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Abstract 

There is much evidence to suggest that skill learning is enhanced by skill observation. 

Recent research on this phenomenon indicates a benefit of observing variable/erred 

demonstrations. In this study, we explore whether it is variability within the relative organization 

or absolute parameterization of a movement that facilitates skill learning through observation. To 

do so, participants were randomly allocated into groups that observed a model with no variability, 

absolute timing variability, relative timing variability, or variability in both absolute and relative 

timing. All participants performed a four-segment movement pattern with specific absolute and 

relative timing goals prior to and following the observational intervention, as well as in a 24hr 

retention test and transfers tests that featured new relative and absolute timing goals. Absolute 

timing error indicated that all groups initially acquired the absolute timing, maintained their 

performance at 24hr retention, and exhibited performance deterioration in both transfer tests. 

Relative timing error revealed that the observation of no variability and relative timing variability 

produced greater performance at the post-test, 24hr retention and relative timing transfer tests, but 

for the no variability group, deteriorated at absolute timing transfer test. The results suggest that 

the learning of absolute timing following observation unfolds irrespective of model variability. 

However, the learning of relative timing benefits from holding the absolute features constant, while 

the observation of no variability partially fails in transfer. We suggest learning by observing no 

variability and variable/erred models unfolds via similar neural mechanisms, although the latter 

benefits from the additional coding of information pertaining to movements that require a 

correction. 

 

Keywords: observational learning; relative timing; absolute timing; variability 
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Introduction 

 

Behavioural data has shown that observing demonstrations of a novel motor skill can 

facilitate the learning of that skill (Ashford, Bennett & Davids, 2006; Hayes, Elliott & Bennett, 

2013; Larssen, Ong & Hodges, 2012; Ste-Marie, Law, Rymal, Jenny, Hall & McCullagh, 2012). 

This finding is most often explained by the shared neural resources that are responsible for the 

coding of observed and executed actions (Jeannerod, 2001; Vogt & Thomaschke, 2007). Indeed, 

neuro-imaging studies have revealed that many of the same cortical regions that are active during 

motor planning and execution, namely, the inferior frontal gyrus (IFG), inferior parietal cortex 

(IPL) and ventral premotor cortex (vPM), are also active during action-observation (Buccino et 

al., 2001; Cross, Kraemer, Hamilton, Kelley & Grafton, 2009; Dushanova & Donoghue, 2010; 

Higuchi, Holle, Roberts, Eickhoff & Vogt, 2012; Rizzolatti & Craighero, 2004). Moreover, these 

common cortical regions are sensitive to the observation of the precise spatio-temporal dynamics 

of human movement (Gangitano, Mottaghy & Pascual-Leone, 2001; Sartori, Bucchioni & 

Castiello, 2012) with a resolution that reflects processing of individual muscles (Alaerts, Swinnen 

& Winderoth, 2011; Alaerts, Senot, Swinnen, Craighero, Wenderoth & Fadiga, 2010). 

Interestingly, research has also consistently shown that observation-based learning is not 

only mediated through demonstrations that present the hallmark consistency and accuracy of 

expert performance (Al-Abood, Davids, & Bennett, 2001; Bandura, 1986; Blandin, Lhuisset, & 

Proteau, 1999; Buchanan & Dean, 2010; 2014; Hodges, Chua, & Franks, 2003), but also by way 

of demonstrations that contain the error and variability inherent to novice performances (Black & 

Wright, 2000; Blandin & Proteau, 2000; ; Blandin, Lhuisset, & Proteau, 1999; Buchanan & Dean, 

2010; Buchanan, Ryu, Zihlman, & Wright, 2008; Hayes, Hodges, Huys, & Williams, 2007). The 

findings associated with the observation of an expert model support the idea that these 
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demonstrations provide learners with a perceptual representation of the correctly performed 

movement, which in turn serves as a standard of reference against which their own performances 

can be compared (Bandura, 1986; Sheffield, 1961). This is a notion that is also consistent with 

current accounts of motor control that include a role for anticipatory processing whereby response-

associated visual feedback is compared against internal models of sensory expectations (Elliott, 

Hansen, Grierson, Lyons, Bennett & Hayes, 2010). Alternatively, observation of novice models is 

purported to help learners make sense of the range of errors that can surround a motor task. That 

is, learning involves coming to understand the association between different movement patterns 

and their outcomes relative to the goal (Adams, 1986), such that the observation of novice 

performances presents the relationship between errors and their consequences. This information is 

important to learners as they come to generate strategies for executing movements that are 

designed to alleviate the costs of a potential error (Elliott, Hansen, Mendoza & Tremblay 2004; 

Lyons, Hansen, Hurding & Elliott, 2006; Grierson, Gonzalez & Elliott, 2008; Grierson & Elliott, 

2009). Notably, learning appears to be best facilitated when observation includes a combination 

of both novice and expert performance demonstrations (Andrieux & Proteau, 2013; Rohbanfard & 

Proteau, 2011).  

Incidentally, the positive impact of observing errors has called into question the straight 

one-to-one subthreshold activation of motor neurons during action-observation as a complete 

explanation for the observational learning phenomenon (e.g., Buccino et al., 2001; Cross et al., 

2009; Higuchi et al., 2012). Indeed, a recent study from Buckingham and colleagues (Buckingham, 

Wong, Tang, Gribble & Goodale, 2014) has shown that the corticospinal excitability elicited 

during the observation of variable motor errors was modulated by the subsequent learning or 

parameterization of required forces rather than the observed movement kinematics. That is, the 
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observation of motor errors, as indicated by greater grip force rates for large- compared to small-

sized objects that were the same weight, resulted in comparatively similar corticospinal responses 

during cortical stimulation. In other words, the neural codes responsible for the observation and 

execution of object-lifting were contingent upon the implicit understanding of the force parameters 

required to execute the task rather than the motor parameters manifesting in error. In addition, the 

behavioural data collected after the observation of variable motor errors reflected a similar 

outcome as the neurophysiological data with a more limited size-weight bias, and thus reduced 

motor error, compared to the observation of consistent error-free trials. Thus, it appears our 

understanding of the behavioural and neural underpinnings of learning through observation may 

be greatly benefitted from investigations of mixed or variable models consisting of at least some 

error. 

With this in mind, it is relevant to consider what aspects of learning are benefitted most by 

the observation of variable or erred models, along with the precise features of observed movements 

that require variability in order to uphold a learning advantage. Indeed, the current consensus of 

observing a combination of mixed models for the enhancement of learning may operate at a 

number of different levels including the coordination of relative motion features (e.g., segmental 

timing of movements) and/or the parameterization of the absolute movement dynamics (e.g., 

combined timing or force specification) (Scully & Newell, 1985; see also Shea & Wulf, 2005). To 

date, evidence has shown that the observation of a mixed combination of expert and novice models 

results in better relative and absolute timing at immediate and delayed (24 hr) retention tests, as 

well as enhancing the ability to transfer to a novel absolute timing pattern (Rohbanfard & Proteau, 

2011). In a similar vein, it has been shown that the enhanced retention of relative and absolute 

timing following variable model observation is contingent upon a period of physical practice 
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(Andrieux & Proteau, 2013). Meanwhile, the observation of variable/erred trials helps the observer 

to accurately parameterize force during novel object manipulation (Buckingham et al., 2014) and 

force-field pattern (Brown, Wilson, Obhi & Gribble, 2010) tasks. Taken together, there is some 

evidence that variable model observation can enhance either relative and/or absolute features of a 

skill, although it remains to be seen what affect varying these corresponding features within 

observation has on overall skill development. 

Accordingly, the aim of the current study was to examine the characteristic features of 

variability or performance error that were required in order to enhance motor learning. More 

specifically, we investigated the effect of varying relative and absolute timing on the learning of 

corresponding features of a skill. To this end, we challenged participants to learn specific relative- 

and absolute-timing of a four-segment movement pattern through the observation of 

demonstrations that were characterized by degrees of error in relative and absolute timing 

performance. The models featured either accurate absolute and relative timing with no error, 

constant accuracy in absolute timing but variable error in relative timing, constant accuracy in 

relative timing but variable error in absolute timing, or variable error in absolute and relative 

timing. The learners were tested on their ability to generate the criterion time in immediate and 

retention post-observation tests, and also in tests that required them to transfer to new absolute and 

relative timing goals. 

In accordance with previous literature (for e.g., Al-Abood et al., 2001; Blandin & Proteau, 

2000; Buchanan et al., 2008; Buchanan & Dean, 2010; 2014; Hayes et al., 2007; Hodges et al., 

2003), we hypothesized that participants would learn both relative and absolute timing features 

following the observation of accurate absolute and relative timing with no errors. Of even greater 

interest was the impact that the observation of performances containing relative timing errors 
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and/or absolute timing errors had on the learning of the relative timing and absolute timing. In 

general, we anticipated the learning of absolute and relative features to be even greater following 

the observation of demonstrations that included errors within these relevant or corresponding 

features. That is, the learning of absolute timing would be benefited most by the observation of 

models consisting of variable error in absolute timing, and the learning of relative timing would 

be benefitted most from models of variable error in relative timing. Lastly, we explored the degree 

to which the absolute and relative timing could be transferred to new absolute and relative timing 

goals. If the variability of model demonstrations enhances the detection and amendment of errors 

(Andrieux & Proteau, 2013; Blandin & Proteau, 2000), over and above constant accurate models 

consisting of no error, then we may predict the variability of observed absolute and relative features 

to promote transfer to novel absolute and relative timing patterns, respectively. 

Materials and Methods 

Participants 

Forty volunteers (21 males, 19 females, mean age = 23.72 ± 2.86) were recruited to take 

part in the study. All participants were free of any upper limb injuries or neurological disorders, 

had normal or corrected-to-normal vision, and were self-reported right-handers. Consent was 

obtained from each of the participants and the study was conducted in accordance with the 

guidelines set out by the McMaster University Research Ethics Board and the Declaration of 

Helsinki (2013). 

 

Apparatus and Task 

Stimuli were presented on a computer monitor (57 cm x 34 cm) with a temporal resolution 

of 60 Hz and spatial resolution of 1024 x 768 pixels. The monitor was fixed onto a stand that was 
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adjusted to each participant’s hip height and presented in the horizontal axis so as to face upwards 

with respect to the participant’s view.  Each trial featured the presentation of four targets with the 

home position affixed next to the monitor (Fig. 1) with each marking the end of a movement 

segment. The movement segments subtended amplitudes of 25.0 cm for segment 1, 38.5 cm for 

segment 2, 13.5 cm for segment 3, and 24.5 cm for segment 4. Participants performed the 

movements while holding a micro-switch that depressed upon contact with each target. This switch 

indicated the initiation and completion of each movement segment. A custom program developed 

in E-prime 2.0 (Psychology Software Distribution Ltd, Sherrif Hutton, York) was used to control 

the experimental stimuli and record data. 

Participants began each trial with their right hand located over the home position. The 

four targets appeared on the screen and participants had to move to each of the targets in a 

sequential order. The sequence was assigned specific absolute and relative time goals. The 

absolute time goal was 3000ms. The relative time goal was a 10% (300 ms), 40% (1200 ms), 

10% (300 ms) and 40% (1200 ms) of the absolute time for segments 1 to 4, respectively. 

 

[Insert Figure 1 about here] 

 

Experimental Design and Procedures 

Participants engaged in pre-test and acquisition phases before an immediate post-test. They 

then returned a day (~24hrs) later to complete retention and transfer tests. Prior to the pre-test, 

participants received instructions about the task including the absolute and relative time goals. The 

pre-test, post-test, and retention test phases involved attempts to complete the movement sequence 

for the pre-instructed absolute and relative times without any augmented feedback. The transfer 
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phase featured two counterbalanced tests that introduced a novel relative time with the same 

absolute time (relative timing transfer), and a novel absolute time with the same relative time 

(absolute time transfer). The relative time transfer (RT-TRANS) involved a relative time goal of 

30% (900 ms), 10% (300 ms), 20% (600 ms) and 40% (1200 ms) and an absolute time of 3000 

ms. The absolute time transfer (AT-TRANS) involved an absolute time goal of 4500 ms with a 

relative time of 10%, 40%, 10% and 40%. There were 10 trials for each test phase (pre-test, post-

test, retention test, relative timing transfer, and absolute timing transfer). The order of relative and 

absolute transfer tests was counterbalanced across participants. 

For the acquisition phase, participants were randomly assigned to one of four experimental 

observational learning groups, which were differentiated by the nature of demonstrations observed.  

In each case, the participants observed 60 video recordings of a model executing attempts of the 

movement sequence. All recordings were displayed on the same monitor as the target stimuli such 

that the resulting view was aligned with the border of the presentation monitor and only the moving 

limb of the model in that space was visible to the observers. Augmented feedback regarding the 

absolute time and relative time of the observed performance in milliseconds was presented 

following each recording. The participants were instructed to process the feedback and advance to 

the next trial in their own time.  

The absolute and relative times that were observed by each of the groups are shown in 

Table 1. The criterion group (CRIT) observed a model executing the absolute time goal and relative 

time goal precisely, and with no variability. The model demonstration was a perfect performance 

taken from one of over 300 trials previously executed by a confederate volunteer. The absolute 

timing variability group (ATV) observed a set of six demonstrations in which the executed 

absolute time varied, but the relative time goal was upheld. The relative timing variability group 
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(RTV) observed a set of six demonstrations in which the absolute time did not vary, but the relative 

time was varied from trial-to-trial. In manipulating observed variability, we ensured the same 

differences in the degree of variability were presented. That is, the observed models were equally 

either too fast or too slow with respect to the target time (e.g., 2500 ms model = -500 ms difference, 

3500 ms model = +500 ms difference). The fourth group observed the full complement of 

variability (FULL) via demonstrations that featured a combination of variable absolute and relative 

times. The models for the variability groups – ATV, RTV, and FULL – were created through 

modification of the original CRIT model. This was done by lengthening or shortening each of the 

four movements segments to the desired timing parameters using i-Movie (Apple Inc., Cupertino, 

CA). All participants indicated at the conclusion of their participation that they were unaware that 

the observed videos had been modified and stated that they believed the performances to be 

ecological movement representations. The demonstrations were presented in a pseudorandom 

order with the caveat that the same model could not be presented over two consecutive trials and 

each model was presented only once for every set of six trials. 

 

[Insert Table 1 about here] 

 

Dependent Measures and Data Analysis 

There were two dependent measures: total error and relative timing error. Total error was 

calculated using the following equation:  

 

Total Error = √CE2 + VE2 
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where CE (constant error) is the mean signed error difference between the actual movement time 

and criterion movement time, and VE (variable error) is the standard deviation of these signed 

error differences. Relative timing error was calculated using the following equation:  

 

Relative Timing Error = |R1 - .1| +   |R2 - .4| +   |R3 - .1| +   |R4 - .4| 

 

where Ri is the proportion of the absolute time taken up by an individual segment (e.g., Badets, 

Blandin & Shea, 2006; Hayes, Roberts, Elliott, & Bennett, 2014). Values for any dependent 

variable that fell more than 2.5 standard deviation units from the mean were considered outliers 

and were removed from the datasets before analysis. The entire trial containing an outlier was 

removed from analysis. Less than 8% of the total number of trials were removed. 

The participants’ learning of the absolute time and relative time goals was assessed via a 4 

Group (CRIT, ATV, RTV, FULL) by 3 Test (Pre, Post, Retention) mixed-measures analyses of 

variance (ANOVA),while the transfer of learning to each of the new relative and absolute timing 

goals was examined using a 4 Group (CRIT, ATV, RTV, FULL) by 2 Test (Retention, RT-

TRANS/AT-TRANS) mixed-measures ANOVAs for each of the dependent measures. Significant 

effects (p < .05) featuring more than two means were decomposed using Tukey’s Honest 

Significant Difference post hoc procedure.  

 

Results 

Learning 

For the Absolute Timing Error analysis, there was no significant main effect of Group, F(3, 

36) <  1, although there was a significant main effect of Test, F(2, 72) = 9.04, p < .05,  η2
p = .20, 
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indicating a decrease in absolute timing error from pre-test (Mean (±SE) = 879.8 ± 77.5) to post-

test (529.0 ± 60.6) that was maintained at retention (582.0 ± 93.6) (Fig. 2). Moreover, there was 

no significant Group x Test interaction, F(6, 72) < 1. 

 

[Insert Figure 2 about here] 

 

 The analysis of Relative Timing Error revealed a significant Group x Test interaction, F(6, 

72) = 2.57, p = .026, η2
p =  .18 (Fig. 3). Post hoc analyses (p < .05) revealed that all groups reduced 

their relative timing error from Pre-test (CRIT = 0.29 ± .04; ATV = 0.36 ± .04; RTV = 0.35 ± .04; 

FULL = 0.30 ± .04) to Post-test (CRIT = 0.13 ± .02; ATV = 0.27 ± .02; RTV = 0.14 ± .02; FULL 

= 0.21 ± .04), and that this reduction was maintained after a period of retention (CRIT = 0.14 ± 

.02; ATV = 0.27 ± .02; RTV = 0.16 ± .02; FULL = 0.19 ± .03). Furthermore, post hoc analyses 

revealed no significant differences between groups at Pre-test. However, the CRIT and RTV 

groups performed with less relative timing error than the ATV group at Post-test and Retention 

test. The analyses also revealed that the FULL group performances were intermediate to those of 

the CRIT and RTV groups and the ATV group at Post-test and retention test without being 

statistically different. 

 

[Insert Figure 3 about here] 

 

Relative Timing Transfer 

The analysis of Absolute Timing Error in Relative Timing Transfer Test performances 

revealed a significant main effect of Test, F(1, 36) = 15.58, p = .0004,  η2
p = .30, which indicated 
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that the Total Error generated by all participants was higher in transfer (1024.8 ± 132.6) than in 

retention testing (582.0 ± 93.6). There were no significant differences between Groups, F(3, 36) < 

1.  

The analysis of Relative Timing Error in the Relative Timing Transfer Test also revealed 

a significant effect of Test, F(1, 36) = 22.91, p < .0001,  η2
p = .39, which described an increase in 

error from retention (0.19 ± .01) to transfer (0.24 ± .01). However, this analysis did reveal a main 

effect of Group, F(3, 36) = 6.76, p < .001,  η2
p = .36. Post hoc analysis (p < .05) of this effect 

revealed that the ATV (0.28 ± .01) group performed with significantly more relative timing error 

than the CRIT (0.17 ± .01) group. There were no other between-group differences (RTV = 0.19 ± 

.02; FULL = 0.22 ± .02) (Fig. 4).  

 

[Insert Figure 4 about here] 

 

Absolute Timing Transfer 

The analysis of Absolute Timing Error in Absolute-Timing Transfer Test performances 

revealed a significant main effect of Test, F(1, 36) = 13.69, p < .001,  η2
p = .28. Again, this effect 

revealed a decrease in accuracy from retention (582.0 ± 93.6) to transfer (976.5 ± 151.2). 

The analysis of Relative Timing Error in Absolute-Timing Transfer Test performances also 

revealed a significant Group by Test interaction, F(3, 36) = 4.14, p = .01,  η2
p = .26 (Fig. 5). Post-

hoc (p < .05) analysis of this effect revealed that the interaction was driven by a significant decrease 

in CRIT performance from Retention (0.14 ± 0.02) to the AT-TRANS test (0.21 ± .02) such that 

there were no group differences in performance at transfer (ATV = 0.25 ± .02; RTV = 0.20 ± .02; 

FULL = 0.23 ± .02). Although the RTV group (0.16 ± .02) performance was significantly better 
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than that of the ATV group (0.27 ± .02) at retention, there was no longer a statistical difference 

between the two groups at transfer. 

 

[Insert Figure 5 about here] 

 

Discussion  

In this study, we set out to determine the degree to which error in the relative and absolute 

timing outcomes of model demonstrations influence the learning that results from observation. We 

had participants learn a novel relative and absolute timing pattern by observing constant accuracy 

in relative and absolute timing (CRIT), constant accuracy in relative timing and variable error in 

absolute timing (ATV), constant accuracy in absolute timing and variable error in relative timing 

(RTV) or variable error in relative and absolute timing (FULL). The results revealed that all 

observation groups were able to execute the criterion absolute timing, and thus, acquire the 

absolute features of the skill (cf. Skully & Newell, 1985). However, the same groups’ absolute 

timing began to deteriorate at relative and absolute transfer tests. Meanwhile, the CRIT and RTV 

groups successfully executed the criterion relative timing, and thus, acquired the relative features 

of the skill with an intermediate performance from the FULL group. The CRIT group were able to 

retain this superior relative timing at the relative timing transfer test, although began to deteriorate 

at the absolute timing transfer test. 

 The combination of learning absolute timing regardless of model variability and the 

superior learning of relative timing for the CRIT and RTV groups, highlight the differential effect 

that one type of error can have on the learning of alternative features of a skill. That is, only for 

the acquisition of relative timing did there appear to be an effect of model variability. While these 
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findings support and extend previous evidence of model variability or error serving general 

benefits to motor learning (Andrieux & Proteau, 2013; Brown et al., 2010; Buckingham et al., 

2014; Rohbanfard & Proteau, 2011), they may also reflect how observed errors in absolute timing 

mitigate the acquisition of relative features. In other words, it would appear that the learning of 

relative timing was most enhanced by the constant and accurate performance of absolute timing 

(CRIT, RTV), as opposed to variable and erred absolute timing (ATV, FULL). This suggests that 

in order to promote the acquisition of relative timing through observed model variability, there 

needs to be at least some consistency in the absolute domain so as to accommodate the reallocation 

of internal resources. Indeed, previous evidence suggests that the acquisition and reproduction of 

relative features is subject to the allocation of cognitive resources and visual attention, which are 

essential to the pick-up of visual information prior to mapping observed into executed actions 

(Hayes et al., 2014; Wohlschläger, Gattis & Bekkering, 2003; see also Bach, Peatfield & Tipper, 

2007). In this regard, the benefit of observed model variability, namely variability in relative 

timing, may be best served by more closely attending to the relative features without concern for 

variable changes in the scaling or absolute features. 

The transfer tests conducted following the retention phase were intended to determine the 

degree to which each group could perform accurately under new timing constraints and whether 

transfer of learning was influenced by exposure to particular types of error in observed 

demonstrations. In this regard, our data highlights that the group effects found for relative timing 

error in both the relative and absolute transfer tests were generally consistent with the retention 

phase, although the performance of the CRIT group deteriorated at the absolute transfer test. One 

consideration is that the CRIT group’s lack of exposure to errors leaves them without the referent 



MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

17 

information that accommodates the detection and avoidance of errors (Andrieux & Proteau, 2013; 

Rohbanfard & Proteau, 2011).  

Interestingly, the CRIT group relative timing is superior at post-test and retention, but 

becomes attenuated at absolute transfer compared to the other groups. It is possible that because 

this group observed constant and accurate timing information, they could have initially acquired 

the relative features through the neural mechanisms that are responsible for the straight one-to-one 

mapping of observed demonstrations into executed actions. Indeed, this conjecture is adapted from 

previous evidence that learning through observation involves the direct mapping of an observed 

novel action onto neural regions that are also responsible for the execution of the same action (e.g., 

Cross et al., 2009). These suggestions are linked to evidence of a human Action Observation 

Network (AON) (i.e., superior temporal sulcus (STS), inferior parietal lobule (IPL), inferior frontal 

gyrus including ventral premotor cortex (IFG/vPM)) and the discovery of mirror neurons in the 

macaque monkey brain (Di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992). At the same 

time, it is problematic to posit that this detailed neuronal architecture, and its associated firing 

pattern, can explain learning by observing variable or erred performances. Although the 

aforementioned neural network no doubt contributes to learning by observing variable models, it 

is noteworthy that the corticospinal excitability typically associated with the straight one-to-one 

mapping of observed actions is also modulated by the errors that are reflected within the observed 

model (Buckingham et al., 2014). Thus, as well as being sensitive to the explicit kinematic details 

of human movement, the neural mechanisms that underpin learning through observation may also 

be sensitive to  trial-to-trial variability and error. However, further research is required in order to 

examine these suggestions. 
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With respect to the transfer of absolute timing, it appears the benefit of observation was 

lost when learners had to transfer to an alternative relative or absolute timing pattern. In part, these 

findings support the notion that the learning of relative features – coordination of movement skills 

– may be achieved through the observation of relative or biological motion, whilst the learning 

and transfer of absolute features may be limited until after physical practice is introduced. (Newell, 

1985; Scully & Newell, 1985; see also, Generalized Motor Program and the representation of 

invariant features (Schmidt, 1975)). This suggestion is consistent with evidence of observation 

accommodating the learning of invariant spatio-temporal parameters, while limiting the transfer 

of lower-level parameters (Hayes, Andrew, Elliott, Roberts, & Bennett, 2012; see also, Wolpert & 

Ghahramani, 2000 and Wolpert & Flanagan, 2010). Indeed, the benefits of observation are 

suggested to be limited to the features reflected within external visual afference (i.e., spatio-

temporal dynamics), whereas physical practice (or an interleaved practice schedule) includes 

additional efferent and reafferent signals that are instrumental to the absolute features. As a result, 

the ability to transfer the absolute features following observation-alone may become compromised.  

At the same, it is important to recognize that there was at least some initial learning of the 

absolute features (i.e., pre-test to post-test/retention improvement), which has also been reflected 

in other empirical accounts (e.g., Andrieux & Proteau, 2013; Hayes et al., 2007; Rohbanfard & 

Proteau, 2011). While we cannot categorically attribute this to observation per se due to the 

absence of a control/placebo group, it is possible that the absolute features were detected during 

observation (see Hamilton, Joyce, Flanagan, Frith, & Wolpert, 2007; Shim, Carlton, & Kim, 2004), 

which then accommodated its immediate replication within movement. This replication is akin to 

the straight one-to-one mapping mechanism proposed earlier (see above). Upon presentation of 

the novel task constraints that no longer comprise the same timing parameters as the observed 
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models (relative or absolute timing transfer), the observer can no longer simply replicate what was 

observed previously, but instead, she must adapt or transfer her learning. In this instance, it is 

understandable that absolute timing performance may begin to decline.  

In making our interpretations, it is important to recognize that the sequential-timing task of 

the present study allowed us to control many potential sources of error and/or variability in our 

modeled performances. For instance, it constrained the performer’s direction of action and choice 

of effector, such that there could be no variability in the strategy chosen to execute the skill 

(Buchanan & Dean, 2010; 2014). Furthermore, it allowed us to vary the absolute error by 

artificially manipulating the velocity of the action and the resulting timing outcome. Thus, the trial-

by-trial spatial variability that typically emerges in iterative attempts of a manual movement was 

held constant throughout. This is a key point: all precision movements are associated with a degree 

of inherent neuromuscular variability (Meyer, Abrams, Kornblum, Wright & Smith, 1988; 

Schmidt, Zelaznik, Hawkins, Frank & Quinn, 1979) as movements of the same speed and distance 

will naturally show a trial-by-trial spatial variability that is ultimately reduced as the movement 

progresses into its latter stages (Elliott et al., 2010). In this way, spatial information regarding the 

limb’s position may provide critical information to the observer about the underlying movement 

dynamics. In light of this suggestion, we acknowledge that further categorization and testing of 

the observational impact of error and variability within the spatial distribution is also warranted 

for future study. 

In summary, the observation of model demonstrations promoted the learning of absolute 

timing, although it failed to transfer this skill feature to novel relative and absolute timing patterns. 

These findings highlight the advantages served by observing model demonstrations for the direct 

reproduction of absolute features, while also reflecting its limitations upon transferring this source 
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of information (Scully & Newell, 1985). Meanwhile, the observation of the criterion and relative 

timing variability enhanced the learning of relative timing, which would suggest an advantage of 

presenting constant absolute timing. This learning advantage may result from the constant absolute 

timing accommodating internal resources to become more centered around relative timing 

information (Hayes et al., 2014). Finally, it is only during the absolute timing transfer test that the 

full advantage of model variability can be realized as relative timing performance begins to 

deteriorate following the observation of the criterion model. We suggest the initial learning 

following the observation of the criterion model is attributed to the direct one-to-one mapping of 

observed into executed actions via the neural architecture that is synonymous with mirror 

processes; the Action Observation Network. However, this one-to-one mapping procedure is 

limited to the reproduction of the criterion, and fails in its transfer to alternative settings. 

Alternatively, learning following the observation of a variable model, namely relative timing 

variability, can be attributed to the same neural mechanisms, but with the added benefit of coding 

errors that require some form of correction or intervention (Buckingham et al., 2014). As a result, 

the performer is able to both reproduce and transfer this source of information when needed. 

  



MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

21 

Acknowledgements  

This research did not receive any specific grant from funding agencies in the public, commercial, 

or not-for-profit sectors.  

  



MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

22 

References  

1. Adams, J. A. (1986). Use of the model’s knowledge of results to increase the observer’s 

performance. Journal of Human Movement Studies, 12(2), 89-98. 

2. Al-Abood, S. A., Davids, K., & Bennett, S. J. (2001). Specificity of task constraints and 

effects of visual demonstrations and verbal instructions in directing learners’ search 

during skill acquisition. Journal of Motor Behavior, 33(3), 295-305. 

http://dx.doi.org/10.1080/00222890109601915  

3. Alaerts, K., Senot, P., Swinnen, S. P., Craighero, L., Wenderoth, N., & Fadiga, L. (2010). 

Force requirements of observed object lifting are encoded by the observer’s motor 

system: a TMS study. European Journal of Neuroscience, 31(6), 1144-1153. 

http://dx.doi.org/10.1111/j.1460-9568.2010.07124.x  

4. Alaerts, K., Swinnen, S. P., & Wenderoth, N. (2011). Action perception in individuals 

with congenital blindness or deafness: how does the loss of a sensory modality from birth 

affect perception-induced motor facilitation?. Journal of Cognitive Neuroscience, 23(5), 

1080-1087. http://dx.doi.org/10.1162/jocn.2010.21517  

5. Andrieux, M., & Proteau, L. (2013). Observation learning of a motor task: who and 

when?. Experimental Brain Research, 229(1), 125-137. http://dx.doi.org/10.1007/s00221-

013-3598-x  

6. Ashford, D., Bennett, S. J., & Davids, K. (2006). Observational modeling effects for 

movement dynamics and movement outcome measures across differing task constraints: 

a meta-analysis. Journal of Motor Behavior, 38(3), 185-205. 

http://dx.doi.org/10.3200/jmbr.38.3.185-205  

http://dx.doi.org/10.1080/00222890109601915
http://dx.doi.org/10.1111/j.1460-9568.2010.07124.x
http://dx.doi.org/10.1162/jocn.2010.21517
http://dx.doi.org/10.1007/s00221-013-3598-x
http://dx.doi.org/10.1007/s00221-013-3598-x
http://dx.doi.org/10.3200/jmbr.38.3.185-205


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

23 

7. Bach, P., Peatfield, N. A., & Tipper, S. P. (2007). Focusing on body sites: the role of 

spatial attention in action perception. Experimental Brain Research, 178(4), 509-517. 

http://dx.doi.org/10.1007/s00221-006-0756-4  

8. Badets, A., Blandin, Y., & Shea, C.H. (2006). Intention in motor learning through 

observation. The Quarterly Journal of Experimental Psychology, 59(2), 377-386. 

http://dx.doi.org/10.1080/02724980443000773  

9. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. 

Prentice-Hall, Inc. 

10. Black, C. B., & Wright, D. L. (2000). Can observational practice facilitate error 

recognition and movement production?. Research Quarterly for Exercise and Sport, 

71(4), 331-339. http://dx.doi.org/10.1080/02701367.2000.10608916  

11. Blandin, Y., & Proteau, L. (2000). On the cognitive basis of observational learning: 

development of mechanisms for the detection and correction of errors. The Quarterly 

Journal of Experimental Psychology: Section A, 53(3), 846-867. 

http://dx.doi.org/10.1080/027249800410571  

12. Blandin, Y., Lhuisset, L., & Proteau, L. (1999). Cognitive processes underlying 

observational learning of motor skills. The Quarterly Journal of Experimental 

Psychology: Section A, 52(4), 957-979. http://dx.doi.org/10.1080/713755856  

13. Brown, L. E., Wilson, E. T., Obhi, S. S., & Gribble, P. L. (2010). Effect of trial order and 

error magnitude on motor learning by observing. Journal of neurophysiology, 104(3), 

1409-1416. http://dx.doi.org/10.1152/jn.01047.2009  

14. Buccino, G., Binkofski, F., Fink, G.R., Fadiga, L., Fogassi, L., Gallese, V.,... Freund, H.J. 

(2001). Action observation activates premotor and parietal areas in a somatotopic 

http://dx.doi.org/10.1007/s00221-006-0756-4
http://dx.doi.org/10.1080/02724980443000773
http://dx.doi.org/10.1080/02701367.2000.10608916
http://dx.doi.org/10.1080/027249800410571
http://dx.doi.org/10.1080/713755856
http://dx.doi.org/10.1152/jn.01047.2009


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

24 

manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–404. 

http://dx.doi.org/10.1111/j.1460-9568.2001.01385.x  

15. Buchanan, J. J., & Dean, N. J. (2010). Specificity in practice benefits learning in novice 

models and variability in demonstration benefits observational practice. Psychological 

Research PRPF. 74(3), 313-326. http://dx.doi.org/10.1007/s00426-009-0254-y  

16. Buchanan, J. J., & Dean, N. (2014). Consistently modeling the same movement strategy 

is more important than model skill level in observational learning contexts. Acta 

Psychologica, 146, 19-27. http://dx.doi.org/10.1016/j.actpsy.2013.11.008  

17. Buchanan, J. J., Ryu, Y. U., Zihlman, K., & Wright, D. L. (2008). Observational practice 

of relative but not absolute motion features in a single-limb multi-joint coordination task. 

Experimental Brain Research, 191(2), 157–169. http://dx.doi.org/10.1007/s00221-008-1512-

8  

18. Buckingham, G., Wong, J. D., Tang, M., Gribble, P. L., & Goodale, M. A. (2014). 

Observing object lifting errors modulates cortico-spinal excitability and improves object 

lifting performance. Cortex, 50, 115-124. http://dx.doi.org/10.1016/j.cortex.2013.07.004  

19. Cross, E. S., Kraemer, D. J., Hamilton, A. F. D. C, Kelley, W. M., & Grafton, S. T. 

(2009). Sensitivity of the action observation network to physical and observational 

learning. Cerebral Cortex, 19(2), 315–326. http://dx.doi.org/10.1093/cercor/bhn083  

20. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). 

Understanding motor events: a neurophysiological study. Experimental Brain Research, 

91(1), 176-180. http://dx.doi.org/10.1007/bf00230027  

21. Dushanova, J., & Donoghue, J. (2010). Neurons in primary motor cortex engaged during 

action observation. European Journal of Neuroscience, 31(2), 386–398. 

http://dx.doi.org/10.1111/j.1460-9568.2009.07067.x  

http://dx.doi.org/10.1111/j.1460-9568.2001.01385.x
http://dx.doi.org/10.1007/s00426-009-0254-y
http://dx.doi.org/10.1016/j.actpsy.2013.11.008
http://dx.doi.org/10.1007/s00221-008-1512-8
http://dx.doi.org/10.1007/s00221-008-1512-8
http://dx.doi.org/10.1016/j.cortex.2013.07.004
http://dx.doi.org/10.1093/cercor/bhn083
http://dx.doi.org/10.1007/bf00230027
http://dx.doi.org/10.1111/j.1460-9568.2009.07067.x


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

25 

22. Elliott, D., Hansen, S., Mendoza, J., & Tremblay, L. (2004). Learning to optimize speed, 

accuracy, and energy expenditure: a framework for understanding speed-accuracy 

relations in goal-directed aiming. Journal of Motor Behavior, 36(3), 339-351. 

http://dx.doi.org/10.3200/jmbr.36.3.339-351  

23. Elliott, D., Hansen, S., Grierson, L. E., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). 

Goal-directed aiming: two components but multiple processes. Psychological bulletin, 

136(6), 1023. http://dx.doi.org/10.1037/a0020958  

24. Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2001). Phase-specific modulation 

of cortical motor output during movement observation. Neuroreport, 12(7), 1489-1492. 

http://dx.doi.org/10.1097/00001756-200105250-00038  

25. Grierson, L. E. M., & Elliott, D. (2009). Goal-directed aiming and the relative 

contribution of two online control processes. The American Journal of Psychology, 309-

324. Retrieved from http://www.jstor.org/stable/27784405 

26. Grierson, L. E. M., Gonzalez, C., & Elliott, D. (2009). Kinematic analysis of early online 

control of goal-directed reaches: a novel movement perturbation study. Motor Control, 

13(3), 280-296. http://dx.doi.org/10.1123/mcj.13.3.280  

27. Hamilton, A. D. C., Joyce, D. W., Flanagan, J. R., Frith, C. D., & Wolpert, D. M. (2007). 

Kinematic cues in perceptual weight judgement and their origins in box lifting. 

Psychological Research, 71(1), 13-21. 

28. Hayes, S. J., Andrew, M., Elliott, D., Roberts, J. W., & Bennett, S. J. (2012). Dissociable 

contributions of motor-execution and action-observation to intermanual transfer. 

Neuroscience Letters, 506(2), 346-350. 

http://dx.doi.org/10.3200/jmbr.36.3.339-351
http://dx.doi.org/10.1037/a0020958
http://dx.doi.org/10.1097/00001756-200105250-00038
http://dx.doi.org/10.1123/mcj.13.3.280


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

26 

29. Hayes, S. J., Elliott, D., & Bennett, S. J. (2013). Visual online control processes are 

acquired during observational practice. Acta Psychologica, 143(3), 298-302. 

http://dx.doi.org/10.1016/j.actpsy.2013.04.012  

30. Hayes, S. J., Hodges, N. J., Huys, R., & Williams, A. M. (2007). End-point focus 

manipulations to determine what information is used during observational learning. Acta 

Psychologica, 126(2), 120-137. http://dx.doi.org/10.1016/j.actpsy.2006.11.003  

31. Hayes, S. J., Roberts, J. W., Elliot, D., & Bennett, S. J. (2014). Top-down attentional 

processes modulate the coding of atypical biological motion kinematics in the absence of 

motor signals. Journal of Experimental Psychology: Human Perception and 

Performance, 40(4), 1641-1653. http://dx.doi.org/10.1037/a0037200  

32. Higuchi, S., Holle, H., Roberts, N., Eickhoff, S. B., & Vogt, S. (2012). Imitation and 

observational learning of hand actions: prefrontal involvement and connectivity. 

Neuroimage, 59(2), 1668-1683. http://dx.doi.org/10.1016/j.neuroimage.2011.09.021  

33. Hodges, N. J., Chua, R., & Franks, I. M. (2003). The role of video in facilitating 

perception and action of a novel coordination movement. Journal of Motor Behavior, 

35(3), 247-260. http://dx.doi.org/10.1080/00222890309602138  

34. Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor 

cognition. Neuroimage, 14(1), S103-S109. http://dx.doi.org/10.1006/nimg.2001.0832  

35. Larssen, B. C., Ong, N. T., & Hodges, N. J. (2012). Watch and learn: seeing is better than 

doing when acquiring consecutive motor tasks. PloS One, 7(6), 1-8. 

http://dx.doi.org/10.1371/journal.pone.0038938  

36. Lyons, J., Hansen, S., Hurding, S., & Elliott, D. (2006). Optimizing rapid aiming 

behaviour: movement kinematics depend on the cost of corrective modifications. 

Experimental Brain Research, 174(1), 95-100. http://dx.doi.org/10.1007/s00221-006-0426-6  

http://dx.doi.org/10.1016/j.actpsy.2013.04.012
http://dx.doi.org/10.1016/j.actpsy.2006.11.003
http://dx.doi.org/10.1037/a0037200
http://dx.doi.org/10.1016/j.neuroimage.2011.09.021
http://dx.doi.org/10.1080/00222890309602138
http://dx.doi.org/10.1006/nimg.2001.0832
http://dx.doi.org/10.1371/journal.pone.0038938
http://dx.doi.org/10.1007/s00221-006-0426-6


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

27 

37. Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Keith Smith, J. E. (1988). 

Optimality in human motor performance: ideal control of rapid aimed movements. 

Psychological Review, 95(3), 340. http://dx.doi.org/10.1037/0033-295x.95.3.340  

38. Newell, K. M. (1985). Coordination, control and skill. Advances in Psychology, 27, 295-

317. http://dx.doi.org/10.1016/s0166-4115(08)62541-8  

39. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of 

Neuroscience, 27, 169-192. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144230  

40. Rohbanfard, H., & Proteau, L. (2011). Learning through observation: a combination of 

expert and novice models favors learning.  Experimental Brain Research, 215(3-4), 183-

197. http://dx.doi.org/10.1007/s00221-011-2882-x  

41. Sartori, L., Bucchioni, G., & Castiello, U. (2012). Motor cortex excitability is tightly 

coupled to observed movements. Neuropsychologia, 50(9), 2341-2347. 

http://dx.doi.org/10.1016/j.neuropsychologia.2012.06.002  

42. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological 

Review, 82(4), 225. 

43. Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S., & Quinn Jr, J. T. (1979). Motor-

output variability: a theory for the accuracy of rapid motor acts. Psychological review, 

86(5), 415-451. http://dx.doi.org/10.1037/0033-295x.86.5.415  

44. Scully, D. M., & Newell, K. M. (1985). Observational-learning and the acquisition of 

motor-skills-towards a visual-perception perspective. Journal of Human Movement 

Studies, 11(4), 169-186. 

45. Shea, C. H., & Wulf, G. (2005). Schema theory: A critical appraisal and reevaluation. 

Journal of Motor Behavior, 37(2), 85-102. http://dx.doi.org/10.3200/jmbr.37.2.85-102  

http://dx.doi.org/10.1037/0033-295x.95.3.340
http://dx.doi.org/10.1016/s0166-4115(08)62541-8
http://dx.doi.org/10.1146/annurev.neuro.27.070203.144230
http://dx.doi.org/10.1007/s00221-011-2882-x
http://dx.doi.org/10.1016/j.neuropsychologia.2012.06.002
http://dx.doi.org/10.1037/0033-295x.86.5.415
http://dx.doi.org/10.3200/jmbr.37.2.85-102


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

28 

46. Sheffield, F. D. (1961). Theoretical considerations in the learning of complex sequential 

tasks from demonstration and practice. Student Response in Programmed Instruction, 13-

32. 

47. Shim, J., Carlton, L. G., & Kim, J. (2004). Estimation of lifted weight and produced 

effort through perception of point-light display. Perception, 33(3), 277-291. 

48. Ste-Marie, D. M., Law, B., Rymal, A. M., Jenny, O., Hall, C., & McCullagh, P. (2012). 

Observation interventions for motor skill learning and performance: an applied model for 

the use of observation. International Review of Sports and Exercise Psychology, 5(2), 

145-176. http://dx.doi.org/10.1080/1750984x.2012.665076  

49. Vogt, S., & Thomaschke, R. (2007). From visuo-motor interactions to imitation learning: 

behavioural and brain imaging studies. Journal of Sports Sciences, 25(5), 497-517. 

http://dx.doi.org/10.1080/02640410600946779  

50. Wohlschläger, A., Gattis, M., & Bekkering, H. (2003). Action generation and action 

perception in imitation: an instance of the ideomotor principle. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 358(1431), 501-515. 

http://dx.doi.org/10.1098/rstb.2002.1257  

51. Wolpert, D. M., & Flanagan, J. R. (2010). Motor learning. Current Biology, 20(11), 

R467-R472. 

52. Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement 

neuroscience. Nature Neuroscience, 3, 1212-1217. 

  

http://dx.doi.org/10.1080/1750984x.2012.665076
http://dx.doi.org/10.1080/02640410600946779
http://dx.doi.org/10.1098/rstb.2002.1257


MODEL VARIABILITY AND OBSERVATIONAL LEARNING 

29 

Figure Captions 

Figure 1: Illustration of the four segment timing task. Targets are indicated by the black filled 

circles, home position is indicated by the white square and movement segment directions are 

indicated by the grey arrows. 

Figure 2: Mean total error (±SE) as a function of the test (PRE, POST, RET). 

Figure 3: Mean relative timing error (±SE) as a function of Test (PRE, POST, RET) and 

experimental Group (CRIT, ATV, RTV, FULL). 

Figure 4: Mean relative timing error (±SE) of Relative Timing Transfer Test performances 

plotted as function of Group (CRIT, ATV, RTV, FULL). 

Figure 5: Mean relative timing error (±SE) of Absolute-Timing Transfer Test performances 

plotted as function of Group (CRIT, ATV, RTV, FULL) and Test (RET, AT-TRANS). 
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Table Captions 

Table 1: The absolute timing and relative timing characteristics of the modeled demonstrations 

viewed by each of the groups. 

 


