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THE DESIGN OF LINEAR SERVO-MECHANISMS HAVING PRESCRIBED TRANSIENT RESPONSES,
WITH AN EXPERIMENTAL INVESTIGATION INTO THE PREDICTION OF TRANSIENT RESPONSE
FROM FEEQUENCY RESPONSE,

Introductory Note,

Towards the end of 1946, considerable variety existed in the technical
literature on the subject of servo-mechanisms. With the intention of
reviewing this literature and thus obtaining guidance for future work, the
author,‘in October 1946, began a programe of study and research in the
Electrical Engineering Department., Shortly after this, the volume of
published work on servo-mechanisms released at Conferences in the post-war
years, and appearing also in text-book form, increased to an extent which
made it quite clear that the review originally planned could not be carried
out in a work of this nature, The author, therefore, turned to the more
restricted problems of the design of servo-mechanisms with specified
transient responses and the correlation of frequency and transient response
in an experimental system., At the same time, it was thought that these
might be prefaced by a review of the basic theory of the subject, and more
particularly of the relationship of relative stability to the transient
response,

The Thesis, therefore, is divided into three Parts. Part I contains
a review of the basic theory. Chapters 4 and 5 of this Part give a full
discussion of stability and relative stability not to be found elsewhere in

the literature of the subject, and some pdints, which it is believed, are



not so well=known. Part II deals with the specific problem of designing
for a prescribed overshoot in the step-function response. The whole of
this Part is originai and follows up the idea, dué to Campbell, of the
principal mode representation of the error quentity. Part III gives the
description and results of an experimental investigation into the transient
and frequency responses of a metadyne-controlled servo-mechanism.

The work was carried out'during the period October 1946 to October
1951 in the Electrical Engineering Laboratory. The author wishes to thank
Professor Bernard Hague, D,Sc., for his permission to use the equipment
contdined therein and for his encouragement to the author while in pursuance
of the work., The author also wishes to acknowledge the benefit derived
from a short visit made in 1948 to the Electrical Engineering Department,
University of Birmingham and to thank Professor A. Tustin for kindly

permitting this.



PART I,

REVIEW OF BASIC THEQRY.



CHAPTER I.

INTRODUCTION,

Part I of this thesis provides a review of the basic theory governing
the operation and design of servo-mechanisms. Following a general
description of the closed-sequence type of control, the development of
servo-mechanism theory is outlined. Transient and frequency anclyses
are dealt with in the succeeding chapters and a discussion of stability
is then given. The Part concludes with a consideration of relative
stebility end design procedure.

1.1, Closed-Sequence Control Systems.
A broad division of control systems can be made according to whether

the control is of the open=-sequence or closed-sequence ‘type, the

fundamental difference between the two being the effective cause which
operates the system. In the first case, the quéntity operating the
system in no way depends on the value of the controlled quantity, But is
fixed in size and variation merely by previous design. In the second
case, the effective cause operating the system is the difference between
a prescribed quantity and another quantity which is proportional to the

actual value of the controlled quantity of the system, with the direction

of operation so arranged that this difference always tends to zero. The
schematic diagram of a closed-sequence control system is therefore as

given by Fig. 1.
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In the diagrem,y is the controlled quantity, e.g. voltage, temperature,
speed, etc. It is measured by some means which produces a proportional
quantity k)l/ for comparison with ¢, the quantity corresponding to the desired
value of the controlled variable, The value of ¢ will in general not be
1_')::'e-de’cerminedisﬁ The difference ¢ is now arranged to move ¥ in such a way
that ¢ temds to zero, that is, that ¥ tends to ¢//<’ which is the desired value
of the output quantity.

The sub-division of closed~sequence control systems usually designated
by the term servo-mechanisms refers to such systems in which the quantities
¢ and ¢ are of a mechanical nature and a one-to-one relationship is desired
be’cween them. Agreement on this definition is, however, by no means
universal, If this statement is adopted, however, the diagram of Fig. 2
results, The prescribed value of the controlled quantity or output quantity

9,,,18 given by 6,: and is designated the input quantity. The result of the

® If @ is pre-determined, some type of regulator results. In the case of
¢ being constant, it is usually referred to as the datum quantity of the
regulator,



control action is that 0, tends to the value 6; under both steady-state
and changing conditions. Such a system occurs, for example, in the
following by a gun-mounting of its prescribed aiming angle as provided

by the angle of rotation of a light computing shaft. This particular
problem of fire-control is one of remote positioning of a large mass.

Such angular position controls form the great bulk of servo-mechanism
applications, and it has become customary to represent the input andx ??n?
quantities, therefore, as the shaft angles § and 6, .

The adoption of closed-sequence control immediately confers two
main advantages compared with the more simple open=-sequence type. These
are, firstly, the accuracy of correspondence of output and imput which
is obtained, and secondly, the speed of response of the output when
following a changing input. Both these advantages are secured merely
by inserting sufficient emplification into the main control sequence
from the error quantity to the output quantity. It is, of course,
fundamental that power amplification be present in order to move an
output having inertis, and possibly resisted by external torques. While,
in the open~-sequence type of control, accuracy can only ge achieved by a

power amplification which is both high and constant, a closed-sequence

control system only requires that it should be high. In practice, it
is impossible for an open-sequence control to retain its initial
calibration in the face of normal temperature and load charges. It is,
therefore, essential that fast and accurate control systems be of the
closed-sequence type, and it is with the subdivision of servo-mechanisms

that this thesis is concerned, although little extension is required to

cover the general case.



The advantages mentioned in the preceding paragraph are not, however,
obtained without sacrifice in the simplicity and operation of the system.
In particular, self-excited oscillations requiring no external input
signal, will usually appearvunless steps héve otherwise been taken to
counteract such behaviour. This possibility is, of course, common to
all systems having feedback over an energy source and constitutes the main
undesirable feature of a closed-sequence control, The design problem is
therefore the achievement of accuracy and speed of response, which require
high amplification, without such amplification causing undue loss of
stability.

1.2, Development of Servomechanism Theory.

Servomechanism theory has taken two mgin lines in its development.
Thesé are firstly, the response of the system to a transient input and
secondly, the response of the system to a steady-state sinusoidal input.

In the first case, the input quantity is given a discontinuity, such
as a step~function of displacement, and the speed and accuracy with %hioh
the output reproduces this step, are measures of the performance of the
system, Such a procedure is known as transient analysis and i% has
developed on account of the approximation to such an input which occurs
in practice, as for example, in fire-control, when a fresh target is
engaged., A second reason is the relative ease with which & laboratory
test may be carried out to check a particular design.. As an alternative
to the step-function, the system may be given a pulse of short duration

and the time taken for the system to revert to zero used as an indication



of the stability. As it is not possible to achieve in practice the
measurement of the true impulse response, the relation of pulse-width,
i.e. duration, to the time constants of the system is highly important.
Since this will certainly not be a simple matter to take into account
when attempting to assess the speed of response, it is generally easier,
both analytically and in practice, to obtain the response to a step=-
function rather than use the pulse-response. The true impulse-response
may of course be obtained by differentiation of the step-response.

There are normally other practical requirements to be met by a
servo~-mechanism, The maximum permissible errors under specified maximum
input velocity and acceleration are usually stated, and a further
requirement upon minimum smooth output speed may have to be satisfied.
There is also the problem of designing the apparatus in a manner which
will reduce mechanical resiliences in the drive or platform of the mount-
ing as far as possible, or will arrange these in the best manner to
prevent anti-stabilising influences. I% is only in addition to these
factors, that the step~response may be considered as specifying the
performence of the system.

The steady-state response to a sinusoidal input is, on the other
hand, th so intimately connected with conditions encountered in practice,
nor is it particularly easy to arrange a test in the laboratory. The
method is justified, however, in the matter of analysis and design,
*affording as it does, an analytical means of breaking down the system
into a number of simpler components, the individual effects of each of

which appear explicitly in the final overall output-input relationship.



This fact and the existence of previous work on feedback amplifiers
applicable with little modification to servo-mechanisms, has brought the
frequency response method into prominence. Here it is a question of
obtaining the amplitude response of the system, that is, the ratio of
output to input megnitudes, for frequencies of the input variation from
zero to as large a value as possible. The presence of inertia at the
output will cause this response to fall off as the frequency is raised,
and the bandwidth of a very small and fast servo will very often not
exceed 30 c/é. Large systems have, of course, correspondingly smealler
beandwidths., Whatever the bandwidth may be, however, reproduction of
input signals will only occur if this band extends to frequencies
representing the highest important frequency component in any of these
input signels, and if constancy of amplitude response is maintained
within the band. Peaks within this band cause certain frequencies to
be magnified out of proportion, and the result on applying a step-
function is %to obtain an output éontaining an excessive oscillation at
approximately this frequency. A technique has, therefore, arisen of
restricting the maximum value of the amplitude~response to a figure
varying from 1.2 to 1.6 and largely determined by past operating
experience, in an abtempt to keep this resonant oscillation, which con-
tributes to the overshoot in a step-response, to acceptable values.

The explicit effect on a step-response of any deficiency in the frequency
response is not in general predictable. The general %trend of these

effects, however, is indicated at the conclusion of Sec., 3.2.



CHAPTER 2.

TRANSIERT ANALYSIS OF LINEAR SYSTEMS,

In the present Chapter, formulation of servo-mechanism performence
is considered first of all from the classical point of view. The
Laplace Transform technique is then used in deriving the transfer
function, and in establishing an important theorem relating the minimum
overshoots and undershoots in the step-response to the steady-state
performence of the system. The Chapter concludes with a classification
of basic servo-mechanism types.

2.1. Output-Input Relationship of Linear Systems.

Throughout this thesis we shall be dealing with linear systems, that
is, systems whose performance is mathematically described by a linear
differential equation with constant coefficients. In practice no system
is truly linear. Small motions may be greatly dependent on stiction,
variable friction, and backlash in gearing, and large errors may place
the operating field currents of generators and motors in the saturation
range, While the assumption of linearity mey only hold, therefore, over
a very limited range, it is, analybtically, the simplest one to make; and
it at least provides some results which can be later modified to account
for certain non-linear features occuring in practical systems. With
the assumption of linearity; the superposition principle and the related

frameworks of operational calculus and Fourier analysis become available.



The formuletion of the behaviour of any system consists in breaking
the system down into simpler units, each of which may be described by a
gimple linear differential equation. For servo-mechanisms, most of
these units or components will be uni-directional, that is, without
mitual effects. Certain bi-directional elements do occur, however, the
most important of these being the motor-load combination. Consider, for

example, the simple position control system of Fig. 3.

error thermionic machine motor
transducer amplifier amplifier

A ;
6 ~ €
| ‘Ke B Ko %

Fig. 3. Simple—EBSition controllsystem.

Let K, - error transducer constant, V/radn
- amplifier gain up to output stage grids
= amplification factor of output-stage
= total output stage resistance in each half circuit (including
valve resistance) '
=Lz, the output stage time constant
generator e,m.f. per incremental field ampere
total armature circuit resistance
motor back e.n.f. per radn/sec.
motor torque per armature ampere
total inertia referred to motor shaft, slug-ftz.
viscous friction coefficient of load, 1lb-ft per radn/seo.
gear ratio, motor to load.
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Eliminating in order to find the overall differential equation relating

the output to the input, we obtain

0 4+ [140] 4G + L dg, + K8 - K@
dF3 [ro T @& T —;,“’ 7 e 7 L (5)
where o= _J , T=1L y K = uwk K G Ke
B+ Ksh; R KK
[+ kaki] RoR[6+ Krke]

According to the various forms which the input signal 9L‘ takes, so

the appropriate solution of (5) will yield the performance of the system.

Thus for the response to a step~function,

]

we set 6; = H(t) , where HI(t) I, >0 (8)

=0, t<o.

In terms of the classical solution, we obtain the particular integral of
6,= / , giving the "steady-state" output, and then the complementary
function which determines the transient part of the output. To do this,

the roots of the system characteristic equation,

3 [ipt]m? e L K 7)
m+[ro+7_]m+_/;7_m+ﬁ = 0 (

are required, and we shall suppose these are n,m,and n, , for the

present taken as distinct. The response of the system is now
6, = |+ A,sm’ta- Ae™t 4 A3£m3t
subject to the values of 4, A2, A3 being determined by the initial

conditions. - This concludes the formulation and principle of classical
solution of the sbove relatively simple system taken for the purposes of
illustration.
2.2. Stability and Root Location.

The simple system above yielded a third-order differential equation

relating the output and its various time derivates to the input quantity.



A more general system will also include certain time derivatives of the

input quantity, in addition to being of higher order. Thus a relation

of the form

(0B +aD™ s  sanD +a )= (6D +bD" v +b,0:4)a (8)

will include all particular cases, For the majority of systems, v and

s do not exceed 7 and 2 respectively, - As above, the roots of the

characteristic equation

T Tt
am + am 4 +Q.,.m + a. = o (9)

determine the form of the transient part of the response. The terms

which may arise are given below,with the particular root-location to which

they correspond, The constants A, R,¢ are for the moment arbitrary and

are of no consequence, as we are interested only in the manner in which

the term depends on t.

Root-location. Term in transient response.

+o Aet“t
+)8 Rsin (8¢ +¢)
tout )8 Re*%in (Bt +¢)
- %8 Re~*%in (Bt +¢)
o% Aiot A

Any of the above roots occurring twice or more will cause their transient

term to contain some positive power of t as a factor. The conclusion can

therefore be stated that stability will only be assured if roots of the type

d.gtﬂﬂ,d;;fﬁ and a second or higher order root at the origin are excluded.

® This will not occur in practice. From the viewpoint of stability, it is
permitted however, and is included for the sake of completeness.



Alternatively, for stability, only those roots having negative real parts

and a simple root at the origin, can be admitted. This is shown in

Fig. 4.

x
permissible not.
O first order ( Rermis

X any order

/|
)

Fig. 4. Location of roots of characteristic equation.

This figure makes clear a fundamental disbtinction between the right and the

left halves of the complex plane, namely that the former confers unstable,

and the latter, stable properties. In contrast to this, mno fundamental

difference exists between the top and bottom halves of the plane. This

follows from the fact that the coefficients of the characteristic equation

are wholly real, and that complex roots can occur only in conjugate pairs,

each of which defines one real freqguency together with its damping coefficient.
The actual location of the roots of the characteristic equation is

therefore a matter of great importance, but from the point of view of stability

only, it is sufficient that the real parts of all the roots be negative,

Criteria exist which answer this gquestion, but in practice the existence of

merely limiting stability is insufficient. For a suitable response, we
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require in fact that the real part of any complex root be relatively large
compared with the imaginary part, in order to reduce the number of
oscillations occurring while a certain decay in the term takes place. For
large absolute damping, i.e. demping irrespective of the oscillatory
frequency, the real parts of all the roots should be large.

If an actual time solution of the output is required, the evaluation
of these roots and the corresponding multiplying constants, requires an
excessive amount of arithmetical work. Further, the alteration of any
design parameter means that a complete new calculation is required. In
an attempt to surmount these difficulties, recourse has been made To

19,20
charts for a third order system, but the performance of a system

represented by a high order differential equation»cannot‘be so represented,

Design and synthesis by this method has in the past been limited to very
simple systems. The method of "Standard Forms" given by'Whiteleym
partially relieves the situation and this is outlined in Sec. 5.2, The
theory given in Part IT of this thesis takes the synthesis problem a stage
further,

2.3, The Laplace Transform and the Transfer Function.

The definition of the Laplace Transform adopted here is that if x(¢)
is a time function, known for t>0, the Laplace Transform ilp)* of x(£)
is X(p) = /&‘Ptx(t)dt, (10)

()

where p is a complex number with f?eQﬁ large enough to meke the integral

X 2,13
¥ The notation and deflnltlon are those of Jaeger « Use will also be
made of the symbols £ and X 'to denote Laplace Transformation and inverse

Laplace Transformation resnecblvely, as in the book by Gardner and Barnes'!

Thus o‘ﬁx(t)—x(f)) and oL xlp) = x(t).
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CONVverge. In addition to transforming time functions, certain
mathematical operations may also be transformed, as in the following two
theorems .

Theorem 1.

n n-1 n-t
Lo"x = pLD x - D x, , and in particular
iD.’xﬁ = X -
pxXp - x, , for n=|
IDax =

IDZZ(/D)— DJ(.L_:O—— /oxbo s for n=2

Theorem II ;

- _pt
X, given that &/ |X(T)dT> 0  as C-»oc .
,0

i

L i(r)d?’
W;th the aid of the above theorems, o‘che differential equation (8)
relating the input and output of a linear system, is first transformed
into an algebraic equation in p , with the appropriate initial conditions

inserted into the problem. Thus, taking the system as initially at rest

and subject to an input 0;(t) at t=0 , we obtain

(aoPr+a’Pf—‘+ - Fagp +ar_)é;(f;) - (6°PS+ b,Ps-l4 - +bp +bs)§1.90) , <7,

&nd é‘;(’o) - A£f5+ b/ﬂs-’+ - - . 4+ bS-IF +. bS . e—L(F) .
QGp"+apy Fap,ptap

Let Q(/D) = b"lDS + b/PS_"‘L T +AS—IP + bS y (11)
ap +ap™ly +ayp + Ar

then QWis a rational fractional function relating the transform of the
output to the transform of the input and therefore expresses the performance

of the system in every respesct. Q(p) is known as the system transfer

function, and it is deducible in the above manner or more directly, from the
combined effect of the separate transfer functions of the sequence, as

follows,
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3

[

: 8(p) .
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Fig. 5. Transfer functions in cascade.
If the connection of any one component does not load™ the previous member

of the chain, then
Gp - 9P 6P
€EQY) 6o 6

9@ - Yp) )T () ele. ;

e
, the component equations yield the trans-

thus, for the example of Fig. 3

fer functions
:-(.'(P) = /“‘Ka/(e_ /
€ R (1+pT)
&)~ K,
On(p) - —to .|
g, R [B+K k5] pUI+pT)
Ra
b0y =
2(p)= g
Hence g"(p) = KoK Kty ! =Y(P),say. (12)
€ nRa R plpT Xi+pTs)

Y(/D)=§’§D) is known as the open-loop transfer function or simply loop
€
The basic diagram of a servo-mechanism can now be

transfer function.

depicted as in Fig. 6.

X If mutual interaction takes place, the two components camot be
In this case a general transfer function for the

analytically separated.,
two in combination is obtained.



aw)_€@ =10
)/ p) >

Fig. 6. Basic diagram of a servo-mechanism.,
Equa tion (12), with the error equation ECP) = 97'(/7) _éo(P) ,» yields the

basic servo equations, namely

:éo(P) - YCB) (13)
- _
5 TEYp (14)

When Y(p) is written out, (15) gives the equation
(TTp*+(T+Tlp* + p + K )B(p) = KBi(p)

in agreement with (5). :
2.4, Transient Analysis. Test Signals.

Having formulated in the previous section the system transfer function,

Qp = Sk - YO _
&

|+ Y(p)
the response to a particular input 0;(f) is
) = LY@ 6 . (15)
[ +(p)

Once 6;() is assigned, and ég(,o) substituted, the time solution is obtained
) 11-13

as indicated in standard text-books on the subject. It should be

emphasised that (15) is the response of the system from a state of rest,

prior to the application of the input signal, It is usually designated

the normal response of the system. The term transient response hitherto
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used in a general sense, 1is stridtly the complementary function part only,
of the classical solution,
—

The normal response to a unit step-function is very often required,
As it applies an infinite rate-of-change of input signal, it is a
convenient way of assessing the speed of response of the system.. The
unit impul se-function might also be used for this purpose but as the
response shows more overshoots and undershoots than the step-response, it
is easier to work with the latter, In addition to the unit impulse-
function, §(£) , and the unit step-fumction H(f), a further test signal
is the unit ramp-function EH(E) . The normal responses to the above
will be denoted by 7;(t),r{t) and r(¢) , and the errors by es(b), ¢, (t)
and e;@ﬂ all respectively. The definitions of these signals and their
responses are summarised in Table 1,

It is to be noted that the transform of the response to a unit

impul se-function is

TP - P (16a)
[+ 7(p)

the R.H.S, of which has already been defined as the 'system transfer

. funetion., It follows that the response 'g(t) to a unit impulse-function
can be used to characterise a system in every respect just as the system
transfer fuqotion does or the governing differential equationm. This

response has been called the weighting function of the system by certain

. 2
writers o
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2.5, Two Theorems relating Test Signal Responses.
A generalisation of the test signals of the previous Section will now

be considered. Let us take the test signal whose Laplace Transform is

3 A
6, — _ (19)
This has the time form, 6;(E)= Aéffﬂt) , of which the n" derivative is A .
n!
It will be termed an aM-  order input. For n=0 =and n=| respectively

this gives the zero-order input or step-function of height A , and the
first-order input having the constant slope A . The n@order response and

and error will be given by the inverse transforms of

T = Yo A (20a)
[+Np) p™
€ p = . A (20b)
[ -+>(p) P”*’
For n=0 and | respectively we obtain the zero-order error or displacement

error and the first-order error or velocity error. The corresponding
responses are the zero-order response or response to a step-function of height
A, and the first-order response or response to a ramp-function of slope A .
The first theorem concerns a relationship between the error quantities
namely,
Theorem 1 = +the area under the time plot of the (n~D@-order error from t=0
to any particular instant, is equal to the n order error at
that instant. Conversely the derivative of the nﬁ;order error at
any instant is equal to the (nﬂ)m— order error.
The proof is simple and practically self-evident from a consideration of

Theorems I and IT of Section 2.3. For the area under the G%4YE order error



£
is /en_‘(t)dt' , and the transiorm of this by Theorem II, is
0 eﬂ-I(/D) = / .A ___l_
P I+ p" P
= _A_. [
I+Yp) p™
that is, the transform of the n'- order error. The theorem is thus

proved. It applies also, of course, to the responses, The importance
18

of this theorem was first pointed out by Ludbrook as follows.

Theorem 2. - A servo-mechanism having zero n'.- order steady-state

error, necessarily has a minimum total of n overshoots

and undershoots in the zero-order response or response

to unit step-function.
This can be argued from the fact that if the n™ order steady-state error
is zero there must be at least one overshoot in the (n—l)ﬁ—' order response,
for initially the error (given by ¢, — 6, ) must be positive amd if
there were no overshoot, the integrated (n-N"- order error up to
infinity, would be positive, This contradicts Theorem 1. We are
therefore obliged to have at least one overshoot in order that the two
areas may be equal and opposite, and the total integrated error up to
infinity be zero., By differentiation of the (n-1)" order error the

(n-2)"- order error is obtained and by the nature of the '

differentiating process, a further undershoot in the (I?—*,Z)#l order
response is obtained, Proceeding in ’this. manner, we arrive at a minimum
total of n overshoots and undershoots in the (n--n)’i7 order or zero-order
response, Fig. 7 below illustrates the theorem for a servo-mechanism

having zero 2" order steady~-state error. This represents



the optimum condition for this type of servo-mechanism and implies no

€ ?
first
order o) R ¢
€=0
o
4
6,
QO
Zero
order
© t
Responses Errors

Fig. 7. A minimum of two over- and undershoots in the unit step-
response of a servo-mechanism having zero order steady-
state error.

overshoot in the 2™ order response itself, Having thus related zero steady-
state following properties to the number of over-and undershoots in the
response to a unit step-function, it is now logical to enquire what conditions
are necessary for tﬁese zero steady=-state errors. This forms the subject of
the next Section,
2,6, Steady-state Properties of Servo-mechanisms .

The steady~-state properties of servo-mechanisms when subjected to the

input signals AH(E), ALH(E), AETH(E) . .. AﬁnH(f) are easily established by
2 ar

the Final Value Theorem” of Laplace Transform theory, namely



Theorem III.
If ip = Lxit)
then Lim pX( = Lim x(&)
p—~0 [ pe)
Applying this to the n'ﬁ order error transform, in order to establish zero
steady-state error, we have Enclo) = I A
{,[-\/(}D) Pnfrl

and elt) - Lim . _A (21)
2o po [I+ \/(f,)]/a”

The RH.S. of (21) will tend to zero if Y(ID) tends to the form K{)ras p ‘tends

to zero, where the integer r is greater than n ., The result may be

expressed by the statement,
Theorem 3 = A servo-mechanism has zero, constant or infinite 't order

steady-state error, provided that

Lim Y(p) = K
p=o Pr
where the integer r~ is greater than n , equal ton, or less
than n respectively.
Corollary - TWhen v is equal to n , the steady-state n order error is

%, for n>| and A/

e for nN=0 , where A is the magnitude

of the n™ derivative of the input,
In the majority of servo-mechanisms =1 , as in the example of Fig. 3.
These types therefore will sustain a steady-state first-order or velocity-
error, limited only by the size of K . In the linear case they will have

*
no zero-order or displacement error. The factor K is termed either the

* In practice, stiction causes such types to have a small displacement
error.



gain-factor, figure of merit or in the case of the systems being considered,
i.e. T=1 , the velocity-error constant, Here it is dimensionally

-1 .
seconds ~, since for an error of o degrees,

L = A

—

K

i.e. [K] = degrees per second per degree, i.e. seconds s
It is therefore important from the point of view of steady-state errors, to
have K as large as possible. This is done by increasing the thermionic
amplification, which can be done without seriously affecting the frequency
dependent part of the sequence Y(P) . K in fact comprises all such

constents, gains, gear ratios etc. which are frequency independent, so

arranged that the frequency deperndent part, éxclusive of the factor ‘/Pf“
tends to unity as p~© . To take the exemple of Fig.3, whose open-loop

trensfer function was deduced in Sec,2.3, namely

%) = Yip) =  «KaKeKeK7 o
¢ nRaR  pepTXI+ pTo) (12)
the gain-factor here is K = Ko Ke Ke Ky . The factor /- r is a
NR.R P
simple pole at the origin, i.e, =1 , and the remaining part

Y S
(1 + pT X1+ plo)

expresses the effect of two ‘time-lags. This part, which in future will be

denoted by g(/)) » tends to unity as p+>o0 . In general g(p) will be of the

form (1+pSiXit4pS) - - - (1ps,)
(/+,D77)(I+p7.7_) - ((1‘/07;”)
where 'S,,S,.- - and 7,,7, - -- mey be either real or complex, and r+m>{ .

This last condition ensures that at infinite frequency Y(p) - O



The results of Theorem 3 will now be used to classify servo-mechanism

types according to the type of input which they will follow without any

steady-state error. This is done in Table II,

TABLE IT
Lim Y (p) Input sustained Type Neme of Type
p—+ © without steady-
state error,

E;==K None 0 displacement-error
K steady displacement 1 zero displacement=
ﬁ or step-function error

K steady-velocity or 2 zero velocity-

;z ramp-func tion error

K steady acceleration 3 zero acceleration-
p? or 2nd order input,. error.,

Types 1 and 2 are also said to be displacement, veloclity- and acceleration-
contrclled, respectively. For instance in a Type 1 servo-mechanism, &

steady-input velocity is followed only as a result of an error being present

to maintain the output at a constant velocity equal to the input-velocity

and analogously with the other Types,
In concluding this Section, it should be stated that a Type 3 servo-

mechanism has, as far as the author is aware, not yet been constructed.



The theoretical form is useful, however, as Type 2 servo-mechanisms having

high gain do, in fact, take on Type 3 characteristics, In commection

with stability, it is possible to use Type 3 transfer function forms (see

Secs. 5.2 and 9.2).



CHAPTER 3.

FREQUENCY ANALYSIS OF LINEAR SYSTEMS,

The present Chapter is intended to explain the theoretical basis of
frequency analysis and its use in stating design requirements, The
deficiencies of frequency response characteristics are discussed with
special reference to the input signal frequency spectrum, and in conclusion
brief consideration is given to the effect of external disturbances.

3.1. Basis of Frequency Analysis.

In Sec, 1.2 it was stated that the technique of frequency aralysis
design methods was the control of the amplitude-response of the servo-
mechanism in order to avoid peaks grester than 1.2 - 1.6, these figures
being quite empirical, The fundamental principles on which such frequency
response investigations should be based, in order to secure accurate
reproduction of the input signal by the output, form the subject of this
and the following three Sections.

A From elementary considerations, the precept upon which perfect, and
consequently non=-physical, reproduction would be achieved, is that all
frequency components in any input signal should be instantaneously and
faithfully represented in the output signal. This immediately gives the
obvious requirement of unity amplitude-response over an infinite bandwidth
- and zero phase~shift at all frequencies,‘or in terms of the overall transfer

function, Q(p) = éc'/é‘(P))
L

>1 D>
|
|

| Qg =[2G -

<D
A
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and the sngle of Q(w) =0 , for all values of w . Here |ajw)
denotes the magnitude of QUuw), that is the ratio of the magnitudes (rom.s.
or peak) of the output and input sine-waves at any frequency.

A less unreasonable, but nevertheless still non-physical, demand is
that the output shall be identical with the input after the elapse of a
certain time in the transmission, say td seconds, This requirement can be
expressed in terms of the frequency response by means of a theorem of
Fourier Transform Theorym , as follows.

Theorem = If JFx(t) = X(w),X

then Fx(ttf,) = £ 7V X ()

Applying the Theorem, since 6)is to be given by 6;((-£), then the Fourier
Transforme &, (w) and @;(w) are related by

O.w) = ¢/l () -

Hence QGw) = ?o(_/‘w) = Gw) - g_Jwtd , that is, Q(jw) should have
» € @ (w)
amplitude unity and the phase-shift —wéty, for all values of w

These requirements are shown in Pig, 8. The quantity &, is known as the

delay time,

P-3 rd :
I, F denote the process of Fourier Transformation and inverse
Fourier Transformation respectively, that is

+o0
—wk
Fxlt) = /xét)& det =X, say

1 } €
and I Xw) - é%/X(w)i'/ wdu.) = x(E).
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Fig. 8. Frequency responses for perfect reproduction
after a finite delay of (4 seconds.

The frequency characteristics of Fig. 8, although in fact non-physical
are sometimes taken as the aim of communication circuit design, but for
servo-mechanisms, the presence of the finite delay {, is undesirable. As
we know, however, that the frequency response of a servo-mechanism only
covers a finite bandwidtﬂf it is reasonable to enguire what will be the
resulting deformation of the input signal, supposing that these so-called
ideal characteristics were satisfied within a finite, insfead of an infinite
bandwidth, Suppose, for instance, that the frequency characteristics of a
servo~mechanism, shown in Fig. 9a, were approximated by those shown in Fig.
9b, how is the reproduction of an input signal now affected, compared with
simply the finite delay in transmission when an infinite bandwidth exists?

The correct answer to this question must take into account the inpubt signal

itself, for the loss of accuracy of following will differ with different

* The bandwidth is usually defined only for servo-mechanisms showing a
resonant peak, It is the band up to that frequency at which the amplitwude
response again becomes unity.
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FPig. 9. Actual and approximate frequency characteristics
of servo-mechanism or low-pass filter.

types of input signal, and it is precisely the form of the Fourier Transform
of the input, which determines this point. From an elementary viewpoint it
can be at once seen that if the input signal can be represented or even
approximated by a periodic wave and if this is analysed into its frequency
components, those types of input signal in which the magnitudes of the
frequency components decrease rapidly as the order of the component increases,
will suffer~the least distortion in passing through a system having a finite
bandwid th, For in those cases, only the small magnitude frequency components
will be cut out and they will make the least contfibution to the wave shape as

a wholes



®
For the unit step-function the output from the finite-band system

of Fig. 9b is

g =

14
21+ﬁISc'[a)c(t-3c,c)] , . (22)

where Oi(x) is the sine-integral of X given by

x

Si(x) = /%’ﬂ_y-dbf

the function (22) is illustrated in Fig. 10b and a typical response for an

actual physical servomechanism is shown in Fig. 10a.

#gfd”ouvy
/
()buﬁd up
time
N
0
%—,—ﬂ t 0
de/ay -~ ]
time (a) t = ®)
d w,

Fig. 10. Responses to unit-step function of actual servo-
.mechanism and approximate finite~frequency band
system.,
There are a number of relations concerning the delay-time £, , the build-up

time leand the period of the decaying oscillation 2@%, but as they all
(3

pertain to a non-physical system they are of limited use. All lead to the

* It will be noticed that the output is not zero before t =-0, | This is
8 further indication that the postulated system is non-physical and it is
due to incompatible amplitude and phase characteristics,



conclusion that w, should be large, which is self-evident. It is useful

to bear in mind the relation
i
ba = 3
however, as a preliminary design aid. It at least will give an approximate
indicetion of how fast an actual servo-mechamism possessing a certain band-
width can be expected to respond.
3.2. The Input Signal Frequency Spectrum.

The importance of the frequency spectrum of the input signal in relation
to the finite frequency band of system was noted in the previous Section. In
this Section the frequency spectra’of various input signals are compared.
This is dome by replacing the single transient input signal by its periodie
wave equivalent and merely performing a Fourier Analysis for each.

In each case P&)represents the equivalent periodic wave and Plnw) the

relative amplitude and phase of the n™ harmonic, We have therefore

MN=+0c

/D(t) = L 2> PhwE

f= =0

+3 -
P(nw) = /p(t)f.—jﬂw
T

Jawk

where

4
This is commonly known as the exponential Fourier Series and is derived in
Appendix I, It is also shown in the Appendix that the n harmonic is

instantaneously given by

Tz_lp(nw)' cos (nwkt~¢,)
and therefore has the amplitude %éJF%%d! and the phase ¢% = angle
of Frnw) . The following results then hold for the test functioms dis-

cussed in Chapter 2,



1. TImpulse Function Input

| l } I
G
Aé(t) T - T —
0 (a) ¢ _ b) t
(a) Impulse Input. (b) EBquivalent periodic
input.
~ - - r 1 -
A
IP(aw) = A
i.e. all components .
present to the same - / 5 10 15 n

extent,

(¢) Amplitude line spectrum
of periodic input
n>0 only is shown,

88 | Penw) = [P(w)l.
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2. Pulse Input (piractical test form of impulse)
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(a) Pulse input. (b) Equivalent periodic input.
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(¢) Amplitude line spectrum,

3. Step or Zero-Order Input.

o
e (D

1 0 (@ ¢ ®) ¢

(a) Step input. (b) Equivalent periodic imput.



[Paw) = BT, n=0
2
= BT , n odd.
fin
= 0 , n even.

) 5 10 5 n

(¢) Amplitude line spectrum.

4, First-Order Input.

s/ope m

(a) First-order input.

No exact periodic equivalent is possible., Approximations are as
follows. The correct conditions hold only at A, in figure (b).

|‘ T |
l \ l
~—— T ——
s/ope m
A N
€ s/ope m
& A t © ¢

(v) (e)
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(d) Amplitude line spectrum (e) Amplitude line spectrum
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The results 1 to 4 may be compared by expressing the nharmonic relative

to the fundamental. Thus we have

Impulse pulse step first-order approxi-
mation.
“ Sy S ® , , ()
n" harmonic amplitude / 1[5‘” r_uége] i L [sin nwe]/[smge] 4
fundamental. nisin we f 4 4 a
2

The relative amplitudes are shown plotted against n , the order of the
harmonic, in Fig. 11, In calculating the curves T/ has been taken equal to
8 for the pulse wave and equal to 2 for the input 4(b). In the sscond case
the ratio 7/ actually requires to be taken large enough to obtain the con-
ditions illustrated at the point A, in the diagram of 4(b). As this ratio
is increased, k‘eeping the slope m constant, the envelope of the spectrum will

move towards the right.
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Fig. 11, Relative harmonic amplitudes of periodic waves
equivalent to test-signals 1 - 4.

A study of Fig. 11 indicates in a general mammer that the importance
of the higher harmonics increases as the discontinuities (or sharpness) of
the periodic waves become greater. For the impulse input all are required
in equal amount; for the step input the harmonics drop off as [/f; ; for the
triangular wave they decrease as /%, Conversely, it can be concluded that,
should these higher harmonics be removed from a wave, it will lose its
sharpness. For instance, a square wave passing through a system having the
emplitude response I, in Fig, 12a will be reproduced in a rounded form as in
I, Fig. 12b. The characteristic II, however, containing more of the higher
harmonics will result in the sharper reproduction shown. The curve II,
Fig. 12a has been shown with a resonance peak of about 1.2 and will be expected
to give a well damped and sharp square-wave response. Curve III is too

resonent and produces a damped train of oscillations.
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Fig. 12, Square-wave responses, corresponding to three
contrasting types of frequency response,

3.3 The System Frequency Response in relation to Lxternal Disturbances.,
Thus far it has been argued that the aim of the design should be to
extend the frequency band of the servo-mechanism as far as possible. This
is quite correct provided no external disturbances are considered, but in
any practical system this will not be the case, There may be spurious
noise originating in the apparatus or coming in with the input information.
There may be effects of a mechanical nature, such as the existence of
unbalanced torques at the output due t wind, or the roll of a ship, and
mechanical resongnces eso may be present in the structure of the load
itself, The elimination of unwanted signals in the imput is at present
the object of much research but, in the past, the tenlency has been to
avoid having the bandwidth greater than is necessary for the estimated
types of input signal, By this means, the high frequencies associated with

such inputs are smoothed out . Whenever possible, the sources of any



mechanical resilience should be investigated and if resonaﬁces are likely
to be in the operating range of the system, it may be possible to utilise
the effect in a stabilising menner, The influence of a sinusoidal
disturbing torque on the output shaft at some low frequency well within
the band of the servo-mechenism, which is approximately the effect
produced on an unbalanced mounting by the roll of a ship, is most serious,
If the open-loop amplification is kept at as large a value as possible at
that frequency, that is, if near-unity overall amplitude response can be
carried up to that frequency, a partial solution is obtained, but the
difficulty of meaintaining adequate stability increases. Such practical
consideration as the above take away some of the value of the conclusions
drawn from fundamental theory. By extending this theory to the
disturbing influences themselves, however, it may become possible to modify
the system design in the direction to minimise their effects,

This Section concludes the explanation of the theoretical background
of frequency aunalysis, The use of the sinusoidal technique in design is
explained in detail in text-bookzﬁgn the subject. A brief review of the
design procedures in this method is given in Sec., 5.2 following considerations

of relative stability.



CHAPTER 4.
STABILITY CRITERIA,

In this and the succeeding Chapter, a review is given of the methods
relating to the investigation of stability. Various author;&v’have taken
up this question and numerous criteria have been stated, These however
merely result from different methods of expressing the problem. The
fundamental relationships are explained below and the extension to  finite
time-lags considered.

4.1, The Fundamental Theorem on the Zeros of an Analytic Function;
Application to Stability Investigation.

The result of complex variable theory upon which all the criteria of
stability are based is sometimes known as the “principle of the argum.ent“T
and is as follows:=

1. Let the function F(p) of the complex variable p be regular within
and on a closed contour € except for a finite number of poles.

2. Let F(p)# 0 for values of p on C.

Then the excess of the number of zeros, Z, over the number of poles,
P, of fip) within € is the net number of times F(p) encircles the origin
in a positive (anti-clockwise) direction as p traces the contour C once
in the positive direction, This includes multiple poles and zeros
counted according to their order,

References, 22-28,47.

1 See for instance, Copson "Functions of a Complex Variable", p.l119.
Bode, "Network Anelysis", p. 149.
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The application to stability is straightforward. Since we are to
investigate the possible occurrence of roots of the characteristic
equation anywhere in the right half-plane, the contour required is one

enclosing this area, such as in Fig. 13. It is understood that the

radius R will be allowed to increase indefinitely.

Fig. 13. Contour bounding the right hal f-plane
as R-—» .

Having stated the theorem and its hypotheses, it must now be
ascertained if the functions, whose zeros are to be investigated, satisfy
these conditions. Accordingly the general system having any number of

feedback loops is examined, Fig. 14,



Fig, 14, m=loop coupled system.
.X.
The system of Fig. 14 has been given m coupled loops and will give the

resultant transfer function 9°/6(P)=\/90)’ given by

Y(p) Yp) ,
[+ YprY,(p) + Y PrY(p) + - - - (23)
and the overall differential equation relating 6; and &
(1+ 9]0 = 8P (24)

the characteristic equatlon is therefore

Before examining the form of Y(P) s, the individual transfer functions
\/(/D) 2(P), etc. require to be described. If we exclude finite time lags for

the moment, }{(P),\/z(fu) etc, will be quotienﬁs of rational integral functions

of P of low degree and possibly containing some power of p as a factor. The

transfer functions will be stable by themselves and comprise no "non-minimum

* If a transfer function is common to two or more loops, the loops are

said %o be coupled,
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*
phase" elements. This being so, Y(p),z/ga) etec, will have neither poles nor
zeros in the right half-plane,
The various functions we can use to discuss stability are, therefore,

as follows.

1. [+L = 1+ LEXPYND Yyt
Yp) Y (P

This may have zero anywhere in the p-plane, but has no poles in the finite
right-half plane., As was shown in Sec, 2.6, however, Y() will behave like
K/Pf as p tends to zero, and therefore //%/a)will have an 1~'-horder zero at p=0,
As p becomes infinite, \/(p) will likewise tend to K'/PS' and hence I/Y(/D)will have
an s” order pole at p=oc; ™ and § are both low positive integers - 1, 2, 3
ete. These points are illustrated by the example in Sec., 4.2 under the
heading Generalised Kyquist Criterion.

2. Sinoel+//%/o)xﬂ+)/(lo)]/y¢,) the zeros of /+Ygo) may be investigated, that is,

the function | + Y (p)
LI + Y (p) 4 - - -

This may have zeros and poles anywhere in the p-plane, and if, using the
theorem, we are to look for possible zeros in the right half-plane, the

number of poles in this area must previously be found out.

3, The zeros of /+I/Y90)are the zeros of /+}{(,o) +}§(/o)\/z(/o)+§,’§p)}/jgo)+... .

If the individusl transfer functions are Y/(P) =1 , %) = £p) , .. ete.,
9,(,0) 9;30)

the zeros of /+I/Ygo)will simply be the zeros of q(gq). .. +£@)g,p) - +. =0,

* Components whose phase-shift exceeds that deducible from their

amplitude-frequency characteristic, which is the minimum possible.
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that is, a rational integral function of p . This is, in fact, the left-
hand side of the overall equation relating G to €, , say
aoPn‘f'aan‘l*' azpﬂ—2+ S Ay, p ot a, (26)
The function (26) has a n™ order pole at infinity, but no poles in the finite
p- plane,

To summarise, thereiore, for multi-loop systems, forms 1 and 3 have no
poles in the right half-plane. For single-loop systems, Y(p) becomes Y(p),
and therefore none of the three formé have poles in the right hélf—plane.

The application of these results to stability criteria now follows.
4.2, Stability Criteria,
1. Simple Nyquist Stability Criterion,

Direct form.

Let XOD=%é®be the loop transfer-function of a single-loop servo-
mechanism; ‘%qv has no poles in the right half-plane'and \ﬂpﬁro as p—row .
Then as p goes once round the contour of € of Fig. 13 in a positive direction,
only velues of zgm forpfﬁn'need be considered. If ¥ is the number of
positive revolutions made by WFXQ&Q about the origin, then Z = N is the number
of unstable roots of [+ Y()=0. For stability therefore, I+ Ygw) should
make no net rotation about the origin; altermatively VY, (jw) should meke no
rotation about the point [-1,0] . Further, the real coefficients of P in
Y(p) mean that 7;ij) = conj. Y (jw) » that is, the part of the locus for
negative frequencies is the mirror image in the real axis of the part of the

locus for positive frequencies. The stability criterion is therefore as



follows:-

If the locus Y (jw) for all values of w from 0 to o encloses
the point [-/,0] , the system is unstable; if the locus does not
enclose the point [-/,0] , the system is stable.

This is the simple criterion given by Nyquist for systems having no
poles of the function &/, (p) in the right hel f~plane., In the criteria
which follow, the general statement on the number of unstable roots will
be retgined, and the funotion will be considered for all values of fJ on
the contour. It is understood that for a stability criterion one need

only set this number of unstable roots equal to zero.

Inverse form,

Let I/X(/’) be the transfer function 6/60(/7)of a single-loop servo-mechanism.
//Y(/’) has no poles in the right half-plene and as p-—+ %, I/%gg) is of the
order of PS , say, where s 1is & low positive integer, The inverse form
of the rule is as follows.

If the function //y(pmekes N anti-clockwise revolutions about the

point (-/,0], as p moves once round the contour C in a positive

direction, then there are Z = N roots of (+// =0 in the right

hal f-plane, i)
Both forms are illustrated below for the function X(p):/(//o(upr,},ﬁ,g) .
The point [~/,0] is placed first at A and then at B, to show an unsteble
and a stable locus respectively. In considering \/,(ID) for values of p
near zero, P is replaced by /arije where ¢ changes from +/, fo =Tl o
This circumscribes the pole of Y(ID) at the origin. Similarly in con-
sidering //Y(f’) for values of p along the infinite arc, p is replaced by

R£j¢ where ¢ changes from =il I&+ﬁ/é. For an 5™ order pole of ’/y(/a)
. 4

at infinity, [/7,’40) will rﬁtate through sl anti-clockwise,
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w=0
-/,0] at A
N=2, P=0,2=2. unstable. N=2,K6 P=0,2=2. unstable.

={,0l &t B
N=0,P=0,2= 0. stable. N=0,P=0,Z= 0. stable.

(a) direct Nyquist (b) inverse Nyquist
criterion. criterion.

Fig. 15. Direct and inverse WNyquist criteria for
single-loop servo-mechanism.

2., Generalised Nyquist Stability Criterion.
Direct form
Let Y(p) be the resultant transfer function 6/, (p) of & multi-loop

servo-mechanism, \/(/07 will be the general form

VP L+ N @Y+ %@ Yap) - - ]
and will have poles in the right-half plane if [ +Y,(D)Y.(p) + V(P Ys(p) --

has zercos in that region. Since /+Y/(/3)YL(/J). . . will have no
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poles in that region, as the transfer functions Y(p), Yo(p), - - - sere
stable by themselves, an application of the simple Nyquist criterion above
can be used to determine the zeros of /+§§(ID)YZ(/;) +};§g)}§(/g).,., i.e., the
poles of >/(/D) in the right-half plane, Let this number be P, We
have also the condition that VY(p—+0 as p= = . The rule can
therefore be stated as follows.

If the loous Y(jw)= /(jw) makes N anti-clockwise revolutions

about the point [/,O] s asw varies from o fo-o , then

there are Z = N + P roots of /+\/(P) 0, in the right~half

plane., For stability, therefore, N = =P.

Inverse form

Let //\/(PJ =[/+37(/0)Yz(,0) +\/,(/0)7_§(/7) : ]/){(/o) be the transfer-function
e/e('u) of a multi-lnop servo-mechanism. Then it has already been shown
that l/ygo) has no poles in the right-half plane. //Y¢)’ however, will be of
the order of /_)S as before, when p= < . The criterion is thus identical
with the inverse form for a single-loop system, namely:=-

If the function //Y(p) makes N anti-clockwise revolutions about the
point [-/0] as p goes once round the contour C in a positive
direction, then there are Z = H roots of (+ {/y(/0)=0 in the right-
half plane. For stability, therefore, N = O,

The superiority of the inverse form in this case is evident as only
the one diagram is required, This is demonstrated by consideration of the

- . — 3 3
two-loop servo-mechanism having (@) = K /p(i+pl,) end Z(/o)sz/J‘I/o/(/ﬁgz;) s

with 7;>Tm¥.. In this case the resultant transfer function Q/egp)=‘/§a)is

x This example is taken from referencez. In this and other works there

is no mention of the advantage conferred by the inverse diagram in eliminat-
ing the poles of a multi-loop system.



Y(ID) = KI . I 3
plitplm) | +K,Kz7;3ps/(/+,u77n)(/+)079)

Poles of Y(ID) in the right-half plane can be ascertained by a simple

Nyquist diagram to imwestigate the zeros of I+K,KZ—I;SP3/((+P7,',,)(/+PTG)3, and it
will be found that there are none if KK,<8 and two if K/K,>8 .
Let us arrange for the second case, so that there are P = 2 poles of

in the right-half plane, The direct and inverse diagrams showing Y(PJ
and I/Ygo) respectively are now shown in Fig. 16, If we place the point
[~10] first at A, then at B, we can use the same locus to illustrate

unstable and stable conditions in turn.

-0, Olat A

N=0,P=2,2=2. unstable. N=2,P=0,2=2. unstable.
={1,0] at B
N=-2,P=2,2=0. stable. N=0,P=0,2= O.stoble.

Fig. 16, Generalised Nyquist criteria for two=
loop servo-mechanism having unstable
subsidiary loop.



The simple direct Wyquist criterion cammot be used for examples
similar to the above.
3. Leonhard® Criterion.
The Leonhard criterion uses the polynomial
ap +ap” e ap +a,,p+d, = H( (26)
as the function representing the left-hand side of the characteristic
equation. This eliminates poles from the finite p-plane. According
to the theorem, therefore, there are Z = ¥ roots of H(p)=0 within the
right-hal f plane, where N is the number of anti-clockwise revolutions
made by H(P) as p traces the contour € in a positive direction. Stability
will be ensured if N = Q, i.e. no net rotation of H(FJ about the origin.
| This may be simplified further., For since H(P)_ya(,/on as p— s
the rotation made by H(p) as p moves along the infinite arc from R{jﬂ/z to
Rafﬁ/z through +7] radians, is simply +n/l « The total rotation of
being zero for stability, this leaves -nj] , i.e.nll anti-clockwise radians,
for the phase change of H(p) as p pgoes from —jx %5 +jo . Since H(w)is
syrmetrical about the real axis, this is equivalent to the following sta te-
ment,
If Htp) represents the left-hand side of the equation
ap+aprap™s - 4 Gnip+ On = O .
in which a,>0 , there will be no unstable roots of the equation

if H(w) rotates through n anti-clockwise quadrants as w varies
from O% e« |,

The Leonhard eriteria for a fourth order equation in the unstable and stable

conditions are shown in Fig. 17.
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//m«» 3
L _ {29

N=2,62=2. ynstable. N=0,Z=0.stable.

Fig. 17. The Leonhard criterion for a fourth-order
differential equation.,

The Leonhard diagram does not possess. the advantages of the Nyquist
diagram for design purposes, in that the connection of additional
elements in the sequence is not explicitly shown in the new set of
coefficients in the equation.

az 23 . .
4. Routh Criterion: Hurwitz Criterion.

The starting point of both these criteria, which apply only to
polynomial equations of the form (26) is again the fundamental theorem of

Sec, 4.1, Here the rotations of H(w)about the origin are counted by

the net number of times the quotient real part[aﬁﬂufﬁ-~~ +a,] changes
imag.part [ (w) - - +an]
its sign from + to — through zero. It is possible to put

this into an analytical form using Sturm's Theorem. As the rule for
forming the Routh test-functions is cumbersome, the same result due to

Hurwitz is
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given, namely:~

The necessary and sufficient conditions that the equation

| ao/g"‘-,u a’Pn-”‘L azpn-z_/_ + an—l/D"L 4 = 0
(where Q,,4,.- - are real, G, being positive), should have no roots with

positive real parts is thet

A, Dy, Dy .. Ay, should a&ll be
positive, where
a, a a
A = a, Ny = ! 3 , A3 _ Gy Q4 5 ,
a, Qp Q, Qa, ay
o q, as
a a3 qs‘ aZn—(
Ay = |G @z Q4 Qzn-2 | ; Qp=0,7T)>h.
o %4 as -ag Azy-3
o a, a3 Qay azn-l,t
a

It is to be noted, however, that Routh stated a means of finding

the number of unstable roots while Hurwitz merely obbtained the condition

that there should be none of them. A further point, which is time-saving,

is that a necessary comlition for none of the roots of the equation to lie

in the right-half plane, is that all the coefficients a,,a,,- . an

should be positive.
For a cubic, Hurwitz's criteriom is
a, >0

a, as| >0 , lLe aa > a0,

Q, az



Similarly the Leonhard criterion, see Fig. 18, states that at

@, {a,,0]

I stable z
IT unstable T

Fig. 18,
the frequency w, at which the imaginary part of f{gmﬂ is zero, the real

part should be negative,.

. 3
Since HGw) = (~aul+ a3) +/(-aw + aw)
Then —ajgz-%ag< 0
ie. 4,0 > 4,0

It is however impossible to extend this method of correlating the Leonhard
and Hﬁrwitz criteria to the general equation of the nt order,

The use of either the Routh or Hurwitz criterion for design purposes
is limited. They may-be extended however to lay down conditions on the
coefficients, if all the roots are to have either a prescribed ratio of
real part to imaginary part (relative damping), or a prescribed value of
the real part irrespective of the imaginary part (absolute damping).

This is taken up in Sec. 5.l.

In concluding this Section, mention should be made of one further



adaptation of the generalised Nyquist criterion which requires very little
computation in its application, namely that of Demontvignier and Lef“evrez.s
This is based wholly on the phase-frequency characteristic, from which,
with the aid of a Table, the number of half-turns which the function mskes
round the origin, ean be found.

4.3, The Case of Finite Time Lag,

Thus far the transfer-functions which have resulted have been
quotients of‘rational integral functions. If the possibility of finite
time-lag is admitted, transfer functions of the type f_—T’D. Y(ID) are
formed, Further, as the finite time-lag can occur in either the main
sequence or in the subsidiary loops or both, a considerable variety of
problems is presented, This can be organised either on the basis of
control type, number of exponential lags amd location of finite time-lags,
or on the basis of the resulting overall differential equation, As the
 first arrangement, besides being more complex, leads to the same overall
differential equation for a number of different connections of transfer
functions, the second one is the more logical. The types of equation
may therefore be listed as follows.

I. Having one exponential term
1. ap'+ap +a, +ocpmff7;0 , for m=0,/,2%_
2. ao/J3+a,lb2'+ azp+a3+otpm£‘7p, m=20,1/,2,3.

and so on for higher degree of the polynomial part of the equation.

* For m>2 the equation always gives an unstable solution. Similarly
in the cubic case, type 2, with m>3 .
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As a subclass of T, may be listed those in which m=0 and the constanrt
term of the equation is absent. This will be the case in the overall

equation of a single-loop system having the transfer function

_QO(ID) = &“7—P- K
¢ PU+pTXI4pT)

II. Having two exponential terms, with different finite time-lags in
general,
The possible combinations are very large, but it is likely that the
majority will always be unstable., Practical cases could arise however,
as in a two loop system having a main sequence transfer function

T
Yp)=Ke 70(/+PT,), and a feedback tranmsfer function  Y,(p) . For this

we have Qo(lo) = K{TP . /
= PUHPT) 1 4+ ke~ P Yy [pC+pT7)

and the characteristic equation
—- T ~T7p
P+ p o+ Np(pIKe Pr kP =0

The types occurring in the classification IT must necessarily be
treated as they arise and some difficulty may be expected in the solution
of the oroblem,

With regard to the slightly simpler class I, Gorkaq has treated the
stability of the equations op+i+ QE“ZP and op +1+ Gg P
showing that they are unstable and stable respectively. Shermansa has

given conditions for the stability of the equation
G p® + aip + A + ape P y
33
which agree with those of Minorsky. Ansoff and Krumhansl have extended

this case to cover the equation

2 m_~7p
o +a,/3+a2_+o£/7 £ y for mxO



4,5, Numerical example.
In this Section, the equation
piHEpE+5p i + 10 EP . (27)
is examined as an example illustrating the use of the fundamental
theorem for transcendental functions. A few notes on the application
of the theorem are first given,

1. EBquations of the type _
n h-+ m —1p
AP -/—a,/D + - -/—an_,/7+a,7+oc/0 Z '=0, m&in
may be treated directly in the form of the L,H,S, of the equation, i.e.

a rational integral function in p plus the term o(pmi—T. Such a form
tends to the value QO/D” for values of p on the infinite arc of Fig.13
but has no poles elsewhere in the finite part of the right half p-
plane,

2. It is convenient to express the equation however as

“sz-—/lo ]
ap+ap™! + - +anp +an
and investigate the zeros of the expression in brackets. This has the

=0,

ap’ +ap™+ ot anpt a,,// +

advantage of separating out the effect of the time lag, It also in the

author's opinion makes plotting much easier.
%pmi_¢ ]
aGp" +ap™ 4+ - anp tag
infini =R J¢/ iT, 7, Fptends
then for values of p along the infinite are p-/tg ,—///J_4¢<//z, P

(28)

If Fpr o= [+

to the value unity as R increases indefinitely. For values of p on

an infinitely small semi-circle passing to the right of the origin, F(p)

behaves like [+ %/)m . For indefinitely large values of p on the
an —jTw

J
imaginary axis, F(jw) tends to unity, for m<n, and to /+Eo(_¢i for m=n .
(]



. T
If however m>n, say m=n+q , then F(jw) tends to [+ %‘ (jw)qz /e as

w-r ® and hence becomes indefinitely large, Under these conditions
the locus is bound to include the origin and the system will be unstable.
This has been referred to already.

The important point that F(») may now have poles anywhere in the
finite p-plane must also not be overlooked. This can easily be checked
by apnlying the Routh criterion or the Leonhard criterion to the rational
integral function in the denominator.

It is interesting to note that these poles cannot be taken out by
imverting the expression oélbm&_@/[aoluﬂa,/p”'; .. +a,,] s 1.e. by using

the function
: |+  @ptap™'y - . tapprag
oL/JmZ-J’b

as an essential singularity occurs at infinity, and the theorem does not

apply., This is in conbtrast to the case /-I-//\/(/” for a multi-loop system

pointed out previously.

Consider then the equation, 2
p3+5p2+5,u +1 + ot
Application of the Routh criterion to F3+5/b"‘+5}3 + | indicates that

P—.:O

there are no zeros of this in the right half-plane, and that therefore

Fip = | + o7 (29)
Io3+ Sp"-+5p+1

has no poles in that area. We note also that FGp) vanishes for infinitely

large imaginary values of p and also along the infinite arc. The locus

along the imaginary axis will therefore constitute the entire plot. In



Fig. 19, the locus

_Zj'w
0g
_ [~ 5w+ j(5w-w)

is shown., For the entire range o> w >-~oc, the point [-1,0]

F(jw)—l =

10€</@
—jwiSw+5jw +/

Fig. 19.
is enclosed twice in an anti-cloekwise direction, and hence the equation
has two unstable roots. More details can be taken from the diagram if
required, As the locus merely moves radially as the coefficient of the
exponential term alters, it can readily be estimated approximately
(1)  that 2’5656*2'0 renders the system just stable ard that

. . -2
(ii) 45 6¢& r will introduce two more unstable roots.
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By calculating the frequency value for which the unit circle intersects
the ocurve and by estimating the rotation necessary to make this voint
coincide with (-1,0] s it can also be found

(111)  that f0£° P will produce limiting stability and that

(iv) lOgT44ﬁP will introduce two more unstable roots.

The diagram illustrates in an excellent way the manner in which an
infinitely large number of unstable roots will be obtained as the
coefficient of the exponential term increases without limit, for one-by-
one, the infinite number of turns which F(jw) makes about the origin will
expand to enclose the point [-1,0] . In view of these design
advantages, this type of diagram is much to be preferred over the method
of Gork,

This Section concludes the review of those criteria designed to

test limiting stability.



CHAPTER 5.
CRITERIA OF RELATIVE STABILITY. DESIGN‘ PROCEDURES,

The previous Chapter examined methods of ascertaining whether stable
or unstable operation would take place in any particular system, Those
methods were described as criteria of limiting stability, in that they only
provided infomation concerning the existence or non-existence of stable
operation, and if the former was the case, no indication was obtained of
the degree or margin of stability. By a simple extension, however, this
extra detail may be predicted, Such extensions of the previous methods
may be termed criteria of relative stability. Theoretically the development
is trivial but practically it is of some consequence. In this Chapter, a
review of these criteria is first given and this is followed by a summary of
the available design procedures.

5.1, Extensions of Previous Criteria of Limiting Stability.

The simple criteria already considered are, in effect, means of
determining whether there are any roots of the characteristic equation of
the system, which have negative damping, that is, roots having positive real
parts, The criteria, which we now seek, are means of determining whether
there are any roots having damping less than some prescribed positive value,
In comparison with the contour of Fig. 13 which bounded the right half of

the complex plane, the contour now considered extends over the imagimry

axis as shown in Fig. 20.
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Fig. 20, Contour from which roots of characteristic
equation should be excluded, for relative
damping to exceed a prescribed value,
In fhe above contour, values of p along the ray making the angle
B with the imaginary axis in the upper half-plane are given by p:L;@r+jL
where o=tans8 . As the parameter u 1is increased from zero, so PP moves
out along the ray., As & increases from zero to 75 the ray pivots about
the origin from a position of co-incidence with the positive imaginary
axis, to co-incidence with the negative real axis, the lower ray remaining
at all times the mirror image of the upper one in the negative real axis.
In this way the whole of the.left half-plane may be investigated, The
values of p in this more general case may be said to represent the use of
complex frequencies by analogy with the values of p on the imaginary axis
only, which represent real frequencies. Further, the adoption of the
above contour, on the finite portion of which the ratio of damping to

frequency is constant, lays down a fixed minimum value of relative, as

distinct from absolute, damping. A contour to represent the absolute
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damping ] say, merely requ'ires the infinite arc to be closed by a line
parallel to the immginary axis and displaced § to its left. Technically,
relative damping is more important as it as signs a definite value to the
~number of cycles or half-cycles of oscillation which are possible in a
transient before it is damped to some fraction of its initial value.

For instance, if this fraction was given by el (about 4.3%) we have,

. ~aut
(initial value)é& = (finel value),

final value s f

where irnitial value

The number of half-cycles of oscillation ocwrriﬁg in the time t= H/Tu
is given by %u/ T}M = I/ = cot@ , which is constant for a fixed value of
B . There are therefore 2, 1, and 0.5 half-cycles of oscillation while
the amplitude reduces to 4.3% of its initial value, for B = 26.5°, 45°
and 63,43° respectively.

The extensions of the previous criteria, which are now briefly given,
merely consist in the application of the fundamental theorem to the contour
of Fig. 20, As analogous results may be derived for the case of absolute
damping, details of this are omitted.

1. Extension in Nyquist Form.
Let Y(p)be the resultant transfer function 90/2(/0) of a multi~loop

servo-mechanism. Y(p) is of the general form
Y (p)
T+ %p)Y, () + Yi(p) ) - -
where Y(p), %2(p), - - etc. are the transfer functions indicated in Fig,l4

and have neither poles nor zero in the right half-plane, Let P' be the

number of poles of [+ \/,(/D)yz(/,) + ‘/{(/;)%(/o)- .. within the contour C of Fig,.20,

P' can usually be determined by inspection. Let Z' be the number of zeros
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of [+Y(P)%(p)+. . within C and N' the number of anti-clockwise revolubions

of | Y (P)Yo(p) + .- Bbout the origin as p g&oes once round C in the positive*

direction. Then by the theorem

Z' - P' = N!
and hence Z' = N' + P
Since the zeros of [+ Y(p)Yzlp) + . . . are the poles of Y(» , the theorem

may now be applied to \@p). Let N be the number of anti-clockwise

revolutions of Vﬁv about the point [1,0], as P goes once round the contour,

Then the number of zeros Z , of )Qp) within € is given by .
Z -2 =N
and hence Z =N+ 2

For stability therefore - N=-Z',

The case of the single loop servo-mechanism is simpler, in that a
preliminary application of the theorem to determine the poles of Y?)within
C is unnecessary as these may be found by inspection., It is to be noted
that poles of Y(p) cannot ocour in the right half-plane but they may occur
within the contour € of Fig. 20. This is a slight complication compared

with the Nyquist criterion of limiting stability for a single-loop system.

For the same reason the use of the inverse function 9@(P) is here
(]
no simpler than the direct form using 6./¢ (P> .

2. Extension in Leonhard Form.

The function representing the left-hand side of the characteristic

equation is

H(p) _ ao/o"+a,p”#agpﬂ_2+~ L +an—/F + a4,

X The interior of the contour being on the left hand side of the tracing
point,
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H(/D) has no poles in the finite p-plane, Let N be the number of
anti-clockwise revolutions of H(p) as p traces out the contour C in the
positive direction and Z be the number of zeros of Hpwithin C.,  Then
according the theorem Z = N.

But since () behaves like qp” as pr @, H() will rotate anti-
clockwise by n(77+28) radians as p moves round the infinite arc BCA,
Lets(x be the anti-clockwise rotation (in radians) of H(/a) as p moves

along the rays from A to O and from O to B.  Then
Z =N= n(i+28)+¢
21
Let y be the anti-clockwise radians rotation of H(p) as p moves from O

Yo A, Then Y=—gb/2 and ¢=-2y . The number of zeros of H(p within
C is therefore given by
Z = -{77 + o + n{g’//_l_ (30)
and the number of zeros of H(/)) within the V-shaped area AOB is
n-2Z = Yo + Ny = nB//_/ (31)
The relations (30) and (31) are those given by Leonhard .

The use of complex frequencies in the manner of the above two
extensions appears to have occurred to a number of different authors,
which is not surprising in view of the trivial mathematical difference
from the use of real frequencies. Vazsoniso in 1949 stated the Nyquist
extension for the case of a single-loop servo-mechanism, without mention
of the very similar work of Leonhard in 1948, Prior to this Campbellas
and Profogein 1945, had separately been using complex frequencies. In
their work, the left hand of the p-plane is mapped using rectangular

co-ordinates, that is, different fixed values of absolute damping.
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By this method Campbell showed how an approximate unit-sten function
resoonse could be derived from the HNygquist diagram. The Tables in
Appendix II were prepared by the writer in 1948 to help in the calculation
of a Nyquist diagram for complex frequencies. This in fact is one of the
practical difficulties which besét the investigation of complex frequency
1001? Neither Vazsoni or LeonhardTmade reference to an early paper of
considerable theoretical and technical value by Liithn'f5 in 1942, In this
apparently little known paper, Luthi has anticipated both Leonhard's
contributions of 194426 and 1948ﬂ , and furthermore has given an extension
of the Hurwitz Criterion to the case of relative stability. For the

sake of completeness this is given below, together with an improved

1

result expressed in terms of Routhian test functions.

*  Kusters and Moorémgive charts for the decibel-modulus and phase~shif't
at complex frequencies in a very recent paper presented at the D.S.I.R.
Conference in July 1951.

48 .
T Leonhard refers to the work of Luthi in his recent paper presented at
the above D,.S,I.R, conference.

! Due to Mr. Babister of the Aeronautics Department, Glasgow University
(as yet unpublished).



3. Extension in Hurwitz form.

Let the equation whose roots all lie outside the contour ¢ of Fig,

20 be n -/ n-2
H(P) = a°ID +O/F +azP e +an—tF+a” =0 (26)

If the roots of (26) are z,,zzJ ..z then

n 2
Hp) = a, H(p -z.)
Let these roots first be rotated clockwise by the angle A , giving the
polynomial -8
Fip) = a] (pz ™)
=1

Secondly, let the roots be rotated anti-clockwise giving the polynomial
L
Holp) = oH(/J z,e?")

Both the above operations will result in the roots being in the negative
half'-plane, although not occurring in conjugate complex pairs., }ﬁgp) and
fég@ are therefore polynomials with complex coefficients. If however, the

equation

of degree2n is formed, then its roots still lie in the negative half-plane

and occur in conjugate complex pairs, Thus the equation

o B iB
J J
a’[] (p-z,s”" Xp-zg") (32)
=
represents a stable system and has real coefficients, It will satisfy the

ordinary Hurwitz conditions.

The extended criterion applied to any equation

aﬂ +OP +02P _/— . . +aﬂ-lP+aﬂ=o
of the{ﬂhdegree, is therefore as follows.
* All the coefficients a,,a, -- an 8&re positive, otherwise the system is

unsteble,  The requirement q,,a:,--a,>0 is a necessary but insufficient con-
dition for stability.



(1) Form the equation of degree 2n , having n roots equal to the
roots of the original equation rotated through+j3 radians, and
n roots equal to the roots of the original equstion rotated

through ~ 3 radiens. This is the equation

(Z’:' orEJTﬂFn-ngi a, {J'rBPn-r) - o

T=0
Let this equation when written out be given by

- 2n-2

+bZ/D + +52n~1f)+bzﬂ=o

EO/DZ” + b p

(ii) Apply the normal Hurwitz Criterion to the set of coefficients

be, by - . 62” of the above equation.

The most unfortunate feature of this extended criterion is the doubling
of the degree of the original equsation and comsequent difficulty in
evaluating the Hurwitz determinants. For the simple cubic equation, a
sixth order determinant and its successive corner minors of order five, four,
three etc., require to be evaluated, The calculation of the coefficients

themselves is not inordinately great, For a cubic we have

bo = aoz bl = 2000‘6056
bz = af+20,a, 05283 63 = 2a°a3c"533 + 20/G, cas B
b4 - azz-l- 2a,ds s 2/ bs = 2a,03cos 3

It is not likely, in view of this doubling of the order of the determinants,
that this criterion will be of much practical value.
4, Extension in Routh form.

In this form the determinants which require to be greater than zero

are all of the third order, and there are _Zn(n—l) of them to be evaluated

for an equation of the n"M degree. The extended criterion is as follows:-



The necessary and sufficient conditions that the polynomial

Hp) = a,p +a,p"" 4 q,p"% 4

+a,,_,’D + Qn =0
(where a,,q,,.are real, g,

. - %,
being positive) should have no roots in the sector

AOBCA of the complex plane (see Fig, 20), are that B,,(, , Do,

. should
all be positive, where
() Ao = a,sik’ng , A =a;sinng smnih-1)¢g A, = aysinngsin (n-2)¢ ,
Any= Gy sinngsing 9 Am =0, for m>n-1
(i) B, = a;singg 5 B, = a,sin2¢ s By = agsm3¢ , .
Bn= a,sin n¢ s Bm=o0, for m>n-
(lﬁ) Co = - Ao A/ Az 9 C, = - Ao A/ A’S ) Cm = - Ao Az Am+z
Bo 8/ Bl Be 8/ 83 80 8/ SI‘IH'Z
o B, B o 8 8, 0 B, Bmy
Cm=0, for m>n-2
GV) Do = - Bo B, B;_ b ‘Dl= - Bo 61 83 ) . Dm= - 80 8/ Bm-f-z,
Co C, C)_ CO C’ C3 Ca C| Cm«[-Z
Q Co C, % C° c’-’- (0] Co Cm.]..]
Dm=0, for m»n-3

The determinant for £E, ocan be deduced from that for Dy by

replacing B by ¢ and C by D . Similarly for A, eto.
The array of test-functions is in the general case formidable, If

we consider the cubic equation, and compare this method with the previous

one, we obtain

The number of roots within the sector may also be found as shown by
Mr, Babister.



—_— .2 ; ;
Av = a,sitng A, - asinngsinln-1)¢ 5 A= a,simnsin (n-2)¢
B, = aising y B, = a,sin 2¢ s B, = agsin3g
Co=~]Ao Al Ay » ¢ = - A, A, O v (=0
Bo Bl BJ, Bo B/ o
o B8, 8, °© B, 8

Dy = —| 8B, B/ 8)_ 9 D, = O
G- C, ©
o C ¢,

If B.,Co and D, are all positive, there are no roots within the
sector, Comparison with the previous criterion clearly shows the Routh
extension to be superior, as it requires the calculation of six
coefficients and the evaluation of three third order determinants, The
Hurwitz extension requires about the same number of coefficients and the
evalvation of a sixth order, fifth order, fourth order etc. determinant.

In a quartic equation the Routh extension results in six third order
determinants, which is much preferable to the set of determinants up to
the eighth order given by the Furwitz extension.

5.2. Design Procedures.

The previous criteria are by themselves no guarantee that the
performance of the system will be acceptable. In the response to a step-
function input, a certain degree of damping will be known to exist, but
the actual height of the overshoot will be as yet unknown. In the
criteria obtained so far, no indication is present as to whether the roots
are real or complex. It would be possible for a relatively small real

root to be present and cause the response to persist longer than permitted.



This could, of course, be separately checked by applying an extended
criterion of absolute damping (for instance by the substitution of -k+p
in place of p and application of the Hurwitz criterion), There are,
however, several design procedures which deal with the problem more
directly. It is proposed only to review the two main me thods briefly,
The first of these is based upon the frequency response of the system
and may be carried out in a number of ways differing only in slight
details of calculation and graphical work. The second method is based
upon the response to a unit-step function input,

1. Frequency Response Basis., Q - contours,

A Q-contour is the locus of points on a Nyquist, inverse Nyquist, or

other design plane, at which the value of a?é&ﬁu)‘ is constant, the
particular magnitude ofl%&ﬁ&rbeing known as the Q-value., If a set of
Q-contours for the values Q@ = 1, 1.1, 1.2 etc. are placed upon a liyquist
disgram, for example, the menner in which the Q-value is affected by
changing values offagﬁﬁis made evident, The maximum Q=value may, there-
fore, be controlled at the same time as the open-loop transfer function
"is designed and sufficient relative stability can be obtained. The
Q-contours for the various design planes are now given. As a formidable

1iteratur§”h5exists on this subject, the results only are given here with

a few explanatory notes.



(a) Polar Diagram of Q/e(jw) . (Nyquist Diagram).

Fig. 21.

oP =

Q‘Ve(jw)’
¢ = angle of Gpljw) AP = A0+ 0P = I+ Gy(jw) = Oiy(jew)

Ratio OP/AP = e%i(jw), =Q

A line of constant Q@ is therefore the locus of points whose distance
from two fixed points are in a constant ratio and is therefore a circle

(Circle of Appollonius). The Q-contours form a family of coaxial circles

of radii' Q [ and centres[—Ql ,0].
Q- Q1



()

Polar Diagram of e’/@o (jw) . (Inverse Nyquist Diagram).

Fig. 22.

op

]

e, ..
l /@o(Jw)l
¢ = angle of 2/6°(jw)
AP = Ao+0P = I+¢/glm) = Sifp U
Hence length of AP = ,e‘:/g(jw)i = l/Q . The Q-conbours in this case are

a family of comcentric circles of radii [/

l

and centres at [~/,0]

.



(¢) Cartesian Diagram of Zqugwﬁagﬂﬁlagainst phase angle

(Log=modulus =

phase angle diagram).

Of Qo/e(JCD) .
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Fig. 23, Log-modulus phase-angle diagram.

The Q-contours may be derived from those in Fig. 21 by plotting the

decibel magnitude of the vector OP as it traces out the Q-circle of that

figure.

and converted to decibels.,

More accurately, the magnitude can be calculated analytically

The use of the Q-contours on any of the diagrams is either to fix the

gain factor so that a certain maximum Q will not be exceeded or, more

frequently, to design the local 'dent' required in that part of the

locus which approaches the critical point, once the gain factor has already

been fixed by consideration of the steady-state errors. The design




procedure will emnable a good first approximation to the final system
adjustment to be fairly quickly obtained, It is evident, however, that
not only the Q-value at the tangent point of the locus and the Q-contour
is important, but also the nature of the tangency. If the two curves

can be made to approach each other and touch over a ramge of frequencies,
rather than just at one frequency, the system will possess a broader pass
band and be more free from resonances, It may on the other hand become
susceptible to unwanted inputs and the probability of these occurring must
be considered. The use of Q-contours (or i~contours) has received much
gttention in America but the absence from the frequency~response diagram
of any real information about the transient response (i.e. size of ofer-
ghoot, number of overshoots, duration of decay of final overshoot etc.)
leaves much to be desired in this technique.

The method, however, can be extended by the complex-frequency technique
and, by using Canpbell'sas construction, the principal oscillatory mode
may be found, With extra tvrouble, the additional roots of [#Y(p)=0 may
be found as shown by Kusters and Moore‘w7 . Having obtained the roots,
however, and having calculated the coefficients of the various terms in
the time response of the output, the magnitude of the overshoot is still
not explicitly given; for this information the time-response of the output
requires evaluation and plotting. Anvexception to this is the case when

the principal mode term accounts for the whole of the overshoot by the time



meximum overshoot occurs, Campbell's method will then give fairly good
results in analysing an experimental system. In Part II of the thesis
this concept of the principal mode representation is carried further and
a method of synthesising a system transfer function for a prescribed
transient response is given.
2. Transient Respénse Basis., Whiteley's Standard Forms.

The classification of servo-mechanisms adopted by Whiteley in his paper
is based upon firstly, the type of steady-state error which the system
sustains and secondly, the order of the differential equation relating the

input and output quantities, If a system has the differential equation

(D" +a D™+ - +0.,D+a.)8=(4D+b D+ .. +b D+ b)6 (8)
in which s<r this yields the overall system transfer function
byp® + b p% . . +bp+b
Qp) = g"(P) = Pr' IIDPI+ P 3 (11)-
QL agp +a|P —')L : - +G,-_,P +aT‘

The forms of CDQﬂ for zero steady-state displacement, velocity and
acceleration error can now be found using the Final Value theorem of Sec.2.6.
The required forms are in fact.

l. for zero steady-state displacement error

S S-1
bop*+ {7/}0" + - - byt A (35)
aopr+aw'4+ - ~+qu + ap
2. for zero steady-state velocity error
bp*+ bp*'+ - - o pta (34)
WP "+ ap™H - Gp + 5
3. for zero steady-state acceleration error
- 2
boPS+b(PS b ta.Pta, Pta, (35)

‘. 2
ap"+ OIPP "t PO p H G



The equality of the constant terms in the numerator and denominator thus
ensures zero displacement error while agreement of the coefficients up to
the term in p ensures zero velocity error and so on. A "Standard Form"
can now be constructed for any ome of the types (33) to (35), having a
particular value of r  (the order of the differential equasion), by
establishing once and for all, that set of coefficients which gives a
satisfactory step-response, The basis of the forms given by Whiteley,
reproduced in Table III is in most cases the limitation of the overshoot,
Some of the forms give also a small subsequent undershoot,
In connection with the Table several points require to be noted.
(a) The values of the coefficients are prescribed in terms of the
fixed term in the denominator of Rp) . This constant
fixes the time-scale of the response, For example, the

Standard Form (60) is . .
/80.)0/0 + Wo = ®C D

P+ s, p? + 29widp® + 38w p® + 18wlp + wf
If W, is increased to aw, , the R,H.S. becomes
a®[ 18w (Pa) +wo5]
a5[(£3)5+ Fe0s (Pa)* + 290 (P6 Y + 38 wd (FB)* +1Bwith) + 0o
which is Q(%a). The response to a unit step-function is now

é.
—(p) =
@ZP

given by the inverse transform of Q%)= @Q(%), compared with

P alpa) "
Q@@)p previously. The Scale Change Theorem therefore gives
the output 6,(at) , i.e. an output a times as fast as &(t) ,

but of the same shape. The term u%” should, therefore, be

as large as possible,
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(b) It will be seen that the Stendard Forms in the Table have their
numerators limited to a constant, a linear factor and a quadratic
factor for Classes A, B and C respectively. This is not always
the case although most practical servo-mechanisms will fall with-
in these categories. In the absence of Standard Forms having
numerators in excess of the second degree, this coefficient in a
proposed servo design will have to be neglected.

(¢c) There is some choice in the Standard Forms available, A
system may be analytiéally of Type 1, i.e. have a velocity error,
but this may be so small that a zero-veloeity error Form, may be
used, Such a difference does not greatly matter, as the Standard
Forms themselves do not necessarily represent the final adjustment
of the system, but only a good first approximation. It will also
be noted that Class A of the Table includes both Types O and 1 (in
the notation of this work). Formally this is incorrect, but

practically it is of little consequence.

In preparing thdse Standard Forms, Whiteley has allowed the equation
I+Y()=0, to have only real roots and to obtain the overshoot as a function
of only one parameter, various other restrictions have been laid down.
These conditions do not enmter into the application of the Standard Forms.
This method of reducing the problem may be compared with that adopted in
Part II, where the existence of at least one complex root-pair is essential

to the theory.,



In addition to these main design procedures, several other techniques
exist. The root-locus method of Evans’ is essentially a means of tracing
the movement of the roots of HYp) as the gain constant is varied. Apain,
specific information regarding the transient response is not easily obtained.
Chestnut and Mayer:38 have computed a series of charts which enable an open~
loop transfer function to be designed for any given value of the resonance
peak of Q%ggaa and for a given resonant frequency, or for a specified
transient response, Their method may be criticised on two main points as
follows,

(1) The number of open-loop transfer function types is limited to

four, all of which have a basic Type 1 control characteristic.
The authors state that other control types mey be approximated,
as far as step~-function response is concerned, by an équivalent
Type 1 design. It is doubtful whether this will always be the
case,

(ii) The very large number of charts which are required. For the
above four transfer-function types no fewer than 36 charts are
given, each of which contains on the average 15 curves,

The above method does admittedly provide correlation between the
frequency and transient response, for the forms which are considered.

Even so, for the amount of information provided, the number of design charts

is excessive,



Allied to the central design object of achieving specified frequency,
and more important specified transient responses, are two further problems,
These are (i) the correlation of the frequency and transient responses and
(ii) the design bf control systems in'wﬁich noise is preéent in the input
signal., The second-mentioned has been and still is the object of much
research, and is closely linked with the design criterion of minimum r.m.s.
error, Regarding the correlation of the frequency and trausient respouse,
a variety of methods are available for the prediction of the transient from
the frequency response or vice=-versa, In ?art ITI of this thesis, an
experimental study of & metadyne-controlled servo-mechanism is given, in
which the transient response is (a) measured and (b) computed from the
measured frequency response, Reference may be made to Chapter 11 for an
explanation of three methods due to Campbellés, Bedford and Fredendallgq,
and Floyd40, by which the conversion from frequency to transient response
may be carried out, The two last-mentioned papers also deal with the
converse problem,

In conclusion, it may be said that the methods mentioned so far,
with the possible exception of that due to Chestnut and Mayer, do not permit
the rapid design of servo-mechanism transfer funct¥ons from which the
maximum overshoot and damping of the unit=step function response is easily
predictable, Whiteley's Standard Yorms, of course, do give the required
trensfer functions for sEecified maximum overshoots, but failure to realize

the exact figures demanded by the Standard Forms leaves the question of



possible maximum overshoot unanswered. With the aim of meeting this
deficiency, the theory of Part II is now presented and illustrated.
The.theory contained in this Part is & logical development of the idea

35
of principal mode representation due to Campbell, and follows a&:.suggestion

made in the conclusion of his paper.



PART II,

THE DESIGN OF LINEAR SERVO-MECHANISMS HAVING PRESCRIBED TRANSIENT

RESPONSES,



INTRODUCTION .

The brief review of design methods given in Chapter 5 has indicated
that, so far, considerably more time and thought has been accorded to
the frequency response method of investigation and design, than to the
transient response method, This has been recently stated in a Progress
Review by Whiteley"’é to whom is due the "Stendard Form" Technique for
obtaining specified trensient responses, The method proposed in this
Part has roughly the same object as Whiteley's work, that is, the
production of system transfer functions which will give a definite known
overshoot in the step-response, It is more flexible, however, than
Whiteley's method since, as will be shown later, the overshoot is readily
calculable in all cases,

The requisite theory is given in the following Chapter, Chapter 7
contains examples illustrating the method and shows how difficulty may
arise in the inherently unstable Type 2 and Type 3 systems., This
difficulty is resolved in Chapter 8 by using the transfer function eég»,
instead of the overall system transfer function Q%%qv . Numerical
examples demonstrating this second method are then given, and final

conclusions regarding both methods are drawn.

* A.L. Whiteley, Progress Review of Servo-Mechanisms, Proc.I.E.E,

vol.98, I, p.289, Sept. 1951,
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CHAPTER 6.

THE DESIGN OF “%/p(P) TRANSFER FUNCTIONS.
¢

6.1. Description of Method.
Before entering into mathematical details, the term "prescribed
transient responses" requires to be simply stated. By this is meant

(a) thé nﬁmber of overshoots and undershoots; for a satisfactory
response this is either one overshoot and no subsequent under-
shoot, or one overshoot with a small subsequent undershoot,
possibly of 1 - 2% of the step-function input.

(b) the size of the maximum overshoot; this will vary according
to the application but not normally be allowed to exceed 15%.

(c) the time at which meximum overshoot occurs, if this may be
specified independently.

In the above speoification of a transient response, it will be seen
that no provision has been made for "dead-beat" response, i.e. response
without overshooting. It is a necessity of the EEEEE? theory, that some
overshoot should take place. There is not, in general, a great deal of
difficulty in reducing this to as low a value as desired, and, furthermore,
.it is likely (as occurs in the results of Part III), that the practical
system will in any case show less meximum overshoot than the design on

paper indiocates., By using the full theory instead of a simple.

* The initial formulation of the transfer function relating either the

output or the error to the input will usually neglect physical friction,
since the nature and amount of this is generally unknown, and its effect
is stabilising in any case,



approximafion it is possible to reduce the predicted overshoot to values
of the order of a few per cent.

 As pointed out in Sec. 2.5 however, there are fundamental limitations
to the amount by which overshooting of a servo-mechanism may be reduced
once its steady-state following properties are laid down. These are
sumarised below:-

Type Description Type No. Minirmum Total of Overshoots and

Undershoots in Step-Response.
Displacement-error 0 0
Zero'displacement-efror 1 0
Zero velocity-error 2 ' 1
Zero acceleration-error 3 2

Since the majority of servo-mechanisms are of Type 1, with a very
small velocity-error, or of Type 2, some overshooting is therefore
inevitable from theoretical restrictions* . The deficiency of the simple
theory in admitting only solutions giving an overshoot is therefore
negligible,

6.2, Theoretical Considerations,

The theory is first given in terms of the Q%%Qﬂ transfer function.
Later considerations will show that the 64299 form is generally easier to
work with, This order has been so chosen, however, as the Q4%QU analysis
is not necessarily restricted %o servo-mechanisms, but applies to the out-

put-input relationships of linear systems in general, The theory makes use

*It is to be noted that linear systems are being dealt with, The effect of
added non-linear factors may be to remove a small overshoot.



of the approximation to a total step-response by the term representing only
the principeal mode of os'.cillation', that is, that term having the least damp~
ing and, normally, the highest frequency. A,S far as the author is aware

this seems to have been proposed first by Campbell , although othersx have
also used the idea, As a starting point it may be recalled from Sec. 5.2,
that the overall transfer functions of Type 1, 2 and 3 servo-mechanisms are

of the following form:=-

6oip) = Bop+Bp 't - . 4By p+h
T 1. 2 = op WP s« + Ar 33
ype 6, A"+ AP L App AR (33)
Type 2. QO(ID) = B‘,Ps'/‘ BIPS—Q' B -}‘Ap_,P 'I’Af' (34)
b Ap"+ A p o FArp + Ar
Type 3. 6o(p) = Bop®+ B p~+ - +Ar-szjAr-lP+Af‘ , all ser (35)
0 Aop™+ Ap™TH -+ Ao P+ Arip AP

The Type O system can be taken along with the Type 1 system for the
present purpose, although strictly speaking the constant terms in the
numerator and denominator will only be very nearly equal instead of actually
equal as (33) indicates. In (35) it has been stated that s is less thanr.
It is further true to say that for servo-mechanisms, S is less than r-i ,
in fact s<r-2, If at first sight cases arise where s=r-|, closer examination
will show that an approximation has been made in deriving the transfer
function, Here we will take it that s<«r-2 . This point is of minor
importance in this Chapter but requires consideration in Chapter 8. If we
use the Type 1 system in order to carry out the argument, we have the output

trans form in response to a unit-step function input

% . . oA
* Work on similar lines to Sec., 6.3 has been given by Mulligan without
special reference to servo-mechanisms,



S—{

6p) = B°P5+B”o + - HBsptAp
Aop™+ Ap™ 4 - -t Amp+Ar P

or in terms of the poles and zeros,

GO(P) = sz - Pp]' £P+ZIXE+22) L (P+Z5) . f (36)

ZiZz - Zsl (p+rPXp+R) . - - {p+Pp) P

in which ZZ,..etc. and R,F;,..etc. are minus the zeros and poles respectively
and may be real or complex, As a consequence of the real coefficients
Bs,B,,- ete,, and A, ,4,, etc., however, complex poles and zeros must occur

in conjugate pairs, and the multiplier [e_‘p-’—_%] is wholly real. One
Z/Zz - - Zs

other restriction on the poles and zeros is to be laid down, namely, that

they should all lie in the left~half of the complex plane. This must be

so for the poles if stability is to be present, and for the E_(_af_g_s_ it will

also be true if we exclude non-minimum phase components. Relation (36)

therefore is the general form which all system transfer functions will take,

the distinction between Types being as follows.

Types O and 1. Equal constant terms in numerator and denominator. Tais
is already assured by the form of (36).

Type 2. Equal constant terms and equal terms in p . In terms

of the poles and zeros this gives

t

(RB .. R) (sum of products Z,Z, etc., taken (s-/) at a time)

(2,2, Zs) (sum of productsPR.etc, taken (r-/) at a time)

Type 3, Equal constant terms, equal terms in p and equal terms in
2

P . This gives the two conditions,

(RR..R) (sum of productsZZ,etc, taken ({74) at a time)

[t}

(Z,Z,-Zs) (sum of products RR-.etc, taken (?:é) at a time)



The additional limitations occurring in Type 2 and Type 3 systems do
not enter into the theory of the method, but only affect its application,
Calculation of overshoot in Specific Cases of Relation (36).

1. One Complex Pole-Pair, No Zeros.

Fig. 24.

/Jo/es af -0t jw,

=0t =fuy

This is the simplest possible system. Let it be represented by
z. | .l
(p+oy—jur Xptoitjw) p

G,p) = n

1

r
Th =0 gi —_—— =
e pole at p gives Corjan Xt jan)

The pole at p=-di+jw gives 4 .F:d',%jw’b = I."zi*d’t . £‘iwlb
2jw, (—oy+juw;) w,r,'gi(ﬁ‘¢1) é}
The pole at p=-s~jw gives the conjugate of the above, i.e. r;zs_“"(’t’ ) st
com e3Pz
The pole-pair -«;t jw, therefore gives the term
—aut . —_—
re™ " sin (b - =g, ) R
@y
. —oul R

and the output is 6, (t) = 1+ e sin(w- /7—¢,) . (37)

wy

The error quantity is ew) = 6, -6,(t)

—atik - =
= —-lE (e Ji- .
rII), sin (e €= 17 ¢,) (38)



The overshoots of the output correspond to the minima of this
expression, Thus

-t = -t —
delt) = —f [—o{;i "sin oyt - M-¢1) + € /ws(w/l'_/T_¢,)]
dt w

A . -
_ EzZ ' [ti/Slﬂ(U/(:—ﬁ“fél)—f‘—)' co’.r(w/[’——/'l_—@?]
y 7 I

z . R
= E f._o(llsm ((J/L_-— /7-'¢/ - ¢/)
]

rt —oil . _ ' . .
= &Lj g sin(wil--71) = 0 for a minimum or & maximum,

When t=1]/, the error is negative, This corresponds to the first

i
w,
overshoot the output, and it is therefore given in magnitude by

—o(lii/ . — ol
ne Wi sin = wr = h, say. )
oy .sing, £ 1> S9f (39)

The overshoot quite clearly becomes less as %/, becomes greater, i.e.
the pole approaches the negative real axis. This simple case of only one
complex pole will seldom if ever occur in practice, It has been taken as
a starting point however, as it is the basis of the principal mode
approximation, Before working out the next simplest case, it may be noted
that thé magnitude of the first undershoot is

— 2y,

re . =
i, . SN =
(37} ¢/

Mo, hy

.

The magnitude of each succeeding maximum overshoot or undershoot is

AT,
e of its predecessor, This result holds for all

given likewise by £
systems in which the principal mode theory applies, irrespective of their

complexity.,



2. One Complex Pole-Pair, 1 Real Pole, lo Zeros.

Po/es al —OL/ij,
and -q,

~oyjey

Fig. 25.

The overall system transfer function is given By

90(/)) ~ ar’ [ _
o (p+ai) pas oo Xp+ohitjor)
Hence 6.(p) = ast [

(pradpt i joos Xop 1 +j e )p

2z

The pole at p=0 gives _am _ = |
a:(oh—jco;)(oﬂ.‘rjml)

. 1 —oul Jw)t
The pole at p=-o+w gives amtg .5 .
C—cti +jwy +au ) 2y (~eli) )

Since (-oiHw) +a) is the vector from the point (-~a+j.0) to the point—cit+jw,

i] (T-A)

this may be written as x o The contribution due to this pole is

N R
therefore am*« e Jw"L
g AR e g V=40, 2j

The pole at p=-a -jw, gives the conjugate, namely.
am; 1 T —c(/l._’i'j-(,o:t

—JCT-X )wlr,.z—') (i —¢|)‘ —ZJ

X €

from which the complex pole-pair gives

—oul - = = 1
n g "sir (wit — =gy — M=\ )
o W14V]] ’



v —ait
The pole at p=-a, gives am's
(= Qo #oly ~js X—Gy Foly +_jd ;) =G
: j(TT=M1)
Since - a;toi—JW; =—-x £? " and
—aitoliHWI = -x,{"m—/\'), the term reduces to ~jl.£_a’t .
1{1
'_‘D(It _ = .2 _at’
The output is therefore [ + di7.% s (wnt - TGy iT-0) =3 ¢~ (40)
Kot le
—oi. —_— = z _qt
and the error is = am & i (k- = A F 8 eT (41)
Xt x*

It is clear that if the principal mode term is to represent the total
error by the time the first minimum of (41) is reached, a; must certainly
be greater than « , Omitting such considerations meanwhile and assuming
that the principal mode term does in fact represent the entire error at the
time of maximum overshoot, the size of this overshoot can be worked out
similarly to the previous example. We have

4

- —odit . — —oit —
de(t) = — ar [Ao(,g sin (it = =i - A )+ w; € cas(w,(:—/l~¢,——il—z\;)}

‘ot X0 L

= cz:_f,‘lg —eulf o sin (et — ii-¢, _iT-A) — @ COS(w/t—/T——fp,—/—/:—jh)]

XywWi n 1
= g_l_ﬁ?’ z—d'!'sm (it~ iT— /T_:',),) = O for a min. or a max.
2001 :

At £ = Y (i+ - ) , the principal mode term has & minimum value whose
4

—ol/(ﬁ-l-ﬁ—r\/)/co,

magnitude is il . g .sing,
X0
— o (TT+T-AL),
= ar. e oo
Xy
—_ g—' O(I”/w[ /

g A, (42)

ar




Comparison with (59) indicates that the effect of this added real
pole has been to divide the overshoot in (39) by the amount x%igﬁ(ﬁ_thﬁ
For points on the real axis this quantity is always greater than unity,
whioh is the value it tends to assume as & becomes very large, that is,
the pole moves out to minus infinity,

Again, this is a very simple example but it nevertheless illustrates
the essential step in obtaining the modification to the overshoot of a
simple quadratic response, as & result of an added real pole, provided

that the principal mode by itself constitutes that overshoot,

6.3. Generalisation of the Above Result.

The generalised overall transfer function may contain real poles, real
zeros, pairs of complex poles, and pairs of complex zeros, all being present
in any number provided that the degree of the denominator exceeds that of
the numerator by two. There is also the possibility of repeated poles and
repeated zeros, although it will be shown later that repeated poles are to
be discouraged from the point of view of the principal mode approximation,
The question of repeated poles and zeros is deferred meanwhile.

Before giving the general theory, the simple notation already used
will be extended and defined. This is most easily understood from the

diagram in Fig. 26,
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Fig- 26.

Meanings are attached to the symbols as follows:-




Positions of poles and zeros.

—o;£juwy; principal complex pole-pair

— oL jy Jjh  complex pole-pair
—ay ht real pole
. k™ complex zero-pair
— Bty ‘ p p
_bki v (™ real zero.
Distances

a0 distances from origin to principal and j”‘ complex pole-pair

Sk , distance from origin to Kk complex zero-pair

Zi, ,Zy, distances from k% complex zero-pair—Kf 4k  to — oty

ZgjrZ'; " " kK™ complex zero-pair —BitjMk  to — o4t Wy

Vi ol " " jth  complex pole-~pair —oy £jw;  to —ouFJW

Xpi s Xhj " " A real pole to —oAs +jw;  and —o4+jWj
1 " . y — ) W

i 9] (" real zero to —oHjw; and — oW

Angles

Angles-are all measured in a clockwise direction from the negative
real axis. In general we require the angle which is made with the
negative real axis by the line from every pole and zero to the upper
complex pole of every complex pole-pair. The angles are labelled as
follows:~

i 7‘/’J"/ from ;M complex pole-pair —oy% wy; to -+ jw,
(ks » Ty from k" complex zero-pair —fit; ug to ~o + jw
0 1 T from k™*complex zero-pair ~/3/(i—_j/uk to —oj+)W;
)\:‘ )‘hj from hf‘real pole to ~oi+jw; and —o4+JW;

2y it T EVEDSTAL
/"“’f’é} from ("real zerq to di+jwy end (y £ )Wy

The angles of the pole and zero vectors, —o({+Jb)1 )~ +Jjw; and
-ﬂkﬂ)ukare (9 (,YSJ‘ , and ¥y respectively measured from the negative real
axis, as shown on the diagram,

We are now able to consider the general overall system transfer

function, in which there are m pairs of complex poles, f real poles,



n pairs of complex zercs and g real zeros, for the moment all being

5
distinet, and with 2n+g< ({. This gives the transfer function
2m+f-2

n g n | |
90/9(/3) _ h'= ’ah ‘J 2'. !I(Pi‘bi), ‘(ﬁ‘fﬁk—wk XP"'/}/(’LJ/“/( )
L 4 n |
’ lb ﬂgz /)+a ).’—(/D-#o( —J )(/D+o(J +Jw ) (43)
=/ k=1 j

The output transform is the above expression with an added p in the

denominator. It is the re fore

I(p+b il T P Xp+ Beting)

G = A. L ist ; (44)
| hllpm/\H(/?*"‘ (- jewoj Xp#otj 4je;)p |
where A denotes the first factor of expression (43). The output time-

function is evaluated similarly to the previous examples.

The pole at p=0 , gi z =
e pole at p gives p ‘I ﬂ (B4 /M/‘Xﬁk-/-j/ )
(=1
£
Heaw 11 —juoi Xay #y0;)
=/ J

3
[

The pole at p=-o4w,, gives
9

A tl(-oéj+fw‘+b')l 1 oty +B M X~ o £ Bty ) T
ﬂ (—vo(j+jwj +a,\) “ (o #jw; “(‘Z'fw?, X-o(ﬂjcu +o(,£+/wﬁ) zij( o W )
From F:Lg. 26 we hav('{; il ‘
=P . (-5, .
oy #jw; by = yéj_zj(,// P‘/) R A - ZJ /v)
. . . M (/—/—‘V'.) . . . . j("!‘_‘w 'J
PN | P
: . -7, . Co . I~z )
"‘v(J'-l—ij' J-ﬂ/( ﬁu/( = Z!/g g s @q) -y 4w /~0Lz +chl = U‘,ZJ.Z Vgj

X The theory is unaffected by having 2n+9 £), but it is more correct
to adopt the relation given. 2m+f-| '



Hence the contribution is

q (2l !
& g J(27- g +a!.) o
A .LUILJ'L/ d H Zkj Iqé T €~d/6£ Jut
2 T Ty e e g
T, 2 S-N) I B e LTI P £I7-9) 5,
/)
A=1 q=/+9%)

The pole at /D=wocj—jwj gives the conjugate of the above, namely

A (21 -5, +7, b s
~J(T-A.) = 2! J 7% ) it .
A ” 9{/ P ﬂzk/ k/ J c dj.gjch
(-3 o
=,q#F
The pole-pair at -« jw; t therefore gives
9 n
A4 . '_
A. ‘H yUlH!szZkJ _f sm[w, ~//-¢ +2‘(//_/o)+§' (25— )
# m ) (45)
Ugj V!, /
! hir ?ZLJ‘ZJ Z'(// Auj) Z"E (?2/1/ j,agbz/.)]

The expression (45) may be denoted by rj-(f) ;s the contribution from the
m

M complex poles is therefore = 6[[‘) . As, however, we are interested
/=1

in the term resulting from the principal pole-pair at —d,t/w, s, we shall-

write this out in full, It is
9 I

—oyl
Mo llg2, £ o Ler oy b
5@ A i1 < sm[w;t~ 1- ¢, +l§(//—/;/)+t§(an-o;/+%)

C();f"
£ m
“f‘)"ﬁlrul "2(’/—/\/1,)‘—2('1// %//*%//)]
=/ =2 h=t /=2
The real pole at p=-a glves

(46)

——.ahl'

l l (bi-a) ] ‘T (~ay+B -4 X-a,+ B+

_’L
]l(ae’ah)[,( Gy +okj - /w,X a4y + & -f-J(U \(,qh)
L=, L+ h j=!

f
N ” (era,)l:l/(,é',??zﬁ/u,j ).e Ut

77 =a) T (5%, *ref X-ay) (47)
L= lyL#h =1
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IT we denote (47) by C7 (¢) » the total contribution from the real poles

Z' Q (t) . The time expression for the output is therefore

. m f
GU) = | + jZ", F®) +E/ G&) (48)
and for the error
@ m £
elt) - vjzlf-}(t)—kzz’qh(r) (49)

In a similar manner to the previous examples we now differentiate the
expression —F/—(t) ,» which, we assume, represents the total error by the time
the first overshoot of the output (i.e. the first mianimm of the error) is

reached., This gives

—ol - —oi”
dR) - const.x[—dfi /[sln.e/’c b g Cos.ele

dt

"

conskx -re S/n[w,t //+Z(//-ﬂ)+2(2/[— 7L )- Z’(I/—) )Z(ﬂ/'¢+%,)] (50)

The expression (50) has its first zero at

£ O i\ ) B (2 —-*/ (51)
—_ 7 7 - Y Anmd - - "f
= &1+ B ) B )2 ) 7 i)

Substituting this value of in the expression for—-ﬁ(f),'results in & minimum

value for-F(l’) the magm.’cude of this being

4 1 H gull 7,7}, E-Z‘J’l[z/+z*(//-,\,,)+z‘(zn ¢+w,) Z‘(//ﬁ,a)~z‘(2// )] )

15 el e s P
hE;ah'ﬁzuﬂ Vj; /

Since A is F m 9 n
e fja]/[llbLHSd
h=1  j=1 (= ge)

and 5/n¢, W, the expression (52) which, we assume, represents the size of the
n

overshoot is



9 di(T-a ) N L (T & !
—af ]-T lii_lf_Zg((l PU) n Zﬁgk,iw;(z” Q[*VM)
€ W, i=1bj k=1 S
£ okt (T m L (DT T
I ih,ga'):(” ’\hl)ﬂ‘ Uﬂj:gal(z” %l“lfj;) (53)
h:lcq1 ]-—-2 GZ

The above expression gives therefore the modification to the overshoot

—al
& i of the basic quadratic system, It is seen %o be composed of similar

factors, one for every pole and zerc other than the principal pole-pair,
Thus, as has already been shown in the second simple example, the modifi-
cation introduced by & real pole is the divisor.

& (7-Ap,)

hig

A (54)

In & similar fashion, a real zero introduces a multiglier
. Ki(f- o
il_liw’(” FL/)

55)
bi (
The complex pole-pair introduces the divisor

ol o T !

1_}/’_(/:/’2 c_iy(ul %J/_Fwﬂ) (56)

I
while the camplex zero-pair introduces the multiplier

[ & A
T2l g E, (27 G+ ) (57)

s,2
k
The forms for real poles aml zeros are therefore the same, the only

difference being that the former divides the overshoot and the latter
multipliés it,. The same may be said of complex poles and zeros, although
their modifications are different from those of the real poles and zeros.
It is understood however, that so far, these multipliers and divisors only
hold for one particular position of the principal pole-pair, although the

form will be maintained irrespective of this position. Furthermore, no



conditions have as yet been stated in order that the principal mode

approximation should hold. Before examining this point, the effect of

miltiple poles and zeros is considered,

6.4, BEffect of Multiple Poles and Zeros.

If we suppose that in the general expression (43) for the overall

transfer function,
(i) +the real pole g, is repeated d times,
(ii) ‘the real zero b, is repeated ¢ times,
(iii) the complex pole-pair-d +jw, is repeated J times, and
(iv) the complex zero—pair-ﬂrtLur is repeated y ‘times,

the form of the output transform becomes

F-d m-9
= zs
o Mae . 115"
6,(p) = h=1/, h#d i=0 ]+ X

¢« 9-¢ 2 n-y
b TTE w5y ]si

[=1,LF¢ k=t,k+y

g C
(b i (p+b ) (/”ﬂr“J/“Y)(FJ’ﬁ . “Y) ” (P+ﬂk‘f/“/<x/”ﬁk+f/“k )

(= /) k"’)

/0+—ad) ﬂ(/}+ah) (p+d-jws )(P+o<§+1wg) ﬂ (,o+°<J—Jw,)(,o+J, Jw,)P
h=i,h+d =1yJj+3

“8)

This is a cumbersome though quite regular expression and it is not

intended to carry out the solution in the same detail as in the previous

Section, The principal mode expression will be evaluated and certain

results of the previous Section used to effect some shorteuts in the

analysis. Let us write B for the first factor of the expression (58)



which is the quotient of the product of the poles and the product of the
zeros., It is taken that the principal pole-pair ~o, +jw, is not a
repeated pole, this fact being essential to the theory.

The pole at —oy +jw, then gives

(o(,t/w/f-é ) ﬂ (‘J/Jjw,-/-/) ) i—plll‘ijw,l_’
8 (,.//)cig ) . &
(- i+, +ad) 'ﬂ' (=cks+70, +ay, ) 2 jos, (-t 501)
h=lh+4d

n~y
Y ' .
(—rtgen +y—j ) [litya, 6y i) N l { Rl Xesiriger +6y 1 )

(~ot 4wy +dg—jw4)$(—wﬁi~/; Fg 7,7'%) “ (_o(,f-]w, Felj — ) 0 )(_D(,+Jw,+o(J +Joy )
j” 2,)4+3

In a similar mamner to the previous Section, this reduces to

seG-g) 9=« jli-f,) y Y (2~ Gpt ) ) N=Y j (@ -G ay,)
By 0ovat (2,2 Tl
< : ny t jwil
le1,Lee k=1 kY g s
Ay, i/d(ﬂ—Ad,)v% %, zj(//«\,")( ,)/S[z// ¢+ ) I Tro; J(Z// ZJ,TV;J,) Z/wfi”{"é)
h—_l,hq&d %% i=2, J—¢s

The pole~pair at ~o(/_tjw; therefore gives
g-c
B‘// H ‘J’LI (Zﬁz)’) 'ﬁ Z/dZ/C, o(’l,
= k"" k4y . 2 srrz/w/t (/—¢/)+C(//——ﬂ )-/—Z' (// /i')

d ‘F‘d s wr, (=) i #e 59)
g 1T % G ) Trus (
h=1,h#d =2, 0#5
—f—y(l{/—fy,W /) + 2 (Z’{_' k/f'/ ) d(//"/’d/) Z' (i~ Ah) J(Z// %/1"‘6—’)

/,cy' /—;:

— Z (2//—~ J,HPJ,)]
J=2 %%



This may be compared with the expression (46), from which it will
be seen that analogous results to the previous Section will ensue, if the
usual procedure for calculating the overshoot is carried out. In view
of the similarity of the processes, only the final conclusion is quoted,
namely, that for any pole or zero, real or complex, repeated ¢ +times say,
the éérresponding expressions (54) to (57) are also repeated ¢ times. The

multiplier for the zero é: repeated < times is therefore
o (o
Yer g d,(”je/)c

and so on. be
It is not intended formaelly to evaluate the terms resulting from the
multiple poles, as the considerations of the next Section show that these
in general should be avoided, There is however no inherent difficul ty
in obtaining these terms as can be found by consulting standard text-books
on the subject . |
6.5. General Conditions under which Principal Mode Approximation Holds.
Application of Foregoing Results to the Design of Transfer Functions.
The broad conditions to apply in order that the principal mode
approximetion should hold are obtained from the expressions (45) and (47)
which give the terms due to complex poles other than the principal pole-pair,
and those due to th; real poles. Let us take it first of all that no
complex poles other than the principal pole-pair are present. Then, in
order that the terms represented by (47) be small, we should have,
(1) , large, (ii)(@-a), (K-a; + of) large, (iii) (bi-ay),(Beay tu,")

small, The first condition is the most important, being obviously the



the placing of real poles well to the left of the principal pole.

Condition (ii) merely states that all the poles should be well~-separated

and condition (iii) states that'the zeros should be as near the poles asg
possible, This last condition is also evident, as in the limiting case
of zeros coinoiding'With poles, the basic quadratic system will result by
cancellation of these factors in the numerstor and denominator of the
transfer function,

If complex poles other than the principal pole-pair are present,
similar considerations apply. In order that the zeros should be near the
poles, it follows that it is advisable to insert complex zeros when there
are subsidiary complex poles, It is realised that these are only general
cord itions, but in the numerical work done so far, rno trouble has been
experienced., Again, although horizontel separation of the poles is most
important it is possible to bring up the nearest subsidiary pole fairly
close to the principal pole if it is accompanied by a neighbouring zero.
The condition that the poles should be well separated indicates that
repeated noles are not generally permissible unless they are remote from
the principal pole-pair,

Use of nearest real pole in addition to principal mode,

Under certain conditions where difficulty is experienced in obtaining
a small enough overshoot by the use of the principal mode oscillation by
itself, it may be advantageous to include that term which results from the

next least-damped pole. As a real pole is easier to work with than a



complex pole~pair for the purposes of calculating the value of the term
at eny particular time, it is therefore best to make this next least-
demped pole a real pole. Furthermore, it is clear that if this is to
reduce the overshoot, the coefficient of this term in the time-expression
for the error must be positive, since the first minimum of the error,
corresponding to the overshoot in the output, is a negative quantity, see

Fig. 27.

Fig. 27.
Thus in the expfessions (48) or (49), if GWis the term resulting from the
nearest real pole, then G(f) should be made negative, From the expression
(47) giving the general form of the time-term resulting from & real vole,
it is seen that the sign of G(H) will depend on the relative numbers of

sign-changes occurring in the factors (4,-0) and (ae—a,) . Hence we may state:-
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(i) the product of all the pole factorsa%—qp)is positive since g is
the pole furthest to the right; +the denominator as a whole is
there fore negative.

(ii) the nroduct of all the zero factors(@~4%)is positive if no zeros
or if an even number of zeros lie to the right of 4 ;

(iii) the product of &ll the zero factors (b -a,)is negative if an odd
number of zeros lie to the right of g, .

We reach the conclusion, therefore, that the term resulting from the
nearest real pole will have the required negative sign if no zeros or an
even number of zeros lie to the right of the nearest or least-damped real
pole, This is & useful result to bear in mind, Since, however, zeros
to the right of g, are liable to seriously reduce the principal oscillatory
mode, two at most may be permitted té lie in this region, It may make it
clearer to state that a reduction in the principal oscillatory mode is
guite welcome provided that the least damped real term is made negligible
by the time the second stationary point of the principal oscillation is
reached., For a satiéfactory response the value of the principal mode
oscillation at this point will have to be not greater than 1 - 2% say, of
the input step. In other words the transient will be effectively finished.
Application to design.

The relation (53) gives the magnitude of the overshoot in the
response to a unit-step. It is compounded of the basic overshoot

~ot, T - (ﬁ_p) ! & (277~ +o!
/) ) Z / P
e, multiplied by quantities jffi A N L T Xt /<I)

&
{3 Ky

for real and complex zeros respectively, and divided by
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analogous quantities ifor real and complex poles, If therefore the
position of the principal pole-pair is fixzed, these quantities may be
evaluated for other points on the left half of the complex plane, This
may be done once and for all, and a design chart for this particular
position of the principal pole-pair, so constructed. Similar charts may
be prepared for other positions of the principal pole-pair, The work
implied in such a series of charts may be partielly reduced in the light
of two of the considerations alfeady mentioned which are required for
the principal mode approximation, namely

(i) poles to the left of the principal pole-pair, and

(ii) zeros mear poles.

To these we add one other restriction, which, in effect assures
there will be no "kinks" or superposed high-frequency ripples on the
response. It is that

(iii) +the imaginary part of any subsidiary complex pole should not
exceed thaf of the principal pole.

With these conditions, the aréa of investigation in the complex

plane is confined as shown in Fig. 28,
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zeros _only / a \ | ' [

poles or zeros

-G ~-b_

/a';> S
zeros only

~B-jm
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l
|

Fig. 28,

In view of the possibility of using the least demped real term in
addition to the principal mode, condition (i) above was not held to, and
the area for poles and zeros was taken to the right hand side of the
priﬁcipal pole. The area for zeros is, of course, not strictly bounded
by the horizontal lines at *£,2:5 , but in view of conditions (ii) and
(1i1), the zeros are kept approximately within limits of this magnitude.
There is no left-hand limit to the field. The diagram shows a real zero

and & complex zero-pair, with those quantities marked which are required
% (7I-p) é E_Z’S‘égl(zﬁ“m’) %

for the computation of Jew
. b s2

6.6, Notes on the Design Charts.

Three design charts for the estimation of overshoot and three charts

* The subseripts hsve been omitted from the expressions for simplicity,
and since any zero or pole in general is being discussed. In Sec. 6.6 also,
although the quantities named refer to zeros, it is implied that the analogous
quantities for poles are included in the discussion.
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for the estimation of the time of the overshoot are given, We shall

refer to the first three charts as overshoot charts and to the second

three charts as angle charts,

1. Three positions of the prineipal pole-pair have been used, namely
~05%jl , ~(%l and -2+£jl . One overshoot chart and one

angle chart is given for each of the above positions.

% (77-0)

2. The logarithm to the base 10 of the quantities %57‘7‘” and
zZzZ' X (2M-T+q1
= i‘”ﬂ ) has been given. This is therefore the increment

S

in the logarithmic overshoot, Increments for zeros are taken
with a positive sign, and those for poles with a negative sign,
this sign being of course supplementary to the increment itself,
which may be positive or negative.

3 The variation of the above quantities is .shown as the real part
6f the pole or zero alters, each curvé representing a fixed value
of the imaginary part, This is best explained with reference to

the diagram in Fig, 29,

| 25
| 20
| 15
! 12
10
— | s
] 0 &
1 -4
L 4 J_Jg)e
) I o2
Ratio  Rea/ part of pole or zero
Real part of principal pole-pair

Fig. 29.
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The fixed values of the imaginary part are 0, 0.2, 0.4, 0.6, 0.8,

1.0, 1.2, 1.5, 2.0 and 2.5 and the curves on the overshoot charts are
therefore the previously mentioned increments, evaluated al ong the
horizontal lines of Fig. 29. The abscissa of the curves is the ratio
of the real part of the pole or zero to the real part of the principal
pole. This is adopted for two reasons. First, it was desirable to
use logarithmic paper in order to render the curves less steep, and
hence obtain reasonable intersections with vertical lines.  Such é
logarithmic scale is not convenient for showing directly the real part
of the pole or zero. Secondly, it is convenient to work in terms of
the above ratio, from the viewpoint of the principal mode approximation,
4, The angle charts show the quantities(ﬁFP) andﬁﬂia¥09for a real
zero and a complex zero-pair respectively. These are, of course, the
same for poles as for zeros. This information enables the final pole
and zero positions to be fixed, if the speed of response of the system
is specified. Thus from (51), the time of the first overshoot is

t-1 [ﬁ’bé(ﬁﬂ"") +j2:"’2(a/7-@,’+~¢/’,) «izj(/T-,g,) —é’l(aﬁ- Tt Tk )]
that is 7+ (sum of angles for poles) — (sum of angles for zeros).
Since the angles GT—P),(ZW—@;;EI,)eto. will remein invariant if the pole
and zero pattern remains fixed, although changing in absolute magnitude,
the time of the first overshoot is determined by the choice of wy. If
this is increased Kk +times and all other pole and zero distances similarly

multiplied, the time for meximum overshoot to occur will be reduced by a
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factor K . The procedure will be more evident if the examples in
Chﬁpter 7 are considered.
5, Range of curves,

The left-hand limit for the abscissa of the curves is 10, Beyond
~this point a maximum error of 0,025 in the logarithm of the factor will
occur, if the contribution from such poles or zeros is neglected, For
each zero or pole, this is equivalent to about 6% error respectively
in the size of the overshoot? so that for practical purposes it is not
serious, The error will depend on the relative numbers and spacing of
poles and zeros beyond the left-hand limit, and if reasonable guesswork
is employed, or if the poles and zeros are well out to the left, negligible
erfor final 1y results, At the right~hand side, the curves are taken up to
a value of the abscissa equal to 0.2, or to that value of abscissa at which
the increment in logz. overshoot becomes 2. In the numerical work so far
performed it has not been necessary to approach even approximately either
of those limits, Indeed it has already been said that the main working
portién of the charts lies to the left of the abscissa value unity.

The same abscissa values limit the angle charts with an additional
upper limit of 5 radians. This roughly corresponds to the upper limit of

2 in the overshoot charts. For poles and zeros beyond the abscissa limit

* That is, an overshoot which is designed to be 10% will actually be
10.6% or 9.4%.
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10, the angle (7-p) is given with very little error by //,_«, radians,
or it may be taken to be zero with, of course, rather more error.
The angle (27— 7777) may be approximated by 24 5, radians for. u< /| , and
by zero for &>/

The use of the design charts is now demonstrated by a number of

examples.,
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CHAPTER 7,

NUMERICAL WORK ILLUSTRATING THE USE OF THE gf(f?) DESIGN CHARTS
(3
7 .1 ° No'ba tion .

The logarithm to the base 10 of the fractional (i.e. per unit) over-
shoot will be denoted by X . We therefore have, from (53),
X=—%ﬁ[og/oe+2(increments due to zeros)-> (increments due to poles) (60)
Let also A, =

= (increments due to zeros)

EAP = = (increments due to poles)

Abi,ﬂsk:-: increment due to (™ real zero and k{hcomplex zero-pair
respectively.
Aah‘A']' = increment due to A% real pole and jfhcomplex pole-pair
respectively,
Y = ZAZ -ZAp

Lé‘. , Lskz (/7—/”[,) , (271 - Vm//q) respectively
th)[.,/-, = (7/'—/\/,/)‘(2/7—W’J’,) respec tively
P
SLp-

|

<! (angles due to zeros)
= (angles due to poles)

The symbol A will be used to denote the increment in general from any pole

or zero or complex pole~ or zero-pair.,

The relation (60) mey then be written

X = —1365% +Y (61)
@y
or V = X+ 1365

(62)
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which gives the required difference ZAZ_EAP, in terms of the desired
overshoot and damping. It is useful to work out Y for overshoots of
5%, 10%, 15%, 20% and 25%, and for the three values of damping correspond-
ing to the three positions of the principal pole-pair.
This is given in tabular form below,
TABLE IV,

Values of Y = =0z-=0Dp

—o,%jw, 5% 10% 15% 20% 25%

~054jl  -0,618 -0,317 -0,140 -0,016 40,081
e +0.,064 +0,365 +0.542 +0,666 +0.763
—2%jl +1.,429 +1.,730 +1,907 +2,031 +2.128

.~

We also have, for reference

TABLE V.,
Ratio
. undershoot Log Over-
- &% jw, I re o} - sn¢ overshoot. shoot.
—05%l 1,118 1,25 1,106 2.036 0.895 = 1/5 Y -0.683
—l£jl 1.414 2.0 0.785 2,357 0.707 1/25 Y -1,365
—atjl 2.236 5,0  0.463 2,679 0,447 1/530 Y -2.730

The examples which are now considered do not represent any particular
systems but ser've’ only to illustrate the application of the method. A
practical problem due to Whiteley is given at the end of Chapter 9 and the
circuit values are derived. This is done by the normal procedure of
equating the unknown coefficients in the practical transfer function to

those in the designed transfer function.
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T2, Type 1 Servo-Mechanisms.
Example 1. 1 complex pole-pair, 2 real poles, 2 real zeros.
Specification - 10% meximum overshoot at 0,5 second.

Subsequent undershoot not to exceed 1%.

Then @(p) - ‘7"72'7? (prbXptbe) : (63)
g; biby  (PH0 Xp+as ) prdi—jwn X ptoty 4-fwy)
With —oytjw,= —/%*j]  the ratio undershoot =/ , which will give

overshoot 23
the required damping. From Table IV therefore,
\7/ = Z’Az —Z'AP = (AB/J—ABL) -f[.\m/-.ﬂql) = 0.365
If we take an arbitrary choice of & =2« , a, = 4+#, , We obtain from

the overshoot chart 2 and the angle chart 2, for the curves w—=0
ADq ©-193 Lq, ©T9
Agq, ©0-037 Lq, 032
SN 0230 ZLp Il

Hence ZAZ =ZNp+0365. As a first trial this may be equally

apportioned to & and b, , which gives Ayp,=0-297, >y, = 0-297 .

Thus b= 163, 5, B}, =0©297 , £y, =103

and similarly for b, . Since this places two zeros close to the nearest
real pole at -2c; , we will expect the principal mode approximation to hold.
But even if not, since we have an even number of zeros to the right of this
pole, the resulting time term will be negative and will reduce the overshoot
in any case,

The time of maximum overshoot is

b= L (T+EL,-ZL,)

= (%(3-)4-2 4—/-//-2.06) = 2.092 gec.
, bl
wly
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This is to equal 0.5 sec, Therefore wy= 2./92 = 4.384
0.5

, and the required

poles and zeros are

—w Ljw, = 4384 (~/£j1) | 5=4384( 41

9 = 4.384.2 = 8768

9z = 4.384.4 = 7536

by = 4.384.163 = 7.4

bz = 4384 .163 =~ 74

The transfer function 90/9_(/0 is
L
8, _(8768)(17.536 X 4.384 . 1-414)" (p+Tm)?
4 (7.14)?

(p+87e8Xp+ 17.536 X pt 4-384-)4-384 Xp+4 384+j4.384)

) 157 (p1m)*
(p+8H8 X p #1536 X pt4. 384 ~)4-324 ) p+4-384+ 54384 ) (64)

The unit-step response given by (64) is

: : —4.384¢t - B7e8L -17.53¢L
6F) = [+ 1-328¢ sin (4384 E-1.446) - 010295 o422 € (65)

which is shown in Fig. 30.

<
5°
: OS5t
O 2 F—- 2 L L L

o5 10 /5 !
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The value of the principal mode term at £= 0.5 sec. is 0.101, at
. . ~8768¢
which time the term -0./029¢ is equal to -0.00129, As the remaining
term is negligible, it may be said that the overshoot is due entirely to

the principal mode.

If the response (65) is expressed in terms of dimensionless time &'

where t- 4.384f, we have

) —2¢' —4t
G (t') = 1+ 1328¢ ts/n(["—/.44.é)—-o~/02‘7€ + 0422¢ (66)

In this case meximum overshoot takes place at £=4384.05=2/92., As the
true time scale of the response merely depends on multiplying the poles and

zeros by some factor K , where

T+ZLp ~Z Ly
true time of meximum overshoot

k =

it is simpler to work in terms of the dimensionless time H-kt This

does not affect the size of the overshoot. Thus we have, in the present

example 2 2
. 8, _ 2.4.(1444) (prie3)
(£ P = TEENE (prz XpraXpri ApE 14T (e7)
gives 10% overshoot at #=2./92 sec,
. z 63k) "
s O (o) - Bk k. (14i4K) (p# 163 ' 6
(i1) “0; (163k )2 (prek Xprakdpthk-jkXpt ktjk ) (88)

gives 10% overshoot at £= 2./92 sec, that is at Fl=kE= 2./92 .
In the remaining examples, the time of the maximum overshoot will not

be specified. Maxirum overshoot will in fact always occur at E'= 7+ZLy 2L,

Example 2, 1 complex pole-pair, 2 real poles, 2 real zeros,
Specification - 10% maximum overshoot

Subsequent undershoot of about 2% is permitted,
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This exeample is practically identical with the previous one and has
been taken merely to show that a design with the same overshoot but
different damping is possible, Cases may'arise, however, when the
design for a particular overshoot is limited by the choice of a particular
position for the primcipal pole-pair and should this happen another chart
should be used, Conclusions concerning this are stated at the end of this

Chapter, Here we have

015" (p+h Xp+b,)
bb, (p+aiXp+a; X pror—jw, X pt & +jw )

]
2(p) =
64'/0

From Table IV, for a principal pole~pair at ~0-5%4/ ,
Y = zﬂz-ZAP ~ -0.3/7

Since Z'Az is positive for real zeros, then Z’AP >o0.317. This causes the
poles, or at least one of the poles, to be relatively near the principal
pole~pair, Suppose a;=1(.8¢4, a, = 3ct, , then from the overshoot chart 1

and angle chart 1

AOI - 0.337 La, = [-185
Aaz_ = 0/45 Lq)_ = 0.78
SIAp = 0.482 ZLp = (95

Hence = Az = 0/5 and again taking equal zeros,
Dby=RNpg = 0082 | b, =by =40y, Lby=Lh; =058
ZAz= 0./64 ZL,= (/e
The required transfer function is
(0-GLX1-Sk) 1-118K)* (przk)®
(k)P (p+oFNps 5k proSk~k Y pt oSk k)

Borp) —
& p)

0. 4215 k=, (pr2)?
(p+0FkX pr 1Sk Xp+05k=~jkXp+0s5k ik )

(69)

The response to a unit step is

~ost' —o- gt ~1-5F
6, (¢) = ( + 0-805s s (F-2.835)—0.8/14¢  +0.0585¢ (70)
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Maximum overshoot occurs at th=ﬁ+/965—ﬁlb=.3947 . The value of the
principal mode term is then 0.1003, while the nearest real pole term is

-0.0232 and the remaining term is negligible, The actual overshoot is

therefore about 8%. The fact that the nearest real pole term is negative

accords with the provision that no zeros or an even number of zeros should

lie to the right of this pole. Fig. 31 below shows the response.

y X /\\

=

1 ost

7% & & 0 2.t

Fig. 3l.
Example 3, 2 complex pole-pairs, 1 real pole, 1 complex zero-pair
Specification - 5% overshoot
Subsequent undershoot not to exceed 1%

O'”zrz‘z. (P*lg/“.}‘//‘/)(/’"/'ﬂ/’/\//‘”‘/)
5% (ptakp+ea-jaw X p tod +jwi X P Fota ~jWa Xpt watjwy )

Here Qogo) -
o;

A principal pole-pair at either —o-S%jl or—/t/f would give the required

damping, the second case in fact rendering the undershoot negligible.
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Taking this position, we have

Y = 28, -58, = 0064
Let a = 4os , o+ /wy = 30y £,06w,, This is again quite arbitrary, the
factors governing the choice simply being that & and «, should both be
relatively large compared with o and that the poles should not be too

close to each other, From the charts,'
Aay = 0-03] [ =032
Arz = 0-/25 er = 0.875
Zhp = 0-/62 ZLp = 1195

Hence ZAZ=0-/62+0.064=0.225 » From the overshoot chart 2, a zero-pair
position of -2 5y :tjo-Zw, will give the necessary increment and is also in
the vicinity of a complex pole~-pair.

Therefore - j3, 1‘_,/}¢&:=~2'5o</tj0-2w,,/_-v= T . This gives »the required

transfer function

(= (45N T 4/4/:)2(3-og,é)f (pt25k-jo2k X p+25k+y0-2k)
(2.557k )% Cor Ak ) prk~jh)ptk 1k Kpt-3k —jo6 k)(ﬁ 3k +[0-6k )

O

1191 k3 ( pr2.Sk—jo2k \p+25k +j02k ) |
Cp +9kXptk=ik Lprk £jk Xp+3k=jo-6kXpt3k +jo-6k) (71)

The response to a unit-step input is

_t 3! —4¢
B U) = 1+]666 & sn(ll2388)+0.643¢ fm (06t 4.695) —~ 0501 ¢ . (72)

Meximum overshoot occurs at £= U+ (/95 - /.47 = 3./7 , at which time the
principal mode term has the value 0.0492 and the remaining terms are then

negligible, Fig. 32 below shows the response.
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'
70 e —
R
-~
\J
OS5t
|
O —_ 4 A 1 1 1 ‘ !
/! 2 3 4 5 6 ! ‘
Fig. 32.
7.3. Type 2 Servo-Mechanisms.,

As a result of the change to the basically unstable Type 2 system,
we have the added condition stated in Sec, 6.2, namely that, for a
transfer function of degrees S and r in the numerator and denominator
respectively,
(RA - . /:;-) . (sum of products Z,7,- - etc. taken (5-7)at a time) =
(Z)Z, . --Zs) « (sum of products AR .. etc, taken (r1) at a time),
where Pl,@ etec, and 4,2, .. etec, are minus the poles and zeros,
This complex relation very much restricts the possible pole and zero

positions. For a transfer function of the same form as Example 3 of the

previous Section, the condition becomes

(ar* )2, = s (i + 2ait,5i 4 20,008 ) (73)
1
or a, = r st
261

kX
G (20t 20950 S
)



) 2 rt
Since @ >0 we must have I, <« -JTQ—_.l.
2B, 2a:7'+2%5

proceeding further to make a Table of 5’%@, for a variety of positions

It is convenient before

of the zero. This is given below

TABLE VI
sz (B tu?)
Velues of ‘24 %8

A f=05 1.0 1.5 2,0 2.5 3,0 large

0.2 0.29 0,52 0.763 1,01 1.258 1.507 A
0.4 0.41 0.58 0,803 1,04 1,282 1,525 v
0.6 0.61 0.68 0.87 1.09 1.322 1,56 .
0.8 0.89 0.82 0,963 1.16 1.378 1.607 "
1.0 1.25 1,0 1,083 1,25 1.45 1,667 v
1.2 1,69 1,22 1,23 1,36 1.538 '1.74 .
1.5 2.5 1.625 1.5 1,562 1.70 1.875 '
2.0 4,25 2.5  2.083 2.0 2.06 2.167 ‘
2.5 6.5  3.625 2,833 2,562 2.5 2,542 "

From a general point of view it can be seen from the Table that 5’»1/2,6’,
will be lowest when both 4 and u, are small, Reference to the charts will
show however that the contribution to the logarithmic overshoot increases
very rapidly under those comditions. Herein lies the limitation due to
the change of Type. In view of the rather complex felatibn produced, very
little headway can be made unless by numerical trial and error processes.

It is precisely on account of such difficulties that a design in terms of
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of the poles and zeros of the error to input transfer function is preferred
(see Chapters 8 and 9). A solution in terms of Q%%qv is, however, carried
out below. |
Example 1, 2 complex pole-pairs, 1 real pole, 1 complex zero-pair.
Specification = 5% overshoot
Subseéuent under shoot not to exceed 1%,

This is the same form of @%gﬁ and the same specification as in the
previous (Type 1) example, It represents a good performance for a Type 2
system. TWhether or not these requirements could be relaxed would, in a
practical system, depend upon the size of the system and upon the resulting
values of the circuit components, This and similar questions of a practical

nature are not at present under consideration.

We have ¢ P = 'GP B g X g Bt ) . .
5 ST (prakpts=jond proy Hon Xprogjwr Xprdy +jwr)  (T4)
with a - vitn's /24
it~ (2oynt+ 20nt st (75)
' 26
and therefore 5t < a'nt
28, 2danily 2an* (76)

By w—nay of comparing the effect of the change of Type, suppose the same

complex poles are adopted as in the previous example, that is
- Efw, = =12l
- D(.z_‘;’_"/wl = -3tj0-6 , A,"?_GOJZS
As before, we require Vo= Z’AZ—ZAP = 0.064 Substituting in ('76)

gives 5:‘/2/7, <0607 and from Table VI, a value of —/g,tj,u, in the neighbourhood
!

of -/tjo2 is indicated. Suppose we take

Bt =~ £ g0.2
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giving 5/2}/9:0,568 and from the overshoot chart 2, Ag = 1175 From (75)
7
a; = 8.38

and hence Ao = 0.007

Therefore Y = /./75 - 0.00] - 0./25 = /043

which is much too large. This in fact will give a logarithmic overshoot
of 1,043 - 1,365 = -0.322, which corresponds to about 48%. Practically
all of this is due to the increment from the zero-peir at —// £,0.2 , which
is fixed by the relation (76). If the overshoot is %o be reduced,

muist be decreased by moving the zero-pair to the left. This erntails an
increase in Slz/zﬂ/ and hence in the RH.S. of (‘76). It is possible to

increase this if either or both complex~pairs are moved to the left,

If, therefore, we take X £ jwy = =2+£y/
s/° 5'6,1 . . e .
then lipg, < —*— 125 &8s «, increases indefinitely.
" oy 45t
Also Y o= Zﬂz - Z‘AP = /.429

From Table VI and the overshoot chart 3, it will be seen that 4 itself will
approach the value of Y , as sooﬁ as 5/%@ decreases even a small amount below
the value 1.25. In turn, this means that both 4, and &, are bound to bé
large, since relation (76) will barely be satisfied. Let us therefore

account ¥ wholly to the zero and neglect Z4p. From the conditions
. z
Ag = 1429 , Slpg <125
the best position of the zero is about -/./8e,+;02, for which Lg = 24 .
This gives S%ﬂ =/./89, and from (75), after a few trial values, we obtain
l ’
ar = (30 , —oatjw, = —60z )/

The value of w, is immaterial from the overshoot noint of view, provided

that o>, , The required transfer function is therefore

Gty - (130k X 2.230 k) (60k)* (pt2:36k - jo2k Xp +2-36k + jo2k) ,
& (2-365k )" G+ /30)(/o+2/e~j/c’X,D+2k+ij/) +éok —jk 1 pt €0k +j k)
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4165x0°E% (ot 2.36 k- jo-2k X pt 2-36k + 02k ) (77)
(p#130k X p+2k~jk Xp+ 2k +jK X p+6ok—jk Xpiéok +jk) :

and the response is

-‘ZL',' —6 f/ I
6, (L) = 1+0.9755 " sjn (k- 0.249) — 9821 Yo (FL 0.0022) - 0.655 2% (78)
shown in Fig, 33,
+O s
N
-~
0}
|
OS5}t |
O - .. b A 1 Y | ' i
0.5) /0 2N
Fig. 33.

The maximum overshoot occurs at £&'= MT+ZL,-ZL, = 0742, and is due
entirely to the principal mode which has the value 0.081. No particular
merit is claimed for the above transfer function; in fact, it would
probably be better to obtain a solution using the negative term due to the
real pole and allow the principal mode to contribute about 10%, instead of
the present 5.1%. The design, however, does show that

(a) 1low overshoots with Type 2 systems demand poles with very large

damping,
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(b) the principal mode term has an initial value not greatly
exceeding its value at the time of maximum overshoot,
(¢) the complex zeros and subsidiary complex poles approach
the negative real axis, and may be considered as resal,
A Type 2 example is now given in which a larger overshoot is pemmitted
and only real zeros ard subsidiary poles are considered. As a
consequence of these more reasonable conditions, it will be seen that the
subsidiary poles become considerably smaller than in (77)
Example 2. 1 compiex pole-pair, 3 real poles, 2 real zeros
Specification - 15% overshoot

Subsequent undershoot not to exceed 1%.

Then 6,y . _a@zdsv’, (p+ b Xpeby) |

éi bby (,o+a;)(p+a,\)('a4ag)(/o +°‘/—/'le}’*0(1 +j0Jr) (79}
A principal pole-pair at —! t/ will give the required damping. From
Table IV Y = TA,-=4p = 0-542

As in the previous example, let Y be made up wholly from ZAZ, and for
simplicity let us take bi=b, ..
Thus A44,= 44, = 0.27 and from the overshoot chart 2, b=b, =I-7o£,'= I a
The additional condition for a Type 2 system now gives

aaraziit(bi4b,) = brba [W!“la;"j + it (aa, +a,Q3 + 0103)] (80)
Further the least value which g, can have if Ag may be neglected is about
oty » In any case, as there will be two zeros to the right of a;, the

contribution of this term, if any, to the overshoot will oppose that due

to the principal mode. It will therefore be gquite safe to fix arat the
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value /ooy=/p o Substitution in (80) now gives the relation between ag

and a3 ’ A, = 2oag .
/55 a; — 20 (81)

from which we see that a; must exceed 3%%5g 3, if a, 1is to be positive.
A number of values of @, and a; are possible., A reasonable spacing of the
poles is produced however if a, =20 , @y =364, TWe thus obtain the

required transfer function

Gogpy o [Tk X20kX36- 4K X1 414k (p# 1TR)*
5‘_ p) = (1-7k)? (/0+/ok_X/)fZU‘CX/D+36'4kX/)+k’jk)(ﬂ*/E #9£)

sogo k* (p +1Tk)°
(prokXpraokXp+36-thk X pt k=) Xptk +jk) (82)

This gives the response
2ot ~36-4¢t'

) ~nt -
() = 1 4 0-869¢ Csin (¢-0.62]) _ 1-6045 raz7s T~ 0.5 (83)

which is shown below,

NCICIN

05 0 75 20 25 30 !

Fig. 34.
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The maximum overshoot occurs at ¢'= M+ZLp -3, o From the angle
chart 2, [y =097 and Z., is therefore /94 . The approximation //(q-«,)
may be used to calculate ZLp . In this menner, 7+%/,-2/,= 452 at which
time the principal mode has the value 00,1496, The other terms are then
negligible.

Sufficient examples have now been given to show that the design
objectives are realizable with an accuracy ample for the purpose. All
the above calculaﬁons have been performed with an ordimary slide-rule
giving logarithms to three figures, Similarly three figures at the most
can be extracted from any chart reading. [Relatively coarse approximations
may also be employed without greatly affecting the final result. One
discomcerting feature, however, is the ix‘cra trouble experienced with Type
2 systems, although the previous example does show that a reasonable
specification can be met without undue labour, It is nevertheless
sufficient warning that the design of a Type 3 system by this method is not
going to be easy, as two very complex equations containing products of
poles taken (r-1) and (r-2) at a time, require to be satisfied simltaneously.
In such cases, a better approach is afforded by designing in terms of the

poles and zeros of the %4(P) transfer function. This method is therefore
(4

now considered.
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CHAPTER 8.
THE DESIGN OF e@[(p) TRANSFER FUNCTIONS,
8,1l. Introductory. Transfer Function Forms.,
The theory given in Chapter 6 is now developed in terms of the
transfer function e@[(p) + In this case the distinctions between the various
Types of control become more apparent, This depends upon & minor difference

in the forms of the transfer functions. Thus, from the basic servo
equations 6o - Yip) EW - /
€ A {4 Y()

by« YO
6 - = Y
we have G @ - 0,/6,) ~/
9[

9" / 66 (/0}

Using the relations (33) to (35) of Sec. 6.2, gives

Type 1. _@(P) =t {ﬂo/)rf'la/ﬂf—’%‘ - ’/"ﬂf-//’v‘/qm ) -—(5«/):1‘ KIPS"-/‘ C o fis_”ﬂ-»‘ Ar)
X

Ao ptr ip™ s o Arip # Ar
Acpmt Ap™ + o +(hps -8 )p"+ -+ (=85 )p (84)
Aop” + ApTlp g Aerp t Ar
= /’(ﬂ*u{/(/o*uz) LR (/Diu,-_,)
Cpr Vikpr V) - - (pVp) (85)
where U,,U; - .- etec,, and W,lé .. . éte., are minus the zeros and poles of

the function, and
Ule - - Upy = (Ary- 35-/)/'4"

A /)

As usual, the zeros and poles may be real or complex and in the latter case,
they occur as conjugate pairs. Since the poles and zeros are to be confined

to the left-hand plane, U,U, ...}, }.. ete., will all be positive real
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quantities or complex with positive real parts. The analogous expressions

for Type 2 amd Type 3 conbtrols are,ﬁ

Type 2. f(/)).___ /Ioﬁy’LAl/Jr-lf' ) AV?;@,._S_SO)/J;?L o 7‘[/’/’4,‘55-;)}1 (86)
g PR b thep t A
< POrUXprU) - - o (prUe,)
G+ GXp+h) - . . (i) (87)
where Wiy - Urpy = (Ar—L"BS—L )//40
V/l/]. . - -Vr = 4/‘//40
Type 3. ¢y = Ap APt At (Bes-B)'F - o #les-Beg)pd
(p r-5 - Bo/ r3-0s-3)p
9 Ao/ﬂr% A/ﬁr"* o+ A (88)
- p‘(,afu,)(pr) Coe (p+Ups) ( )'
pt i XKprvy) - - . (/fl/p7 89
where Uly - -+ Ur-3 = (4r-5 - 35—3)//110
Vile - U = Ae/hs

The transforms of the error gquantity when these systems are subjected
to unit step inputs, are given by the expressions (85), (87) amd (89) with
an additional p in the denominator, The error transforms for the control

Types 1, 2 and 3, all of the r order, are therefore distinguished as

follows,

* The Type O control may again be taken along with Type 1, although
strictly speaking it yields a transfer function form

(pt U Xp+ty) - - - - (pr Ur) where

prvXpsva) - - - (pr¥p)

Ul -~ Ur=AcB8,Y4, and ViVy - Up = Afles  If, however, the gain of the system
is high, then Ar= 8s and relation (85) my be used.

€ =
%P
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Type 1. r  poles; r-i zeros of which none occur at the origin; (90)
Type 2. r poles; r-/ zeros of which one occurs at the origing (91)
Type 3. r poles; r-/ zeros of which two occur at the origin. (92)

It will be shown that these differences are more easily handled in
design, than the complex expressions of poles and zeros which resulted from
stating the equality of certain coefficients in the numerator and denominator
of the 90/91(/3) transfer function., A further advantage of the method is
pointed out later,
Certain restrictions, however, do arise., From (84), (86) and (88), it
will be seen that the coefficients of /DF,IDF"’~ “/DSH in the numerator and
denominator are equal. The forms (85), (87) and (89) automatically ensure
that the coefficients of highest powers agree, but for the next and lower
powers of P additional relations result. These are,
coefficient of /OM{A//A«») U tlpt - #Upy = Y4Va 4 - - +Vp (93)
coefficient of p™*(4,/As) Z,U=2,V (94)
where Z’ZU is the sum of all possible products of U,U, .. U., , taken two
at a time, and similarly for Z,V .

coefficient of /Jr‘s(/-]s/,l).) ZisU = ZgV (95)
where 2'311 is the sum of all possible products of U,U, -- U., , teken three
at a time, and similarly for Z3V .

It is therefore clear that unless §=/-2 , or at least s=r-3 , the
theory built upon the e/@"(p) transform gives little improvement over the

method based upon the 90/6“(/0) trans form. A second point to note is that
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the number of zeros to be dealt with increases. This is not, however, a
source of trouble. A brief review of theory analogous to that in Chapter
6 is now given.

8.2. General Solution of Principal Mode Approximation to Overshoot in
Unit-Step Response, in terms of Poles and Zeros of éd%go)iwansfer
Function.

As the results for Types 2 and 3 may be obtained from particular cases
of the expression (85), in which one and two, respectively, of the zeros
are allowed to approach and finally co-incide with the origin, it will be
sufficient to carry out the general analysis in terms of a Type 1 error

transform. Using the notation given in Sec, 6.3, this may be written,

P+5L) Cp+B=f g Xpt Bi i)

ep)

/"“’A ) [1¢ ptotj—jy X ptoty # ;) (96)

i}
[
j-::

h ~I~h “:jk&

h
where 9+&7=f+2m~/

The pole at p=~@{ﬁyghms

__9 ' _h o ) ) \ —-o('!‘j'U'[
.H (=t +juj + ;) H (ol 1] +B = oty 1 juy + B A ) 5 g

ﬂ( oLty +ay) || ‘ (=ok/ + juj # df—ngX—o(J +jwy +o<?.,ang) 2wy

h-—l z ,] 1%\(
g J ) n J T~ 47 ) -
Ty U gzl gt it
= L=t =1 .
i x5/ T 7 1] veivy © s IPT =Ygty ) 2
het v ")276/

The pole at p= ~ay—/h0' gives the conjugate of this, so that the pole~pair
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at —o £ jw, gives

g n

o9y I z,zl 4t

[J; 9y klj’ Lk N J

e Ll W,

[l X ] Yaivg

k=t qeligd) (97)

‘ g
sm/w Z //’)*Z’(Z// +¢£ )— 2’(// ,l ) j(Z//
=/ =8t

%7% )/

This expression we shall denote by Mj‘lk) . The contribution from the

M complex poles is therefore ZMIH In particular, the principal
/=t
mode term is '

9
— 77" —~o(/l"
"Mt = A, 7 /ﬂ/ hzk'.f .
+* m = (98)
[ %, Il U/;U}'/
h=1 j:Z

g n . £ m _
snfot + F-f) + 2 (@0 -G704) - 3 (T-),) -2 (2T~ G 7¥,)].
L= k=1 h=t J=2 :

In like mamer, the contribution from the real poles will be denoted by
£
Z'/V (¢) , where N (¢ is the term resulting from the pole -4, , and given
A=t
by
0

‘, '-a")zﬂ(”;;f'z */“/cl) s "Wt (99)

“"l'\a

m L
ﬂ (ag—a,,) [ (% -a, +a>l')
L=1,L#h j=1
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The error is therefore
m ¥
)= Z M© +Z N i) (100)
Assuming that the principal mode approximation holds, (98) is now
differentiated in order to calculate the maximum value of the first overshoot.
This occurs when
¢ 2’( ) z‘( G r0h ) - 7 —
wt + Z (7-p,) + Z (21-04,+0x, {?"(// Ao ) — 2’2(2,7, Gidy)-¢ = 0,
= J=
that is, when
1 s £y Bt i) b - S i
£ - z [T+ ¢, + 2 (T- A) * Z (- ¥ )~ [Z__'/(//-/t-,) —kz;,(lﬂaq/-ffk,)] (101)
The condition (101), substituted in (98), gives M(H the required negative
sign, (minimum values of the error quantity corresponding to overshoots of
the output). The expression for is the time of the first minimum of (98)

anci therefore the time at which the first overshoot has its maximum value,

The size of this maximum is given by

7
Mo 1T za7h
L=1 k._._,
£ .
[0 % TT Y vl
P\=’ j:z n
;4 [T+ +2’ (//—/l,,,) +§w(1// i, F ) - ?(/7~ﬂ/) - 2'0-, 17},)] (102)
=/
q k |
‘“"0(”7‘?5 7 '(17-/[/) - / I (20 - Gt Tk, )
Z U, /“’ 2Lk
Ci - (103)
; (ffx;,, ( (T-Ay) T ” i o ST 44 )

’1:’ J=




- 128 -

This is an entirely analogous expression to relation (53) of Chapter

6. In this case, however, the generalised overshoot is given in terms of
o (I7- ‘

i)
factors, y, o

etc., which depend on the poles and zeros of the 2/9[(/1)
transform. These factors do not differ greatly in form from those

resulting in the 90/9(/0) analysis, The guantities are compared below:=
(2

Pole or Zero Type. Form in %élanalysis Form in 64% anal ysis.
i
LI(7-A 1 (77-
Real pole X /€ % ) x€ A & (104)
o1 (27~ 4 ¥ ) L1 (277~ ¥t @' )
Complex pole=-pair uu’/rz-i “ wulg @i (105)
ot (JT-f) L1 (jf-p)
Real zero %@f“’ ! e (106)
Y (27 - 47') | & (-4 )
Complex zero-pair zz'f2 ¢ . ZZ°E (107)

Charts giving the logarithms of the quantities in the right-hand
colum have been computed, Calculations with these charts are based, for
Type 1 servo-mechanisms, upon the expression (103). The overshoots in
the case of Type 2 and Type 3 servo-mechanisms are given by the expressions
(108) and (110), deduced below,

Type 2 servo-mechanism,

In the expression (103), let the real zero % tend to the origin. Then

79’ - and (/‘/’—@’)—?‘(/7—-#)
The principal mode approximation to the overshoot is therefore
9= </ (f-f,) N &I (27~ T, 0, )
&2 1 /
R A N
‘ + N m o1 —-¢ + Y

_IT x/”zg;CIT ’\hr) ﬂ vy, v‘,/.’ia'(ZII (4 '/{[I) (108)
= J""a

Also from the expression (101), the time for maximum overshoot is obtained

by letting ({T.py,).y(/lsé,) . This gives
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% m
- . q-1 B n o
N Eul/ [+#, +/\Z.-/(”—Ah') 4-,/'2;2(1//—%!/1L ) - LZ: /0/—4'/) “kz_‘/(z‘/ ~ Ve +74,) [ (109)

Type 3 servo-mechanism,

In a similar mamer to the above, let two real zeros tend to the

origin, that is, yjl ) 7(5-1)/ -
and (T-f, ), (T-fyy, ) =7 -9
Substitution in (103) gives an.overshoot of magnltude
—oli (34 7 .9"z A (2]~ G

“ x, g_w/ } (- Am r [ vji Vi 53,,(211 G+l ) (110)

Likewise from (lOl) the tlme at whlch thls occurs is

t= /[3¢,~//+Z’({/~A )+2’(2u G4v) - z’(,, ) Z(Zf'~fk+rk)(111)

With small values of ¢, , this expression may become negative. In this
case, the first minimum of the principal mode term occurs ﬂ%;lseconds
later than that given by (111). There is no difficulty in calculating
the size of the minimum, according to the methods previously given, but
it must be checked if this minimum represents the first overshoot in the
output. The principal mode term will now have a negative initial value
and must pass through a positive maximum before the required minimum is
reached, Interaction with a positive real term may produce a minimum
value of the error quantity prior to this, and hence render the principal
mode approximation quite invalid. A design is not impossible under these
circumstances but it would be largely a matter of trial and error and is

better avoided,
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Before applying the above results to numerical designs, brief
conclusions regarding the use of the least-damped real pole are given.
8,3. Use of Least-Damped Real Pole in addition to Principal Mode

Term.,

From the relation (99), the term resulting from the nearest or
least~damped real pole, situated at -a; 5 1is
ill(bz—a,) if( (Be-a +/-¢£’) K art
hsz(ahua')iﬂ‘—r (=" + 60;")

This applies for a Type 1 servo-mechanism. In the case of a Type 2

Nit) =

(112)

system, the term becomes

(b -a,)’mf w ) L mat
N = ‘ T i (113)

|_ (a4 - a,)_]'(o(,—a( +a)/)

=2 ):«I

and for Type 3,

1 b -a,) H Cﬂ +ug) il
Nl = _E (‘ k; A JE ’ (114)
! (ah a;) TT (o« —a -—ac +w )

j=1

If now the term N,(l‘)ls to help in reducing the overshoot by subtract-
ing from the principal mode value at that point, the sign of N,(t} should
be pos:.tlve as shown in Fig. 27. But a,<ay and therefore Tl' (%—a«))o
Also J“l (oty-a ﬂr+vj Y >0 and k(l(lfk-a,f—/c(,‘)w. We have therefore the follow-
ing conditions in order that N (£) should be positive -

Type 1. No zeros or an even number of zeros to the right of a, ;

Type 2. An odd number of zeros to the right of & ;

Iype 8. As Type 1.
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It may not always be possible to use this technique, for example, in
Type 2 systems having few zeros and poles, and it is impossible to apply
it in a Type 2 system with only one iero (distinct from the origin) and
only one pole, This follows from condition (93), in which & =4 and
Z'V=a+24, and hence b is necessarily greater than a; .
8.4. DNotes on the Design Charts,
1., The overshoot charts show the logarithm to the base 10 of ‘the
ot (7=f) o1 (27~T47")
quantities y¢™ and 2z/¢%’ for real zeros or poles and
complex zero=- or pole-pairs respectively., As these charts simply
correspond to the %@9” overshoot charts already described, similar
remarks pertaining to the abscissae and range of the charts apply.

2. For the calculation of the time of the maximum overshoot in accord-
ance with equations (101), (109), and (111), the angles QKVUI(ZF;&;;U
etc., may be taken from the %ayﬂ angle charts already provided.

3, For poles ard zeros beyond the abscsza limit 10, the quantities

/09/0 VA ‘%5(/7-’0) and /09,0 zz’z'g’(m-waa’i'e approximated by /Ug,ob

and b%sz respectively. The spproximations for (ﬁlﬁ) and

@W4359 are the same as those adopted previously (Sec. 6.5, liote 5).

Whereas at first sight, it would seem that these approximations, how-
ever necessary, constitute a drawback to the method, in fact the very
opposite holds = especially in the %@9@ form of the design. It is a fact
that in this method the inherently unstable Type 2 and 3 systems normally

require all their subsidiary poles and zeros to be remotely situated from
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the principal pole-pair and thus the use of the charts is completely

UNNecessary. Furthermore, as it is immaterial whether remote poles or
zeros are real or complex, it is easier to make these wholly real, A
design may therefore be worked out entirely by the use of a slide=-rule,
as logarithms to three figures are amply sufficient. A very real
advantage is thus obtained where it is most needed ~ in the design of
satisfactory %Q%Qp) transfer functions for the basically unstable
Type 2 and Type 3 servo-mechenisms., Such designs are demonstrated in

the following Chapter,
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CHAPTER 9.

USE OF THE €4h9ﬁ DESIGN CHARTS, COMPARISON’OF‘%@&M AND %&00 METHODS,
9.1, Introductory. Tables of Constants.

It has been pointed out in Sec., 7.3 that Type 2 and Type 3 transfer
functions are best designed with only real subsidiary poles and real zeros.
- This also holds for the present method and in the following designs only
such poles and zeros are considered. Such a procedure simplifies the use
of the charts, by confining the readings to the curves, =0, and avoid-
ing the awkward "bunching" of the curves pertaining to complex poles and
Zeros, Complete charts have been given, however, as it may happen that a
complex zero-pair is desired.

Before considering the examples, it is useful to prepare a Table,
similar to Table IV, which gives V=ZMZ-EAP for a number of overshoots
each with the three degrees of dsmping. This is based upon the expressions
(103), (108) amd (liO) for Types 1, 2 and 3 servo-mechanisms respectively.

In logarithmic form, these are

Type 1. X = logyovershoot = —log,r - 0-434551(71-(25,) +Y (115)
!

Type 2. X = -0.868¢ %9,75/ +Y (116)

Type 3. X = log G — o B4 (3¢-T)+Y (117)
Wy

We have therefore the following Table giving the value of Y<=Zd,-Z8p .
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TABLE VII
Values of Y=24z-Tdp
Overshoot Log.0Overshoot
Type | —olrt/w; 5% 10% 15% 20% 25% X
~0.54j/ | -0.33  -0.029 +0,148 +0.272 +0,369 Y -0.971
i -1 £y | %0.,556 +0.857 +1.034 +1.158 +1.255 Y -1.857
—2tjl | 42,179 +2.48 42,657 +2,781 +2,878 Y -3.48
~052jl | -0.82  -0.519 -0.342 -0.218 =-0.121 Y -0.481
2 —1tjl -0.619 -0,318 =-0,141 .-0.017 +0.080 Y -0.682
-2%jl ~0.,497 =0,196 =-0,019 +0.105 +0.202 Y -0.804
~05¢jl -1.311  -1,01 =0.833 =0,709 =-0,61l2 Y +0.01
-1 £l -1,793 =1,492 =-1,315 +1.191 -1,094 v 40,492
3 ~EJ% | 40,939  +1.24  41.417  +1.541 +1.638 Y -2.24
-2tjl -3.174 -2.873 =-2,696 -2.572 =~2,475 Y +1.873
~2tj1% | 42,285 +2.586 +2.763 +2.887 +2,984 Y -3.586

9.2,

Example 1.

¥ Bntries here are calculated from
X = logn —0-43934 (34+7) +Y
@

i.e. the case of maximum overshoot occuﬁ@ng 2if /e seconds

later than that given by (11l).

Examples.

Specification - 15% maximum overshoot

v

Type 2, 1 complex pole-pair, 3 real poles, 3 real zeros.

Subsequent undershoot of the order of 2% is

permitted.
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Then
/D(/Df b/X/D+ bZ X/UJ- b3 )
(p+adprazXp+azlp tos—jo, X p+ ol 6 ) (118)

e
() =
95/0

For this example, let us take the case when the degree of the denominator
in 6,/6() exceeds timt of the numerator by 2. This gives the
condition (93) of Sec. 8.1 as follows,

bi+ batby = a+ap+az + 20 ' (119)
Since the position-/£j/ for the principal pole-pair will give the required

damping, the required Y  from Table VII is

Y = Za,~Zn, = -0t4/

A number of designs are tried.

(a) Suppose a,=/0,a,=/s, a5='20, b=5 Y is then given as follows,
a =1 B =10 (chart 2 or approximated by

az= 15 Ag,= 1176 (approximated by

dz =20 Aqs_,. /-30/ ( " "

Za=45 FAp=3477.. . bth=42 end try b= 12 ,4=30. Thus

By =072, By, = 1079, Abs; 1477, Za,= 327

This gives Y==0.20/,10g , overshoot = -0-20/ - 0-682 = -0.883
and therefore about 13% overshoot.

(b) Suppoée Q/; G} a, = o, a3= 20, bI= 4 -

Thus Then
a5 Bg=o0T2 - b=4 A4, = 0.64
Q=10 g, = I-0 b=6  Lbp,=0T9
3 =20  Ag, = /30 b3=21 By =143
Zla=35 Zdp=3-02i Z Ay = 2-86

Cobytby= 33, and try 6,=6, b5= 27, and Y =-o0.16
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X = log ,, overshoot = —0./6/ - 0.682 <-0-843 s e /4.349
It will be near enough to adopt these pole positions. To complete

the data, we have

Loy = 024 5 Lag=0.0l , Lay~ 0.053 Ly =0.32,Lh,=02, L by = 0037

Hence maximum overshoot will ocecur at
= 2¢ +Z0p -2, « 147

The required transfer function is

€)= PRlp+akXp ek Xp+27£) (120)
6; (prSkXptokXpt 20k X p+hk-jkXpth k)
which gives the error
~¢! -5t —lot! ~2ot'
elt) = 0.83¢5¢ sin (Ele2.51) 4 0.0863¢ b 0.9q55 " o.5775% 5 (121)

the computed overshoot is 14.33%,
The above design is only one of a number which are possible with fairly

wide variations in the poles and zeros. For instance the transfer function

PlCprShkX pr 33-5k)*F
(p+10k X p + 20k NXp+ 40k X Ptk ~jk X ppk 47K )

will also give about 15% overshoot. Such a wide choice of designs results

€ =
6"/0

Primarily from having a relatively large number of poles and zeros. Con=-

versely, a limited number of poles and zeros restricts their possible locations.

Example 2, Type 3, 1 complex pole-pair, 3 real poles, 2 real zeros.,
Specification - 10% meximum overshoot

Subsequent undershoot of order of 2% permitted.

Then

€(p) = £ ptbdpt be) (122)
6 (prasXp+a; Xptag Xp+sls~jwiX proy+ jer )
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Further let us take the case when the degree of the denominator in
exceeds that of the numerator by 3. This gives the extra conditions

b+ be = a,+a, +az + 2o (123)

biby = a0, +a,a5 Fa,a3 + 20 (ar+az rag) +1° (124)

In contrast to the previous design, this one is limited. Since a
principal pole-pair at either~/£// or-2£jl produces the condition of a
principal mode maximum before the required minimum (assuming that all poles
and zeros will be remote and hence ZLp~ szé @, the position-05fjf will
be taken. From Table VII therefore,
A number of designs are now tried.

(a) Suppose a@;=/0,a,:=20, b =4 . Conditions (123) and (124) give

dob, =23/.25 + 3la,
from which a3 = 657, b, = S6.7 . The logarithmic increments

are a /o Ag 10 [/09100,] .b, do Aé[ /-6o2 //ogﬁib’]
a, 2o Ag, 130 efe. b, sx7  4b, 1754 efe .

a3 657 Ap; 1-8/8

SAp 4119 Z'A; 3.35

V= ZAZ —ZAP - =0.7%3
X = -~067%3+0.0/ = —0.763 and overshoot = I7.6%

(b) Suppose a= o, Qz = 4o ? b/ = €0,

66+ b6, = S/ +a;s
Then 60b, = 95125 + §las }
from which a3 = ffo , b, = 101 . Hence,
a o Dg 10 b 6o Ay, 1778
a; 4o Ao, 1602 b, lol 4y, 2.005
az o Aay 2.041

g, 4643 Fh, 3.763
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Y = zsz -SAp = —0.860
xl= —~0-860 +0.6/ = 0.85 ’ and overshoot = /4-/°

In this example a number of other trials were necessary. These showed
firstly, that the overshoot decreased as the sum a+a; increased, more
especially if '@ and a, were not too far apart, and secondly, that the

choice of /73 did not greatly affect the overshoot for given values of a and

Qz . The final design is
(c) % /5 Agy 1176 Lg, 0.069 b 6o Ab 1178 Ly, 0-0168
a, 3o Aq; 4771 La, 0-0339 by 814 O, (911 Lp, 0.0123
a3 954 dag [-980 Las 0-0/05
Hence Y= —0744 , X =-0.9%44 +0.0/ = ~0.934

this gives a principal mode value of 11.64% af t'= (3¢ -7+ Lp-ZL)=0.2¢
In this design the term due to the nearest real pole will be positive

since there are no zeros to the right of o, . The transfer function is

¢ - PECpreck Xp+ &rgk)
P = (125)
& PrSkXp+ 30k APt 954kN p + 05k jkXptc-Sktjk)
and the error is
, _o.5¢' —ISH —3ol! — ¢5.4F
elt) = 0-148¢ sin (¢-3.988) +2.643¢ - 1.625¢  + o.0952% . (126)

Fig. 35 below indicates the conditions.
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r0
<N
No
W
oSt
oL\ __ 0s o /st

The value of the principal mode at [~02¢ is-0.//63. The good
agreement between the predicted and computed values, indicates that the
approximations 4g = /ogloa/ etc., La,=’/(a,_“l)etc. are quite reasonable. It
should be noted that although the term due to the nearest real pole
causes the overshoot at (=026 to be about 6%, the maximum overshoot .
still is about 1l1% and occurs later. This is due to the slow decay of
the principal mode term relative to the nearest real pole., A real pole
with less damping than this would be required to materially alter the
overshoot,

Example 3, Type 3, 1 complex pole-pair, 2 real poles, 1 real zero,
This example illustrates the derivation of the circuit values

. x
.in. a practical problem.

%
See reference 2/ , Appendix 2.
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The open-loop transfer function of an induetion motor-controlled

servo-mechanism is given by

b= Ex (127)

to a first approximation. It may be stebilised by the use of the input

network shown below.

o_;—iF%

AW

Fig. 36,

This has the transfer functiom,

. /
G = Pt /’[c//& +cue;] f Gacik,

by (128)
‘ # L + L.
/0 “r [ <k CoRe C/Kz] c,(,c.;&
giving the resultant loop transfer function
L o+ L .
boip) - P‘v‘/o/c//e/ *c;/e‘f +c,mfz . F500 (129)
/ 1
/0 /0 C/ﬂ/ Czﬁz C/K’z, C/,(/C;KL P
The e(/o) transfer function is therefore,
[
€0 = ZKP +/”[C/ﬁ/ szz Fard c//e,cz/z,) _ (130)
6 3 v/ I5¢ # _Lf—,L 3500 + 3500
‘ /O‘lf“/’ (CR/ 7 fc,,e,_) e (G2, 1% 00) /9( SR R,

C&C Ky,
As the steady-state acceleration error will be very small it is better to

treat this as a Type 3 system. In this case we have

/ /
g(/,) = S(/:7_"- /5/%/7“27&*57&])

6; 3/ / /) +./ 13500 4
70“4-/0 (C/’e/ +Czﬂ1_ C/ﬂl) tP !

(131)
S )3500 £ 3570
k) e Ry G R CiR,
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=

pip+b)
(PracXptarX proy—jon Xptotst juy )
where by =a,1a, + 20 ,

(132)

As in the previous example, take the principal pole~-pair position—0-51j7.
For a 10% overshoot we have, from Table VII

Y = -0

Further sinece 6> or a, , the term due to the nearest real pole will be
positive., A few trials are made.

(a) Suppose a,=1/0, a,=20

Then Aa/ =1, Aag = ( 30/ , Zﬂp = 2.30/
b=31,4 = (49 , Jng = 1-4491
Hence Y =-0-8/ and X=log pOvershoot = —0-8/ to.o01=-08,

that is,about 16% overshoot.

(b) Suppose @, = (5, ap =30

Then Do = 1176 ) Hag= [ 417 , Zhp= 2653
b= 4 , Al = 1663 , Tz = [663

and Y=-0.99 . This is near enough the required value.
Completing the data, we have ;= 0.067 La£==0-0.‘337J L[)Izo-ozz. . The principal
mode minimum will therefore occur at £'= 3¢, +ZLp- T+l ) , i.e. atb

3(1-10¢) +0/03~ (3.192 +0022) = 0-257 ,  The required transfer function

is &) = PECPrACR) : (154)
g @+ﬁ11¢ﬁmAXp+05k7ﬁ1p+w5kh%J

= 0% 4+ 46 kp3 (135)
P Fokpd+ 4963k S06 k3 + 625 kY
Equating the coefficients of (131) to those of (135)

3500 . seesk? (136)
C/QC:KL
L +_L Y3500 = Sobk®
(C/ﬂ/ szl) (137)
3500 = 496.3k*

(138)
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Lo L oL =
(C/ﬁl ek, ¢k, ) 76 k (159 )

Solving, we have k= 2.655, k*= 706 ,4k%= 1875, k*'= 49.8.

The resistance A, would not normally be less than about /0002 to avoid

undue loading and we shall suppose it is fixed a% that value, The

equations then give €/ = 83SuF ,dR(R, = 0/248 . If Cp = I0uF,

then K = /5Ma .

The error is given by

~1.328¢ —~39.85L ~-19.7¢
¢t) = 0./133¢ sin (2.655F+399)) + 228 — [lo3¢ . (140)
The principal mode has the value-0./047 at £ = O~257,/e=. 0-0%8 , at
~3985¢

which time the term 2.2¢ is equal to o0.04¢4 . The maximum over-

shoot will still be of the order of 10%, but will occur slightly later

than the above value of £ indicates.
9.3, Comparison of the %‘_(p) and eégo) Design Methods. Conclusions.

The following points may be made regarding the two design procedures.
1, The 95(,0) method is easily applicable to Type O and Type 1 systems
irrespecti‘ve of their order; mno restriction other than the required Z4,-Z4p
limits the pole and zero positions. For Type 2 systems, the additional
relationship expressing the equality of the coefficients of powers of p in
the numerator and denominator, causes some trouble in the case of high order
systems (i.e. 6 or more), Type 3 designs are complicated by two additional
relationships compared with Type 1 designs.
2. The ;/[@ method may be equally easily applied %o all Types. In all
Types however, if the degree of the denominator of egé‘(P) exceeds that of the
numerator of eye‘_(p) by two, we have the further condition

sum of zeros = sum of poles.
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If the degree of the denominator of Q%%m exceeds that of the numerator
by three, two extra conditions arise, namely

sum of zeros sum of poles

i

sum of products of zeros taken two sum of products of poles taken
at a Time } = {two at a time.

If the degree of the denominator of Q@p) exceeds that of the numerator by

more than three, three conditions occur,

It follows from points 1 and 2 therefore that a Type 3 system coming
within this last category will cause trouble in design., The diffioculty
may only be resolved by judicious trial and error,

3., For systems requiring remotely situated poles, the Gﬂy@) transfer
fdnction has its zeros near the principal pole-pair position. Under

similar circumstances, the éégm transfer function has its zeros &lso

remotely situated., All the subsidiary poles and zeros of the‘%qvtransfer

function being thus situated beyond the range of the charts, these may be
dispensed with. This is a considerable advantage.
Conclusions,

The following remarks apply to both methods.
1. The principal mode approximation to the overshoot is possible except
in the case of Type 2 and Type 3 systems of low order (i.e. 3 or 4) and
having a low value of maximum overshoodb. In such cases there are not
sufficient subsidiary poles and zeros to enable all relationships to be
simultaneously satisfied. By using the term due to the nearest real

pole, however, the difficulty of the small overshoot may usually
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be resolved. It is possible, nevertheless, that even with this technique
" & case may arise when a given overshoot is unattainable, This indicates
that the response requires to be composed of wholly real terms. Under
these conditions it may be possible to use one of Whiteley's Standard Forms,
2., The principal pole-pair position to be selected will depend on the
required overshoot and damping. Except for Type 3 systems, in which the
least damped position at-0:5t;/ has to be accepted, there is usually &
choice of two out of the three principal pole-pair positions. It is
difficult to make a statement on this noint because of the dependence of
Zﬂz-pr on overshoot, damping, and the relative numbers of subsidiary
poles and zeros in any particular btransfer function. In general, however,
the design will be easier, (i) if ZBp-ZA, does not depart too widely from
zero for equal numbers of subsidiary poles and zeros (distinet from the
origin), and (ii) ifEi&—pris a small positive or negative quantity accord-
ing as the number of zeros is greater than or is less than the number of
subsidiary poles.

Finally, it nay‘be stated that the writer's preference lies with the
¢4Q407 design method, firstly, on account of the segregation Qf Types and

secondly, since the charts are in most cases unnecessary.



PART III.

EXPERIMENTAL INVESTIGATION OF TRANSIENT AND FREQUENCY RESPONSES

" OF METADYNE SERVO-MECHANTISH.



- 145 -

INTRODUCTION.

The servo-mechanism whose transient and frequency responses are
described in the following four Chapters is the Admiral ty Metadyne Power
Control Apparatus for a 2-Pdr., R.P.50 "M" iark 7 Mounting. This equip-
ment was obtained as a result of a generous offer by the Admiralty and
consisted of the complete control gear with the exception of the trans-
mitting magslips and those items of switchgear situated on the mounting
proper. The egquipment also comprised several components and numerous
circuits all incidental to the basic servo-mechanism sequence, These
ére the h.f. alternator set forming the power supply for the thermionic
amplifier, control panel and automatic voltage regulator for the h,f.
output, automatic starters for the h.f. set, and for the metadyne motor-
generator set. Control potentiometers for joystick manipulation of the
mounting were also included, and a d.c. contactor panel for effecting
change~over from this operation to fully automatic (servo) operation, i.e.
remote control from the transmitting magslips. As the author had not.at
the time been dealing with such remote position control apparatus, a
decision was made to set up the equipment as near as possible to the
original scheme for which the gear was designed. At the same time, it
was atteméted to separate the training and elevating motions as far as
possible amd to make available certain important points in the circuit for
laboratory testing and so omn., This required the construction of an
auxiliary switchgear panel and a few modifications to the d.c. contactor

panel, The traininglmoment-of-inertia of the mounting was simulated by a
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correctly-proportioned inertia which was direct-coupled to the gun-driving
motor armature. A gear-box linking the fine and coarse magslip trans-
mitters was also constructed. The description of the last two items is
given in the Chapter following. As the operation of the h.f. alternator-
set, starting arrangements, d.c. contactor panelvand auxiliary switchgear
panel, is not relevant to the main servo-mechanism sequence, the description
of these components and circuits is omitted. The circult diagram of Fig,
37 therefore repfesents only the essential connections, the actual circuit
diagram being considerably more coumplex, The preliminary ¢onstruction and
setting-up, btesting and measurement was carried out during the Summers of
1948, -49, and -50. The final tests which are given in Chapters 11 and 12
were obtained during the Summer of 1951,

Nature of Investigation.

The object of the investigation is to determine to what extent
quantitative prediction of the transient response of a practical "linear"
servo-mechanism is possible from a knowledge of the frequency response.

By a practical "linear" system is understood a system whose operation is
made as linear as possible, The results will decide, it is hoped, just
how far the highly-developed frequency-response design techniques can be
of use when applied to a practical servo-mechanism. At the outset, it is
certain that this limit will depend on the complexity of the system and
upon the e%tent of non-linear operation which takes place under normal
amplitude signals., The system tested is moderately complex and normally
non-linesr in its operation. This will be the case with most high-power,

high-accuracy systems.
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Result of Investigation.

For the system tested the investigation showed that the predicted
overshoot exceeded the measured overshoot by 16% of the input step, with
a smaller discrepancy for a more oscillatory response. The measured
time of the maximum overshoot exceeded the predicted time by 40%, with
again better agreement for a more oscillatory response. It has been
attempted to extend these conclusions in Sec. 13.4, subject to the

provisions stated therein,



- 148 =~

CHAPTER 10G.
DESCRIPTION OF APPARATUS AND METHODS OF TESTING,

For convenience in following out the description of the apparatus and
methods of testing, the order in which this is presented is given. This
is as follows.

10.1. Description of Apparatus.

Fig. 37. Circuit disgram of servo-mechanism end apparatus associated

with sinusoidal measurements,

Fig. 38, Thermionic amplifier circuit (simplified).

Note on operation,

Fig. 389. Photograph of general layout of apparatus.

Fig, 40, Photograph of details of resetting.

Fig. 41. Photograph of details of transmitting magslips and gearbox,
transient response paper recorder, and sinusoidal input=
motion generator,

Layout end mechanibal‘construction of main components.,
10.2. Description of Methods of Testing.
Transient response measurement

Fig. 42, Circuit diagram of frequency response measuring gear,
Frequency response measuremendt,

Factors limitiﬁg the linear operation of the system.

Throughout Figs. 37 to 42, a consistent numbering system fqr the
components has been employed. The key to this is given on Fig. 37 and

is repeated for convenience opposite Fig. 39.
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10.1. Description of Apparatus.
Description of servo-mechanism,

The circuits above the chain~dotted line in Fig. 37 comprise the
servo-mechanism proper, as distinct from the frequency response measurement
circuits which are below the chain~dotted line. The load inertia 6 is a
simple brake pulley which has been proportioned to simulate the training
moment-of-inertia of the mounting referred to the motor shaft 20, Details
of the actual training motion were as follows.*

Training moment-of-inertia 8,800 slug-Tt°
Gun-driving motor armature inertia referred to mounting 7,150 "
Gear ratio motor shaft to mounting 293 1/3 to 1

Total m.i. referred to motor shaft = 15950X 32,2 1b=Ft2 = 5,96 1b-ft2

(298 1/3)2

The gun-driving motor armature inertia was measured by the method of bifilar
suspension and found to be 2,07 1b.—ft2. An added inertia was therefore
constructed to bring the total m.i, reférred to the motor shaft up to

6 1b-ft2, Error indication is obtained by the magslip transmitter-resetter
system of which only the fine transmission is shown in the diagram. 1In
practice this is geared up 36 times from the speed of the mounting with a
coarse magslip link to take over for larger misalignments. Provision has
been made for this in the transmitting gear~box described later. As all

the tests described here, however, reguired only fine magslip signals, the

coarse transmission has been omitted from the circuit diagram. The gear-

Figures supplied by Secretary of Admiralty for Naval Ordnance Departnent.
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train from motor shaft to fine resetter, indicated by item 16 on Fig. 37,

was fixed at 26 to 3. The main details of the experimental set=-up are

therefore:
Total moment-of=-inertia referred to motor shaft 6.06 1b-ft2
Gear ratio motor shaft to fine resetting magslip 35 %o 3
Gear ratio fine to coarse transmission 36 to 1

(Effective gear ratio motor shaft to mounting = 25 x 38 300 to 1)

3

1

A high-frequency alternator provides a 200-V, 1100-c/s pdwer input
to the thermionic amplifier 3, which gives by a separate winding on the
high-tension transformer, a 20-V, llOd—o/s supply for the transmitting
magslip rotors. The transmitting magslips are Admiral ty Pattern 10428,
supplied by Muirhead & Co., while the resetting megslips received with
the equipment are Admiralty Pattern 10429,

The angular error between the shaft of the fine transmitting magslip
7, and that of the fiﬁe resebtting magslip 15, is measured in magnitade by
the r.m.s. value of the voltage induced in the resetting magslip rotor
winding, the oubtput being 0,6 /degree error. A phase change of 180° in
this voltage indicates the efror has altered from positive to negative or

. *
Vice versa.

* No output voltage is obtained from the resetting magslip rotor when

its magnetic axis is at right angles to the pulsating field produced by the
stator windings. The direction of this field depends in turn upon the
positions of the transmitting megslip rotor and stator. In the laboratory
set-up described herein, it is convenient, for this condition, to fix pointers
on both the transmitting and resetting magslip shafts in the vertically upward
direction and to set the indicating dials 1 amd 2 to read zero. If the
transmitting magslip shaft turns clockwise through 200 say, the load inertia
is driven clockwise by 20 x 25/30 and turns the resetter shaft cl-ckwise
through 207. Similarly for anti-clockwise displacements of the transmitter.
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This point is explained in connection with the description of the first
stage of the amplifier, The thermionic amplifier output supplies the mein
variator windings of the metadyne-generator 4. | There are arranged in
differential or push-pull form as shown in Fig., 37, A d.c. shunt motor 21,
forms the drive for the metadyne generator which supplies the armature power
of a geparately excited d.c, gun=-driving motor 5. This motor is fitted
with a brake at the end of the shaft remote from the load, with provision
for 1ifting the brake shoes magnetically by flow of the normal shunt-field
current through a special brake winding; or mechanically fbr inspection
purposes by means of a small lever on the brake structure itself, Through-
out the tests the brake was permanently lifted,

The ratings of these machines are as follows:~-

Metadyne generator set driving motor - 220V, 5,6 h,p., 2800 r/h
Metadyne generator 35 - 70 V, 1.2 kW, 2800 r/m
Gun-driving motor 28 - 220V , 404, 660 r/m

The figures for the first two machines refer to the continuous power
output which they are capable of supplying. The current rating of the
gun-driving motor is also continuous. Having more direct bearing on the
operation of the system, the peak oﬁtput powér of the metadyne generator is
about 2.5 kW, which is accompanied by a peak ihput power to the driving
motor of about 5 kW, The supplies are

métadyne-generator set driving-motor - 220V, d,c.

high-frequency alternator set driving-motor - 100V, d.c.
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The first is obtained from anobher d.c. machine and +the second from a
3=phase, mercury-arc rectifier.
Thermionic amplifier - note on operation.

The circuit diagram of Fig. 38 has been abstracted from a complete
diagram which was supplied with the equipment. It is included for the
mere explanation of the functions of the various stages. Technical details
of the design have not been altered in any way from the original and they
are omitted in this descriptionm. The amplifier has four stages, namely,

1. Phase-sensitive rectification, smoothing, and phase-advancing.
2. Voltage amplification and phase-advancing.
3. Voltage amplification,
4, Output stage producing ocurrent in variator windings proportional
to stage input voltage.
Phase sensitive rectification.

In the absence of an a.c. signal input to the fine grid transformer,
the anodes of the first valve carry equal currents during the positive half-
cycle of their alternating supply voltages, which are in phase with each
other. No net voltage drop appears over the two load resistors, i.e.
across the points’A and B, Due, however, to the centre tapped secondary of
the grid transformer, a signal input will supply the grids in anti-phase.
Since the magslip excitation is taken from a further secondary winding on
the h.t. transformer supplying also the first-stage anodes, one grid voltage
will be in phase with its anode voltage, while the other grid voltage will

be in anti-phase to its anode voltage. Unequal currents are therefore taken
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in each half of the valve and a net output voltage appears across AB.

If the anguler error between input and output changes its sign, the signal
input to the grid transformer sustains a 180° phase-change., The anode
previously taking the smaller current will now teke the larger one and a
change in the polarity of the net output voltage across AB results. This
output voltage is smoothed and phase-advanced before being passed to the
grids of the second valve, The phase-advancing circuit operates on
changing d.c. signals, and has a number of condensers C of differing
values, any one of which may be selected by a four-posifion switch.
Balanced D.C., Amplification.

The remaining sbtages constitute a straightforward balanced d.c.
amplifier, with a fixsd amount of phase-advance provided in the second
stage. "Metrosil” non-linear discharge resistors are fitted across both
halves of the variator windings in order to limit peak transient voltages
which maey arise across them, The standing current in each half of the
variator winding is nominally 40 mA, with a maximum swing of *40 mA due
to the input signal, In practice it is necessary to balance the whole
forward sequence by adjustment of the trimming resistor in the first stage.
This is altered until no metadyne output current flows when the system 1is
set in the position of zero error. For the purposes of linear operation,
thé whole # 40 mA swing cannot be used. The limit of linearity in the

gain of the forward sequence is reached, in fact, at about £25 mA swing.
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*ig. 39. General layout of apparatus.
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Layout.,

Referring to the general view given in Fig, 39, the thermionic
amplifier 3 is supported in an angle-iron framework in the rear of the
photograph with the high-frequency alternator set 17 underneath. The
metadyne motor-generator set 4 on the right, comprises twin-metadyne
generators and a driving motor assembled a&s one unit., The starters for
both these sets are not shown in the photograph.. The other apparatus,
excluding instruments, is mounted on a 52t x 3' bedplate made up from
channel and Tee-irons. Directly in front of the thermionic amplifier
is the gun-driving motor 5, with the load inertia 6, To the right of
the servo-motor and wholly concealed in this view are the resetting
magslips in their gear-box 15, In the front of the photograph, the
paper recorder 13 is to the left; the drive-motor 10, for the slider-
crank sinusoidal input-motion-generator 1l is in the centre while the
transmitting megslips 7 end 8, with their gear-box 18, are on the right,
Mechanical construction of main components.

The motor 5 is bolted down on cross-channels, The normal bolts
which held the front end-shield are replaced by four double-ended bolts
which perform the same task and support also a rectangular steel plate.
This plate is also bolted in three élaces to the composite forward motor
cross-channel and has two holes bored in it, one through which the motor

shaft projects and the other into which the resetter gear box is spigoted.
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The plate serves as a reference plane and establishes a figid connection
between the motor shaft and the shaft of the fine magslip resetter, between
which the 25 to 3 gear-train is placed. This gear~box, 16, is built
separately and later fixed in position on the reference plate. The load
inertia has been made in the form of a brake pulleﬁgwhose m.i, has been
finally adjusted by screwing on a brass ring., The load is keyed on to a
%” diameter shaft supported in Hoffmeann self-aligning ball bearings to
reduce friction as far as possible., This shaft is solidly-coupled to the
motor shaft,

Gear-boxes (see Figs. 40 and 41).

A similar construction has been employed for the 25 to 3 gear-train 16,
as for the 36 to 1 gear-train 18, which is between the fine and coarse
transmitting magslips 7 and 8, Both are made of bright mild steel plates
clamped parallel with each other and separated by accurately made tubular
distance pieces, The gear-box 16 is made up of two plates z" thick whrile
the gear-box 18, which supports also the transmitting magslips, is composed
of three plates 5/16" thick, The gear-wheel shafts are of 3" diameter
silver steél throughout and run in brass bushes which are pressed into the
steel plates. Between every pair of fixed bushes, movable bushes are
provided which allow 1/10" movement of the bush in any direction at right
angles to the bore. The centres are initially marked out as accurately

as possible. In this manner, the backlash can be reduced to a very small

X A suitable casting happened to be available. Steady loading of the
motor may possibly be required in future,
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amount and it will be possible to take up a limited amount of wear. The

-

gear-trains themselves are composed of Bond's Standard 40 D,P, Spur Gear
Wheels,

Two circular scales, 1 and 2, graduated in intervals of one degree
are used to measure the angles of the transmitting end resetting magslips
shafts. - As mentioned previously, the pointers mounted on the shafts
read zero when they point vertically upward, The transmitter and
resetter dial indications will hereafter be referred to as the input and

output angles of the system, with clockwise rotations designated positive.
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Details of resetting

Details of paper recorder and
transmitting gearbox.
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10.2. Description of Methods of Testing.

Transient Response Measurement.

A discussion of the factors which limited the movement of the output
in order that its response might be considered linear is given in Sec.10.3.
Here it is sufficient to note that this limited range of motion allowed the
possibility of recording on paper by a pen directly moved by the output
shaft or any shaft geared to it. The advantages of simplicity, accuracy,
ease of inspection and measurement of traces compared with oscillographic
methods séemed to outweigh the possible trouble in constructing a reliable
recorder with a suitable time-marki%g device, and hence this method was
adopted.

The simple recorder 13, shown in Fig, 41, consists of a series of
rollers running between two upright plates. The rollers which pull the
paper through are in the centre of the recorder and are rubber-covered.

The lower of these is driven through a gear-train from a small 24-V d.c,
motor fitted;with a worm-gear, and mounted within the recorder on its
base-plate. The upper roller runs in floating bushes which are pressed
downwards by springs. Paper which is fed in between the rollers is thus
pulled through by a friction grip., Before entering the rollers, the
paper passes over a brass plate forming a suitable writing surface and 1is
kept flat prior to being written on by a brass strip mounted transversely
to the paper and close to the writing surface. This srip contains &
narrow groove extending the full width of the recorder and forms a guilding
slot for a short length of 8 B.A., screwed rod which is rigidly fixed to the

pen~holder, The screwed rod also provides a means of regulating the
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writing pressure. BIRO pens are used for both the output and time-marking
traces. The output pen is moved by a flexible steel tape passing round a
Tufnol pulley on the motor shaft and round a similar one on the far side of
the recorder from the motor shaft, A limited amount of travel in the
horizontal direction is provided at the driven pulley in order to tension
the steel tape. The friction at the sharp edges of the tape is ample to
overcome the slight resistance of the pen motion and no trouble has been
experienced with slip. The same may be said of the oscillatory drive to
the fine transmitting magslip described under frequency response measure=-
ment, where the torque conditions resisting the drive are much more arduous.
It may be of interest to state that the steel tape used was magnetic record-
ing  ‘tape. The scale of the recording was fixed at 1" = 10° fine magslip
rotation.

The time-marking pen is fixed to the armature of a small relay. Flow
of current through the coil causes the pen to be lifted off the paper on
which it is normally held by a light spring, The circuit of the relay
coil is closed twice per second by a contact driven by a geared synchronous
motor supplied at mains frequency. The time~marking trace is therefore a
series of short lines or dashes, the ends of which indicate half-second
intervals, It is necessary to assume that the paper speed does not alter
between these points. Reference to the actual records shows that this is
quite justifiable.,

Frequency Response Measurement.
The lower part of Fig., 37 shows the additional circuits and apparatus

required for frequency response measurement. The diagram is repezted be-
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low for convenience.

e

O
/0 29¢s

| ! I ; 02—
9@——Jﬁ§"§‘ lI%_“_ 25 ‘
1 5 24

t 22
 Phase __)_. ‘
Shift X £ Y i
) -1
Fig. 42,

The shaft of the fine transmitting magslip 7 is moved sinusoidally
by the slider-crank and steel-tape drive shown in the photograph of Fig.
39 and in the detailed view of Fig. 4l1. For the range of frequencies
required this method proved quite satisfactory. The ratio of connecting-
rod length to crank length is about 35 for input motions of + 10° amplitude
and about 70 for input motions of * 5° amplitude so that neglipible error
is introduced in assuming the movement of the input shaft to be a true
sinusoid, The crank-pin screws into the face of the half-coupling on the
drive-motor shaft and a set of tapped holes for input motions of 150,:t100’

% 200 is provided. The part of the crank pin which rotates in the

connecting rod is turned eccentrically to the part which screws into the

half-coupling, and by this means, the crank length may be adjusted to give
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the exact movement required to the input shaft, The amplitude of
oscillation of the output shaft, i.e. fine resetter shaft, is observed
on the dial shown. Frequency is obtained by timing a given number of
oscillations with a stop watch.

The angle of lag of the output with respect to the imput shaft is
measured by means of a cathode-ray tube and uéing a mull method of
detection, Three resolver-type magslipg&were used. The resolver 12,
directly driven by the output shaft, has its rotor excited by a SO—q/s
supply, and provides at its stator winding terminals an alternating
voltage proportional to the output shaft angleﬁ and one whose phase with
respect to the SO-q/s supply, changes by 180° as the output angle goes
from positive to negative, The Variac 24 provides a means of altering
the rotor excitation in order to maintain approximately éconstant
amplitude trace on the GRO with varying amplitudes of the output
oscillation., A CR phase-shifting network 25, is also required for

reasons given later,

X No particular significance attaches to the use of resolver-type
magslips. The resolver 12, coupled to the output shaft was originally
employed because of the large signal voltage it was possible to obtain,
but later a fixed setting of the oscilloscope amplifier was used.

The resolvers 9 and 22 were used simply on account of their availability.

P More correctly, proportional to the sine of the output shaft angle.
The meximum amplitude occurring in the tests was just under 16° so that
the greatest error introduced is about 1.1%.
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The resolvers 9 and 22 provide at the rotor terminals of the latter,
a 50-c/s alternating voltage whose amplitude varies sinusoidally at the
frequency of rotation of the resolver rotor 9. This rotor is directly
coupled to the output shaft of the drive motor 10 responsible for the
éinusoidél input shaft movement, The stators of 9 and 22 are connected
in a manner similar to ordinary magslip stators and function likewise.
The rotor of 22 can be turned freely by hand to any position indicated
by a suitable dial and pointer system, and according to its angular dis-
placement, so the phase of the amplitude variation of its output voltage
will be altered, This output voltage, in short, is an a.c. signal
having sinusoidal amplitude variation at the frequency of the input sine
motion and whose phase with respect to the iﬁput shaft motion can be
adjusted by the angular displacement of the rotor, The Variac 23 enables
the actual voltage obtained to be set at a convenient value for
observation on the C.,R.,0. The pattern which results is explained below.
Before making any phase measurements, it is necessary to line-up the
voltages on the vertical and horizontal deflecting plates, Thus when
6;,6, and the plene-shift dial indication are all made zero, the stators
of 12 and 22 may be rotated until a stationary spot is obtained on the
C.R.0. screen. If now 0, and Q,are given equal or unequal displacements
in the same direction a trace will appear on the oscilloscope, and provided
the 50-c/s voltages on the X and Y plates are in phase, this will be a

straight line, The tilt of the line, of course, depends on the excitations
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supplied by the Variacs 23 and 24,

signals occurred,

s

Phase shift between these 50-c/s

This may be partly assigned to the difference in

the circuits of the two channels and to the employment of an amplifier

in the Y direction.

It was removed by the CR phase-correcting circuit

256, As a fixed setbing of the oscilloscope emplifier was used, the

network 25 need only be adjusted at the start and a straight-line trace

is' obtained thereafter.

and 6, stationary.

The movement of the trace when & and 6, are both varying sinusoidally

All the above details are performed with 6

at the same frequency cen best be explained with reference to Fig. 43.

&

@=90°

= T

6=0707 6,

6,=-0707§
(c)

Fig. 43.
of 6,/6; (jw)

¢.R.0. traces obtained with various phase shifts

The quantities indicated immediately below each diagram are (1) +he

phase=-shift of gf(/w), (ii) ‘the instant of time concerned, the input
(i

being given by €1=é5/}zwt, (iii) the instantaneous value of 6, and (iv)

the instantaneous value of 6 .

The patbtern obtained for zero phase-
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shift of 6/ (o) is indicated in Fig. 43a, As the sinusoidal
amplitude variations are in phase, the straight line trace merely alters
its length without altering its direction. The frequency of this
alteration in length is twice that of the input signal frequency. In
Fig. 43b the conditions for 60° phase-lag of 6 with respect to 6/ are
given, The extremities of the line ‘ollow the elliptical course shown
and‘the line itself undergoes periodic variation of its length while it
rotates anti-clockwise, A 90° phase-shift appears as Fig. 43¢, in
which the extremities follow a circle, The 180° phase-shift pattern
takes the fom of Fig, 43d. The procedure for phase-measurement is
therefore to rotate the rotor of the resolver 22 (thus altering the phase
of the amplitude variation with respect to the input) until the zero
phase-shift pattern, Fig. 43a is obtained. The rotation indicated on
the dial provided ié the required angle, For small amplitude variations
of @, , the vertical deflection was increased by altering the Variac 24.
Hence it was possible to obtain the in-phase trace as a 45° line for all
experimental points and obtain the greatest precision. In practice the
range of dial adjustment within which no detectable chénge appeared in
the trace was not greater than 2° at the lowest frequency point taken nor
greater than 4° at the highest frequency point. The mid-point of this
zone was taken as the phase-angle.

Extent of Linear Operation of the System.
The two main factors which restrict the range of linear movements of
the system are (a) static error and (b) curvature of the control "stiff-

ness" characteristic, that is, the relationship of motor torque to error.
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The maximum static error between the transmitting and resetting
ymagslip shafts is made up from (i) the inherent static inaccuracy of the
magslip link itself, which usually is of the order of %O to-%o and (ii)
the maximum deviation which can occur without the developed torque of the
motor exceeding the stiction torque. The second of these error \
components is inversely proportional to the control stiffness. For the
two values of control stiffness which are used in the tests, the total
static errors at th§ fine magslip shaft were approximately 1.5° and 0.8°
for the lower and higher gain settings respectively.

Curvature of the overall stiffness characteristic is illustrated by
Fig. 44, ﬁhich gives the variation of stalled motor armature current with
degrees rotation of the fine magslip transmitter, The control stiffness
in 1b-fﬁ/degree error for each of the two gain settings is obtained by
mltiplying the slope of the curves by 0.294, which is the motor developed
torque per armature ampere with normal field excitation. This ‘torgque
constant was determined by previous tests. The overall sensitivity
curves of Fig. 44 are given. for two gain setbtings of the thermionic
amplifier, with the larger gain very nearly equal to twice the smealler,
Linearity of the characteristics may be reasonably assumed up to 10° and
30° error, for the higher and lower gain settings respectively.

The above factors i.e. static error and curvature of the control
characteristic severely limit the range of movement within which the
operation may be considered linear. The following are signal amplitudes

used throughout the tests.
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Response (i) Gain Setting Magnitude of Amplitude of
Number, (ii) Control Stiffness, Input Step in Sinusoidal
1b=-£1/° error Transient Input-
(1ii) CR Value of 1lst Response, Variation.
stage phase-advance.
I S 20° +10°
1.15 1b-£t/°
0,11 sec.
Ir 2K, 9° * 5°
2,3 1b-£t/0
0.11 sec,
IIT 2Ky 9° + 50

2.3 1b=£t/0
0.077 sec,
Three transient and three frequency responses were taken. Response

IT differs from I only in that twice the control stiffness of I was used.
Response III differs from II only in that a less stabilising CR value in
the lst stage phase-advancing circuit was used. The responses have not
been chosen widely different as the object was to examine if reasonably
small changes in the frequency response of a practical system could give
accurate prediction of the transient response. Further, responses which
show a number of oscillations have not been measured as these are not

acceptable in practice,
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CHAPTER 11,
EXPERIMENTAL FREQUENCY AND STEP RESPONSES,
STEP RESPONSES CALCULATED FROM FREQUENCY RESPONSES.
11.1., TFrequencvy Responses,

On the three following pages are shown the frequeney responses I,
IT and IIL, teken under the conditions stated. The first experimental
point for these responses was taken at the lowest frequency for which
the movement of the output could be considered sinusoidal, TWaveforms
of the actual output motion at this and other points throughout the
experiméntal frequenoy range are given later, and show reasonable
sinusoidal motion of the ocutput. This point is discussed in relation
to the oscillograms of the motor armature current which are shown in
Sec. 12,2(b).

The highest frequency point at which readings were observed was,
for all three responses, the frequency at which the response became
approximately 0.5. This restriction was set by the total dead zone
then becoming about 20% of the amplitude of the output oscillation.

It was evident that readings beyond this point would have no value.

The amplitude response curves have been produced to give Ingjw)]=!
at very low frequencies and a similar assumption of zero phase-shift
has also been made. Practically, of course, this is not the case, due
to stiction. A recording of the output motion at a low frequency is

given in Sec. 12.2(b).
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11.2. Step Responses.

Figures 48, 49 and 50 are step-response records taken on the paper

recorder described.

Fig. 48. Experimental Transient Response I.

Fig. 49. Experimental Transient Response II.
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Fig, 50. Experimental Transient Response III.

The step was applied to the system by disconnecting the resetter
error voltage from the amplifier input, turning the transmitting magslip
off by the desired amount and re-connecting the resetter output to the
amplifier, the entire system of course being operative meanwhile. An
attempt was made to eliminate hie effect which static error has on the
rate of response of the system by taking up the static error before in-
serting the required offset for the step response. The detailed procedure
is illustrated in considering the step response I, Fig. 48, for which con-
dition the static error was largest and approximately 1.5°. Details are

(a) turn input i.e. transmitting magslip shaft slowly to any angle oc®
output, i.e. resetting magslip shaft follows to approximately C<x-1-5)

(b) disconnect resetting magslip output from amplifier and turn input
to (+20f, where 20° is magnitude of input step function.

(c) start paper drive in recorder.
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(d) start time-marking device

(e) re-connect resetting magslip output to amplifier input, observe
response and final output angle

(£) stop paper drive and time-marker.

The re-closing of the switech in (e) coincides with the instant the
time-marking pen returns to the paper. The t=0 position on the response
is then given by mea;uring from the time-mark a distance equal to the
spacing between the two peuns. Some error is incurred in this manner but
in practice this position co-incided very closely with the point at which
the first departure of the output from zero took place,

For the purposeé of comparison with the calculated step responses,
the detail of each response has been abstracted from the appropriate
record and enlarged in the diagram of Figs. 51, 52 and 53.

Before giving these on a unit step response basis, the effect of
taking up the static error prior to offsetting the input is taken into
account, This is discussed in relation to the experimental response I,
Fig. 51, having an input step of 20°, The output in this case showed
ultimate co-incidence with the imput, but it will not always be so, as the
output mey come to rest anywhere within * 1.5° approximately, of the input,
In the first place, therefore, only values prior to the point D have any
meaning as far as linearity is concerned. In the second place, by the
time point € is reached, the output has run through (20 +1.5)°. The
correct time for cross-over is more nearly at the point B. The correct

overshoot is nevertheless obtained by the height of the shaded part at any
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instant up %o the point D, This shaded part therefore has been trans-
posed Lo the point B before evaluating the response on a unit step basis,
as shown by curve 1 in Fig. 54, The overall effect i1s a slight decrease
(0,03 seconds) in the time to reach cross-over and to reach maximum over-
shoot, compared with the recorded value., Even with these restrictions
it is still not possible to assert that a truly linear response has been
measured, the most important defect still remsining being the increase of
friction to the stiction value momentarily at the point of maximum over-
shoot., This will tend to reduce the maximum overshoot compared with the
linear value, The response curves 1 of Figs, 54, 55 and 56 represent,
however, the nearest approach to linearity that a practical system is
likely to give,

11,5, Calculation of‘Stap Response from Freguency Response.

The step responses for each of the frequency responses I, II and IIT
have been caloulated (a) by Campbell';m method and (b) by the method of
Bedford and Fredendalf? In addition Floyd:f method has also been used
for response I, The methods are given below without proof, response I
being used for illustrative calculations. The results for this response
are given in Fig. 54, and for responses IT and IIT in Figs. 55 and 56
respectively,

Campbell 's Method.

Fig, 57 gives the vector response g[Qﬂv) . From it the Nyquist

(1

locus g{hﬂhas been constructed as shown by the heavy line of Fig. 58, on

which the angular frequency points are marked., By erecting a set of
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curvilinear squares on this locus, the value of P = o # fw, for which
2] . co s R »
Yp) ==~/ is found, This is the principal oscillatory root of the

characteristic equation
/4 YY) = 0

and from it, the error of the system when excited by a unit step in the

input displacement, may be approximately found. The error is in fact

ctt) = 2 eos (Wit~ 5- )
Iﬁll\/'(p)[

where oy +jw; = lP,lL‘.g is the value of p satisfying I +Y@p) = © and

(141)

1
Y| is the magnitude of the derivative dY(p) at p=-0+jw, + For
dp

regular functions such as Y(p) , we have
aYp = Y = 1Y (142)
dp ol [ dw
so that \/’(p) = gﬁwﬁ) may be evaluated either along a contour of constant
&  or along one of constant o« , Teking the first method, we obtain
Y = vector AB, that is, the change in Y(p) for unit increase in oL ,
measured along the tangent to the w contour through [-,0] .
Thus Vi) = ]Y'(p)l/_r3 = AB (B
Details abstracted from the diagram of Fig. 58 are, therefore
&L tyjw, = —=3+j71
Ipl LS = 7.7 (12-9°
V8= o-25(=ll0°

Hence ) 3
elt) = 26  eos(T1E —112-9+ /10° )
T x0.25 rad
6,0 = | — I 0575_3tcos (g7t~ 29)° (143)

This response is shown by curve 2 of Fig. 54.  Similarly curves 2

of Figs., 55 and 56 are the outputs calculated by Campbell's method from
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the frequency responses II and III. These are respectively

|

6, (t) = {-/.123 e 73 s (68/4-31)° (144)

-2.3t o
and O (8) = 1-09535 “*Fe4s (473¢ - 3) (145)

|

the details of which have been computed from the diagrams of Figs. 60 and
62,

Method of Bedford and Fredendall .

For the purposes of comparison with Campbell's method, the harmonic
synthesis procedure of Bedford and Fredendall was carried out for all three
responses., The method depends upon the Fourier Series representation of a
recténgularﬁwave of amplitude unity, namely

4 (snb +fsin36 +1sin56 + . . - ) (146)
n 3 5
On adding a constant height of unity to this, the periodic wave shown in

Fig., 63 is obtained.

20

" o
0 7] 2 3m ©
0 Tw 2T - SRS

Fig. 63,
Taking half the height of this variation and letting the period ircrease
indefinitely will result in a unit step applied at t = o. For practical

purposes, however, it is not necessary to increase the period inmdefiritely.
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Provided the half-period is sufficiently long to allow the transient
decay of the response to be complefed, then the response of the output
to any one of the rectangular blocks will be the same as the response
to a unit step,
The method consists therefore of
(2) deciding upon a fundamental hal f-period to satisfy the e.tbove
condition;
(b) resolving the rectangular wave into a Fourier Series; this will
be
1[1 + g(smﬁ +3/51h39 +315m59 + o )], 0 = wt (147)

z
(¢) . inspection of the frequency response ? to obtain the phase-shift
(A
and gain at each of the frequencies w,Jw, 5w . . . ; let these
be @ and K, for any frequency /7w , where n is odd;

(d) synthesié of the output response, namely

1// + 4(Rsin(6+¢) + Kzsin(36+8) + - - -+fns/n(ne+¢,,))]
2 T 3 hn
= _/[/ +4(a,smé + azsm3a + - - .+ dnsnh6
P4 7 3 n
+bycos6 £ b33+ - .+ by wsn&)] (148)
3 n
where a, = Enwsgfn = Real part of 90/9" ()
b, = Ry singy =T/(I'ma ginary part of 4/6; (/'w))

/
and e,,/e,'(/;,)= [, at w= ©O.

The method is straightforward and with the aid of Tables of F{Slﬁ/’)@

and fcosn6, the computation of (148) can be done fairly quickly.
fa

See Appendix III,
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The composition of a rectangular wave using 11 and 15 harmonics is shown
in Fig. 64. Its features are (a) a finite rate of rise, (b) increasing
positive values before t = o, and (c¢) about 8,5% maximum overshoot. To
some extent (a) and (c) cancel in comparison with the true rectangular
form, With regard to (b), we shall expect at t = o a small positive
value of the response of any system to such an input. In applying the
method, a‘15-harmonic composition has been adopted for all the responses,
but the fundamental periods chosen differ. For response I, the period is
7 secs. and for responses II and ITI, it is 5 secs. Teking response I,
of Fig. 45, we obtain,
1 3 5 7 9 11 13 15
0.897 2,69 4,49 6.28 8.07 9.87 11,67 13.46
R, 1.01 1.2 1.47  1.57  1.33 .95 .67 .46
@, -4° -120  -220  -45° 730 -950 1110  -1270
The calculation is given in full in Appendix IV, The response is
shown in Fig. 65. Similar results for responses II and iII are given in
Figs. 66 and 67, Comparison of these with the measured transient
responses is shown by curves 3 of Figs. 54, 55 amd 56 all reséectively.
It will be seen that the response of Fig, 65 is not zero before t = o
(it is in fact 0,04). A calculation up to 21 harmonios, qsing the same
fundamental, was made for comparison., For this, the frequency responses
of Fig. 45 were extrapolated by eye. This gave

R, = 03 | Ry = 0./8 Ry =0/
¢/7 --/38° ¢/7 = —147° ¢Z/ =-/54°

so that the response is effectively zero thereafter, The calculation
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gives the figure of 6-003 gt (=0, This shows only a slight
reduction of the t = o value compared with the 15-harmonic calculation.,
It is clear that ma.ny more harmonics need to be present in the composite
input wave before actual physical conditions resembling a unit-step can
be approached. The deficiency of the experimental responses not being
known above a finite frequency has not greatly affected the result. In
fact it is probable that more exact measurements at the low frequencies
(where the response is unity or slightly above unity) would more directly
influence the initisl value, At t = o, the output contribution is
wholly due to the bn values and it is therefore possible by expressing

the result in terms of the a, values alone to make the initial output zero.

n

Floyd's Method .

Floyd's method is essentially a means of performing an anproximate
inverse Fourief Trans formation upon the system frequency response function
9.,/9[(/20) . It has been shown in Sec., 2.4 of Part I that the imverse
Laplace Transformation of 19.,/9[(/)) is in fact the response of the system to a
unit impulse, In the notation of Sec. 2.4, {;{f):response to a unit impulse

§(t) applied at £=0, and g"(lo)-QgD): system frequency response function.
(4

X The series 23 Xsind may be used over the ranges 0< 04%° /180°46£270°,
i,e. the quarter pef;‘iods commencing at £=0,/=; . As the sine ex?ansion
is symmetrical about 90° amd 2707 the correct response is not obta%ned
outside these ranges., Here it is preferred to keep a response Wh:E.Ch at
least is physical, although not the exact representation of the unit-step

response
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Hence ctjoe

/‘[H =2/(j /Q(p)z P | (149)

_/00
Since all the poles of QQD) are in the left-~half plane, this may be written

as a real frequency 1nteg,ral

Jowk
2” / 90/9{ (jw)f dw (151)
The above may be reduced to
[« 4
= 2 _Bo 1 g
{;(H 77[(/%' ; (/w))cos wt dw (152)

which is the basis of the approximate method due to Floyd. The
approximation consists in representing the real’ part of the 90/9[(/'60)
response by & series of straight lines, as shown in Fig. 68. Considering
now the area between the curve and the w axis, the straight line
approximation enables this to be made up of a number of trapezoids. For
in.staﬁce, up bto the frequency at which the curve crosses the w axis, it is
canposed roughly of three trapezoids, AdeOA, BedAB and one of negative
area, AabBA, These are shown separately below, trapezoid numbers 3, 2 and
1 respectively. Trapezoids 4 and 5 which complete the area required are
also shown. Each of these trapezoids is identified by three quantities,
which, shown for trapezoid 3, are Y and A3 , Where I}: height of
- trapezoid (positive or negative)

w3y = Wy *+ We

2

Ay = We— @y

The 1nteg;ra1 (152) for this trapezoid, when evaluated, gives

2 w,n sin sl )( sin 4131’) (153)
77 &J3L" ABt

corresponding results holding for the other trapezoids. Summing therefore,
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the total due to all the trapezoids gives the impulse response,

nq

(154)

5 . , :
2’ 2w wnlp (sm AN S/nﬂn[—)
h=111 Wyt Ak

s . sinx®
This is computed using a Table of 21X
X

The numerical values for the response of Fig. 68 are

n 1 2 3 4 5

r ~0,35 0.35 1.0 0.28 -0.28
w 2.55 5.9 7.95 10,65 17.5
A 345 1.0 3.1 2.3 7

Result (154) is therefore
r® = _g/_o.s?z str 2.551- Ysin 3.5 +2o(5{5/ﬂ 5t Ysintol ) + 795 /s 7759[5/11 3.l
7

2.55F A "35¢ 5qt l.of 7.95¢ /U 3 /7’
+2.98 [ sin o.65(Ysm23€ | - 4. 9’( sin (7.5F YV sin 7[)]
fo-65¢ N 23t (7.5¢

This is computed and then integrated numericelly by the time-series
X

operator é{}%&%; , where J is the spacing of the ordimates defining
the curve. §=005 sec has been taken for the integration, amd results
in the step response shown by curve 4 of Fig, 54, The agreement with
the other two calculated responses is quite good. For this reason it
was considered unnecessary to carry out Floyd's method for the responses
IT and III, and since consistent agreement between the two previous
methods had already been obtained for all three responses.

The discrepancy between the measured step responses and the calculat-

ed responses forms the discussion of the following Chapter.

x See Tustin, A, A Method of Analysing the Behaviour of Linear
Systems in Terms of Time Series,

Proc. Inst. Elect. Engrs. vol., 94, IIA, 1, p.130. 1947.
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CHAPTER 12.
DISCUSSION OF RESULTS,
12.1. Comparison of Calculated with Measured Responses.
The measured u%fi-step responses are given by the curves 1 of Figs.
54, 55 and 56, ard the abstraction of these results from the transient
records has already been dealt with. In the same diagrams are also given
the calculated step responses, the curves numbered 2 being those obtained
by Campbell's method and the curves numbered 3 being those resulting from
the method of Bedford and fredendall. Finally curve 4 of Fig. 54, gives
the step response calculated by Floyd's method.
Examination of these curves shows the following general features,
(i) the calculated resvonses in.eaoh case are substantially the
"same in respect of the time and size of the maximum overshoot.
(ii) in &l1 cases the time at which maximum overshoot is reached in
the calculated responses is considerably less than the time for
maximum overshoot in the measured responses. The discrepancy
however becomes smaller as the degree of oscillation in the

response becomes greater, Thus we have

Measured Time of Meas. Time of Calec. Difference
Response No, Max.Overshoot. Max.,Overshoot. Max ., Overshoot, as % Meas.
Value.
II 15% 0.47 sec. 0.28 40.4
I 21% 0.59 0.4 32.2

ITI 47% 0.41 0.31 24,4
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(iii) there is reasorable agreemsnt between the calculated and
mea sured values of maximum overshoot except when the latter has

its smallest wvalue, Actual values are

Response No, Measured Caleulated ~ Difference compared
Max.Overshoot. Max,0vershoot. with Meas, Value,
II 15% 31% + 16%
I 21 : 30 + 9
IIT 47 43 - 4

* (Campbell's method).
Briefly, therefore, it may be said tk;at the agreement is best in
regard to both time and size of the maximum overshoot, when the degree of
oscill_ation in the response is greatest,
12,2, Discussion of discrepancy in results,
The lack of agreement in the time scale of the responses is the most
- evident feature. The reason for this and the excessive calculated values
of the maximum overshoot in the response II, may be investigated under
three headings.
(a) Accuracy of methods used in cdnver’ciﬁg from frequency to step
response.
(b) Extent of linear operation under frequency response conditions.
(¢) Reproducibility of system si;,ep and frequency responses, and order
| of accuracy of experimental meé.suremen’cs.

(a)  Accuracy of methods of calculation,

In Campbell's method the anproximation made 1s to assume that the

response will not differ greatly from that of a second~order system having
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only one complex root-pair identical with the principal complex root of
the system under investigation., It is therefore clear that this method
will give good results if the system, albeit of high order; has in fact
one camplex root-pair from which all other roots are remotely situated.
The method also assumes the response g‘-‘(/iu)—rl as w tends to an
indefinitely low value. Campbell's procedure will therefore give good
results for oscillatory systems but will give poor results for systems
damped by large real roots, The graphical accuracy of the method may
be checked by performing a calculation in a simple second-order sys tem,
having only one complex root-pair. This has been done elsewhere and
establishes an order of accuracy of 2 = 3%.

The Fourier synthesis method on the other hard depends on a measured
characteristic throughout its whole range and will depend therefore on the
shape of this irrespective of what root and zero pattern produces it. By
taking an analytical example, the normal accuracy of the method can be
shovm to be again about 2 - 3.

From the above therefore we may conclude that, although the
approximations made in calculation may contribute errors of 2 = 3% under
the best conditions, a major discrepancy of 25 = 40% is not accountable to
themn,

(b) Extent of linear operation of system under frequency response
condi tions,.

Waveforms of output angle aﬁd motor armature current.

It has already been sfated that experimental frequency response
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measurements were made down to the lowest frequency at which the output
motion was apparently a sinusoid. For frequencies lower than this, the
output shows a definite stationary time at the peak amplitude of its
movement. fhe stationary period is of course due to a finite error be-
ing required to allow a driving torque equal to the stiction torque to
be aeveloped. As the frequency is lowered so the stationary period in-
creases. Fig. 69 below gives a recording of the output motion at a
frequency of about 0.12 c¢/s, with a sinusoidal input movement of +10°

amplitude, and a control stiffness equal to that of response I.

m s
Fig. 69.
The stationary period for the output is about 0.8 sec. and the
m
amplitude of the output movement is only £9.3°. A large increase

The amplitude scale for the paper recordings is 1° = 0.1" and time'
marking dashes occur every 0.5 sec. (see Sec. 10.2).
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in the control stiffness causes jerkiness to be apparent when the output
leaves its stationary position, as in Fig. 70, but at the sarne time, the

stationary period decreases and the output amplitude more nearly approaches

the input amplitude.

f
f
Fig. 70.
The frequency in Fig. 69 is considerably less than the lowest points
at which the frequency responses I, II and III were commenced. Response

I, having oontrol stiffness 1.15 lb-ft/°, started at approximately 0.4 c/s
and responses II and III, having control stiffness 2.3 1b-ft/o, started at
about 0.6 c/s. Records were taken of the output motion and of the motor
armature current for several points throughout the range of experimental
frequency response measurement. The frequency points, for each of the two

values of control stiffness, are as follows.
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1, Lowest experimental point.
2. Lowest frequency at which the motor armature current waveform has
a reasomble fundamental sine component.
3. Frequency for which ]ng” was & maximum, i.e, the resonent
frequency.
4, Frequency at which 'gQWﬂ[ again became unity.
5. Frequency at which ’%(ﬁﬁl decreased to 0,5,
The output motion records Figs. 7la %o 75a refer to the frequencies
1 to 5 just described with a control stiffness of 1,15 1b—ft/b.
Oscillograms Figs. 71lb to 75b give the motor armature current variation
for these points, Following this group are records Figs, 76a to 80a, and
oscillograms Figs. 76b to 80b, which represent the same points 1 % 5 (but

not the same frequencies) for a control stiffness of 2.3 1b-£1/0,
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Response 1. Figs. 71 to 75, Control stiffness 1.15 1b-ft/0. Input

amplitude +10°

(a) Output.

(b) Motor armature current, (approx. OS cycle)

Fig. 71. MNoint 1. Approx. lowest experimental reading.

W=2 62’ || (i") wld.



(a) Output.

(b) Motor armature current.
Fig. 72. Point 2. Lowest frequency for reasonable fundamental

sine component in motor armature current waveform,

= SI<i, | 1K - /W
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(a) Output.

(t>) Motor armature current.
Fig. 73. Point 3. Approx. resonant frequency.

0=698, ||[(H - /ss¢°
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(a) Output,

(b) Motor armature current.

Fig. 74. Point 4. Frequency at which Jfur*J »

w=?7-72 = (02.

o



Fig.

(a)

75.

Output.

189 -

Motor armature current.

Point 5.

Frequency at -which

o0 = /3-*G ? |-*
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Response 11 Control stiffness 2.3 1b-ft/°. Input amplitude + 5°.

(a) Output.

(b) Motor armature current.

Fig. 76. Point 1. Approx, lowest experimental reading.

w=3-& , 1Cjcolj - I-2
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(a) Output.

(b) Motor armature current.
Fig. 77. Point 2. Lowest frequency for reasonable fundamental

sine component in motor armature current wave-form.

a>_ S fcfe = 1-35.



Fig.

(2)

(b)

78.

- 192

v/ v/

Output.

Motor armature current.

Point 3. Approx. resonant frequency.

- 4035 A (ju) LSI -



Fig.
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(a) Output

(b)

79.

Motor armature current.

Point 4. Frequency at which j*

to = 15-37 , = 1-08-

f



Fig,

80.
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(a) Output,

(b) Motor arrnature current.

Point 5.

Frequency at whisch
(e = 18-G}

-

[

0-

5
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The following observations may be made from the foregoing records

scil lograms .4it
The output motion, as far as the eye can judge, is sinusoidal
except at the lowest experimentel point, At these points the
waveform is not far off sinusoidal but shows flattening of the
peaks, The development of these waveforms, i.e. Figs. 7la and
76a from the low frequency waveform Fig., 69 is apparent. This
effect has already been discussed,

) The waveforms of motor armature current show quite clearly that
near-sinusoidal operation of the system only results once
approximately resonant-frequency has been reached. 4Above this
frequency the waveforms are reasonably sinusoidal. The develop=-
ment of this sinusoidal waveform from the somewhat ragged but not
entirely random variation of Fig. 71b proceeds in an orderly
fashion.

The waveforms for a control stiffness of 1.15 lb—ft/o show good
correlation with those for a control stiffness of 2.3 lb-ft/°,
where more “"peakiness" results. At the lower frequencies, in the
region represented by Figs, 72b and 77b, a reasonable prediction
of éhe waveform is possible, from a consideration of the friction

characteristic of the load, as shown below,.

b d
Oscil

Enlargements of film negatives taken on a Cossor liodel 1089
loscope with single-sweep time base.
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Friction torque

reverse Veloeity  fwd.

Fig. 8l. Friction/speed characteristic of servo-
mechanism load,
Consider the total driving torque required to move an inertia load
sinusoidally against the above friction torque. S_ince the motor is
operating with a fixed field current, the total torque waveform will al-

so represent that of the motor armature current. The conditions are

given in Fig, 82,
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friction
component

Torque

Time
inertia |
component .
N total/ driving
torque

Fig. 82, Non-Sinusoidal torque for sinusoidal angular
motion.

The upper diagram shows the sinusoidal displacement, veloeity and
acceleration of the load inertia. From these curves the acceleration
and friction components of the driving torque may be drawn in, as the
lower figure shows. The sum of the two represents the total torque
and hence the armature current waveform. Reference to the oscill ograms

in Fig. 72b and 977b indicates that the actual waveform of motor current
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possesses the predicted shape, any variation being only a question of the
relative smounts of friction and acceleration components,

Likewise, the improvement in wavéform as the frequency is raised is
due to the aceeleration torque increasing while the stiction torque remains
essentially the same, Further the friction torque regquired at any

)’{i
. The

velocity also becomes smaller>in relation to the acceleration torque
result is obtained, ktherefore, that sinusoidal opera%ién,of the system is
only taking place above a frequency which is approximately equal to the
resonant frequency. For any system, however, it is possible to make the
acceleration torque higher in relation to the stiction torque by rumning
the input and output through larger amplitudes at any particular frequency,
and in this manner sinusoidal operation may be extended to lower freguencies.,
Further discussion of this point is given in Sec. 13,2, which offers
eriticism of the experimental technique.
Linear range of control,

The linear range of the overall sensitivity characteristic, see Fig.
44, has already placed limits on the maximum input steps which could be used
for transient response measurements. A similar restriction applies to the

frequenoy response. fﬂxa?@w)looi of Figs, 58, 60, and 62, enable this to

be checked., The maximum errors for the responses I, II and III are, in

The ratio mex. velocity being inversely proportionmal to the frequency.
mx., acceleration
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fact, 14.'70, 8.30, and 9,3° which are all within the linear range of thelr
respective sensitivity characteristics, Thus far the dynamic sensitivity
characteristics of the system have not been mertioned. These relate to

the motor torque per unit error for any given motor speed. More frequent-

ly, the infommation is given in terms of the torque/speed curves of the
motor for given values of the excitation of the generator supplying the
motor armature power, These curves can in turn be prepared from the output
current/output voltage characteristics of the generator, in.this case the
metadyne generator, The result of steady load tests on the metadyne
generator to determine these characteristics is shown in Fig. 83. In an
ideal machine possessing no residual magnetism these would be symuetrical
about the origin. The possible effect of curvature of the dynamic

cha racteristics can be deduced from these curves., From the frequency
resoonse results, the maximum velocity attained bv the motor was about

16 rad/sec. This corresponds to motor voltages of the order of 15V and
therefore it is apparent that only a small portion of the curves of Fig. 83
on either side of zero voltage, was actually used,. Frorﬂ this we may safely
conclude that the effect of curved dynamic characteristics introduces
negligible error,

Interaction with power-supply system.

This was not detectable daring transient response measurements. A
maximum variation of 5V in 220V occurred in the metadyne-generator driving-
motor voltage, in the course of sinusoidal measurements,

The overall effect of stiction, non-linear friction, saturation and

curvature of the dynamic control characteristics can be found from
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consideration of two.ggmﬂ lgcilhaﬁing known control stiffnesses.  Thus
since response IT only differed from résp&nse I in having twﬁce‘the con~
trol stiffness, the %QM) locus of I may be expanded radially in the HNyquist
plane By a factor of 2, and compared with the ng)loous of II, Fig., 84
demonstrates this and supplements the conclusion already drawn from con-
sidering the wave~forms, namely, that very nearly linear conditions obtain
fromw = 8 rad/%ec. upwards,

(¢) EReproducibility of system . Order of accuracy of experimental

mea surements.

In a complex system such as the one tested, the question of consistent
results immediately arises, This has been checked thoroughly and it has
been established that, given similar conditions prior to testing, e.g.
the same rumning-in periods under steady sinusoidal motion, it is possible
to produce tramnsient responses Whiéh are practically identical., The maximun
error in trensient recording amounts in fact %o no more than the very slight
backlash between the motor shaft and the fine resetter shaft, This is of
the order of 3° at the motor shaft and represents a possible discrepancy be-
tween the recorded angle and the actual angle of the fine resetter shaft, of
9/?50. For a 9° 'step, this represents a 4% error, amd for a 20° step, about
2.5% error,

Not quite the same accuracy applies to the frequency responses, coﬁsi&er—
able error being possible at the higher frequencies with input motions of 5°,

The error in observing the‘dial indication beirng about %0, the least accuracy
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is 10%, which occurs at the highest expérimental point of responses II
and ITI, The accuracy with larger output mox;ements increases
kproportionally. Reference to the response curves shows it to vary from
5% to 2% for all but the above mentioned points. The uncertainty in
measuring the phase-shift of %[jiﬂ) has already been stated in Sec.10.2.
This measurement gave very consistent results.

A criticism of the experimental technique in frequency response

measurement is given in the next and concluding Chapter.
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CHAPTER 13.

CONCLUSION.,  FURTHER WORK,

13.1, Conleusions from Experimental Results.

A high-accuracy, high-power servo-mechanism has been subjected to
step inputs under conditions representing the nearest approach possible
to linear operation. The system has also been subjec.:ted to steady
sinusoidal inputs over> a finite frequency renge limited at the lower
end by non-sinusoidal output movement, and at the higher end, by
imsccurate error voltage indica.tion, due to the small emplitude of out-
put movement. Approximately linear operation took place over the top
70 - 75% of this frequency range.

The measured and calculated step responses show some measure of
correlation but are most noticeably different in their times for maximum
overshoot, with least discrepancy occurring Wheﬁ the degree of
oscillation is greatest, The bulk of this error is due to assuming in the
analysis that true sinusoidal conditions hold from zero frequency upwards.
The assumed frequency response characteristics in the region of zero
frequency, have in fact conferred higher values of the effective amplitude
and smaller values of the effective phase-shift of é%@hﬂ than actually
occurs, The term effective is used since we know quite definitely that
non-sinusoidal conditions exist; (the effective amplitude and phase-shift
might, however, be considered as the amplitude and phase-shift resulting

if only the fundamental component of the output were taken). These
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assumed characteristics result in the calculated step-response being

faster than in practice. We are able to attribute the greater part of the
discrepancy to this assumption, since measurements made in the frequency
range where the output mobtion, but not the motor armature current, was
sinusoidal, are reasonably accurate, The above assumption also accounts
for the‘better agreementlfor an oscillatory response than for a well-damped
one. For instance, in the harmonic analysis method this results from the
increase in the resonarce peak in comparison with the remainder of the
response, Since true sinusoidal conditions have in fact been obtained at
resonant frequencies the calculated response will be more nearly correct,
Campbell's method will, of course; give the best results when the response
is fairly oscillatofy, due to the assumption made in the method that the
princiﬁal mode itself accounts for the total overshoot.

13.2, Criticism of Technique of Frequency Response Measurement,

In the method employed in the tests, a fixed amplitude of input
oscillation was used for any particular curve being determined. This
resulted in the accelerating torque required being comparable with the
friction / stiction torque at low frequencies. If the input amplitude is
raised however as the frequency is lowered, then it has been shown that
better sinmusoidal conditions result. Brown and Campbell4 give a method
which will accomplish this. Trouble will, of course, arise if the increased
velocities carry the motor operation into & curved region of its torque/speed
cha racteristics, or into a region in which they are not equi-spaced. This

happens fairly soon in the case of a metadyne-generator type servo such as
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the one tested, The method used is, nevertheless, criticised on this
point.
13.3. Analytical Techniques.

All methods give essentially the same predicted étep response, as
the underlying assumption of sinusoidal conditions from zero frequency
upwards is made in each case. It is encouraging, hoﬁever, that in this-
ocase where nothing is known of the type of roots of the system characteristic
equation, Campbell's very approximate method gives agreement with the other
two, From this it may be expected that the principal mode theory of Part
IT of this thesis will provide reasonable results in practice given
approximate linear conditions, It represents the same type of approximation
as Cempbell's method, but one which does take into account the remaining
roots of the system characteristic equation.

13.4, ~Generalisation of Conclusions,

The object of the investigation was to determine to what extent
guantitative prediction of a system transient response was possible from
knowledge of a measured frequency response. The results obtained for the
present system have already been given and the error in prediction has been
discussed.

The question now arises of whether a general statement may be made on
the evidence of the above investigation. While it would be unreasonable
to claim a certain limit of prediction for all systems,.some indication is
possible of the maximum error in prediction which is likely to occur if

correct experimental technique is employed, This requires (a) reasonable
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sine-wave corditions throughout the‘whole system to as low a frequency

as possible, and (b) measurements of high accuracy at low frequencies arnd

at the resomant frequencies, Loss of accuracy at frequencies greater

than that at which the response decreases to 0.5 say, may be tolerated.
Under thess conditions the maximum overshoot ought to be predic table

to within 10% of the input step and with greater accuracy for greater

degrees of oscillation, The time for maximum overshoot should be

calculable to within 25% of the true value and will certainly be so for

oscille tory responses., The results of the imvestigation do not warrant

any closer limits being set. It is, however, in the case of relaﬁively

complex high-accuracy systems of considerable power output that these

maximum divergences of calculated and actual step responses will occur.

Medium- and low-power servo-mechanisms, excepting the inherently non-linear

"on-of f" types, will almost certainly give better agreement., Similarly a

frequency response design on paper is not likely to afford a closer guide

to the +transient response which will occur in practice, than the above

figures indicate. It is nevertheless reassuring that the maximum overshoot

in practice will be less than the linear prediction theory.suggestsfﬁ On

the other hand, the response-time in practice will exceed the value predicted

by calculation.

13.5. Further Work.

The greater part of the work relating to servo-mechanisms which has

* The measured response IIT admittedly shows a greater overshoot than the
predicted response, As however the 4% difference could very well result
from the inaccuracy in measurement and calculation, the two overshoots are

for practical purposes the same.



- 206 =~

been done in the past has assumed linear conditions of operation, and in
proportion to this amount of work, few papers have dealt with non~linear
effectg?aamiecently, however, particulars relating to specific non-linear
systems ard also reviews of the non-linear oscillation problem as a whole
have been appearinéﬁ It is clear at the outset that very little
generalisation of the non~linear problem can be obtained, The problem

has been and is being tackled from a more practical viewpoint, by consider-
ing separately each type of non-linearity as it occurs, e.g. servos with
torque limitation, backlash, non-linear friction amd curvature of métor
torque/speed characteristics. From any one of these investigations the
generalisation of results is in itself difficult and much work still remains
to be done to sort out the conclusions reached by different experiments on
the subject. The qualitative effect is relatively easy to establish but

- non-dimensional presentation of quantitative results is hindered by lack of
uniformity of experimental conditions. The clearing-up and unification of
the results for sach type of non-linearity on its own is a practical problem
of immediaste importance.,

Further, more consideration should be given to fundamentally non-linear
systems of the "on-off" type. The seme may be also said of a.c. operated
systems the full development of which has been delayed on account of
technical difficulties of control and also on account of the added complexity

of theory with a carrier=-wave present in the sequence.

See references 44,45,50-57.



- 207 -

In addition to these essentially practical problems, there is still
room for further theoretical developments. Even in the linear theory,
the question of multi-loop systems having more than one input, intended
or otherwise, can be explored., Related to this is the problem of inter-
action with the power-supply and consideration of the whole system in
terms of energy flow. The technique of tensor analysis has still t§ be
usefully applied to such multi-loop systems.

The interesting problem of optimisation and the bearing of inform-
ation theory upon practicel servo-mechanism designs also offers much
scope to theoretical workers., Just exactly to what extent practical
servo-mechanism designs may hope to profit from this aspect is not obvious.
At present this refinement seems less important than the production of
reliable results regarding the basic non~linearities which occur in every
practical system. Together with a study of "on-off" systems, this is, in
the author's opinion, the mosf pressing objective at the present time. It

is the author's intention to proceed to this work.
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APPENDIX I,

THE EXPONENTIAL FOURIER SERIES FOR A PERIODIC FUNCTION,

The trigonometrical form of the Fourier Series for a function

/)(t),periodic in time 7 =27, is
w '
plt) = a +25 (a,cosnwt + b,,smnwl:‘) (1a)
' T T =y
where T
QAo = IU(Hdé‘ 5 (2)
_.7'/2"
7z
Qp = /,o(f)casnwtdb R (3)
b, - /,o([)sm nak dt (4)
T
Jawt el . : jnwt — _/'ﬂwl’) .
Putting cos nwt =2_/ (7 +¢ )’ smawl= 1 (7~ ¢ in (1a)
. z
we have o« ek -
p(t) = go +?_1 z [(a,,-/é,,)z’ﬂw+ (@p+jbn) e /"“’f] . (1b)
n=1
From (3) and (4) »
A )
aﬂ—jén = /,o(t) - = Plow) (5)
-T2
72
et
dusibn = | o0t < Pln) (6)
=72
Putting n =0 in (5) or (8), also
A
Plnew) = /p(/‘)dr = a, (7)
n=0 /J :
T
Thus, substituting in (1b)
ihewl
/)(H = l 2 p(/?w)il . (Le)

A= —00

This is the exponential form of the Fourier Series for a period function,



The coefficient Plmw) is given by
T ~/nwt

Pinw) = [ pye™ "o (5)
=T/
The n'* frequency component in (la) is
fZ(a,,casnwl‘ + bysmmwt ) = 21 cos (nwt-¢,) , where
= a, +b° = | A |® ena ¢, = /szf'c?b: . Hemce the coefficients Fl(nw)
repres ent the relative amplitudes ard phases or the frequency components,
the actual amplitudes being irz_iP(nco)\ . 1Pw)] and ¢, define two
real line spectra, the amplitude and phase spectra, Both are contained
in the complex coefficient M), which we note from (5) and (6) also has
the property P(nw) = conjugate, P(-nw) .
Extension of Range of Periodic Funection.

By allowing the periodic time 7 to increase indefinitely, it becomes

possible to represent a non-periodic function £ . This process requires

that the fundamental periodw become infinitesimal and the frequency

component fw become the contimuous variable w .,  Thus,

writing (10) as N =tec jnwl’
pLe) = Z/_ﬂiqu(nw)z w,
in the limit T— , this becomes
nw -> w }
W - dw
* ek
Jw
7[:([—) = _{/F[&J)i dw | (8)
zjl ”

where, from (5),

Flw) = / £ “’bdzf. (9)



Equations (8) amd (9) express the inverse and direct Fourier
Trensform tion, Strictly speaking several conditions are required to
be satisfied by f(£) in order that its Fourier Transform Flw) should

exist. The most importent of these is that

JR:

should be finite.



APPENDIX II,

TABLES TO ASSIST IN THE CALCULATION OF NYQUIST DIAGRAMS AT REAL AND

COMPLEX FEREQUENCIES.

Each of the Tableé I to V on the following pages refers to one
value of relative damping, defined by the angle B as explained in
Sec., 5.1; the values of B corresponding to Iables I to V are @°,
300, 45°, 60° and 75°,

Table I gives the factor ( /+jx)t/in polar form. Tables II to V
show the values of (a)(/+1[—0‘+j])tl in polar fomm and (b) X(-7#j),
lzf"r*j)z in co-ordinate form; the range of X is 0.10<x< 10,
With the aid of these Tables,factors such as (/+pT)i,/ (/+ap+b/oz)z/may

be evaluated for values of p = u(—tf+j) s U= fan g .



TABLE I, 3=0%

(1+jx) = g¥2g"

R R~ g°

0.1 1.005 0.995 5.7
0.2 1.02 0.980 11.3
0.3 1.04 0.962 16.8
0.4 1.08 0.926 21.7
0.5 1.12. 0.893 26.5
0.6 1.17 0.855 30.8
0.8 1.28 0.781 38.6
1.0 1.41 0.707 45,0
1.2 1,56 0.641 50.4
1.6 1.89 0.529 57.8
2.0 2,24 0.446 63.3
3.0 3.16 0.316 71.8
4.0 4.12 0.243 76 .4
5.0 5.10 0.196 78,5
8.0 6.08 0.164 80.8
8.0 8.06 0.124 82,8
10.0 10.05 0.100 84.3



TABLE II.A=30°

(1+ xf-rej ) 29" 1Lr4)) X3(-r))?

x R R~ @° Real Imag. Real Imag.
0.1 | 0.947 1.06 6.1 -0.058 0.1 -0.007 -0.012
0.2 | 0.913 1.10 12.7 -0,115  0.200  =0,027 ~0.046
0.3 | 0.88 1.14  19.9 -0.173 0.3 -0.061 -0.104
0.4 | 0.866 1.15 27.5 -0.251 0.4 -0.107 -0.184
0.5 | 0.869 1.15 55.2 ~0.288 0.5 ~0.167 -0.288
0.6 | 0.888  1.13 42,5 -0.346 0.6 -0.240 -0.414
0.8 | 0.964 1.04 56.1 -0.462 0.8 -0.427 ~0.736
1.0 | 1.09 0.917  66.5 -0.577 1.0 -0.667 -1.16
1.2 | 1.24 0.806  75.5 ~0.692 1.2 -0.961 -1.66
1.6 | 1.6 0.625  90. -0.924 1.6 -1.71 ~2.94
2.0 | 2.00 0.500  94.3 -1.15 2.0 -2.67 -4.60
2.5 | 2.54 0.394 100. -1.44 2.5 -4.17 -7.19
3.0 | 3.09 0.324 103.7 -1.73 3.00  -6.05 -10.4
2,0 | 4.21 0.238 108.1 -2.31 4,00 -10.7 -18.4
5.0 | 5.35 0.187 110.7 -2.88 5.0 -16.7 -28.8
6.0 | 6.40 0.156 112.6.  -3.46 6.0 -24,0 -4] .4
8.0 | 8.78 0.114 114,3 -4.62 8.0 -42.7 ~73.6

10.0 | 11.09 . 0.090 . 115.5 -5.77  10.0 -66.7 -115.0



TABLE III,ZB=45°

(14 xl-v2j7) = 20 x(-4)) XR(-7#)?

x R R~ g° Real Imeg. Real Imag.
0.1 0.906 1.10 6.3 -0.1 0.1 0. -0.02
0.2 0.825 1.21 14.0 0.2 0.2 0 -0.08
0.3 0.762 1.31 23,2 0.3 0.3 0 -0.18
0.4 0.721 1.39 33.7 -0.4 0.4 0 ~0.32
0.5 0.707 1.41 45.0 -0.5 0.5 0 -0.50
0.6 0.721 1.39 56.4 0.6 0.6 0 -0.72
0.8 0,825 1.21 75,9 -0.8 0.8 0 -1.28
1.0 1.00 1.00 90,0 -1.0 1.0 0 -2.00
1.2 1.22 0.82 99.4 1.2 1.2 0 -2.88
1.6 1.71 0.585  110.5 -1.6 1.6 0 ~5.12
2.0 2.24 0.446  116.5 -2.0 2.0 0 -8.0
2.5 3.08 0.325  119.1 -2.5 2,5 0 12,5
3.0 3.61 0.277  123.7 -3.0 3.0 0 -18,
4.0 5.00 0.200  126.9 -4.0 4,0 0 -32
5.0 6.40 0.156  128.7 -5.0 5.0 0 -50
6.0 7.81 0.128  129.8 -6.0 8.0 0 -72
8.0 10.63 0.094  131.1 -8,0 8.0 0 128

10.0 13.45 0.074  132.0 10,0 10.0 0 =200




TABLE IV, 8=60°

. '(/+Jc/~r+j])t/=/€ﬂLt¢° X (~a4j) x2(~q+j)?
X R R @° Real Imag. Real Imag.
0.1 0.833 1.20 6.9 -0,173 0.1 0.02 =0,035
0.2 0.684 1.46 17.0 -0.346 0.2 0,08 -0.138
0.3 0.566 1.77 32,0 -0,.520 0.3 0.18 -0,312
0.4 0.505 1.98 52.4 -0.693 0.4 0.32 -0.554
0.5 0.518 1.93 74,8 -0.866 0.5 0.50 =~ 0,887
0.6 0.602 1.66 93.8 ~-1.04 0.6 0.72 -1.,25
0.8 0.89 1.12 116.0 ~1.39 G.8 1.28 -2.22
1.0 1.24 0.806 126.2‘ -1.73 1.0 2.00 -3.46
1.2 1.62. 0.617 131.9 -2.08 1.2 2.88 -4,98
1.6 2.39 0.418 137.8 =2.77 1.6 5,12 -8.87
2.0 3,18 0.314 140.7 -3.46 2.0 8.0 -13.9
2;5 4,16 0.24 143.1 -4,33 2.5 12.5 -21.6
3.0 5,16 0,194 144.5 -5,20 3.0 18.0 -31.2
4,0 7,16 0.14 146.0 —6;93 4,0 32.0 -55.4
5,0 9.15 0.109 146.8 -8,.66 5.0 50,0 ~-86,7
6.0 11.2 0.090 147.6 -fO.é 6.0 72.0 -125
8.0 15.1 '0.066 148,53 -13.9 8.0 128,  -222
10.0 19.1 0.052 148.9 -17.3 10,0 200 ~-346




TABLE V. B=75°

‘ (1+ x[-(r+j])= ,er’gés?!" " x(=74j) Q’- (-v#))?
X 2 Y el g Real Imag. Real Imag.
0.1 0.635 1.57 9.1  -0.373 0.1 1.293 -0.746
0.2 0.324 3.09 38.1  -0.746 0.2 2.59 -1.49
0.3 0.322 3.1 111.8  -1.12 0.3 3.88 -2,23
0.4 0.632 1.58  140.8  -1.49 0.4 5.18 -2.98
0.5 1.00 1.00  150.5  -1,87 0.5 6.47 -3.73
0.6 1.38 0.725 153.9  =-2.24 0.6 7.76 -4.46
0.8 2.14 0.467 157.7  =2.98 0.8  10.36 -5.96
1.0 2.91 0.344 159.7  =3.73 1.0 12.9 -7.46
1.2 3.67 0.272 161.5  -4.48 1.2  15.5 -8.95
1.6 5.22 0.192 162.4  =-5,96 1.6  20.7 -11.9
2.0 6.76 0,148 162.9  =7.46 2,0 25,9 -14.9
2.5 8.70 0.115 163,35  -9.,33 2.5  32.4 -18.7
3.0 10.6 0,094 163.5  =11.2 3.0  38.8 -22.4
4.0 14.5 0.069 163.5  =14.9 4,6  51.7 -29.8
5.0 18.4 0.054 164.,2  =18.7 5.0  64.6 -37.3
6.0 22.2 0.045 164.6  -22.4 6.0 T7.6 -44 .6
8.0 29.9 0.033 164.6  =29.8 8.0 104 -59.,6
10.0 37.7 0.026 164.6  =37.3 10.0 129 -74.6




APPENDIX III,

TABLES OF ,—45’” ngé AWM :‘; cosn@ FOR K ODD UP To N = 21

(Intervals of 10° in 8 for 0%6<30°, and 15° in @ for 309£8L900)

| For 90%6< 1809,

{
n

sin n(30+@) = '_;.sin n(do-$),

Table of .!sin @
"

n O 10° 20° 300 450 60° 750 900
1 G 0.174 0,342 0.500 0.707 0.866 0.966 1.000
3 0 0.167 0.289 0,833 0.236 0 ~-0.,236 -0.333
5 0 0.153 0,197 0.100 =0,141 -0.173 0.062 0.200
7 0 0.134 0,092 -0.071L -0.1l01 0.124 0,037 =0,143
9 0 0,111 0 -0.111 0.079 0 -0,079 0,111
11 0. 0.085 -0,058 -0.045 0.064 =0.079 0.088 =0,091
13 0 0,059 -0.076 0.038 =-0.054 0.067 =-0,074 0,077
15 0 0.033 -0,058 0.067 =0.,047 O 0,047 =-0.087
17 O 0,010 -0,020 0.028 0.041 -0,051 ~0,015 0,059
19 o -0,009 0.018 -0.028 0.037 0.046 -0.013 =0,052
21 0 -0,024 0.041 -0.047 -0.034 0 0.034¢  0.047



n Qo 100 200 300 459 800 750 90°
1 ; 1.000 0.985 0.,%40 0,866 0,707 0.500 0.259 0
3 0,333 0.289 0.167 o -0,236 =-0,333 -0.236 0
5 0,200 0.12¢ =-0,035 =~0,173 =0,141 0.100 0.193 0
7 0.143 0.049 -0,109 =0.124 0,101 0.071 -0.138 G
9 0.111 0 ~-0.111 o 0.079 =0.11l1 0,079 O
11 0,091 -0,031 ~0.,070 0,079 ~0.064 0.045 =0,023 0
13 0.077 =0,049 -0,013 0,067 -0.054 0.038 -=0.020 0
15 0.067 =0.058 0.033 0 0.047 -0.067 0.047 0
17 ‘0.059 -0,058 0,055 =0,081 0.041 0.029 =-0,057 o
19 0.053 -0,052 0,049 =-0,045 =0,037 0,027 0.051 Q
21 0.0487 -0,041 0,024 0 -0,03%4¢ -0,047 -0,034 a

For 90°9<6< 1809,

cos n(do+@) = ~/cosn(9o-4),

Sl

Table of

cos né

Q-
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Paper No. 1111

SERVO CONTROL PROBLEMS
By A. J. O. Crutcksumank,* B.Sc.

23rd January, 1951

SYNOPSIS

The paper describes the general aims and problems of servo-
mechanism operation. After an explanation of the action of the
control, the various input signals met with are discussed. A4 short
review of electric and hydraulic servo components is then given, with
a note of the control effect produced by the warious power units.
Servo-mechanism performance is then considered and the question
of stability and steady-state following are treated. In the first case,
the action of time lags is pointed out with the aid of their steady-state
frequency response characteristics.  Non-linear effects such as
backlash and variable friction are also described. The paper concludes
with a summary of the methods wsed in practice for stabilization and
reduction of steady-state error.

IXTRODUCTION

The primary purpose of the class of control systems known
generally as servo-systems is the control of the position, velocity
or other attribute of the output member of a piece of apparatus,
in such a manner that the magnitude of this quantity is in accord-
ance with the dictates of some earlier, essentially time-varying
quantity. The controlled quantity or output quantity as it is
usually termed, might, for example, be the angular position

*OF Glasgow University.
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in the training direction of an anti-aircraft gun.. This would
be required to move and follow as accurately as possible some

" other quanptity, known as the input quantity, in this example

the angular position of a light shaft in a remotely situated com-

. puting mechanism.

The characteristic of such control systems is that the action
of the control is dependent upon the error or difference between
the instantaneous input and output values ; it means, therefore,
a continuous comparison of the output quantity with its desired
value, as represented by the input, in order to determine the
magnitude and sense of the error. This error quantity then,
through the medium of power-amplification, is ultimately
responsible for driving the output back into coincidence with the
input and in so-doing reducing itself to zero. From the point
of view of the error, such a system is self-zeroings That some
type of power amplification, for example, electric or hydraulic,
is necessary, follows from the fact that very considerable forces
are normally required for the rapid movements of the output
member, subjected in addition perhaps, to extraneous disturb-
ances. It is not possible to derive this power from the error
quantity directly since such power would not normally be

"sufficient, and in any event, this procedure would adversely

affect the true value of the input quantity itself. It is, there-

fore, axiomatic that servo-systems are power-amplifying.
Consider, for example, a ship steering-gear which, though

not normally regarded as such, is a simple form of hydraulic

. servo-mechanism for the purpose of controlling the rudder angle
in accordance with the angle of the helm. The latter is, there-

fore, the input quantity. Its value is continuously compared
with the output quantity of the system, namely, the rudder
angle, usually by means of the differential action of a floating
lever. One end of this lever is actuated by the tiller movement
and the other end by the movement of a receiver telemotor-
operated from a transmitting unit controlled by the angle of
the helm. The resulting movement of the differential lever,
representing the difference between the two angles, sets the
stroke - of a variable-delivery pump delivering high-pressure oil
to a double-acting ram which moves the rudder in the correct
direction. The basic elements of a servo-control are thus present,
namely, an error-determining device forming the error quantity,
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which, after hydraulic .power amplification, is the ultimate
cause of moving the rudder into the position of correspondence.
The essential operation of servo-control is illustrated in Fig. 1,
wherein is shown the continuous feedback of information about
the output magnitude in order to compare it with the input
magnitude and so determine the error, e. The error quantity is
here defined as 3_01—60

In electrical engineering terms, the error can be thought of
as the result of applying negative feedback of the output quantity
to the input quantity. Recognition of the similarity between
servo-systems and negative feedback amplifiers in electronic
circuits has enabled many of the methods already existing for
the analysis of such amplifiers to be judiciously applied to
analysing servo-systems. This principle, together with the feature

Error

bevice Control System

o; 60, | ad Load | @,

Feedback or Reset

Fig. 1.—Block diagram of servo-system.

in practice, that electrical servo-mechanisms are more flexible
in adjustment than other types, has led to much of the theory
being developed in electrical terms.

GENERAL FEATURES OF SERVO-SYSTEM PERFORMANCE

Self-oscillation. The most important feature of a servo-system,
in common with any system having feedback over an amplifying-
means, 18 the possibility of sustained self-oscillation -without
the application of an external input quantity. The tendency
to go into an uncontrolled state, in which the output and all
other variables in the control sequence periodically increase
and decrease to large amplitudes in either direction, depends
upon the degree of corrective action put into the control, or
more briefly, on the sensitivity of the control. If the corrective
action is slight, the output will be very sluggish in responding
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to a sudden fixed deviation of the input and an unnecessarily
long time will elapse before coincidence with the input occurs.
At the other extreme, by the overshooting of an inertia load,
the corrective action may be over-violent and may produce a
greater error than the original Such a system will increase its
errors alternately in either direction.and is therefore totally
unstable. The actual frequency of the oscillation depends on
the size of the system, being higher for small fractional-horse-
power systems than for larger power-type servos, for example,
a 5-h.p. system which might have’ a natural frequency of oscilla-
tion of the order of 1 to 2 cycles per sec. Clearly, the control
action must be intermediate between the above states, producing’
a sufﬁclently fast response.and one in which any overshooting
is restricted in magnitude and rapidly caused to die away.

Input Signals.. The type of input quantlty variation to which
a servo-mechanism will be subjected in practice will depend on
the particular application. For an anti-aircraft gun following a
target moving at constant velocity in a horizontal plane, the-
following speed of the gun (considering the training motion only)
will increase as the target approaches the gun and will decrease:
as the target recedes, the maximum angular velocity depending
on how near the plane approaches and on its speed. This type
of input quantity will, therefore, be relatively gradual in appli-
cation, showing first an increasing rate of change followed by a.
decreasing rate of change, A converse state of affairs exists
when any control system is suddenly made operative with, in
general, an initial diﬂ'erence between input and output. This-
results in a sudden “‘ step-function,” as it is called, being applied
to the system, which Wlll recover after the general manner shown
in Fig. 2a.

This step- -function response or transient response, on account.
of the approximation to it oceurring in practice and also.on
account of the ease of testing an experimental system, is a.
valuable method of specifying the performance of any particular
system in respect of its speed of response and degree of damping.
In general terms, one .overshoot of 15 per cent. of the input
magnitude with a small.subsequent undershoot might be accept-
able, provided that the final decay of the error was not unduly
long.

Other - specifications for a followmg system are the errors
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allowable with certain maximum rates of change of input or
certain maximum accelerations of the input. In a servo following
an input moving with constant velocity, Fig. 2b, it frequently
happens that the output, although running at the same speed,
lags a fixed distance behind the input, this distance being known
as the steady-state velocity error. Certain applications require
this error to be zero; such systems are designated zero-velocity-
error systems.  Analogously one has zero-displacement-error
systems for those applications in which no static error results in
the step-function response. Curve C in Fig. 2a¢ shows a system
having a steady-state error in displacement, that is, static error.

Another form of input that gives much insight into the per-
formance of any system is one which has a harmonic variation
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A-—underdamped A—response with velocity error
B—overdamped B—response with zero velocity error.

C—response showing static error.

Fig. 2.—Servo-mechanism input signals and responses.

with time. Although the input itself seldom has such a variation,
an equivalent effect is obtained when the input is fixed and a
periodically-varying torque is externally applied at the output
shaft of the system. Such a situation may arise due to the un-
stabilizing effect of a ship’s roll on an unbalanced gun mounting.
The application of such an input motion and the resulting output
of a servo-mechanism is shown in Fig. 3a, from which the main
effects are first, a change of the magnitude of the variation and
second, a lag of the output quantity behind the input quantity.
Whether the output magnitude is greater or less than that of
the input depends on frequency of the imposed harmonic varia-
tion ; at a high frequency- it is fairly evident that the input
motion cannot be reproduced by a massive load, which will
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follow quite well at very low frequencies. A convenient method
of displaying the relationship of Fig. 3a is the vector. diagram
of Fig. 3b.

. Regulators and Stabilizers. These are essentially servo-control
systems having a fixed value of input quantity and subject to
extraneous influences. Under these conditions the error pro-
duced by an external torque or load being applied, can only be
such as will call into existence an equal opposing torque from the
control action. A particularly good example occurs in ship
stabilization by the use of activated fins. The input quantity
is fixed and, for this reason, let it be called the datum quantity.
In this application it is the vertical direction provided by a
vertical-keeping gyroscope. Roll of the ship causes a signal to
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Fig. 3.—Sinusoidal input signal and steady-state response.

- be supplied by the gyro and this, after modification and several
stages of amplification by hydraulic means, eventually causes
the fins to tilt and through the ship’s forward motion provide a
.stabilizing couple in the correct direction.

In connection with regulators, it frequently happens that the
datum guantity is not of the same physical nature as the regulated
quantity. In a steam-engine governor the datum quantity
is a certain setting of the force provided by the governor con-
+trolling spring. The speed of the engine is expressed by an axial
force exerted on the governor sleeve, this conversion being
-effected by the centrifugal action of the rotating balls. Another
-example of an implicitly-contained datum quantity is the balance-
point of a non-linear electric circuit, used as a voltage-sensitive
-device. :
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The general problem with regulators is in the main a steady-
state one. ‘While it is obviously advantageous for a regulating:
system to have as quick a response as possible commensurate-
with stability, the primary concern is the steady-state effect
upon the controlled quantity of some constantly applied torque-
or load demand. The analysis of regulators, therefore, differs.
slightly from that of servo-mechanisms in- that firstly, the output,
response to an output disturbance is required (sometimes to a.
supply system disturbance in addition) rather than to a variation
in the datum quantity and that secondly, the steady-state error
or droop is of more importance than the transient effects. These-
differences are points of operation only and do not alter the fact.
that regulators and servo-mechanisms are basically the same class.
of control, the former with a fixed pre-determined input and the
latter with a random, time-varying input. The generic name of”
closed-cycle, closed-loop or closed-sequence control includes al
such systems. ‘

Basic COMPONENTS

The purpose of this section is to give a very brief deseriptive-
review . of commonly occurring servo-components. Though
there are numerous methods of securing a particular result in
practice, attention will be drawn only to those elements that.
may be termed typical and which tend to recur in association
with other typical members. This will be done for electric and
hydraulic servo-mechanisms only. Pneumatic servos of a few
watts output, such as occur in aircraft applications, are not.
considered. The description ‘“ basic 7’ refers to the essential
features only of the control, that is, to error-determination,
power-amplification and load movement. Additional connections.
of apparatus to this basic structure for obtaining improved servo-
responses are taken up in a later section.

Electrical Servo-mechanisms. Fig. 4 shows the simplified
diagram of the metadyne system for the remote-position-control
(r.p.c.) of a gun mounting. This refers to one motion only of the-
gun, two separate servos being required to control it completely
in both training and elevation. The gun-driving motor is a.
D.C. motor operating with a fixed shunt field current and fed
with variable armature current in either direction by a metadyne:
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generator, which is essentially a rotating-machine amplifier.
The small input power required by the metadyne generator for
its differential or push-pull excitation is supplied in turn by a
high-gain' thermionic amplifier whose input is the error signal.
This is obtained in the form of a small alternating voltage from
a pair of magslips, one driven by the output shaft and the other
by the input shaft. The sequence then is error-determination
(magslips), power-amplification (thermionic amplifier and meta-
dyne generator), power drive (D.c. servo-motor) and load (train-
ing moment-of-inertia). . Such elements represént a selection

|:4mp//‘f/'er Metadyne '

=3

‘ g Magslip transmission ‘;&
Q == ) ==

Fig. 4——Metadyne system for remote-position-control of gun
mounting (diagrammatic).

of the practical components that frequently occur in electrical
servo-circuits. The features of each are described below, together
‘with brief mention of alternative arrangements.

Error Devices. The magslip family of data-transmission sys-
tems was developed by the Admiralty Research Laboratory,
and of the many forms now in use the coincidence transmission
system and the transmitter-hunter- resetter system will be
described.

Coincidence transmission produces the angular error between
two remotely-situated shafts as an alternating voltage. Referring
to Fig. 5a, it will be seen that the 3-phase stators are connected
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and that the rotor of the transmitter has its single-phase winding
connected to an alternating supply and is rotated by the servo
input shaft. The rotor of the second magslip is driven or reset
by the servo output shaft and the magnetic axis of its winding
is so arranged that in the position of zero error no voltage is
induced by the stator currents. The a.c. voltage obtained if
there is either a fixed positive or negative error is shown in Fig.
5b. The magnitude and phase of this voltage with a variable
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Fig. 5—Magslip coincidence transmission.

error is shown in Fig. 5¢c. The sensitivity of these units is 0-6-
volt per 1° misalignment, their accuracy --1°, and normal
operation is from a 50-volt, 50-cycles per sec. supply or from a-
20-volt, 1,100-cycles per sec. supply.

The transmitter-hunter-resetter -chain produces the angular
error between two remotely-situated shafts as an angular dis-
placement. Fig 6 shows an additional unit, the hunter, carrying
3-phase windings on both rotor and stator which are connected
to the transmitter and resetter stators respectively. The
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transmitter and resetter rotors are connected to an a.c.
supply and the torque acting upon the hunter rotor is, for small
errors, proportional to the misalignment between the input and-
output shafts. The movement of the hunter rotors is constrained
by springs to a few degrees either way and, by the linkage shown,
the rotor moves the sensitive pilot-valve of an oil unit. The
torque produced in a 3-in. hunter is about 0:-16 oz.-in. per 1°
misalignment.

For applications in which a local control of power is sufficient
a mechanical differential gear is a simple form of error-measuring
device. It is not, however, without reaction on the input shaft,
which must be capable of resisting the torque.

Power Amplification. A thermionic amplifier is normally
required to give a D.c. output of the correct magnitude and
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Fig. 6.—Three-element transmitter-hunterireésetter chain.

- direction in response to an a.c. input of variable magnitude
and which is either in-phase or anti-phase with a fixed datum.
This type of amplifier, therefore, has a preliminary stage of
phase-sensitive rectification followed by two or more stages of
balanced, push-pull p.c. amplification. In addition the amplifier
is the point where further signals or interstage networks may
be added for improved servo response. It may also function in
such a way to reduce the power supply to the servo as the
extremities of the load range are reached and any limit switches
are operated. The power output of thermionic amplifiers, how-
ever, is reached at about 50 W. and for power purposes a rotating-
machine or dynamo-electric amplifier follows.

Dynamo-electric  Amplifiers. Developed originally for electric
traction, the metadyne generator obtains its high power ampli-
fication and ‘rapid.output:current response to the control-field
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current by using. armature-reaction fluxes. On one axis of the
machine strong armature-reaction flux is produced by a short-
-circuited pair of brushes and on a quadrature axis to this, negative
feedback of the output current from a secondary set of brushes
is applied to the control-field current. This feature tends to
make the output current rather than the output voltage of the
generator proportional to the control-field current, and in effect
constitutes a torque control on the D.c. servo-motor, especially
at low speeds. The differential control-field currents are of the
~order .of 40440 mA. Power amplifications range from 100
(for about 500 W. output) to 10,000 (for about 50 kW. output)

Similar to the metadyne generator but for the omission of
mnegative feedback of output current, the amplidyne generator
lacks the rapid current response of the metadyne. Positive feed-
back of output current (over-compensated amplidyne) may be
adopted to increase the output voltage.

In the interests of power amplification the stralghtforward
D.c. generator (Ward-Leonard control) requires to be preceded
by an exciter system. Since, neglecting the effect of time lags,
the generator voltage is proportional to the amplifier input,
this type of control gives a D.c. servo-motor speed proportional
to error, but excessive currents and torques arise when the error
changes suddenly. Negative feedback of the generator output

_current provides this torque limitation, and tends also to result
in the control of the servo-motor torque rather than speed.

Servo-motors. For power-type servos, the p.c. motor with its
armature input controlled and having a fixed shunt field current,
is normally used and results in the developed torque being pro-
portional to the motor armature current. In fractional-horse-
power servos, the converse is arranged, with the field current
variable and armature current constant. This method of con-
nection enables the amplifier to supply the field power of a small
motor directly and, approximately, makes the servo-motor
torque proportional to the error.

The 2-phase A.c. motor is frequently used in low- power appli-
cations thereby providing a wholly a.c. operated servo. Diffi-
culties of designing stabilizing circuits in this case restrict its
use to systems having a certain amount of inherent damping.

Hydraulic Servo-mechanisms.  Fig. 7 illustrates a simple
valve-controlled hydraulic servo. The error is determined by
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the transmitter-hunter-resetter chain, the resulting small pilot-
valve movement being amplified by the hydraulic relay, the
output of which moves the valve controlling the oil motor. This
drives the load, shown as a simple inertia, and also resets the
local magslip. Apart from the a.c. supply to the magslips, the
system uses no electrical power and constitutes an all-hydraulic
servo. In large hydraulically-powered servos it frequently
happens that coincidence transmission magslips are used, followed
by thermionic amplification of the voltage and conversion to a
mechanical displacement before passing it to the hydraulic
relay circuits. The final power drive, apart from simple rams
used to obtain straight-line motions is by a pump- or valve-
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Fig. 7.—Valve-controlled hydraulic servo-mechanism (diagrammatic).

controlled oil servo-motor, both examples requiring some form
of variable-delivery pump. In a pump-controlled power drive
the delivery is variable in either direction and determined by
the pump stroke which is dependent upon the control action.
The pump supplying a valve-controlled power drive is pressure-
regulated and gives up to full delivery in one direction only.
Descriptive details of some typical methods used in hydraulic
or electro-hydraulic systems are as follows.

Power Amplification. The simple double-acting ram or
hydraulic relay is an amplifier giving very high force magnifi-
cations, and is operated generally with a source of oil at a constant
pressure lower than that used for the final power drive. Hydraulic
amplifiers are capable of practically unlimited power output,

T
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but owing to friction and difficulties of mechanical construction
there is a minimum input force below which the sensitive valve
cannot be made to work.

In the basic hydraulic relay, consisting of a double-acting ram,
the velocity of the ram or output can be taken as proportional
to the effective port opening of the valve, provided that the
pressure drop across the ram does not exceed about 50 per cent.
of the supply pressure. Assuming that the port opening is
proportional to the valve displacement from the mid position,
the basic relay therefore produces an output displacement pro-
portional to the integral of the input displacement.

The integrating relay with negative displacement feedback,
more commonly called a ‘‘ proportional,” * corresponding,” or
“ follow-up ” relay, has the valve moved according to the relative
displacement of the ram and the input acting at opposite ends
of a floating or follow-up lever, pivoted at the end of the valve rod.
An alternative method is to have a movable liner, operated by
the ram, in the pilot-valve cylinder. The addition of this negative
displacement feedback produces an amplifier which, in the steady
state, has an output dlsplacement proportional to the input
displacement.

The normal form of the electro-hydraulic relay has as its
input quantity the p.c. voltage supplied by the previous stage
of thermionic amplification. By means of a coil and cylindrical-
magnet system (similar to that of a moving-coil loudspeaker),
the input is converted to a mechanical force which operates the
hydraulic relay.

Pumps and Control Valves. Variable delivery pumps are
normally of the radial-piston type, the action of the stroke
control causing the piston-assembly to be driven eccentrically
and produce pumping action, the amount and direction of which
depends on the amount and direction of the eccentricity imparted
by the stroke-control lever.

For requirements of appreciable power an approximately
constant pressure source is obtained by regulating the stroke and
hence delivery of a variable-delivery pump, according to the
pressure changes brought about by the load. In this instance it
is arranged that the pump delivery will be zero at some maximum
pressure rating P, and will be increased to the full capacity in
one direction at some lower pressure, about 0-8P; thus giving a
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tgtal pressure change of 20 per cent. from zero to full capacity
of the pump. In practice this can be done by the movement of
a spring-controlled piston in a cylinder supplied with the output
pressure of the pump, the resulting displacement operating the
stroke control lever.

The reciprocating-piston control valve is much used in servo
technique in a wide range of sizes. In large valves working at
high pressures, the forces due to hydraulic reaction exceed the
frictional forces present, but with sensitive pilot-valves the con-
verse holds. The main feature that limits the operation of small
sensitive valves is in fact the friction and stiction effect. The
latter is overcome to a certain extent by superimposing on the
operative force a relatively high frequency * dither > force,
provided by a linkage to an eccentrically driven member.

Servo-motors. The hydraulic motor used in servo-control is
in effect a reversed radial-piston or swash-plate type pump with
a fixed stroke. Neglecting leakage, the velocity of such a motor
is directly proportional to the volume of liquid passing through
it per unit time. In practice, however, the velocity is not quite
independent of the torque but decreases as the torque, pressure
difference and hence leakage across the pump, increase. While
valve-control of an oil motor is basically wasteful due to the
energy loss in the valve itself, its use enables a number of motors
to be operated simultaneously from one constant-pressure source.’
Pump-control on the other hand demands a separate pump and
driving motor for each installation but against this it is likely
that the wear on the pump, which is not generating at constant
pressure, will be less. To a first approximation, the velocity of a
pump-controlled motor is proportional to the amount of stroke
given to the pump. A more complete analysis includes the
effect of compressibility of the oil and in effect inserts a certain
resilience into the system.

SERVO-MECHANISM RESPONSE CHARACTERISTICS

In this section, details are given of the problems that arise
in predicting the response of a servo under certain conditions of
input motion and load characteristics. The problems are dis-
cussed as far as possible without formal mathematical treatment.

Stability. As any practical control system must not only be
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stable, but must possess a certain stability margin, the root
causes of instability are the first points to be-investigated. In
this respect three aspects of the problem emerge, each of which
is capable of causing unstable operation. These are :

(a) The form of the basic control characteristic, assuming’
all time lags in the operation of the sequence are
absent. . »

{b) The presence of time lags in the control sequence.

) Imperfections of the mechanical drive, for example
backlash, and variable friction characteristics of the
load or other mechanical members.

Effects (e) and (b) lend themselves to analytical treatment in
linear systems, that is, whenever the system °‘ constants’ or
parameters do not vary with the magnitude of their related
varying quantity. Frequencies of oscillation resulting from these
effects are termed natural frequencies. Item (c) is essentially a
non-linear property. Any resulting oscillations may be either
continuous or interrupted, and not of the same frequencies or
amplitudes as in the linear systems.

(@) Basic Control. The relationship between the output quan-
tity and a constantly applied error quantity determines the
basic nature of the control action. For example, by removing
the a.c. supply to the magslips in Fig. 4 and instead supplying
a constant a.c. voltage, v, to the amplifier (this in effect repre-
sents an error v/0-6°), it is found that the motor eventually rotates
at constant velocity. It is emphasized that this steady-state
relationship is only established after the lapse of a certain period,
the duration of which is dependent on the magnitude of the time
delays occurring in the system, and that, in this steady state,
time-lags have ceased to have any effect. Any linear system in
which a steady-state output velocity is produced by the appli-
cation of a constant error is represented by a basic control .
equation, db,/dt = K e, where K, is the gain factor of the system.
Such a wvelocity-controlled system is inherently stable.

The type of control existing in Fig. 7, however, results in a
steady-state output acceleration proportional to error* and
* Owing to the finite travel of the relay piston, an expei‘imenta,l trial of

this would require the steady state to be attained before the relay
piston moved this much,
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hence has a basic control equation, d%0,/di* = K . This type,
namely acceleration-control, is inherently unstable and must
always have additional stabilizing means. It may be compared
to an undamped pendulum where the restoring force is propor-
tional to the swing ¢ from the vertical.. Thus, since

—Mlid?e/dt? =Mge,
- —dPe[di? =(g[l)e;
\»\"}’1110,, for the above control type,
" 20, [dit=d2(0,— <) /dit =K e
ie. —d?eldi? =K e

for a stationary input. Hence with no motion whatever given
to the input, continuous oscillatory errors are formed: as the
output hunts about the input position. This type of instability
is therefore inherent in the control characteristic and without
some stabilizing means this form, which is shown later to be
highly desirable for certain applications, cannot be used. The
remaining type, which does not occur in position control, how-
ever, is that in which a steady-state error produces a steady-
state output displacement. This form is confined to certain
types of regulating systems only.

() Time Lags. The two forms of time lag considered here
are finite time lag and simple exponential time lag. Finite time
lag is also known as “ dead-time.” It is the time-interval
between the occurrence of a signal and the response, due to an
intermittent action in the system. Finite time lag does not
appear very often in servo-circuits but is of common occurrence
in process-control systems, where due to the finite speed of
propagation of the signal change, a lag results. The input-
output relationship for an element having finite time lag and
subjected to a sudden change in its input is shown in Fig. 8a
and the corresponding relationship for the more common expon-
ential time lag in Fig. 8b.

Exponential time lag occurs, for example, in the response of the
piston of a proportional-type hydraulic relay to a change in
position of the input member of the relay. It arises, also, in
the growth of the current in an inductive circuit such as the field
winding of a generator or exciter. The greatest time lag in-an
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electrical servo, however, is due to the output inertia and to the
viscous damping effect on the load introduced by the servo-
motor operation. The falling torque/speed characteristic of ».c.
servo-motors causes a considerable interval to elapse before an
inertia load reaches the steady-state speed corresponding to a
change of the control field current of the generator supplying
the motor.

Time lags, whether present in the forward control sequence, or
incurred in the process of output measurements, accentuate any
tendency to instability by virtue of their supplying to the com-
ponent immediately following them information concerning the
past state of the output rather than its actual state. In exponen-

HERZ EW
"I /I Initial Slope Afr
TOt T Time Ot t+7 Time
x,(t+T)=x,(t) Tdx,[di-+x,=x,
(a) Finite time lag (b) Exponential time lag

Fig. 8.—Responses oftime-lag elements to sudden change in input.

tial time lags, for given values of the lags and the other constants,
for example, sensitivity, of any system, the existence of stability
or not, can be checked by Routh’s! or Hurwitz’s? Criterion. This
is not, however, particularly helpful for assessing the damping or
relative stability. Much design work with this second aim in view
is carried out in terms of the behaviour of the system components
when they are carrying continuous sinusoidally-varying quantities
as in Fig. 3. This arises from the fact that a system which is in
a state of persistent self-oscillation operates with such signals
at all points of the control sequence. Thus, for continuous self-
oscillation without the application of an input, the error quantity
must be formed wholly from the output. That is, if

8, =0,,, sin wf,
then e =—0,=0,, sin (o{—180°).
) 1 See bibliography, p. 296.
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The conditions for continuous self-oscillation are therefore that
the ratio of the amplitudes of the output and error should be
unity, that is, 6,,,/c,, = 1 while the phase shift is 180°.

Considering now the effect of a simple exponential time-lag
element having a sinusoidally-varying input, Fig. 9a shows the
resulting output reduced in amplitude and lagging in phase.
The amplitude ratio w,,,/;,, is 1/4/142?T? while the phase
shift is tan—'eT (Appendix 1). For a given time lag, the phase
shift increases with the frequency of the input while the amplitude
ratio X,,,/z;,, decreases, Fig. 9. For a given frequency the
same result is obtained as the time lag is increased.

+90°

(®

Fig. 9.—Steady-state frequency response of exponential time lag.

The implication of this result as far as stability is concerned
is depicted in Fig. 10. Curve A is the polar plot of the phase
shift and amplitude reduction or attenuation, introduced by a
simple exponential time lag. It is essentially a repeat of Fig. 95.
Curve B, which coincides with the —90° radius vector, is the
polar ‘plot of the basic control characteristic of a velocity-
controlled system.* Curve C is the resultant curve giving the
amplitude ratio and phase shift for 6,/e in a velocity-controlied
system with one time lag. It is derived by ‘‘ multiplication ”

of the two curves A and B at corresponding quuenmes That is,
for the frequency w,/2w,
OR=0P x 0Q and 6=®-490°.

* Since <[6°/dt~Ks Kem sin ot
Oo==—(Kemfw) cos wt=(Key/w) sin (0i—90°) =00,y sin (0i—90°)
" Therefore the amplitude ratio, OQ in Fig. 10,=K/w:.  The phase
shift is equal to —90° for all frequencies.
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The result of the time delay has been to increase the phase lag
of the output with respect to the error quantity. A further step
now is to add another time lag to the system, as in Fig. 11.

~ Curve A is the polar plot of the resultant of two time lags acting
one after the other. Curve C is the resultant 6,/c polar plot for a
velocity-controlled system with the two time lags. ~In this
instance, the phase shift introduced by the time lags is sufficient
to turn the resultant C curve through angles in excess of 180°
at high frequencies. With the sensitivity or gain-factor of the
system as shown, the amplitude ratio at 180° phase shift, namely,
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Fig. 10.—Nyquist diagram for velocity-controlled servo-mechanism with one
exponential time lag.” (Arrow with each locus, indicates direction of increasing
frequency.) *

the length ON, is less than unity. Since, however, the control
sensitivity K is a variable quantity, the amplitude ratio 9,,,/¢,,
at ““ cross-over ” will depend wholly on the value given to K.
If it is increased from that-shown in-Fig. 11, a stage is eventually
reached when ON is equal to unity, that is, N coincides with S.
Under these adjustments the amplitude ratio 0,,,/<,, is unity while
the phase shift is 180°. This, as stated previously, is the critical
stability limit at which the servo-system is capable. of supplying
its own error solely from the output quantity. Any attempt
to increase the senmsitivity further merely causes continuous
oscillations to occur. This particular technique for investigating
stability results in the test is generally known as the Nyquist®
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Oriterion™.  By-its use the separate contributions of the individual
time Jags to the total phase shift of 6,/¢, are readily made evident.
It may be mentioned here that since the unstabilizing effect of a
time lag is due to the phase lag which it introduces into the
sequence, the process of stabilization is to 1mert phase- advance
to counteract this.

The numerical prediction of the effect of time lags in the step
function response entails a certain amount of labour. It is
generally true, however, that if one time lag is large compared
with those remaining, the response will show greater damping
than if the time lags are all of the same order. Prinz* has given

Fig. 11.—Nyquist diagram of stable velocity-controlled servo-mechanism
with two exponential time lags.

for two and three lags relationships necessary for optimum
response, but for an accurate prediction of overshoot and other
features in the step response a complete solution of the overall
equation governing the system is necessary. Certain standard
equations, however, for various classes of control having a
specified overshoot in the step response have been calculated
by Whiteley®. With the aid of these the approximately correct
values of the servo adjustments in relation to the time- and
other constants of the system can be found.

(¢} Backlash. In general the load of a servo-mechanism
is such as to require a considerable gear reduction from the motor
shaft. A heavy gun mounting, for instance, is driven through a
* A single-loop servo-system will be stable if, for all frequencies from zero to

infinity, the polar locus of the vector representing the phase shift and gain

of Oy/e, does not enclose the point (—1, 0). If the locus encloses the
point (--1, 0), the system is unstable.
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gear ring of large diameter and as the drive may be required to
operate between certain extremes of temperature, a certain
freedom of operation must be allowed. This, together with the
normal machining errors, limits to several minutes of arc the
accuracy it is possible to achieve in a high-torque drive. Again,
with such a drive, mechanical resilience occurs in the shafts
themselves and in any comparatively soft materials used in
mechanical couplings. The result of this backlash and resilience
is that the motor and load tend to oscillate in anti-phase at
either end of the power drive and if the system possesses high
amplification oscillations of a relatively high frequency result
within the backlash. This tendency to instability can be partially
overcome by driving the resetting transmitter from the motor
instead of from the load, since with resilience and backlash
present the motor is effectively in advance of the load position
at any time. Such a procedure necessarily places the load outside
“the control loop and though stabilizing may result, the accuracy
of the system is decreased by the errors which still exist in the
power drive. A further improvement due to Belsey® consists
in deriving part of the reset from the motor and part from the
load. They are then combined in such proportions that re-
setting is effectively carried out at the ‘“ nodal-point ”’ of the
power drive, that is, at the position which would be occupied
by a solidly-coupled motor-load inertia. This divided-reset
as it is termed, gives greater accuracy by allowing a further
increase in the gain of the system before instability occurs and
by obtaining the feedback information at a point, in effect, nearer
the final load.

Steady-State Following. The basic control equation referred
to in a previous section is an expression of the conditions under
which a servo-mechanism can sustain a constant error. Thus
for an acceleration-controlled system, d®0,/dt> = K e. A constant
following error of ®/K, therefore results when the output, and
hence the input also, possesses the constant acceleration ®.
Such an input is shown in Fig. 12, curve C. An approximation
to this may occur in practice over a very limited time. More
commonly, the inputs B and A result and as neither possesses
any acceleration, no permanent error can exist in an acceleration-
controlled servo following either input. For this reason, accelera-
tion-controlled servos are also termed zero-velocity-error systems.
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Similarly in the velocity-controlled type, d6,/dt = K, a
constant error e=Q/K, will exist for an output velocity and
hence an input velocity Q, as in B. This type requires no error,
however, to maintain a constant output angle 6. It is therefore
also termed a zero-displacement-error system.* From the
expression for the constant-velocity following error, it is evi-
dently desirable that K,, that is, the gain factor or control
sensitivity of the system, should be as large as possible. The
displacement-controlled type is not capable of following steadily
moving inputs and therefore has no application in servo-
mechanism work.

The property of following a constant-velocity input with zero
steady-state error is very advantageous and can be realized in

(O Time
Fig. 12.— Step-function > constant-velocity and constant-acceleration inputs.

both electrical and hydraulic servos, but probably more easily
by the latter. Such a system will require a fair degree of stabi-
lizing in order to counteract the inherently unstable basic
characteristic and the inevitable time lags which occur. In
order to attain sufficient constant-velocity following accuracy
with a velocity-controlled type the gain setting requires to be
very high, which again entails considerable stabilizing in the
transient region. The design problem, therefore, resolves itself
into one of stabilization without loss of steady-state accuracy.
Methods of achieving this are taken up in a following section.
Performance at Creep Speeds. The variable friction character-
istic of a normal load or other mechanical member is shown in
Fig. 13. ) ;
* Tt must be remembered that the above results are established for linear

systems only. In practice, stiction may cause a small static error
to appear.
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Considering the motion of output as the input shaft is slowly
turned, the error must build up until the torque developed is
sufficiently large to overcome the stiction of the output. Once
movement oceurs, the friction torque reduces suddenly and as a
result, overshooting of the -output generally occurs so that it
comes to rest' ahead of the input. - A stationary period of the
output then follows until the input motion results in sufficient
error to move the output again. Depending upon the adjust-
ments of the systém, the output may even overshoot the input

3
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Fig. 13.—Dependence of friction on speed.

position sufficiently to cause an intermittent type of oscillation.
In practice also there is usually a wide variation of the stiction
value or stiction/friction ratio over the range of load movement.
The net result of such irregularities is that smooth following at
low creep speeds presents a formidable problem, which is only
partially solved. Attempts have been made to superimpose a
““ dither ” torque on the servo-motor in the same manner as for
the sensitive pilot-valve of an oil unit.

A similar state of affairs exists in the * static ” behaviour of a
system in which the motor torque is proportional to the inte-
grated error. An initial static error is then integrated until the
torque which has been built up suddenly moves the output,




SERVO CONTROL ‘PROBLEMS 289

which - then overshoots and.comes to rest. The integration of
error then proceeds once more and a slow cycle of load movement
about the input position results.

bTé\BILIZATION OF SERVO-MECHANISMS AND REDUTCTION
OF STEADY-STATE ERROR

I‘here may be said to be two sources of error in a servo-system,
n&mely, transient error and steady-state error. Transient error
is the discrepancy between output and input while the system
is in the course of responding. The natural tendency of any
system to oscillate appears as overshooting and undershooting
before the output is finally constrained to obey the input. In
a. completely unstable system this period, during which the
system behaves according to its natural modes, lasts indefinitely.
Stabilization consists essentially in giving large damping to the
natural frequencies of oscillation of the system. From the
standpoint of the Nyquist Criterion, it implies some means of
putting a local “ dent ™ into the polar plot of 0,/¢, in order to
place it as far as possible from the critical (—1, 0) point. It is
not, however, intended to go into this aspect of design herve.

On the other hand, steady-state error is dependent on the
system' behaviour once this natural settling-period is over, and
as already shown depends only on two features. These are,
firstly, the basic type of control, and secondly, the amount of
sensitivity or gain that can be allowed. Thus the requirements
of high steady-state accuracy conflicts with that of reasonable
transient performance. Since also the steady-state velocity
error existing in a velocity-controlled system cannot be made
zero without in effect changing over to an acceleration-controlled
system, additional modifying networks or connections which
produce zero-velocity error do in fact change the class of the
control system.

There are numerous methods in practice for bringing about a
particular system response. Since one, and only one, control
equation can exist for any specified time response, which is
the solution to that equation, all practical methods of improving
servo performance are merely methods of altering the coefficients
of that equation to a certain set of values. From the practical
viewpoint they are by no means equivalent, some being more
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easily or advantageously applied than others; realization of
this analytical equivalence is often a design aid in attempting
to replace a rather cumbersome linkage by an electric network,
or conversely in knowing a stabilizing method in electric terms
and translating this into mechanical methods.

As to the means employed in improving either the transient
or steady-state performance, three main techniques arise, which
may be described as cascade compensation, feedback compensa-
tion and load compensation or vibration damping.

Cascade compensation is the insertion into the forward control
sequence, at the thermionic amplification stage, of specially
designed networks chosen for the modifying effect on the error
signal as it changes. Feedback compensation, employed in both
electric and hydraulic servos, consists in supplying additional
information to the low-power end of the forward control sequence,
that is, the amplifier input, as to the rates of change of the output
quantity. Load compensation, employed for small power instru-
ment-type servo-systems, makes use of some form of vibration
damper. It is particularly useful in wholly a.c. operated servo-
mechanisms where the design of corrective networks presents
difficulty. A further general point already mentioned is that
stabilizing methods are more easily derived for electric systems
than for their hydraulic counterpart. For this reason high-
power hydraulic servos usually have a first stage of thermionic
amplification in which the primary stabilizing means are provided.
Purely mechanical methods of cascade or feedback compensation
are restricted to the possible varieties of a spring dashpot
combination.

Stabilization Methods. Output Velocity Feedback. All loads
possess a certain amount of natural friction which damps the
load movement to some extent. Such friction is of a very
variable nature, however, and the amount of damping it provides
is negligible in comparison with that which can be obtained
electrically by means of an additional feedback of output velocity.
Thus, by driving a small D.c. tachogenerator from the output
shaft, a D.c. voltage proportional to the velocity of the output
is obtained and this can be added to the normal error voltage
at a suitable stage in the amplifier. The connections are so
arranged that the torque produced by this voltage at all times
opposes the velocity of the output and thus effectively introduces
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- viscous friction on the output shaft. "An alternative to providing
a tachogenerator is to derive a current approximately propor-
tional to the output speed by connecting directly across the
servo-motor armature and supplying the auxiliary field winding
of a metadyne generator or a Ward-Leonard exciter. Although
an effective method of stabilization, output velocity feedback
is not suitable for systems required to follow constant velocity
inputs, since the error must increase in order to overcome the
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Fig. 14.—Stabilizing arrangements. (a) Transient output-velocity feedback.
(b, ¢) Admplidyne anti-hunt connections.

voltage feedback due to the constant speed of rotation, and
provide the necessary driving torque in addition. The above
defect may be remedied by making the feedback operative
only when the output changes its velocity. A simple CR net-
work, Fig. 14a, cascaded with the output of the tachogenerator,
will accomplish this transient velocity feedback.

The auxiliary or anti-hunt field winding is also used frequently
in amplidyne regulating systems, and is then supplied through
& condenser or anti-hunt transformer, Figs. 14b and 14c. Both
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arrangements allow the feedback ampere-turns to be operative
only when the output voltage changes, the current flowing
being approximately proportional to the rate of change of output
voltage. _ .
Addition of Derivatives of Error. That the addition of time-
derivatives of the error quantity can stabilize a servo-system
may be shown by considering the response of a simple lagging
element such as might occur in the forward control sequence.
For an inductive field circuit having a voltage proportional to

the error impressed on it, the rise of current is given by
Ri + Ldijdt = K;=.

If we add a component proportional to the rate of change of
the error, this becomes

Ri + Ldijdt — K, + K,de/dt,

so that by making L/R=K,/K,, the response becomes instan-
taneous and the time lag has been cancelled. This is not
necessarily the best procedure in practice but it gives approxi-
mately the amount of derivative control to be used. Similarly
from the standpoint of the output motion, by feeding in a term
proportional to the derivative of error, the motor has two com-
ponents of torque. The action of the two components can be
seen by considering the torques acting as the output overshoots
from an initial point behind the input, that is, initially positive
error. As zero error is being approached by the output with
increasing velocity, the derivative component opposes the
normal error component and provides an increasing retarding
torque reaching maximum at zero error, while immediately
after this point the normal and derivative components act
together. This provides an effective stabilizing action without
affecting the steady-state velocity error under constant-velocity
following. Practical methods of obtaining the derivative of
error term are shown in Fig. 15a¢ and b. Both networks operate
on p.¢. and are inserted between p.c. stages of the thermionic
amplifier. It should be stated that network & produces only an
approximation to the ° error-t-derivative of error ” condition,
but this in no way makes it any less effective. Theory indicates
there is no particular advantage in a pure derivative component.
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Proportional Feedback over a Time-Lag. This simple inethod is
used partially to counteract the effects of time-lags as they occur.
By opposing the input with the output or a proportion of it,
the effective time lag of the modified element is reduced but at
the expense of steady-state gain. (Appendix II.)

Load Compensation. Two types of vibration damper are in
use for servo stabilization, resonant and non-resonant types.
In the former an inertia disc with suitable damping is spring-
coupled to the output shaft. The spring constant and inertia
are so chosen to give a natural frequency equal to that of the
oscillation requiring damping. In these conditions the disc
removes energy from the hunting shaft and dissipates it in its
viscous brake. In the non-resonant type an inertia is friction-
coupled to the output, which therefore experiences friction

o w0

o, O O= O -O) O
: (a) (b) : (¢)

Fig. 15.—Cascade (or interstage) stabilizing networks.

torque whenever there is relative velocity between it and the
coupled inertia. This occurs when output oscillates, since the
inertia disc cannot follow under these conditions. The energy
of the output oscillation is thus converted into heat and the
output shaft stabilized. For small servos this method of stabi-
lization is very effective. »

Reduction of Steady-State Error. The primary method of
reducing steady-state error is to have as large a value as possible
of the control sensitivity. Given that a certain servo is stable
but suffers from undue velocity-error, one solution of the pro-
blem is to incorporate in the amplifier a network which reduces
the amount of signal passed for fairly rapid changes of the error
but does not affect the transmission in the steady state. By
this means the sensitivity of the amplifier may be increased
without affecting the original stability but at the same time

U
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providing a higher steady-state amplification than initially.
The steady-state errors are thereby reduced. The circuit in
Fig. 15¢ which operates on D.c. signals is commonly used and
sometimes referred to as an “ error-+integral of error *’ network.

Since a zero velocity-error system depends basically on an
acceleration-control, the connection of a simple hydraulic
integrating relay in series with either a pump- or valve-controlled
power drive will give the necessary characteristic, but will
require stabilizing in view of its inherent instability. An arrange-
ment much used in oil servo units is shown in Fig. 16.- Here
the simple integrating relay is provided with  transient dis-

-
==

Fig. 16.—Hydraulic integrating relay with transient displacement
- feedback

placement feedback ’ by means of the spring-dashpot com-
bination. Since in the steady state, the spring will always
return the end of the lever to its zero position, the result of a
constant displacement of the input end of the lever is to cause
the piston to move with constant velocity. The steady-state
integrating property therefore remains. Due, however, to the
“solid 7 action of the dashpot when initial movement of the
piston takes place, the valve temporarily closes before being
slowly displaced to its steady-state position by the spring.

-The result of this transient behaviour is highly stabilizing due
to the initial peak of velocity given to the piston.

As previously stated, although producing the same result
certain pi‘aeticg,l methods of stabilization possess distinct advan-
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tages over others. This particularly applies in the comparison
of cascaded networks in contrast to additional feedback loops.
In the latter, since the signal is derived from a later stage in the
sequence there is always sufficient power available for supplying
the feedback network. A cascaded network on the other hand
must be arranged so that it does not affect the purity of the
error signal and if more than one network is required these
must be placed between stages of the amplifier, and not directly
comnected in cascade. There is the additional feature that
corrective networks normally operate with D.c. signals and thus
a feedback connection from rotating n.c. machinery is particularly
applicable. Even if a feedback source does not exist in the
sequence it can be provided, for example, by a D.c. tacho-
generator. Finally, feedback stabilization usually makes the
system less responsive to output disturbances than cascaded
networks, due to information being more directly provided at
the input end of the control sequence. The action, however, of
feedback networks is less obvious than with networks cascaded
in the control sequence, and the best stabilizing arrangement is
very often determined by experience or by trial and error rather
than wholly analytical considerations.

APPENDIX 1

PHASE SHIFT AND ATTENUATION DUE TO SIMPLE EXPONENTIAL
TmEe Lac

In the differential equation relating the input x; and output z,
of the delay element, whose time constant is T seconds,

Tda,[dt+2, =2,
put L=, SR of,
Ther,  if x,=A sin wi-+B cos wt in the steady-state,
oTA cos ol —eBT sin wi+ A sin of -+ B cos ot=a,,, sin of
A—wBT =a;,,
A+BjwT=o,
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whence A =x;,/(1+02T?), B=—a,,0T/(1+c?T?2)
x, =xiw,(sin ot—oT cos ot)/(1+«?*T?) '

=y sin (0f—P)/1/1+6*T%,  P=tantoT.

Cim 1S

The phase shift is tan—eT and the attenuation =z,,/c

1/4/1 Fo?T.

ArreExpix II

Repucrion oF ErFECTIVE TIME-CONSTANT OF A SIMPLE
ExpPoNENTIAL TIME LAG, BY NEGATIVE FEEDBACK.

O )
X, —=xllag element | —= X,
' __lxo
—kx Proportional v
ol -— -~
element
Fig. 17.

For the exponential delay element, with the fraction & of its
output negatively fed back,

T, |db-+ =1, ke,
Tdz,|dt-+(1+ k), ==,
or Tdx,jdi+x,=x,/(14+k)

where T'=T/(1+k) is the effective time constant. Note that
steady-state gain z,/x; has been reduced from unity to 1/(14-k).
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Dascussion

Prof. B. Hacug, D.Sc., Ph.D.: The Institution is to be com-
plimented on the inclusion of this paper in its Transactions ; and
the Author is to be congratulated on the clarity and precision
with which the principles have been stated. The paper is a clear
illustration of the late Prof. Perry’s dictum that engineering
knowledge should not be separated into watertight compartments,
a statement which is particularly true of the subject of servo-
mechanisms. In this subject the old principle of servo-control,
due to the mechanical engineer, has been combined with a large
body of theoretical knowledge, developed by the electrical engin-
cer for the discussion of regenerative action or feedback in elec-
trical amplifiers. The result has been the development of the
modern technique of automatic control so ably discussed in the
paper.

Two applications of servo-mechanism recently came under the
writer’s observation. One was the adjustment of the electrode
position in an electric furnace, which was carried out by servo
equipment operating through an amplidyne gerierator. The
furnace current, which was to be maintained constant, operated
a control mechanism with amplification through the amplidyne ;
this in turn supplied current to the motors which adjusted the
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position of the electrodes so as to keep the furnace current at the
desired value. The other application was the automatic econtrol
of cutting force and speed of cut in a large planer. This is often
done by some form of Ward-Leonard control gear, involving the
use of several auxiliary electrical machines. In this particular
example the performance of the planer was controlled by a purely
“electronic servo device, the power supply being taken from a
thermionic rectifier.

Mr. V. R. Paring, B.Sc.: The writer would support Prof.
Hague in complimenting the Author on his lucid presentation of
the subject. Such expositions which make the subject accessible
to the layman hardly exist at present. That is unfortunate,
because it is a subject which should be of interest to engineers
whose main work lies in other fields. The terminology and
nomenclature are wvarticularly confusing, and one American
writer* has summeu ap the situation by saying that the control
experts have got their terminology so balled up that no one but
themselves can understand it. That is a fair statement of the
- position. . .

.The British Standards Institution is preparing a glossary on
“this subject,} and a reference to that might usefully be included.
The preparation of such a glossary must be a difficult task, and is
likely to end up by pleasing no one. In the first section that has
been issued, in addition to a list of definitions, a list of rejected
terms is given as an appendix, and the rejected terms outnumber

the accepted terms.

The, by now, classical papers of Routh, Hurwitz and Nyquist
are given in the bibliography, but these are not likely to prove
helpful to an engineer who wants to find out what it is all about.
None of those authors was writing with control systems in view,
and none was writing for engineers. Nyquist indeed was writing
for electronic engineers, but everybody knows that they are
different from other people and have a language of their own.

On p. 272 the Author divides control systems into those with
a fixed predetermined input and those with a random time-
varying input. It is desirable to recognize the existence of an
intermediate class which has a predetermined input which

* Bd 8. Smith. Trans. Amer. Soc. Mech. Eng., 1946, vol. 68, p. 523.

t British Standard 1523. (In course of publication.)
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nevertheless varies with time ; that would be the case in a fur-
nace in which the temperature was required to go through a pre-
scribed cycle of operations. Prof. Hayes* has suggested that a
more logical classification is simply into systems with a pre-
determined input and those with a random input.

Mr. J. SrereNsoN : The Author has described both electrical
and hydraulic servo-mechanisms. How does the relationship
between power input and output for the two systems compare
with the ratio of say 1 to 10,000 in ordinary hand-controlled
plants (for example, tram cars and small marine engines) ¢ For-
gun-mountings both systems are used by different firms and in
the Denny-Brown stabilizer the first servo stage is electrical and
the rest hydraulic. Are there any special reasons for this ?

Mr. D. Morrisox, B.Sc. (Associate Member) : Can the Author
comment on the suitability of servo control systems for com-
paratively small power installations in view of the extra equip-
ment required ? The writer has in mind the particular problem
of controlling closely the speed of a p.c. motor for aircraft reson-
ance testing. This can be accomplished by using a 5-h.p. motor
with manual speed control and an ample reserve of power, or
by using a 1-h.p. motor with automatic speed regulation.

" It will be found, however, that the extra weight, space and
expense of the control system for the second scheme more than
outweighs the original saving on the motor.

With regard to the Author’s comments on the capstan torque
amplifier, it is the writer’s recollection that this system was used
for remote control of gun turrets on some German aircraft
(ME 210 and 410).f

Mr. A. SiLvErRLEAF, B.Sc. (Associate Member) : The Author
states that the problem of gun stabilization on a rolling ship
had not yet been satisfactorily solved. Does this imply that it
could be completely solved ? In a true servo-mechanism, is it
possible to obtain complete accuracy of control? The writer
has the impression that in servo-mechanisms it is essential to
have some error, for it is only through an error that control can

* Proc. Inst. Mech. Eng., 1948, vol. 159, p. 36.
t Flight, 1943, vol. 43, p. 144.
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be exercised. In this connection, is there any difference in prin-
ciple between steady-state regulators, and servo-mechanisms
linked to a varying datum quantity, which affects the degree of
coutrol which it is possible to achieve ?

Author’s Reply

Mr. CRUTCKSHANK : Prof. Hague mentions the common ground
which the subject of servo-mechanisms provides for the electrical
and the mechanical engineer. In this respect, the two-way
nature of the development has perhaps not been fully recognized.
While recent theory has predicted seemingly new means of
achieving certain practical results, it has also happened that a
few of these have been already in existence in the field of mech-
anical applications and that a closer understanding of their
operation is now provided.

Of the two industrial applications cited by Prof. Hague, the
first is an example of regulating to a constant value and represents.
the majority of industrial problems, while the second more nearly
approaches true servo action. Industrial servo controls of the
second type have on the whole been rather slow in forthcoming,
possibly because their complexity offers a certain maintenance
problem. There has always been a tendency to avoid installing
complex apparatus if accuracy of control is gained at the expense
of ease of maintenance. Standardization of components in future .
control apparatus may successfully solve this problem.

With regard to Mr. Paling’s remarks on terminology, the
Author agrees with him in sympathizing with engineers whose
main work lies in other fields and who may be called on to take
up a problem in servo control. The fluid state of nomenclature
may be cleared up when the British Standards Institution publishes
the glossary he refers to, but it may quite simply mean that
process-control engineers and servo-control engineers will have
to learn not only each other’s language, but also that of the
glossary. The Author also agrees \Vlth the more logical classifi-
cation of control systems suggested by Prof. Hayes, which takes
in those with predetermined time-vavrying inputs and which are
not mentioned in the paper.

In reply to Mr. Stefenson, the total power amplification pro-
vided in a large, high-accuracy angular-position control servo
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is very great indeed. The final power-amplifier, whether electric
or hydraulic, has, of course, its output determined by the h.p.
of the system and an input power in the region of 5 to 25 watts.
These figures imply power-amplifications up to 10,000 for the
final stage alone of a system having a 50-kW. output. Prior to
this, a large power-amplification takes place in the thermionic
amplifier in electric and electro-hydraulic systems. As the power-
output of a metadyne generator or of a hydraulic amplifier is set:
only by the physical size of the unit, it is difficult to see how a
comparison with the manually-controlled systems can really be
made at all.

Turning to the second point mady by Mr. Stefenson, namely
the relative merits of electric and hydraulic servos, space pre-
cludes a detailed answer to the question. Some of the advan-
tages of the hydraulic type, however, are the lighter construction
required for a given power, the high torque/inertia ratio of the
oil motor which thus enables it to accelerate a load without itself
absorbing about an equal quantity of power, as in the case of an
electric motor, and the ease of maintenance of hydraulic systems
if once properly manufactured. Against these the electric servo
can show great flexibility in the thermionic amplifying stage and
additional connections for improved responses can be incorporated
more easily than in the hydraulic counterpart. It is in the main
composed of standard units, for example, motors and generators
that can be supplied in large numbers in the normal course of
industry. Frequently the best solution is a combination of both
electric and hydraulic, the former for the initial stages of error-
detection, amplification and primary stabilizing means, while the
latter is used for the final power stage. In the Denny-Brown
stabilizer the final fin-tilting stage is much the same as a hydraulic
steering gear, pre-amplification is by hydraulic means and the
magslip-resetter system for determining the ship’s roll and roll-
velocity constitutes the only clectrical means employed in the
actual control chain. It would be more correct, therefore, to
term this a hydraulic system rather than electro-hydraulic.

Mr. Morrison states that a l-h.p. automatic speed-regulating
system for aireraft resonance testing demanded more weight,
space and expense than the original system employing a 5-h.p.
motor with ample reserve of power. While the space and expense
of an extra control system may not be in its favonr, it is surprising
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that weight considerations of the smaller motor and its equipment
~ should compare unadvantageously. In the scheme mentioned,
which concerns mechanical resonances, it is clear that an extremely
sensitive control would be required to maintain accurate exciting
frequencies in the face of large energy fluctuations in the load.
For the holding of such constant exciting frequencies and for the
measurement of resulting amplitudes, as opposed to the measure-
ment of merely the resonant frequencies, an electronic control
system would be essential.

The Author thanks Mr. Morrison for his interesting reference
to the use of the capstan torque amplifier in gun turrets on certain
German aircraft. v

In reply to Mr. Silverleaf, if the Author has given the impression
that the complete stabilization of a gun on a rolling ship is possible,
he hastens to correct it. Complete accuracy of control cannot be
obtained either in stabilizing or in following systems in which the
corrective action depends on an error. With regard to regulators,
however, which, as stated previously, present mainly steady-state
problems, it is true to say that in the steady-state, the accuracy
‘may be brought to within any desired limits however small, and
according to the design of the system. There must, however, be
certain transient errors before such accuracy or, in the limit,
even zero steady-state error, is achieved. Analytically speaking,
there is no difference between a steady-state 1equlat01 and
a servo-mechanism.
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Principal pole-pair at —/2;/
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Frincipal pole-pair at —2%;/
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Principal pole-pair at —O52y/
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Principal pole-pair at —/2;/

50 __
// — |10 /0'8
L~ / 06
45 ,/ /? /////:83
wZak
40 ,/ //
—
N 4
T T /
50 /
% 25
s | L
20 L
Vi
v
e
/5 / 7 5 //\ik\ | o
' / / N
/ \ T —T—— 20
/'O_ | %7 N \ \\\\\ IR
b A
05 /,/// \\ S 12 —10
/,é;%\ 2‘0\
szanall
25
O/o ' ' -0 o5 o/

W\

Rea/ part of pole or zero
Real part of principal pole-pair




ANGLE CHART 3
Principal pole-pair at —2Z%j/
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Principal pole-pair at —2 %;/
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