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Abstract

We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely
neutron star–black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a
30 deg2 field at ΔT=2, 9, and 33 days post-merger at a frequency of 944MHz, comparing them to reference
images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our
observations covers 89% of the LIGO/Virgo localization region. We conducted an untargeted search for radio
transients in this field, resulting in 21 candidates. For one of these, AT2019osy, we performed multiwavelength
follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated
variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for
radio emission from NSBH mergers and place constrains on the circum-merger density and inclination angle of the
merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most
sensitive widefield radio transients search to-date.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Radio astronomy (1338); Transient sources
(1851); Radio transient sources (2008)

1. Introduction

On 2019 August 14 the LIGO and Virgo collaborations
detected the compact binary merger S190814bv18 with the
LIGO Livingston (L1), LIGO Hanford (H1), and Virgo (V1)
gravitational wave detectors (LIGO Scientific Collaboration &
Virgo Collaboration et al. 2019a). The event was classified as a
neutron star–black hole (NSBH) merger, where the lighter
component has a mass <3Me, and the heavier component has
a mass >5Me (LIGO Scientific Collaboration & Virgo
Collaboration et al. 2019b). The accuracy of this classification
is dependent on the physical upper limit for neutron star mass,
which is not well constrained, but may be less than the above
definition (Cromartie et al. 2019; Zhang et al. 2019). The
probability of there being matter outside the remnant object is

<1% (LIGO Scientific Collaboration & Virgo Collaboration
et al. 2019a); therefore, the expected nature of any electro-
magnetic radiation from the merger (if any) is unclear.
The preferred skymap (LALInference.v1.fits.gz)

has a 90% localization region of 23 deg2 and a sky-averaged
distance estimate of 267±52Mpc. High-energy observations
(Kocevski et al. 2019; Molkov et al. 2019; Palmer et al. 2019;
Pilia et al. 2019; Sugizaki et al. 2019) find no evidence for a
coincident short gamma-ray burst (GRB). Optical observations
found numerous candidate counterparts that have since been
ruled out with further photometric and spectroscopic observa-
tions (Andreoni et al. 2019).
While the low probability of remnant matter (LIGO

Scientific Collaboration & Virgo Collaboration et al. 2019b)
may suggest that the merger produced no electromagnetic
counterpart, the lack of optical counterparts may also be
explained by intrinsic factors such as inclination angle, mass
ratio, remnant lifetime or a lack of polar ejecta (Kasen et al.
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2017), or extrinsic factors like dust obscuration. In this case,
radio emission may be the only way to localize this event.

We performed follow-up of S190814bv with the Australian
Square Kilometre Array Pathfinder (ASKAP; Johnston et al.
2008). In Section 3 we discuss our untargeted radio transients
search. In Section 4 we summarize multiwavelength follow-up
of candidate counterpart AT2019osy that was initially detected
in this search.

2. Observations and Data Reduction

We observed a target field centered on (J2000) coordinates
a = 00 50 37. 5h m s , d = -  ¢25 16 57. 37s at ΔT=2, 9 and
33 days post-merger with ASKAP. This target field, shown in
Figure 1 at ΔT=2 days, covers 89% of the skymap
probability.
Table 1 gives a summary of our ASKAP observations. Data

were observed using 36 beams arranged in a closepack36

Figure 1. ASKAP image of the localization region of S190814bv centered on 00:50:37.5, −25:16:57.371 observed 2 days post-merger. The 30 deg2 field of view
covers ∼89% of the localization region, with 50% (90%) contours shown in red dashed (solid) lines. The large object near the center of the image is the radio-emitting
starburst galaxy NGC 253. Note: there is a secondary lobe of the localization toward the southeast that is outside the ASKAP footprint.

Table 1
Details of our ASKAP Observations for Each Scheduling Block ID (SBID)

Epoch SBID Start Int. Time ΔT % Flagged Sensitivity Beam Size
(UTC) (h:m:s) (day) (μJy)

0 8582 2019 Apr 27 04:59:14 00:15:00 −110 26 270 10 2×14 9
1 9602 2019 Aug 16 14:10:27 10:39:25 2 25 35 10 0×12 3
2 9649 2019 Aug 23 13:42:59 10:39:01 9 26 39 11 8×12 4
3 9910 2019 Sep 16 12:08:34 10:38:42 33 32 39 9 8×12 1

Notes.All observations were carried out with 288 MHz of bandwidth centered on a frequency of 944 MHz and 33 of 36 antennas. Typically 26% of the data was
flagged due to RFI or correlator drop-outs. The ASKAP images from our follow-up observations are available from the CSIRO ASKAP Science Data Archivea under
project code AS111.
a https://casda.csiro.au/
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footprint19 with beam spacing of 0°.9. The field was tracked for
a nominal time of 10.5 hr and 288MHz of bandwidth was
recorded with a center frequency of 944MHz. Typical
sensitivity was ∼39 μJy with a beam size of ∼12″.

We imaged the data with the ASKAPsoft pipeline version
0.24.4 (Whiting et al. 2017), using a set of parameters
optimized for deep continuum fields. Each beam was imaged
independently and then combined using a linear mosaic.
Multifrequency synthesis with two Taylor terms was used,
along with Multi-scale CLEAN using scales up to 27 pixels in
size. Visibilities were weighted using Wiener preconditioning
with a robustness parameter of zero. Two major cycles of self-
calibration were used to refine the antenna gain solutions
derived from observations of PKSB1934−638 in each beam
(see McConnell et al. 2016, for a description of the ASKAP
beamforming and calibration process). We also used pre-
release data from the 888MHz Rapid ASKAP Continuum
Survey (RACS20) as a reference epoch.

The astrometric accuracy and flux scaling of each epoch is
consistent with every other epoch. The median flux ratio of
compact sources for any two of the ASKAP observations is
consistent with 1 within uncertainties. The median R.A. offset
is 0 09–0 36 and the median decl. offset is 0 02–0 2 (smaller
than the pixel size) with a typical standard deviation of 0 7 and
0 6 respectively.

3. Untargeted Search for Radio Transients and Variables

To search for a radio counterpart to S190814bv, we
performed an untargeted search for transients and highly
variable sources using the LOFAR Transients Pipeline (TraP;
Swinbank et al. 2015). We ran TraP with source detection and
analysis thresholds of 5σ and 3σ, respectively, and used the
“force beam” option to constrain the Gaussian shape fit
parameters for all sources to be the same as the restoring beam.

We selected candidates by identifying sources that were
significant outliers in both variability metrics calculated by
TraP: η, which is the weighted reduced χ2, and the variability
index V (equivalent to the fractional variability). This was done
by fitting a Gaussian function to the distributions of both
metrics in logarithmic space, with σ thresholds chosen to be
η>1.5ση and V>1.0σV, equating to values of η>2.73 and
V>0.18. The thresholds were adapted from Rowlinson et al.
(2019), which gives approximate recall and precision rates of
90% and 50% respectively.

This resulted in 285 transient or variable candidates, which
was reduced to 89 sources after manual inspection to remove
imaging artifacts and components of complex extended
sources.

3.1. Analysis of Candidates for Possible Association with
S190814bv

The 89 variable sources were filtered to remove those that
were not consistent with the predicted emission of S190814bv,
which should not exhibit more than a single rise and decline on
these timescales (Hotokezaka et al. 2016), according to the
following criteria:

1. Sources that showed a decline between epochs1 and 2,
followed by a rise between epochs2 and 3. 41 sources
were excluded.

2. Sources detected in RACS epoch0 where epochs1 and 2
had lower integrated flux values than epoch0.3 sources
were excluded.

We then searched the GLADE catalog (GLADE; Dálya et al.
2018) for galaxies in the localization volume within 20″ (or
∼20 kpc at the estimated distance of S190814bv LIGO
Scientific Collaboration & Virgo Collaboration et al. 2019b)
of a variable source. We found one candidate
(ASKAP J005547.4–270433) that is near 2dFGRS
TGS211Z177, a cataloged galaxy with z=0.0738 (Colless
et al. 2001). This source was the only strong candidate after
epoch 2 and prior to the acquisition of epoch 3 we performed
multiwavelength follow-up which we discuss in Section 4. We
excluded two candidates that matched with a GLADE galaxy
>3σ beyond the estimated distance to S190814bv
(267± 52Mpc LIGO Scientific Collaboration & Virgo Colla-
boration et al. 2019b).
We cross-matched the 42 remaining variable candidates with

the Photometric Redshifts for the Legacy Surveys (PRLS)
catalog (R. Zhou et al. 2019, in preparation), which is based on
Data Release 8 of DESI Legacy Imaging Surveys (Dey et al.
2019). We excluded 22 variable sources that had all optical
matches at distances differing by >3σ from the estimated
distance to S190814bv. This left seven sources with at least one
cross-match within the localization volume and 13 sources with
no reliable distance estimate (see Table 2).

4. Follow-up of ASKAP J005547.4–270433

4.1. Radio Observations

We carried out follow-up observations of
ASKAPJ005547.4–270433 (hereafter AT2019osy) with the
ATCA (C3278, PI: Dobie) using two 2 GHz bands centered on
5.5 and 9 GHz at 14, 22, and 34 days post-merger. We reduced
the data using the same method as Dobie et al. (2018) using
PKSB1934−638 and B0118−272 as flux and phase calibra-
tors respectively.
We also carried out VLA observations (VLA 18B-320, PI:

Frail) on 2019 August 28 and September 9. Standard 8 bit
WIDAR correlator setups were used for L and S bands, and
3 bit setups for C and X bands to obtain a contiguous frequency
coverage between 1 and 12 GHz. 3C48 and J0118–2141 were
used as the flux and phase calibrators respectively. The data
were processed using the NRAO CASA pipeline and imaged
using the clean task in CASA.
A summary of our observations is given in Table 3. We find

a constant flux density offset21 of ∼40% between the initial
ATCA and VLA observations across all epochs. We therefore
find no evidence for radio variability beyond the initial rise
observed with ASKAP.

4.2. Optical Observations

We conducted optical imaging of AT2019osy with the Dark
Energy Camera (DECam, Flaugher et al. 2015) on the 4 m

19 For more information on ASKAP beam-forming, see https://confluence.
csiro.au/display/askapsst/.
20 https://www.atnf.csiro.au/content/racs

21 The flux densities of nearby sources and the calibrator source J0118–2141
between the ATCA and the VLA are consistent with the flux offset of ∼40%
seen in AT2019osy. This offset can partially be explained by resolution effects,
and detailed investigation of it is ongoing.
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Table 2
Candidate Counterparts from an Untargeted Search of the S190814bv Localization Region

Name R.A. Decl. S0 S1 S2 S3 Vint ηint Offset z
(deg) (deg) (mJy) (mJy) (mJy) (mJy) (″)

ASKAPJ004033.2–233530 10.13813 −23.5917 4.700±0.454 4.517±0.062 4.732±0.069 6.648±0.068 0.22 306 L L
ASKAPJ004054.8–273246 10.22816 −27.5463 <1.1 0.498±0.069 0.525±0.076 0.272±0.078 0.32 3.29 13.4 0.19±0.05
ASKAPJ004150.3–270632 10.45977 −27.1090 <1.0 0.656±0.058 0.536±0.063 0.436±0.064 0.20 3.32 L L
ASKAPJ004424.5–265522 11.10216 −26.9230 <1.2 0.281±0.055 0.437±0.060 0.475±0.060 0.26 3.26 L L
ASKAPJ004825.7–264137 12.10704 −26.6937 <0.75 0.384±0.053 0.615±0.057 0.614±0.057 0.25 5.94 L L
ASKAPJ004916.8–270745 12.32005 −27.1292 <0.88 0.586±0.049 0.725±0.053 0.954±0.055 0.25 12.6 16.8 0.38±0.13a

ASKAPJ005234.9–264144 13.14558 −26.6956 <0.73 0.379±0.050 0.380±0.055 0.226±0.054 0.27 2.75 L L
ASKAPJ005304.8–255451 13.27001 −25.9144 <1.1 0.230±0.050 0.375±0.054 0.214±0.053 0.33 2.75 L L
ASKAPJ005426.1–253833 13.60866 −25.6425 <0.72 0.274±0.053 0.487±0.059 0.273±0.059 0.36 4.51 17.9 0.33±0.11
ASKAPJ005434.6–280235b 13.64412 −28.0431 <0.70 3.399±0.097 1.337±0.103 1.264±0.104 0.61 149 11.5 0.21±0.11
ASKAPJ005523.7–250403 13.84868 −25.0675 <0.86 0.972±0.053 0.753±0.060 0.669±0.060 0.20 7.85 L L
ASKAPJ005547.4–270433 13.94764 −27.0759 <0.80 0.399±0.055 0.598±0.059 0.557±0.059 0.20 3.45 0.1 0.0733c

ASKAPJ005606.9–255300 14.02875 −25.8835 <0.80 0.623±0.052 0.899±0.059 1.011±0.059 0.24 13.3 9.2 0.26±0.14
ASKAPJ005618.1–273012 14.07556 −27.5035 2.006±0.559 1.770±0.066 2.613±0.070 2.050±0.069 0.20 39.4 11.1 0.18±0.09
ASKAPJ005709.0–243659 14.28753 −24.6165 <0.78 0.890±0.054 0.611±0.060 0.489±0.059 0.31 13.5 14.2 0.22±0.10
ASKAPJ005709.7–250751 14.29030 −25.1310 <0.81 0.654±0.054 0.814±0.062 0.447±0.062 0.29 8.85 L L
ASKAPJ005729.6–231608 14.37350 −23.2690 <0.98 0.620±0.060 0.803±0.065 0.495±0.064 0.24 5.76 L L
ASKAPJ005809.0–273407 14.53757 −27.5688 <0.79 0.849±0.068 0.602±0.072 0.552±0.073 0.24 5.25 L L
ASKAPJ010004.6–231155 15.01934 −23.1988 <0.79 1.002±0.067 0.767±0.073 0.642±0.070 0.23 7.15 L L
ASKAPJ010258.6–265119b 15.74436 −26.8555 <0.87 <0.099 0.261±0.091 0.232±0.098 0.45 3.75 L L
ASKAPJ010534.6–231604 16.39415 −23.2680 <0.85 <0.087 0.485±0.140 0.718±0.146 0.58 3.36 L L

Notes.Nondetections are denoted by 3σ upper limits based on the local noise measured by BANE (Hancock et al. 2018). The angular separation and redshift of the corresponding optical source are shown.
a There are three optical sources within 20″ of this candidate. The two closest have a photometric redshift that is inconsistent with the distance to S190814bv.
b Ruled out as a counterpart.
c Spectroscopic redshift.
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Blanco telescope under NOAO program ID 2019B-0372 (PI:
Soares-Santos). Images including the location of AT2019osy
were taken in i and z bands nightly from 2019 August 15 to 18
and on 2019 August 21 (UT) and reduced in real-time
(Goldstein et al. 2019). A detailed offline analysis of the
subtraction images zooming in on the location around
AT2019osy, reveals no robust point source at this location to
a depth of i>21.2 mag and z>20.0 mag on UT 2019 August
15 (the night of the merger) increasing linearly in limiting
magnitude to i>23.5 mag and z>23.5 mag on UT 2019
August 21 (consistent with independent analysis by Herner
et al. 2019). We also analyzed the DECam images using The
Tractor image modeling software (Lang et al. 2016) and
found that a model with an exponential galaxy profile with a
point source at the galaxy nucleus is required to fit the data,
both before and after S190814bv. This suggests that there is no
optical transient temporally coincident with S190814bv but
possibly some underlying nuclear variability.

On 2019 August 22 UT, we observed AT2019osy in the
near-infrared using the Wide-field Infrared Camera (WIRC;
Wilson et al. 2003) with the 200 inch Hale telescope at Palomar
Observatory for a total of 10 minute exposure time (De et al.
2019b). The WIRC data were reduced and stacked using a
custom pipeline (De et al. 2019a). No counterpart to
AT2019osy was detected down to an AB limiting magnitude
of J>21.5 (5σ).

We also obtained a spectrum of the host galaxy of
AT2019osy using the Double Beam Spectrograph (Oke &

Gunn 1982) on the Palomar 200 inch Hale Telescope (P200),
which we reduced using pyraf-dbsp (Bellm & Sesar 2016).
The spectrum is dominated by red continuum that is likely
primarily associated with the host galaxy; no obvious broad
features are evident. We identify several narrow emission lines
(Hα; [N II]λλ6548,6583, [S II]λλ6716,6731, and marginal
[O II]λ3727) at a common redshift of 0.0733, consistent within
2σ of the LVC distance constraint. Hβ and [O III]λ5007 are not
detected in the spectrum. We measure a flux ratio of log
[N IIλ6583/Hα]=0.2, indicating at least partial contribution
by an active galactic nucleus (AGN; Kauffmann et al. 2003).

4.3. X-Ray Observations

We observed the field of AT2019osy, starting at 2019
September 23 10:30:48 UT for 20 ks with the Chandra ACIS-S
instrument (S3 chip) and very faint data mode. The data were
analyzed with CIAO (v 4.11; Fruscione et al. 2006) and
calibration was carried out with CALDBv4.8.4.1. We
reprocessed the primary and secondary data using the repro
script and created X-ray images for the 0.3–8 keV range. No
sources were visible near AT2019osy (verified with both
wavdetect and celldetect), with a maximum count rate
of ´ - -2.85 10 s4 1. Assuming a neutral hydrogen column
density = ´ -N 1.8 10 cmH

20 2 and a power-law model with
index n=1.66 (corresponding to the observed radio spectral
index of −0.4), this count rate yields a 0.3–8 keV unabsorbed
flux upper limit of ´ - - -3.2 10 erg cm s15 2 1 (as reported in
Jaodand et al. 2019) or an unabsorbed luminosity
of ´ -4.2 10 erg s40 1.

4.4. Source Classification

AT2019osy exhibits no significant radio variability beyond
the initial rise and there is no evidence for a coincident optical
transient. The coincident galaxy is edge-on, likely with
significant dust obscuration toward the nucleus, and therefore
the optical spectrum is consistent with an AGN within a star-
forming galaxy. The inferred radio and X-ray luminosity of
AT2019osy along with the small offset from the optical
centroid of 2dFGRS TGS211Z177 suggests that the source is a
variable low-luminosity AGN (Ballo et al. 2012) and unrelated
to S190814bv.

5. Discussion

5.1. Candidate Classification

We find 21 candidate counterparts to S190814bv above our
detection threshold of 170 μJy, corresponding to 1% of
observed sources. This is consistent with the expected rate of
AGN variability from Radcliffe et al. (2019), who find ∼2% of
μJy-level sources exhibit significant variability likely attribu-
table to the presence of an AGN. Additionally, the expected
level of compact source variability caused by refractive
interstellar scintillation along this line of sight is ∼35%
(Cordes & Lazio 2002), comparable to Vint for all but three
sources which we discuss below.
We classify ASKAP J005434.6−280235 as a variable AGN

based on follow-up observations (De et al. 2019b; Dobie et al.
2019). ASKAP J010258.6–265119 is coincident centrally
between two large radio lobes and hence likely associated
with core emission from a radio galaxy. ASKAP
J010534.6–231604 is coincident (<1″) with WISE

Table 3
Radio Observations of AT2019osy

Telescope ΔT Frequency Flux Density
(days) (GHz) (μJy)

ASKAP 2 0.943 376±33

ASKAP 9 0.943 550±34

VLA 13 1.5 409±34
3.0 301±21
6.0 213±11
10.0 187±11

ATCA 14 5.0 369±23
6.0 335±19
8.5 307±15
9.5 278±14

ATCA 22 5.0 380±21
6.0 353±17
8.5 299±14
9.5 234±14

VLA 25 1.5 303±48
3.0 317±21
6.0 220±10
10.0 150±10

ASKAP 33 0.943 513±34

ATCA 34 5.0 348±17
6.0 349±14
8.5 320±15
9.5 275±14

Note.Observations with the ATCA and VLA were carried out with maximum
baselines of 6 km and 40 km respectively.
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J010534.64–231605.5 (Cutri et al. 2012), which is likely a
variable AGN at a distance of z∼1 (Glowacki et al. 2017).

While we cannot conclusively rule out the sources in Table 2
as counterparts to S190814bv, they are likely AGN exhibiting a
combination of intrinsic and extrinsic variability. Of course, at
most one candidate can be the actual counterpart, and there is
nothing yet to distinguish any of these from the others. Further
observations on timescales of months to years will reveal their
nature.

5.2. Radio Transient Rates

Our follow-up of S190814bv is the most sensitive widefield
radio transients search to-date, approximately an order of
magnitude more sensitive compared to previous searches with
comparable areal coverage (Hobbs et al. 2016) and approxi-
mately an order of magnitude more areal coverage than
previous searches at comparable sensitivities (Mooley et al.
2013).
We have found four transient candidates (i.e., sources with a

prior constraining nondetection) in total; the three sources
discussed in Section 5.1 and ASKAP J005104.2–230852,
which was ruled out as a candidate to S190814bv based on the
redshift of nearby optical sources. This source is coincident (<
0 6) with WISEJ005104.13-230851.8, which is likely a
variable AGN.

We therefore place an upper limit on the 943MHz radio
transients surface density of 0.05 deg−2 for sources above
170 μJy at 95% confidence.

5.3. Nondetection of a Radio Afterglow from S190814bv

Predicted radio lightcurves from NSBH mergers span a large
range of flux densities and timescales (e.g., Piran et al. 2013;
Lamb & Kobayashi 2016; Bhattacharya et al. 2019). If the
radio emission is dominated by the outflowing dynamical ejecta
the lightcurve will peak on timescales of years, whereas if the
emission is jet-dominated the lightcurve will peak at compar-
ably lower flux densities on timescales of days to months
(Hotokezaka et al. 2016). In each of these scenarios the
lightcurve is also dependent on the merger energetics, circum-
merger density and inclination angle, each of which can change
both the peak time and flux density by an order of magnitude.
The merger energetics are determined by the mass ratio, the
spin of the black hole (both of which are calculable from
gravitational wave strain data that is yet to be released), and the
unknown neutron star equation of state (Kyutoku et al. 2011;
Foucart 2012).

We place a 5σ upper limit on the 943MHz radio emission
from S190814bv of 170 μJy at ΔT=2, 9, and 33 days post-
merger. We compute off-axis afterglow lightcurves based on a
top-hat jet model (see Hotokezaka & Piran 2015, for details)
assuming an isotropic equivalent energy Eiso= 1051 erg
(typical of short GRB afterglows; Fong et al. 2015), an initial
jet opening angle of θj= 10° and microphysics parameters
òe= 0.1, òB= 0.01, and p= 2.2. By comparing these light-
curves to the observed upper limits we can constrain the merger
inclination angle, θobs, and circum-merger density, n. Figure 2
shows these constraints, assuming that the merger occurred
within the 89% of the localization region covered by our
observations. We can rule out the part of the parameter space
typically occupied by short GRBs, assuming that their
inclination angle is smaller than the opening of the angle of

the jet (Fong et al. 2015). Under a more conservative
assumption of the isotropic equivalent energy (Eiso= 1050

erg) we can only rule out a small part of the parameter space
around θobs= 10° and n= 1 cm−3.
In comparison, if we scale the nonthermal lightcurve of

GW170817 to 943MHz based on a spectral index of
α=− 0.575 (Mooley et al. 2018; Hajela et al. 2019) and
place it at a distance comparable to S190814bv, we find a peak
flux density of ∼5 μJy, well below our detection threshold. We
note that the nonthermal emission from GW170817 did not
peak until ∼150 days post-merger (Dobie et al. 2018). Further
observations on timescales of months to years post-merger will
enable us to place tighter constraints on the circum-merger
density and inclination angle, which may be useful in
improving the gravitational wave localization (Corley et al.
2019).

6. Conclusions

We have performed widefield radio follow-up of the NS-BH
merger S190814bv with the Australian ASKAP. We cover 89%
of the sky localization with a single 30 deg2 pointing centered
on the localization maxima. We found 21 candidate counter-
parts and performed comprehensive multiwavelength follow-up
of one, AT2019osy. The number of candidates is consistent
with the expected rate of AGN variability. Most exhibit
variability that is consistent with that expected from interstellar
scintillation and are therefore unlikely to be related to
S190814bv.
The nondetection of a radio counterpart allows us to place

constraints on the circum-merger density, n, and inclination
angle of the merger, θobs, if it occurred within the area covered
by our observations. Under the assumption of Eiso= 1051 erg,
θj= 10°, òe= 0.1, òB= 0.01, and p= 2.2, we constrain
θobs> 10° for all n at the extreme of the probability distribution
of distance to the event. We will be able to place tighter
constraints on these merger parameters once inclination angle
estimates from gravitational wave strain data are released
publicly.
As well as probing different parameters to optical searches,

radio observations of future events may detect a gravitational
wave counterpart where optical follow-up is inhibited by

Figure 2. Radio constraints on viewing angle and circum-merger density for a
merger with isotropic equivalent energy 1051 erg, an initial jet opening angle of
10°, and microphysics parameters òe=0.1, òB=0.01, and p=2.2, assuming
that the merger occurred in the 89% of the localization region we observed.
Shaded regions correspond to parts of the parameter space that are ruled out by
our radio constraints for a range of distances corresponding to 1σ either side of
the median.
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observing constraints, or intrinsic properties of the merger. We
have demonstrated that it is possible to perform comprehensive
follow-up of gravitational wave events with ASKAP, due to its
large field of view that enables a survey speed significantly
faster than comparable radio facilities.
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