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Abstract

In this thesis, we will explore possible applications of topological data analysis to ‘omics
data. More specifically, we apply the topologically-based data visualisation technique,
Mapper, to gene expression data coming from the fish, Arctic charr (Salvelinus alpi-
nus). The fish samples come from the wild, from lakes in Scotland and Russia. Fur-
thermore, the Arctic charr is an interesting study species, since it commonly occurs
in two morphs, a bottom/bank-dwelling benthic morph, and an open-water pelagic
morph. In general, these morphs share features which are common across lakes, and
so provide an opportunity to study a subspecies-level split which is replicated across
different populations. This gives an example of parallelism in evolution, and the fact
that the split is replicated allows us to test if there are common underlying changes
leading to this split, at the level of identical genes, or sets of genes, or genes involved
in the same pathways.

We provide an overview of the Mapper algorithm, and also show its application to
a breast cancer gene expression dataset, which was the inspiration for our PhD project.
When applying Mapper to the Arctic charr, we also investigate the effect of sample
size by subsampling the breast cancer data.

As well as applying Mapper, we also use a more mathematical view of the gene
expression data to provide a new perspective for looking at the commonly used gene
analysis techniques in evolutionary biology, namely, differential gene expression, and
gene co-expression analysis.

Finally, we provide an experiment which could be done in the future, assuming
the cost of sequencing continues to fall. This experiment incorporates ideas of optimal
transport in trying to reconstruct the developmental landscape of Arctic charr. We also
discuss other avenues for future work, and current difficulties with applying topological
data analysis to gene expression data from wild samples.
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Chapter 1

Introduction

In this thesis, we bring a topological approach to bear on the analysis of biological data.
We have two inspirations for this. Firstly, the reduced cost of sequencing has seen an
explosion of ‘omics data in the biological sciences. Secondly, topological data analysis
(TDA), a new field applying topology to the analysis of data, has seen some recent
success analysing ‘omics data from human breast cancer samples [NLC11; Cám16].
The work of this thesis will be to port these ideas from the lab to the wild.

Data from the lab usually come from species such as humans (Homo sapiens), mice
(Mus muscus), zebrafish (Danio rerio), etc., which are part of a vast infrastructure,
including extensive annotations of gene functions, as well as technical resources such
as cell-lines and lab populations of various clones. These allow for more controlled
experiments and result in cleaner data.

By contrast, so-called field biologists are interested in organisms from the wild.
This invariably involves non-model species, with no control in either the genetic or
environmental background. In particular, this means that we are dealing with noisy
data. An example could be fish collected from the wild, of which we do not know the
rearing or environmental histories. A further restriction when dealing with non-model
species is a lack of supporting infrastructure. For example, the annotation of gene
functions is not as extensive, if it exists at all, and we lack cell-lines and lab-based
populations.

Recent advances in sequencing technology, and the resulting reduction in cost, have
led to the widespread use of transcriptomics (mRNA sequencing) not only in model
species, but also increasingly in non-model species in the context of evolutionary anal-
ysis. This has allowed evolutionary biologists to access a mass of data, such as the
expression levels of tens of thousands of genes in their study systems of interest.

RNA-Seq (RNA sequencing) is a technique which was developed in the late 00’s,
and allows us to measure the RNA expression levels in tissues [WGS09]. The RNA
(gene) expression levels are of interest to us, since they are related to the rate of protein
synthesis in cells, and some also have regulatory functions. The quantification of RNA
in the cell gives us access to a molecular phenotype, in between the genotype of an

1
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organism, determined by its DNA, and its phenotype,1 determined by its genotype
and environment. The RNA expression levels vary between tissues and in different
developmental stages and physiological conditions, so having information about this
will give us a better idea of how the phenotype arises from an organism’s genotype.

Topological Data Analysis (TDA) is a new field of study which has seen recent
success in application to noisy datasets [Car09]. A few properties which make topology
suited for data analysis is its insensitivity to metric; that is, topology can work with
a vague sense of ‘nearness’ (open sets) rather than with one defined by a particular
distance. In particular, it is possible to make choices so that the analysis is robust
to noise. Another aspect is that TDA can be used with a notion of distance sensitive
to a given parameter, and one can summarise the analysis over different values of
this parameter visually. This gives hope for applying it to RNA-Seq datasets, which
are noisy and high-dimensional, and finding important features in a low-dimensional
representation that accurately summarises the data.

We are inspired by recent applications of TDA to model species, particularly its
application to a breast cancer data set which resulted in finding a new subtype of breast
cancer [NLC11; Lum+13]. Nicolau et al. used Mapper, a data visualisation algorithm
based on ideas from topology, on gene expression data in the form of 25,000 gene
microarrays coming from 295 breast cancer tumour samples and 13 normal breast tissue
samples. After some data processing, the Mapper graph visualisation found a cluster of
cancer samples coming from patients with a 100% survival rate, and further statistical
analyses showed that this cluster is biologically distinct and was not previously known.

We seek to bring the techniques applied in this context of a model species into the
context of evolutionary analysis on a non-model organism. The ultimate goal is to
provide a method applicable to other cases of replicated evolution of parallel morphs
in non-model species, such as the benthic and limnetic cichlids [Elm+14]. The data
we will apply these methods to are ‘omics data, including gene expression data, with
about the same dimensions (number of genes) as can be found in model species. We
hope that TDA will be able to provide new insights into the data, as was the case with
the breast cancer example. For example, we may be able to discover more intricate
structure, such as an unexpected subgroup, in the Arctic charr data, and isolate a set
of genes which is responsible for this structure.

Of course, shifting contexts is not without difficulty. We will be contending with
smaller sample sizes, a noisier data set, and a different experimental context. Further-
more, we will be lacking many of the details of the biological function of genes which
model species possess. We will write about encountering these challenges, our attempts
to deal with them, and how future work could help.

In brief, we first examined the literature on topological data analysis [Car09] in
detail, and more specifically the Mapper algorithm [SMC07] and its application to a
breast cancer gene expression data set [NLC11]. After this, we investigated our gene

1physical, measurable characteristics, such as colour and body shape
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expression data set from Artic charr using some standard visualisation techniques,
principal component analysis and heatmaps. After this testing from first principles, we
reapplied Mapper to a new context with a new non-model organism in an ecological
context. This has not been done before with this sort of approach. Unfortunately,
unlike the breast cancer example, we find the Mapper algorithm lacking in several
regards. In particular, we were unable to find a new subgroup of interest, or even
to visualise the benthic and pelagic morphs as subgroups, even though we know the
morphs have differing gene expression from previous work [Jac+19].

This set-back caused us to step back and think how else we could better visualise
the gene expression data. After exploring a range of techniques to identify their mathe-
matical basis and their potential for relevance to evolutionary context, we finally come
up with a method of deforming the gene expression space, which simplifies down to
weighting genes. The idea is then to get a weighting of the genes so that, when we
visualise the samples under this weighting, the subgroups we are expecting are appar-
ent. We show that this works for a weighting of genes which comes from differential
gene expression analysis (DGEA). We also compare this new deformation method with
more traditional methods, DGEA, and gene co-expression networks. We find out what
parts of this analysis can be reproduced in our new method, and which cannot.

Additionally, we test our method on a larger set of gene expression samples from
fruit flies (Drosophila) with a larger sample size of 726 compared to our 32 for the
Arctic charr. We find that, even with such an increase in sample size, we are still
unable to get a clear signal of subgroup compared to the biological noise. We conclude
by offering a discussion of a future experiment, which could be done as the cost of
sequencing further falls. This synthesises recent work of Schiebinger [Sch+17] with the
understanding we have gained of Arctic charr and the development of parallel morphs.

1.1 How to Read this Thesis

This thesis will detail the process of applying Mapper and another data analysis tech-
nique inspired by topology to a gene expression data set of salmonid fish (Arctic charr)
from lakes in Scotland and Russia.

Since this is an interdisiplinary project, the thesis will be structured around being
readable for both biologists and mathematicians. We will begin with two chapters
going into the background, one for the maths, and one for the biology. We then move
on to two chapters detailing the application of TDA to the Arctic charr data set, and
we conclude with a discussion about our findings and potential for future work.

The second chapter will give a literature review of TDA, focusing especially on
Mapper. It will also give an example of Mapper applied to a breast cancer data set
by Nicolau et al. [NLC11]. For mathematicians, there is a section on the workings
of Mapper, including some definitions and background to understand the visualisation
technique. For the biologists, there is a section describing Mapper with some examples.
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The details of Mapper applied to breast cancer will be readable for both audiences.
The third chapter will give a description of the study system, including why Arctic

charr are an interesting study species from an evolutionary analysis point of view.
We will also include a section for mathematicians, where we treat the study system
abstractly, treating the gene expression data from the fish as simply random variables
depending on the lake and morph. We will also include some analysis of the data from
a standard point of view, using differential gene expression and principal component
analysis.

The fourth chapter will show Mapper applied to the Arctic charr data, as well as
some investigations of the effect of sample size on Mapper’s ability to find novel sub-
groups. All sections of this chapter are intended to be readable for both mathematicians
and biologists.

The fifth chapter will go into the background of our topological perspective for
transcriptomics data. The section involving mathematical definitions will primarily be
for the mathematicians. We will give an example illustrating the approach for both
audiences, by applying it to the Arctic charr data. Additionally, we compare and
contrast our approach to differential gene expression analysis and gene co-expression
analysis, which are commonly used in evolutionary biology to analyse gene expression
data. Finally, we assess the viability of this approach on a Drosophila data set with a
larger sample size of about seven hundred.

The sixth chapter and concluding chapter will be a discussion of our attempt to
port methods from the lab to the wild, and include a hypothetical experiment which
could be conducted to address some of the shortcomings we have found.

Figure 1.1 gives a schematic for the above.
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1. Introduction

2. Mapper 2. Mapper
2. Mapper

3. Charr 3. Charr

4. Mapper Charr

5. Topological Perspective 5. Topological Perspective

6. Discussion

Figure 1.1: How to read this thesis. The chapters are named from the Introduction at
the top, to the Discussion at the bottom. Chapters with parts only for mathematicians
are to the left in orange, and those with parts only for biologists are to the right in
green. Chapters readable for both in their entirety are in the middle, in red. The
second chapter, on Mapper, has sections introducing Mapper for both mathematicians
and biologists, while the description of its use in [NLC11] finding a new kind of breast
cancer aims to be readable for both audiences.
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Chapter 2

Mapper and Medical Data

There are two main goals of this chapter. First, we dive into the details of the Mapper
algorithm [SMC07]. This will involve writing about its motivation, the mathematical
background, and its implementation. Second, we go through an application of Mapper
to a breast cancer data set; this application of Mapper motivated this PhD project.
The results were new insights into the genetics of breast cancer. In particular, a new
subtype of breast cancer with zero percent mortality was discovered. In fact, we will
discuss two applications of Mapper to the breast cancer data set, an earlier one by
Nicolau et al. [NLC11] and a later one featuring in a paper by Lum et al. [Lum+13].
Going through this background will set the scene for us to apply Mapper to wild Arctic
charr transcriptomic data in Chapter 4.

The biologist may skip §2.1.2 and read from §2.1.4, where we describe the inputs
and outputs of the Mapper algorithm and ends with a toy example of Mapper applied
to a point cloud sampled from a hand in 3D.

2.1 Mapper

2.1.1 Motivation

Mapper is an algorithm for visualising high dimensional data sets, introduced by Gur-
jeet Singh, Facundo Mémoli, and Gunnar Carlsson in [SMC07].1 The motivation for
Mapper was to visualise data in low-dimensional spaces, such as the plane (R2) and
3-space (R3), in order to make use of people’s ability to find patterns by eye in low
dimensions.2 In fact, one can consider Mapper as a combination of two commonly
used data visualisation techniques. The first is projection pursuit [Hub85], which is a
dimension reduction technique that chooses linear projections optimising an objective
function, and principal component analysis is an instance of this where the objective
function is to maximise variance. The second is clustering, of which hierarchical clus-

1A more mathematically detailed description can be found in §3 of [Car09] , although there Carlsson
does not go as much into the implementation of the algorithm or examples.

2Gunnar Carlsson mentions this in one of the talks he gave at the 2015 Young Topologists’ Meeting.
They are available online at: https://www.epfl.ch/labs/hessbellwald-lab/seminar/ytm2015/

7

https://www.epfl.ch/labs/hessbellwald-lab/seminar/ytm2015/
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tering is the most common example. Additionally, a method was desired for finding
patterns in the shape of the data, which needed to satisfy the following properties:

Insensitivity to metric. Any such method should work well with different measures
of similarity. For instance, we can consider the various measures for distances
between gene expression profiles, sequences or more general datasets (e.g. Eu-
clidean, Pearson correlation, etc.). Ideally, we’d want the method to find the
same pattern in the data for similar metrics. This means the method should also
display “invariance” under “small” deformations and be “coordinate free”. This
ensures that whatever patterns the method finds will be robust.

Understanding sensitivity to parameter changes. Since many algorithms require
an arbitrary choice of parameters before producing a result, it would be useful
to have some way to summarise behaviour under all possible choices of parame-
ters. For example, we may want to summarise all parameter choices when using
single-linkage clustering, or some other clustering algorithm.

Multiscale representation. To be able to visualise a point cloud at different levels
of resolution can be useful for finding structures at various scales, or drawing
attention to certain features if they are present over a range of scales, since we
can reason that such features are less likely to be artefacts of the data. This also
ensures the features we find are more qualitative.

These points can be addressed by adjusting parameters in Mapper. This allows us
to ignore the exact distance used.3 Finally, Mapper provides an easy-to-understand
visualisation of the data produced in the form of a graph. We will address all these
points in more detail later in the chapter. For now, we move on to the topological
inspirations behind Mapper.

2.1.2 Topological Inspirations

In this subsection we will describe the topological notions that Mapper is based on. The
interested reader may refer to [Car09, §3.2] for more details. The essential notion is the
nerve theorem, Theorem 2.1.13, which gives conditions under which a topological space
may be simplified into a simplicial complex. We now proceed to give some relevant
background, then describe how these ideas are used in Mapper.

Definitions

Here we will give a few definitions and theorems that will be used in the rest of this
subsection. Those who want more background or details can refer to [Mun00] and
[Hat02].

3However, the extent to which this applies will depend on how robust the features we’re looking
for are. That is, if we find a feature over more dissimilar distances, then we can consider it a robust
one.
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Figure 2.1: Example of functions. a) Is a continuous function, y = x2. b) Is a
discontinuous function, y = sgn(x), which has a discontinuity at x = 0 where it jumps
from −1 to 1.

Definition 2.1.1 (Topological Space). A topological space is an ordered pair (X, τ)

where X is a set and τ is a collection of subsets of X having the following properties:

1. ∅ and X are in τ .

2. Any union of subcollections of τ is in τ .

3. The intersection of any finite subcollection of τ is in τ .

The subsets in τ are called open sets, and τ is called a topology on X.

Examples of common scientifically interesting topological spaces are subspaces of
Rn, which include point clouds, lines, circles, spheres, and tori.

Definition 2.1.2 (Continuous Function). Let X and Y be topological spaces. A
function f : X → Y is continuous if for each open subset U ⊂ Y , f−1(U) is an open
subset of X.

In less technical terms, a continuous function f : X → Y takes points p1, p2 which
are close in X to points f(p1), f(p2) which are close in Y . Figure 2.1 shows examples
of functions R→ R, continuous on the left and discontinuous on the right.

Definition 2.1.3 (Homeomorphism). Let X and Y be topological spaces. We say a
function f : X → Y is a homeomorphism if it is a bijection and both it and its inverse
f−1 are continuous.

If a homeomorphism exists between two topological spaces X and Y , then we say
they are homeomorphic. In topology, we study spaces up to homeomorphism, that is,
properties which remain the same between spaces when they are stretched or deformed
without tearing or gluing. A famous example is that a topologist cannot tell the
difference between a coffee cup and a donut; the deformation is given by the joke
shown in Figure 2.2.
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Figure 2.2: This figure suggests how a coffee cup, in the bottom left, can be smoothly
deformed, clockwise, into a donut shape, at the bottom. Image taken from a YouTube
video by Henry Segerman, and found in a shapeways article: https://www.shapeways.
com/blog/archives/21752-a-3d-printed-topology-joke.html

Definition 2.1.4 (Homotopy). LetX and Y be topological spaces, and ft : X → Y, t ∈
[0, 1] a family of maps. If the function F : X × [0, 1] → Y given by F (x, t) = ft(x) is
continuous, then we say ft is a homotopy.

If there exists a homotopy connecting two maps f0, f1 : X → Y , then we say that
f0 and f1 are homotopic, and we can write f0 ' f1.

Definition 2.1.5 (Homotopy Equivalence). Let X and Y be topological spaces, and
f : X → Y a continuous function. We call f a homotopy equivalence if there exists a
continuous function g : Y → X such that g ◦ f ' idX and f ◦ g ' idY .

If there is a homotopy equivalence f : X → Y , then we say that the spaces X
and Y are homotopy equivalent and we can write X ' Y . Homotopy equivalence is
a less strict condition than homeomorphism, in that if X and Y are homeomorphic,
then they are also homotopy equivalent, but not necessarily the other way around. For
example, a point {∗} and a disc D are homotopy equivalent, but not homeomorphic.
To speak more illustratively, if homeomorphism allows continuous deformations, then
homotopy equivalence also allows us to compress or expand regions to/from a point.
This gives rise to the notion of contractibility :

Definition 2.1.6 (Contractible). A topological spaceX is contractible if it is homotopy
equivalent to a point {∗}.

The vast majority of topological spaces, such as tori, spheres, circles and Euclidean
space, consist of infinitely many points. This makes them impossible to represent
combinatorially, which we must do in order to run calculations on them with computers.

https://www.shapeways.com/blog/archives/21752-a-3d-printed-topology-joke.html
https://www.shapeways.com/blog/archives/21752-a-3d-printed-topology-joke.html
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Figure 2.3: The standard n-simplices which can be represented in 3 dimensions.
Namely, the 0, 1, 2, 3-simplices, corresponding to a point, line, triangle and tetrahe-
dron. Image from: https://commons.wikimedia.org/wiki/File:Simplexes.jpg

We can solve this by introducing discrete representations of spaces, called simplicial
complexes. We will now give a few definitions regarding these objects.

Definition 2.1.7 (Abstract Simplicial Complex). Let S be a set. An abstract simplicial
complex is a collection K of non-empty finite subsets of S such that, if X ∈ K and
Y ⊂ X, then Y ∈ K.

On computers, S will be a finite set, and the collection of subsets allows us to
give a purely combinatorial description a topological space. There is a construction
called the geometric realisation, which allows us to associate a topological space |K|
to an abstract simplicial complex K. However, we will not give details of it here, and
instead use the following examples to illustrate the relation between abstract simplicial
complexes and topological spaces.

Example 2.1.8 (Standard n-Simplex). Let S be a set with n + 1 elements, where
n ∈ Z≥0, and K the collection containing every subset of S. Then standard n-
simplex is the geometric realisation |K| in Rn+1 given by the convex hull of the points
{(1, 0, 0 . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 0, 1)}. The four standard n-simplices which
can be represented in 3 dimensional space are shown in Figure 2.3.

Example 2.1.9 (Triangle). Consider the set {0, 1, 2} and let K be the collection of
all its subsets. Its geometric realisation in R3 is given by the convex hull of the points
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. See Figure 2.4 for a plot of this particular triangle.

One can consider abstract simplicial complexes as a generalisation of triangulation.
For example, just as we can triangulate a hexagon in 2D, by using six triangles which
meet at the centre, we can divide a solid sphere into tetrahedra in 3D.

https://commons.wikimedia.org/wiki/File:Simplexes.jpg
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Figure 2.4: The geometric realisation of the standard 2-simplex, namely, the triangle
as a subset of R3.

We can now finally give definitions to describe the nerve, which is a method of
associating a simplicial complex to a topological space.

Definition 2.1.10 (Cover). Let X be a topological space and U a collection of subsets
of X. We say that U covers, or is a covering for, X if

⋃
U∈U U = X. Furthermore, U

is an open cover if all its elements are open.

Definition 2.1.11 (Paracompact). Let X be a topological space. We say that X is a
paracompact space if every open cover U has a locally finite open refinement.

The paracompact condition onX guarantees the presence of certain ‘nice’ properties
we would like to have. In particular, it guarantees that any open cover of X admits
a partition of unity subordinate to it, and the proof of the Nerve Theorem (Theorem
2.1.13) relies on this. It will never be an issue for us in practice, since all metric spaces
(spaces with a distance function d(−,−)) are paracompact.

Definition 2.1.12 (Nerve). Let X be a topological space and U an open cover of X.
Then the nerve of U is the simplicial complex NU which corresponds to a set which has
one element vα for each open set of the open cover Uα, and contains the finite subsets
corresponding to open sets of the open cover with non-empty intersections.

The nerve has the topology of its geometric realisation.

Theorem 2.1.13 (Nerve Theorem). [Hat02, Corollary 4G.3, p. 459] If U is an open
cover of a paracompact space X such that every nonempty intersection of finitely many
sets in U is contractible, then X is homotopy equivalent to the nerve NU .
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The nerve theorem captures the essential topological inspiration behind Mapper.
The result is that, if we have an open cover where the intersections are simple enough,
i.e. contractible, then the space and its nerve are similar, i.e. homotopy equivalent,
topologically speaking.

The Idea of Mapper

The motivation behind Mapper is the desire to find a map from a topological space
X to a simplified discrete network model we can calculate and visualise on computers.
The primary topological inspiration is the nerve, which takes us from X to a simplicial
complex ∆(A), where A is the indexing set of a cover. As mentioned above, we can
think of simplicial complexes as spaces built from points, edges, triangles, tetrahedra,
and their higher-dimensional analogues. The nerve theorem (Theorem 2.1.13) gives
conditions under which an open cover U of X will give a homotopy equivalent simplicial
complex. This is useful since it guarantees us a discrete representation of a space which
preserves topological properties up to homotopy. In particular, any loops, spheres, or
other higher-dimensional holes which exist in the original topological space X will
still exist in a discrete representation of it, if we take care in how we build such a
representation.

Mapper now consists of trying to construct a suitable open cover of a space which,
when we take the nerve, will give a simplicial complex simple enough to visualise while
also keeping as much of the topology of the original space. This will take place in three
steps. Firstly, we introduce a reference map ρ : X → Z from our topological space X
to some metric space Z, where Z is appropriately simple.4 Then from an open cover
V of Z, we produce an open cover of X by taking the pullback (pre-images) of the sets
under ρ, which we can write as ρ∗(V).5

Secondly, once we have this open cover of X, Mapper introduces a refinement step
by splitting the open sets of ρ∗(V) into their path-connected components. This step
results in an open cover of X which is closer to satisfying the requirements of the nerve
theorem.

Finally, all that remains is for us to take the nerve. We can then visualise it, if
the resulting simplicial complex is low-dimensional enough. In particular, if we end up
with a 1-dimensional simplicial complex, we can visualise it as a graph, as in Figure
2.6.

2.1.3 Discrete Spaces

In practice we will be dealing with point clouds, not infinite topological spaces.

4Typically, Z is one or two dimensional.
5Note: when Z = R and the cover is by overlapping intervals then we get something which can be

thought of as a discrete approximation to the Reeb graph [Ree46], and indeed Mapper’s convergence
to the Reeb graph in this case was proved in 2015 [MW15; CO18].
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Definition 2.1.14 (Point Cloud). A point cloud, X, is a finite set of points, with the
discrete topology. The metric we define on this set will depend on our use case. For
example, in the case where X is a subspace of Euclidean space, Rn for some n > 0,
then we can take the induced Euclidean metric.

The notion of covers, and pullbacks of covers from a reference metric space, can be
reused without difficulty. But what is analogous to path-connected components? The
Mapper algorithm uses here the idea of clustering, where the clusters take the role of
the path-connected components.

Definition 2.1.15 (Clustering Algorithm). A clustering algorithm is a function on a
finite number of points with a measure of distance, which outputs a partition of the
points.

In Mapper single linkage clustering is implemented, with a chosen parameter ε. The
result of this clustering corresponds to the path-connected components of the space
consisting of balls of radius ε at each of the points in the point cloud. To summarise,
the Mapper pipeline, starting from a point cloud X, is:

1. Define a reference map ρ : X → Z from your point cloud X to a reference metric
space Z. This ρ is called the filter function.

2. Select a covering U of Z. For example, if Z = R we can take a covering by
overlapping intervals.

3. If we have the cover U = {Uα}α∈A, where A is the index set for U , we construct
subsets of X by pulling back U over ρ, that is we get subsets Xα = ρ∗Uα.

4. Select a value of ε to input into a single linkage clustering algorithm, which we
apply to each set Xα, giving us clusters of each set. At this point, we have a
covering of X parametrised by (α, c), where α ∈ A and c is one of the clusters of
Xα.

5. Construct the simplicial complex with elements all possible pairs of (α, c), and
with subsets {(α0, c0), (α1, c1), . . . , (αk, ck)} where the corresponding clusters have
non-empty intersection.

We demonstrate this pipeline with the following example of Mapper applied to a point
cloud approximating a circle:

Example 2.1.16 (Mapper Applied to a Noisy Circle). Figure 2.5 gives an example of
Mapper applied to a point cloud sampled from a circle, where we add Gaussian noise.
Here the reference map is the height function ρ : R2 → R, given by ρ(x, y) = y. We
take a covering U of the height by three intervals, which results in a covering ρ∗(U) by
three open sets on our original circle, given by colours in the figure. We note that the
middle (purple) interval can be separated into two clusters. The bottom part of the
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Figure 2.5: In the top left, we have a point cloud coming from a noisy sampling of the
circle S1 in R2. The reference map ρ is the height function, mapping to the line R in
the top right. Note that we have a covering of R by three open intervals, represented
by the three bracketed lines. The coloured rectangles in the top left represent the
pullback of the covering on R. Note that the middle rectangle contains two clusters,
by inspection. The bottom right graph represents the nerve of the covering without
breaking the middle into two clusters, note how it appears like a line. The bottom left
graph represents the nerve of the covering, with the middle broken into two clusters,
note how this has the same homology as the circle. This example is modelled on one
in [Car09, §3.2].

figure shows the resulting simplicial complexes we get when we take the covering ρ∗(U)

of S1 versus the one with the middle split into two colours. The graph on the right is
a line, while the one on the left more closely approximates the circle.

2.1.4 Inputs and Outputs

We have given an overview of the steps in applying the Mapper algorithm. Now
let us summarise its outputs and inputs, along with a few comments. For inputs,
Mapper requires {X, ρ, Z,U}, that is, a point cloud X, a reference map ρ : X → Z,
and a covering U of the reference space Z, along with a clustering algorithm (usually
single linkage clustering with parameter ε). The output is a simplicial complex with
dimension bounded by the covering dimension of U . The covering dimension of U is
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given by a positive integer, d, so that any collection of more that d + 1 sets in U has
empty intersection. This means, by our construction, we will not have any simplices
of dimension greater than d.

Note that we can get a multiresolution structure by varying the cover on Z. In
particular, we can consider sequences of covers that include one into the other (for
example, take a collection of coverings of R by steadily larger intervals). However,
this requires that our clustering algorithm does not split clusters, if more points are
added to a space (or else we will not get functions between the resulting simplicial
complexes). Single linkage clustering has this property, since adding more points to a
point cloud we’re clustering can only cause clusters to merge. In more technical terms,
single linkage clustering is functorial under inclusions. So two points assigned to the
same cluster by single linkage with a certain parameter ε will still be assigned to the
same cluster when more points are added, namely, under inclusion into a larger set of
points. Complete linkage clustering does not have this property.

Finally, let us discuss the choice of ε for the (single linkage) clustering step.6 The
idea is to choose either a single ε, or otherwise an εα for each α ∈ A, that is, for
each set of the cover, such that if two sets of the cover, Uα and Uα′ have a non-empty
intersection, then εα and εα′ produce the same set of clusters when applied to the pre-
image of Uα ∩ Uα′ . Practically speaking εα is chosen by looking at the dendrogram
for single linkage clustering applied to the pre-image of Uα, and picking a value in a
place where a large gap appears. The reasoning being that shorter edges are required
to merge points which “should” belong in a cluster, while relatively longer edges are
required for merging clusters themselves.7

An additional point to consider is Mapper’s sensitivity to parameter changes, as
discussed by Carrière and Oudot in [CO18].

So, in summary, Mapper requires a point cloud X, a reference map ρ : X → Z

(also called a filter function) which gives a value in some reference space Z to each
data point, a cover of Z, and finally some clustering function which is applied to the
pulled back cover on the data set. The nerve of this covering is the simplicial complex
produced by Mapper. Unusually for data analysis, we are given choices when applying
the Mapper algorithm. However, this allows us to find properties that persist for any
“generic” choice, which leads us to suspect that such properties are significant. See also
Table 2.1 for a summary with examples.

6Gunnar Carlsson’s presentation about Mapper at the 2015 Young Topologists’ Meeting refers to
this as the “magic fudge”.

7We have described how Mapper produces a simplicial complex. Visualising it, so we can see the
results in 2D, or at most 3D, is another matter. Most applications use R as the reference space, so
the result is a 1-simplex, that is, a graph. We can then draw these graphs using certain software
applications. Typically, the node sizes correspond to the number of points in its cluster, and the
colour is by filter function, but there are other options here. The nodes are also usually positioned in
order of increasing filter function, in some direction.
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Inputs (or Choices)

Point Cloud X Gene expression profiles
Reference Map ρ : X → Z Height function
Cover U of Z Open intervals
Clustering Function Single linkage clustering

Output

Simplicial Complex Visualised as a graph

Table 2.1: Mapper inputs and output summary.

Example

For illustrative purposes, we offer another example here taken from [Lum+13], which
we show in Figure 2.6 corresponding to Figure 1 from the Lum et al. paper.

(A) In this example, the point cloud is sampled from a hand in 3D.

(B) The reference map is illustrated using a colour gradient, which is by x-coordinate
from right-to-left (blue to red), one can also think of this as ‘height’ from the
base of the hand.

(C) We see here the cover and clustering. The cover is shown by the hand being
split up into overlapping portions along the left-right axis, and the result of the
clustering in this case corresponds precisely to the connected components of the
hand, that is, each isolated portion of the split up hand is its own cluster.

(D) We see here the output of Mapper, which is a graph with nodes corresponding to
each cluster in part (C), and edges between nodes with clusters which overlap.

2.2 Application to Medical Data

This section will detail the application of Mapper to a breast cancer gene expression
data set from a paper of Nicolau et al. [NLC11]. The data set is high dimensional,
consisting of expression values from thousands of genes, with each gene corresponding
to one dimension. In particular, we will outline the reasoning behind the choices made
in the application of Mapper, going from the initial pre-processing of the data, to the
filter function (reference map) chosen, and the clustering algorithm used. Lastly, we
describe how, with aid from the output of Mapper, Nicolau et al. determined that
the cluster containing the newly discovered c-MYB+ breast cancer subgroup was of
interest.

2.2.1 The Data

We begin with a brief description of the data and its sources. There were two sources
of data, firstly the 295 tumour samples from the Nederlands Kanker Instituut (NKI )
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Figure 2.6: A figure showing the Mapper algorithm applied to a point cloud arising
from sampling a hand in 3D. We have edited C from the original [Lum+13, Fig. 1]
by showing the clusters in the pullback of the cover more clearly. A) shows the point
cloud in 3D, sampled from the hand. B) shows the filter function using colour. In
this case, the filter function is the x-coordinate, from right-to-left. C) shows the cover,
which has split up the hand into overlapping section, and it additionally shows the
clusters, which are just the connected components of the split up hand. D) shows the
Mapper graph output.

[Vij+02], and secondly 13 normal breast tissue samples, called the Breast Cancer Nor-
mal (BCN ) data.8 The data come from 25k microarrays.9

2.2.2 Pre-processing

The first step is to pre-process the gene expression data. We will give an outline of
this process in this paragraph, and go over the steps in more detail in the rest of this
subsection. Pre-processing involves checking the quality of the samples, and keeping
only samples of high quality (i.e. at least 70% of the sample’s genes have recorded
expression values). Next missing data is imputed (that is, inferred from the data we
have), and the actual genes are identified by mapping the microarray probes to an
appropriate database.10 Once we have the expression values and their corresponding
genes, we take advantage of the fact that we have a source of ‘diseased’ (breast cancer)

8Note: I’ve had difficulty finding the source of these. There are dead links to some of the raw
data in the older papers. The closest I’ve come is Nicolau et al.’s DSGA paper [Nic+07] which cites
their breast cancer data as 63 primary tumour samples and 13 normal tissue samples coming from
[Zha+04], although that paper itself states that they have only three normal breast tissue samples. I
later received a copy of the data after contacting Nicolau.

9For mathematicians, it’s sufficient to know that microarrays are a technology which can be used
to measure gene expression.

10Nicoleau et al. [NLC11] use a knn algorithm with k = 10 to impute their missing data, and use
the UniGene cluster ID build 219 to determine their genes. The exact algorithm and database of
genes used will, of course, depend on the application.
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samples and ‘normal’ samples. We normalise using DSGA [Nic+07] (see a later part
of §2.2.2 for more details) between the two data sets, then use the expression of the
normal samples to work out a subspace of normal expression. This is then subtracted
from all the samples, leaving us with only the ‘diseased’ component of the expression.
Finally, we filter out a certain number of genes, by taking those which have the highest
diseased expression.

Extract Values

To get the gene expression values, the authors take the microarray data (from 25,000-
gene arrays) and keep only the samples with at least 70% high quality data. Next they
use a knn algorithm [Tro+01] with k = 10 to impute the missing data, that is they use
the mean value of the 10 nearest samples to predict the value of a gene in a sample
which is missing its value.11 and finally they use UniGene cluster ID (build 219) to
cluster the samples into UniGene clusters12.

The result is that 18,790 UniGene clusters are found in the NKI data, and 18,791
in the BCN data. Of these, 12,237 UniGene IDs matched between the two data sets.
So, each sample now corresponds to a vector ~T ∈ R12,237 of gene expression values.

Subsequently, the vectors of gene expression level corresponding to the 12,237 Uni-
Genes for each tissue sample were normalised, to have the same magnitude as the mean
of the 13 normal tissue vectors. This accounts for any systematic differences in the way
the 295 tumours vs. the 13 normals were measured, since they come from two distinct
sources.

DSGA

Disease-specific genome analysis (DSGA) [Nic+07] is a method which decomposes
’omic data into two terms, a normal component, which is the part of the data best
mimicking healthy tissue, and a disease component, which is the rest, and one can
think of this component as a measure of how aberrant the tissue is. In equation form,
if we have a vector ~T of ’omic data, we get a decomposition into a normal component,
Nc.~T , and a disease component Dc.~T .

~T = Nc.~T +Dc.~T

The normal component Nc.~T is calculated by fitting the tissue data ~T onto a
linear model, called the Healthy State Model (HSM ), which is calculated from normal
tissue data using a FLAT construction, as detailed in [Nic+07, Computational Details
Supplement], which we will now summarise.

We begin with our 13 normal tissue sample data { ~N1, . . . , ~N13}. To reduce the
impact of expression which is unique to individual tissue samples, we replace each of

11The authors give no particular reason for using 10.
12UniGene clusters correspond to actual genes in humans
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the normal tissue sample data vectors by their approximation with all the other vectors.
This gives us the 13 vectors {N̂1, . . . , N̂13} where

N̂i =
∑
j 6=i

βij ~Nj

and the βij are chosen to minimise the distance between ~Ni and N̂i.13 We will refer to
this set as the FLAT normal vectors.

Principal Component Analysis (PCA) is now applied to the FLAT normal vectors
to identify an appropriate subspace, which we will consider to be our HSM, that is, all
expression falling in this subspace will be considered “normal”. The choice of dimension
reduction is determined by the Wold invariant [Wol78]:

W (l) ≈
(

λ2
l

λ2
l+1 + · · ·+ λ2

R

)
(n− l − 1)(R− l)

(n+R− 2l)

where λi is the ith singular value of the PCA, R is the number of normal samples (13
in this case) and n is the number of genes (12,237 in this case). Roughly speaking, λi
gives a measure of the amount of data14 in the ith direction, so Wold’s invariant W (l)

is proportional to the smallest signal (λl) divided by all the noise (λl+1, . . . , λR), if we
were to pick l as our number of dimensions. As an approximation to a signal-to-noise
ratio, we desire a value of l for which W (l) spikes up, or shows an abrupt drop.15

We now choose the appropriate dimension l subspace from our PCA to be our HSM.
Now we can properly define our decomposition of a data vector ~T as:

~T = Nc.~T +Dc.~T

where Nc.~T is the projection of ~T onto the HSM and Dc.~T is the complement, given
by their difference.

Gene Thresholding

Now that we have disease vectors Dc.~T for each of our tissue samples, we will threshold
the data so that only genes that show a significant deviation from the healthy state
are considered. The goal here is to find genes which have unusually high expression
in the disease components. For each of the 12,237 genes, Nicolau et al. recorded the
5th and 95th percentiles of the disease components of the 295 tumours, that is, they

13i.e. N̂i is a projection of ~Ni into the subspace spanned by { ~N1, . . . , ~Ni−1, ~Ni+1, . . . , ~N13}.
14which we think of as variation
15Apart from [Wol78], and this paper, I’ve been unable to find the Wold invariant online. The

statisticians I’ve talked to also have no idea about it. Monica Nicolau has indicated that the Wold
invariant is from the aforementioned paper. However, the method used in [Wol78] does not match what
she has used. In any case, as mentioned in the DSGA paper’s supplementary information [Nic+07],
the usual method of choosing an appropriate dimension for the PCA is to go by proportion of variance
explained (depends on the application, but > 0.9 is typical) and to pick a dimension after which the
singular value drops suddenly, the idea being you only care about variation above a certain threshold.
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take about the 15th smallest value and the 15th greatest value of the 295.16 Now they
take the higher absolute value of the two and call it MaxAbs595, and we have this
value for each of the 12,237 genes. They then took the 85th and 98th percentiles of
these MaxAbs595 values, that is, for the 12,237 MaxAbs595 values, they take about
the 1,836th and 245th highest. The genes chosen for analysis were those which had
values above the 85th percentile, and were also highly correlated (r > 0.6, Pearson’s
correlation coefficient) to at least three genes having values above the 98th percentile.
This ensured that the retained genes deviated significantly from the HSM in highly
correlated groups. Nicolau et al. ended up with 262 genes retained.

2.2.3 Applying Mapper

Mapper is now applied. This is the step where topology plays a role. The input was
a point cloud of 295 tumour points plus 13 normal points, with distances given by
the Pearson correlation distance, d(i, j) = 1 − cor(i, j), where cor(i, j) is the Pearson
correlation, defined as follows:

Definition 2.2.1 (Pearson correlation). The Pearson correlation between two samples
i and j is given by

cor(i, j) =

∑m
k=1(yk,i − ȳi)(yk,j − ȳj)√∑m

k=1(yk,i − ȳi)2
√∑m

k=1(yk,j − ȳj)2

where yk,i is the expression of gene k in the ith sample, and ȳi is the mean expression
of sample i.

The correlations were calculated in R262 on the retained genes using the disease
component values. A family of functions, fp,k were used as filter functions (reference
maps), taking the data points to a value in R, given by the Lp norm taken to the
kth power. That is, if we have a disease component associated with a data point
Dc.~T = (g1, g2, . . . , g262), then we get:

fp,k(Dc.~T ) =

( 262∑
r=1

|gr|p
) 1

p

k

Nicolau et al. used values of p = 1, . . . , 5 and k = 1, . . . , 10, to change the relative
importance genes with high variance in the disease components, and also to change
the scaling. These affect the ability to pick out features in a visualisation. The cover
chosen for R was to divide the image of fp,k into 15 equal intervals, with 80% overlap.

The resulting output were one dimensional simplices, which they visualised as Map-
per graphs. They modified these by excluding all vertices corresponding to clusters with
only one data point in them, as we see in Figure 2.7 (p = 2, k = 4). The authors now

16Keep in mind that, after normalisation, we can have negative expression values.
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find several groups of tumours that stand out by looking at the arms of the Y-shape
of the Mapper graph. One arm corresponds to the normal tissue and cancers with
normal-like expression. Two arms display high levels of deviation from normal. One
of these correspond to Basal tumours, the other to ER+ tumours (ones which are not
normal-like). Of note is the new subgroup they discovered, the c-MYB+ tumours,
which stood out as being the most dense segment of the ER+ sequence, and exists
even when vertices containing only one data point are removed.

Comparing against Clustering

Nicolau et al. now compared the Mapper approach with clustering. To do this, they
applied a clustering algorithm called average linkage clustering to the same data as
Mapper and found it unable to distinguish the c-MYB+ subgroup, as shown in Fig-
ure 2.8. Rather, clustering scatters the tumours in the c-MYB+ subgroup, and even
those in the ER+ arm of the Mapper output. This step shows that it’s possible to
use topology, as incorporated in Mapper, to find something new in a gene expression
dataset.

2.2.4 Distinguishing c-MYB+

After finding an interesting subgroup, Nicolau et al. now argue that it deserves its own
new classification. This is due to:

• Its uniformity in molecular signature

• Its clinical and survival properties

• It’s validated in other breast cancer data sets

• It does not fit into previously identified breast cancer types

Note that this argument is statistical, and largely biological, work, not topological.
For survival and clinical outcomes, it’s found that the patients in the c-MYB+

group in the study had a 100% overall survival rate, with no recurrence or death from
disease, with a median time to follow-up of 8.5 years.

For classification,the authors used the molecular subtypes found in [Sør+03] (Basal,
ERBB2, Luminal A, Luminal B, and Normal-like) to classify the 22 c-MYB+ tumour
samples. The result was that six of the tumours had correlation > 0.1 to one of the
five centroids, and the rest were left unclassified. This indicates that this subgroup
does not fit neatly into any of the existing classifications, implying that it has not been
discovered before.

There are two techniques the authors use to find a molecular signature. Firstly,
the authors use Prediction Analysis of Microarrays (PAM ) [Tib+02], which utilises a
method of “nearest shrunken centroids”, to tell if, using the disease component of all the
12,237 genes, the c-MYB+ subgroup is distinct from normal tissue, and shows uniform
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Figure 2.7: Figure S3 from [NLC11]. (A) shows the Mapper output with all vertices
included. (B) Shows the output excluding vertices with only one data point. The size
of a vertex is correlated to the number of data points in them, and the colour is the
value of the filter function, which in this case one can think of as a measure of disease,
i.e. away from “normal”, with blue being low and red being high.
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Figure 2.8: Figure S4 from [NLC11]. A comparison between Mapper and average
linkage clustering. The data used in both cases was the DSGA-transformed data,
taking the 262 genes which passed the thresholding. The top half shows the ER+ arm
of the Mapper output magnified, with the top half being the c-MYB+ tumours. The
position of the tumours in the vertices in the clustering dendrogram are given to the left
of the Mapper output, from which we see that tumours which are close in the Mapper
output, even coming from the same vertex in some cases, are scattered throughout
the clustering dendrogram. In particular, the c-MYB+ tumours are scattered in the
dendrogram, while being close in the Mapper output. The bottom half of the picture
shows the heatmap produced when clustering the data. In the heatmap, the columns
are samples, and the rows are genes. The expression level is yellow for high and blue
for low. See §3.4.2 for more details on heatmaps.
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characteristics. Of particular note, PAM analysis finds two predictor genes which
distinguished between the c-MYB+ subgroup and normal tissue with 0 error. These
genes were TSH-releasing hormone and proprotein convertase subtilisin/kexin type 1.
The authors indicate that being able to use only two genes to separate c-MYB+ from
normal suggests that the subgroup is both distinct and homogeneous.

Secondly, the authors use Significance of the Analysis of Microarrays (SAM ) [TTC01]
to detect genes with statistically significant changes in expression.17 c-MYB was, as
expected, one of the top significant overexpressing genes.

Validation

Nicolau et al. then check if the c-MYB+ subgroup was present only in the NKI data set,
or if it is also present elsewhere. This validation was done on two other breast cancer
sets, a Ullevål University Hospital (ULL) data set [Lan+07] of 80 breast cancers, and
HERSCH [Her+08], a set of 232 tumours. The authors first selected 46 tumours of
ductal histological type that had been in the study for longer than 10 mo from the ULL
data, and 188 primary breast tumours with good-quality RNA. DSGA was applied to
the selected tumours, using the UniGene clusters in common with the normal BCN
data set, there were 17,441 Unigenes in common for the ULL data, and 18,898 for the
HERSCH data.

The set of genes showing significant differences in expression in the c-MYB+, iden-
tified by SAM, were used to extract a set of four tumours in the ULL set and 37
tumours in the HERSCH set. Considering also tumours highly correlated to that set,
the authors find six of 46 tumours in the ULL and 19 of 188 in the HERSCH to be
of the c-MYB+ subgroup. Lastly, looking at this subgroup of tumours, they found the
patients had 100% survival and no recurrence, just like in the NKI data set.

2.2.5 Discussion

We have seen an example of Mapper applied to a gene expression data set. Briefly,
we first need to preprocess the data. This involves cleaning up missing data, as well
as determining which parts of the gene expression data are normal expression versus
disease expression, and extracting the disease component as being of interest. We
then input the preprocessed data into Mapper, these being the point cloud of samples
and the distances between them (calculated from the disease components), the filter
function(s) (magnitude of diseased expression), and coverings for the reference space
(intervals for the magnitude of diseased expression). We have also seen how the sim-
plicial complex (graph in our one-dimensional case) was cleaned up by removing the
vertices corresponding to small (single data point) clusters.

This visualisation allowed us to find an interesting subgroup (c-MYB+ breast can-
cers) which had not been found before, and is not apparent using a standard clustering

17They are listed in the supplementary data of [NLC11].
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method. It occurs as a distinct group in the Mapper output, but is split up by hier-
archical clustering. The statistical validity of this subgroup is then checked, based on
testing properties of the subgroup found by visual inspection through Mapper. These
properties include: consistent gene expression in the c-MYB+ subgroup, consistent
clinical properties, and existence in other breast cancer datasets.

In the next section, we will go through another application of Mapper to the same
data set. This application differs in that the preprocessing step and filter function
chosen are much simpler, yet Lum et al. still manage to recover the same result.

2.3 Reapplying Mapper

A paper of Lum et al. [Lum+13], showcasing Mapper applied to several datasets,
contains an example of applying Mapper to the NKI data [Vee+02], which is the same
source of data that Nicolau et al. use, whose paper [NLC11] we went through in the
previous section. In this section, we will go through this application. In this case,
different preprocessing and filter functions are used, however, we still get the same
result. So, this will show how Mapper can be applied to a data set which has been
preprocessed in a different fashion, and yet recover the same essential structure. This
highlights flexibility as a key feature.

They also run Mapper on another breast cancer microarray data set, GSE2034
[Wan+05]. In both cases, the Mapper output is similar, and this gives us the ability
to compare between different data sets, even if they come from different experiments.

2.3.1 Pre-processing

Lum et al. decided to use the 1,500 top varying genes in their analysis, after trying
various values (24K, 11K, 7K, 3K, 1.5K) and seeing which one gave the most distinct
branching of the Mapper graph output, as shown in Figure 2.9.18

2.3.2 A Simpler Filter

The data points are tumour samples, using the Pearson correlation distance19 across
the 1,500 chosen genes.

The filter function they used for Mapper was something the authors call L-infinity
centrality, which assigns to each data point the value of the maximum distance that
point is from any other point in the data set. That is, if X is our data set, and d, a
distance function on it, then our filter function, f , is given by

f(x) = max
y∈X

d(x, y)

18Strictly speaking, this is not pre-processing, since the authors picked the number of genes they
used by looking at the output. To truly be pre-processing, the figure 1,500 should have been decided
before looking at the output.

19In geometric terms, this is 1−cos(θ), where θ is the angle between the two gene expression vectors.
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Figure 2.9: Figure S1 from [Lum+13]. The Mapper graph of the NKI data, using only
the patients who survived, so corresponding to the bottom of panels A or B in Figure
2.10. The rows represent the analysis done with a different number of the top most
varying genes, from 24,000 in the top, to 1,500 at the bottom, which is the same as
Figure 2.10. The panels in the left column have been coloured by L-infinity centrality
values, with blue low and red high. The panels in the right column have the nodes
coloured by the percentage of the data points in them belonging to the bottom-right
flare of the 1,500 graph. With grey being 0% and then a gradient from blue to red, red
being 100%. The idea is to see where the data points corresponding to the c-MYB+

subgroup end up as we increase the number of genes used in the analysis. We see that
as the number of genes used in the analysis increases, the c-MYB+ subgroup in the
bottom-right flare spreads out and mixes with non-flare points. This indicates that the
inclusion of genes which do not vary obscures the presence of the c-MYB+ subgroup
in the data.
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Figure 2.10: Figure 2 from [Lum+13]. The top panels, A and B, are from the NKI
data, and the bottom panels, C and D, are from the GSE2034. In both cases, a binary
filter has been applied in the top/down direction, being death/survival, and relapse/no
relapse, respectively. From left to right the nodes of the graphs are positioned by their
L-infinity centrality values. Finally, colouring has been done, the left two panels, A
and C, are coloured by the average expression of the ESR1 gene, and the right two
panels, B and D, are coloured by the average expression of the genes in the KEGG
chemokine pathway. In both cases blue is low and red is high.

This is in contrast to the filter function used in [NLC11], where the authors first used
DSGA to get a measure of how diseased the gene expressions were. It is interesting
that they obtain a similar result, despite using a simpler filter function in this analysis.
However, both functions act as a proxy measure of disease, since more unusual (and
hence, far from the centre) gene expression is indicative of disease.

They also use a binary filter to split their graph into two, which is survival/death
in the NKI data, and no relapse/relapse in the GSE2034 [Wan+05] data. They find
a graph output by Mapper in both cases, as we can see in Figure 2.10, and mention
that here we see Mapper’s great utility in being able to compare data sets without
transforming coordinates to account for how the two data sets measured gene expres-
sion. That is, the authors have used Mapper on two different gene expression datasets
to produce a similar visualisation, without normalising the two datasets between each
other. In particular, samples from one Mapper output are similar to samples occupying
the same area in the other Mapper output.
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2.3.3 Validation Again

Lum et al. validate the significance of the features of the Mapper output by simulating
random data. They look at two interesting structures, flares, which are long linear
segments, and groups, which are subsets of neighbouring vertices. The idea is to look
at how often a certain structure appears in random data. So, if we get something in
the Mapper output of our actual data that only appears rarely, then we know we have
found something which may be of further interest.

Validating Flares

Flares are long linear segments, which may indicate an interesting subgroup in the
data, like the c-MYB+ subgroup in this example. To test their significance, Lum et al.
generated 1000 data sets of the same dimensionality as the original data. The entries
in each column were given by a Gaussian distribution with zero mean and constant
variance across all columns. Mapper is then applied to each generated data set, and
a flare detection algorithm is applied to the resulting graph. The number of flares is
counted, and compared to the number found in the graph of the original data.

The flare detection algorithm is as follows:

1. Associate an eccentricity value e(n) to each node of the graph, given by:

e(n) =
∑

m∈V (G)

d(n,m)

where V (G) is the vertex set of the graph, and d is the graph distance.20

2. For each connected component of the graph G, compute the zero-dimensional
persistent homology as follows. We start at the maximum eccentricity value for
each connected component, and decrease the value from there, adding nodes as we
pass their eccentricity value (so nodes are added from high to low eccentricity).
Meanwhile, we keep track of the number of components, and the eccentricity
value at which they were born and at which they died. We will end up with a
set of components, parametrised by their birth and death eccentricity values.

3. We keep track of the range of each component, and normalise it by dividing by
the range of the eccentricity values, so we get values in [0, 1] assigned to each
component. Higher values indicate longer components, which were likely started
by high eccentricity nodes, and so correspond to flares.

4. For each x ∈ [0, 1], we look at the number of components with an associated value
greater than x. This gives us a non-decreasing function of x. We look for the
longest interval over which this function stays constant and greater than one, and

20The idea is to differentiate between nodes in more central regions of the graph and nodes at the
ends of flares.
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take the corresponding components as flares. The algorithm outputs the number
of flares.

Note that the algorithm is only applied to connected components which make up more
than 10% of the overall graph. The authors state that the above algorithm, applied
to randomly generated data as described above, did not produce more than one flare
except once in 1000 Monte Carlo simulations. This suggests that the presence of flares
has a significance level of about 0.001, and will tend to be due to structure in the data,
rather than noise or happenstance.

Validating Groups

The purpose of this section is to validate the significance of groups in the Mapper
output displaying a high proportion of a certain trait. For instance, Lum et al. state
that in previous analyses of the breast cancer microarray data they had found connected
families of adjacent vertices where the survival is perfect (that is, a subgroup where
everyone survived). The question now arises, what is the significance of such a group
occurring, and is it just an artefact of applying Mapper? To answer this question, the
authors consider relative density measures of survival on the breast cancer microarray
data, as follows.

The microarray data set can be considered as a finite metric space X, once we have
chosen a distance on it.21 We can then consider a proxy function for density on X, for
instance:

ρσ(x) =
1

|X|
∑
x′∈X

kσ(d(x, x′))

where kσ(t) is a probability distribution, for instance, the normal distribution, with
mean zero and standard deviation σ.

Now, we can similarly come up with a proxy function for density considering only
a subset of the patients, for instance, the ones who survived. Let us call this set L,
and the resulting proxy function:

ρLσ (x) =
1

|L|
∑
x′∈L

kσ(d(x, x′))

We are interested in the value q(x) = ρLσ (x)
ρσ(x)

, a proxy for the relative density of live
patients, compared to the density of all patients in the metric space.

To study how significant a certain value of q(x) is, we will assume a null hypothesis
that the set L of living patients occurred randomly. We now select sets L′ of the same
number of points as L, chosen uniformly at random, and look at the corresponding
maximum value of the quotient qL′(x) = ρL

′
σ (x)
ρσ(x)

.
To do this, Lum et al. performed a Monte Carlo simulation by repeated selection

of sets L′, and recorded the values µL′ = maxx∈X q
L′(x). That is, they selected sets

21For gene expression data, this will rarely be the Euclidean distance of Rn.
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of points of size |L| at random from the breast cancer data set, and calculated the
maximum density of the ‘living’ patients relative to the density of all patients. The
distribution of these values were then used to determine how significant a given value
of q(x) is. In particular, the probability of a value of q(x) at least as extreme as the
q(x) associated with the high survival flare in the breast cancer data is less than 10−4.

2.3.4 Discussion

We have seen a second application of Mapper to the same dataset. The pre-processing
step and filter function chosen were different, but we still ended up with a similar
result to the first application. This serves to confirm the existence of the c-MYB+

breast cancer subgroup. Furthermore, we see that applying Mapper to another dataset
also leads to a similar-shaped Mapper graph. This shows that we can use Mapper to
make a visual comparison between datasets which come from different experiments.
Finally, we have seen another method less dependent on discipline-specific statistics
for determining the statistical significance of structures (flares and groups) in Mapper
graph output.

2.4 Discussion

We have described the Mapper algorithm, and seen its application to breast cancer
gene expression (microarray) data to detect a novel subgroup of breast cancer.

In applying Mapper, there are four choices that must be made:

1. We must have a choice of distance function on our data set.

2. We must choose a reference space and a map to it. (Our filter function.)

3. We must choose a cover of the reference space.

4. We must cluster the pre-image of our cover of the reference space.

In cases where the choice is unclear, we vary the choices made and see what interesting
features persist in the outputted Mapper graphs. For instance, in Section 2.2 (the main
breast cancer example), distance was given by Pearson correlation, and the pre-image
clustered by single-linkage, with the parameter chosen in a suitably large gap between
the clusters changing. However, the filter function, a measure of the diseased state, was
changed by considering different Lp norms raised to different powers, which represents
giving differing weights to either all genes, or just the most varying ones, and the cover
of the reference space was changed by adjusting the number of intervals and their
overlap, which affected the resolution of the resulting Mapper graph. The removal of
bins with only one data point is another way the Mapper graph can be cleaned up.
It corresponds to removing outliers, so is another way to test the robustness of the
features encountered. Ultimately, structures which persist across parameter changes
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are considered robust, and so undergo further testing. This is the key principle of
applying Mapper.

When interesting structure is encountered, it must be validated. In Subsection
2.3.3 we see the statistical validation of flares and groups by Monte Carlo simulation,
as described in the Methods section of [Lum+13]. However, if we are to find out
why the structure we encountered is interesting, we must dig deeper into the data,
as described in §2.2.4, where Nicolau et al. tested a subgroup found by Mapper, by
looking at the survival data of the patients, and testing for genes which had significant
changes in expression, as described in [NLC11].

Now some remarks to conclude. In order to use Mapper, a metric is essential.
In both approaches, the Pearson correlation distance was used. c-MYB+ could not
have been found without a metric, at least not using Mapper. Now, the validation
of c-MYB+ can take place without a metric, but this is mere comparing between the
c-MYB+ and the other tumours, once they have already been separated into subgroups.

Mapper is dimension reduction along with clustering applied locally. The dimension
reduction aspect is given by the reference map ρ to some reference space. There are
even cases where the reference map gives values of the first two principal component
values, from a PCA. The clustering is applied locally, in the preimages of the open cover
chosen for the reference map. This allows Mapper to discriminate more between points
than applying a clustering function alone, since points separated by the reference map
will never be clustered together.

This results in Mapper picking up structure that traditional clustering methods
cannot. In particular, when the reference space is R, Mapper is an approximation
of the Reeb graph [MW15; CO18]. This makes it possible for Mapper to detect the
number of holes in a surface, assuming a fine enough sampling of points [CM+04].
As another contrast with clustering, we can consider the circle or the ‘Y’-shape (as in
the breast cancer example). Both consist of a single path-connected component, so it
would be reasonable to expect that a clustering algorithm would cluster a point cloud
from them into a single cluster.

Mapper is a visualisation tool which helps in extracting interesting features from
point cloud data. Such features are usually seen from its graph output as groups,
flares, or loops. While Mapper provides a rich avenue for the initial exploration of
data, making further sense of the output usually requires finer analysis and knowledge
of the system studied. In particular, studying the groups or structures of interest in
the Mapper output will involve looking at differences between the group of interest
and the rest of the data. For instance, in the discovery of the c-MYB+ subgroup,
further analysis involving the gene expression was required to validate the existence of
the subgroup. Mapper may tell you that there is interesting structure in your data,
but it will not tell you why, or exactly what it arises from. That requires further
familiarity with the data, or system being analysed, as well as other empirical and
analytical approaches. On that note, the next chapter will introduce the problems
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currently occurring in ecological transcriptomics, as well as our main study species,
the Arctic charr (Salvenlinus alpinus), found all over the Northern hemisphere.
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Chapter 3

Transcriptomics in the Wild

This chapter introduces the current problems in ecological transcriptomics that we
are seeking to address, and also gives the biological background on our study species
Salvelinus alpinus, the Arctic charr. We shall show what motivates us to study it, and
also give some results of standard differential gene expression techniques.

For mathematicians, we have a small subsection defining the space we are working
in and some concepts in the data section (§3.3.3). If desired, mathematicians can read
from this section and skip the background on the biology.

3.1 Ecological Transcriptomics

The transcriptome consists of all RNA molecules in a cell or population of cells; tran-
scriptomics is a field studying the transcriptome. Typically, we analyse the mRNA
(messenger RNA) which gives us the gene expression of the cells. mRNA is tran-
scribed from the DNA sequence of genes in the nucleus, and exported to the cytoplasm
where it is translated into a protein sequence by ribosomes. It therefore gives us a way
to measure the rate of protein synthesis associated to given genes. The gene expression
is a dynamic source of information that is intermediate between the phenotype (phys-
ical characteristics) and the genotype (the code of the cell contained in the DNA). In
the context of ecology, mRNA molecules are extracted from tissues of interest from
individuals of species of interest. For example, in the next section we will describe
our interest in the Arctic charr, from which we take white muscle tissue samples for
transcriptomic analysis.

Recent advances in high throughput DNA sequencing technology have led to an
explosion of data in the field of transcriptomics. We have advanced from microarrays,
which give the expression of ∼ 10, 000 genes, to RNA-Seq, capable of giving the ex-
pression of ≥ 100, 000 genes [Wan+17]. Furthermore, falling costs have given us the
means to apply RNA-Seq to 10s of samples from wild non-model species.

The older microarray technology was constrained to target only transcripts with a
know sequence, and has difficulty detecting rarely expressed transcripts. RNA-Seq, on
the other hand, can capture novel transcripts, not just those with a known sequence,

35
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and also has a greater range of sensitivity then microarrays. However, RNA-Seq is still
considerably more expensive then microarrays, and also generates a higher volume of
data [KWG11].1

The tools for analysing RNA-Seq data have not kept pace. In particular, differential
gene expression is analysed in a gene-by-gene manner, which doesn’t take into account
the co-dependence of gene expression, while gene network approaches, accounting for
the relationships between genes, are specialised for model species in the lab, and cannot
take into account novel information from non-model systems.

A key aim of this project is to develop a method capable of taking into account the
co-dependencies in gene expression in the form of a gene network, that works on non-
model species in the wild. Essentially, such a method should be capable of telling which
group of genes expressed in what manner results in which phenotype. It should also
be powerful enough across the noise of different sites and lineages. This is ambitious,
however, and we will settle, in the first instance, for being able to group genes into
sets of co-expressed genes, and then tell which sets are important for the differences
between certain phenotypes.

An additional challenge of studying wild species is that there will always be an
effect of environment, since we do not have the ability to do controlled experiments, as
in the laboratory. In particular, if the samples we gather are from different locations,
there will be the effect of local adaptation and genetic drift to take into account. This is
important, since any data analysis method for tackling gene expression in an ecological
context will have to deal with these issues.

In the following section, we will describe a species of fish, the Arctic charr, which
we will study. This will be a test for whatever model we come up with, since it is a
non-model species in the wild, with well-characterised variation depending on the part
of the lake the fish inhabits.

3.2 A Natural Model

We want an ecological and evolutionary model which will help answer a major outstand-
ing question in the field of ecology, which is the molecular basis of how diversification
occurs rapidly. With this consideration, we pick the Arctic charr (Salvelinus alpinus),
a species belonging to a family of fish called the Salmonids. These are famous for their
ecological and evolutionary diversity, and their rapid evolution. This is hypothesised to
be the result of a whole genome duplication in the common ancestor of all Salmonids
[Rob+17]. Whatever the reason, this diversity provides us good test species for finding
patterns in ‘omics data relevant to the processes of ecological divergence and speciation.
In particular, there are fish species in the Salmonid family which occur in benthic and
pelagic morphs in the same lake, with Arctic charr being an example of such [Kle10].

1There are also still issues with the short (∼ 100 bp) lengths of the reads and errors.
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3.2.1 Morphs

Morphs are a sub-species distinction based on phenotype. An example is the black and
white morphs of the peppered moth (Biston betularia), with the black morph appear-
ing after the Industrial Revolution in England in the 19th century [CS13]. Ecomorphs
are morphs based on correlation with specific habitats. In the text, we will use morph
and ecomorph interchangeably. In the context of Arctic charr, there are two morphs
of particular interest. These are the benthic and pelagic morphs, as mentioned above.
Commonly, there will be Arctic charr of both morphs in the same lake. In fact, these
morphs also occur amongst some other lake-dwelling Salmonids, and even more gener-
ally in other fish species, like cichlids. This gives the hope of generalising our results
to those fish which also possess this axis of diversification. We will now proceed to a
description of these morphs.

The benthic morph dwells near the lake bottom and feeds on benthos (organisms
which live near or on the lake bottom such as bloodworms) while the pelagic morph
dwells in open water and feeds on plankton. Differences between the morphs depend
on lake, but we can describe some typical traits. The benthic morphs are usually
smaller than the pelagics, and have a less streamlined body shape, since they are not
as adapted to swimming in open water. Jaw and head shape differ too, mostly due
to adaptation to diet and foraging. For example, the pelagic morphs have more and
finer gill-rakers than the benthics, since they catch plankton by filter-feeding, while
the benthics dig around at the lake bottom. Figure 3.1 shows the benthic and pelagic
morphs in Loch Tay.

The occurrence of ecomorphological parallelism across independent lakes may indi-
cate the beginnings of the process of speciation, at the very least, it shows that local
adaptation is taking place. This is an ongoing area of research, and its mechanisms are
still unclear [Elm+10].

3.3 Data

In this section, we will give a description of the biological and transcriptomic data, as
well as a brief outline of the transcriptomic pipeline.

3.3.1 Samples

The biological samples we have are from 36 wild caught individuals of Arctic charr,
comprised mainly of benthic and pelagic morphs from four lakes. A list of the morphs
and lakes is shown in Table 3.1. We have four individuals for each lake/morph combi-
nation. Figure 3.2 shows the locations of the lakes, and Figure 3.1 shows exemplars of
the two morphs in Loch Tay. These lakes were chosen since Arctic charr of both benthic
and pelagic morphs are present in each lake, which gives us the opportunity to find
parallelism between the four different lakes along this axis of diversification [Jac+19].
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Figure 3.1: This figure shows the two morphs in Loch Tay. The pelagic is the larger
one dwelling in open water, while the benthic is smaller dwelling near the bottom.
Note differences in head and body shape, as well as size have been examined in other
studies [Jac+19].
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Lake/Loch Name Ecomorph

Awe Autumn Pelagic
Spring Benthic

Dughaill Benthic Benthic
Pelagic Pelagic

Tay Large Pelagic
Small Benthic

Kamkanda Dwarf Benthic
Large Piscivorous
Small Pelagic

Table 3.1: A table giving the lakes and lochs the Arctic charr have been sampled from,
as well as their name and corresponding ecomorph. Note that we refer to the fish as
benthic or pelagic morphs throughout the text, rather than by their lake-specific name.

Figure 3.2: This figure shows the locations of the lochs and lakes the Arctic charr have
been sampled from. We are using samples from the three lochs in Scotland, and Lake
Kamkanda in Russia.

The key point here is that, if we do find parallelism, then the parallel aspects of these
morphs will indicate genetic regions and mechanisms behind the emergence of these
morphs in general. Furthermore, these same regions and mechanisms could be involved
in the beginnings of ecological speciation, at least along the benthic/pelagic axis.

3.3.2 Transcriptomics

In this section, we will give a brief outline of the methods used for obtaining transcrip-
tomic data from the Arctic charr.

The data are derived from RNA extracted from white muscle tissue in 36 Arctic
charr, four individuals from each category in Table 3.1. The RNA was prepared and
sequenced by Glasgow Polyomics in an Illumina NextSeq 500 machine, outputting
about 20–30 million paired-end 2 × 75bp reads for each sample. The .fastq files were
aligned to an Arctic charr de novo transcriptome with 33,126 transcripts prepared by



40 CHAPTER 3. TRANSCRIPTOMICS IN THE WILD

Madeleine Carruthers and Andre Yurchenko from the Elmer lab [Car+18]. Alignment
was carried out in January 2017 using Bowtie2 (Galaxy Version 2.2.6.2) [LS12] on
Glasgow University’s Galaxy server [Afg+16] with options paired-end alignment, local,
no-mixed, no-discordant, -a (no ceiling) and the rest defaults. Please see [Car+18] for
more details on the approach followed for the RNA sequencing.

Transcript cluster counts were calculated with Corset (Version 1.06) [DO14], defin-
ing nine groups of four individuals each (one group for each category in Table 3.1). This
resulted in a count table, with a total of 19,015 different transcript clusters with at
least 10 reads over all 36 individuals. The count table was input into R (version 3.3.2)
[R C17] and normalised using the regularised logarithm transformation function in the
DESeq2 (version 1.14.1) [LHA14] R package, with one group for each morph/lake.

The rationale behind transforming the raw counts is to obtain expression values
which are approximately normally distributed. In raw count data, highly expressed
and highly variable genes will end up dominating the results. The log transformation
takes this into account by considering variation relative to expression [BC64].

3.3.3 Mathematics

In this section, we show how we can consider the gene expression dataset mathemati-
cally as vectors/points in a gene expression space. We furthermore give a description
of how to incorporate categorical information as part of our dataset.2

Suppose that we have processed the output of our transcriptomics pipeline into a
gene expression dataset as a set of n vectors, {x1,x2, . . . ,xn}, in Rm, where n is the
number of samples and m the number of genes. We may form this into a data matrix
as follows:

Definition 3.3.1 (Data Matrix). Let A be an n × m matrix, with the rows given
by vectors x1,x2, . . . ,xn in Rm, corresponding to gene expression values of n samples
given over m genes.

This also allows us to find relations between genes by considering the m column
vectors {g1, . . . ,gm} in Rn.

In all cases, our samples will have derived from some experiment, so they will possess
phenotypic, and other, properties. It is also the case that we may have properties, such
as annotations, for our genes. Since we are interested in the replicate populations of
non-model organisms which have undergone the same phenotypic diversification, that
is, we see the same morphs (which can be thought of as subpopulations) in different
locations, we will restrict our phenotypic properties to two nested levels. The top level
will be the locations, and the second level will be themorphs, which would ideally be the
same across all locations. In both cases, we will be dealing with categorical variables.
An example of this phenotypic information is in Table 3.1, where the lakes are the

2Note: We use categorical in contrast to numerical in statistical language, which means incorporate
properties which are described by a finite number of distinct labels/categories.

http://heighliner.cvr.gla.ac.uk
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locations, and the ecotypes are the morphs, with the exception that Lake Kamkanda
has an additional piscivorous ecotype. Furthermore, we will assume that we have no
reliable gene annotations, since we are dealing with a non-model species.

Definition 3.3.2 (Nested Subsets). We assume that we have groupings associated to
our n samples. Firstly, we assume we have a partition of our samples into locations.
Secondly, we assume we have partitions of the samples at each location into morphs.

Note that all these ways of partitioning our samples are done via their properties,
and this is what we mean by categorical data.

3.4 Analysis

In this section, we will use our data, in the form of vectors in Euclidean space (36
vectors in R19,015) to proceed with some standard analyses. We do some processing,
and visualise the data with PCA and heatmaps. This lets us visualise the data, and is a
first pass, to see if we have any unusual outliers or unexpected groupings. Furthermore,
we can check if there is parallelism apparent between the benthic and pelagic morphs
in the different lakes. This will turn up on our PCA plots as the difference between the
benthic and pelagic morphs being in approximately the same direction in each lake.
This has been apparent in previous cases where parallel evolution has been found, such
as in Midas cichlids of Nicaragua [Elm+14, Fig. 3].

3.4.1 Lake Effect

First, we note that the data can be grouped by lake, as in Table 3.1. We can see in
Figure 3.4, and we know from previous research, that there is a large effect of lake on
the gene expression of the Arctic charr. We must take this into account in order to
focus on the pervasive signal of the differences between the morphs. We can do this
by taking the barycentre (centroid) of the gene expression of all the fish in that lake
as an estimate of the expression of the fish in that lake. For example, if we have the
expression vectors of the eight fish in a lake {x1,x2, . . . ,x8}, then their barycentre is
x̄ =

∑8
i=1 xi
8

. A plot of the centroid for the Arctic charr is given in Figure 3.3.
Once we have the lake effect, we can subtract it from the gene expression of all

our fish samples, and continue our analysis. If we consider the example with eight fish
above, this gives us the vectors {y1,y2, . . . ,y8}, where yi = xi − x̄. This procedure
can be repeated for any number of mutually exclusive subgroups.

3.4.2 Visualisation

Visualising data allows us to inspect it for any obvious groupings or patterns. This
serves two purposes. First, we can check if, in our rough 2D visualisation, we see the
grouping of data that we expect, for example, into different conditions. Second, we can
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Figure 3.3: An example of the finding the centroid for the Arctic charr. Here we have
only plotted their first two principal components. The coordinates of their centroid
are given by the average over each coordinate. In this case, it’s the large centre point
joined to all the samples from the lake by a line.

see if there are other groups in the data which we have not taken into consideration,
for example, a subgroup in one of our conditions, or unusual outliers.

There are a few standard ways to visualise data. We first go through two of these
methods, principal component analysis (PCA) and heatmaps, and show their results
on our Arctic charr gene expression data. In the next chapter, we will follow up by
using the Mapper method.

Principal Component Analysis

Principal Component Analysis (PCA) is a method of dimension reduction. PCA uses
an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal compo-
nents. This transformation is defined in such a way that the first principal component
has the largest possible variance, and each succeeding component has the highest pos-
sible variance under the constraint that it is orthogonal to the preceding components.
The resulting vectors are an uncorrelated orthogonal basis set. In more technical terms,
we can consider PCA as a change of basis to a new coordinate system, where the first
coordinate accounts for the greatest variance, the second coordinate for the second
greatest, and so on [BCV13, §5.1].

To illustrate this, let X be a matrix where the columns are samples, and the rows
are shifted to have mean zero.3 In PCA, we wish to transform X to a new coordinate

3This simplifies matters, since it allows us to use the sum of squares to calculate the variance,
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Figure 3.4: A) Showing the first two PCs of PCA applied to the 500 genes with greatest
variance of the regularised log-transformed Arctic charr transcriptomic data. Notice
the broad division into Kamkanda (Russian), Dughaill (North Scottish), and Tay and
Awe (more Southerly Scottish). B) Showing the first two PCs of PCA applied to all
genes of the regularised log-transformed Arctic charr transcriptomic data. Note that
the axes are different between the two pictures, however, the overall groupings are
maintained.

system T = WX where W is the transition matrix and the columns of T correspond
to sample coordinates in the new system.

The rows of W are given by unit vectors which maximise the variance in each coor-
dinate (row) of T , so the first row of W maximises the variance in the first coordinate,
the second row maximises the remaining variance in the second coordinate, and so on.
In fact, the rows of W are given by eigenvectors of the matrix XXT , the covariance
matrix of X, ordered by their eigenvalue.

Figure 3.4 gives a visualisation of the regularised logarithm transformed Arctic
charr transcriptomic data. It is a PCA plot where the left diagram is given on the top
500 varying genes only, while the right uses all 19,015 genes. Figure 3.5 has the lake
centroids subtracted. Note that the lake effect (§3.4.1) has been lost, but there is still
some indication of separation by morph.

Heatmaps

A heatmap (or shading matrix) gives a visualisation of the values in a matrix. In our
case, the heatmap is produced from a matrix of Euclidean distances between the Arctic
charr, calculated on the basis of the gene expression values of either the 500 genes with
the most variance, or all 19,015 genes.

Some heatmaps have the dendrogram of a hierarchical clustering algorithm on their
axes. This is the case with our heatmaps, which have the dendrograms from the single-
linkage clustering algorithm.

Figure 3.6 gives a visualisation of the regularised logarithm transformed Arctic charr
transcriptomic data. It is a heatmap of the distances, with single-linkage clustering.
The left diagram is given on the 500 genes with the most variance, while the right

rather than having to shift every coordinate by its mean first. Note, we can also normalise each row
to have variance one, in which case XXT is the correlation, rather than the covariance, matrix in the
following paragraph.
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Figure 3.5: A) Showing the first two PCs of PCA applied to the top 500 varying genes
of the regularised log-transformed Arctic charr transcriptomic data, with lake centroids
subtracted. Note that now most of the benthic fish are to the top right, compared to
their lake’s respective pelagic morphs. B) Showing the first two PCs of PCA applied
to all genes of the regularised log-transformed Arctic charr transcriptomic data, with
lake centroids subtracted. Note that now most of the benthic fish are to the bottom
right, compared to their lake’s respective pelagic morphs.

uses all genes. Figure 3.7 gives the same visualisation, only with the lake centroids
subtracted.

3.5 Discussion

We have provided the background to our Arctic charr gene expression data, as well as
some analysis methods, primarily focussing on accounting for the effect of lake, and
visualisation. The PCA plots (Figure 3.5) suggest some parallelism in morphs between
lakes, but heatmap outputs show us groupings based on lake, with a few distinguished
morphs when we subtract the lake effect. No unexpected groupings are apparent. In
the next chapter, we will take a look at Mapper applied to this Arctic charr gene
expression data.
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Figure 3.6: A) Showing a heatmap of Euclidean distances, along with single-linkage
clustering, on the 500 genes with the most variance of the regularised log-transformed
Arctic charr transcriptomic data. Notice the broad division into Kamkanda (Russian),
Dughaill (North Scottish), and Tay and Awe (more Southerly Scottish). (The groups
are apparent as squares of darker coloured blocks in the heatmap, indicating that all
members of that square have a shorter distance to each other than other members.)
There are some outliers from Tay and Awe located near the top of the diagram. B)
Showing a heatmap of Euclidean distances, along with single-linkage clustering, on all
genes of the regularised log-transformed Arctic charr transcriptomic data. Again we
see grouping into Kamkanda (Russian) and Dughaill (North Scottish), with the Tay
and Awe (more Southerly Scottish) group being less distinct. Again, there are outliers
from Tay and Awe near the top of the diagram, though they’re different from (A).
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Figure 3.7: A) Showing a heatmap of Euclidean distances, along with single-linkage
clustering, on the top 500 varying genes of the regularised log-transformed Arctic charr
transcriptomic data, with lake centroids subtracted. Much of the lake structure has
been lost, while groupings by morph are not apparent. There are still some notable
groupings by lake and morph, such as the Kamkanda piscivorous (large morph) and
the Kamkanda pelagics (small morph). Note the change in scale from Figure 3.6. B)
Showing a heatmap of Euclidean distances, along with single-linkage clustering, on all
genes of the regularised log-transformed Arctic charr transcriptomic data, with lake
centroids subtracted. Again, the groupings are no longer distinct. Like (A), a couple
of notable groups still remaining are the Kamkanda piscivorous (large morph) and the
Kamkanda pelagics (small morph).



Chapter 4

Mapper Applied to Arctic Charr

We have seen from the previous chapters of Mapper applied to breast cancer gene
expression data (§2.2), that it is possible to use it to find a new unexpected grouping
in gene expression data, and that further investigation of the group showed how it is
clinically and biochemically distinct. Inspired by this example, in this chapter, we now
port the method to gene expression data from a non-model species.

In the first section, we will describe how we applied Mapper to the Arctic charr
gene expression data, and the resulting visualisations. We show the effect of changing
the preprocessing, and the Mapper parameters. Finally, we settle on a simpler version
of preprocessing the data, using only the Euclidean distance, rather than the more
advanced Pearson correlation based on DSGA. In this case, we expect to see at least
two subgroups, showing the benthic and pelagic morphs. However, we still produce no
clear subgroups in our Mapper output. We suspect that the small sample size is to
blame for us not finding any significant properties in our Arctic charr gene expression
data. So, in the final section, we make an investigation of the sample size required
to show the new group in the breast cancer expression data set of [NLC11; Lum+13],
which we went through in §2.2. Subsampling this reproduction suggests that we need
about two hundred samples before we can find a subgroup of interest.

4.1 Varying Mapper

We varied the Mapper parameters over many trials to find the optimal way of displaying
the data. This involved changing both methods of preprocessing the Arctic charr gene
expression data, as well as the parameters used by the Mapper algorithm. The main
goal here is to find a visualisation which will highlight a novel subgroup, or some other
interesting feature, of the Arctic charr data.

4.1.1 Pre-processing

We initially applied a procedure similar to Disease-specific genome analysis (DSGA)
[Nic+07] (see §2.2.2). Instead of trying to account for the variation in the normal
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tissue (as the distinction was between normal and breast cancer tissues), we used
DSGA to account for the difference among the pelagic morphs or the benthic morphs,
respectively. The idea was that, since each morph was found over all four lakes, if we
accounted for the variation in a single morph, we would also account for the variation
between the lakes.

Figure 4.1 shows the Mapper output for the Arctic charr gene expression data, with
DSGA applied with the benthics as the ‘normal’ group. One of the benthic morphs
from Dughaill has been removed as an outlier, since it would have great influence on
what is considered ‘normal’ benthic expression. The colour is by the filter function,
which can be considered as a distance from ‘benthic-ness’, similar to how the original
use of DSGA in breast cancer used a distance from normality. Blue is low and red
is high. As expected, we see most of the benthic morphs grouped in the large blue
node to the right, since we have accounted for most of their variation using DSGA.
On the other hand, no real pattern is found in the pelagic morphs, they are scattered
all throughout the rest of the Mapper output. They do not even concentrate by lake
(except for Kamkanda, whose pelagics are found to the left of the output).

Figure 4.2 gives Mapper output with the pelagics as the ‘normal’ group. This
single change leads to quite a difference in the outputs, since this one seems to lack
any structure whatsoever. However, this is not stable with regard to parameters, since
a small change (not shown here) causes the output to change into a single cluster with
individual points jutting out. We now move on to looking at the effect of parameter
changes.

We see that preprocessing to make the benthics ‘normal’ shows up no patterns in
the pelagics, while making the pelagics ‘normal’ gives lots of isolated small clusters.
We now proceed to testing how changing Mapper parameters changes the output.

4.1.2 Parameter Changes

In this subsection, we will look at the effect of changing parameters on the Mapper
output. We will do this with the Arctic charr gene expression data, with DSGA applied
with the benthics as the ‘normal’ group. This is because we observe output with
more structure than having pelagics as the ‘normal’ group, so the effect of changing
parameters will be more noticeable.

First we vary the filter function. Instead of using the Euclidean distance (the L2-
norm) from ‘benthic-ness’, as in Figure 4.1, we instead use the Lp-norm raised to some
power m, where p,m ∈ N. In Figure 4.3, we have used the L5-norm on the left, and
the L2-norm squared on the right. The effect of these different norms is to weight the
dimensions differently when calculating distances. Higher values of p give more weight
to dimensions with greater differences, while raising to some power changes how the
points are covered in the reference space.

Next, we look at varying the number of intervals used to cover the reference space.
The effect of varying the number of intervals is to increase or decrease the number of
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Filter range: [158963.60, 1953191.00]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,20]

Figure 4.1: Mapper output on data pre-processed with DSGA, where the benthics were
treated as the ‘normal’ group. Covering was by five intervals with 50% overlap, and
clustering was single-linkage with a cut-off where there is a gap of 10% of the range.
One of the benthic morphs from Dughaill has been removed as an outlier. The colour is
by the filter function, which can be considered as a distance from ‘benthic-ness’, similar
to how the original use of DSGA in breast cancer used a distance from normality. Blue
is low and red is high. Most of the benthic samples are in the large blue-coloured node,
and the rest of the pelagic samples are scattered throughout. No grouping by lake is
apparent.
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Filter range: [200679.30, 898944.60]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,3]

Figure 4.2: Mapper output on data pre-processed with DSGA, where the pelagics were
treated as the ‘normal’ group. Covering was by five intervals with 50% overlap, and
clustering was single-linkage with a cut-off where there is a gap of 10% of the range.
One of the benthic morphs from Dughaill has been removed as an outlier. The colour is
by the filter function, which can be considered as a distance from ‘pelagic-ness’, similar
to how the original use of DSGA in breast cancer used a distance from normality. Blue
is low and red is high. We see that the output is incredibly scattered. However, this
is not stable with regard to parameters, since a small change (not shown here) causes
the output to change into a single cluster with individual points jutting out.
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Filter range: [65155.25, 1101054.00]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,23]

Filter range: [25269430028.00, 3814956000000.00]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,28]

Figure 4.3: Varying filter function. We have used the L5-norm on the top, and the
L2-norm squared on the bottom. In both cases, the Mapper output graph is more
disconnected when compared to Figure 4.1. The bottom is not as scattered as the top.
In this case, the filter function affects the spread of the samples, so the preimages of
the intervals contain different samples, and these cluster differently.
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Filter range: [158963.60, 1953191.00]
Cover: Hypercube cover. Intervals: (7,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,16]

Filter range: [158963.60, 1953191.00]
Cover: Hypercube cover. Intervals: (3,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.1
Size range: [1,27]

Figure 4.4: Varying intervals. Compared to Figure 4.1, with 5 intervals, we see more
nodes in the Mapper output on the top, with 7 intervals, and fewer on the bottom, with
3 intervals. Note that with more intervals, the graph also becomes more disconnected,
and we have a higher number of isolated points.

nodes in the Mapper output, as can be seen in Figure 4.4.

Finally, we look at changing the clustering function used by Mapper. The clustering
function influences how the clusters (nodes of the Mapper output) are produced from
the preimage of the cover on the reference space. At one extreme, we get one node
for each preimage (where all points are assigned one cluster), at the other, we get one
node for each point. Figure 4.5 shows how varying the clustering function varies the
number, size and connectivity of the nodes.

So, we have seen that changing the parameters and pre-processing can have quite
a large effect on the Mapper output. The pre-processing in particular can lead to a
total change in the output, while varying the filter function, covering, and clustering
function have more subtle effects. As a reminder, the goal was to find a combination of
parameters which produces interesting and informative output, while remaining robust
to parameter changes.
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Filter range: [158963.60, 1953191.00]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.08
Size range: [1,20]

Filter range: [158963.60, 1953191.00]
Cover: Hypercube cover. Intervals: (5,). Overlap: (50.0,)
Clustering method: Single linkage clustering
Cutoff: First gap of relative width 0.2
Size range: [1,20]

Figure 4.5: Varying clustering function. Compared to Figure 4.1, with a cut-off at 10%
of the range, we see more nodes in the Mapper output on the top, with a cut-off at
8%, and fewer on the bottom, with a cut-off at 20%.
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Finally, we have seen that preprocessing to make the benthics ‘normal’ shows up
no patterns in the pelagics, while making the pelagics ‘normal’ gives lots of isolated
small clusters. However, this seems to be very sensitive to changing the parameters, i.e.
covers and clustering function, used to produce the Mapper output, and consequently
we cannot say that this difference in preprocessing is significant.

Subsequently, we decided to use simpler distances and filter functions (Euclidean
distances and norms) to visualise our data Arctic charr gene expression data. Partly,
this is because when Lum et al. reapplied Mapper to the breast cancer data set
[Lum+13], they found success using a simpler distance and filter function (§2.3.2).

4.2 Euclidean Distance

In this section we will show a couple of visualisations of our Arctic charr gene expression
data using the Mapper algorithm [SMC07], as described in §2.1. Since, in the previous
section, we were unable to identify any significant patterns, we will now aim instead
to reproduce structure in the Mapper output which we know should already be in the
data. Namely, we want to get output where the split between the benthic and pelagic
morphs, which we see in the wild, is apparent.

4.2.1 Data

The input data to Mapper is a point cloud (see Def. 2.1.14) of 36 points, yi ∈ RN ,
where N = 19, 050 genes and the distances are given by the Euclidean metric on the
lake centroid centred gene expression vectors. §3.3.2 describes the process for getting
the coordinates of these points, from extracting the RNA molecules, to finally getting
normalised read counts. These are the same points used for the PCAs and heatmaps
in the previous chapter.

Filter Function

The filter function is given by the Euclidean norm of the vectors, i.e. a radial Morse
function

f : RN → [0,∞)

x 7→ |x|

The motivation for choosing this filter function was the observation that if the fish
are sufficiently concentrated at their lake and morph barycentres and the direction and
magnitude of change are similar enough, implying parallelism, then the Mapper output
would consist of two nodes, one for each morph. In the case where the direction and
magnitude of change are sufficiently different, suggesting a different biological basis of
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the differentiation between the lakes, we should get more nodes, possibly as many as
eight, one for each benthic/pelagic and lake combination.

Parameters

We utilise an open source Mapper algorithm called Python Mapper [MB13]. There are
a few parameters which affect the Mapper output. The ones which we will change are,
firstly, the number of intervals for the covering of the filter function, and, secondly, the
cut-off point of the single-linkage clustering function. These are the last two items in
Table 2.1, since the data points and filter function/reference map are input into the
software. These are given by text files of pairwise distances, and filter function values,
respectively.1

4.2.2 Visualisation

In the Mapper outputs, we find that the data are scattered away from the barycentres
to such an extent that we see only one component, with branches representing points
located particularly far from their lake centroid, and no particular groupings. Figures
4.6 and 4.7 show the Mapper output on the regularised logarithm transformed Arctic
charr transcriptomic data, with lake centroid subtracted, using the top 500 varying
genes and all genes, respectively. The Mapper outputs have the same overall shape,
just with different samples in the outlying nodes, indicating that samples with unusual
gene expression in only the top 500 varying genes, are not the same as those with
unusual gene expression when considering all genes. In particular, there is no splitting
into benthic and pelagic groups that we would expect. This lack is what will drive us
to consider a new topological approach to the Arctic charr data in the next chapter.

Note that in the bottom-left of the Mapper output graphs, we see some text which
gives the parameters used for the visualisation. The filter range gives the minimum
and maximum values of the filter function, the cover type is always the ‘Hypercube
cover’, which means that we cover by intervals with an identical range, the number of
these intervals is given by the ‘Intervals:’ number, and the overlap by ‘Overlap:’ in
percent. The clustering method is usually single-linkage clustering, and is what is used
to cluster the points in the pre-images of the covers of the filter function, the cut-off
is a description of how the clusters are chosen from the clustering function, either a
cut-off at a certain height, or at a gap of relative width some fraction to the total
height of the clustering tree. The size range gives the minimum and maximum number
of points/samples in any one node.

1We should note here that it is currently quite difficult to get the Python Mapper software to
run. It requires older versions of some dependencies, such as WX python. For software implementing
Mapper, I would recommend, as of 18/06/2019 the knotter software by rosinality https://github.
com/rosinality/knotter and the Kepler Mapper software [VS19].

https://github.com/rosinality/knotter
https://github.com/rosinality/knotter
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Figure 4.6: A) Mapper applied to the top 500 varying genes of the regularised log-
transformed Arctic charr transcriptomic data, with lake centroids subtracted. The
cover used was two intervals with 50% overlap, and the clustering was single-linkage
with a cut-off at 30. The members of the outlying nodes of the graph have been
listed. There appear to be no strong groupings by lake or morph. In fact, there are
nodes with both morphs, such as the size 4 one to the bottom left, with most of the
Tay pelagic morph, and a member of the Kamkanda benthic morph. B) shows the
corresponding two dimensional PCA plot for the Arctic charr transcriptomic data,
with node membership indicated by outlines in corresponding colours. Note, the large
node with 31 samples has not been outlined in (B) to simplify the diagram.
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Figure 4.7: A) Mapper applied to all genes of the regularised log-transformed Arctic
charr transcriptomic data, with lake centroids subtracted. The cover used was three
intervals with 50% overlap, and the clustering was single-linkage with a cut-off at 81.
The members of the outlying nodes of the graph have been listed. There appear to be no
strong groupings by lake or morph. Note the presence of different fish in the outlying
nodes. B) shows the corresponding two dimensional PCA plot for the Arctic charr
transcriptomic data, with node membership indicated by outlines in corresponding
colours. Note, the node with 20 samples has not been outlined in (B) to simplify the
diagram.
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4.3 Reproducing the Example

Since we did not succeed in finding any significant features in Mapper output, we will
undertake an investigation into this matter. We suspect that the low sample size (36
samples) of the Arctic charr gene expression data set could be an issue. This is contrast
to the dataset used in the breast cancer example, as found in [Lum+13] and §2.2 of this
thesis, which had a sample size of 295. We proceed by first reproducing the Mapper
output used by Lum et al. in their paper. Afterwards, in §4.3.2, we subsample to
determine the sample size required so that the c-MYB+ is apparent in the output. We
use the open-source Python Mapper program [MB13] for our reproduction with data
from the Netherlands Cancer Institute [Vee+02].2

4.3.1 Reproduction

We follow Figure 2.9 from the supplementary data of [Lum+13], where the authors
take the surviving patients, and look at the Mapper output for taking their filters and
distances on the top varying genes.

Methods

We take the 5% of genes with the highest variance, and use these to calculate Pearson
correlation distances between the breast cancer samples. See Definition 2.2.1 for the
definition of Pearson correlation, and the distance based on it is described in the
paragraph preceding the definition. The filter function used is L-infinity centrality
which assigns to a data point the value of the maximal distance to any other data
point in the set. We use Ward clustering [War63], which minimises the total within-
cluster variance, in Python Mapper [MB13] to produce something similar to the desired
output.3

Output

Figure 4.8 shows the reproduction, where the lower branch on the right seems to be
our group of interest, since it contains 21 samples, about the same as the 22 found in
[NLC11].

When we take the top 50%, 25%, 10% and 5% varying genes, we usually get some-
thing like Figure 2.9 from [Lum+13], but not quite as clean looking, and occasionally
with a loop at the end, rather than a branch.

We were unable to do a more stringent test of these Mapper outputs, since neither
paper actually explicitly lists which samples in the breast cancer data set are actually
c-MYB+.4

2Since the online resource where the gene expression data was kept has now gone offline, we thank
Monica Nicolau [NLC11] for providing the data to us.

3This was chosen since the clustering algorithm produced Mapper outputs most similar to those
of Lum et al., and furthermore, the authors have not specified which clustering algorithm they used.

4There have also been problems following this up with the authors, since the contact details on the
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Figure 4.8: Mapper output taking the 5% top varying genes (∼ 1100). 70 intervals,
with 70% overlap. Filter function was the L-infinity centrality, as used in [Lum+13].
Clustering was Ward clustering, with a cut-off at 50% of the diameter. The purported
c-MYB+ samples on the lower branch on the right have been circled.

4.3.2 Subsampling

We took subsamples of the 295 samples, by taking 250, 200, 150, and 100 at random,
by producing a vector of random non-repeating numbers between 1 and 295 in R, and
then extracting those rows from the data matrix. We then take the top 5% varying
genes and visualise the subsample using Mapper, as in the previous subsection. We
decreased the number of intervals used at each subsampling to 60, 50, 40 and 30 to
keep the output connected, otherwise, the other inputs to Mapper were the same as in
Figure 4.8. Output can be found in Figures 4.9–4.12. Note how the branch becomes
less distinct as we take smaller samples, eventually disappearing when we take 100.
We do not show it here, but if we colour the nodes by their proportion of purported
c-MYB+ samples, we can see that these start to disperse further out along the main
line as we take smaller and smaller subsamples.

4.4 Discussion

When applying Mapper to the Arctic charr gene expression data, we see that pre-
processing to make the benthics ‘normal’ shows up no patterns in the pelagics, while
making the pelagics ‘normal’ gives lots of isolated small clusters. We have also demon-
strated how changing the pre-processing, cover, and clustering function can change
the Mapper output, which in turn shows that the difference between the two pre-
processings is not significant. Subsequently, we try to visualise the benthic/pelagic
split using Mapper, but this also fails.

paper are no longer valid, and it is unclear where the authors are now.
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Filter range: [1.00, 1.29]
Cover: Hypercube cover. Intervals: (60,). Overlap: (70.0,)
Clustering method: Ward linkage clustering
Cutoff: First gap of relative width 0.5
Size range: [1,21]

Figure 4.9: Mapper output on a subsample of 250 (184 survivors) taking the 5% top
varying genes (∼ 1100). 60 intervals, with 70% overlap. Filter function was the L-
infinity centrality, as used in [Lum+13]. Clustering was Ward clustering, with a cut-off
at 50% of the diameter.

Filter range: [1.01, 1.30]
Cover: Hypercube cover. Intervals: (50,). Overlap: (70.0,)
Clustering method: Ward linkage clustering
Cutoff: First gap of relative width 0.5
Size range: [1,21]

Figure 4.10: Mapper output on a subsample of 200 (144 survivors) taking the 5% top
varying genes (∼ 1100). 50 intervals, with 70% overlap. Filter function was the L-
infinity centrality, as used in [Lum+13]. Clustering was Ward clustering, with a cut-off
at 50% of the diameter.
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Filter range: [0.97, 1.27]
Cover: Hypercube cover. Intervals: (40,). Overlap: (70.0,)
Clustering method: Ward linkage clustering
Cutoff: First gap of relative width 0.5
Size range: [1,21]

Figure 4.11: Mapper output on a subsample of 150 (113 survivors) taking the 5% top
varying genes (∼ 1100). 40 intervals, with 70% overlap. Filter function was the L-
infinity centrality, as used in [Lum+13]. Clustering was Ward clustering, with a cut-off
at 50% of the diameter.

Filter range: [0.97, 1.23]
Cover: Hypercube cover. Intervals: (30,). Overlap: (70.0,)
Clustering method: Ward linkage clustering
Cutoff: First gap of relative width 0.5
Size range: [1,14]

Figure 4.12: Mapper output on a subsample of 100 (74 survivors) taking the 5% top
varying genes (∼ 1100). 60 intervals, with 70% overlap. Filter function was the L-
infinity centrality, as used in [Lum+13]. Clustering was Ward clustering, with a cut-off
at 50% of the diameter.
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We suspect the lack of anything significant in the Mapper output could be explained
by our small sample size. To investigate this, in §4.3.2 we go back to our original mo-
tivation, the breast cancer study of Lum et al. [Lum+13] and reproduce their Mapper
output. Subsequently subsampling this reproduction suggests that we need about two
hundred samples before we can find a subgroup of interest.

Sample Size We see that sample size plays a big role in being able to distinguish
the c-MYB+ samples. In particular, when dropping from 200 to 150 samples we see
that the branch where the c-MYB+ samples are found is merged into the main line,
as shown in Figs. 4.10 and 4.11, so we can no longer distinguish it in the Mapper
output. This occurs since there are no longer enough c-MYB+ samples for the Mapper
algorithm to distinguish them and cluster them on their own.

In conclusion, we have seen that Mapper allows us to visualise the data in another
manner, and from §2.2 we know that it can let us see additional structure, not visible to
PCA or clustering. In this case, we have found no additional structure using Mapper.
The inability to observe the difference between benthic and pelagic morphs is the
motivation for us to develop a topologically-inspired perspective involving deformation.
In the next chapter, we will describe this different approach to applying ideas from
topology to gene expression data, focusing more on the genes, their correlations, and
their expression between the ecomorphs.



Chapter 5

A Topological Perspective for
Ecological Transcriptomics

In this chapter we give a topological approach for analysing gene expression data,
and show its application to our Arctic charr data. We will also look at how our
topological perspective works on a large Drosophila dataset [Lin+15], consisting of
726 samples. Finally, we will also compare and contrast our approach with a couple
of standard methods currently used to analyse gene expression data in evolutionary
biology. The first, and most commonly used, is a standard differential expression
analysis, as implemented in the R package DESeq2 [LHA14]. The second involves
looking at gene co-expression, and we will look at its implementation in the WGCNA
R package [LH08].

Our approach was inspired by the goal of visualising the split between the benthic
and pelagic morphs in the Mapper output. This split can be seen in Fig. 3.5, where
we note that the benthic fish tend to be in one direction, and the pelagic in the other.
In the previous chapter, we naïvely tried to find this split in Mapper output, using the
Euclidean distance, and the Euclidean norm as a filter function. The results are shown
in Figs. 4.6 and 4.7, where we do not see such a split.

To make this split apparent in the Mapper output, in this chapter, we introduce
the idea of perturbation of the gene expression space. The idea is to find a pertur-
bation which makes the difference between the benthic and pelagic morphs apparent
in the Mapper output. We subsequently simplify this perturbation to weighting the
genes (dimensions), since this is tractable on computers, being only an n-dimensional
problem, and we do not have to take into account an n× n rotation matrix.

5.1 Mathematics

In this section, we will outline the mathematical underpinnings of the gene expression
data, and how they motivate our chosen method. We will begin by looking at the input
data, and the assumptions we have made about it. We expand on the definitions of
§3.3.3, so we recommend readers to refer back to that section before carrying on.

63
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5.1.1 Replicate Effect

First, show that the lake effect, mentioned in §3.4.1 is an example of a more general
replicate effect. We can use this more general idea for population variation which we
wish to take into account when combining across replicates. Once we have removed
this effect, the difference we actually care about in our replicated experiments will be
more obvious, although we will still have individual variation. In the Arctic charr, this
corresponds to removing the lake effect, and being left with the effect of morph.

In general, this is difficult to define, but since our analysis will involve looking at
the samples as if they were points in gene expression space, we can take into account
the replicate effect by an appropriate centring of the data.

Definition 5.1.1 (Replicate Effect). The replicate effect is a vector in Rm, where m
is the number of genes under consideration, associated with one of the experimental
replications in our dataset of interest.

We can consider the replicate effect as the gene expression of a generic sample from
a given replication.

For our purposes, we will use a simple method of finding the replicate effect. As
used for the lake effect, we use the barycentre (centroid). Additionally, if we have
an uneven number of samples from each group of interest, then we may want to take
this into account when finding the replicate effect. This can be done by taking the
barycentre of each group in an experimental replication separately, and then taking
the barycentre of all the groups.

5.1.2 Perturbation

Our goal is to perturb the Euclidean distance function in such a way that groups of
interest become apparent when visualised, for example in Mapper output. In our case,
this is the grouping by morphs. We are assuming that the difference between groups
can be found at the transcriptomic level, and we would like to know which genes are
involved. The idea is that a perturbation which finds some difference between the
morphs will give us this information.

We can perturb the Euclidean distance in Rm by picking an inner product. This is
equivalent to transforming the points by a symmetric matrix, which can be decomposed
as a combination of a rotation (orthogonal matrix) and a scaling on each dimension
(diagonal matrix). Practically speaking, the rotation matrix is too large for computers
to deal with (it’s usually about a 30, 000× 30, 000 matrix), so we just use a weighting
vector w = (w1, w2, . . . , wm) where m is the number of genes under consideration and
wi ∈ R≥0. Additionally, using a rotation makes it more difficult to interpret the results,
since we are no longer dealing with weights on genes, but weights on combinations of
genes.
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Definition 5.1.2 (Weight Vector). Let w = (w1, w2, . . . , wm), where m is the number
of genes under consideration and wi ∈ R≥0, be a weight vector.

Furthermore, note that our results will be the same up to scaling, so we could also
have wi ∈ [0, 1], where at least one wj = 1.

A key assumption is that the genes which are given high weight in the perturbation
are important for distinguishing between groups. Additionally, if the groups exist
under sufficiently generic perturbations, then this indicates some robustness about the
groups.

Searching Gene Space We can use perturbations of a method for searching gene
space. There are a couple of ways to go about this. One is to use a gene weighting
which is given to us, for example, a set of genes where we weight genes in the set with
a weight of 1, and genes outside with a weight of 0. Then we can test how effective
this gene weight is at separating known groups, either by visualising, for example with
Mapper, or using some other statistical measure of separation between groups, like an
F -statistic (Def. 5.4.25). Another is to fix some measure for separation between groups,
and then search for weights of genes which maximise that measure. This method does
not work with having to visually inspect outputs for evaluating the effectiveness of a
gene weight.

In the next section, we will show that there are perturbations which separate the
Arctic charr by morphs. We do this by using information we already know about genes
which separate out groups.

5.2 Proof of Concept

We now give an example of a perturbation such that groups of interest become apparent
in the Mapper output. This is to show that a method based around finding such
perturbations can work in practice. We will pick a ‘perturbation’ which considers only
a certain subset of genes (so these genes have weight 1, and the rest have weight 0).
The choice of genes will be determined by the Welch’s t-test [Wel47]. For each gene, we
apply the t-test where our two populations are given by the 16 benthic fish and the 16
pelagic fish. The test is based on the t statistic, which is given by the difference between
the means of the two populations, standardised by their sample size and variances. A
probability (p-value) is associated to the t-statistic, which measures the probability
that we get more extreme values in a t-distribution with a certain number of degrees of
freedom. You can think of genes with low p-values as fitting a certain pattern, in this
case, the gene will have different average expression between the benthic and pelagic
fish, and also show low variance within morphs.

Once we have p-values associated to each of our genes, we apply an adjustment for
multiple testing, in this case the Benjamini–Hochberg (BH) method [BH95]. We then
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Figure 5.1: A) Showing the output of Mapper applied to the 284 genes with sig-
nificantly different means between the benthic and pelagic morphs, as calculated on
the regularised log-transformed Arctic charr transcriptomic data with lake centroids
subtracted. Filter function was the Euclidean magnitude. Note the separation into
benthic and pelagic morphs. We have a long flare consisting of pelagic morphs, while
the benthic are mostly concentrated in the bottom blue size 9 nodes, with most of
the Tay benthic (small) morph in their own small components. The fish belonging to
each of the nodes are circled in the PCA plot in (B).B) Showing the first two PCs of
PCA applied to the 284 genes with significantly different means of between the ben-
thic and pelagic morphs, as calculated on the regularised log-transformed Arctic charr
transcriptomic data with lake centroids subtracted. Note the expected separation of
the fish into pelagic and benthic morphs. The unusual lone Tay benthic (small) morph
seen near the centre has been detected before, e.g. it shows up opposite of all the other
Tay benthics in 3.4. The Tay pelagic (large) morph near the centre hasn’t seemed
unusual from the figures in §4.

pick a cut-off, say, our adjusted p-value has to be less than 0.05.1 This results in 284
genes where we find a significant difference between the benthic and pelagic fish.

Figures 5.1 and 5.2 show the results of applying Mapper, PCA, and clustering to
this data. Note that we have the expected separation into benthic and pelagic morphs
in each case.

5.3 Experiments

5.3.1 Residual Replicate Effect

In this subsection, we will describe work on weighting a set of differentially expressed
genes. The idea here is that, even though we have removed a first-order approximation
of the replicate effect, as given in Definition 5.1.1, there might still be some differences
between replicate experiments when we look at each group separately. We want to
find genes for which this remaining difference is low, while this difference between the

1Adjusting p-values for multiple comparisons and then picking a cut-off is functionally the same as
picking a more strict cut-off on the original p-values.
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Figure 5.2: Showing a heatmap of Euclidean distances, along with single-linkage clus-
tering, on the 284 genes with significantly different means of between the benthic and
pelagic morphs, as calculated on the regularised log-transformed Arctic charr transcrip-
tomic data with lake centroids subtracted. Note again the expected clusters pelagic
and benthic fish. We see unusual Tay benthic (small) morph (as in Figure 5.1 (B)) as
an outlier, it’s the second row.

groups is high. Biologically, this corresponds to genes which have the similar expression
in each group, over all the replicates. These are genes which are behaving in the same
way across replicates, and so are showing a parallelism. To do this, we will focus on
a set of differentially expressed genes, which we know have a high difference between
the groups, and then weight these genes to get out a subset which has substantially
smaller differences between replicates, when we look within groups.

First, suppose we have the results of some statistical test for differential expression
and we’re given gene expression data, with replicate effect subtracted, in the form of
an n × m data matrix A, with entries aij ∈ R the expression of the jth gene in the
ith sample, accounting for location. Suppose we have k differentially expressed genes,
indexed by d1, d2, . . . , dk, where d1 is the most differentially expressed gene, and dk the
least.

We will investigate a couple of different methods for testing if there is any residual
replicate effect. One will be plotting the expression of genes with different weightings on
the genes, and seeing if this can make the difference between locations disappear. We
will do this with both Mapper and PCA. The other will be to come up with some sort
of test statistic in the case where we look to see the differences between the locations
within groups.

In theory, we should see a reduced replicate effect if we take the most differentially
expressed genes, say, the top ten. We want to extend this to look for gene sets which
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are not just the top most differentially expressed one, for which this also occurs.

For the statistical test, we will use the analysis of variance (ANOVA) test. The goal
is, for every group, to test if the replicate effect is still present in it or not. So, suppose
we have r groups and l replications. Then for every group, we look at the samples
belonging to that group, and take the centroid for each replication in that group.2 The
ANOVA F -test statistic is given in Definition 5.4.25. In the case where we expect no
difference between replications, then the F -statistic is known to have an F -distribution
F ∼ F (k−1, N−k). Note that the F -test assumes that every replication has the same
variance, and that is it normally distributed.

When conducting the F -test using all genes, we find no statistically significant
residual lake effect for either the benthic or pelagic morphs. The p-values are around
0.6 in both cases.

We will now look at figures and the p-values where we have taken the top ten genes
which are best at separating the lakes in a particular morph by this measure, as well as
the ten genes which are the worst (i.e. they don’t see the difference between the lakes)
and plot these out on PCA and Mapper graphs, to see if this effect is visible when
we visualise. Figures 5.3–5.6 are PCA plots of the top and bottom ten differentially
expressed genes at separating out the lakes in each morph. The p-values in the cases
of benthic, best and worst separation, and pelagic, best and worst separation, are
respectively, approximately, 0.0002, 0.96, 0.0006, and 0.99. So we see that selecting
individual genes which are known to have a large residual lake effect gives us a large
lake effect overall, while selecting those with none still leaves us with none.

In any case, we do see that there are specific genes which have a significant residual
lake effect in the dataset, but overall the effect is not significant, unless we zoom in
and select genes for which we see this effect.

5.3.2 Drosophila

In this section, we will test the ability for differential gene expression techniques to
increase the group signal relative to the replication signal (noise) by looking at our
Arctic charr data set, and also a Drosophila data set from [Lin+15], which has a much
larger sample size of 726 compared to our 32. The goal is to see if increasing the sample
size will make it easier to distinguish between groups, visually, or if there is always too
much noise inherent in biological organisms. For the Drosophila data set, we consider
the environment as the signal, and sex as the noise, in analogy to the Arctic charr.3

2Note: This is different to taking the centroid overall, which we did originally to find and subtract
the replicate effect.

3Since for the Arctic charr, the lakes are the large ‘signal’ which we do not care about. Similarly,
in the Drosophila, sex provides the largest signal.
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Figure 5.3: A PCA of the gene expression values of the ten differentially expressed
genes with the lowest p-value under an ANOVA, testing if the groupings by lake are
statistically significant in the benthic morph. That is, these ten genes are the ‘best’
under this metric at separating out the lakes in the benthic morph.

Figure 5.4: A PCA of the gene expression values of the differentially expressed ten
genes with the highest p-value under an ANOVA, testing if the groupings by lake are
statistically significant in the benthic morph. That is, these ten genes are the ‘worst’
under this metric at separating out the lakes in the benthic morph.
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Figure 5.5: A PCA of the gene expression values of the ten differentially expressed
genes with the lowest p-value under an ANOVA, testing if the groupings by lake are
statistically significant in the pelagic morph. That is, these ten genes are the ‘best’
under this metric at separating out the lakes in the pelagic morph.

Figure 5.6: A PCA of the gene expression values of the ten differentially expressed
genes with the highest p-value under an ANOVA, testing if the groupings by lake are
statistically significant in the pelagic morph. That is, these ten genes are the ‘worst’
under this metric at separating out the lakes in the pelagic morph.
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Data

The 726 samples come from eight flies of each sex, taken from 16 Drosophila Genetic
Reference Panel (DGRP) genotypes. The Drosophila were raised by Lin et al. at
three different calendar times, with all other environmental variables controlled. These
included parental culture density, food, temperature, light/dark cycle, mating status,
social exposure, and the circadian time of RNA extraction. We downloaded the read
counts from GEO with accession number GSE60314.

Procedure

The procedure we use here is as follows:

1. We take the normalised Arctic charr data, and do not take into account the effect
of location. Similarly, we take normalised Drosophila data, and do not take into
account any effect of sex, environment, or genotype.

2. For the Arctic charr, we estimate the size of the morph signal by taking the
average of Euclidean distance from the benthic and pelagic morph centroids in
each lake to the centroid of the whole lake. To estimate the size of the lake signal
(noise) we look at the average distance from the lake centroids to the overall
centroid.

3. We repeat for the Drosophila, using environment and sex in place of lake and
morph.

4. We use a test for differential expression of genes between morphs for the Arctic
charr, and environment for the Drosophila. We use the program sleuth [Pim+17]
for the Arctic charr, and DESeq2 [LHA14] for the Drosophila, and look for genes
with an adjusted p-value of < 0.05.

5. We take the set of differentially expressed genes and repeat the above analysis
from steps 2 and 3, looking at the morph signal versus the lake noise. We want
to see if taking only the differentially expressed genes(/transcripts) reduces the
signal-to-noise ratio by any significant amount.

Versus Charr

When taking all 109,584 transcripts of the Arctic charr, we get a morph signal (av-
erage Euclidean distance from morph/lake centroid to the respective lake centroid)
of 121.3241 and a lake signal (average Euclidean distance of lake centroid to overall
centroid) of 147.9235. When taking only the 574 differentially expressed transcripts,
we get a morph signal of 18.07353 and a lake signal of 17.70094. We can see that the
morph signal has increased relative to the lake ‘signal’, but there has been a decrease
of signals (i.e. distances) overall, since we have thrown out most of the dimensions
(transcripts).
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For the Drosophila, with all 17,238 transcripts we get an environment signal of about
16.29652 and a sex signal of about 119.5324, while taking only the 3,938 transcripts dif-
ferentially expressed between each pair of environments, we get an environment signal
of about 10.914574 and a sex signal of about 51.5635. This shows a substantial relative
increase in the environment signal compared to the sex ‘signal’, but the actual signal is
still small in absolute terms. This shows that even with a large biological sample size,
if the initial signal we are interested in is small compared to all the other signals/noise,
such as morph vs. lake in the charr, or environment vs. sex in the Drosophila, then we
will still be unable to perceive it.

5.4 Comparison

In this section we will look at the mathematical theory behind the differential gene
expression and gene co-expression methods. We will also consider how they compare
to our topological deformation method. As in previous chapters, we will consider our
data to come in the form of an n×m matrix, where n is the number of samples, and
m the number of genes, and entries are normalised gene expression values.

5.4.1 Differential Gene Expression

In this section, we will offer a definition of differential gene expression, and then describe
methods for assigning importance to genes, based on their difference in expression
between conditions of interest. This is to allow us to see which statistical tests can be
considered as part of our deformation approach, and which cannot. We will assume
that we have accounted for the effect of location.4

Definitions

We will start off with some general definitions, which we will illustrate with some more
specific examples:

Definition 5.4.1 (Conditions). Conditions are the partitions of samples into different
sets.

This partition usually arises from a priori knowledge coming from the scientific
experiment. For example, we can have as conditions, healthy and diseased, in the case
of samples from breast cancer or normal patients (see §2.2.1), or benthic and pelagic,
when we are looking at samples from Arctic charr fish (see Tab. 3.1).

Definition 5.4.2 (Differentially Expressed Gene). Given different conditions, a differ-
entially expressed gene is a gene with expression values which are statistically signifi-
cantly different between different conditions.

4Alternatively, we can analyse only the samples from a single location.
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Which genes are differentially expressed depends on the statistical model used
[CSDL17], and the choice of conditions to compare.

Statistical testing first involves the formulation of null and alternative hypotheses,
which postulate that the observed data come from random variables with a hypothe-
sised probability distribution.

Definition 5.4.3 (Null Hypothesis). The null hypothesis, H0, for differential gene
expression analysis, is that there is no change in the expression of a gene between
conditions.

Part of our null hypothesis must include statistical assumptions about, for example,
the distribution of the gene expression values. It is very important that the assump-
tions underlying our null hypothesis is true. Otherwise, we may be rejecting the null
hypothesis because, for example, the distribution of gene expression values is different
to what we assumed, rather than because there is a difference between the conditions.

Definition 5.4.4 (Alternative Hypothesis). The alternative hypothesis, H1, for differ-
ential gene expression analysis, is that there is a change in the expression of a gene
between conditions.

Definition 5.4.5 (Statistical Test). A statistical test, or, more fully, statistical hypoth-
esis testing, involves testing if a given null hypothesis can be rejected in favour of an
alternative hypothesis.

The null and alternative hypotheses will depend on what biological question we
are asking. For example, if we are only interested in genes with a more than two-
fold change in expression between, say, condition A and condition B, then our null
hypothesis is that the expression of genes has a less than two-fold change between A
and B, and the alternative hypothesis is that there is a greater than two-fold change.
In this chapter, we will assume that we are looking for a purely statistically significant
change, without regard to the magnitude of the change.

Before we go on to the examples, we will give some desirable properties of the
probability distributions typically used in differential gene expression analysis.

Definition 5.4.6 (Desirable Distributions). The probability distributions used for dif-
ferential gene expression analysis are unimodal,5 and typically consist of two parame-
ters, the mean, µ, and a parameter related to the variance.

For example, it is typical to assume that log-normalised gene expression data comes
from a normal distribution, while count data comes from a negative binomial distribu-
tion.

In practice, the testing for differential expression reduces to looking at a test statistic
with a known distribution under the null hypothesis. This is usually the difference
between the means of the gene expression between the conditions. However, if we’re

5Have one local maximum.



74 CHAPTER 5. TOPOLOGICAL TRANSCRIPTOMICS

interested in a more certain difference, we can test if, for example, there is a difference
between the upper and lower quantiles of the two conditions.

If the value of the test statistic is sufficiently unlikely then we reject the null hy-
pothesis in favour of the alternative. A typical cut-off for statistical significance in the
scientific literature is a probability of < 0.05. This is the typical value for the medical
and biological sciences. In situations where it is possible to get large enough sample
sizes with small enough errors, smaller probability values can be use. For example, a
cut-off of < 2.87× 10−7 is used in high-energy particle physics [Tan+18, §39.3.2]. See
the examples below for some test statistics which are used.

Definition 5.4.7 (Differential Gene Expression). A gene is statistically significantly
differentially expressed if the null hypothesis that the gene expression does not differ
between conditions is rejected.

We will now outline two different classes of statistical approaches. One is parameter
estimation, which is based on estimating the expression of a gene in different conditions,
which lets us determine if a gene is differentially expressed in pairwise comparisons, and
also gives an estimate of the difference in expression. The other is the likelihood-ratio
test, which tests if a gene accounts for statistically significant differences in expression
between multiple (two or more) conditions.

Parameter Estimation

Let D be our n×m data matrix, for n samples and m genes. We will assume that the
data have been appropriately normalised.6 We are interested in the difference between
two conditions, and we want to know which genes are statistically significantly different
between the conditions. We will determine this with a gene-by-gene basis so it will be
enough for us to consider the case of a single gene, say gene k. So for the rest of this
example, we will assume that the gene expression values are coming from some column
k of the data matrix D. To work out if other genes are differentially expressed, we
would do the same statistical test on gene 1, 2, 3, . . . ,m.

Suppose we have two conditions A and B, with number of samples nA and nB,
respectively, where nA+nB ≤ n. Let the expression values of the gene under conditions
A and B be given by {a1, a2, . . . , anA} and {b1, b2, . . . , bnB}, respectively, where ai, bi ∈
R are the gene expression values of a particular gene.

Example 5.4.8 (The t-test). In this example, we will go over a commonly used hy-
pothesis test. This is the t-test, more specifically, Welch’s t-test [Wel47], for normal
distributions with unequal variances.

We will be testing null hypothesis, H0, that the expression values under conditions
A and B have the same mean, µA = µB, versus the alternative hypothesis, H1, that

6That is, we assume that the gene expression values have been transformed so they are approxi-
mately normally distributed and comparable between samples.
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the means are different, µA 6= µB. Let Ae and Be be the random variables for the
expression values associated under each respective condition.

Now, if Ae and Be have finite mean and variance, so |µA|, |µB|, σ2
A, σ

2
B < ∞, and

we have enough samples, nA and nB, we can apply the central limit theorem (see, for
instance, [Dur19][Theorem 3.4.1]), which tells us that the estimates of the means will
be approximately normally distributed. In particular, µ̂A ∼ N

(
µA,

σ2
A

n

)
and µ̂B ∼

N
(
µB,

σ2
B

n

)
, where µ̂A and µ̂B are estimators of the mean of the gene expression values

for condition A and condition B, respectively, given by:

µ̂A =

∑nA
i=1 ai
nA

µ̂B =

∑nB
i=1 bi
nB

Furthermore, since we do not know the variance, we will use the estimators, σ̂2
A and

σ̂2
B given by:

σ̂2
A =

∑nA
i=1(ai − µ̂A)2

nA − 1

σ̂2
B =

∑nB
i=1(bi − µ̂B)2

nB − 1

This allows us to apply the t-test. We can calculate the t-statistic from the estima-
tors as follows:

t =
µ̂A − µ̂B√
σ̂2
A

nA
+

σ̂2
B

nB

In the case where the null hypothesis is true, so µA = µB, we know that t has a
t-distribution with degrees of freedom approximately given by

ν =

(
σ̂2
A

nA
+

σ̂2
B

nB

)2

(σ̂2
A/nA)2

nA−1
+

(σ̂2
B/nB)2

nB−1

according to the Welch–Satterthwaite equation [Wel47]. Note that in that paper, Welch

uses a slightly more accurate equation: ν =

(
σ̂2A
nA

+
σ̂2B
nB

)2

−2

(
(σ̂2A/nA)2

nA+1
+

(σ̂2B/nB)2

nB+1

)
(σ̂2
A
/nA)2

nA+1
+

(σ̂2
B
/nB)2

nB+1

, but the

test which is coded as the Welch t-test in programs such as Python (in scipy) and Julia
(in HypothesisTests.jl) uses the simpler equation given above.

This allows us to calculate a p-value for a given t-statistic. Let Tν be a random
variable with a t-distribution with ν degrees of freedom as above. Then the p-value is
given by Pr(Tν < t) + Pr(Tν > t), the probability of getting a more extreme t-statistic
under the assumption that the null hypothesis is true.

We reject the null hypothesis if the p-value is below a certain cut-off threshold. In
most sciences other than physics, this is 0.05.
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When testing multiple genes, we apply this t-test gene-by-gene, and then apply a
correction for multiple testing to the resulting p-values. The correction usually used is
the Benjamini–Hochberg [BH95] to control the false discovery rate (FDR).

We can relate the t-test to our deformation method by using the fact that the genes
which are picked out by the t-test as statistically significantly differentially expressed
are exactly the ones which have a high distance between the sample means, taking into
account the sample variances.

We note that our deformation method has two steps. The first is coming up with
a weight on the genes. The second is coming up with a way to evaluate the resulting
weight by seeing if we get a separation between the morphs, whether visually or nu-
merically. We introduced the use of Mapper in this second step, but we can also use
the t-test as the inspiration for a way to evaluate the weight on genes numerically.

Recall that in our proof of concept (§5.2) we used the set of genes which were signif-
icantly differentially expressed to show that we could visualise the difference between
the benthic and pelagic morphs in the Mapper output. This is equivalent to giving
weight 1 to the genes (dimensions) which are statistically significant, and weight 0 to
the genes which are not. That is, we pick the dimensions with sufficiently low p-value.
But this is equivalent to picking dimensions with a high magnitude t-statistic, which
means a high value of µ̂A−µ̂B√

σ̂2
A
nA

+
σ̂2
B
nB

. So we have simply picked dimensions with a high value

of difference between the (estimated) means of the expression of conditions A and B,
taking into account their estimated standard deviations. In particular, the split into
two conditions can be seen in the Figure 5.1, since the dimensions which pass the t-test
have a large distance between the centroids of the conditions, relative to their variance.

We can use this as a condition for setting weights in our topological method. To
do this, we first modify the metric in Rm so that we get a distance which more closely
corresponds to the t-statistic/p-value. We can do this by weighting each dimension by

1√
σ̂2
A
nA

+
σ̂2
B
nB

, where we calculate the estimated variance for conditions A and B for the

expression values of the respective gene. This means that if we measure the difference
between the means of condition A and condition B for each gene, we will get exactly
the magnitude of the t-statistic under this new weighted distance.

Now we can use the joint t-distribution and simulations to figure out what the
maximum possible distance between the centroids with a given gene weight is, or al-
ternatively we can use the permutation test. Potential ways of finding gene weightings
with the maximum distance include algorithms like simulated annealing, and the ge-
netic algorithm. However, this involves a lot of searching, and we have not found an
efficient method to do so.

Likelihood-Ratio Test

In cases where we have more than two morphs, we will not be interested in the difference
between two particular morphs, but rather which genes have expressions which are
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better modelled by taking the morphs into account, rather than ignoring them. The
method we will use to measure gene importance shall be the likelihood ratio tests. We
will recast this method from a statistical into a geometric definition, to show that we
can also describe it under our topological deformation method.

First, let us define likelihood:

Definition 5.4.9 (Likelihood). Given some model (probability distribution) and a
sample of data (outcome of an experiment) the likelihood is the value of the probability
distribution at the outcome.

Now we must pick a model of gene expression. For our purposes, we will pick
the normal distribution, but typically more advanced distributions are used [LHA14;
Pim+17]. Now, we are testing two hypotheses, the null hypothesis, H0, is that there
is no difference between the morphs, and the alternative hypothesis, H1, is that there
is. Under the H0, we model expression taking into account only the location of the
samples. Under H1, we model expression taking into account both the location and
the morph of the samples.

We then calculate the likelihood of our dataset under the models, and take their
ratio, giving us a test statistic.

Example 5.4.10. Let us demonstrate testing statistical significance with an exam-
ple. In this example, we shall assume that our genes expression comes from a normal
distribution.

Suppose we have two conditions, A and B, with four samples each, and we are
looking at a single gene, with expressions {1, 2, 2, 3} in condition A, and {7, 8, 8, 9} in
condition B.

The expression in condition A has sample mean 2 and sample variance 2
3
, while

condition B has sample mean 8 and sample variance 2
3
. If we look at the expression

from both conditions, we get a sample mean of 5 and a sample variance of 76
7
.

We can now perform our statistical tests. In the first case, we can see if there is a
statistically significant difference in mean between the two fitted distributions N(2, 2

3
)

and N(8, 2
3
). We can use the Student’s t-test which gives us a test statistic of:

t =
8− 2√

2
3

√
2
4

= 6
√

3

which gives us a two-tailed p-value of approximately 4.649× 10−5.
In the second case, we will also use the distribution we fit to the entire dataset, and

calculate its likelihood, against the likelihood of the distributions fit to each condition.
The distribution fit to the entire dataset has a log-likelihood of about −26.75 and
when fit to each condition we get a log-likelihood of about −8.608. If we now use the
likelihood-ratio test [Wil38], we get a test statistic of about 36.29 giving a p-value of
about 1.084× 10−286.
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Note that the values of the gene expression were chosen to give us extremely signif-
icant p-values. Also, in the case where we test tens of thousands of genes, we run into
the multiple testing problem. This reduces the ability for us to call genes statistically
significantly differentially expressed. However, the greater problem lies in the realm of
theory, since when dealing with so many genes, we simply do not know their function,
nor how to infer their function.

As a trivial example, we can use the likelihood statistic as input into our topological
deformation model to get the same weighting of the genes. That is, we just input a set
of significantly differentially expressed genes, as we did for our proof of concept. This
does not yield any more insight.

On the other hand, we can try to define a testing regime which will reproduce the
result. That is, we use a method for testing how good a set of gene weights is at
separating out specified groups. And the method will be such that the gene weights
which are good will have high weight for genes with low p-values in the likelihood
ratio test. It will take some work to come up with this method, and we try this using
measures of clustering quality in §5.4.3.

5.4.2 Gene Co-Expression Networks

In this section we will provide a brief overview of gene co-expression networks and
their analysis. In particular, we will look at an implementation in the Weighted Gene
Co-expression Network Analysis (WGCNA) R package [LH08].

Definitions

In this section, we will give some definitions of what gene co-expression is. As usual,
let D be an n ×m matrix of normalised expression values, where we have n samples
(rows) and m genes (columns).

To quantify gene similarity, we require a similarity measure (or, its dual, a dissimi-
larity/distance measure). A typically used distance is the Pearson correlation distance:

d(i, j) = 1− cor(i, j)

see Definition 2.2.1 for the definition of Pearson correlation. Note that we are taking
the Pearson correlation of genes rather than samples, so we must switch the indices
and sum over samples.

Note that the Pearson correlation is equivalent to taking the dot product of the
two expression vectors, yi,k and yj,k, after they have been centred by having their
means subtracted from them. Spearman correlation distance, mutual information, and
Euclidean distance are other commonly used measures.

Definition 5.4.11 (Gene Co-expression). We say that two genes are co-expressed if
they have similar expression over the samples in our experiment.
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Once we have a distance between genes, our aim is to put the genes into clusters of
co-expressed genes. This is done by applying a clustering algorithm. Commonly used
clustering algorithms are hierarchical clustering, and k-means [AJK18]. Once we have
clusters of co-expressed genes, we can redefine gene co-expression in terms of these.
For clustering, see Definition 2.1.15.

Definition 5.4.12 (Gene Co-expression). We say that two genes are co-expressed if
they belong to the same co-expression cluster.

Hypothetically, gene co-expression clusters will also be biologically meaningful. For
example, they might correspond to the genes involved in a certain metabolic pathway,
or cellular function. The theory is that genes which have similar expression will be
involved in similar functions. The way to extract the function from a gene co-expression
cluster is to see if there is an unusually high number of genes which are known to have
a certain function in that cluster. However, we do not always have functional biological
information for genes, especially those of non-model species. So this makes it difficult
for us to determine the biological function of gene co-expression clusters.

Note, there are algorithms in use apart from clustering, and some of the more sophis-
ticated ones, such as clust [AJK18], extract subsets of genes with similar expression,
rather than trying to cluster/partition the entire set of genes. These algorithms are
ultimately based on the idea that the clusters/gene modules we find should satisfy
constraints which come from the biology, some of which we give below.

Definition 5.4.13 (Desirable Clusters). Desirable clusters are those which, at the very
least, have low dispersion and a certain minimum size.

As part of finding desirable clusters, we must pick a measure of dispersion (e.g.
mean squared error, the average distance of points to the centroid of their cluster) and
a cut-off for our measure, and a minimum size. The idea is to have clusters which are
large enough that they are unlikely to be spurious, while at the same time still having
most of the points occurring in a small vicinity. We may also consider other properties,
depending on what we’re looking for, for example, we might desire that the expression
of genes in clusters do not have much overlap with those in other clusters.

WGCNA

We will outline Weighted Gene Co-expression Network Analysis (WGCNA) [LH08] as
an example of a gene network analysis technique. As input, it receives gene expression
data suitably quantified and normalised. Usually, for computational reasons, only a
subset of genes is analysed (e.g. the 4,000 most variable genes).

Distance Instead of directly defining a distance, WGCNA first defines a similarity
measure between the genes. It uses the absolute value of the Pearson correlation raised
to a power: |cor(i, j)|β, where β ∈ N. The power β is chosen to be the smallest value
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such that the resulting network is scale-free. The scale-free property is used since it
is seen to occur often in biological networks [Alb05], but whether or not there is a
biological basis for scale-free networks is disputed [GP12].

WGCNA further modifies the similarity measure by using the topological overlap,
which considers the relative interconnectedness between nodes. It is defined as follows:

ωij =
lij + aij

min{ki, kj}+ 1− aij

where lij =
∑

u6=i,j aiuauj and ki =
∑

u6=i aiu. The aij are some measure of similarity
between genes (nodes) i and j, and for WGCNA we take aij = |cor(i, j)|β.

Since ωij ∈ [0, 1], we can turn the topological overlap into a dissimilarity (pseudo-
metric) measure by subtracting it from 1, so d(i, j) = 1− ωij.

Clustering Now that we have distances between the genes, WGCNA uses a Dynamic
Tree Cut method [LZH08] involving average linkage hierarchical clustering to form
modules. We will give a brief outline of their method here. More detail can be found
in the supplementary material of the above-cited paper.

The input is a dendrogram of the topological overlap dissimilarities clustered using
average linkage clustering, and four parameters, which define the kind of clusters we
want to end up with. The parameters are N0, hmax, gmin, and dmax, with the choice of
a few defaults for use in WGCNA. N0 is the minimum cluster size, and influences nc,
the number of objects in the core of a cluster, so that

nc = min
{
int
(
N0/2 +

√
N −N0/2

)
, N
}

where N is the number of objects in the cluster under consideration. hmax is the height
in the dendrogram above which no joining occurs. dmax is the maximum value allowed
of the core scatter d̄, which is defined as the average pairwise dissimilarity between all
elements of the core. gmin is the minimum gap size, where the gap is defined as the
difference between the core scatter, d̄, and the height where the cluster joins the rest
of the dendrogram.

The algorithm works through the dendrogram from the bottom to the top, and
creates clusters whenever it tries to join two branches which both satisfy all the criteria
to be considered clusters of themselves. For each cluster, we measure the average of
the distance from a point to every other point in the cluster, then take its maximum.
Then, looking at all unclustered points and points in clusters which failed to attain the
minimum cluster size, we assign them to clusters if the average distance between the
unclustered points and the cluster is less than the maximum distance found. That is,
suppose we have a cluster indexed by i ∈ I, where |I| = n. Then to this cluster, we
assign the distance:

dI = max
i∈I

∑
j 6=i d(i, j)

n− 1
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and suppose we have an unclustered point p. Then if∑
i∈I d(p, i)

n
< dI

we assign the unclustered point to the cluster I.
As an optional additional step when dealing with gene expression data, we can

find the eigengene (first principal component of the expression) of a cluster and merge
together clusters with eigengenes that have greater than 0.75 Pearson correlation. In
the end, the clusters we get are considered gene co-expression modules, and two genes
are co-expressed if they both belong to the same module.

Simplicial Complexes

In this subsubsection, we will give an alternative view of gene co-expression as defined
on a simplicial complex. Examples of gene co-expression from clustering and WGCNA
viewed from this perspective can be found in §5.4.3. As usual, let D be an n × m

matrix of normalised expression values, where we have n samples (rows) and m genes
(columns). We will now consider how this data can be used to build a simplex of gene
co-expression, with given desirable properties determined by biological considerations.

Let X be the simplicial complex under consideration. In fact, X will be a (m− 1)-
simplex, with one vertex for each gene. We will consider successively higher dimensions
of the simplicial complex, and give a description of them.

Definition 5.4.14 (0-Skeleton). The 0-skeleton of X, X0, consists of m vertices, one
for each gene. Attached to each vertex is a vector of gene expression in Rn. Let this
extra data be denoted by si, for i ∈ {0, 1, 2, . . . , n− 1}. This will be used to determine
co-expression in the higher dimensions of the simplicial complex.

In order to define the 1-skeleton of the simplicial complex, X, we will need a notion
of dissimilarity between elements in Rn.

Definition 5.4.15 (Dissimilarity Function). A dissimilarity function d : Rn × Rn →
R≥0, takes two elements of Rn and gives a non-negative real number. The dissimilarity
function should satisfy the following two properties:

1. d(x, x) = 0

2. d(x, y) = d(y, x)

An example of a dissimilarity function is the Pearson correlation distance d(i, j) =

1− cor(i, j) with cor(i, j) as in Definition 2.2.1.

Definition 5.4.16 (1-Skeleton). The 1-skeleton of X, X1, is a weighted graph, where
the weight of the edge e(i, j) is given by the dissimilarity function d(si, sj).
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Standard methods in gene co-expression analysis, such as WGCNA (which we de-
scribe in the next subsubsection) take a weighted graph, or, rather, a dissimilarity
matrix as input. This is also the kind of data we could input into a clustering algo-
rithm, to end up with clusters which we then interpret as co-expressed gene modules.

We now define higher dimensional structures in the simplicial complex. This re-
quires us to choose some measure of cluster dispersion, which will allow us to associate
a number with n-simplices, for n ≥ 2. We give a definition of cluster dispersion, and
some examples of cluster dispersion measures, here.

Definition 5.4.17 (Cluster Dispersion). Cluster dispersion is a measure of how loose
a cluster is. It is based on the elements in a cluster, and their distance either from
each other, or from some common point (say, the barycentre). It is desirable for us to
have clusters with low dispersion, meaning each clusters has genes which do not much
differ from a given expression profile.

Example 5.4.18 (Mean Squared Error). The mean squared error, MSE, of a cluster
is given by:

MSE =
k∑
i=1

|sci − s̄c|2

k

where the ci are indices of the genes in the cluster under consideration, k is the total
number of genes in the cluster, s̄ is the barycentre (centroid) of the gene expression of
genes in the cluster, and sci is the expression of gene ci.

Note, we can only use MSE in spaces where we can calculate the barycentre.

Example 5.4.19 (Scatter). The scatter of a cluster is given by:

ds =

∑k−1
i=1

∑k
j>i d(sci , scj)
n(n−1)

2

where the ci are indices of the genes in the cluster under consideration, k is the total
number of genes in the cluster, and sci is the expression of gene ci.

Definition 5.4.20 (2-Skeleton). The 2-skeleton of X, X2, consists of triangles between
triples of vertices, and all lower dimensional simplices. Now suppose we are given a
measure of cluster dispersion, f : Rn × Rn × Rn → R≥0, for example, the MSE, or
scatter. We can use this to associate a weight to each 2-simplex.

Definition 5.4.21 (n-Skeleton). The n-skeleton of X, Xn, consists of n-simplices, and
all lower dimensional ones. n-simplices consist of n + 1 vertices, and we can associate
a weight to these using some measure of cluster dispersion, as above for the 2-skeleton,
with some function f :

(
Rl
)n+1 → R≥0, where l here is the number of samples.

Given our simplicial complex X with a weight on each of its component simplices,
we can define a subcomplex C ⊂ X which contains only simplices with weights under
a certain cut-off, chosen with biological considerations in mind. In this case, we can
give the following definition of gene co-expression:
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Definition 5.4.22 (Gene Co-expression). We call a set of genes co-expressed if the
simplex they form is part of the subcomplex C ⊂ X, where C is a subcomplex of the
(m− 1)-simplex X

Note that we can also use more advanced procedures for choosing the subcomplex
C ⊂ X, and in fact we can also have more than one weight on every simplex on X,
but we will restrict ourselves to this simpler model for now.

5.4.3 Correspondence to the Topological Method

In this subsection, we will show how the results of the differential gene expression
analysis and gene co-expression analysis methods can be approximately reproduced in
our method of deforming metrics.

Differential Gene Expresssion

We will begin by showing how we can take into account some of the results of differential
gene expression. There are three ways this could occur. Firstly, we can come up with
a method which assigns a weight of one to all genes which a given method indicates
are differentially expressed. Secondly, we deform the metric (weight the genes) in such
a way that, when we look at the genes individually, any gene which has the average
difference in expression between conditions differing over a given cut-off is considered
differentially expressed. Finally, we can run an optimisation algorithm (e.g. simulated
annealing) on the gene weights, where the objective function to optimise is a measure
of cluster quality, where the clusters are given by the morphs.

Trivial Case As usual, we begin with D, an n × m data matrix, with n samples
and m genes, where the replicate effect has been subtracted. Now, suppose we have
k morphs, so n1 + n2 + . . . + nk = n, where ni is the number of samples of morph i.
Then, if we look gene-by-gene and apply the same statistical test of differential gene
expression as in §5.4.1, and define our weighting as 1 if a gene passes this test, and 0

otherwise, then we trivially get back the same set of genes with weight 1 as our given
differential gene expression method.

Weight On the other hand, suppose we want to define a metric which is related to
certain statistical tests of differential gene expression. A reason to do this is that we
desire some sort of generalisability for our gene expression results, and having a metric
which has a statistical meaning is one way to achieve this.7

We will use relations between distances and probability distributions to approxi-
mate the gene-by-gene statistical tests which are done in differential gene expression

7In order to be biologically accurate, we would have to have the metric vary depending on what
point in the space we are, but I doubt we would ever collect enough experimental, or even observational,
data for that.
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analysis. We will give an example of a metric deformation, based on the idea of
the Mahalanobis distance [Mah36]. Note, a limitation of our approach involving the
deformation of metrics is that we can only assign one weight/scaling factor to each
independent dimension. This makes it impossible for us to precisely reproduce the
results of statistical tests like Welch’s t-test [Wel47], where both the test statistic and
its distribution depend on the variance of the samples under consideration.

First, we assume that each gene (dimension) has the same variance across different
conditions (even if the mean might vary). Then, we can define a weight for each
dimension by calculating the pooled variance, which is given by:

s2
p,g =

(n1 − 1)s2
1,g + (n2 − 1)s2

2,g + . . .+ (nk − 1)s2
k,g

n− k

where s2
i,g is the same standard variance for condition i and gene g, and we calculate

this for every gene, g, separately. We can now weight each gene by 1/s2
p,g. This will

give us a distance where, if we project down on each dimension, then a distance of 1

is approximately equal to a standard deviation. And if we do not project down, then
this gives us a distance in our original space Rm, where a distance of 1 is about one
standard deviation, assuming that all genes are independent.8

Note: This does not actually reproduce the t-test on each gene (dimension), since
the t-test also considers the sample size, rather than just the estimated variance. If
we wished to take this into account, we would have to pick two morphs, say k1 and
k2, which we are interested in conducting the test between. Then, instead of weighting
each dimension by just 1/s2

p,g, we weight by:

1

s2
p,g

√
1
n1

+ 1
n2

where n1 and n2 are the number of samples of morph k1 and k2, respectively. While
this will produce a weight so that, on each dimension, the weighted distance between
the mean expressions of k1 and k2 is exactly the t-statistic which is used to test them,
I am unaware of any more meaning the weighting might have.

Counterexample We will now go over a counterexample which shows we cannot
implement the Welch t-test by a deformation of the metric. An example of the Welch
t-test, along with its definition, can be found in Example 5.4.8. We will consider two
morphs and two genes, weighted so that the distance between the mean expression
of the morphs is precisely the t-statistic. However, the variances will vary between
the two genes and morphs, so that, even though the second gene will have a greater
t-statistic (in absolute value), it will not be considered statistically significant (p-value

8This assumption is usually false. Nevertheless, it is the assumption made when testing for differen-
tial gene expression. Especially in non-model organisms, and even in model organisms, the dependence
in expression amongst genes is unknown. In fact, it’s likely different even in different tissues, or the
same tissue under different states, e.g. fed vs. starving.
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≥ 0.05), while the first gene will.
So, let A and B be morphs, with 4 samples each, and g1 and g2 be genes with

expression g1 = (1, 2, 3, 4, 3.5, 4.5, 5.5, 6.5) and g2 = (2, 2, 2, 3, 2, 4, 6, 8), where the first
four samples belong to morph A, and the last four to morph B. If we now weight each
dimension by 1/σ̂∆̄, where

σ̂∆̄ =

√
σ̂2
A

nA
+
σ̂2
B

nB

and nA = nB = 4 in this case, the distance between the means of g1 will be approx-
imately 2.74, and between the means of g2 will be approximately 2.85, which are the
t-statistics for the Welch t-tests in each case. However, g1 has a p-value of 0.03, while
g2 has one of 0.06, where we have rounded both values to two decimal digits. So,
despite having the smaller t-statistic, g1 is statistically significant (p < 0.05), but g2 is
not. This is due to the Welch t-test also depending on the estimated variance of the
samples in each morph, and the way we constructed this example, the variances are
much more unequal in g2 compared to g1, which reduces the degrees of freedom used
in the t-test, and in turn requires a higher value of the t-statistic in order to reject the
null hypothesis. The point is that, despite using a weighting which gives the resulting
t-statistic in each dimension, this is not directly related to the statistical significance,
so similar ‘distances’ (t-statistics) can give different statistical results.

Validity We will now talk about the statistical tests which can be generalised by
weighting the dimensions.

Definition 5.4.23 (Weighting-Compatible). A statistical test is weighting-compatible
if its test statistic has the same probability distribution for each dimension(/gene).

A weighting-compatible statistical test allows us to weight each dimension so that
the value of the test statistic appears as the weighted distance between, for example,
the means of different groups, or otherwise, depending on how the test statistic is calcu-
lated. Furthermore, having the same probability distribution for each dimension means
that the statistical meaning of these distances is comparable between dimensions.

Clustering Quality The second kind of differential expression method we looked
at above used likelihood-ratio tests, rather than parameter estimation, to determine if
genes are significantly differentially expresssed. We will now consider an implementa-
tion of the topological method which takes into account the differential gene expression
method using likelihood-ratio tests. We will do this by considering the likelihood-ratio
test as analogous to tests of clustering quality, where the partition of our samples into
morphs provide the clusters to be tested.

Firstly, we assume we have a data matrix D where the replicate effect has been
subtracted. Now, let us assume we have k morphs. The goal is to find a perturbation
under which the k morphs are apparent as clusters.
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One possible way to assess clustering is to look at the sum of the squared distances
from each sample point to the global sample mean (centroid), and compare that to
the sum of the squared distances from the morph centroids to the overall centroid
(weighted by the number of samples in each morph). Let us now give a definition for
these sums of squared distances:

Definition 5.4.24 (Sum of Squared Distances). Let SST be the total sum of squares,
and SSB be the between sum of squares. Then we have:

SST =
n∑
j=1

‖xj − µ‖2

where n is the number of samples and µ is the mean over all the samples, and:

SSB =
k∑
i=1

ni‖µi − µ‖2

where k is the number of morphs, ni is the number of samples of morph i, µi is the
mean of the samples of morph i, and µ the mean over all samples.

SSB will always be a fraction of SST , and if the fraction is great, then we have a
good clustering, since this means our clusters take into account most of the variation
in the data. In the context of finding suitable perturbations, we could pick one under
which SSB

SST
is sufficiently high.

Another way is to use an ANOVA, which tests if the means of each group (morph
in our case) is the same. In this case, the sum of squares is also used, but scaled in the
following manner.

Definition 5.4.25 (ANOVA F -test Statistic). The ANOVA F -test statistic for a par-
tition of our samples is given by:

F =
SSB
k−1∑k

i=1

∑ni
j=1‖xij−µi‖2

n−k

where SSB is the between sum of squares (see Definition 5.4.24), k is the number of
morphs (sets in the partition), n is the total number of samples, and ni is the number
of samples of morph i.

Note that this is equivalent to the t-test when we have only two groups. (Refer to
§5.2 where we had a proof of concept for our topological method using t-tests on the
individual genes.)

A way to pick an appropriate perturbation would be one which has a significant
enough F -statistic. For example, we might want to find a perturbation which gives us
an F -statistic in the top 8× 10−5 fraction.
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We will first show that, if an F -test applied to each dimension separately produces
a significant enough F -statistic, then the F -test applied to all dimensions will also
produce a significant F -statistic.

For convenience, we will write the sum of squares occurring in the denominator of
Definition 5.4.25 as:

SSR =
k∑
i=1

ni∑
j=1

‖xij − µi‖2

which we call the residual sum of squares.

Theorem 5.4.26 (F -test). Assume we have a data matrix A, with the replicate effect
subtracted, and a partition of the n samples (rows) into k groups. Suppose that we
want an F -statistic of a certain significance value, p, so that the F -statistic is greater
than a certain value Fp. Then, if we have genes g1, . . . ,gl where the F -test applied to
each gene individually gives an F -statistic greater than Fp, then the F -test applied to
all the genes at the same time will also give an F -statistic greater than Fp.

F -test. Let Fo be the value of the F -statistic for the gene o. Then, by assumption,

each Fo ≥ Fp. In particular, we have Fo =
SSBo
k−1
SSRo
n−k

≥ Fp. Furthermore, since we can

obtain the sum of squares over multiple dimensions by simply adding up the individual
dimension, we have SSB =

∑l
o=1 SSBo and SSR =

∑l
o=1 SSRo ,where SSB and SSR

are the between and residual sum of squares of all the l genes under consideration,

respectively. Now, since we have
SSBo
k−1
SSRo
n−k

≥ Fp for all o ∈ {1, 2, . . . l}, we know that

SSB
k−1

=
∑l
o=1 SSBo
k−1

≥ Fp
SSB
n−k = Fp

∑l
o=1 SSBo
n−k . So, if F is the F -statistic for the l genes

under consideration, then we have F =
SSB
k−1
SSR
n−k
≥ Fp, as desired.

A way that this method extends the standard differential gene expression analysis
method is that, instead of looking gene-by-gene, we can look at (weighted) gene sets.
This flexibility also allows us to consider gene sets with genes which would not make
the cut-off we have chosen. We can combine this with looking at correlated gene sets,
so we can tell if these are statistically different or not between the morphs.

In fact, this method allows us to test arbitrary gene sets, rather than just an over-
representation analysis on a subset of differentially expressed genes, or on a list of genes
ordered by significance.

Gene Co-Expression

It is not possible to take into account gene co-expression by deforming metrics, assum-
ing that we are dealing with D a n×m data matrix, with n samples and m genes and
the replicate effect subtracted, which we consider as n points in Rm. Furthermore, it is
not possible to interpret the output, which will be a set of weights on the dimensions,
as having to do with gene modules. The best we could do is to attempt to find all the
genes in a single module, and weight these genes one, and the others zero. Then we
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could remove the genes which have been assigned to the module, and repeat the pro-
cedure. Alternatively, it may be possible to define some number of abstract modules,
and weight genes between zero and one by their membership in these modules.

We will instead discuss in the section other methods for implementing gene co-
expression analyses with a topological bent.

Firstly, we require a measure of dissimilarity/distance between genes. It is typical
to consider the genes as m points in Rn, where the values of the coordinates are given
by their expression in the samples. From here, usually correlation distances are used,
since we are only interested if genes have the same shape of expression as each other.

Spearman’s Correlation We have a choice of distances to use between genes, when
trying to determine gene sets. A good choice appears to be Spearman correlation
[BVG15], which is define as follows:

Definition 5.4.27 (Spearman Correlation). The Spearman correlation between two
genes i and j is given by

cors(i, j) = cor(rgyi , rgyj)

where cor is the Pearson correlation (see Definition 2.2.1), yi is the expression vector
of gene i, and rgyi is a vector of the ranks of yi.

In order to determine modules of genes, we can pick a cut-off for the Spearman
correlation, and then produce a network and take its connected components. This is
the same as single-linkage clustering on the Spearman correlation distance.

Mapper If we recall §2.2.3, we know that it is possible for the topological data
visualisation Mapper to find tightly linked subgroups of the data which cannot be
found with standard clustering methods. Could it be the case that applying Mapper
to genes, rather than samples, also allows us to find subgroups of genes which are not
found by clustering?

To investigate, we apply Mapper and WGCNA to genes from the Arctic charr. We
picked the top 10,000 most significantly differentially expressed genes between the ben-
thic and pelagic ecotypes, due to computational constraints. We process these genes
first with the pipeline outlined by the package authors on their webpage: https://

horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.
The distance used for Mapper is the toplogical overlap calculated by WGCNA based on
|cor(i, j)|6, the absolute Pearson correlation raised to the sixth power. For WGCNA,
we continue with average-linkage hierarchical clustering, and then find modules with a
minimum module size of 30, combining modules with eigengenes which are correlated
with greater than 0.75 Pearson correlation.

Figure 5.7 shows the results of Mapper applied to the top 10,000 most significantly
differentially expressed genes between the benthic and pelagic ecotypes. We use the
cluster cut-off of 0.998, which corresponds to the hmax used by WGCNA (see §5.4.2 for

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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Filter range: [0.58, 1.00]
Cover: Hypercube cover. Intervals: (10,). Overlap: (50.0,)
Clustering method: Average linkage clustering
Cutoff: Cluster cutoff at height 0.998
Size range: [1,3722]

Figure 5.7: Mapper output. The filter function is 1−p-value, with 10 intervals overlap-
ping by 50%. Clustering function is average linkage clustering, with a cut-off of 0.998,
which was the hmax parameter WGCNA used when run on the same data. In the case
of Mapper, we end up with basically one large cluster, which is visualised as a line,
since the gene have been binned by 1− p-value.

more details). There is basically only one cluster, split by the filter function into nodes
of different p-value. So, we see now interesting subgroups of genes in this case. When
we apply WGCNA to the same data, as we see in Figure 5.8, we get eleven modules,
showing that WGCNA is doing something different than Mapper.

Simplicial Complexes We now move on to examples of gene co-expression ex-
pressed in the language of simplicial complexes, as define in §5.4.2.

Example 5.4.28 (Clustering). First, we describe how to view clustering from this
perspective. We will only consider the example of hierarchical clustering here, since
the implementation of other clustering algorithms will depend on the algorithm. Sup-
pose the hierarchical clustering algorithm on the m genes is based on the dissimilarity
measure d. We begin with the 1-skeleton with m vertices and edge-weights coming
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Figure 5.8: WGCNA applied to the top 10,000 most significantly differentially ex-
pressed genes between the benthic and pelagic ecotypes. We followed the procedure in
the WGCNA tutorial on the authors’ webpage: https://horvath.genetics.ucla.
edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/.

from some distance/dissimilarity function between gene expression profiles. A hierar-
chical clustering algorithm builds up a dendrogram by successively joining clusters at
a certain height. We can build up a simplicial complex X by following the cluster den-
drogram, and including simplices on those clusters, weighted by the weight at which
the cluster is formed in the dendrogram. We can then form a subcomplex C ⊂ X sim-
ply by picking a cut-off height, h, and considering only simplices with weight w < h.
The resulting subcomplex will have simplices corresponding exactly to the cluster we
would get by cutting the cluster dendrogram at the same height h.

Example 5.4.29 (WGCNA). Now we consider WGCNA from this perspective. We
start by using the topological overlap dissimilarity to weight the edges in the 1-skeleton.
Then we can apply average-linkage hierarchical clustering, with parameters N0, hmax,
gmin, and dmax as in §5.4.2 where we describe WGCNA. The extra parameters can be
considered as weights on the simplices in the simplicial complex X. In this case, we’d
have a weight for the core scatter, d̄, and the gap height, as well as the height as we
would when implementing normal hierarchical clustering.

5.5 Discussion

Following the set-back of Mapper being unable to visualise our Arctic charr dataset,
we were inspired to find a better way of visualising the data. We decided to try a

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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method inspired by topology, which involves weighting the genes, and then visualising
the resultant perturbed gene expression space. Since we noticed in the Arctic charr
that the effect of lake dominates the results, we generalise this to a replicate effect [Def.
5.1.1] which we define as a vector of gene expressions associated to each replication.
Once we have this replication effect, we subtract it to remove its influence on the
results.

When the lake effect was removed from our Arctic charr, we still found that, upon
applying Mapper, we did not get the expected split into two morphs. To help us
visualise the difference between the morphs, we perturb the gene expression space,
until we find a perturbation where the two morphs are apparent in the visualisation.
This idea can be generalised to where we are looking for any interesting groups in a
dataset, from morphs, to different tissue types, to Drosophila bred in different seasons,
and so on. We provide a proof-of-concept of the perturbation method, by showing that
we can pick out a perturbation which makes the benthic and pelagic morphs of the
Arctic charr distinct in visualisations.

Following this, we conduct some experiments, testing the assumptions we made
when we were coming up with our perturbation method. One of these was that our
approximation to the replicate effect (the centroid of the gene expressions of the samples
in a given replication) actually removed the replicate effect. To check, we look for a
residual replicate effect, which amounts to checking if we can tell the difference between
replicates in our groups of interest. We find that there are genes for which we can, but
overall, there is no significant residual replicate effect, so our naïve first approximation
to the replicate effect does seem to get rid of most of it.

The last experiment we conduct is looking at the effect of sample size, and if increas-
ing sample size would make it easier for us to distinguish any biologically interesting
signals from biological noise. We also test the ability for perturbations to increase the
signal-to-noise ratio. We find that, in the case of the Drosophila’s 726 samples com-
pared to our Arctic charr’s 32, we still see no significant increase in the signal-to-noise
ratio when perturbing due to there being so much biological variation between the
samples.

Finally, we turn to an overview of theory, looking at the two major current methods
of analysing gene expression data, by differential gene expression (DGE) or by gene co-
expression networks, and giving a mathematical description of them, which we use to
compare these methods to our perturbation method. We find that while our method can
cover some simpler methods of DGE, like Student’s t-test, more complicated methods
like Welch’s t-test will need something more than perturbing gene expression space by
weighting the genes. We also find that we can relate gene co-expression networks to
clustering, and through them to Mapper and the idea of simplicial complexes, which
one can consider as higher-dimensional clusters.

In our last chapter, we will discuss more about the difficulties we had, working with
non-model species and a small sample size, and propose a follow-up experiment which
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could be done in the future.



Chapter 6

The Shape of Things to Come

In this final chapter, we discuss our results, the application of Mapper to the Arctic
charr, our success in visualising the difference between the benthic and pelagic morphs
with a pre-selected gene set. The project aimed to overcome challenges of working with
a non-model species and small sample sizes. We tested a topological application on a
new data type and found it did not resolve biological patterns. This is due to limitations
of that approach when applied to a non-model species in an ecological/evolutionary
context. These include limitations with small sample size, which mean we are unable to
find any novel subgroups in the Arctic charr data we do have. We combined information
across lakes to maximise biological and ecological information. However, this added a
layer of evolutionary complexity that the Mapper approach was not able to deal with.
In fact, we find (apparently) new “noise”. This is expected due to evolutionary distance,
and inherent in these kinds of datasets.

To address these challenges and propose a direction for the future, we present an
potential experiment, assuming there are fewer limitations on data collection, such as
a lower cost of sequencing. This will involve sequencing the RNA of the Arctic charr
as they develop on either a benthic or pelagic diet, and using the changes in gene
expression between these two experiments to work out which pathways are, finally,
responsible for the division into two ecomorphs, at least from a developmental plasticity
point of view. These will give us candidate genes which we can look at to work out
what the underlying genetic causes of these two morphs might be.

6.1 An Evolving Field

An early motivation for the project was Nicolau et al.’s application of Mapper, a topo-
logical data analysis-based visualisation algorithm, that provided an important advance
by discovering of a new subtype of breast cancer that other bioinformatics approaches
had missed. Aspects of their approach which we wanted to utilise are the overcoming of
the noise of gene expression data, and the distilling of subtle but biologically important
signals. These are particularly relevant to data from an ecological and evolutionary
context, where we expect to have a subtle signal and a lot of local variation. In seeking

93
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this new application of an already quite untested topological approach, we found it
to be lacking in several aspects. Firstly, there was a healthy vs. diseased distinction
in the breast cancer data, and this asymmetry does not translate over to the benthic
vs. pelagic morphs. That is, for the breast cancer data set, we could consider healthy
expression as baseline, and diseased expression as deviation from baseline expression,
while for the Arctic charr, there is no obvious choice for picking either benthic or
pelagic to be baseline and the other to be deviation from baseline. To solve this issue,
we introduce the notion of lake effect (§3.4.1), which can be viewed as the baseline
expression of each lake, and remove it from the gene expression data, so we are able
to see the difference between the morphs more clearly. This also helps to solve the
problem of the lake signal being greater than the morph signal, as we can see in Fig.
3.4. This gets us to the data of interest, which is the morph signal.

Secondly, in the breast cancer data, they found a distinct subgroup of tissue samples
which had an unusual trait (100% survival) and were able to show statistically that
this constituted a subtype by isolating these tissues and conducting statistical tests
comparing their expression with the rest of the breast cancer tissues. We did not find
any consistent new subgroups in the Arctic charr data, either because our sample size
(36 fish) is too low, or there are no such consistent subgroups, or because there are
different pathways to the same benthic/pelagic effect. That is, we were not able to
resolve if the lack of repeated signal from the topological approach is biological reality
from possible limited power. However, traditional approaches have suggested that there
are differences, but these were not picked up, see, for example, the work of Jacobs et
al. [Jac+19].

The fact that subgroups indicating the presence of two morphs were not inferred
by the Mapper approach, inspired us to look at the gene expression data by deforming
the space. In particular, we had expected Mapper to at least be able to pick out the
two morphs, which are apparent when we use a more traditional approach. Deforming
the gene expression space came up as a topological elaboration of the more traditional
approach of selecting a set of genes by differential gene expression analysis. Practically
speaking, our deforming the space is done by weighting the dimensions corresponding
to genes, and visualising the resulting points. We can see in Figure 5.1 that we do get
the morphs into two different groups when we weight just the differentially expressed
genes by one, and the rest by zero. However, we find in §5.3.2 that this occurs only by
reducing much of the strength of the signals in the data. This implies that, to get the
desired visualisation, we must ignore a lot of potential signal in the data, which may
be of biological relevance.

An additional complication when working with non-model species is that there will
not be many details about what the genes do. There are no gene ontology (GO)
annotations or KEGG pathway information about the Arctic charr. If we look instead
at a more well-studied close relative, the Atlantic salmon (Salmo salar) we see that
of the ∼ 80, 000 gene products, ∼ 60, 000 have GO annotations, but of these only 454
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are manual, and the rest have been inferred electronically using algorithms. Regarding
KEGG pathways, only 13,514 of 55,214 genes are in a pathway. Nevertheless, we can
still use these genes to help inform on the functions of any genes of importance that
we find.

There has also been work by various groups to associated regions in Salmonid
(including Arctic charr) genomes to physiological traits, with the work summarised in
a paper of Jacobs et al. [Jac+17]. This shows that the amount of information on Arctic
charr genomes is building up over time.

While the project has been ongoing, there have been developments which put our
assumption of removing the lake effect into question. For example, work by Jacobs et
al. [Jac+19] have indicated that the difference in gene expression is not expected to
be concordant across different lakes. Further discussion with biologists have also led
to the difference between lakes being more of a concern. In particular, there is the
thought that there are different mechanisms between lakes, or at least the differences
might be in different genes, but involved in the same pathway.

Considering all these developments, our aim is to propose an experiment that would
overcome the current limitations of data size and address the outstanding questions
about the association between the development of the benthic and pelagic morphs, and
the gene expression of the fish as they develop.

6.2 Experiment

Considering the challenges described in the previous sections, we will now design an
experiment to overcome the limitations of existing approaches of working with a non-
model species with a small sample size, in order to elucidate the genetic mechanisms
behind a potential incipient speciation event. This will require the currently unrealistic
scenario of being able to sequence thousands of samples,1 and there is also an infor-
mation gap between model and non-model which will require many experiments and
much data to bridge.

We will be taking inspiration from developmental biology [Sch+17], drawing on an
analogy between developing organisms and cells. Figure 6.1, [Sch+17, Fig. 1], shows
the idea behind Schiebinger et al.’s using optimal transport to work out what genes
are involved in the regulation of cell differentiation. The general idea is that there is
a developmental landscape by which cells develop (shown by railway tracks (A) and
valleys in a landscape (B) in 6.1). The primary difference between their experiment,
and ours previous ones, is the use time-series data. This additional dimension lets
them shed light on the genes and regulatory pathways involved in the differentiation of

1It should be noted here that sequencing an Arctic charr transcriptome with library preparation
and to 30M reads per individual takes about £500, so doing one run of this experiment will take about
£500,000. This is despite the sharp decrease in sequencing cost over recent decades. Partly, this is
due to the Arctic charr’s large transcriptome (the salmonids all underwent a recent gene duplication).
Another factor is also the use of external agencies for sequencing, which have their own costs.
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Figure 6.1: [Sch+17, Fig. 1], with (A–B) showing Waddington’s analogies of cells
undergoing differentiation, as like railroad cars switching tracks (A) or marbles rolling
down a landscape (B). (C–E) show processes of cell differentiation which are either
predetermined (C), not determined (D) or progressively determined (E). (F) shows
a transport map, π, from a single point x at stage X to a probability distribution at
a subsequent stage Y . (G) shows transport maps computed from samples taken at
different timepoints.

stem cells by using optimal transport to find which genes best predict the expression
of the next time-point from the previous one. By analogy, we wish to shed light on the
genes and regulatory pathways involved in the development of the benthic and pelagic
morphs. Note that this divergence along the depth axis in fishes is the most pervasive
and abundant way fish diversify and therefore represents a pattern of biodiversity
origins that is hugely representative, at least for fish.

We will describe an experiment which focuses on the plasticity of Arctic charr, by
feeding hatchlings from a single morph in a single lake on either pelagic or benthic
diets. The results will still have a bearing on the evolution of these morphs, since we
expect the regulation of the same pathways to be involved both in the plasticity and the
evolution of these morphs, through the mechanism of genetic canalisation [WAD42]. An
alternative experiment we could perform is to start with two populations of hatchlings,
one pelagic and one benthic, and feed them all on the same diet. Figure 6.2 gives a
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Figure 6.2: Schematic showing experiments for working out the genes involved in de-
velopment of the Arctic charr morphs. They involve taking the morphs, feeding them
on either the benthic or pelagic diet, and seeing how the gene expression changes over
time.

schematic for these experiments.

We will begin with a population showing a large (phenotypic) divergence between
the benthic and pelagic ecomorphs, such as the Arctic charr from Loch Tay. We will
initially use hatchlings from a single morph, say the benthic morph. We then divide up
hatchlings into two sections of a common tank. One section will be fed a benthic diet
(bloodworms) and the other will be fed a pelagic diet (plankton). This is inspired by an
experiment on Madeleine Carruthers’ on developmental plasticity in Salmonid species
(unpublished data). We take about 640 fish in each section, and will take samples of 40
fish each at 16 different timepoints.2 We will be particularly interested in the difference
in gene expression between the two sections of fish over the different timepoints. We
expect to find in the set of differentially expressed genes ones which could plausibly
drive the development of the different ecomorphs.

As a note, we see in §A.1 that, even if there is a continuous range of possibilities,
if we want to measure with a degree of statistical certainty, then we are forced to
consider a discrete number of finite forms. This concludes the data generating part of
our thought experiment

2These are numbers used since they will leave us with 320 fish in each diet experiment, which we
could profitably visualise using Mapper.



98 CHAPTER 6. THE SHAPE OF THINGS TO COME

Issues

Some issues with the experiment include the fact that there are already differences in
gene expression even before the Arctic charr hatch [Gud+18]. Nevertheless, we will still
proceed, since there has been work showing that switching the diets of Arctic charr in a
juvenile state is enough to produce ecomorphs which are between benthic and pelagic.

A secondary experiment we could conduct would be to switch the diets after 8
timepoints and see the difference in gene expression this causes. This would give more
evidence for genes involved in the development of the two ecomorphs if we see the
same genes switch expression to ones matching the other morph in the subsequent
timepoints.

Another extension we could perform is to sequence the RNA from specific tissues,
whose development is important for the distinct ecomorphs, such as bones and muscles.
We would expect genes associated with growth and remodelling to be differentially
expressed between the two ecomorphs. Genes related to these functions have been
previously found to be significant in the difference between these ecomorphs [Jac+19].

Another follow-up experiment, could be to start with a pelagic population of fish,
rather than a benthic one, and switch from a pelagic to a benthic diet at different
timepoints, and see what effect this has on their path in gene expression space. We
expect the gene expression to shift towards the benthic morphs, but not completely,
and with almost no effect once the fish reach adulthood.

6.2.1 Mathematical Framework

Having given the outline of some experiments we could do to gather gene expression
data, we will now give a mathematical framework for analysing the resultant data. We
first give mathematical definitions for the gene expression space, and the shape-space
(morphometrics) of the developing fry.

Definition 6.2.1 (Genetic Developmental Trajectory). We consider a fish a sample
x(d) ∈ Rm, where m is the number of genes under consideration, and d is the time
from hatching measured in days, where we allow fractions. A genetic developmental
trajectory for this fish is a continuous function:

x : [0, D)→ Rm

where we note that a single fish can have different developmental trajectories, depend-
ing on the tissue the RNA-sample is extracted from.

Definition 6.2.2 (Morphological Developmental Trajectory). We use 7 linear mea-
surements and fork length (length from tip of the snout to the end of the middle
caudal fin rays), corrected for length as in [Jac+19], to assign each fish sample a point
in an eight-dimensional morphology space. A morphological developmental trajectory
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for a fish is then a continuous function:

y : [0, D)→ R8

Optimal Transport

We will now give some definitions, inspired by ideas from [Sch+17]. We will only give
an overview of optimal transport here, those interested in more details can consult the
supplementary sections of the cited paper. Now, we give the definition of a transport
map.

Definition 6.2.3 (Transport Map). Given a pair of probability distributions P and Q
on RG, a transport map (also called a coupling) is a probability distribution on RG×RG

with P and Q as its two marginals.

We will give a discrete example to illustrate the notion of a transport map.

Example 6.2.4 (Discrete Transport Map). Suppose we have a pair of sets of points
X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,ym} in Rl, where n,m, l ∈ N. Then a
transport map is a probability distribution p : {1, 2, . . . , n}× {1, 2, . . . ,m} → R where
p(i, ·) =

∑m
j=1 p(i, j) = 1

n
and p(·, j) = 1

m
. Note, here we have implicitly assumed that

the marginal distribution is uniform on the points of X and Y .

Now, to define optimal transport.

Definition 6.2.5 (Optimal Transport). Suppose we have a pair of probability distri-
butions P and Q on RG, and a cost function c : RG × RG → R≥0 where c(x, y) is the
cost of transporting a unit mass from x to y, then the cost of a transport map π is
given by: ∫∫

c(x, y)π(x, y)dxdy

An optimal transport map π is one which minimises this cost.

Regulatory Networks

Schiebinger et al. [Sch+17] use the optimal transport map to work out what genes are
involved in the regulation of cell differentiation. We will give a short outline of the
method here.

Definition 6.2.6 (Regulatory Network Regression). Consider a pair of timepoints
ti, ti+1. Let π[ti,ti+1] be the transport map between the times ti and ti+1, and let
(Xti , Xti+1

) be a pair of random variables distributed according to π[ti,ti+1]. Finally,
let F be a class of functions. Then regulatory network regression is finding:

min
f∈F

Eπ[ti,ti+1]

∥∥∥∥Xti+1
−Xti

ti+1 − ti
− f(Xi)

∥∥∥∥2
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so that f is the function which best predicts the change in gene expression in the
coming timestep, where we assume that best means minimising the expected squared
Euclidean norm of the difference between f and the actual change in gene expression,
normalised for the change in time.

Practically speaking, Schiebinger et al. use linear combinations of transcription
factor expression values, passed through a general logistic function, and then take
linear combinations again. That is, the function family they use is given by:

f(x) = U`(WTx)

where x is the vector of gene expression levels, T is a matrix which picks out the
transcription factors, W is some matrix, ` is a generalised logistic function applied
element-wise, and U is another matrix mapping into gene expression space.

6.2.2 Morphology Experiment

Inspired by the optimal transport technique used by Schiebinger et al. in [Sch+17],
we can analagously use it here to find the morphological developmental trajectory.
Furthermore, we can find genes regulating this by using the gene expression at a certain
timepoint ti to predict the change in morphology between ti and the next timepoint
ti+1.

Firstly, we run the experiment with 640 Tay benthic fry on each diets, and at
timepoints of 30, 40, 50,. . . , 190 days we sample 40 fish each. When we sample,
we measure the morphology of the fish. The goal is to work out when the fish stop
changing in morphology as they grow. This gives us a total of 1,280 fish samples over
16 timepoints, so we have 1,280 points in R8.

We can now look at the change in morphology, and work out what is the crucial
time period in the 30–190 days in which the changes between the two morphs occur.
A way we could do this is to calculate optimal transport maps between the timepoints,
so from days 30 to 40, 40 to 50, etc. and then see the cost between the timepoints. We
can use the squared Euclidean distance as a cost function, or try a some others, such
as Euclidean distance based on the first two principal components [Mit+04], based
on which metric captures the change in shape best. Then we can work out when
there is a high cost time period, indicating a large change in morphology between
those timepoints. Once we have found this time period using the data from this initial
experiment, we can use it to refine the time period we study in the next experiment,
which will involve also collecting gene expression data.

6.2.3 Gene Expression Experiment

Once we have found the time-frame in which the morphology changes in developing
Arctic charr, we can repeat the experiment, but with the 16 timepoints occurring only
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in this time-frame of morphology change. In addition to collecting morphology, in the
experiment, we also collect gene expression by sequencing, say, white-muscle tissue (or
some other tissue).3

Again, we have 1,280 points in R8 over 16 timepoints in morphology space, but we
also have the same 1,280 points in gene expression space Rm, where m is the number
of genes under consideration.

We again apply the optimal transport idea of [Sch+17] to the fish samples in mor-
phology space. The result of applying optimal transport to the fish in morphology
space will be to produce a coupling between samples in adjacent timepoints. This will
be in the form of probabilities of pairs (ati , bti+1

) occurring, where a and b are integers
between 1 and 40 (inclusive), indexing the samples of either the fish reared on a benthic
diet or a pelagic diet.

One we have this coupling between timepoints, we can, again following [Sch+17],
predict which genes may be involved, by finding a function from gene expression space
to (change in) morphology space which best fits the observed coupled differences be-
tween timepoints. We note Definition 6.2.6 here, except we are considering the function
f from gene expression space to morphology space which best predicts the change in
morphology between timepoints. This will tell us which genes are important to consider
for the change in morphology from one timepoint to the next.

Now that we can focus on a list of genes, we can go out into the field. With
developments in technology, we will be able to do qPCR on a limited number of genes
on Arctic charr in the field.

6.2.4 Field Experiment

Assuming developments in technology, we will outline an experiment which could be
done in the field. We will here assume that we have the technology to do mRNA
sequencing in the field, so we can get readings of gene expression levels. We will fur-
thermore assume that we do not need to kill the fish to obtain a sample for sequencing,
so we can resample fishes. This technology does not yet exist, but there are develop-
ments now for DNA sequencing in the field, and we believe this thought experiment
will be useful to consider for the future. We also assume that we can age the fish rather
accurately, and that we can catch fish which are still developing.

For the field experiment, suppose we pick a lake and tag each fish we catch, so we
can keep track of whether we catch the same fish or not. Furthermore, suppose we
sample the lake to the point where we have resampled, say, about twenty fish over four
times each. This will allow us to estimate how much of the variation in gene expression
is due to day-to-day changes (e.g. time of day sampled, temperature, etc.) and how
much is due to genetic differences. We can do this by focusing on the fish which we
have resampled, and seeing how their gene expression has changed when they’ve been

3The issue with sequencing multiple types of tissue, is that the sequencing cost multiples times as
much.
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caught at different times, since the differences in their gene expression will be all due
to the environment.

Once we have some idea of how gene expression varies due to day-to-day environ-
mental changes, we can catch and age fish over a longer period of time, over their entire
growth period, and, focusing on the genes which we have discovered to be important
from the previous section, we can measure how their expression changes as the fish age.
Along with morphology measurements, this will allow us to validate the importance
and effect of the genes on Arctic charr morphology as they develop.

Finally, we can compare to other lakes. We repeat the above experiments, and see
how the expression of our genes of interest change as benthic and pelagic morphs of
Arctic charr in other lakes develop. Being able to track the expression of genes, along
with morphology, will allow us to develop a model of the gene expression’s association
with Arctic charr morphological development. Once we have this model for different
lakes, we can see which genes behave in the same way. These genes should show,
or indicate a way to show, the pattern of development leading to the benthic and
pelagic morphs across different lakes. We will not combine information across the
lakes. Instead, we will use what we learn about the development ot these ecomorphs
in different lakes to work out what are the regulatory pathways and mechanisms in
common, leading to this divergence in Arctic charr over diverse locations.

In more generality, the methods developed in such an experiment could tell us
more about any case where we have a wild species with morphs. In the first instance,
we could see if the same regulatory pathways are also involved in the benthic/pelagic
differentiation in other species of fishes. Furthermore, this work can help to understand
any situation where two morphs arise in nature, and we do not have a case-control
morph to study. For example, there could be morphs of mosquitoes which either carry
or do not carry a certain disease, and the analysis we conduct in Chapter 5 and here
provides a way to, theoretically, work out what gene sets are important for these two
morphs.

6.3 Conclusion

In conclusion, we have seen how a data visualisation technique, Mapper, inspired by
topology, has found a new subtype of breast cancer by being applied to a breast cancer
gene expression dataset. Mapper was used, essentially, as a combination of breaking
the breast cancer samples up into degree of ‘diseased’ expression, and then clustering
within those intervals. The validation of the new subtype was purely based on biology
and statistics, with no input from topology.

We ported this method over to a non-model ecological and evolutionary study
system Arctic charr, found it to be lacking in several aspects. This is due, at the very
least, to lacking a large enough sample size, and the lack of case-control in samples,
like the normal samples in the breast cancer. These are typical challenges when dealing
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with non-model data from wild systems, and the reason for this project. To account
for the complexity of ecological and evolutionary systems, we have introduced another
topologically-inspired perspective for looking at the gene expression data by weighting
genes. The idea is to get a weighting of genes which shows the difference between
the morphs that we know is present. We show a ‘proof of concept’, but find that both
sample size and noise are still problems, even when we experimented on a large (∼ 700)
Dropsophila gene expression dataset.

Finally, we have ended with a discussion about a thought experiment, inspired by
the work of Schiebinger et al. on optimal transport for reconstructing developmental
landscapes. This experiment integrates the developments in the field of evolutionary
biology, sequencing technologies, and analysis of gene expression data with the increas-
ing amount of genomic resources available for non-model species, such as Arctic charr.
This provides the basis for future work to apply what Schiebinger et al. have done in
analysing developing human stem-cells to developing Arctic charr.

On a wider scale, this opens opportunities and approaches for applying new methods
to the challenges of extracting the meaningful core genes from biologically critical but
temporally variable pathways. This kind of experiment can work whenever there is a
developmental component to morphs arising in the wild.
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Appendix A

Miscellanea

A.1 Forced Discretisation

In this section, we will discuss the effect of choosing categories and a statistical measure
on a continuous space. As a toy example, we will consider categorising points arising as
independent identically distributed (i.i.d.) samples from two different random variables,
call them B and P . In particular, this means we are only considering one dimension,
R. Furthermore, suppose we have that B and P are both normally distributed, with
the same variance σ2, and means µB and µP , with µP < µB, so B ∼ N(µB, σ

2) and
P ∼ N(µP , σ

2).
Now, suppose that we want to decide with a certain probability, p, whether a sample,

given as a point x ∈ R came from the random variable B or P . Then, assuming we
use intervals of equal length around the mean, we can give the radius of the intervals
we require in terms of standard deviations, σ. That is, the radius will be:

σ · Φ−1

(
1− p

2

)
, p ∈ (0, 1)

where Φ−1 is the quantile function of the standard normal distribution, which has no
closed form solution. It has the property that, if Z ∼ N(0, 1), then Φ−1(q) = zq, where
zq is a number such that Pr(Z ≤ zq) = q.

For example, suppose we want intervals which will capture 95% of the samples
coming from B or P . Then we would use intervals with radius ∼ 2σ centred around
µB and µP , respectively. Then, assuming that µB − µP = lσ, where l > 4, we can
fit a total of b l

4
− 1c intermediate categories between B and P without overlapping

intervals. The top of Figure A.1 shows a schematic of this situation.
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Figure A.1: A schematic showing what happens if we want to classify intermediate
samples between B and P with a certain statistical confidence. In this case, with the
intervals shown as brackets at the top of the figure have the desired confidence, we see
that we can only have three classifications without overlap.
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