the parent scaffold. 

Phenanthrene and chrysene have been found in some cosmetic ingredients such wood tar 

(SCCNFP, 2003). They have also been used by ship-builders and sailors for a long period of 

time as wood preservative because they have disinfectant properties (SCCNFP, 2003). A 

typical wood tar preparation contains polyaromatic hydrocarbons (PAHs) such as phenanthrene 

and chrysene that are classified as highly genotoxic compounds and classified as Category 3 

mutagens in the EU i.e. substances that cause concern for human health owing to possible 

mutagenic effects (EU, 2002).  According to the EU Scientific Committee on Cosmetic and 

Non-Food Products (SCCNFP), using wood tar in cosmetic products can pose a high risk to 

the consumer health because of the highly genotoxic carcinogen compounds such as 

phenanthrene, chrysene and other polycyclic aromatic hydrocarbons (PAHs). It has also been 

found that wood tar and its preparations could present a high risk of skin cancer in humans 

because they may form a DNA adduct in the skin. In addition, wood tar and its preparations 

may induce benign and malignant tumours in mouse skin (SCCNFP, 2003).  

However, wood tar preparation is also used as a psoriasis treatment and different types of wood 

tar, based on different sources, may show differing genotoxicity activity (SCCNFP, 2003). For 

example, juniper tar (cade oil) was found to form DNA adduct by covalent binding in both 

human and mouse skin. This was found both in human biopsy samples from psoriasis treated 

patients with juniper tar, and in skin and lung cells of mice treated with juniper tar. On the other 
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hand, pine tar resin has not been found to be genotoxic in the Ames test and did not induce any 

mutations in S. typhimurium (SCCNFP, 2003). 

4.3.2 Major carcinogenicity scaffold (2): 9H-Fluorene  

This study considered 9H-fluorene as the second major carcinogenicity scaffold on the basis 

of analysis of SAR carcinogenicity database as more than 70% of fluorene containing 

compounds, from a total of 22 compounds, were positive in the carcinogenicity test. The 9H-

fluorene parent scaffold consists of two carcinogenic child scaffolds that were found in more 

than 10 compounds and were carcinogenic in more than 70% of these compounds. In Table 

4.3, the structural relationship between the parent 9H-fluorene scaffold and the two 

carcinogenic children scaffold is shown. The first of those two carcinogenicity child scaffolds, 

9H-fluorene-2amine was present in 16 compounds and 100% of these compounds were 

carcinogenic. It can be observed that 9H-fluorene-2-amine has an added amino group compared 

to the parent scaffold 9H-fluorene. Interestingly, the addition of an amino group led to 25% 

increase of carcinogenicity compared to the parent scaffold 9H-fluorene. 100% of compounds 

containing the other carcinogenicity child scaffold, fluoranthene, in 16 compounds were 

carcinogenic. Fluoranthene has an added benzene ring compared to the parent scaffold 9H- 

fluorene. The addition of a benzene group increases the carcinogenicity rate by 30% compared 

to 70% in parent scaffold 9H-fluorene. Fluorene containing compounds, such as like coal tar, 

are prohibited to be used in cosmetic products according to European regulation (EC) No 

1223/2009. 

The Chronic Exposure of 9H-fluorene in rats was evaluated . A group of 18 female Buffalo 

strain rats, 0.9 months of age, were fed 0.05% fluorene in the diet for 18 months (total average 

intake, 2553 mg/rat), and surviving animals were killed at 20.1 months; the average age /at/ 

autopsy was 19 months. Tumours reported were one uterine carcinosarcoma, one uterine 

fibrosarcoma, one granulocytic leukemia, and four pituitary adenomas (IARC, 1983). In a 
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control group of 18 rats, 3.5 months of age, fed a basal diet for an average of 15.5 months, one 

uterine adenocarcinoma, two uterine fibro-epithelial polyps, five adrenal cortical adenomas, 

six pituitary adenomas, and one inguinal region fibroma were reported (IARC, 1983). 

Table 4.3. Second major carcinogenic scaffolds (9H-Fluorene) with two child scaffolds 

identified from the SAR carcinogenicity database (includes both genotoxic and nongenotoxic 

mechanisms) that are equal or more than 0.7 c/s ratio.*F: female rat M: male rat. 

9H-Fluorene 
Frequency: 22 C/S : M:0.7F:0.7 

 

 
Frequency: 13 
C/S : M:1 , F:1 

Frequency: 16 
C/S: M:1, F:1 

 

9H-fluorene- 2amine 

 

Fluoranthene 
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4.3.3 Major carcinogenicity scaffold (3): Nitronaphthalene:  

The third major carcinogenicity scaffold was 2-nitronaphthalene, 80% of the total 28 

compounds with the nitronaphthalene core structure were carcinogenic. This high probability 

of carcinogenicity of any compound with nitronaphthalene as its core structure means it should 

be avoided in any cosmetic product intended to be manufactured. 2- Nitronaphthalene is a by-

product of the commercial preparation of 1-nitronaphthalene which is synthesised by the action 

of a mixture of nitric and sulfuric acids on finely ground naphthalene (Verschueren, 1985). 1,6-

Dinitopyrene and 5-nitro-1,2-dihydroacenthylene are two examples of structures containing 

the 2-nitronaphthalene scaffold as part of their structure. These two compounds were positive 

in carcinogenicity tests in both male and female rats.  

Carcinogenic aromatic amines and nitro compounds are metabolised to “activated” 

intermediates generally believed to be responsible for producing tissue alterations (Miller and 

Miller, 1969). N-Oxidation of l- and 2-naphthylamine and nitro reduction of l- and 2-

nitronaphthalene may lead to identical N-oxy intermediates which have been shown to be 

carcinogenic and/or mutagenic in several in vitro and in vivo studies (Crabtree et al., 1991). 

The nitronaphthalene scaffold consists of one carcinogenicity child scaffold, namely 

nitropyrene (see Table 4.4). Nitropyrenes were present in 13 compounds and have a 

carcinogenicity rate of 0.8 in female rats. The nitropyrene has additional two benzene rings 

attached to the parent nitronaphthalene scaffold. The additional two benzene rings in child 

nitropyrene scaffold did not change the carcinogenicity level compared to the parent 

nitronaphthalene scaffold since the carcinogenicity level were still 80% in female rat. 
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Table 4.4. Major carcinogenic scaffold (nitrophthalene) with one child scaffold identified from 

the SAR carcinogenicity database (includes both genotoxic and nongenotoxic mechanisms) 

that are equal or more than 0.7 c/s ratio.*F: female rat M: male rat. 

Nitronaphthalene 
Frequency: 28 C/S : M:0.8, F:0.6 

 
 

Frequency: 13 
C/S: M:0.5, F:0.8 

 

Nitropyrene 

 

 

4.3.4 Major carcinogenicity scaffold (4): five groups without child scaffolds:  

The fourth major carcinogenicity group consisted of five carcinogenic scaffolds with no child 

scaffold (see Table 4.5). These five scaffolds were anthraquinone, benzidine, 1-methyl 

naphthalene, estradiol and methylbenzodioxole.  
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Table 4.5. Main 5 carcinogenic scaffolds with no child scaffold identified from the SAR 

carcinogenicity database (includes both genotoxic and nongenotoxic mechanisms) that are 

equal or more than 0.7 C/S ratio.*F: female rat M: male rat. 

 

Other carcinogenic scaffolds with no child scaffolds 
Frequency: 16 

C/S: M:0.7, F:0.8 
Frequency: 24 
C/S: M:0.7, F:0.7 

Frequency: 42 
C/S: M:0.8, F:1 

Frequency: 18 
C/S: M:0.8, F:0.8 

 

 
Anthraquinone 

 

 
benzidine 

 
1-methyl naphthalene 

 
(Estradiol) 

3methyl-decahydro-
cyclopenta-phenanthrene 

Frequency: 10 
C/S: M: 0.8, F:1 

 
 

5-methylbenzodioxole 
 
 

 
 

 

4.3.4.1: Anthraquinone carcinogenic scaffold :  

The anthraquinone scaffold was present in 16 compounds as part of their structure with a 

carcinogenicity rate of 70% and 80% in male and female rat respectively. 1-Amino-2-

methylanthraquinone (C.I disperse orange 11) and (C.I. disperse blue 1) are two examples of 
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compounds that contain the anthraquinone scaffold in SAR carcinogenicity database as the 

main core structure and were positive in carcinogenicity tests in both male and female rats. In 

cosmetic products, anthraquinone hair dyes are used mainly within semi-permanent and 

temporary hair dyes. Acid blue 62 is one example of a chemical with the anthraquinone moiety 

used as a temporary hair dye that can cause a wide range of toxicities including increase in 

kidney weight, increased aminotransferase and decrease body weight (SCCP, 2005). Table 4.6 

lists the most used hair dyes that contain anthraquinone as a core structure along with a list of 

side effects in male and female rat that have been noted in the SCCP Opinions.  

The International Agency for Research on Cancer (IARC, 2013) stated that anthraquinone 

increased the incidence of both benign and malignant neoplasms in rat in a 2 year study. In 

female rats treated with anthraquinone the tumours were noted as renal tubular adenoma of 

kidney, hepatocellular adenoma, and urinary bladder papilloma of transitional epithelial cell. 

In experimental animal tests, kidney and urinary bladder tumours and hepatoblastoma are rare. 

The metabolism of anthraquinone has been investigated mainly in rat and there are insufficient 

data in humans (IARC, 2013). The absorption of anthraquinone occurred completely after oral 

administration and distributed systemically with no sign of accumulation in any specific organ. 

The most important metabolites of anthraquinone in rodents relevant to mechanistic 

considerations for anthraquinone (parent molecule) are 1-and 2-hydroxyanthraquinones.  
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Table 4.6. The main anthraquinone hair dyes and SCCS opinions on carcinogenicity and the 

maximum allowed limit in hair dyes. ↑ = elevation (increase in level), ↓ = (lowering), ♀ = 

female , ♂ = male 

 Structure Compound 
Name 

Adverse effects used to derive LO(A)EL within SCC(NF)P 
and SCCS opinions 

1 

N H 2

N H 2

O

O

 

Disperse 
Violet 1 

↑ Centrilobular/Midzonal hepatocyte hypertrophy↑ 
Triglycerides (♀)↑ Cholesterol↓ Motor activity 
Based on the information provided, the SCCS is of the 
opinion that the use of Disperse Violet 1 in semi-permanent 
hair dye formulations at a maximum concentration of 0.5% 
does not pose a risk to the health of the consumer, apart 
from its moderate skin sensitising potential. 

2 
S

O

O
O H

N

O

O

N

S

O

O

OH

 

Acid Green 
25 

↑ Kidney weight 
Acid Green 25 is proposed for use in semi-permanent hair 
dye formulations as a direct dye at a maximum 
concentration of 0.3% in the finished cosmetic product. 
The SCCS is of the opinion that the use of Acid Green 25 as 
a non-oxidative hair dye with a maximum on head 
concentration of 0.3% does not pose a risk to the health of 
the consumer. 

3 

O

O N H 2

NH

S

O

O
O H

 

Acid Blue 62 ↑ Kidney weight ↑ Liver weight↑ Ptyalism↑ Tubular 
nephrosis↑ Centrilobular hepatocyte hypertrophy↑ Blood 
Urea↑ Albumin↑ Cholesterol↑ AAT↓ Body weight↓ 
Glucose 
The SCCS opinion is not available 

4 

N
+

C H
3

O
–

O

O

NH

O  

Hydroxyanthr
aquinone 
Aminopropyl 
Methyl 
Morpholinium 
Methosulfate 

↓ Absolute thymus weight (♀)↓ Body weight (♂)↓ Relative 
thymus weight 
The SCCS is of the opinion that the use of 
Hydroxyanthraquinone aminopropyl methyl 26 
morpholinium methosulfate with a maximum concentration 
of 0.5% in non-oxidative hair 27 dye formulations does not 
pose a risk to the health of the consumer, apart from its 28 
sensitising potential. 

5 

C H
3

O H

O

O

NH

S

O

O

OH

 

Acid Violet 
43 

↑ PT ↑ APTT 
The SCCP is of the opinion that the information submitted 
is inadequate to assess the safe use of the substance as a hair 
dye. 
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In mutagenicity tests, anthraquinone itself showed conflicting results. In early studies, neither 

anthraquinone nor its metabolites showed any genotoxicity in the Salmonella mutagenicity test 

(Salamone et al., 1979). I However, in later studies, anthraquinone was shown to be mutagenic 

in the Salmonella bacterial mutagenicity test (Zeiger et al., 1988). The conflicting results in 

negative studies were due to the variable amounts of contaminants resulting from the 

production method, the contaminants included 9-nitroanthracene, anthrone and phenanthrene 

and it was concluded that they were non mutagenic or weakly mutagenic (NTP, 2005). On the 

other hand, the major anthraquinone urinary metabolite (2-hydroxyanthraquinone) was clearly 

mutagenic, and another major metabolite, 1-hydroxyanthraquinone, was carcinogenic in rats 

(Mori et al., 1990). 

The mechanism by which anthraquinone can cause carcinogenicity is not clearly recognised. 

However, in male and female rats treated with anthraquinone, it has been noted in kidney and 

urinary bladder that there was an increased cell proliferation and cytotoxicity. An accumulation 

of hyaline droplets, which is indicator for nephropathy, in male rat kidney has been observed, 

with less severe effects in female rats (IARC working group, 2013). 

There is some recent evidence that genotoxicity may play a role in the mechanism of action for 

anthraquinone-induced cancer (NTP, 2005).  

4.3.4.2: Benzidine carcinogenicity scaffold: 

The second non-child scaffold carcinogenicity within the fourth group was benzidine (see 

Figure 4.2) that was present in 24 compounds. The carcinogenicity rate for benzidine was 70% 

in both male and female rats. 

Benzidine is known to be a human carcinogen based on sufficient evidence of carcinogenicity 

from studies in humans (NTP, 2016a).  All benzidine based azo dyes, 4,4'-diarylazobiphenyl 
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dyes, with the exception of those specified elsewhere in Annex I to Directive 67/548/EEC, are 

prohibited to be used in cosmetic product in Europe. 

 

Figure 4.2. Chemical structure of benzidine  

 

A strong relationship between the occupational exposure to benzidine and urinary bladder 

cancer has been reported (IARC, 2010). The association has been reported by different research 

workers in different labs, as well as by a number of epidemiological studies that include both 

case reports and cohort studies (IARC, 2010). Additionally, epidemiological studies have 

shown that when measures were taken to reduce exposure to benzidine in the workplace, there 

was a decrease in the number of cases of bladder cancer amongst the workers (IARC, 1972, 

1982, 1987, 2010). 

Although there are few studies on exposure to benzidine in occupational environments where 

workers were not exposed simultaneously to other types of chemicals, some studies indicate 

that increases in the percentage of urinary bladder cancer are associated with increased length 

of exposure to benzidine (IARC, 1982). There is limited and inconclusive evidence from other 

studies on the possibility of benzidine causing other types of cancer in tissues other than urinary 

bladder, such as cancers of liver, kidney, oral cavity, central nervous system, oesophagus, 

larynx, stomach and gall bladder (Choudhary, 1996). Benzidine was listed and reviewed by 

IARC as a carcinogen in the first annual report of the agency (IARC, 2010). 

At the level of laboratory experiments on animals, there is sufficient evidence that there is a 

link between cancer and exposure to benzidine. The type of cancer is different depending on 
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the type of animal and the method of laboratory injection. For example, injection of animals 

with benzidine under the skin causes liver cancer in mice and Zymbal-gland tumours in rats. 

When the animals were exposed orally to benzidine, female rats were diagnosed with 

mammary gland cancer, liver cancer in rats and urinary bladder cancer in dogs. Rats injected 

with benzidine into the peritoneum membrane were diagnosed with Zymbal-gland tumours and 

mammary gland cancer (NTP, 2016a). 

The mechanism of benzidine to cause cancer has been studied in detail. It includes formation 

of electrophilic compounds that bind through covalent bond to DNA after the metabolism of 

benzidine by cytochrome P450 (via N oxidation) (Choudhary, 1996). Benzidine also caused 

DNA mutations in various experimental test system both in vivo and in vitro. The exception to 

this was for cultured rodent cells where benzidine gave conflicting results, it causes DNA 

mutation in bacteria, plants, yeast, cultured human and rodents exposed in vivo. The damage 

caused by benzidine to DNA includes DNA strand break, micronucleus formation, 

chromosomal aberration and mitotic gene conversion (in yeast). In humans, according to the 

National Toxicology Program (NTP 2016a), the chromosomal aberration rate in white blood 

cells in workers that were exposed to benzidine or dyes that contain benzidine as main 

constituent was relatively higher than those who were not exposed.  

4.3.4.3: Methyl naphthalene carcinogenicity scaffold: 

The third non-child carcinogenicity scaffold was methyl naphthalene. Methyl naphthalene was 

present in 40 compounds as part of the structure. The carcinogenicity rate for methyl 

naphthalene was 80% and 100% in male and female rat respectively. The National Toxicology 

Program (NTP, 2000) concluded that there was clear evidence of carcinogenic activity of 1-

methylnaphthalene in male and female F344/N rats based on increased incidences of 

respiratory epithelial adenoma and olfactory epithelial neuroblastoma of the nose. Nearly all 

rats in all exposure groups showed nonneoplastic nasal lesions in both olfactory and respiratory 
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epithelia, including atypical hyperplasia in olfactory epithelium, hyaline degeneration in 

olfactory and respiratory epithelia, and Bowman’s gland hyperplasia (NTP, 2000). 

 

4.3.4.4: Estradiol carcinogenicity scaffold : 

The fourth non-child carcinogenicity scaffold was estradiol. Estradiol was present in 18 

compounds for which the carcinogenicity rate was 80% in both male and female rats. 

Studies have shown that the natural estradiol hormone, known as 17β-estradiol (E2), can induce 

tumours in humans, including breast and uterine cancer (Patisaul and Jefferson, 2010). The 

risks of breast and uterine cancer are increased by either endogenous elevation of estradiol 

level, or by external sources that increase the estradiol level, such as oestrogen medication or 

cosmetic products that contain oestrogen as an ingredient or contaminant. Tumour induction 

by estradiol has been shown in different organs of rats, mice and hamsters (Liehr, 2000).   

Compounds that mimic the estradiol hormone in both steroidal and non-steroidal forms have 

been found in different cosmetic products such as creams and shampoos (Kurzer and Xu, 1997). 

Most of these oestrogens are phytoestrogens derived from plants such as soya. Phytoestrogens 

have certain health benefits in terms of lowering the risk of heart disease, lowering the 

menopausal symptoms and osteoporosis in women. However, many of these compounds are 

also considered as endocrine disruptors and could be a possible source of adverse health effects. 

For those people who are using oestrogen containing compounds for long periods of time, or 

in case of children, these compounds may increase the risk of certain cancers due to increase 

in the endogenous oestrogens than the normal levels (Patisaul and Jefferson, 2010). 

In September 1993, the US FDA issued a decision that all hormone containing products used 

on the skin or topically, and sold over the counter (OTC) without a prescription, are not fully 

safe and effective (Accessdata.fda.gov, 1993). 
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The estradiol mechanism of causing carcinogenicity is considered to be a non-genotoxic 

mechanism (epigenetic) as these compounds show negative results in mutagenicity tests in 

bacterial cells i.e. the Ames test and mammalian cell assays. It has been proposed that there is 

a dual role of oestrogen to induce carcinogenicity which includes the stimulation of cell 

proliferation and induction of genetic damage as a pro-carcinogen (Feigelson and Henderson, 

1996). Oestrogen is metabolically converted by catalysation of 4-hydroxylase (CYP1B1) to 4-

hydroxyestradiol and then further activated to yield a reactive intermediates 

semiquinone/quinone that can initiate tumours. All these substances, oestrogen, 4-

hydroylestradiol and quinone induce DNA damage by a free radical mediated mechanism, 

directly and indirectly, and this has been shown both in in vitro or in vivo cell systems (Li and 

Li, 1990). Other chromosomal and genetic damage can also be caused by oestrogen which 

includes chromosomal aberration, microsatellite instability, gene amplification and aneuploidy 

in both in vitro and in vivo cell systems (Jackson, Chen and Loeb, 1998; Tsutsui and Barrett, 

1997; Liehr, 2000). 

Estradiol is classified as carcinogen based on biological studies in animal and epidemiological 

studies in humans. In a small group of animals, it was noticed that the tumours were induced 

after using pharmacological dose of estradiol. In humans, the risk of breast and uterine cancer 

was increased due to the elevation of circulating estradiol level caused either by elevation of 

endogenous production or by therapeutic medication (IARC,1999). 
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4.3.4.5: Methylbenzodioxole carcinogenicity scaffold : 

The fifth non-child carcinogenicity scaffold was methyl benzodioxole. Methyl benzodioxole 

was present in 10 compounds with a carcinogenicity rate of 80% and 100% in male and female 

rat respectively. Examples of structures containing methyl benzodioxole scaffold are safrole 

and isosafrole (as shown in Figure 4.3). 

 

 

Figure 4.3. Isosafrole structure is an example of a positive carcinogenic compound in rat that 

contains methylbenzodioxole as the core structure 

 

Safrole has been used in cosmetics such as soaps and perfumes, it also has been used as 

flavoring agent in drug manufacturing and as preservative in mucilages. In the food industry, 

oil of sassafras has been used as flavouring agent in some beverages such as root beer (IARC 

1972, 1976; HSDB 2009). In 1960, the US FDA banned any use of safrole in food and listed it 

as a carcinogen in the Second Annual Report on Carcinogens. Liver tumours are reported to be 

caused by safrole by two different methods of administration in two rodent species. The 

administration of safrole through diet caused liver cancer in male mice and both rat sexes. Oral 

gavage of safrole followed by dietary exposure was shown to cause liver cancer in mice of both 

sexes. Infant male mice were shown to have liver cancer when injected with safrole 

subcutaneously (NTP, 2016b).  
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4.3.5: Major genotoxic and non-genotoxic scaffolds: 

A molecular scaffold analysis was carried out to classify all 17 previously identified 

carcinogenicity scaffolds as to whether they are genotoxic or non-genotoxic using the 

structures within the Leadscope SAR Genetox Database. The Leadscope SAR Genetox 

Database comprises the results for 10,543 mutagenicity tests. In addition, the SAR Genetox 

Database provides mutagenicity test results for 46 genetic toxicity endpoints, which includes 

32 bacterial mutagenicity, 4 in vitro mammalian, 5 in vitro chromosomal aberration and 6 in 

vivo micronucleus endpoints. The scaffold analysis of the SAR Genetox Database identified in 

28 main mutagenicity scaffolds and 7 main non-mutagenicity scaffolds. The resulting scaffolds 

met the cut-off criteria - i.e. the C/S ratio greater than or equal to 0.7 and present in at least 10 

compounds. For scaffolds associated with mutagenicity, the mutagenicity ratio criterion was 

set to be more than or equal to 0.7, whilst for non-mutagenicity scaffolds the mutagenicity ratio 

not to exceed 0.3 (in other word the non-mutagenicity ratio should be more than or equal to 

0.7) as shown in Tables 4.7 and 4.8. The selection from those mutagenicity and non-

mutagenicity scaffolds was only for those scaffolds that are cross-referenced with the previous 

17 carcinogenicity scaffolds to confirm whether the carcinogenicity scaffolds were related to 

mutagenicity or non-mutagenicity pathways. If a scaffold (mutagenicity or non-mutagenicity) 

resulting from the SAR Genetox Database did not match one of the previous 17 carcinogenic 

scaffolds, then it was not added to the final list of scaffolds (genotoxic carcinogenic and non-

genotoxic carcinogenic scaffolds). For those carcinogenic scaffolds that are not cross- 

referenced with mutagenic scaffolds, a further manual scaffold search within the SAR Genetox 

database experimental results was conducted (shown in Table 4.7). The cut-off in Leadscope 

was set at 70% as to whether it was related to genotoxicity or non-genotoxicity. The 

mutagenicity scaffold also had to cover at least 10 compounds, the minimum compounds 

number per one scaffold was assigned to 10 and the same number was assigned for the 
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minimum number of atoms per scaffold.  

Of the 28 scaffolds associated with mutagenicity, five matched with  carcinogenicity scaffolds 

group automatically by Leadscope. These were chrysene, 9H-fluorene, anthraquinone, 2-

nitronaphthalene and phenanthrene. The mutagenicity C/S scores for these five scafolds were 

0.96 out of 124 compounds for chrysene, 0.85 out of 72 compounds for 9H-fluorne, 0.86 out 

of 159 compounds for anthracene-9,10-dione, 0.96 out of 132 compounds for 2-

nitronaphthalene and 0.95 out of 579 compounds for phenenethrene. This implied that these 

were scaffolds related to genotoxic carcinogenicity. The five mutagenic scaffolds that matched 

carcinogenicity scaffolds are highlited in blue in Table 4.7. The analysis showed 18 

mutagenicity scaffolds did not overlap with carcinogenicity scaffolds but were highly 

significant as mutagenicity scaffolds. Conversely, the scaffold analysis for the absence of 

mutagenicity resulted in only seven non-mutagenic scaffolds. Only one carcinogenicity 

scaffold matched with this group, which was for estradiol, and that was also negative in the 

mutagenicity tests for all of 21 related compounds with a mutagenicity score of 0 as shown in 

Table 4.8. The previous scaffold analysis was performed in the Leadscope software in 

automatic mode which can miss some of the muagenicity scaffolds that may not be present in 

large enough number of compounds. Therefore, a manual check for mutagenicity scaffolds in 

the expermintal mutagenicity results was performed to further ensure that there was no missing 

scaffold that was not detected. The manual check resulted in six additional mutagenicity 

scaffolds that matched with the 17 carcinogenic scaffold list. These scaffolds are highlighted 

in yellow in Table 4.7. The scaffolds are 1-methyl naphthalene, tetraphene, 3a,5a-

dihydropyrene, methylphenanthene, benzidine and a new additional mutagenic carcinogenicity 

scaffold - diethylaniline. The mutagenicty score for these scaffolds were 0.84 out of 992 

compounds for 1-methylnaphthalene, 0.93 out of 139 compounds for tetraphene, 0.71 out of 
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21 compounds for 3a,5a-dihydropyrene, 0.87 out of 64 compounds for methylphenanthene, 

0.93 out of 87 compounds for benzidine and 0.7 out of 100 compounds for diethylaniline.  

 

4.4 : Conclusions:  

The main findings and conclusions of this study showed that a total 17 molecular scaffolds 

associated with carcinogenicity could be identified from the available databases (Tables 4.2, 

4.3, 4.4 and 4.5). Of these, 11 were genotoxic carcinogenicity related and included structures 

such as anthraquinone, phenanthrene, benzidine, 2- nitronaphthalene, 9H-fluorene, chrysene, 

diethylaniline, 1-methylnaphthalene, tetraphene, 3a,5a-dihydropyrene and 

methylphenanthrene. The single non-genotoxic carcinogenicity related scaffold that could be 

identified through this study was estradiol, whilst other six carcinogenicity scaffolds did not 

have supporting experimental data for mutagenicity. All of the children carcinogenicity 

scaffolds that were derived from the three major groups of parent carcinogenicity scaffolds 

were also related to carcinogenicity. The parent carcinogenic scaffolds were phenanthrene, 9H 

fluorene, 2-nitronaphthalene. The fourth scaffolds had no child scaffold.  These findings will 

be useful in identifying the presence of any carcinogenicity related scaffold in a cosmetic 

ingredient or drug candidate compound and will provide the opportunity to replace them with 

a safer moiety at early stages of the lead optimisation and further development. A new scaffold 

based profiler which includes these 17 carcinogenic scaffolds as a starting point is suggested. 

This new suggested profiler should be in the form of molecular scaffolds since it is supported 

by animal data.  
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Table 4.7. The most significant 28 mutagenic scaffolds from the Leadscope SAR Genetox 
database (      =scaffolds matched carcinogenic list and its mutagenicity score obtained by 
Automatic generation from the software),      = scaffolds matched carcinogenic list and its 
mutagenicity score obtained by manual search through the SAR genotoxicity database) 

Frequency: 10 
C/S: Mutagen:1 

Frequency: 16 
C/S: Mutagen:1  

Frequency: 23 
C/S: Mutagen:1 

Frequency: 11 
C/S: Mutagen:1 

 
1-nitroanthracene 9,10-dione 

 

 
Dihydrobenzoacephenanthrylene 

 
 

Dihydrobenzo pyrene  
9H-thioxy-9-one 

Frequency: 25 
C/S: Mutagen:1 

Frequency: 10 
C/S: Mutagen:1 

Frequency: 27 
C/S: Mutagen:1 

Frequency: 38 
C/S: Mutagen:1 

 
imidazoquinoxaline 

imidazoquoline 
 

phenazine 

 

 
aceanthrylene 

Frequency: 38 
C/S: Mutagen:1 

Frequency: 152 
C/S: Mutagen:1 

Frequency: 266 
C/S: Mutagen: 0.9 

Frequency: 124 
C/S: Mutagen: 0.96 

 
acenaphthylene 

 
Acridine  

anthracene 
 

Chrysene 
 
 

Frequency: 72 
C/S: Mutagen:0.85 

Frequency: 38 
C/S: Mutagen:1 

Frequency: 38 
C/S: Mutagen:1 

Frequency: 1129 
C/S: Mutagen:0.8 

 

 
9H-fluorene 

 

 

 
1,4 dioxacycloudecane-5,11dione 

 

 
nitrobenzene 

 

Naphthalene 
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Frequency: 100 
C/S: Mutagen:0.7 
*C/S: Carcinogen: 0.7 of 17 
substance 

Frequency: 38 
C/S: Mutagen:1 

Frequency: 159 
C/S: Mutagen:0.86 

Frequency: 38 
C/S: Mutagen:1 

 

 
diethylaniline 

 
 

 
quinoxaline 

 

anthraquinone 

 

1-benzylaziridine 
Frequency: 159 
C/S: Mutagen:0.86 

Frequency: 132 
C/S: Mutagen:0.96 

Frequency: 579 
C/S: Mutagen:0.95 

Frequency: 992 
C/S: Mutagen:0.85 

 

tetrahydophenanthrooxirene 
 

 
2-nitronaphthalene 

 

 
phenanthrene  

1-methyl naphthalene 

Frequency: 139 
C/S: Mutagen:0.93 

Frequency: 21 
C/S: Mutagen:0.71 

Frequency: 64 
C/S: Mutagen:0.87 

Frequency: 87 
C/S: Mutagen:0.93 

tetraphene 

 

3a,5a dihydropyrene  

methylphenanthene 

 

 

benzidine 
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Table 4.8. The most 7 significant non-mutagenic scaffolds from SAR Genetox database: 

(      =scaffolds matched carcinogenic list and its mutagenicity score obtained by Automatic 

generation from the software) 

Frequency: 21 
C/S: Mutagen: 0 

Frequency: 38 
C/S: Mutagen:0.1 

Frequency: 12 
C/S: Mutagen:0.1 

Frequency: 38 
C/S: Mutagen:0.86 

 

Estradiol) 

3methyl-decahydro-
cyclopenta-phenanthrene 

 

 
dimethylhexanediamine 

 

 
1-methyl-

4(trifluromethyl)benzene 

 

 
 

N-methyl-3-(trifluromethyl) 
aniline 

Frequency: 10 
C/S: Mutagen:0.1 

Frequency: 41 
C/S: Mutagen:0.09 

Frequency: 68 
C/S: Mutagen:0.1 

 

 
dodecahydrophenanthrene 

 

 
octahydophenanthrene 

 

 
 

Trifluromethyl benzene 
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Table 4.9. The molecular scaffolds of the major genotoxic and non-genotoxic carcinogens 

groups  

The scaffold structures of major genotoxic carcinogens scaffold groups 

 
Anthraquinone  

phenanthrene 
 

benzidine 

 
2-nitronaphthalene  

9H-fluorene 
 

 

 
 
 

Chrysene 
 

 

 
diethylaniline 

 
1-methyl naphthalene 

 
tetraphene 
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3a,5a-dihydropyrene 

 

 
methylphenanthene 

 

The scaffold structures of major non-genotoxic carcinogens scaffold groups 

 
Estradiol 
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Chapter 5: Assessment of the Profilers Provided in the OECD QSAR Toolbox for Category 
Formation of Carcinogenic Chemicals 

 

5.1 Introduction 

In the previous chapters, several methods for searching and evaluating structural alerts for non-

genotoxic carcinogens were reviewed. This chapter will focus on the performance of the 

profilers provided in the OECD QSAR Toolbox for category formation on the basis of the 

mutagenic, carcinogenic and skin sensitisation potential of chemical substances. In this regard, 

the use of in silico methods based on read-across (i.e. from the properties and effects of a group 

of structurally and/or functionally similar substances to an untested compound) will be 

discussed.  

Under most regulatory frameworks, tests for carcinogenicity are only required when there is 

either a positive in vitro mutagenicity/gentoxicity test, or there are indications of carcinogenic 

effects from long-term in vivo tests. The ban on animal testing under the EU Cosmetic 

Regulation, and the absence of appropriate alternative methods, make it is likely that the 

potential carcinogenic effects of non-genotoxic carcinogens will not be the identified in the 

current risk assessment scheme. This is where in silico methods, including (Q)SAR modelling 

and read-across, can play a major role in relation to grouping/categorisation of chemicals to 

identify potential NGCs. The concept behind the grouping approach is based on the notion that 

'similar substances usually have similar effects'. Based on the number of substances used for 

read-across, different terms are used to describe the process - e.g. a category approach is used 

when a large number of substances within a group has been used for read-across, whereas an 

analogue approach is used where limited number (usually one-to-one) of substances have been 

used (EChA, 2017). The grouping approach aims to identify substances that are similar in terms 

of chemical structure, and/or effects with (where possible) high quality data for a given 

physiochemical, toxicological, or environmental endpoint. At the physicochemical level, the 
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factors considered for grouping could be the similarities in chemical structure, functional 

group(s); (metabolic) degradation profiles, or other parameters such as log P, protein binding, 

etc. When sufficient 'similarity' criteria are met in a set of chemical substances that follow a 

regular pattern, it can be considered a 'category' of substances. 

The European Chemicals “REACH” Regulation encourages the use of grouping and 

categorisation of chemicals for classification, risk assessment and labelling purposes. Some of 

the data gaps in this regard can be filled using read-across, which aims to interpolate 

experimental data from tests conducted on a one or more 'similar' substances termed as 

reference substances(s) or source substances(s) to other untested substances termed as target 

substances(s). The data for the endpoint in question for the target substance(s) are predicted 

using the experimental data for the same endpoint of the source substance(s). Since each 

endpoint has a different set of complexities, e.g. with regard to the biological target site or other 

key parameter(s), it is essential to consider read-across on an endpoint-by-endpoint basis 

(EChA, 2017). 

There is a growing body of knowledge regarding how to undertake and report read-across 

assessment, with many learnings taken from well-established case studies (Ball et al. 2016; 

Schultz and Cronin 2017). There are several strong themes that run through the use of read-

across for data gap filling. For instance, scientific justification and documentation for read-

across is fundamentally required to strengthen its use in chemical grouping/categorisation. The 

structural or other similarities between the target and the source substances need to be described 

clearly to justify the read-across. Explanation of the rationale for the prediction of target 

substance properties/effects from the data on source substance(s) also needs to be provided for 

each specific endpoint. For a valid read-across for regulatory purposes, it is essential to provide 

accurate information on the substance identity and chemical composition (including impurity 

profile) to assist the evaluation of the similarities within the group of substances. The activity 
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or toxicity of substances may also differ for different forms or phases of substances (e.g. 

different valence, crystalline or particulate forms), and this requires evidence to show that the 

substance used in the read-across are representative of the structure/activity aspects used a basis 

for grouping, categorisation and risk assessment. In the first place, each substance used in read-

across needs to have a specific chemical identity, as well as sufficient characterisation data in 

relation to purity/ impurity profiles to allow derivation of a meaningful read-across.  

Furthermore, similarity(ies) between target and source substances are not necessarily 

represented by structural similarity alone. Other aspects of chemistry (and biology) also need 

to be assessed to build a robust read-across case. Such aspects include the presence of common 

functional groups, similarities in the core structure, bonding patterns, structural alerts for a 

particular activity, stereoisomerism, potential difference that may arise from steric hindrance 

or specific reactivity, etc (Cronin, 2013). It is also essential for a read-across argument that 

differences in structure and properties are defined and understood. 

Certain physicochemical properties of both target and source substances that are relevant to the 

endpoint (e.g. log P, molecular weight, vapour pressure) also need to be clearly understood as 

they may play an important role in the read-across of a specific toxicological endpoint (EChA, 

2013; Cronin, 2013). Chemical read-across is generally consolidated using data from all 

available sources, including from the scientific literature and predictive QSAR models. 

Information on the mode of action can be established from the mechanistic data or other 

methods (e.g. data from omics methods). In order to rationalise the recording of properties and 

effects, templates have been created for their storage that can act as a guide for developers as 

well as allowing for the easy assessment of a read-across (Schultz et al. 2015). 

It needs to be highlighted that read-across is not only used for positive prediction of toxicity. 

The approach can also be used to predict the absence of toxicity, however a negative prediction 

may require more proof to support the level of confidence as compared to positive predictions. 
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The proof is required to ensure that the absence of toxicity of the source substances implies the 

absence of toxicity of the target substance(s). The reduction of uncertainties to allow for the 

prediction of “no or low” toxicity needs to be considered and addressed to avoid the potential 

underestimation of the positive toxicity of target substances. The use of read-across, along with 

other in silico methods, such as SAR/QSAR modelling, is also increasingly used in a “weight 

of evidence” approach that may further incorporate information from Adverse Outcome 

Pathways (AOPs). Thus, all elements relating to interaction of a chemical with the exposed 

biological system are included in the analysis. Schultz et al. (2017) demonstrated that increased 

evidence was required for the read-across of the toxicity of compounds – in this case n-alkanols 

– that were considered to be of low toxicity and utilising various sources of information could 

reduce uncertainty.  

As the use of read-across has become more mainstream, the definition of 'similarity' has 

evolved to include physicochemical, structural, mechanistic and/or metabolic similarity 

(Schultz and Cronin, 2017). In order for read-across to be valid, a robust category of analogues 

must be derived from the available datasets. A valuable tool for achieving this is the OECD 

QSAR Toolbox, which is a freely available multifunctional platform that allows the users to 

make informed decisions about toxicity predictions for a range of (eco)toxicological endpoints 

(Schultz et al., 2018). As part of the process of identifying a set of analogues for read-across, 

the Toolbox allows the user to apply structural alerts as in the form of computational “profilers”. 

For many relevant toxicological endpoints, there are one or more profilers that are designed to 

aid this process – these may be based around chemistry e.g. covalent binding to DNA or be 

mechanistically or toxicologically derived. The target compound is first subjected to profiling, 

and then the profile(s) is used to screen for compounds in the databases with the same or similar 

mechanistic, toxicological and/or structural profiles. The analogues found this way are reduced 
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to those that have measured values for the specific endpoint(s) of interest and therefore provide 

a basis prediction of the endpoint value of the target compound.  

The OECD QSAR Toolbox is widely used platform for chemical grouping/categorisation and 

estimation of chemical toxicity by in silico methods and read-across. Despite the increasing 

reliance of risk assessors on the Toolbox, attempts have only recently started to assess the 

reliability and limitations of the profilers provided in the system (Devillers et al., 2011; 

Mombelli, 2012; Yordanova et al., 2019). As part of the current study, it was felt that such an 

assessment of the profilers was necessary to understand the usefulness and limitations of their 

use in screening databases for analogous compounds that can be used subsequently for read-

across or development of (Q)SAR models. The aim of this chapter, therefore, was to investigate 

the OECD QSAR Toolbox profilers for mutagenicity, carcinogenicity and skin sensitisation 

potential of chemical substances, in the context of how reliably they report both positive and 

negative compounds contained within the databases for these endpoints. 
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5.2: Materials and Methods 
 

5.2.1 The OECD QSAR Toolbox 

The OECD QSAR Toolbox (referred to herein as the “Toolbox”) is a software application 

intended to be used to fill gaps in toxicity and ecotoxicity data needed for to assess the hazards 

of chemicals. The Toolbox incorporates databases on chemical data (e.g. properties), 

experimental toxicological and ecotoxicological data, estimated values from a large range of 

QSAR tools, together with incorporated QSAR models, built within an informatics chassis 

designed for regulatory application. The Toolbox therefore allows the user to perform a number 

of functions (OECD 2008): 

• Identification  of analogues for a chemical, retrieval of experimental results available 

for those analogues and data gap filling by read-across or trend analysis; 

• Categorisation of large inventories of chemicals according to mechanisms or modes of 

action; 

• Filling of data gaps for a chemical by using appropriate model(s) from the collection of 

QSAR models; 

• Evaluation of the robustness of a potential analogue for read-across; 

• Evaluation of the appropriateness of a (Q)SAR model for filling a data gap for a 

particular target chemical; and 

• The capability of building QSAR models. 

For this study version 3.1 of the Toolbox was used throughout. The version of the Toolbox 

used had been augmented with a number of extra publicly available databases (as detailed 

below). 
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5.2.2. Profilers 
 

The following profilers in the Toolbox (version 3.1) were applied to the datasets described in 

Section 5.2.3. 

 

5.2.2.1 Mutagenicity profilers 

 

5.2.2.1.1. DNA binding by OASIS v1.1. This profiler is a mechanistic profiler developed from 

an analysis of Ames mutagenicity data. It contains a number of structural alerts that have been 

shown to be related to established electrophilic reaction chemistry known to be important in 

covalent DNA binding (Mekenyan et al. 2004; Serafimova et al. 2007). 

 

5.2.2.1.2 DNA binding by OECD. This profiler is based on structural alerts for the electrophilic 

reaction chemistry associated with covalent DNA binding (Enoch and Cronin 2010). The 

profiler returns a range of structural alerts that contain electrophilic centres or those that can be 

metabolically activated to electrophiles. 

 

5.2.2.1.3 Carcinogenicity (genotox and nongenotox) alerts by ISS. This profiler is based on a 

list of 55 structural alerts from the Toxtree software (http://toxtree.sourceforge.net/). About 20 

of the alerts are for non-genotoxic carcinogenicity, and the remainder for genotoxic 

carcinogenicity (mutagenicity). 

 

5.2.2.1.4 DNA alerts for AMES, MN and CA by OASIS v.1.1 is a refinement of 2.2.1.1 above. 

 

http://toxtree.sourceforge.net/
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5.2.2.1.5 In vitro mutagenicity (Ames test) alerts by ISS. The list of structural alerts is a subset 

of the original Toxtree list, obtained by eliminating the structural alerts for non-genotoxic 

carcinogenicity and is a refinement of 2.2.1.3 above. 

 

5.2.2.1.6 In vivo mutagenicity (Micronucleus) alerts by ISS. This profiler is based on the 

ToxMic rule-base of the software Toxtree. This rule-base provides a list of 35 structural alerts 

(SAs) for a preliminary screening of potentially in vivo mutagens. These SAs are molecular 

functional groups or substructures that are known to be linked to the induction of effects in the 

in vivo micronucleus assay. 

 

5.2.2.2 Carcinogenicity profilers 

5.2.2.2.1. DNA binding by OASIS v1.1. As above. 

5.2.2.2.2. DNA binding by OECD. As above. 

5.2.2.2.3 Carcinogenicity (genotox and nongenotox) alerts by ISS. The SAs for carcinogenicity 

are molecular functional groups or substructures known to be linked to the carcinogenic activity 

of chemicals. As one or more SAs embedded in a molecular structure are recognised, the 

system flags the potential carcinogenicity of the chemical. 

5.2.2.2.4. OncoLogic Primary Classifier. This profiler consists of molecular definitions derived 

by the Toolbox developers to mimic the structural criteria of chemical classes of potential 

carcinogens covered by the U.S. Environmental Protection Agency’s OncoLogic™ Cancer 

Expert System for Predicting the Carcinogenicity Potential 

(www.epa.gov/oppt/sf/pubs/oncologic.htm). 

 

http://www.epa.gov/oppt/sf/pubs/oncologic.htm
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5.2.2.3 Skin Sensitisation profilers 

5.2.2.3.1 Protein binding by OASIS.  

These profilers have been developed to indicative of skin sensitisation potential and consist of 

85 structural alerts relating to 11 reactions, or chemical interactions, which are known to be 

associated with skin sensitisers. 

 

5.2.2.3.2. Protein Binding by OECD 

The protein binding by OECD profiler contains 16 mechanistic alerts covering 52 structural 

alerts. These data are supported by mechanistic chemistry and references to the scientific 

literature (the meta data). They represent a parallel approach to those of the OASIS profiler 

and capture mechanistic features of target compounds. 

 

5.2.2.3.3 Protein binding potency 

This profiler is developed on the basis of empirical data for thiol reactivity expressed by the in 

chemico RC50 value. All the chemicals have two common electrophilic mechanisms of 

interaction with GSH – interaction via SN2 and interaction via Michael addition (MA) 

mechanism. The profiler contains 49 MA and 46 SN2 categories 

 

5.2.2.3.4 Keratinocyte gene expression 

This profiler is built in relation to the database derived from the KeratinoSens assay, which 

examines the potential for chemicals to induce the expression of a luciferase reporter gene 

under control of a single copy of the ARE element of the human AKR1C2 gene stably inserted 

into immortalised human keratinocytes. Relevance to skin sensitisation is inferred from the 
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relationship of Keap1-Nrf2-ARE regulatory pathway and its detection of electrophilic 

chemicals to sensitisation. The profiler contains 22 categories. 

 

5.2.2.3.5 Protein binding alerts for skin sensitisation by OASIS 

This profiler seems to be much the same as the one at 2.2.3.1 above though there are some 

minor differences. 

 

5.2.2.3.6 DPRA Lysine peptide depletion 

This profiler is built on the basis of data derived from Direct Peptide Reactivity Assay (DPRA). 

The DPRA is a reactivity assay which evaluates the ability of chemicals to react with proteins. 

Model synthetic peptides containing either lysine or cysteine are used. The remaining 

concentration of cysteine- or lysine-containing peptide is measured after 24 hours incubation 

with the test chemical at 25±2.5ºC. The peptide reactivity is reported as percent peptide 

depletion. The relevance to skin sensitisation is the presence of cysteine and lysine residuals in 

the skin proteins.  

The profiler contains 24 structural alerts extracted from about 110 chemicals with 

experimentally measured lysine depletion values. 

 

5.2.2.3.7 DPRA Cysteine peptide depletion. 

As described above, this profiler contains 32 categories of alerts. 
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5.2.3. Databases 

A number of intrinsic Toolbox databases were examined using the profilers as well as some 

additional databases from publicly available sources. This involved running the compounds 

with known data and experimental values against the profilers and determining the hits. The 

following databases of experimental toxicity data were examined: 

 

5.2.3.1 Bacterial mutagenicity ISSSTY 

This database was donated to the OECD QSAR Toolbox by the Istituto Superiore di Sanità 

(ISS), Rome, Italy. The database comprises 41,634 Ames test data points for 7,367 compounds. 

The overall endpoint value (positive, negative, equivocal, inconclusive) outcome is determined 

as described in the help file:  

• Positive: at least one strain is positive (with or without metabolic activation);  

• Equivocal: no strain is positive, and at least one equivocal result is present in one of the 

following strains (with or without metabolic activation): TA1535, TA100, TA98, TA1538, 

TA1535, TA97;  

• Negative: no positive or equivocal results are present in any strain, and negative outcomes 

exist for: a) at least one strain from among TA1535 or TA100 or TA97 (with and without 

metabolic activation); and b) at least one strain from among TA1538 or TA98 or TA1537 

(with and without metabolic activation);  

• Inconclusive: If none of the above criteria are fulfilled. When more than one experiment in 

one strain was available, the number of reported positive and negative studies was counted, 

and the strain overall outcome was determined as follows: if the percentage of Positive 

studies is lower than 40 %, then outcome = Negative; if the percentage of Positive studies 
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is between 40 - 60 %, then outcome = Equivocal; if the percentage of Positive studies is 

higher than 60 %, then outcome = Positive. 

In order to record the data in a binary (positive/negative) form to allow for easy analysis of 

the profilers’ predictivity, only positive and negative outcomes were included. The 

equivocal outcomes, which were for 168 compounds, were excluded from the analysis. 

The number of compounds which showed an overall positive outcome in all strains was 

2,847 and the total number with negative outcomes was 4,352. 

 

5.2.3.2 Carcinogenicity and mutagenicity (ISSCAN) 

This database was also donated by the Istituto Superiore di Sanità (ISS), and comprises 6,979 

data points for 1,150 compounds. There are three endpoints for which data are presented; gene 

mutation, summary carcinogenicity, and TD50. The TD50 data were not used in this current 

study. Gene mutation data in Ames are reported in the same way as in the previous database, 

and a single datum point is available for each of the 832 compounds. Summary carcinogenicity 

data are represented as “positive”, “negative” or “equivocal”. Positives are carcinogenic in at 

least one experimental group; equivocal results are given to chemicals with equivocal results 

in at least one experimental group, together with negative results in the other experimental 

groups, and negatives are non-carcinogenic in all tests. Only positive and negative carcinogenic 

compounds were included in the analysis. Equivocal carcinogenic outcomes were excluded 

from the analysis.  
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5.2.3.3 Genotoxicity OASIS 

Donated by The Laboratory of Mathematical Chemistry, Bourgas, Bulgaria. 

The OASIS Genotox Database contains 7,500 compounds collected from seven sources. It 

contains data for mutagenic determined by the Ames test with and without metabolic activation. 

The database also includes chromosomal aberrations determined by in vitro tests using Chinese 

hamster lung cells (CHL, with and without S9). Micronucleus (MN) and mouse lymphoma 

gene mutation assay (MLA) were evaluated by Chinese hamster lung cells (CHL / IU) and by 

in vitro T-lymphoma cell lines, respectively. All endpoints were evaluated on a dichotomic 

scale, i.e.  yes (active) or no (inactive). Data used in this study were the Ames test data, and 

chromosomal aberration as the Toolbox has profilers for these endpoints. 

 

5.2.3.4 CRD-AGES 

Data from the UK Chemicals Regulatory Directorate and the Austrian Agency for Health and 

Food Safety, comprising 179 pesticides with mutagenicity data and 100 with carcinogenicity 

data (Worth et al. 2010). Mutagenicity data are binary active/inactive from Ames tests and 

carcinogenicity were also binary (active/inactive) from a range of tests. 

 

5.2.3.5 DSS Pesticide carcinogenicity 

Summary carcinogenicity data for 1,282 pesticide compounds from the US EPA National 

Center for Computational Toxicology, (http://www.epa.gov/ncct/dsstox/index.html). 

 

 

 

http://www.epa.gov/ncct/dsstox/index.html
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5.2.3.6 SAR carcinogenicity and genotoxicity databases: 

These are high-quality data resources that can be used for building a predictive model, and for 

the 'read-across' of chemicals to find out their potential to be carcinogenic or mutagenic. Both 

databases contain summarised in vitro and in vivo cancer and mutagenicity endpoints along 

with chemical structures. These databases are used by Leadscope program to build predictive 

models. To ensure the high quality data for SAR, structure form, analysis of various salt forms 

of chemical compounds and their respective toxicity data have also been carried out to derive 

an overall endpoint for the active portion of the chemical. Several sources of experimental test 

results have been included in these databases, such as from FDA, NTP, CCRIS, CPDB and 

other primary sources. All chemical structures have been provided in SAR, neutral and tested 

form, and confirmed for accuracy.  

The SAR carcinogenicity database includes 3,598 compounds with 11,538 test results and 

provides carcinogenicity study endpoint for male and female rats (1,774 and 1,725 compounds 

respectively) and male and female mice (1,640 and 1,675 compounds respectively). The SAR 

genotoxicity database provides compound-level calls for 46 genetic toxicity endpoints for 

10,534 compounds. These include 32 bacterial mutagenicity endpoints, four in vitro 

mammalian, five in vitro chromosomal aberration and six in vivo micronucleus results.  

 

5.2.3.7 EFSA Pesticides Mutagenicity 

Ames test active/inactive classifications for 741 pesticides, compiled by, and downloaded from 

the European Food Safety Authority. 
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5.2.3.8. NISS mutagenicity database 

A database of 1,863 compounds with binary active/inactive Ames test data. Downloaded from 

the US National Institute of Statistical Sciences, (https://www.niss.org/) 

 

5.2.3.9. Inchemicotox Skin Sensitisation 

A version of the Cronin and Basketter dataset (Cronin and Basketter 1994) from the 

Inchemicotox project (http://www.inchemicotox.org/), comprising 322 compounds, with 

results taken from the Guinea Pig Maximisation Test. The classification is derived from the 

percentage of animals sensitised in the test: non-sensitiser = 0-9%, weak sensitiser = 10-29%, 

moderate sensitiser = 30-79%, strong sensitiser = 80-100%.  

In order to record the data in a binary (senstiser/non-senstiser) form to allow for easy analysis 

of the profilers’ predictivity, only strong senstiser (80-100%) and non-senstiser (0-9%) 

outcomes were included. The weak and moderate senstiser outcomes were excluded from the 

analysis. The number of compounds which were classified as strong senstisers was 200 and as 

non-senstisers was 122. 

 

 

5.2.3.10. CAESAR Skin Sensitisation 

209 compounds from the EU CAESAR project (www.caesar-project.eu). For developing 

classification models, this data set was subdivided in two classes, sensitiser (S) and non-

sensitisers (N), which gave a good distribution of the numbers of compounds in each class. The 

class S merges the first four ranges established by ECETOC: Extreme (EC3<0.1%), Strong 

(0.1%<EC3<1%), and Moderate (1%<EC3<10%) and Weak (EC3>10%) ranges; the class N 

regroups all compounds belonging to the non-sensitisers.  

https://www.niss.org/
http://www.inchemicotox.org/
http://www.caesar-project.eu/
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5.2.3.11. ECETOC Skin sensitisation 

39 compounds with experimental results on skin and respiratory sensitisation. The compounds 

were selected as known sensitisers and non-sensitisers for the assessment of novel test 

techniques (http://www.ecetoc.org/technical-reports). 

 

5.2.3.12 OECD Skin Sensitisation 

1,036 compounds from two databases and includes chemicals tested by Local Lymph Node 

Assay (LLNA) or Guinea Pig Maximisation Test (GPMT). Based on the observed skin 

sensitisation effect the chemicals are classified in three classes: - strong sensitisers, weak 

sensitisers or non-sensitisers.  

In order to record the data in a binary (senstiser/non-senstiser) form to allow for easy analysis 

of the profilers’ predictivity, only strong senstiser and non-senstiser (0-9%) outcomes were 

included. The weak outcomes were excluded from the analysis. The number of compounds 

which were classified as strong senstisers was 430 and as non-senstisers was 488. 

 

5.2.3.13 Lazar Opentox Rat Carcinogenicity  

Lazy Structure-Activity Relationships (LAZAR) is an open-source tool for the prediction of 

complex toxicological endpoints such as carcinogenicity (female/male, hamster/ 

mouse/rat/rodent) and Salmonella mutagenicity. The compounds were selected from database 

of experimental toxicity data. Carcinogenicity models are based on the CPDB, while the 

Salmonella mutagenicity model uses a dataset of 3,895 compounds determined in vitro  

(https://lazar.in-silico.de/predict). 

5.2.3.14 VEGA carcinogenicity 

http://www.ecetoc.org/technical-reports
https://lazar.in-silico.de/predict
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The VEGA platform serves to access a number of QSAR models for predicting mutagenicity 

and carcinogenicity. The compounds were selected from a set of 4,225 molecules tested in the 

Ames bacterial test and for carcinogenicity compounds were selected from a set of 805 

chemicals from the Carcinogenic Potency Database (CPDB). 

 

5.2.3.15 The Carcinogenic Potency Database (CPDB): 

Data relating to cancer causing chemicals were compiled from the Carcinogenic Potency 

Database (CPDB), which is freely available from (http://toxnet.nlm.nih.gov/cpdb/cpdb.html). 

This database is a widely used and unique international resource comprising the results of 6,540 

chronic, long-term animal carcinogenicity tests on 1,547 chemicals in rats, mice, dogs, 

hamsters and non-human primates.  

 

 

5.2.4 Data analysis 

The compounds in the databases (Section 5.2.3) were profiled using the appropriate profilers 

(Section 5.2.2). 

For each compound, if any alert was triggered, the compound was allocated a score of 1, if no 

alerts were triggered, a score of 0 was allocated. The results were compared with the assigned 

binary activities from the original database (positive=1; negative=0). 

Cooper statistics (Cooper et al., 1979) were used to assess the results against the experimental 

values given in the databases, by calculating the sensitivity, specificity and accuracy of the 

alert triggers as follows: 
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Sensitivity (True positive rate) = TP/ TP+FN 

Specificity (True negative rate)      =   TN/TN+FP 

Accuracy = (TN+TP)/(TN+FP+FN+TP) 

MCC = (TPxTN)-(FPxFN)/√(TP+FN)(TP+FP)(TN+FN)(TN+FP) 

PPV (Positive predictive value) or (precision) = TP/ TP+FP 

Where TP=True positive, TN=True negative, FP=False positive, FN=False negative 

 

Sensitivity is defined as the percentage of correctly classified positive predictions among the 

total number of positive instances. 

Specificity is the percentage of correct negative predictions compared to the total number of 

negatives. 

Accuracy (concordance or “Q”) is defined as the total number both positive and negatives 

correctly predicted among the total number of compounds. 

PPV (positive predictive value) is defined as the total number of correctly classified positive 

predictions among the total number of both negative and positive instance. 

MCC (Matthews correlation coefficient) is a weighted value that overcomes any imbalance in 

the data classes which might lead to over optimistic values of Q (Matthews, 1975). An MCC 

value of 1 indicates that the model can predict the data classes of unknown compounds 

perfectly, whilst a MCC value of 0 indicates that the predictions are no better than random 

guessing, and a MCC value of -1 indicates total disagreement between the predicted data and 

the actual data. 
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5.3: Results and discussion: 

The results of the assessment of the profilers against the experimental data for mutagenicity, 

carcinogenicity and skin sensitisation are shown in Tables 5.1, 5.2 and 5.3 respectively. Further 

detailed analysis was undertaken to identify over-predictive structural alerts in the 

carcinogenicity profilers i.e. the Precision or PPV (positive predictive value) is lower than 0.5. 

This analysis was performed to determine structural alerts with little information or predictive 

capability to increase the sensitivity and overall accuracy of the profiler. Detailed analysis of 

13 non-genotoxic carcinogenicity structural alert was conducted and is presented in Table 5.4. 

An additional analysis for the Oncologic Primary Classification carcinogenicity profiler was 

performed for 30 structural alerts included in the profiler. The purpose of this analysis was to 

assess which structural alerts had a precision PPV (positive predictive value) lower than 0.5. 

This analysis is presented in Table 5.5. 

The cut-off for value was set to be 0.5. This was to ensure that none of these profilers will have 

lower predictivity power as compared to Ames test. It is known that the Ames Test has been 

applied to predict rodent carcinogenicity. The high predictive power of a positive Ames ranges 

from 77% to 90% depending on the various factors. This makes it superior to any other in vitro 

genotoxicity assay, all of which have lower performance in terms of predicting genotoxicity 

(Kazius et al., 2006). 
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Table 5.1. Cooper statistics for the mutagenicity profilers in the Toolbox assessed against 
databases. 
Profiler DNA 

binding by 
OASIS v.1.1 

DNA 
binding by 
OECD 

genotox and 
nongenotox 
alerts by ISS 

DNA alerts 
for AMES, 
MN and CA 
by OASIS 

Ames test 
alerts by 
ISS 

Micronucleus 
alerts by ISS 

Bacterial mutagenicity  (ISSSTY) 

Sensitivity  0.76 0.76 0.87 0.64 0.84 0.95 

Specificity  0.65 0.59 0.55 0.77 0.63 0.28 

Accuracy (Q) 0.69 0.65 0.67 0.72 0.71 0.53 

MCC  0.56 0.45 0.56 0.62 0.66 0.32 

Micronucleus (OASIS) 

Sensitivity  0.56 0.58 0.69 0.41 0.58 0.89 

Specificity  0.58 0.53 0.42 0.71 0.57 0.18 

Accuracy (Q) 0.57 0.55 0.55 0.57 0.57 0.51 

MCC  0.16 0.12 0.12 0.13 0.16 0.10 

Micronucleus (ISSSTY) 

Sensitivity  0.51 0.54 0.61 0.36 0.50 0.78 

Specificity  0.62 0.55 0.50 0.79 0.68 0.21 

Accuracy (Q) 0.56 0.54 0.56 0.54 0.58 0.54 

MCC  0.13 0.08 0.11 0.16 0.18 -0.01 

Genotox OASIS (Ames) 

Sensitivity  0.76 0.74 0.85 0.62 0.82 0.95 

Specificity  0.63 0.56 0.52 0.78 0.62 0.22 

Accuracy (Q) 0.70 0.65 0.69 0.70 0.72 0.58 

MCC  0.51 0.38 0.50 0.53 0.59 0.27 

Genotox (OASIS CA) 

Sensitivity  0.59 0.62 0.70 0.44 0.58 0.83 

Specificity  0.66 0.61 0.50 0.80 0.66 0.28 

Accuracy (Q) 0.62 0.61 0.61 0.61 0.62 0.57 

MCC  0.28 0.25 0.22 0.28 0.26 0.13 

Mutagenicity (ISSCAN) 

Sensitivity  0.80 0.78 0.86 0.62 0.82 0.95 

Specificity  0.68 0.61 0.54 0.83 0.72 0.28 

Accuracy (Q) 0.74 0.69 0.69 0.73 0.76 0.59 

MCC  0.48 0.40 0.41 0.46 0.54 0.30 

SAR Gentox Database 

Sensitivity  0.70 0.70 0.83 0.51 0.81 0.90 

Specificity  0.69 0.55 0.57 0.85 0.66 0.33 

Accuracy (Q) 0.72 0.63 0.70 0.86 0.74 0.62 

MCC  0.39 0.26 0.41 0.38 0.48 0.27 

Sensitivity = True positive rate; Specificity = True negative rate; MCC = Matthews Correlation Coefficient,  
= Specificity below 0.5 
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Table 5.2. Cooper statistics for carcinogenicity profilers in the Toolbox assessed against 
databases. 

Profiler DNA binding by 
OASIS v.1.1 

DNA binding by 
OECD 

Carcinogenicity 
(genotox and 
nongenotox) alerts 
by ISS 

Oncologic Primary 
Classification 

DSS Pesticide Carcinogenicity 

Sensitivity  0.64 0.65 0.80 0.73 

Specificity  0.60 0.54 0.54 0.44 

Accuracy (Q) 0.62 0.60 0.68 0.60 

MCC  0.24 0.19 0.36 0.18 

CRD-AGES Carcinogenicity 

Sensitivity  0.45 0.42 0.68 0.66 

Specificity  0.67 0.58 0.49 0.30 

Accuracy (Q) 0.58 0.52 0.57 0.44 

MCC  0.12 0.00 0.17 -0.05 

VEGA Carcinogenicity 

Sensitivity  0.64 0.64 0.81 0.72 

Specificity  0.57 0.54 0.52 0.42 

Accuracy (Q) 0.61 0.59 0.68 0.59 

MCC  0.22 0.18 0.34 0.15 

ISSCAN Carcinogenicity 

Sensitivity  0.62 0.62 0.79 0.73 

Specificity  0.58 0.52 0.51 0.38 

Accuracy (Q) 0.60 0.57 0.64 0.54 

MCC  0.20 0.14 0.31 0.11 

CPDB Carcinogenicity 

Sensitivity  0.60 0.63 0.78 0.73 

Specificity  0.61 0.55 0.53 0.43 

Accuracy (Q) 0.61 0.58 0.64 0.57 

MCC  0.21 0.18 0.31 0.16 

LAZAR Carcinogenicity 

Sensitivity  0.63 0.65 0.76 0.70 

Specificity  0.65 0.55 0.57 0.46 

Accuracy (Q) 0.64 0.60 0.67 0.59 

MCC  0.28 0.20 0.34 0.17 

SAR carcinogenicity database 

Sensitivity  0.59 0.65 0.75 0.70 

Specificity  0.56 0.51 0.51 0.41 

Accuracy (Q) 0.58 0.60 0.67 0.60 

MCC  0.14 0.15 0.26 0.10 

Sensitivity = True positive rate; Specificity = True negative rate; MCC = Matthews Correlation Coefficient   
= Specificity below  0.5 
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Table 5.3. Cooper statistics for skin sensitisation profilers in the Toolbox assessed against 

databases. 

Profiler Protein 
binding 
OASIS 

DPRA 
Lysine 
peptide 
depletion 

Keratinocyte 
gene 
expression 

Protein 
binding 
potency 

Protein 
binding 
by 
OECD 

DPRA 
Cysteine 
peptide 
depletion 

Protein 
binding 
alerts 
OASIS 
v1.1 

Inchemitox skin sensitisation 

Sensitivity  0.53 0.12 0.19 0.12 0.47 0.22 0.50 

Specificity  0.74 0.94 0.89 0.93 0.79 0.91 0.86 

Accuracy (Q) 0.61 0.43 0.45 0.42 0.59 0.48 0.64 

MCC  0.27 0.10 0.10 0.08 0.25 0.17 0.36 

CAESAR 

Sensitivity  0.72 0.30 0.33 0.19 0.68 0.48 0.71 

Specificity  0.36 0.77 0.73 0.90 0.46 0.55 0.40 

Accuracy (Q) 0.54 0.54 0.54 0.55 0.56 0.52 0.55 

MCC  0.09 0.08 0.07 0.12 0.14 0.03 0.11 

ECETOC 

Sensitivity  0.60 0.30 0.43 0.20 0.63 0.37 0.60 

Specificity 0.80 0.80 0.80 1.00 0.80 0.80 0.80 

Accuracy (Q) 0.65 0.43 0.53 0.40 0.68 0.48 0.65 

MCC  0.35 0.10 0.21 0.24 0.38 0.15 0.35 

OECD Skin sensitisation 

Sensitivity  0.46 0.29 0.31 0.29 0.44 0.33 0.45 

Specificity  0.83 0.86 0.85 0.86 0.83 0.85 0.84 

Accuracy (Q) 0.67 0.58 0.59 0.58 0.66 0.61 0.68 

MCC  0.31 0.18 0.19 0.17 0.30 0.21 0.32 
 

Sensitivity = True positive rate; Specificity = True negative rate; MCC = Matthews Correlation Coefficient 

 

 

 

 

 

= Specificity below  0.5 
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Table 5.4. PPV (positive predictive value) analysis for 13 structural alerts for non-genotoxic carcinogenicity included in carcinogenicity alert 

profiler by ISS in 7 carcinogenicity databases.         = PPV lower than 0.5 and need to be improved or omitted 

N
on

-g
en

ot
ox

ic
 c

ar
ci

no
ge

n 
st

ru
ct

ur
al

 a
le

rt 

 
Alert  

TRUE POSITIVE FALSE POSITIVE 

TO
TA

L 
FP

 

 

TO
TA

L 
TP

 

TO
TA

L 

PP
V

 

SU
G

 

VEGA LAZAR ISSCAN DDS CPDB CRDAG SAR VEGA LAZAR ISSCAN DDS CPDB CRDAG SAR  

PHCA 13 9 19 11 17 0 2 3 0 11 0 7 0 5 26  51 77.0 0.66 K  

BENZD 5 3 7 4 7 0 4 3 0 5 0 4 1 2 15  23 38.0 0.61 K  

TCE 5 4 16 5 10 0 4 1 0 1 0 1 0 1 4  35 39.0 0.90 K  

THCAR 10 1 15 8 11 0 8 8 0 20 0 27 0 7 62  44 106.0 0.42 I 

HALBN 10 10 2 10 4 5 13 15 0 0 0 0 6 8 29  34 63.0 0.54 K  

HALDB 1 2 6 1 4 0 3 1 0 1 0 0 0 1 3  14 17.0 0.82 K  

SACA 3 4 4 5 4 0 4 4 0 9 0 5 0 3 21  15 36.0 0.42 I 

QUERC 1 0 2 1 1 0 1 0 0 4 0 3 0 1 8  5 13.0 0.38 I 

PHTAL 1 2 2 1 3 0 1 1 0 5 0 3 0 2 11  7 18.0 0.39 I 

STERO 4 1 5 0 7 0 8 0 0 1 0 6 0 1 8  24 32.0 0.75 K  

IMIDA 5 3 5 4 6 0 11 6 0 12 0 8 0 2 28  27 55.0 0.49 K  

BENSU 2 2 4 2 4 0 5 0 0 3 0 5 0 1 9  15 24.0 0.63 K  

ALKHL 7 7 13 7 10 1 1 3 0 7 0 6 0 4 20  32 52.0 0.62 K 

TOTAL 67 48 100 59 88 6 65 45 0 79 0 75 7 38 244  326 570.0 0.57 
 

 

PHCA = (Poly)Halogenated Cycloalkanes, BENZD = 1,3-Benzodioxoles,  TCE =Trichloro (or fluoro) ethylene and Tetrachloro (or fluoro) ethylene , THCAR= Thiocarbonyl  , HALBN= Halogenated benzene ,  

HALDB = Halogenated Dibenzodioxone ,  SACA = Substituted n-alkylcarboxylic acids , QUERC = Quercetin type flavonoids ,  PHTAL= Phthalate (or butyl) diesters and monoesters , STERO =Steroidal estrogens  

IMIDA = Imidazole, benzimidazole, BENSU = Benzenesulfonic ethers, ALKHL= Alkyl halides ,SUG = suggestion, I = need to Improve or omit , K= Keep . 
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Table 5.5. PPV analysis for 13 structural alerts for non-genotoxic carcinogenicity included in 

carcinogenicity alert profiler by ISS in 7 carcinogenicity databases.         = PPV lower than 0.5 

and need to be improved or omitted. 

 

N
on

-g
en

ot
ox

ic
 c

ar
ci

no
ge

n 
st

ru
ct

ur
al

 a
le

rt 

ALERT        
TOTAL 

TOTAL 
FP 

 
TOTAL 

TP 
 

ppv SUGGESTION 

(Poly)Halogenated Cycloalkanes  77.0 26 51 0.66 Keep  

1,3-Benzodioxoles  38.0 15 23 0.61 Keep 
Trichloro (or fluoro) ethylene and 
Tetrachloro (or fluoro) ethylene  39.0 4 35 0.90 Keep 

Thiocarbonyl  106.0 62 44 0.42 Improve or omit 

Halogenated benzene  63.0 29 34 0.54 Keep 

Halogenated Dibenzodioxone 17.0 3 14 0.82 Keep 

Substituted n-alkylcarboxylic acids  36.0 21 15 0.42 Improve or omit 

Quercetin type flavonoids  13.0 8 5 0.38 Improve or omit 

Phthalate (or butyl) diesters and monoesters  18.0 11 7 0.39 Improve or omit 

Steroidal estrogens  32.0 8 24 0.75 Keep 

Imidazole, benzimidazole  55.0 28 27 0.49 Keep 

Benzenesulfonic ethers 24.0 9 15 0.63 Keep 

Alkyl halides  52.0 20 32 0.62 Keep 

TOTAL  570.0 244 326 0.57  
PPV after ignoring suggested structural alerts 0.64 
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Table 5.6. PPV analysis of each structural alert in oncologic carcinogenicity profiler through 7 carcinogenicity databases.         = PPV lower than 
0.5 and need to be improved or omitted 
 

O
nc

ol
og

ic
 P

rim
ar

y 
Cl

as
si

fic
at

io
n 

 
ALERT 

TOTAL TOTAL 
TP 

TOTAL 
FP 

PPV SUGGESTION 

Acrylamide Reactive Functional Groups 25 18 9 0.72 Keep  
Acrylate Reactive Functional Groups 50 35 15 0.70 Keep  
Aldehyde Type Compounds 138 80 58 0.58 Keep  
Alkanesulfonoxy Ester Type Compounds 6 3 3 0.50 Keep  
Alkyl Sulfate and Alkyl Alkanesulfonate Type Compounds 28 16 12 0.57 Keep  
Alpha, beta-Haloether Reactive Functional Groups 131 65 66 0.50 Keep  
Aromatic Amine Type Compounds 976 565 413 0.58 Keep  
Arylazo Type Compound 0 0 0 0.00 Keep  
Carbamate Type Compounds 63 22 43 0.35 Improve or omit 
C-Nitroso and Oxime Type Compounds 17 12 5 0.71 Keep  
Coumarine and Furocoumarin Type Compounds|Lactone Type Reactive Functional Groups 3 3 0 1.00 Keep  
Epoxide Reactive Functional Groups 99 63 37 0.64 Keep  
Ethyleneimine Reactive Functional Groups 6 6 0 1.00 Keep  
Halogenated Linear Aliphatic Type Compounds 289 193 96 0.67 Keep  
Halogenated Aromatic Hydrocarbon Type Compounds 241 111 139 0.46 Keep  
Lactone Type Reactive Functional Groups 26 14 12 0.54 Keep  
Nitroalkane and Nitroalkene Type Compounds 52 26 26 0.50 Keep  
Nitrogen Mustards Reactive Functional Groups 18 13 5 0.72 Keep  
Nitrosamine Type Compounds 337 266 71 0.79 Keep  
Nitrosamide Type Compounds 3 3 0 1.00 Keep  
Organophosphorus Type Compounds 126 47 80 0.37 Improve or omit 
Peroxide Type Compounds 11 3 8 0.27 Improve or omit 
Phenol Type Compounds 276 117 159 0.42 Keep  
Polycyclic Aromatic Hydrocarbons - Homocyclic 10 9 1 0.90 Keep  
Reactive Ketone Reactive Functional Groups 21 2 19 0.10 Improve or omit 
Sulfur Mustard Reactive Functional Groups 2 2 0 1.00 Keep  
Sultone Reactive Functional Groups 4 3 1 0.75 Keep  
Thiocarbonyl Type Compounds 56 36 20 0.64 Keep  
Triazene Type Compounds 3 3 0 1.00 Keep  
Urea Type Compounds 10 3 7 0.30 Keep  
TOTAL 3027 1739 1305 0.57  

PPV after ignoring suggested structural alerts 0.593 
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5.3.1 Mutagenicity profilers 

The accuracy (percentage of positives and negatives correctly predicted) of the mutagenicity 

profilers varies across the datasets from 51% to 76%. Clearly 51% is barely better than chance, 

whereas 76% is more acceptable because it is in line with the level of error generally seen in 

measured data in most databases. The micronucleus alerts appear to be general and, as such, 

significantly over-predicts mutagenicity. The most common alert triggered by this profiler is 

“Hacceptor-path3-Hacceptor”. This alert indicates the non-covalent binding of the target 

chemical to DNA via two bonded atoms connecting two H bond acceptors (Snyder et al. 2006). 

However, it appears that such a functional group is common in both mutagens and non-

mutagens. It is likely that the performance of this profiler would improve if this specific alert 

was omitted. 

As expected, both DNA binding profilers work best with the data obtained from Ames type 

tests, and do not perform well for chromosome abnormality or micronucleus data. 

The genotoxicity and non-genotoxicity alerts (ISS) have acceptable true positive results but fail 

to distinguish the negatives. Overall, these perform best with Ames type data.  

The OASIS DNA alerts for Ames, micronucleus and chromosomal aberration predict the 

results in Ames datasets fairly well but for both micronucleus data and chromosomal aberration 

data, these profilers under-predict positive compounds with sensitivity rates ranging from 36-

44%. The ISS Ames test alerts have accuracies over 70% for Ames datasets and MCC values 

greater than 0.5 indicate that the performance is independent of skewed sample categories. It, 

however, needs to be noted that the micronucleus/ CA alerts may not be suitable predictors of 

Ames. They need to be considered separately and used, along with Ames, to develop the overall 

weight of evidence.  
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Figure 5.1. Receiver operating characteristic (ROC) curve analysis for mutagenicity profilers 

in the OECD QSAR Toolbox 

 

The receiver operating characteristic (ROC) curve, which is defined as a plot of test sensitivity 

as the y coordinate versus its 1-specificity or false positive rate (FPR) as the x coordinate, is an 

effective method of evaluating the quality or performance of diagnostic tests.  Figure 5.1 shows 

the ROC curve analysis for the in silico profilers. The ROC curve shows that Ames ISS profiler 

was the most efficient profiler that achieved the highest balanced accuracy with both high true 

positive rate and low false positive rate values.  
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5.3.2 Carcinogenicity profilers 

Both DNA binding profilers perform equally poorly for carcinogens and non-carcinogens from 

all datasets, with accuracy values rarely above 60% and, MCC values indicating a performance 

barely better than chance. 

The ISS carcinogenicity alerts fare a little better in predicting carcinogens, but a poor 

segregation of the non-carcinogens reduces the overall effectiveness of this profiler with 

accuracy levels between 57% and 68% for the sample datasets and modest to poor performance 

on skewed datasets as indicated by the MCC values of 0.17 to 0.36. The ROC analysis shown 

in Figure 5.2 indicates that the ISS carcinogenicity profiler preformed the as compared to the 

other three profilers in terms of both true positive rate and false positive rate. 

As discussed in Chapter 2, genotoxic carcinogenicity structural alerts are more accuracy than 

non-genotoxic carcinogenic structural alerts. Based on that, 13 non-genotoxic structural alerts 

among ISS carcinogenicity profiler were analysed individually to test their performance in PPV 

(positive predictive value). As shown in Table 5.4, the overall PPV of ISS non-genotoxic 

carcinogen structural alerts was 57% where 326 substances are correctly predicted as non-

genotoxic carcinogens out of total 570 substances that were detected to contain one of the 13 

NGC structural alerts. 

The precision value (PPV) for non-genotoxic carcinogenicity structural alerts ranged from 0.92 

for (Trichloro (or fluoro) ethylene and Tetrachloro (or fluoro) ethylene) as the highest PPV to 

0.39 for Quercetin type flavonoids. Four out of 13 NGC structural alerts seem to show over-

prediction. These are thiocarbonyl, substituted n-alkylcarboxylic acids, quercetin type 

flavonoids, and phthalate (or butyl) diesters and monoesters. All four of these structural alerts 

predict non-carcinogenic substances as carcinogens in more than 50% of the total substances 
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that contain this structural alert, which as a result lowers the total accuracy of the ISS 

carcinogenicity profiler. 

The thiocarbonyl NGC structural alert was flagged in 106 substances as the only structural alert. 

Any substance that contained more than one NGC structural alerts was not counted in this 

analysis to avoid any interference. Sixty-two non-carcinogenic substances were falsely 

predicted as carcinogenic substances by the thiocarbonyl structural alert with a sensitivity rate 

of 0.42. Due to this over-prediction of the thiocarbonyl alert, it can be suggested that ignoring 

this alert could increase sensitivity of the total NGC structural alerts and the ISS 

carcinogenicity profiler. This would, however, not be the ideal solution, as any thiocarbonyl 

NGCs would be completely out of the scope of the profiler. Instead, it is proposed that further 

research be carried out to see whether performance of this alert can be improved using a larger 

database of thiocarbonyl substances and attempting to revise and clarify its definition. 

Likewise, the other three NGC structural alerts, i.e. substituted n-alkylcarboxylic acids, 

quercetin type flavonoids and phthalate (or butyl) diesters and monoesters also showed a 

precision value lower than 0.5 with a PPV of 0.42, 0.39 and 0.38 respectively. Again ignoring 

these four structural alerts increased the total precision value of NGC structural alerts and 

consequently of the performance of the ISS carcinogenicity profiler. The results (Table 5.4) 

showed that the precision value of ISS non-genotoxic structural alerts was improved from 0.57 

to 0.64 by ignoring these four structural alerts. However, for the reasons mentioned above, it 

is proposed that further research should be carried out to improve the performance of these 

alerts within the profiler. 

The Oncologic primary classification profiler over-predicts carcinogens with sensitivity rates 

of 66-73% at the expense of poor prediction of non-carcinogens (30-46%), resulting in an 

overall performance which is barely better than chance for most of the datasets. All 30 
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structural alerts of the Oncologic primary classification profiler were individually analysed for 

their precision as shown in Table 5.5. Four structural alerts showed over-prediction of non-

carcinogenic substances as being carcinogenic in more than 50% of the total substances 

containing this structural alert. These four alerts were carbamate type compounds, 

organophosphorus type compounds, peroxide type compounds and reactive ketone reactive 

functional groups. Carbamate type compounds’ structural alert for carcinogenicity was 

triggered in 63 substances with only 22 true positive carcinogenic substances. The other 43 

substances that were flagged by this alert to be carcinogenic were non-carcinogenic in 

experimental tests. This give a low precision value for carbamate type compounds of 0.35. The 

second structural alert in oncologic primary classification profiler with low precision value 

(lower than 0.36) was the organophosphorus type compounds structural alert where 80 

substances out of 126 flagged by this alert were wrongly predicted as carcinogenic substances. 

The peroxide type compounds structural alert showed only 0.27 precision (positive predictive 

value) rate with only three correctly predicted carcinogenic substances out of 11 substances 

flagged by the alert. The structural alert with the lowest precision (of 0.1) within the Oncologic 

primary classification profiler was for reactive ketone functional groups where there was an 

over-prediction for 19 out of 21 substances. This mean that only two substances that were 

flagged by this alert were correctly predicted as carcinogenic substances out of the total 21 

substances. 

It can therefore be suggested that all four of these structural alerts could be ignored from the 

Oncologic primary classification profiler to increase the total sensitivity and accuracy of the 

profiler. Indeed, as shown in Table 5.5, the overall precision of the profiler was improved by 

0.023 which is nearly 3% improvement in the overall performance of the profiler.  
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Removal of alerts from profilers would, however, not be an ideal solution, as this will miss 

carcinogenic compounds and would be completely out of the scope of the profiler. Instead, it 

is proposed that further research be carried out to see whether performance of these four alerts 

can be improved using a larger database of relevant substances. 

 

 

Figure 5.2. Receiver operating characteristic (ROC) curve analysis for carcinogenicity profilers 

in the OECD QSAR Toolbox. 

 

5.3.3. Skin sensitisation profilers 

The performance of the protein binding profilers is not consistent across the sample datasets. 

For the CAESAR dataset, these profilers tend to have a low predictivity for non-sensitisers, 

whilst for the other datasets it is the sensitisers which are not well predicted. Overall the 

performance of these profilers is moderate to poor for all the datasets. 
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The peptide depletion profilers showed a similar pattern, with performance being uniformly 

not better than chance for the CAESAR dataset but highly under-predicted for sensitisers in the 

other datasets. The protein binding potency profiler is also uniformly poor across all datasets, 

failing to detect the majority of sensitisers, with sensitivity rates between 12% and 29%. A 

similar pattern is seen with the keratinocyte gene expression profiler, where sensitivity rates 

were 19-43%. 

The overall ROC analysis for all seven profilers shown in Figure 5.3 indicates that protein 

binding OASIS has relatively better performance compared to the other skin sensitisation 

profilers in the OECD QSAR Toolbox. 

 

 

Figure 5.3. Receiver operating characteristic (ROC) curve analysis for the skin sensitisation 

profilers in the OECD QSAR Toolbox. 
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5.4 Discussion and Conclusions: 

The profilers in the OECD QSAR Toolbox are provided for the purpose of constructing 

categories of mechanistic and identifying structural analogues of a target compound. As such, 

they provide a useful means for read-across from experimental data on analogous compounds 

to estimate a property or biological activity of an untested compound, although they are not 

necessarily intended to make toxicological predictions in themselves. The accuracy and 

reliability of a profiler in terms of predicting a target compound is, however, also important for 

defining the structural and functional features so that it is placed in the correct category/group 

of analogous substances. A number of the profilers are also used in other applications for 

indicating certain toxicity endpoints, such as Toxtree (http://toxtree.sourceforge.net/), and 

Oncologic (www.epa.gov/oppt/sf/pubs/oncologic.htm).  

In this regard, those profilers that are equally likely to select endpoint-positive and endpoint-

negative compounds into a grouping of analogues to be used in a read-across will, by definition, 

give rise to equivocal predictions for the target compound. It is therefore essential to know how 

accurately different profilers perform in terms of sensitivity, specificity and accuracy and to 

investigate possibilities for improvement. This requires an understanding of the role and merits 

of each individual alert within a profiler so that only the most relevant and reliable ones are 

kept as indicators for the particular endpoint. As this study has found, the alert “Hacceptor-

path3-Hacceptor” in the micronucleus profiler is too ubiquitous to be a useful indicator of 

mutagenicity. Similarly in three NGC structural alerts within the ISS carcinogenicity profiler 

(thiocarbonyl, sub alkyl carboxylic acid, quercitin and phthalate), and the four structural alerts 

in oncologic primary classification profiler (carbamate type compounds, organophosphorus 

type compounds, peroxide type compounds and reactive ketone functional groups) proved to 

have extremely low precision values. As shown in the examples investigated in this chapter, 

the omission or substitution of these alerts, which unduly draw predictions towards equivocal 

http://toxtree.sourceforge.net/
http://www.epa.gov/oppt/sf/pubs/oncologic.htm
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outcomes within a profiler, can improve the overall performance of the profilers. This, however, 

would bring the drawback of making some of the NGC alerts out of the scope of a profiler and 

therefore further research is needed to find out whether performance of these alert can instead 

be improved, e.g. by exploring larger datasets of relevant substances. 

Another factor influencing the segregation of compounds by the alerts could be the way in 

which the categorical data found in the three endpoint datasets studied here are derived. Very 

often the binary categorisation of data is achieved by manipulation of the continuous data in 

some way to provide “cut-off” points for positive or negative assignment. The way in which 

this is done may affect the flagging of an alert in an essentially “negative” compound, or vice 

versa. By definition, most alerts have been derived from datasets of endpoint-positive 

compounds, because deriving “negative alerts”, like proving a negative hypothesis, is generally 

not feasible. In this context, this study has given an insight into those alerts that may be found 

equally in endpoint-positive or negative compounds, and those which may be more effectively 

utilised to form groups of analogues for read-across predictions.  

Further in-depth research in this area is necessary to study the suitability and merits of each of 

the alerts within the profilers in the OECD QSAR Toolbox and other in silico toxicity platforms 

to identify the root causes of the inadequacies and to investigate possibilities for improvement 

in the performance. This will, by implication, also improve the reliability of chemical read-

across and grouping/categorisation for use in classification, labelling and risk assessment.  

 

 



 

Chapter 6: Discussion 

This chapter consists of two sections. The first provides a summary and discussion of the main 

research carried out, and the conclusions drawn, as detailed in Chapters 2 to 5. The second 

section provides insights for future work that could improve the assessment and evaluation of 

the currently available structural alerts for carcinogenicity, mutagenicity and skin sensitisation, 

and how such work could be translated into a practical tool to help the end-user. This will 

address the much-needed improvement in the reliability of in silico evaluations of carcinogenic, 

mutagenic and skin sensitising substances amongst the ingredients intended for use in cosmetic 

products during safety assessment.    

6.1 Progress in the development and assessment of  structural alerts for carcinogenic 
substances. 

6.1.1 Summary of work 

From the outset, the main focus of the work presented in this thesis was to evaluate the 

reliability of, and to identify the need for improvement in, the currently available structural 

alerts and in silico profilers of carcinogenicity and mutagenicity. For a broader comparative 

assessment of cosmetic ingredients, skin sensitisation profilers were also included later on in 

the study. The assessment of the profilers and structural alerts was essential to underpin 

confidence in their reliability in different software platforms, and to point out the need for 

refinements where necessary. Such refinements need to be in the form of a continuous process 

that aims to make the alerts and profilers more accurate and thus facilitate the safety assessment 

of the chemical ingredients used in cosmetic products.  
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6.1.2 The reliability of structural alerts in toxicity assessment  

It is worth noting at the outset of this investigation that terms such as “carcinogenic/non-

carcinogenic”, “sensitiser/non-sensitiser” and “safe/unsafe” are used in this thesis for the sake 

of simplicity. It is fully recognised that assigning a chemical to be toxic or non-toxic depends 

on dose, exposure and threshold of toxicity for a particular endpoint that cannot be 

oversimplified with absolute terms. Structural alerts have gained wide regulatory acceptance 

for a number of reasons, foremost amongst them being that they are easily generated and 

interpreted. However, there has been growing concern about the accuracy of structural alerts 

to predict toxicity. The main concern about these alerts is that they represent only a part of the 

whole structure; i.e. functional groups that can be found in both toxic and non-toxic 

compounds; this may lead to over-prediction of toxicity. This over-prediction of toxicity with 

high sensitivity but low specificity was seen very clearly in the assessment of the predictivity 

of structural alerts undertaken in Chapters 3 and 5, as summarised in Tables 3.5, 5.1, 5.2 and 

5.3. In Chapter 3, a total of 28 structural alerts were found to be inaccurate for use as part of 

the six mutagenic profilers studied. All of the structural alerts showed positive predictivity of 

less than 45% and more than ten substances were predicted to be positive for mutagenicity by 

these alerts. This phenomenon can be explained by the fact that the reactivity of these 

substructural alerts can be affected by other groups in the molecule, especially when the 

chemical properties of the substructures are dependent on the other groups in the same 

molecule (Alves et al., 2016). The scientific community has been debating the issue of the 

accuracy of predictions from structural alerts and hence their reliability. The OECD 

characterises read-across as a technique to predict a determined endpoint, but it requires that 

expert judgement is used and a justification of molecular similarity should be provided (OECD, 

2007). The OECD sponsored the development of OECD QSAR Toolbox, a software 

application to predict (eco)toxicity based on chemical grouping and read-across, whilst leaving 
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the assessment of the prediction to the end user. The significance of structural alerts to predict 

toxicity was described in relation to the Toxtree software used in Chapter 2 to evaluate the 

reliability of structural alerts for nongenotoxic carcinogenicity. Toxtree also has a module for 

skin sensitisation that implements structural alerts. Contributing to the confusion over the 

significance of alerts as predictors of toxicity, the developers of Toxtree recently placed a 

statement on their website saying that they changed the name of the module from “Skin 

sensitisation alerts” to “Skin sensitisation reactivity domain” explaining that alerts provide only 

grouping into a reactivity mode of action and do not predict skin sensitisation potential. 

Although not explicitly reported, this conspicuous change in nomenclature is most likely due 

to pitfalls and deficiencies in the method. For instance, the use of simple categories led to the 

misclassification of 25% of compounds evaluated for respiratory sensitisation, including non-

sensitisers containing alerts, and sensitisers that did not contain alerts (Alves et al., 2016; Enoch 

et al., 2010). Given these shortcomings in the ability of structural alerts to predict toxicity, it 

can be argued that alerts may be useful for the initial flagging of potential toxic compounds but 

not necessarily for predicting toxicity. It is also important to point out that the original profiler 

alerts were also developed for grouping and read-across and hence were not intended to be 

predictive.  

 

6.1.3 The feasibility of predicting human nongenotoxic carcinogenicity via structural alerts 

The identification of nongenotoxic carcinogens remains one of the most challenging areas in 

toxicology. Even with a full dataset, setting protective levels for exposure is known to be 

problematic (Braakhuis et al., 2018). As with most toxicological endpoints, the majority of 

data relating to this endpoint are derived from animal experimentation with extrapolation to 

humans to allow for chemical risk assessment. This raises many potential problems, not least 

of which is the inter-species differences and potential for being over-protective with regard to 
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this endpoint, i.e. classification of compounds as carcinogens which are likely not to be harmful 

to humans. A further complication is that in silico models for toxicology can only be based on 

the data available, thus for nongenotoxic carcinogenicity, they will be based on information 

derived from standard rodent bioassays.  

One of the possible shortcomings of structural alerts to predict nongenotoxic carcinogenicity 

is animal-to-human extrapolation. Nongenotoxic carcinogens act in species-specific, dose-

dependent ways and include multiple mechanisms of action that involve many different 

chemical structures, which makes the extrapolation of predictivity from animal to human 

possibly inaccurate. For example, in long-term studies, chemicals that elicit the peroxisome 

proliferation phenomenon in rodents are associated with hepatocarcinogenesis. Upon treatment 

with these chemicals in high doses, the tumorigenic reaction appears to be related to both 

oxidative stress and increased cell proliferation. Non-rodent species have been shown to be 

highly resistant to the induction of peroxisome proliferation as compared to the rat (Corton et 

al., 2018). There are several potential explanations for the species-specific differences in 

response to peroxisome proliferation induction. One theory indicates that the differences in 

susceptibility to peroxisome proliferation between rats and humans is due to the variation in 

the comparative expression of PPARα between species (Lawrence et al., 2001). Expression of 

PPARα in human liver is relatively lower than in rat liver which limits the number of genes 

induced by the ligand upon exposure. The other explanation suggests that non-rodent species 

have a defect in the response element (PPRE) within the promoter that prevents the receptor 

from binding or regulating genes. This hypothesis was confirmed after analysing several human 

genomic samples that showed a defect in PPREs within the fatty acyl -CoA oxidase promoter 

(Lawrence et al., 2001). Advances in the human-relevant assessment of PPARa were reviewed 

recently by Felter et al. (2018) along with other modes of actions e.g. Constitutive Androstane 

Receptor (CAR).  
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The problem of in silico prediction of nongenotoxic carcinogenicity is well established. QSARs 

and structural alerts show the best performance for genotoxic endpoints as compared to non-

genotoxic carcinogenicity (Carnesecchi et al., 2020). The reason for this is almost certainly 

that models for reactivity with DNA can be created relatively simply (e.g. structural alerts for 

covalent reactivity). For nongenotoxic carcinogenicity, there are a number of subtle 

mechanisms and initiating events, e.g. receptor binding, that are more difficult to model 

(Benigni and Bossa, 2019).  

Whilst there are few, if any, reliable QSARs for human toxicity and chronic toxicity, specific 

endpoints such as human carcinogenicity are particularly poorly addressed - this is because of 

the emphasis on QSARs for regulatory endpoints and the lack of data (Gluck et al., 2018). 

However, toxicology and safety assessment are moving on and there is an opportunity in the 

future to improve the situation. Recent examples have demonstrated this with novel data 

sources and means of creating alerts (Golbamaki et al., 2016; Benigni et al., 2013). The 

opportunities for QSAR and structural alerts for nongenotoxic carcinogenicity include:  

i) Ensuring that models are properly annotated and anchored to a mechanism of action. For 

instance, basing models around AOPs, and specifically initiating events, may be appropriate 

for this. 

ii) Better definition of the domain of applicability of models, not only in terms of the chemistry 

but also the potential biology.  

iii) Increasing knowledge of human non-genotoxic carcinogens with (where possible) new data 

sources e.g. using data from human cell lines. 

Regarding the use of new data sources, there are several recent examples:  Yamane et al. (2018) 

derived information for 20 compounds from human embryonic stem cells; Tung and Jheng 
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(2014) and Liu et al. (2011) used transcriptomics data to model non-genotoxic 

hepatocarcinogenicity. These and other researchers have also demonstrated that integrating 

mechanistic (biological) data and chemical structure information improves the prediction of 

nongenotoxic carcinogenicity. For instance in vitro and mechanistic data have been shown to 

improve the quality of QSARs (Guan et al., 2018; Chen et al., 2013; Lui et al., 2011).  

Ultimately, there will always be uncertainty in using SARs / predictive methods and this is 

usually reflected in performance statistics. However, to predict non-genotoxic carcinogens the 

added uncertainty arising from extrapolation from one species to another must also be included. 

In order to achieve this, we need to define uncertainty and understand the consequences. 

Aspects of the models associated with high uncertainty could then be reduced - obvious areas 

of high uncertainty at the current time are relevance to humans and mechanistic underpinning 

of the models. Whilst we are currently not in an ideal position, it is likely that the models will 

be over-predictive. This is, in itself, consistent with the precautionary principle that implies we 

should accept the worst-case scenario and then provide evidence to reduce the risk e.g. PPAR 

only relevant to rodents. What is of greater concern is whether there are human-specific 

mechanisms of action that are not captured by the model. This will require knowledge of such 

mechanisms, again with reference to AOPs where possible (Rooney et al., 2018).   

 

6.1.4 The significance of single alerts in a complex chemical structure. 
 

Structural alerts highlight the importance of specific structural features as determinants of a 

compound’s toxicity. However, biological effects are measured for the entire molecule, raising 

doubts about whether a fragment can always adequately define the property of the whole 

molecule. Several studies have been performed to examine the relationship and interplay 

between the fragment and the whole molecular structure (Alves et al., 2016). A small change 
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in molecular structure, i.e. replacement of one functional group with another in the same 

position, causes changes in many descriptor values which reflect the interconnectivity and 

mutual influence of all fragments in a molecule. Nitroaromatic compounds, which are used in 

hair dyes, are a good example to illustrate the mutual influence of substituents in the molecule 

on the overall toxic effect of these compounds. Kuz’min et al. (2008) developed a QSAR model 

for rat acute toxicity which demonstrated that the nitro group attached to the aromatic ring, 

which was known to increase toxicity, shows variations in its toxic effect depending on the 

number and nature of other substituents in the aromatic ring. Thus, the main finding of their 

study was that although an aromatic nitro group is considered to be a toxicophore, its 

contribution to toxicity could be significantly modified by other substituents. Chloro-

substituted nitrobenzenes are a good example to illustrate this finding. Increasing the number 

of chlorine substituents in a nitrobenzene molecule was expected to increase toxicity but 

interestingly this was not completely true as it was determined that the influence of a chlorine 

substituent is not clear and depends strongly on the structural environment. For instance, a 

chlorine atom in the ortho-position to the nitro group is present in both the most toxic (2,6-

dichloronitrobenzene) and the least toxic (2,3,5-trichloronitrobenzene) compounds. Overall, 

the insertion of a chlorine substituent in nitrobenzene increases its toxicity; the ortho-isomer is 

the most toxic. Introduction of the second chlorine results in large changes in toxicity, that are 

observed for dichloronitrobenzenes. Addition of chlorine substituents decreases the difference 

in toxicity between the isomers. Moreover, the accumulation of chlorine atoms in the benzene 

ring decreases their influence on toxicity, i.e., the increase in toxicity is not proportional to the 

number of chlorine atoms or, even more, the addition of chlorine decreases the toxicity 

(Kuz’min et al., 2008). The effect of sequential insertion of chlorine substituents into the 

benzene ring was also analysed. In Figure 6.1, the toxicity of each molecule is represented as 

six separate contributions of the corresponding carbon of the aromatic ring and its substituent. 
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Insertion of a chlorine atom in the ortho-position to the nitro group leads to an increase in 

toxicity in comparison with nitrobenzene. This effect is not limited to the chlorine atom alone. 

In fact, the contributions to toxicity of all other atoms are augmented (except C–H bond in 

ortho-position to the C–Cl bond, Figure 6.1). Insertion of an additional chlorine adjacent to the 

previous ortho-chlorine has only a small effect on toxicity. Although the new C–Cl bond 

(position 3) increases the toxicity of the molecule, the contributions of the nitro group and other 

C–Cl fragment (position 2) have been diminished. Thus, in spite of the redistribution of 

influence on toxicity between different fragments of 2,3-dichloronitrobenzene, the toxicity of 

the whole compound hardly changes compared to 2-chloronitrobenzene. A dramatic change in 

toxicity was predicted for 2,3,5-trichloronitrobenzene. However, substitution of hydrogen by 

chlorine in position 5 results in substantial lowering of toxicity. This resulted in the diminishing 

toxicity of all fragments analysed, especially the chlorine in the 2-position (Kuz’min et al., 

2008; Alves et al., 2016). These examples emphasise an important conclusion that compound 

toxicity can be substantially affected by the mutual interactions and influences between its 

structural components. Moreover, individual substructures do not act directly and 

independently as is saliently presumed by the concept of structural alerts. Instead, various 

substructures, even including distant neighbours, mutually influence their contributions. 
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Figure 6.1. Relative influence of structural fragments on the rat acute toxicity of 

chlorosubstituted nitrobenzenes, where pLD50 is the negative logarithm of the molar dose that 

causes 50% lethality (Alves et al., 2016).  

 

6.1.5 Assigning cut-off values for the identification and evaluation of structural alerts 
Of  

A cut-off value of 0.5 PPV was applied in the evaluation of the reliability of carcinogenicity, 

mutagenicity and skin sensitisation structural alerts performed in Chapters 3 and 5. Thus, any 

structural alerts showing positive predictivity lower than 50% were classified as inaccurate. 

This was to ensure that none of these profilers have lower predictivity power compared to the 

Ames test. One of the key purposes of the Ames test is to predict rodent carcinogenicity. The 

high predictive power of a positive Ames ranges from 77% to 90% depending on the various 

factors. This makes it superior to any other in vitro genotoxicity assay, all of which have lower 

performance in terms of predicting genotoxicity (Kazius et al., 2006). 
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In Chapter 4, the main goal of adjusting the cut-off value was to select the minimum number 

of carcinogenicity and mutagenicity scaffolds that would cover the largest possible number of 

carcinogenic and mutagenic compounds, ultimately in order to identify a precise structural alert. 

The ratio of activity (carcinogenicity or mutagenicity) (C1/S), where C1 represents total active 

compounds (carcinogenic or mutagenic) and S represents the number of active compounds that 

contain this scaffold, was adjusted to 0.7, which achieved predictive power comparable to the 

Ames test and should cover at least 10 compounds based on the selection criteria discussed 

above. 

On the other hand, an essential factor influencing the segregation of compounds by the alerts 

could be the way in which the categorical data found in the three endpoint datasets studied here 

are derived. Very often the binary categorisation of data is achieved by manipulation of the 

continuous data in some way to provide “cut-off” points for positive or negative assignment. 

The way in which this is performed may affect the flagging of an alert in an essentially 

“negative” compound, or vice versa. By definition, alerts have been derived from datasets of 

endpoint-positive compounds, since deriving “negative alerts”, similar to proving a negative 

hypothesis, is generally not feasible. In this context, this study has provided an insight into 

those alerts that may be found equally in endpoint-positive or negative compounds, and those 

that may be more effectively utilised to form groups of analogues for read-across predictions. 

Further in-depth research in this area is needed to study the suitability and merits of each of the 

alerts in the profilers in the OECD QSAR Toolbox and other in silico toxicity platforms to 

identify possibilities for improvement in performance. This will, by implication, also improve 

the reliability of chemical read-across and grouping/categorisation for classification, labelling 

and risk assessment.  
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6.1.6 Conclusions  

It is widely known that carcinogenicity is one of the main causes of death around the world 

(Frankish, 2003). Testing chemicals for carcinogenicity, especially non-genotoxic 

carcinogenicity, is not straightforward, and in silico methods provide a means for rapid initial 

screening in this regard. The work presented in this thesis has assessed and evaluated the 

available structural alerts and profilers of carcinogenicity and mutagenicity in a number of in 

silico predicting programmes such as  the OECD QSAR Toolbox, Toxtree and Leadscope. 

Many structural alerts were found to have unacceptably low positive predictivity for 

mutagenicity and carcinogenicity, which has a bearing on the performance of various profilers. 

These structural alerts need to be investigated further to improve their predictivity and, as a 

result, the predictivity of the respective profilers. The study also identified a number of 

carcinogenicity scaffolds through the use of the SAR carcinogenicity database. Although these 

are linked to carcinogenicity, the chemistry-based alerts are not likely to be useful for the 

formation of chemical categories or read- across because they lack a mechanistic interpretation 

of how a MIE is induced within the AOP paradigm.  

This thesis is positioned as a programmatic statement that could change the thinking of both 

regulators and researchers. Informing the scientific community about the limitations of 

structural alerts that were discussed in previous sections, especially those that could be very 

useful in understanding the underlying mechanisms of toxicity, was not, however, the main 

goal of the discussion. The main goals were to show how toxicity prediction should not be 

performed by blindly relying on structural alerts, as well as how to boost safety assessment by 

combining the strongest parts of the alerts and QSAR models. It was demonstrated that blind 

reliance on structural alerts could lead researchers astray. Conversely, this discussion is not 

suggesting that QSAR models should be used instead of structural alerts. Although it was 

demonstrated that “black box” QSAR predictions usually provide the user with statistically 
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more accurate predictions, we also showed how alerts could serve as actionable structural 

hypotheses that could be validated by QSAR predictions. The best solution is to propose an 

integrated approach to desing new green chemicals by the structural modification of existing 

functional, but toxic, compounds using a combination of structural alerts and QSAR models. 

Another important point is that the influence of any part of a compound on its biological effect(s) 

is not constant and strongly depends on its structural environment. Thus, any alert, even one 

derived by mechanistic interpretation of statistically significant QSAR models does not have 

automatic predictive power. Alerts should be viewed as structural hypothesds of chemical 

action only and their true predictive power should be confirmed by QSAR predictions and, if 

possible, by experimental validation. The major recommendations discussed in this thesis are 

as follows: 

1. In most cases, it is unreliable to use structural alerts alone to predict toxicity and this 

should be avoided.  

2. Structural alerts act within the whole chemical structure, so their toxic effect depends 

mainly on the structural environment. Large datasets can be used to evaluate the extent 

of the interdependency of structural alerts. 

3. The optimum way to confirm the significance of structural alerts is by using a QSAR 

model or, preferably, by experiment. 

4. The accuracy of toxicity prediction of structural alerts can be improved by combining 

them with a QSAR model or a chemical biological read-across (CBRA) model.  

5. Although structural alerts often fail in predicting chemical toxicity, they can still be 

useful in developing local QSAR models by spiltting large datasets into smaller subsets 

based on their mechanism of action. 

6. Combining structural alerts with QSAR models in an intelligent way can be used to 

design functional non-toxic compounds e.g. for green chemistry applications. 
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6.2 Prospects for future work 

The work presented in this thesis has enabled verification and refinement of the current 

structural alerts and profilers for carcinogenicity (both genotoxic and non-genotoxic), 

mutagenicity and skin sensitisation as well as the identified 18 carcinogenicity scaffolds to be 

included as structural alerts for carcinogenicity (see Tables 4.2, 4.3, 4.5, 4.6 and 4.9). These 

alerts can be used for both toxicity prediction and grouping. The information about structural 

alerts can be captured either in CSRML or SMARTS strings to be incorporated in software like 

Toxprint that can search for these alerts among a large number of chemicals. Publishing these 

findings will not be the only way to distribute these alerts: they will be donated to be used in 

software such as Toxtree and the OECD QSAR Toolbox to allow them to be used by the 

greatest possible number of scientists and researchers. However, further work is needed to 

develop new alerts using other databases such as ToxCast which, contains a huge number of 

peroxisome proliferator activated receptor assays for nearly 2,000 compounds. This could be 

an excellent resource for identifying new non-genotoxic carcinogenic structural alerts, refining 

the poorly predictive structural alerts presented in the previous chapters.  

6.2.1 Combining structural alerts with QSAR models  

A newly suggested technique to increase the predictive power of structural alerts is to 

combine them with QSAR prediction models. Structural alerts can be used to classify the 

investigated compounds based on their putative mechanisms of action. A good example is the 

skin sensitisation dataset. In the skin sensitisation process, the molecular initiating event (MIE) 

is protein binding that is represented by a number of protein binding structural alerts based on 

well-known organic chemistry principles, but they are not highly efficient to predict skin 

sensitisation. Structural alerts can be very helpful with large datasets in assigning a mechanism 

of action to the compounds investigated and in developing local QSAR models. The local 

QSAR models could be united with mechanism-uninformed global models in a consensus 
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ensemble that may have comparable or higher predictive power and coverage than separate 

models.  

The shortcomings of individual structural alerts can also be avoided using a new approach 

called chemical biological read-across (CBRA). In contrast to classical read-across that 

predicts the toxicity of unknown compounds from their chemical analogues, CBRA uses both 

chemical and biological analogues, which achieves more accurate and reliable predictions 

(Low et al., 2014). The similarities between chemicals are assessed in CBRA based on two 

factors: chemical and biological. The chemical descriptors are usually obtained as computed 

structural and molecular properties while the biological descriptors can be obtained by 

experiment or the predicted result of biological measurement of chemical compounds. CBRA 

can achieve more understanding towards the prediction of complex toxicity, which is why it is 

described as “next generation read-across” (Low et al., 2014). As shown in Figure 6.2, CBRA 

represents the data for the user as a radial plot where the compound of interest is represented 

by a large central node. The chemical and biological nearest neighbours to the compound of 

interest are represented by smaller nodes surrounding the central node. The level of similarity 

of the biological and chemical neighbours to the compound of interest is visualised by two 

indicators. First, by the colour of the neighbouring node, indicating its observed activity 

(red=toxic, green=non-toxic) and second, by the relative position of the neighbouring node 

relative to the central node. The more similar two compounds are, the closer the neighbouring 

node is to the central node. In the radial plot, the nearest neighbour to the compound of interest 

in both chemical and biological descriptor space will be at the 12 o’clock position. CBRA 

provides a better understanding of the structure-activity relationship of the compound of 

interest, or for a group of similar compounds, thanks to its visual radial plots. The visual aspect 

makes it very useful for understanding the common chemical and biological neighbours and 

the activity landscape of the compound of interest, and this will help in the design of greener 
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chemicals.  The chemical and biological models may show conflicting predictions when they 

are used as separate models; this aspect is solved by CBRA as it maximises the integration of 

both data streams.  

 

Figure 6.2. Eugenol radial CBRA plot showing its biological neighbours (left side) and 

chemical neighbours (right side) coloured based on their activity (red=toxic , green=non-toxic) 

(as per Alves et al., 2016). 

 

 

6.2.2 Refinement of poorly predictive structural alerts for carcinogenicity and mutagenicity: 

The analysis presented in Chapters 3 and 5 of the performance of the available profilers for 

carcinogenicity and mutagenicity yielded 28 poorly predictive mutagenic structural alerts and 

eight poorly predictive carcinogenic structural alerts (see Tables 3.12, 5.4 and 5.5). The work 

demonstrated the importance of continued analysis and assessment of the accuracy of current 

profilers within various in silico programmes such as Toxtree and the OECD QSAR Toolbox 

to improve their reliability. Therefore, it is envisaged that future work will involve further 

investigations to identify other shortcomings associated with the alerts.. All this information 
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will identify the core issues and pave the way for their improvement. The identified alerts with 

poor predictivity could also be used to determine whether there are certain structural features 

linked to over-predictions in terms of false positive (or false negative) results.  

 6.2.3 Use of in vitro/in chemico data to discern mechanistic information for chemistry-based 
alerts 

The work performed in Chapter 4 enabled the development of 17 carcinogenic scaffolds and 

23 mutagenic scaffolds that are chemistry-based structural alerts and as such do not have a 

mechanistic basis associated with them. As the chemistry-based structural alerts can trigger 

predictions for various types of chemicals, the probability that they will be useful in identifying 

carcinogenicity or mutagenicity via more than one mechanism is higher than that of the 

mechanism-based structural alerts. In view of this, the chemistry-based structural alerts can be 

refined in conjunction with mechanism-based alerts to increase their reliability and accuracy. 

This could also be done by further combining in vitro and in chemico data to separate the 

mechanistic information for each chemical structure, which may have the same chemical alert 

but initiate a different MIE (see Table 6.1 for some in chemico approaches). The association of 

a mechanistic hypothesis with each chemical structure will eventually solve the issues 

associated with structural alerts that may exert their action via multiple mechanisms and thus 

help in refining the usefulness of chemical-based alerts for toxicity assessment of untested 

chemicals.  
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Table 6.1. Examples of in chemico reactivity for mutagenicity and skin sensitisation 
measured during non-pharmaceutical research and development (Cronin et al., 2009). 
 
Toxicity 
endpoint  

In chemico approach 

DNA binding 
 

Reactivity toward 2 ́-deoxyguanosine 
 

 

 

Skin 
sensitisation 

Depletion of glutathione assessed by using UV 

Rate constant for reaction with n-butylamine (as part of the Relative 
Alkylation Index, RAI) 
 
High-throughput kinetic profiling approach for covalent binding to 
peptides, providing second-order rate constants 
 

 

6.2.4 Development of additional carcinogenic and mutagenic alerts: 

Although the work carried out in this thesis has developed a number of chemistry based 

structural alerts for carcinogenicity and mutagenicity, the need to develop additional alerts, both 

mechanistically and chemically based, to cover the relatively small chemical space is still high. 

Databases such as ToxCast, ChEMBL, TGGates can be used to develop additional mechanism- 

and chemistry- based alerts. In the Toxcast databases nearly 2,000 chemicals from a wide range 

of different sources were evaluated, including: industrial and consumer products, food additives 

and potentially "green" chemicals that could be safer alternatives to existing chemicals. 

Chemicals were evaluated in over 700 high-throughput assays covering a range of high-level 

cellular responses and approximately 300 signalling pathways (Epa.gov, 2015). This database 

contains a large number of assays for binding to the peroxisome proliferator activated receptor 

(PPAR) which is one of the main non-genotoxic carcinogenic mechanisms. The data are freely 

available at http://www.epa.gov/ncct/toxcast/. 

 It is envisaged that the scaffold analysis process used in Chapter 4 could be used to develop one 

or more new carcinogenic and mutagenic structural alerts.. Thus, it is expected that adding 

further structural alerts to current carcinogenicity and mutagenicity profilers would expand the 

http://www.epa.gov/ncct/toxcast/
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chemical domain covered by these profilers and reduce the false negative results in the in silico 

profilers. It is envisaged that carcinogenicity and mutagenicity structural alerts (both those 

derived in this thesis and those that could be developed in future) can be used in in silico 

predictive tools such as the OECD QSAR Toolbox or predictive software such as KNIME. 

Several benefits might be achieved using these newly developed structural alerts. First, they can 

be used to screen chemical inventories in order to detect and identify chemicals having the 

potential to induce carcinogenicity and mutagenicity. Second, these alerts, in combination with 

other alternative techniques and information obtained from the scientific literature, could help 

in the development of AOPs for other mechanisms of carcinogenicity, especially for non-

genotoxic carcinogens.   
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8: Appendices 

 

Appendix I. List of the 43 inorganic mutagenic chemicals in CCRIS DB that failed to be 

identified by any of six mutagenic profilers in the OECD QSAR Toolbox (Chapter 3). 

ID Chemical Name SMILES 
1 Sodium nitrite [Na+].[O-]N=O 
2 Ozone [O-][O+]=O 
3 Sodium selenite [Na+].[Na+].[O-][Se]([O-])=O 
4 Cadmium chloride Cl[Cd]Cl 
5 Selenic acid  [Na+].[Na+].[O-][Se]([O-])(=O)=O 
6 Diborane BB 
7 Lead [Pb] 
8 Cadmium; Cadmium compounds [Cd] 
9 Selenium Sulfide S=[Se] 
10 Aluminum chloride  Cl[Al](Cl)Cl 
11  Potassium bromate [K+].[O-]Br(=O)=O 
12 Zirconium, dichloro-di-pi-cyclopentadienyl Cl[Zr](Cl)(C1C=CC=C1)C1C=CC=C1 
13 Titanium, dichlorobis(eta5-2,4-cyclopentadien-1-yl) Cl[Ti](Cl)(C1CC=CC=1)C1CC=CC=1 
14 Magnesium oxide (MgO) O=[Mg] 
15 Hypochlorous acid [Na+].[O-]Cl 
16 Hydrogen peroxide,  OO 
17 Potassium nitrite  [K+].[O-]N=O 
18 Cyanoguanidine NC(=N)NC#N 
19 Manganese [Mn] 
20 Manganese chloride  Cl[Mn]Cl 
21 Manganese(II) sulfate  [Mn+2].[O-]S([O-])(=O)=O 
22 Nickel chloride (NiCl2) Cl[Ni]Cl 
23 Permanganic acid (HMnO4) [K+].[O-][Mn](=O)(=O)=O 
24 Platinate(2-), hexachloro-, dihydrogen, hexahydrate [H+].[H+].O.O.O.O.O.O.Cl[Pt-

2](Cl)(Cl)(Cl)(Cl)Cl 
25  Dipotassium hexachloroplatinate [K+].[K+].Cl[Pt-2](Cl)(Cl)(Cl)(Cl)Cl 
26 Potassium tetrachloroplatinate(II) [K+].[K+].Cl[Pt-2](Cl)(Cl)Cl 
27  cis-Dichlorobis(2-methyl-2-propanamine)platinum Cl[Pt]Cl.CC(C)(C)N.CC(C)(C)N 
28  Platinum, diamminedibromo-, (SP-4-2)- (9CI) N.N.[Br-].[Br-].[Pt+2] 
29  Dichloro-(S,S)-(N,N'-diethyl-2,4-pentanediamine)platinum(II) [Cl-].[Cl-].[Pt+2].CCNC(C)CC(C)NCC 
30 Potassium superoxide;  [K+].O=O 
31 Triammonium hexachlororhodate; Rhodate(3-),  [N+H4].[N+H4].[N+H4].[Cl-].[Cl-].[Cl-

].[Cl-].[Cl-].[Cl-].[Rh+3] 
32 Dipotassium pentachlororhodate [K+].[K+].Cl[Rh-2](Cl)(Cl)(Cl)Cl 
33 Silane [Si] 
34 Silane, dichloromethylvinyl C[Si](Cl)(Cl)C=C 
35 Silver iodide (AgI) [Ag]I 
36 Sodium sulfide, nonahydrate O.O.O.O.O.O.O.O.O.[Na+].[Na+].[S-2] 
37 Titanium chloride (TiCl3) Cl[Ti](Cl)Cl 
38 Ammonium Hexachloroplatinate (iv) [N+H4].Cl[Pt-2](Cl)(Cl)(Cl)(Cl)Cl 
39  Boric acid, sodium salt [Na+].[Na+].[Na+].[O-]B([O-])[O-] 
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40 Bis(chlorotriammineplatinum) tetrachloroplatinate(II) N.N.N.N.N.N.Cl[Pt+3].Cl[Pt+3].Cl[Pt-
2](Cl)(Cl)Cl.Cl[Pt-2](Cl)(Cl)Cl.Cl[Pt-
2](Cl)(Cl)Cl 

41 Bis(p-methoxyphenyl)selenide COc1ccc([Se]c2ccc(OC)cc2)cc1 
42 cis-Dichlorobis(3,5-dimethylpyridine)platinum Cl[Pt]Cl.Cc1cncc(C)c1.Cc1cncc(C)c1 
43 Dichloro-(s)-3-aminohexahydropyridine Platinum (ii) Cl[Pt]Cl.NC1CCCCN1 
 

 

Appendix II. List of the 112 various organic mutagenic chemicals in CCRIS DB that failed to 

be identified by any of six mutagenic profilers in the OECD QSAR Toolbox and do not have 

any chemical unifying characters to be grouped or used to initiate a new rule for a new chemical 

structural alert (Chapter 3). 

ID Chemical Name SMILES 
1 2-Mercaptobenzothiazole S=C1Nc2ccccc2S1 
2 Thiodiphosphoric acid (((HO)2P(S))2O), 

tetraethyl ester (9CI) 
CCOP(=S)(OCC)OP(=S)(OCC)OCC 

3 1,3-Dioxane C1COCOC1 
4  1,2,3,5-Tetramethylbenzene Cc1cc(C)c(C)c(C)c1 
5 1-Naphthalenol, methylcarbamate;  CNC(=O)Oc1cccc2ccccc12 
6 Cyclohexanone, oxime ON=C1CCCCC1 
7 Dicyclohexylamine C1CCC(CC1)NC1CCCCC1 
8 1,3-Diphenylguanidine N=C(Nc1ccccc1)Nc1ccccc1 
9 Ferrocene [Fe+2].c1cc[c-H]c1.c1cc[c-H]c1 
10 1,3-Butadiene C=CC=C 
11 Acrylonitrile C=CC#N 
12 Propargyl alcohol OCC#C 
13  Acetaldehyde oxime CC=NO 
14 o-Chloropyridine Clc1ccccn1 
15 Butyraldehyde oxime CCCC=NO 
16 Propene CC=C 
17 Benzothiazyl disulfide S(Sc1nc2ccccc2s1)c1nc2ccccc2s1 
18  Methyl styryl ketone CC(=O)C=Cc1ccccc1 
19 Decane CCCCCCCCCC 
20 2',3',4'-Trichloroacetophenone CC(=O)c1ccc(Cl)c(Cl)c1Cl 
21 3-((Methoxycarbonyl)amino)phenyl N-(3-

methylphenyl)carbamate (phenmedipham) 
COC(=O)Nc1cccc(OC(=O)Nc2cccc(C)c2)c1 

22 2-Methyl-3-butenenitrile CC(C=C)C#N 
23 Phthalide, 3-propylidene (6CI,8CI) CCC=C1OC(=O)c2ccccc12 
24 Benzenamine, 4-butyl-N-((4-

methoxyphenyl)methylene) 
CCCCc1ccc(cc1)N=Cc1ccc(OC)cc1 

25 Di(N-octyl)tin-S,S'-
bis(isooctylmercaptoacetate) 

CCCCCCCC[Sn](CCCCCCCC)(SCC(=O)OC(C)CC
CCCC)SCC(=O)OC(C)CCCCCC 

26 4-Butyloxybenzal-4'-ethylaniline CCCCOc1ccc(cc1)C=Nc1ccc(CC)cc1 
27 Trans-2,3-dibromo-2-butene-1,4-diol OCC(Br)=C(Br)CO 
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28 Pentanedinitrile, 2-methyl- CC(CCC#N)C#N 
29  Linolenic acid (8CI) CCC=CCC=CCC=CCCCCCCCC(O)=O 
30 3-Pentenenitrile; pent-3-enenitrile CC=CCC#N 
31  Bromopicrin [O-][N+](=O)C(Br)(Br)Br 
32 1,3,5-Tris(hydroxy-ethyl)s-hexahydrotriazine OCCC1NC(CCO)NC(CCO)N1 
33 Trimethylene oxide (8CI) C1COC1 
34 Trimethyloxonium hexachloroantimonate(1-) C[O+](C)C.Cl[Sb-](Cl)(Cl)(Cl)(Cl)Cl 
35 Allyl urea NC(=O)NCC=C 
36 Urea NC(N)=O 
37 2-Chloro-2-nitropropane CC(C)(Cl)[N+]([O-])=O 
38 1,1-Dichloro-1-nitroethane CC(Cl)(Cl)[N+]([O-])=O 
39 Methyl sulfoxide C[S+](C)[O-] 
40 1,4-Benzenediamine, N,N'-diphenyl- N(c1ccccc1)c1ccc(Nc2ccccc2)cc1 
41 2,6-Octadiene, 1,1-diethoxy-3,7-dimethyl- CCOC(OCC)C=C(C)CCC=C(C)C 
42  Chloropicrin [O-][N+](=O)C(Cl)(Cl)Cl 
43 o-Tolyl phosphate Cc1ccccc1OP(=O)(Oc1ccccc1C)Oc1ccccc1C 
44 Methacrylic acid CC(=C)C(O)=O 
45 Benzoic acid, p-(dichlorosulfamoyl) OC(=O)c1ccc(cc1)S(=O)(=O)N(Cl)Cl 
46 1,3-Dimethyl-2-nitrobenzene Cc1cccc(C)c1[N+]([O-])=O 
47  1-Chloronaphthalene Clc1cccc2ccccc12 
48  N,N'-Di-2-naphthyl-p-phenylenediamine N(c1ccc(Nc2ccc3ccccc3c2)cc1)c1ccc2ccccc2c1 
49 2,3,6-Trichlorophenol Oc1c(Cl)ccc(Cl)c1Cl 
50 2,4,5-Trichlorophenol Oc1cc(Cl)c(Cl)cc1Cl 
51 Butanone oxime CCC(C)=NO 
52 2,2'-Methylene-bis (4-chlorophenol) Oc1ccc(Cl)cc1Cc1cc(Cl)ccc1O 
53  2-Vinylpyridine C=Cc1ccccn1 
54 Bis(cyclopentadienyl)vanadium chloride Cl[V](Cl)(C1C=CC=C1)C1C=CC=C1 
55 Bis(1,5-cyclooctadiene)nickel [Ni].C1CC=CCCC=C1.C1CC=CCCC=C1 
56 (1S,4S,4aS,6S,8aS)-4-isopropyl-1,6-

dimethyldecahydronaphthalene 
CC1CCC2C(C)CCC(C(C)C)C2C1 

57 2-Methylpropanenitrile CC(C)C#N 
58 C.I. Natural Orange 4 CC(C=CC=C(C)C=CC(O)=O)=CC=CC=C(C)C=CC

=C(C)C=CC(O)=O 
59 Retinol palmitate CCCCCCCCCCCCCCCC(=O)OCC=C(C)C=CC=C

(C)C=CC1=C(C)CCCC1(C)C 
60 MENTHONE CC(C)C1CCC(C)CC1=O 
61 sodium dimethyldithiocarbamate [Na+].CC(C)C([S-])=S 
62 Anisole, p-propenyl-, trans-;  COc1ccc(C=CC)cc1 
63 Biphenyl-4-ol Oc1ccc(cc1)-c1ccccc1 
64 5-beta-Cholan-24-oic acid, 3-alpha,7-alpha-

dihydroxy- 
CC(CCC(O)=O)C1CCC2C3C(O)CC4CC(O)CCC4(
C)C3CCC12C 

65 Deterrol CC(=C)c1ccc(C)c2ccc(CO)c2c1 
66 7H-Benz(de)anthracen-7-one O=C1c2ccccc2-c2cccc3cccc1c32 
67  1,2,3-Trimethylbenzene Cc1cccc(C)c1C 
68 2,3'-bipyridine c1ccc(nc1)-c1cccnc1 
69 4,4'-bipyridine c1cc(ccn1)-c1ccncc1 
70  tributylborane CCCCB(CCCC)CCCC 
71 2-Nitrobutane CCC(C)[N+]([O-])=O 
72 2(1H)-Quinolinone O=C1Nc2ccccc2C=C1 
73 Ursodeoxycholic acid CC(CCC(O)=O)C1CCC2C3C(O)CC4CC(O)CCC4(

C)C3CCC12C 
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74 Deoxycholic acid CC(CCC(O)=O)C1CCC2C3CCC4CC(O)CCC4(C)C
3CC(O)C12C 

75 Cholic acid CC(CCC(O)=O)C1CCC2C3C(O)CC4CC(O)CCC4(
C)C3CC(O)C12C 

76 1,3,5-Cycloheptatriene, 1-methoxy- COC1CC=CC=CC=1 
77 nitrocyclopentane [O-][N+](=O)C1CCCC1 
78 Nitrocyclopentane nitronate [O-][N+]([O-])=C1CCCC1 
79 1,3-dithiane C1CSCSC1 
80 p-Dithiane C1CSCCS1 
81 Isonicotinaldehyde oxime ON=Cc1ccncc1 
82  Naphthoresorcinol Oc1cc(O)c2ccccc2c1 
83 1,6-Naphthalenediol Oc1ccc2c(O)cccc2c1 
84 Sesquiterpene, stearic acid ester CCCCCCCCCCCCCCCCCC(=O)OCC1=CC=C2C(

C)=CCC(C=C12)C(C)=C 
85 1H-Phenalen-2-amine, 2,3-dihydro-N-

methyl-, hydrochloride 
Cl.CNC1Cc2cccc3cccc(C1)c23 

86  Phenalen-1-one O=C1C=Cc2cccc3cccc1c23 
87 Bithionol sulfoxide Oc1c(Cl)cc(Cl)cc1[S+]([O-])c1cc(Cl)cc(Cl)c1O 
88 Phosphoramidothioic acid, O,S-dimethyl 

ester 
COP(N)(=O)SC 

89  2-Nitropropane nitronate CC(C)=[N+]([O-])[O-] 
90  1,6-Pyrenequinone O=C1C=Cc2ccc3C(=O)C=Cc4ccc1c2c43 
91 1,8-Pyrenequinone O=C1C=Cc2ccc3C=CC(=O)c4ccc1c2c34 
92 2,3-dichloropyridin Clc1cccnc1Cl 
93 Pyridine, 2-fluoro- Fc1ccccn1 
94 1-Methyl-4-phenyl-2,3-dihydropyridinium 

perchlorate 
[O-]Cl(=O)(=O)=O.C[N+]1CCC(=CC=1)c1ccccc1 

95 Thiazolidine C1CSCN1 
96  Vanadic acid, ammonium salt N.O[V](=O)=O 
97 2-Mercaptoethanol thionitrite OCCSN=O 
98 Chlorinated trisodium phosphate [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].

[Na+].[Na+].[Na+].[Na+].[Na+].[O-]Cl.[O-]P([O-
])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-
])=O.[O-]P([O-])([O-])=O 

99 3,3'-Dipyridyl c1cncc(c1)-c1cccnc1 
100 2,4'-Dipyridyl c1ccc(nc1)-c1ccncc1 
101 1,4-pentadiene-3-ol; Penta-1,4-dien-3-ol OC(C=C)C=C 
102  4-Biphenylyl methylcarbamate CNC(=O)Oc1ccc(cc1)-c1ccccc1 
103 1,2,3,4,4a,10a-hexahydrophenanthrene C1CCC2C(C1)C=Cc1ccccc21 
104 1,2,3,9,10,10a-hexahydrophenanthrene C1CC=C2C(C1)CCc1ccccc12 
105 1,1'-Dimethyl-3,3'-bipyridinium diiodide [I-].[I-].C[n+]1cccc(c1)-c1ccc[n+](C)c1 
106 4-(2'-Pyridyl)-1-methylpyridinium iodide [I-].C[n+]1ccc(cc1)-c1ccccn1 
107 (4aR,10aS)-6-methoxy-1,2,3,4,4a,10a-

hexahydrophenanthrene 
COc1ccc2C=CC3CCCCC3c2c1 

108  9-Methyl-trans-1,2,3,4,4a,10a-
hexahydrophenanthrene 

CC1=CC2CCCCC2c2ccccc12 

109  4-(1-phenylureido)benzoic acid NC(=O)N(c1ccccc1)c1ccc(cc1)C(O)=O 
110 10-Methoxyacenaphtho(1,2-b)quinoline COc1ccc2nc3c(cc2c1)-c1cccc2cccc-3c21 
111  4-(5-cyano-3-oxopentyl)benzoic acid OC(=O)c1ccc(CCC(=O)CCC#N)cc1 
112  2,5,9,11-Tetramethyl-5H-quinindoline CC1C2C(=Nc3ccc(C)cc23)N(C)c2ccc(C)cc12 
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