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Summary

In this thesis the technique of X~ray crystal structure
analysis is_applied to the study of molecular structure,
conformation and bonding in some platinum(II) and platinum(I)
complexes., The contents are divided into three parts.

‘In Part I some of the theoretical and practical aspects
of the X-ray diffraction methods, pertinent to the work
described in Parts II and III, are surveyed.

Part II, which is presented in six Chapters, is
concerned with the structures of eight square-planar
platinum(II) complexes. Current views on trans- and
cis-influence of ligands and some aspects of metal-
phosphorus bonding are first reviewed (Chapter 1). This
is followed by a description of the crystal structure
analyses of three platinum(II) complexes containing the
novel ligand PMe206F5 (Chapter 2). The interest is
centred on the effect of electron-withdrawal of phosphine
substituents on the metal-ligand bonding. Chapter 3 is
devoted to the structure analyses of the complexes
gig—PtCl2(PEt3)L, where L=PEt5 and CO. This work completes
a systematic study of such complexes and the results
are discussed in terms of the cis and trans-influence
of the ligands. The constancy of the observed triethyl-
phosphine conformation in square-planar platinum complexes
has led to molecular mechanics calculations on.the
triethylphosphine molecule, which are also described.

In Chapter 4 the structure of a platinum(II) complex which
provides the firet known example of a metallated phosphine-

carborane is described. The interest in the effect of
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strongly electron-withdrawing substituents on sulphur-
donor atom on metal-ligand bonding has led to determination
of the crystal structure of _c_i_g-PtCl2(CFBSCHZCH}IeSCFB),
presented in Chapter 5. Chapter 6 is devoted to the
structure analysis of _{c_x_g_g_s_-—[PtCl(COEt)(PMezPh)]z. This
vcomplex displays an unusually large 1J(Pt-P) coupling
constant. The X-ray study was carried out in order to
examine the correlation between Pt-P bond lengths and
coupling constants in bridged binuclear platinum(II)
species, | |

Part III is concerned with the structure analyses of

two closely similar and novel platinum(I) complexes, which

contain direct metal-~ligand bonds,
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PART I

X-RAY CRYSTAL STRUCTURE ANALYSIS



1. Introduction

Crystals have been a subject of study and speculation
for hundreds of years, The idea that they are built by
three-dimensional geometrical repetition of identical units
was established as early as 1665j By the middle of the
eighteenth century Hauy2>was able to develop the law of
rational indices, which states that the intercepts made on
crystallographic axes a, b, c, by any crystal face can be
expressed as ratios a/h, b/k, c¢/1, where h, k and 1 are
small whole numbers. This notation was popularized in the
next century by Miller,3 and the three integer indices h,

k, 1, now bear his name, Subsequent work led HesselL to
deduce, from Hally's law of rational indices, the 32 symmetry
clagses; these are the groups of self-consistent symmetry
operations applicable to crystal morphology. In 1850
Bravais5 described 14 space lattices geometrically compatible
with the 32 crystal classes (crystallographic point groups).
This purely group-theoretical investigation was extended in
1890, independently by Fedorov6 and Schoenflies.7 They
considered all symmetry operations possible in spacé lattices,
thus arriving at 230 space groups. However, this work aroused
little interest until 1919, when Niggli8 showed that the space
group of a crystal can be determined by an analysis of the X-ray

diffraction pattern.

Although X-rays were discovered in 1895, by Rbntgen, it
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was not until 1912 that the first diffraction pattern (of
crystalline copper sulphate) was observed by Friedrich,
Knipping and von Lauep This experiment simultaneously
demonstrated the wave nature of X-rays and the periodic
structure of crystals. Shortly afterwards the ionization
spectrometer was developed by W.H. and W.L. Braggﬂo They
realised that the intensity-weighted X-ray diffraction
pattern could be used for determination of the internal
structure of crystals, and deduced a simple equation which
treats diffraction as reflection from planes in the crystal
lattice."1 This led rapidly to improved understanding of
the relationship between the diffraction pattern and the
structure of crystals. During the 1920's the ionisation
chamber was'gradually superseded by the X-ray camera.
General acceptance of photographic methods was promoted
mainly by application of the theory of the reciprocal
lattice, and‘of the Ewald sphere of reflection,12 to the
interpretation of single crystal rotation photographsn3>

and also by the invention of the WeissenbergﬁA and p'recession1
cameras, Since 1945, however, interest in counter methods
has revived. The Geiger counter and later proportional and
scintillation counters have been developed as reliéble
detectors., With the recent development of high-speed
electronic computers and computer-controlled diffractometers,
the determination of increasingly large and complex crystal
structures, such as proteins, has become possible.

A crystal structure analysis normally proceeds through

three distinct stages. (i) Measurement of the intensities
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of Bragg feflections, which are then corrected for various
geometrical and physical factors to yield a set of structure
amplitudes. (ii) The solution of the phase problem: the
phases of the diffracted beams cannot be measured directly
and yet they must be derived in some way before the structure
can be solved. Because of the remaining uncertainties in

the phases, this first structure is only approximately
correct. (iii) The approximate atomic parameters must be
refined to obtain the best agreement between the observed
and calculated structuie amplitudes,

The following sections summarise briefly the theoretical
and experimental techniques employed in X-ray structure
analysis, with the emphasis on those methods actually used
in the determination of the crystal structures described in

this thesis.

2., The Structure Factor

X-rays are scattered by electrons, and when the Bragg
condition is obeyed the scattering is coherent and elastic.
The amplitude and phase of the beam scattered by a single

unit cell, when reflection occurs from the hkl Bragg planes,

are defined by the structure factor:
F(hk1) =X Mr(}cyz)exp [2ni(hx+ky+1z)] dxdydz (1.1)

The integration is over the volume of the unit cell. The
number of electrons per unit volume at the point with
fractional cocordinates x,y,2z2 is expressed by the electron

density function, r(xyz). The structure factor is a
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complex quantity and can be written as
F=A+ iB

The quantities

I7|= (a2 + 3%)2

and

1

d= tan~ ' B/A

define the amplitude and phase of the scattered beam,
relative to those of the beaﬁ that would be scattered
in the same direction by an electron placed at the
origin of the unit cell.

The function r(xyz) reaches its maxima at the atomic
centres in the unit cell and falls asymptotically to zero
in the épace between the atoms., It is therefore convenient

to rewrite (1.1) as
1 . ' 7
F(hk1) =)Tfjexp[2ﬂ'1(hxj+kyj+123)J (1.2)

The summation is over all atoms in the unit cell, the

centroid of electron density of the jth atom being at

xj,yj,zj. The atomic scattering factor, fj, is defined by

fj =§X[rj(xyz)exp[2Fi(hx+ky+lzﬂdxdydz | (1.3)

where the integration is now over the volume occupied by
the jth atom and the origin of fractional coordinates has
been shifted to x.,yj,zj. It is a good approximation to

J
assume that all atoms of the same chemical type have
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identical electron distributions. Integrals of the type
(1.3) can be evaluated by quantum mechanical methods.16
The finite volume‘occupied by electrons in an atom leads
to differences in the phases of rays scattered from
different points in the atomic volume. The resulting
destructive interference becomes greater as the Bragg
angle, and hence the phase differences increase . The
scattering power of the atom, measured by the scattering
factor f, therefore decreases as the Bragg angle increases.

The atomic scattering factors used in this work are
those listed in refs. 16 and 17. They are based on
spherical atomic electron density functions. This
assumption is obviously not strictly valid for covalently
bound atoms, but the resulting error is small and can be
balanced out, at least partly, when anisotropic
temperature factors are employed (see below).

Published atomic scattering factors refer to atoms
at rest. 1In order to apply (1.2) quantitatively it is

necessary to introduce temperature factors, which allow

for the vibrations of atoms about their equilibrium
positions. The frequencies of these vibrations are so
much smaller than the frequency of X-rays that, to X-rays,
the atoms appear to be stationary and displaced from
their equilibrium positions. Thus, in producing a given
X-ray reflection, atoms in neighbouring unit cells will
scatter slightly out of phase, the total effect leading
to a reduction of the atomic scattering factor by an

amount which increases with the Bragg angle. In practice,
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the scattering factor should therefore be multiplied by
exp (-Bsin2O/A2) (1.4)

where B is related to the mean-square amplitude of the

isotropic atomic vibration, 52, by
B = 87°0%.

An approximate estimate of the average value of B (for
all atoms in the unit cell) can be obtained from
statistical comparison of the observed structure
amplitudes with those theorétically predictéd for a
crystal composed of a random assemblage of atoms.18

In general, however, thermal motion of atoms is
not spherically symmetrical; rather, it is anisotropic
and leads to an ellipsoidal distribution of electron
density. The general form of the temperature factor
expression contains six parameters, specifying the
magnitude and orientation of the three principal axes
of the ellipsoidal electron density of an atom., For

any set of lattice planes hkl it can be written as

exp[TZHQ(U11h2a*2+...+2U12hka*b*+...ﬁ (1-5)

where the quantities Uij are the thermal parameters of
an atom, expressed in terms of mean-square amplitudes
. . . 2 . * _x %
of vibration in % units, and a ,b ,c are the
reciprocal lattice axes.
In the calculation of structure factors it is

assumed that electrons in atoms behave like free



classical electrons., Provided that the force exerted
by the external electromagnetic field is much larger
than the binding forces between the atomic nucleus and
electrons, the above assumption is justifiable,
Although this is generally the case for lighter atoms
with the radiations oommoﬁly used in X-ray analysis,
it is often not true for the heavier atoms. When

the external force approaches in magnitude the binding
forces in the atom (absorption edge) this assumption

breaks down., The resulting anomalous dispersion causes

both the magnitude and phase of the atomic scattering
factor to differ from the classical value., Allowance
for this effect is made by using scattering factors

of the type

fe?.nom = f
J

j+Af3+iAf5.'

where Afs andAfg correct the external-force-independent
scattering factor, fj’ for anomalous dispersion, Af"

is always positive; that is, the phase of the scattered
radiation is advanced relative to that which would be
scattered‘from a hypothetical atom containing free
classical electrons. It should be noted that the terms
Af' and Af" are almost independent of the scattering
angle, This occurs because the effect involves the
inner electrons of the atom. Hence, for a given atom,
_the effects of anomalous scattering are greater at
higher scattering angles. Anomalous scattering corrections

for many atoms, based on quantum-mechanical calculations
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involving hydrogen-like atomic wave functions and
probably fairly accurate for the innermost K electrons,
have been calculated by Dauben and ‘I‘empleton19 for
several wave lengths and are listed in ref. 16.

Typical values (for Mo - Ky radiation) used in this

work are:

Atom AL : ALY

Pt -24352 8,.3%88

C1 0.132 0.159
P 0,090 0.095

S 0.110 0.124

3. Bxperimental Study of the Diffraction Pattern

The precéding discussion has shown that the structure
factofs of Bragg reflections are related to the positions
of atoms in the unit cell of a crystal. To utilise this
relationship in the siructure analysis it is first necessary
to examine the characteristics of the diffraction pattern
of the crystal., Such an examination permits the crystal
system, unit cell dimensions, Laue group and the possible
sﬁace groups to be established. The diffraction pattern
can also provide values of the structure amplitudes, |F(hk1)l,
for all symmetrically independent reflections. To obtain
these the integrated intensities of the diffracted beams,
I(hkl), must be measured.

In this work the usual procedure was to make a

preliminary examination of the crystal by taking oscillation
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and Welssenberg vhotographs, using Cu - KJ radiation,
From these photographs the crystal symmetry (system,
Laue group and space group) and the ~pproximate wvalues
of cell dimensions were established. The space group
was determined from systematic absences of reflections.
The crystal was then transferred to a four-circle
diffractometer (Hilger and Watts Y-290 or Enraf-Nonius
CAD=4F) and, if necessary, reorieﬁted on the gonimeter
head so that none of the brystal axes coincided with
the diffractometer ¢~axis, in order to avoid multiple
reflections.ZO The setting angles of ca. 10=-12
reflections, well dispersed through‘ reciprocal space,
were measured accurately and used to determine the
orientation of the crystal and the unit cell paramsters
by a least-squares teéhnique. Integrated intensities
were then meadsured automatically for each reflection,
by rotating the crystal through the Bragg reflecting
position and recording E, the total X~ray energy diffracted

by the crystal. The quantity E is related to I{(hkl) by
I(hkl) = Ew/Io

where w 1s the angular velocity of the crystal rotation
and Io is the intensity of the incident X-ray beam.
Usually w and Io are constant, and I(hkl) is directly
proportional to E.

In all experiments the intensity measurements were
carried out with molybdenum radiation. A pulse-height

analyser was used in conjunction with either a B-filter



or crystal monochremaior, to reizovs other than inhe Ky
characteristic rzdiation. The 8/28 scan technique was
employed, the counter morving at twice the angular velocitiy

of the crystal. Care was taken to ensure that the scan width
and number of steps were sufficient to cover the full

profile of the reflection, both at low and high angles.
Stationary crystal-stationary counter backgrounds were

measured at each end of the scan range. The integrated

intensities were calculated from the expression
I-= C-(B1+32)TP/2T.D (1.6)

where C, B1 and B, are the peak and background counts,

2
and Tp and Th the times spent measuring the peak and
each background, respectively. The standard deviation

of I was derived from the equation
; _ 2/ m 2 2% -
&(1) = [or(z43,)7 /a7, %+(aD)?] (1.7)

where the empirical factor q was taken to be 0.04.m
Two or three strong reflections (standards) were measured
periodically throughout each experiment, to monitor the
stability of the crystal, counting chain and intensity
of the incident bezm, Where necessary, the intensities
of all reflections were sczled according to variations
in the intensities of standards.

For an infinitesimally small crystal of volume SV,
it can be shown that the integrated intensity is related

to the structure amplitude by the equation
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I(hkl) = (ez/mcz)chz)?Lp | P(nk1) |2

where e and m are the electron charge and mass,
respectively, ¢ the velocity of light, NC the number
of unit cells per unit volume and )\ the X-ray
wavelength.22 The Lorentz factor, L, and polarisation
factor, p, are functions of Bragg angle and depend on
the experimental conditions,

The iﬁtensity of a reflection is proportional to
the time during which the corresponding reciprccal
lattice point is close to the surface of the reflecting
sphere, The Lorentz factor arises because this time
varies with the position of the reciprocal lattice
point and the direction in which it approaches the
sphere. For normal-beam equatorial geometry
diffractometers (such as the Y-290 and CAD-4) and 9/20

scans
L = 1/sin2e,

The polarisation factor arises because of the dependence
of the scattered intensity on the orientation (with
respect to the reflecting plane) of the electric vector,
E, of the incident X-ray beam. The magnitude of p
depends on the degree of polarisation of X-ray beam,
Although characteristic X-ray radiation itself is not
polarised, it becomes partially polarised when reflected
from a monochromator crystal., For the normal-beam

equatorial geometry, a perfect monochromator crystal and
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an ideally imperfect crystal specimen
D = (1+Icos29m]/005229)/(1+|cos20m1)

where Qm is the Bragg angle appropriate to the

monochromator crystal,

4, Systematic Errors in Measured Integrated Intensities

The integrated intensity of a reflection obtained
from a macroscopic crystal must be related to that of
an infinitesimal volume element, dV. To do this the
observed intensities must be corrected for the effects

of absorption, extinction and coincidence loss,

Absorption correction

The intensities of both the incident and diffracted
X-ray beams are attenuated in the crystal by photo-
electric absorption. If I is the observed integrated
intensity and Io the value it would have in the absence

of absorption, then
- r
I/I0 =V ‘Sexpt1411+123§V (1.8)

where the integration is over the total volume of the
crystal specimen, V, and 11 and 12 are the respective
path lengths through the crystal of the beams incident
on, and scattered from, the volume element dV. The

linear absorption coefficient.d;,is a constant for the

specimen, It depends mainly on the chemical nature of
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the crystal and can be estimated from the relationship
W
p=8%p;(378); (1.9)

where g is the density of the crystalline compound, p;
the fraction by weight of the ith element present and
(f/?)iAthe mass absorption coefficient of the ith element
appropriate to the X-ray wavelength used. The mass
absorption coefficients used in this work were those
listed in ref. 16.

Although several procgdures for calculation of the
integral (1.8), suitable for high-speed computers, have
been developed, no fully satisfactory method for the
general case has so far been described. Busing and
Levy23 introduced accurate numerical evaluation of the
- absorption integral based on the Gaussian method.zA In
this procedure, which cannot be used if the crystal has
re-entrant angles, a nonisometric grid is set up along
the crystallographic axes a, b and c. If these axes
are selected in the order a, b, ¢ and if min and max
abbreviations indicate the maximum and minimum
coordinates,along the crystal axes, of a set of
crystal vertices then the grid points are defined as

o= x . +(x___-x_. )u,
i min ‘"max “min’"i

<
1

iy = ymin(xi)+[ymax(xi)-ymin(xi)]uj

%35k~ Zmin(xi’yj)+!?max(xi’yj)-Zmin(xi’yj)]uk
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where the Gaussian constants, u, depend only on the
nunber of grid points chosen. The grid points are
accumulated near the surfaﬁe of the crystal where the
" change in absorption is largest. The tables of

Gaussian constants25

contain values for u and for the
associated weights, R. .The wveight of a grid point
xiyjzk is RiRij and is proportional to the volume

element represented by the point. The absorption

integral is then obtained as

A = 1/VERFR R exn(<pL; o1 ) (1.10)

where L = €1+@2. The integral is evaluated separately
for each reflection.
A different approach to correction has been

% The basis of

proposed by de Meulenaer and Tompa.
their analytical method is the division of the crystal
into polyhedra which the rays enter or leave through
one face only. Hence, the path length within a
polyhedron is a linear function of the coordinates of
the point considered,

Choice Between the numerical and analytical
methods should be based on accuracy desired, complexity
of the crystal shape, magnitude of correction and
computing time, Anélytical méthod has advantage over
the numerical when absorption is severe., The results
of the numerical method will always approach those of

27

the analytical method for a suitably chosen grid, The

Gaussian integration remains competitive for accuracies



better than 2%, and down to a transmission factor
of 0,6,

The absorption coefficient,}(, derived on the
basis of equation (1.9) has been criticised because
it neglects any effect of the state of aggregation on

28

the wave function. However, for all but severe

absorption, an accuracy of about 7% in P.is sufficient
to achieve a 1% accuracy in the relative correction?g
Errors in the crystal dimensions are more serious
especially that for the smallest dimension of a strongly
absorbing crystal.30
In this work the absorption integral was evaluated
by the numerical method based on a Gaussian grid. To
assess the validity of the results, a few test
calculations have been carried out for each compound.
The plot representations of the crystal projections,
obtained from the computed coordinates of the crystal
vertices, were compared with the actual view of the
crystal on an optical gorniometer. The number of grid
points chosen for each case was the one for which the
value of the calculated crystal volume converged.
Agreement was considered between intensities of symmetry
equivalent reflections before and after absorption
correction. An example of absorption effects is
" given below,
The crystal of [PtCl(PNezPh){C(O)Et}]2 chosen for

the structure analysis was a plates~shaped with the

ratio of its thickness to maximum separation between
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the side faces of 1:6., The linear absorption
coefficient was calculated tc be 107.20m_1. A
grid of 860 sampling points was employed. The
calculated transmission factors, on [F[z, were
in the range 0,17 = 0.60. The values of the R
factor before and after absorption correction,
for the same structural model, were 0,095 and
0.028, respectively. The most prominent features
in difference Fourier syntheses, before and
after absorption correction respectively, were
peaks of 8.2 and 1.6 eﬁ_a. The changes in the
positional parameters were small. The bond
lengths and.angles were practically the same
(in terms of standard deviations) before and after
absorption correction. The most dramatic change,

however, was & large reduction in the standard

deviations of atomic parameters.

Extinction

For a perfect crystal, absdrption along the
direction iﬁ which Bragg reflection occurs may be
many times as large as that for an imperfect specimen,
In such a case, the rays reflected from a crystal
plane are at the correct angle to be reflected a
second time, and the phase difference between the
doubly-reflected and incident beams is I, This enhanced
attenuation of the diffracted beam from an almost

perfect crystal is called primary extinction.
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However, as pointed out by Darwin,31 most real
crystals behave as mosaics of small blocks of
perfect crystals not accurately fitted togethexr;
for such crystals the effects of primary extinction
are small and can be neglected. In contrast, the

effects of secondary extinction are often large.

They arise from the losses of energy from the

incidentvbeam occurring on its reflection from

each crystal plané in a given hkl set. Consequently,

the intensities of the incident beam reaching a

particular plane in the set is equal to that of

the original incident beam less that which has been

lost through reflection by the preceeding planes.
Both primary and secondary extinction

are more pronounced for stronger reflections, bigger

crystals and smaller wavelengths., ©Several methods

for extinction correction have been suggested,2&32

but none of these is entirely satisfactory. It is

therefore common practice to exclude from the final

stages of structure analysis those reflections which

appear to be se;iously affected by extinction., In

this work no signs of serious extinction effects were

detected and no reflections have been rejected for that

reason,

Counting loss correction

When the intensity of a diffracted beam is

measured, if two or more events occur within a period
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shorter than the resolving time of the detector,
then only one count will be recorded. Thus, the
proportion of the lost counts increases with the
counting rate.

On‘the Y-290 diffractometer corrections for
counting loss were made by remeasuring all the
stronger reflections at reduced generator settings.

The coefficient P1 and P, in the empirical equation

2

2

J = P, I+P.I (1.11)

1 2

(where I and J are, respectively, the integrated
intensities of a given reflection at normal and
reduced generator settings) were then obtained by
the method of least-squares. The corrected

- intensity was taken as J/P1.

In the analysis of gig—PtClQ(CO)PEtB, for
example, the coefficients P1 and P2 were derived
from a set of 50 I and J values. It was found
that only five integrated intensities suffered
significant counting losses (¢1%), the largest
correction being 7%.

On the CAD-4 diffractometer, calibrated
attenuation foils were inserted automatically
when high counting rates were encountered, so that

all measurements were made under conditions of

negligible counting loss.,.
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5. Fourier Svnthesis and The Phase Problem

A continuous, three-dimensional function, such
as that describing the electron density distribution

in a crystal, can be represented by a Fourier series:

r(xyz) = exp{?ﬁi(px+sy+tz)]

Ps lApst
-00

To evaluate the series the coefficients Apst must be
known.

By substituting the series for r(xyz) in the
éeneral expression for thé structure factor (1.3)
it is possible to show that the Fourier coefficients
are directly related to the corresponding structure

factors

Apst = F(-p,-s,-t)/T

where U is the unit cell volume. Thus the Fourier
series which represents the electron dénsity
distribution at every point in the unit cell may

be written as

r(xyz) = U-1§§§F(hkl)exp[—Zﬁi(hx+ky+lzﬂ (1.12)

The individual terms in this series correspond to

the various reciprocal lattice points weighted according
to the values of the structure amplitudes with which
they are associated. In other words, the electron

density is the Fourier transform of the weighted

reciprocal lattice and vice verse.
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For practical purposes (assuming that Friedel's
law, |P(nkl)|=|P(EEI)], holds),>equation (1.12) can be
written in the form

+$ €2
r(xyz) = U”%é% | P(nk1) | cos | 27 (nxcsky+12)~d(hi1 )] (1.13)

~00

In general, the structure amplitudes decrease on

passing outwards from the origin of the reciprocal space,
and for sufficiently large'values of sin@ithey become
negligiblé. ' Thus, the Fourier series for the electron
density effectively converges after a finite number of
terms. To apply egquation (1.13) to the solution of
crystal structures we must know the phase associated
with each structure amplitude. Unfortunately, knowiedge
of these phases. is lost_in‘the process of recording

the intensities. The need to know, at least
approximateiy, the phases of fhe Erégg refiections in

order to calculate an electron density distribution

constitutes the phase problem in crystal structure

analysis.,

6. The Patterson Function znd The fdeavy~Atom Method

Tne key to solution of the phase problem is that
the number of structure amplitudes greatly exceeds the
number of parameters'to be determined. In modern
structure analysis two strategies for overcoming the
problem are in common use. Relationships between the
phases of different reflections can be applied

systematically - the direct methods approach.33
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Alternatively, in the heavy-atom method advantage is

taken of the presence in the unit cell of a few atoms
of high atomic number. In the work described here
the latter approach was used exclusively.

The heavy-atom method is based on the properties

of the Patterson function.

The Patterson function

In 1934 A.L. Patterson discovered that direct
evidence about atomic positions could be inferred from
a Fourier synthesis of the form

40
P(uvw) =w%§%F(hkl)Fcos?ﬂ(hu+kv+lw) (1.14)

-t
Peaks at (xyz) and (x+u,y+v,z+w) in the electron
density distribution give rise to a maximum in the
Patterson function at (uvw), the value of P(uvw) being
approximately related to the product of r(xyz) and
r(x+u,y+v,z+w).34

Resolution problems usually make it unprofitable
to éttempt to derive all the atomic positions from the
Patterson function., For a crystal containing N atoms
per unit cell there will be N(N-1) maxima in the
Patterson function, compared with only N in the
electron density distribution. Moreover, the maxima
in P(uvw) are typically twice as broad as those in
r(xyz). Coriection for the decrease in atomic

scattering with increasing Bragg angle gives a



sharpened Patterson function in which these difficulties

are alleviated rather than eliminated.35

The heavy-atom method

When the unit cell contains a relatively small
number of heavy atoms, the Patterson peaks due to these
atoms stand out strongly against the background of
overlapping smaller peaks. Thus they can readily be
identified and used to derive the coordinates of the
heavy atoms. Since the heavy atom terms tend to
dominate the structure factor expression (1.3), phases
calculated from the heavy atom scattering alone are
usually sufficiently close to the true phases for
the electron density expression to be used to locate
more atoms, The process can then be repeated with
successively more atoms included in the structure
factor calculation, until all atoms have been located.
The more serious disadvantage of this approach is that
the domination of the scattering by the heavy atoms
diminishes the accuracy with which the positions of

the other atoms can be determined,

7. Refinement Techniques

Once all or most of the atoms have been located
the analysis is completed by the process of refinement,
This involves elaborating the model by, for example,

allowing for anisotropic vibration or hydrogen
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scattering, finding the best values for the
parameterswhich describe the model, and detecting
and removing systematic errors in the structure

amplitudes.

Difference synthesis

A direct measure of the differences between
the true electron density and that associated with
the model is provided by the difference density

function
Ar(xyz) = U_1€-§§(\F 4P Nexp [-2mi(hxtky+lz)+1 oLC] (1.15)

where &c is the calculated phase angle., Even in

the early stages of an analysis this function tends
to be more informative than the corresponding
approximate electron density function because the
coefficients required are numerically smaller and
series termination effects thus less serious. At

a first approximation, correctly placed atoms will
not appear in the difference map, incorrect ones will
be in holes, and missing ones will appear as peaks.
However every peak which appears is not necessarily
connected with a missing atom and it is necessary to
select atomic peaks on the basis of their relative
positions and shafes. Anisotropic vibrations will
produce positive and negative regions near atomic

-positions. Absorption and extinction errors will give
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rise to peaks, usually near the heary atoms, even
after correction for anisotropic vibrations.
Smoothening of the difference synthesis after
correction for absorptioq, in the later stages of
analysis, is to be expected, For location‘of

hydrogen atoms from the difference synthesis a

good data set is required and both the positional

and vibrational parameters of non-hydrogen atoms
should have been already refined. Peaks corresponding

to hydrogen atoms are normally in the range O.B—O.?eR“B.

The least-squares method

In modern structure analysis the final values of
the atomic po;itional and vibrational parameters are
usually determined by the least-squares method, first
introduced into cr&stallography by Hughes.36 Th;
mathematical basis of this method is the proposition
that the best agreement between sets of experimental
and calculated quantities is obtained when the sum of
the squares of the discrepancies between them is a
minimume. In X-ray analysis the function most commonly

minimised is
A 2
D= lglwhkl(thHFcp

where W1 is the weight of the observation. The sum
is over all independent structure amplitudes. If the
standard deviation for each|F(hkl)| is &(hkl), derived

from equation (1.7),the value of w which gives the
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lowest standard deviations in the derived parameters

may be shown to be

whkl = 1/5(hk1)2 (1.16)

Let pj(j=1,...,n) be the n parameters occuring in chl
whose values are to be determined, For D to be at

minimum we must have
oD/2p, = 0(j = 1,n)

The parameters have to be varied until these n conditions
are satisfied. If the trial set of parameters are close
to the correct values it is possible to approximate

value of
A= |F0| - |7,

by means of a truncated Taylor series as
'
A( p+£) = A(P)—i=1 El B‘Fcl/api

where Ei is a small change in parameter Py and p and ¢
stand for the whole set of parameters and changes.

This leads to the normal equations

E{gEiwhkl(a\F |/3p;) (37 | /3D, )}E = h“‘iwhkl(a\F t/ap ) (1.17)

This is a set of n linear equations with n
unknowns . Its solution yields the vector € and hence
gives better, although still approximate values for the
various parameters; These may be used to repeat the

process until the parameters shifts are negligible.
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It is common to express the normal equations in

matrix form ag = b where
- :

255 = hklwhkl(aﬂg/api)(aFé/aPj) (1.18)
- X ¢

by = PRivma @FYopy) (1.19)

To reduce the time and computer-storage requirements
needed for large structures, it is necessary, even

with modern computers to consider approximations in
which many off-diagonal elements of the matrix,
aij(iﬁj), are neglected. ‘The off-diagonal elements

are sums of products which may be either positive or
negative, and they are in general smaller than the
diagonal elements. It is evident, equation (1.18),

that the magnitude of aij depends on the Jjoint
variation ofIFclwith p; and pj. If these parameters

are correlated in any way, the contributions to aij

will not cancel in a random way. This will be true,

for example, for the scale and thermal parameters,
occupation number and thermal parameters of the same
atom, the six Uij parameters of one atom, the coordinates
of a given atom if the interaxial angles of the unit
cell differ appreciably from 900, vibrational

parameters of one atom and the coordinates of its nearest
neighbours, etc. Therefore it is preferable, if the
structure is too large for the full-matrix least-squares
method, to work with some approximation intermediate

between a full and diagonal matrix., With three-dimensional
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data a block-diagonal approximation is useful., This
involves a chain of 4 x 4 or 9 x 9 matrices for the
coordinates and isotropic or anisotropic thermal
parameters, and a 2 x 2 matrix for the’scale and
overall isotropic thermal parameter (the latter is
usually a dummy parameter), Although much faster than
the full-matrix approach, more cycles of refinement
are usually required when such approximations are

employed.,

R -~ Factors

It is conventional to report the agreement between
observed and calculated structure amplitudes in terms

of the figureé of merit
R =§:(W;i-!Fc|)/ZHFOl | (1.20)
Rw=€zzw([FO[-‘FC])2/§:w|F0|2}% (1.21)

where the summations are over the reflections actually
employed in the analysis. PFinal values of R and Rw

for satisfactory analyses are typically 0.02-0,06 and
0.,04-0,08 réspectively. They depend on a great variety
of factors and are thus not an especially reliable guide
to the relative accuracy of a particular structure
determination., The figures of merit are however more
useful as a guide to the course of refinement since they

drop sharply as the model is improved.
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8. Interpretation of Results

Systematic errors

Systematic errors may occur in two ways: from
incorrect data or an incorrect model. They may
influence precision or accuracy, or both. The most
common sources of errors in the data originate from
absorption or extinction effects., Untreated
absorption or extinction can often be detected
from the appearance of the difference synthesis or

from analysis of the discrepancies between]Foland

‘FCL Uncorrected absorption, particularly with
centrosymmetric crystal specimens, affects mainly
scale and thermal parameters.37 Extinction effects
are usually concentrated on a small number of low
angle data which can be given reduced or zero weights.,

Errors in the model include the assumption that
the‘electron density distribution of atoms at the rest
are spherical, For hydrogen atoms this is a severe
approximation and bond lengths involving hydrogen
atoms determined by X-ray methods are typically 0.18
shorter than determinations made spectroscopically or
by neutron diffraction,

| The atomic coeordinates oﬁtained from a crystal
structure analysis are those of centroids of the
scattering densities associated with vibrating atoms,
Angular oscillation of a molecule has the effect of
shifting the electron density maxima towards the axis

of oscillation, leading to an apparent decrease in
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internal atomic distances. For small librations
the displacement can be calculated to a good degree
of approximation.38

Busing and Levy have suggested that bond lengths
derived from X-ray analysis should be corrected for the
~motion of the bonded atoms relative to one another.:39
Unfortunately, the required knowledge of the dynamics

of the atomic system is rarely available.

Random errors

Although the true value of an experimentally
measured quantity can never be known it is possible to
determine the probability that the true and experimental
values differ from one another by a specified amount
as a consequence of random error. The importance of
applying proper significance tests before drawing
conclusions from a comparison of measurements which are
subject to error has been emphasized by Cruickshank.AO

For example, the probability, P, that a difference
between the quantities Xy and Xy with standard
deviationscﬁ1 and dz,arises from random errors can be

assessed from the statistics
t = |x -x‘ |/(62+¢2)%
1 72 1 2

Values of t = 1,96, 2.58 and 3,29 are associated with
probabilities P of 5, 1 and 0.1%. These levels are
often described as not significant, significant and

highly significant.
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The standard deviations of molecular parameters,
such as bond lengths, can be obtained as follows,
A bond length or angle is in general a function of

several parameters

= f(P1’°~0an)

and its standard deviation igsthen given by

wherevij is the correlation coefficient between parameters
i and j. The geometry program, used here, first
transformed fractional co-ordinates and their standard
deviations to an orthogonal basis set. For oblique cell
correlations between fractional co—ordinates of the same
atom were included in the calculation of the standard
deviations of the orthogonal co-ordinates,

For a bond length between independent atoms with
isotropic errors 61 and 62 (in &) the standard deviation

is given by
2 _ a2 2 11
&2 = 8%+,
With the same assumption, if 6 is the bond angle formed

at atom 2 by bonds 112 and 1 then the standard

23?

deviation of the angle is
2 2,0 2 42
= 83/1,5 + €51,/ L2155 + 85/ T3

Tor standard deviations of dihedral angles the expression

43
of Stanford and Waser was used.,



PART II

THE CRYSTAL AND MOLECULAR STRUCTURES

OF SOME PLATIN'UM(II) COMPLEXES



CHAPTER 1 The liutual Influence of Ligands in Square-
Planar Platinum(II) Complexes

1«1 Introduction

In the iater Chapters of Part II of this thesis the
structures of eight square-planar complexes of platinum(II)
are described, Although each complex was chosen for study
because of particular points of interest (which are
outlined in the appropriate Chapters), the structures as
a whole display some common characteristics which are
introduced here and set in the context of current views of

the nature of bonding in transition metal complexes,

trans-Influence of ligands

The trans-labilising properties of ligands in platinum(II)
complexes were recognised as early as 1926 by Chernyaev.“
More recently it has become customary to distinguish the
trans-effect, a kinetic phenomenon, from trans-influence
which refers to the equilibrium state of complexes.

The definition of trans-influence used here is that
of Pidcock, Richards and Venanzi: the trans-influence of a
ligand is its ability to weaken the bond trans to itself in the
equilibrium state of the complex.AS Any experimental technique
which gives information on the nature of metal-ligand bonding
can be used to study trans-influence. In platinum(II)
chemistry the most common measures of trans-influence have been
Pt-L bond lengths,l's_-l'8 especially Pt-Cl bond lengths, (Pt-L)
stretching frequencies, and n.m.r. coupling c>onstan’cs.49

A selection of Pt;Cl bond lengths is given in Teble 1,
from which it is evident that the trans-ligand can cause

variations of ca. 0.28 in the length of a Pt-Cl bond.
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The data in Table 1 lead to the trans—-influence series

C1~CO LCER~T-(C=C) 4 PR3 £38-CL SiRB.

spectroscopic_ studies of trans-influence have recently

The -very extensive

been reviewed, For platinum(II) complexes vibrational
and n.m.r. parameters lead to trans-influence series
which are broadly similar to those derived from bond
lengths.t'g Agreement between the various techniques is
by no means perfect, and the differing sensitivity of Pt-P
bond lengths and coupling constants to the nature of the
trans-ligand is considered in detail in Chapters 3 and 6,
The directional nature of trans-influence Qas
considered by Sirkin, who bointed out that the s and d
acceptor orbitals of a metal atom with square-planax
co—-ordination can be combined to give two sid hybrids
which are nearly orthogonal to each other.57 In a
more recent theoretical treatmentAG high trans-influence
of a ligand L is related to high covalence in the M=L
bond and specifically to the parameter S2/AE, vhere S 1is
the M-L d~overlap integral and AE the energy separation
of the metal d-acceptor and L d-donor orbitals, This
apoproach is semi~quantitative, but it leads to the trans-

influence series C1<{ T-(C=C)< PR, < 4~C <SiR5, which is

5
in accord with experimental data (see Table 1). It
does not, however, formally consider how the trans-influence
is affected by 7-acidity.

Recent work in this department on complexes

containing linear C-Pt-Cl systems leads to the trans-influence

) - . . _ , .
series (Table 1) CO<£CLR<L carbenoid<d cspaﬂgcsp2<6 csp,
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A/ which is a rveversal of the f(-acidity series of the carbon-
-donor ligands, derived from the P%t-C bond léngths. This
Irans-influence series was explained in terms of a
strengthening of electrostatic Pt-Cl bonding , which occurs
when dy electron density is removed from the metal by a

Ji-acceptor ligand trans to chlorine.‘7

cis-Influence of ligands

By analogy with trans-influence, cis-influence may be
defined as the ability of a ligand to weaken bonds cis to itself
in the equilibrium state of a éomplex. An extensive review of
spectroscopic evidence of cis-influence has recently appeared.
In platinum(II) chemistry the existance of cis~influence is well-
-established from spectroscopic parameters (e.g. see ref, 59 ),
but is generally considered of less importance than trans-
influence.“SThere is little information concerning cis-influence
on Pt-L bond lengths, except for the observation that Pt-Cl
distances appear to show essentially no sensitivity to the
nature of cis-ligands in a wide variety of complexesﬁo Semi-

empirical .0, calculations for platinum(II) complexes suggest
that cis- and trans-ihfluence are of comparable magnitude.&
This conclusion is not generally accepted and is inconsistent
with the variations of Pt-Cl bond lengths in platinum(II)
complexes (see above),
The existance of bond length changes which can be

ascribed to cis-influence is demonstrated in Chapter 3

for a series of g;§—PtCI2(PEt3)L complexes, The effect is
discussed in terms of steric and electronic oroperties

of ligands,
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Nature of platinum-phosphine bonding

A1l the platinum(II) complexes described below contain
tertiary phosphine ligands, Phosphines are normally
regarded as strong d-donor ligands, but the phosphorus atom
also possesses vacant 3d orbitals which are capable of
accepting djy electrons from a transition metal. The
importance of M—>P backbonding has been extensively
discussed, but itvstill remains controversia1.6263

N.m.r., evidence has beenvwidely used to suggest that
Pt-PR3 bonds involve little or no backbonding. 1J(Pt-P)
coupling constants are believed to depend mainly on the
fermi contact term, which in turn is determined by the
s—electron Pt-P bond order.’’ The ratio of 13(pt-p)
coupiing constants in cis- and jgggg-PtClZ(PBug >
complexes is nearly identical to that for cis- and
n

t -PtCl (PB
rans 4( U

that the weaker Pt-P bonds in the trans-complexes arise

)2 species.AS This has lead to the suggestion

bécause of a weakening of the Pt-P d-bonds compared with
those in the cis- complexes, Backbonding, if it exists
at all, would not be expected to be as important in platinum(IV)
as in platinum(II) complexes.AS On the other hand,Grim
has argued that n.m.r. parameters are consistent with
metal —sphosphine backdonation.65

A further complication is introduced by the substituents
of the phosphorus atom, These may display widely different
steric and electronic properties which can influence metal-

ligand bonding, Fortunately, Tolman has developed semi-

empirical parameters which can be used as a measure of the
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steric and electronic properties of the phosphine
substituents , Thus the combined electron withdrawing
ability of the substituents of a ligand PR1R233 can be
represented by the parameter f%:xi, the summation being
~over the three substituents. The individual X3 values

are obtained by fitting the A1 V(CO) stretching freguencies

in Ni(CO)B(PR1RZR3) complexes to the relationship
3
A, V(CO) = 2056.1 + EXi (em™ 1),

The steric bulk of a phosphine ligand can be represented
by the angle O, This is the.internal angle of a right-
circular cone, with apex at_the metal atom, which just
encloses the van der Waals envelope of the phosphine ligand.
The values of 6 proposed by Tolman are based on a M-~P
distance of 2.283 and are measured using space-filling
models.66 The phosphine ligand is assumed to adopt the
conformation which gives the minimum value of €, For
unsymmetrical phosphines the relationship =% £§1 ei/2
is used, where ©i is the cone angle appropriate to an
individual substituent. In Chapter 3 the validity of
this approach for solid-state structures is considered
in the light of conformational energy calculations on

triethylphosphine,



CHAPTER 2

The Crystal and lMolecular Structures of Three
Square - Planar Platinum(II) Complexes Containing

the Ligand Dimethyl(pentafluorophenyl)phosphine,

PMe206F5
I 01s-PtCl2(PMe2C6F5)2
II 01s—Pt(CF3)2(PMe206F5)2

III [?t(CHB)(PMeQC6F5)5](PF6)
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2.1 Introduction

It is now recognised that the chemical behaviour
of transition metal ions depends sensitively on the
nature of ligands in the primary sphere of co-ordination.
For example, the Wilkinson complex RhCl(PPh3)3 is an
effective catalyst for the homogeneous hydrogenation of
alkenes, whereas the closely analogous complex
| RhCl(PPhEt2)3 is not an effective catalyst for these
reactions.67 Such effects may be related, in principle,
either to the electronic or the steric properties of
ligands and consequently there is much interest in
quantifying these properties for common ligands.
Tertiary phosphines have played a key role in studies of
this type. They are widely used to stabilize the lower
oxidation states of transition metals and they can be
érepared with a great variety of substituents on the
donor phosphorus atom. Recently, Tolman has proposed
empirically-derived parameters which measure the electronic
and steric properties of different phosphines and used

them to rationalise the chemical and physical characteristics
63,66

’

of transition metal-phosphine complexes.
In this context a comparison of alkyl- or aryl-
phosphine complexes with similar fluoroaryl- or fluoro-
alkylphosphine complexes would appear to be of interest.
The van der Waals radii of hydrogen and fluorine
(respectively 1.2 and 1.35 3)68 suggest that fluorocarbon

and hydrocarbon substituents are of comparable size, but
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the phosphines with fiuorinated substiifuenis are

. .- . ) 63
believed to ve zmuch more strongly electron—withﬁrawing.uv

£1though the structurzl literature on tr ition z=ztal

11)

phosphine complexes is extensive, little atiention hzas
been paid to phosphines wifh fluorocarbon substituents.
Previous studies in this laboratory have snown that

in the complexes cis-¥Cl [\m C) PCH,C 2PPh£] (1=pPa,Pt),
the trifluorometnyl substituents (which zrz the most
strongly electrcn-withdrawing of those considered by
Tolman) contract the adjacent P-lt and trzns K-Cl

bond lengihs by ca. O.OTE.&JTO extend this investigation
the crystal structures of cis-PiX LQ,(I) %=C1, (II) X X=C75,
and [Pt(c%)La}(wé) (II1), where L=Pile,CcF;, have been
determined accuraztely. The results of this work permit
the trans-influence, and bonding to platinum, of L to be
compared with those of stierically similar but less
electron-withdrawing phosphines containing hydrocarbon
substituents. In addition a similar comparison between
CH; and CF; can be made.

It was originzlly hoped that these structure analyses
would also aid the interpretation of the 1H, 19F and 31P
n.m.r. chemical shifts and coupling constants observed for a
wider range of platinum complexes containing the ligand

PMe206F The n.m.r. experiments were carried out by

5.
Professor D,W., leek, who also first synthesised the
complexes, This hope, howerer, has been only partially

realised.
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2.2 Experimental

The three analyses were carried out using similar
methods., Details peculiar to each are presented in the
accompanying Crystal Data and Data Collection and

Refinement Tables.

Measurements

For (I) a transparent needle with dimensions
0,011 x 0,030 x 0,023 cm along a¥*, b¥*, and c¥*, respectively,
was employed. The crystal faces belonged to the forms
{100}, {010} ana {001}.

For (II) a transparent crystal of centrosymmetric
habit was used., Its eight faces belonged to the forms
{110}, {101‘} and {001}. The distances of the faces from
the crystal centroid were in the range 0.012 - 0.016 cm.

For (III) a transparent needle was used. Its ten
faces were members of the forms {110}, {111}, {771} and
{001}. The distances from an origin, defined by the
intersection of the 770, 111 and 110 faces, were in the
range 0.019 - 0,027 cm,

In each case the possible.space groups and
approximate cell dimensions were obtained from oscillation
and Weissenberg photographs. The crystal was then
transferred to a Hilger and Watts Y-290 diffractometer
equipped with a graphité monochromator, scintillation
counter and pulse-height analyser. DMolybdenum K, X-T2ys,

A= O.71069X,Were employed. Ten or eleven high-zngle




reflectionevith 8(Mo-Ky) in the ranges 15-20° for (I),
11=17° for (II) and 12-15° for (III)]were centred and

the setting angles used to determine the final cell
dimensions (T = 2100) and the orientation matrix by a
least-squares procedure. The integrated intensities

were estimated by the 8/26 scan technique, in
conjunction with stationary crystal-stationary counter
background measurements. In order to monitor the

crystal and the electronic stability, the intensities

of three sténdard reflec{ions were measured periodically
throughout the experiments. The intensities of these
reflections exhibited only small statistical fluctuations
about the corresponding mean values [i5% for (I), +2% for

(II), and +3% for (III) Lorentz-polarisation and

absorption corrections were applied. Transmission
factors on |Fo|2 were found to range between 0.,20-0.46 (I),
0.21-0.32 (II), and 0.39-0.46 (III). No extinction

corrections appeared to be necessary.

Structure analyses

For (I) and (III) the systematic absences define
the space groups uniquely. In the case of (II) the
systematic absences were consistent with the non-

- centrosymmetric space group Cc and the centrosymmetric
space group C2/c (C2—symmetry imposed on each molecule),
The space group C2/c led to a successful refinement of

the structure.




/-

In each case the platinum a*tom was found from the
three-dimensional Patterson function and the other atoms
from subsequent difference syntheses.

The structure was then refined by the least-squares
method, using weights w = 1A52GFJ). For (I) and (III)

a block-diagonal approximation wes necessary, but for

(II) a full-matrix was employed. Adjustment of the
positional and isotropic thermal parameters of thé non-
hydrogen atoms led to R = 0.12 (I), 0.063 (II) and 0.091 (III).
After the correction for absorption effects was introduced
and an allowance‘was made for anisotropic thermal
vibrations of atoms, R decreased to 0,029 (I), 0.025 (II)
and 0,033 (III)., The hydrogen atoms were then found from
subsequent difference synthesec, in positions consistent
with the stereochemistry of the adjacent carbon atoms. The
positional and isotropic thermal parameters of the hydrogen
atoms were refined,

The final values of R were 0.025 (I), 0.023 (I1) ang
0.029 (III). The final difference syntheses displayed no
unexpected features: function values (in eX-B) were in the
range 0.4 (I), #0.4 (II) and +0.8 (III). The adequacy of
the weighting scheme was verified by establishing that mean
values of (IFol-ch|f73?|Fo|) varied little with either |F |
or sin@,

The final atomic parameters»and a selection of functions

derived from them are presented in Tables 2.1 - 2.7. These




ltables were generated by the local molecular geometry
program GEOM, of P.R. Mallinson and D.N.J. White. Typing
_errors are thus prevented, but in some cases parameters
are given to more significant figures than their
accuracy warrants,

The computer programs used for all structures
described in this thesis were J.M. Stewart's X-RAY '72

70 ¢.K. Johnson's ORVEP2, the local data-

system,
processing program HILGER of P.,R. Mallinson and K.W. Muir
and GEOM,

The observed and calculated structure amplitudes
for (I)-(III), and also for all the other structures which

are the subject of this work, are presented as

supplementary material to this thesis,
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Summary of Data Collection and RHefinement

Compound I 11 111

(o] . ’ V ‘
Shax () 30 30 30
Scan width AQ(O) 0.6 0.6 0.5
Step size in 8(°) - 0,02 . 0,02 0,02
T, (s) 60 - 60 50
Ty (s) ’ 20 . 10 15
9(see Part I, Ch,3) 0.04 0.04 0.04
No. of reflections
vith I>3%64(I), n 5859 2§73 5374
No. of parameters, p 329 272 545
R (%) 2.5 2.3 2.9
R, (%) 3.3 3.0 4.1

Standard deviation
of observation of 1e1 1.2 1e3
unit weight
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TABLE 2.2 Selected bond lengths (R)
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a) 01s-PtC12(PMeZC6F5)2
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Table 2.2 (contd.)
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c) [Pt(CHB)(PMeZC6F5)3](PF6)
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TABLE 2,5
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a) gig-PtClz(PMezcéFs)z (1)

Pt
c1(1)

c1(2)

cee F(1) .
eee H(7)C(9)
c(3)

3.19
2;83
3,21

b) ggg-Pt(CFB)Z(PMe206F5)2 (11)

Pt
Pt
P(1)
F(6)

F(1)
. F(6)

F(7)
© c(92)

16
«89
04
.86

N W

N W

c1(1)

c1(1)

Pt
Pt
F(7)
c(1)

¢) [Pt(caB)(PMe2c6F5)3](ppé) (1I1)

c(1)
c(25)
c(17)
P(3)

c(25)
« H(18)c(18)
+ H(9)c(9)
wee H(21)0(25)

3.07
2.58
2,73
2.67

c(18)
P(1)
P(1)

c(9)

<+ H(8)C(9)

F(7)

« F(8)
« H(1)c(1)
* ¢(9)

« H(21)c(25)
+ H(19)c(25)
+ H(20)c(25)

N W

NN

N

N

N

N W

Selected intramolecular non-bonding distancés (ﬁ)

.16
.96

+90
.92
e 34
+30

o175
.05

.01
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TABLE 2.6 Intermolecular distances less than sum of

van der Waals radii (X).

Symmetry operations: (1) x,%-y,%+z; (ii) 1—x,—%+y,%—z;
(iii) -X”1+y’%'z; (iv) -%+X,%‘Ya’%+z; (V) %+X’%'Y:%+Z?

(Vi) %‘X”%+Y7%‘Z§ (Vii) 1=Xy=Yy=Z

a) ggg-Pt012(PMe2 ¢ 5)2 (1)

c1(1) ... ®(6)1 3,08 C1(1) ... B(1)c(1)?

c1(2) ... HZ)C(N)I 2,95

b) cis-Pt(CF,),(Pre,C¢ 5) (11)

F(6) e H(6)C(2)ii 2.50 F(B) ces H(S)C(Q)iii

c) -Pt(CHa)(PMeQ CeFs); (PFy ) (111)

P(12) ... E(11)C(10)IY 2,54 R(17) ... H(3)C(1)V

2.86

2452

F(17)  «.. H(4)C(2)V% .55  F(19) ... H(13)c(17)73 2,45
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TABLE 2.7 Deviations of the atoms (8x10°) from, and
equations’of,the weighted least-squares platinum co-ordination
planes, X,Y,Z refer to an orthogonal basis set defined by

a¥, b and c.

a) cis-PtClQ(PNeZC6F (1) [Plane defined by Pt,P(1),P(2),C1(1)

5)2

and 01(2)]

Pt -2(1), P(1) 19(1), P(2) 48(1), c1(1) 19(1), 01(2)'48(1)
0.146X-O.712Y—O.687Z = =3,616

b) giﬁ—Pt(CFB)z(PMe2C6F5)2

(11) [Plane defined by

pt,p(1),P(12),0(9) end c(92) ]

Pt 0(1)P(1) ~13(1)0(9) 458(1),P(12) 13(1)c(92) -458(5)

-0,806X+0,000Y~0,5922==2,145

c) Pt(CHB)(PMe2C6F5)3 (PF6) (111) [ Planedefined by

pt,P(1),P(2),P(3) and C(25)]

pt —2(1),P(1) 30(2),P(2) 15(2),P(3) 37(2),c(25) 132(5)
O.166X+O,637Y-0.7532=2.160
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Legends

FIGURE 2.1 A perspective view of the moleculer structure of

cis—PtClz(PMe206F5)2, (1), showing the atomic numbering
schenme, The vibrational elli@soids display 50% probability.

For clarity hydrogen atoms are omitted.

FIGURE 2,2 A persvective view of the molecular structureof

g_i_s_—Pt(CFB)z(PMe206F5

scheme, The vibrational ellipsoids display 50% probability.

)2, (II), showing the atomic numbering

For clarity hydrogen atoms are omitted.

FIGURE 2.3 A perspective view of the cation of

[Pt(CHa)(PMe206F5)3]f, (III), showing the atomic numbering
scheme. The vibrational ellipsoids of the Pt, P and c(25)
atoms display 50% probability. For clarity atoms c(1)-c(24)
are represented by spheres of arbitrary size. Hydrogen

atoms are omitted.
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2.3 Discussion

Crystals of I, II, and III are built of discrete
molecules. In each structure the shortest intermolecular
distances are accounted for by the sum of the appropriate

van der Waals radii (Table 2.6).

Metal atom co-ordination

In each molecule overcrowding induced by the
sterically demanding PMe2C6F ligands leads to minor
distortions of the platinum éo—ordination from an exactly
square-~planar arrangement. This is most prominent in IITI.

In I the phosphine ligands adopt similar conformations
(see below) which result in the methyl carbon atoms c(1)
and C(9) lying close to the metal co-ordination plane. The
phosphine ligands interact through methyl carbon atoms
c(1) and C(10). Opening of the P(1)-Pt-P(2) and Pt-P(1)-C(1)
" angles [respectively 96.58(4) and 123.9(2)0] leads to a
minimum interfligand HeeoH geparation of 2.42 for the
“hydrogen atoms attached to C(1) and ¢(10). The steric
environments of the two chlorine atoms differs C1(1) is
3.16R from the C(9) methyl carbon, whereas Cl(2) is 3.21R
from the C(3) phenyl carbon atom. This may account for slight
differences in length between chemically equivalent metal-ligand

bonds [?t-P 2.231(1) and 0.240(1)8; Pt-C1 2.332(1) and

2.355(1)8].
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The platinum atom in II lies on a two-fold axis.

The P-Pt-P angle is 4.57(3)° greater than 90°, thus
helping to relieve the C(2)...C(22) contact of 3,68, The
c(1)s.-C(9) intramolecular contact 3.308 is also

rather short, The Pt-P and Pt-Cl dictances are 2.3%26(1)
and 2.058(4)3, respectively. The valency angles at the
donor carbon atom c(9) are distorted from a regular
tetrahedral arrangement. The mean Pt-C-F and F-C-F angles
[114.8(7) and 105.6(4)0] are consistent with more than

25% carbon s-character in the Pt-C bond. The C(9)-F
distances [mean 1.361(6)3] agree weil with values of

1.35 and 1.36(2)% found in Hg(CF3)272 and [ p-(Ciie) ,(CF;)-
Pt(PI"ieQPh)z](SbF6).73 '

The geometry of the anion PF6—’ in III, is as expected

(Tables 2.2,2.3lThe phosphine ligands in III, as in I, adopt
conformationé which bring methyl carbon atoms EC(1),C(9),
and C(17)] close to the metal co-ordination plane., The
phosphines containing the atoms P(1) and P(2) interact
through their parallel phenyl groups, which approach

each other to give a minimum CeeC separation of B.ZBR

The closest inter-ligand approach between the phosphines
containing P(2) and P(3) atoms involves the methyl carbon
atoms [C(9)e+++C(17) 3,20]. Steric strain is also
evident in the valency angles of 81.2(2)-99.6(1)0, subtended
at platinum by cis-ligands (see Figure 2.5,p.79), and in
the displacement of the donor carbon atom C(25) from the
platinum co-ordination plane by 0.14%. The Pt-P(trans to

P) distances [2.296(1) and 2.324(1)R] differ significantly,
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possibly (as in I) as a consequence of different steric
environments. The Pt-P(trans to C) and Pt-C bond lengths

are 2.327(1) and 2.098(5)%&.

Geometry of the PMeQC6F5 ligands

The three structures contain altogether six PMe206F5
ligands. The ligands in the compounds I and IIT adopt
similar conformations: one methyl carbon (04) lies in the
metal co-ordination plane, the other (Cp) in the plane of

the C6F group, adjacent to Cge The weighted mean valency

5
angles* for the five PMe206F5 ligands of I and III are

presented below:

cln)
Pt =P —c(Pn)  112(1)°
Pt -P —c(d)  122(2)° clt)
pt P <(p)  112(1)° Z::::ii:7”””")—'__—_—_CXd)
c(d) P -¢(en)  99(1)°
o(p) - =c(Ph)  108.5(4)° Clt) | |

P ~c(Pn) -c(¥) 126.6(4)° dé

Pt
. | s
P  -C(Pn) -C(%) 117.9(4)° | \

* Throughout this thesis the mean of a set of N parameters,xi,

is defined as Z&.x./ Yw. where w.=1 for an unweighted mean
i7iTi ivi i

and wi=é;2 (Ai being the standard deviation of xi) for a

weighted mean. The standard deviation of mean,i, is

o =32 N E % : }-%:

{%wi(xix) /(5-1) iw;} or, for weighted means only,{z}q

if larger than former value. A1l sums are over the N

individual measurements.
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In the compound II a more symmetrical conformation is
adopted, with the platinum atom lying in the plane of the
phenyl ring, which in turn is approximately normal to the
metal co-ordination plane. The Pt—P—C(methyl) angles
[112.0(2) and 114.3(2)61 are more nearly equal than the
corresponding angles in I and III, as are the C(Ph)-P—C(methyl)
[102.4(2) ana 105.2(2)°] and P-C(Ph)-C(Ph) angles [122.6(3)
and 121.9(3)01.

Valency angles at phosphorus and ipso-carbon atoms
thus reflect the conformatibns of the PMe206F5 ligands.
Other bond lengths and valency angles in the six ligands
agree well, Weighted means are presented in Figure 2.4,

The deviations of the individual bond lengths and angles

in I, IT and IIT from the weighted means in Figure 2.4 lead

to a value of X? of 445 on 275 degrees of freedom. The
differences are not significant at the 5% level., The standard
deviation of an observation of unit weight is 1.27,
satisfactorily close to its expectation value of unity,

thus suggesting that the standard deviations derived from

the least-squares refinement are realistic., On the most
pessimistic assumption they should be increased by 30%.

The rather acute internal ring angle at the ipso-carbon
atoms in I, II and III [yeighted mean 115.5(2)61 is a common

feature of structures containing C6F5X groups (Table 2.8).
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TABLE 2.4 Veighted bond lengths (?) ana angles for six PMéEC6F5

ligands in I,II, and IIT,
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TABLE 2.8 Comparison between mean bond lengths (&) and

oy . )
angles () in crystal structures containing the group C6F X

5

P-C c-C C-F C-C-C(at X) Ref,
He(C(F,), - 1,38 1.39 116.4 87
(P06F5)4 1.838(3) 1.38(1) 1.34(1) 115.2(3) 74
Pt(PBu3)2(8C6F5)2 - 1.37(5)  1.34(5)  118(3) 75
[Pd(PPhB)(SC6F5)2]2) - 1.37(7) 1.38(6)  111(4) 76
|:Pd(PPh3)(sc6F5)2]2) - 1.39(5) 1.38(4)  114(3) 77
Pt(PPh3)2(P06F5)2 1.85(2)  1.37(3) 1.35(2) 113(2) 178
1, 11, 11T P 1.836(3) 1.38(1) 1.339(1) 115.5(2) This

_a) This compound exists in two different crystalline forms.

b) Weighted means for the six PMe206F ligands in I, II and IIT.

5
It is thought to reflect electron donation from X to the ring
and has been explained either in terms of hybridization of the
ipso-carbon atom or by the electron pair repulsion (VSEPR)
‘l:heory.r]g The weighted mean P-C distance in I, II and III
[1.836(3)2] is similar to the corresponding values in other

06F P systems (Table 2.8) and, perhaps surprisingly, also

5
agrees well with a mean value of 1.828(3)2 for P—CsH5

. : . ) 7
distances, obtained from an extensive literature survey.
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Trans-influence on Pt-PMe?C6F% bonds

As already noted variations of up to 0.033 in
chemically equivalent Pt-—PMeQC6F5 bond lengths occur
in I and III, possibly for steric reasons. Nevertheless,
the mean Pt-P bond lengths lead to the trans-influence
gseries C1l< PMe206F54iCH3FVCF5. The same ordering may be
obtained from %{Pt-P) and 3J(Pt--H) coupling constants
presented in Figure 2.5 (excluding CF3 ligand in II for
which n.m.r, parameters could not be obtained due to
insolubility of the compound in common solvents), However,
the coﬁpling constants suggest 'a greater difference between
the P~ and C-donor ligands than is apvarent from the bond
lengths (Figure 2.5). In terms of the discussion in the
Introduction to Part II (see above) this would seem to
imply that the coupling constants are more sensitive to

the piatinum Bs components in the Pt-P bonds than are the

bond lengths,

Effect of phosphine substituents on Pt—PMe2Q62‘ bonds

5

The trends observed in Pt-P bond lengths and coupling
constants for I, II and III are closely comparable with
those found in complexes containing phosphines with hydrocarbon
substituents.

Thus the 1J(Pt—P) coupling constants in I and III are
typically only 3% larger than those for analogous PMezPh

complexes,8O and the ftrans-influence series Cl<PNe2Ph<CF3<CH3
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FIGURE 2,5 Bond lengths (&) and angles (°) and coupling constants(Hz)

in I,IT,and III, L

L'=PHe206F5.The insolubility of II in common

solvents precluded n.,m.r. experiments,
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has been derived from 3J(Pt—P—C-H) couplings in the
cationic species[:PtX(PMezPh)B]+.81

The mean Pt-Cl and Pt-P bond lengths in cis-PtC1l,(Piie Ph),
[2.362(3) and 2.260(2)2182 are each ca. 0,028 longer than
corresponding distances in I. This difference, though not

dramatic, is probably a consequence of the difference in

electronic properties of C6F5 and C6H5’ Mean metal-ligand
bond lengths in complexes with cis-PtC1.P. donor sets are

272
summarised in Table 2.9. Both the Pt-P and Pt-Cl distances

show a roughly linear dependence on Tolman's %;%:parameter,
(see Introduction to Part II of this thesis) which measures
the electron-withdrawing ability of the substituents on the
phosphorus atom (Figure 2.6). The rate of variation of the
Pt-Cl(trans to P) bond lengths is about half that of the
Pt~P distances,

Rationalisation of these trends can be offered from
two points of view., Electron-withdrawal at the phosphorus
donor atom would be expected to contract the phosphorus
6~donor orbital, thus shortening the Pt-P bond. A less
basic phosphine might also be expected to have a low trans-
influence, thus leading to a shorter trans-Pt-Cl bond.

Alternatively, the observed changes in Pt-P and Pt-Cl
(igggg to P) bond lengths can be understo;d in terms of
T -backbonding. -Electron-withdrawal by substituents on
phosphorus is expected to enhance dﬂ - 4y backdonation
fiom metal to phosphorus. Loss of charge from the metal
would lead to a stronger electrostatic interaction between

platinum and the trans chlorine atom. This would explain
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FIGURE 2.6 Variation in the Pt-P and Pt-Cl(trans to P) bond lengths

in complexes with cis-PtClzpl2 donor setswith %Iu a measure of the

electron-withdrawing ability of the phosphine substituents
Pt -L (A)

2.40 —
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shortening of both the Pt-P and Pt-Cl(igggg to P) bonds.
‘ However, the two rationalisations are not mutually
exclusive. An explanation based on both é6- and T - effects
seems most plausible,

A similar comparison of the Pt-P distances in IT and
III with these in analogous PNeQPh coﬁplexes is not possible.
Hovever, mean valuesof 2.302 for Pt-P bonds involving
phosphines with n-alkyl and phenyl substituents trans to
C and P donor ligands86 are in fair agreement with the

Pt-P distances in II and III.

The Pt-C bond lengths in II and IIT

The Pt-CF; distance in II [2.058%] is shorter than
- 68
the sum of the appropriate van der Waals radii Egg. 2.093J.

It is also significantly shorter than Pt-CF, distance

3
[2.10(2)2] reported for _t_r_a_n_g-[}L-(cr-:le)4(CFB)Pt(PMezPh)?_]SbF}.73
The two Pt~C bond lengths in II and III differ by
0.040(7)2. Similar, though larger differences (ca. 0.13)
have been found between fluorocarbyl- and hydrocarbyl-metal
bond lengths for other transition metal ions.88 As in other
cases where it is possible to invoke I-backbonding (in this case
between filled d-orbitals on the metal atom and &% orbitals
of the trifluoromethyl group) two explanations have been
put forward.
Thus, the relatively greater stability of fiuoroalkyl—

compared to the corresponding alkyl-metal complexes has been

- 89
attributed, at least partly, to Pt—vCF3 backbonding.
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The low C~F stretching frequencies in CFB—transition
metal complexes have also been explained on the basis
of postulated F-acceptor properties of the fluoroalkyl
group.go

Alternatively, it can be argued that differences in
Pt-CH.3 and Pt-CF3 6-bonds explain the differences in
length, with the Pt—CF3 bond containing a greater
proportion of carbon 2§ component. This view is
consistent with the linear variation of 2J(Pt-CF3)
coupling constants for the complexes igégg—PtX(CFB)(Hie2Ph)
with ZJ(Pt—CHB) for the dorresponding methyl-platinum

complexes.  An M.0. calculation on MnX(CO)5 (X = CH CFB)

3
also suggests that the M—CH3 and M-CF3 bonds differ in
their ¢&-component and that in either case back-donation
is unimportant.92

Both theories predict the shortening of metal-carbon-
(fluoroalkyl) bonds compared with metal-carbon(alkyl) bonds
in corresponding complexes.

The mean Pt-C-F and F-C-F angles [114.8(7) and 1o5.6(4)°]
are ;onsistent with the second view, as is the similarity
in trans-influence on Pt-P bond lengths displayed by CF3
and CH3 groups. In this context it is worth noting that
the trans-influence of & -hydrocarbyl ligands on Pt-Cl bonds
is insensitive to the hybridisation of the donor carbon atomﬁ3
Thus, the enhancement of the c(2s) component in the Pt-C bond
in II, compared with III; seems to be the most plausible

explanation for the differences in the corresponding Pt-C

bond lengths in II and III.



CHAPTER 3

Conformations of the Triefhylphosphine Ligand
and cis~ and trans-Influence of Ligands in

cis-PtClz(PEtB)L Complexes

The Crystal and lMolecular Structures of
‘¢cis-Dichlorobis(triethylphosphine)platinum(II) and

cis—Dithorocarbonyl(triethylphosphine)platinum(II)
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3.1 Introduction

While struétural and spectroscopic studies of
transition metal complexes have vielded substantial
information concerning the trans-influence of ligands,
investigations of cis~-influence have been less rewanr:ding.g["95

‘The main problem is due to the lack of appropriate
data which clearly distinguish between the electronic
effects of the cis-ligands and intramolecular steric
effects, For example, it has been shown both
structurally96 and speotréscopicallygzg8 that in
gig-PtClz(PRB)L complexes (I = neutral ligand, PRy =

30 PEt3 or PEtzPh) the strongest Pt-Cl bonds

and weakest Pt-P bonds occur when L = CO, Although

PPh,, Plie

an electronic cis-effect could explain this result,
such interpretation could only be tentative since the
complexes compared contain different phosphines.
Recently, in this laboratory and elsewhere,
accurate structure analyses have been carried out on
a number of g;§-Pt012(PEt3)L complexes, including those
60 9 97

with L = C17, c(OEt)NHPh,&’ C(nPhCHQ)Q,
85

PFB’ and P(OPh)B.&; The structure analyses of the

CNPh,

complexes with L = CO and PEt3 are reported here.

These studies a2llow the cis~influence of the ligands

L on Pt-Cl and Pt-—PE’c3 bonds to be examined in a

~ closely related series of complexes. Additionally

the trans-influence of L on Pt-Cl bonds can be compared.

An interesting structural feature of the series of

cis—PtClQ(PEtB)L complexes is the tendency of the



87

triethylphosphine ligand to adopt one particular
conformation, In an attempt to understand this
result, molecular mechanics calculations on the

triethylphosphine molecule have been carried out.
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3.2 lleasurements and Results for cis—PtClz(PEt3)2

Crystal Data

Formula | ggg-Pt012(PEt3)2
Formula weight 502.3
Crystal system monoclinic.
- a(R) 7.941
b(}) | i7.442
c(R) ' 12.960
B(°) | '93.81
Cell volume (k2) | 1791.0

No. of molecules per cell 4

Calculated density(g cm—3) 1.863

#(Mo-Ky) (cn™) 83.8
Space group P21/n(Cgh,£g.14)
Equivalent positions i(x,y,z) and

+(1/2+x,1/2-y,1/2+2)
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Data Collection Summary

Temperature (°C)
Diffractometer

Radiation
Counter

Scan

Background

o
Cnax )

Scan width A8(°)
Step size in 6(°)
Tp (s)

r, (c)

, qﬁsee Part I,'Ch.B)

No. of reflections with
1v%36(1), n

No.' of parameters, m

n/m

21
Hilger and Watts Y-290

graphite monochromatized
Mo-K4(A=0,710694)

scintillation with
pulse-height analyser

8/26

stationary crystal-
~stationary counter

30
0.6
0.02
60
10 -

0.04

4004

270

14,8
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Measurements

The crystal of g_i_s-PtClz(PEt3)2 was an air-stable
.transparent needle with nine faces belonging to the
forms {100}, {010}, {001}, {011}, {101} ana {101} .

Its dimensions along the directions a¥*, b¥*, and c*
were ca. 0.042x0.026x0,019 cm.

The preliminary cell dimensions were determined
from oscillation and Weissenberg photographs,
Systematically‘absent reflections were consistent with
the space group P21/n. The crystal was then transferred
to the diffractometer, The angle between the crystal
a*-axis and the diffractometer ¢;axis was a few degrees,
.in order to avoid multiple reflections.- The unit cell
dimensions were refined by a least-squares treatment of
11 reflections for which 6(Mo-Kg)»13 and which were
well dispersed through reciprocal space, The
intensities of hktl reflections were collected up to
30° in 6. In order to monitor the crystal and system
stability, the intensities of three standard reflections
were remeasured periodically throughout the experiment.
They displayed only statistical fluctuations, with
maximum deviations of 5% from their corresponding
mean values, The integrated intensities, I, and their
standard deviations, were obtained as described in Part I,
Ch. 3. Data weré corrected for Lorentz-polarisation
factors, counting loss and absorption effects, The
transmission factors on |F|2, calculated by a Gaussian

integration involving 1000 sampling points, varied
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between 0,20 and 0.3%5, Extinction corrections did

not appear to be necessary.

Structure analysis

The platinum atom was located from a three-
-dimensional Patterson function. The positions of the
remaining non-hydrogen atoms were determined from
subsequent‘difference syntheses, Refinement of the
positional and anisotropic thermal parameters of all
non-hydrogen atoms converged at R = 0.046 and Rw = 0,060,
Absorption correction was then carried out and subsequent
refinement resulted in R = 0.0Bé and Rw = 0,049. FProm
difference syntheses, based either on all the data or
on low-angle data (sin&/rA€0.4), it was possible to locate
all hydrogen atoms except H(30)C(12) (see Table 3.1).
The positional and isotropic temperature parameters of
the hydrogen atoms located from the difference syntheses
were refined; the H(}O)C(12) atom was also included in
the structural model, but its calculated position and
assigned temperature factor were not allowed to vary.

The refinement converged at R = 0,032 and Rw = 0.041.
The shifts in the parameters in the last cycle of
refinement were smaller than 0.44. The standard
deviation of an observation of unit weight was 1.59.
The mean values of (lFo|—|Fc|)2ﬂ52(lFol) showed no
systematic trends when analysed as a function of |Fo|
or sin®. The extreme function values in the final

difference synthesis (i1.0eﬁ—3) were associated with
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the position of the platinum atom,
Final atomic parameters and a selection of functions
derived from them are presented in Tables 3.1 - 56T

An ORTEP drawing of the molecular structure is

presented in Figure 3.1,

~
=



TABLE 3.1 Final fractional atomic co-ordinates and isotroric

thermal parameters (3x102)

Atom X y z U(ico
Pt 0.32951(2) 0.19372(1) 0.193203(1) -
c1(1) -0.0182(2) 0.1334(1) 0.2266(2) -
c1(2) 0.0827(2) 0.3080(1) 0.1736(2) -
P(1) 0.3484(2) 0.0760(1) 0.2255(1) -
P(2) 0.4808(2) 0.2579(1) 0.1675(1) -
c(1) 0.3148(8) 0.0454(3) 0.3576(5) -
c(2) 0.4013(12) 0.0960(5) 0.4407(5) -
c(3) 0.2406(7) 0.0003(3) 0.1495(5) -
c(h) 0.2356(9) 0.0111(k) 0.0336(6) -
c(5) 0.5716(6) 0.0590(3) 0.2095(5) -
c(6) 0.6432(8)  =0.0194(4) 0.2415(6) -
c(7) 0.4562(9) 0.3585(3) 0.1290(5) -
c(8) 0.3946(11) 0.3743(k) 0.0192(7) -
c(9) 0.6207(7) 0.2216(3) 0.0724(5) -
c(10) 0.5332(11) 0.1907(4) -0.0266(6) -
c(11) 0.6164(7) 0.2667(3) 0.2871(5) -
c(12) 0.5328(11) 0.3080(4) 0.3726(6) -
H(1)c(1)? 0.352(8)  =0.005(3) 0.372(5) L(2)
H(2)c(1) 0.182(8) 0.040(3) 0.358(5) 4(2)
H(3)c(2) 0.377(7) 0.139(4) 0.445(5) 5(2)
H(L)C(2) 0.515(9) 0.098(4) 0.437(5) 6(2)
H(5)C(2) 0.361(11) 0.073(5) 0.512(7) 9(3)
H(6)C(3) 0.131(9) -0.008(4) 0.183(56) 6(2)
H(7)C(3) 0.263(6) -0,040(3) 0.177(4) 2(1)
H(8)C(L) 0.200(11) 0.068(5) 0.014(7) 8(3)
H(9)C(h) 0.161(10)  -0.034(5) 0.000(6) 7(2)
H(10)C(4) 0.341(11) 0.013(6) 0.018(7) 10(3)
5(11)C(5) 0.589(9) 0.072(4) 0.129(6) 6(2)
H(12)C(5) 0.634(7) 0.095(3) 0.244(5) h(2)

+H(n)c(m) iz H(n) hydrogen atom attached to carbon ztom C{m).
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H(13)C(6)
H(14)C(6)
H(15)C(6)
H(16)C(7)
H(17)C(7)
H(18)c(8)
H(19)C(8)
H(20)C(8)
H(21)C(9)
H(22)C(9)
H(23)Cc(10)
H(24)C(10)
H(25)C(10)
H(26)c(11)
H(27)c(11)
H(28)C(12)
H(29)C(12)
H(30)C(12)

0.594(9)
0.768(8)
0.623(10)
0.400(8)
0.572(13)
0.510(11)
0.295(9)
0.382(11)
0.681(9)
0.701(9)
0.622(11)
0.457(7)
0.464(10)
0.720(10)
0.651(8)
0.520(13)
0.433(8)
0.6122

? Not refined , See text,

-0.025(4)
-0.028(5)
0.382(4)
0.297(6)
0.373(5)
0.341(5)

0.437(5) .

0.183(4)
0.264(5)
0.180(4)
0.235(3)
0.148(5)
0.296(4)
0.222(4)
0.377(6)
0.287(4)
0.304%

0.218(6)
0.222(6)
0.317(7)
0.185(5)
0.115(8)
-0.028(7)
0.003(6)
-0.007(7)
0.111(6)
0.061(6)
-0.091(7)
-0.072(5)
-0,009(6)
0.265(7)
0.305(5)
0.357(8)
0.382(5)
0. 444

6(2)

6(2)
8(32)
4(2)
12(4)
8(3)
6(2)
9(3)
5(2)
7(2)
8(3)
L(2)
7(2)
6(2)
4(2)
12(4)
5(2)
8&
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TABLE 3,6 Intramolecular non-bonding distances (R)

less than the sum of the appropriate van der Waals radii.

C1(1) ... C(3) 3.30 c1(2) .. c(7) 3.18

C1(1) o.. C(1)  3.41 €1(2) ... H(19)c(8) 2.92

TABLE 3,7 The equation of, and atomic deviations

(R X 103) from, the weighted least-squares plane
defined by the atoms Pt, C1(1), C1(2), P(1) and P(2).
The equation refers to orthogonal axes defined by & b

and ci.,

-0.071X-0,206Y-0,976Z==3,260

Pt 3(1), c1(1) -55(2), c1(2) -76(2), P(1) -43(1), P(2) -44(1).
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‘Legend

FIGURE 3.1 A perspective view of the molecular
- structure of cis-PtClz(PEtB)z. Hydrogen atoms
are omitted for clarity. The vibrational ellipsoids

represent 50% probability,
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5.3 licasurements and Results for cis-PtClQ(CO)PEt

3

A full account of the structure analysis of
gig—Pt012(CO)PEt3, together with atomic parameters
.and a selection of functions derived from them has
been published (see inside back cover). Hence, only
a brief summary of the experimental work and results
will be given here, | |

The intensities of all indevendent reflections
with 6(lo-K, )<35° were measured. 1820 of the, for
which I¥3¢(I), were used in the structure analysis.
Data were corrected for Lorentz-polarisation and
absorption effects, The systematic absences were
Qonéistent with the space groups Pca21(ﬂg.29) and Pcamn,
the latter being an unconventional setting of the space
group Pbcm(ﬂg.S?). The structure was satisfactorily
refined, by the full-matrix least-squares method, in
the non-centrosymmetric space group Pca21. Solution
of the structure was complicated by pseudo-symmetry,
which gave rise to four possible arrangements for
the atoms co-ordinated to platinum, The problem was
resolved by refining each of these arrangements;
that which produced the most acceptable stereochemistry
and also gave the lowest value of R was used in further
calculations, The final anisotropic structural model
led to a value of R = 0.037, The correctness of the
indexing of reflections was then verified by establishing

that refinement of the structure, with hkl reflections
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reindexed as hkl, produced & significantly greater
value of R (0,039),
The adequacy of the weighting scheme was verified
by establishing that the mean values of (lFo}—}Fc|)2 /dz(iFol)
did not show systematic variations with either IFoI or
sin®B. The extreme values in the final difference
synthesis (+1.5 and -1.6 eR_B) were assocliated with the
position of the platinum atom,
An ORTEP drawing of the molecular structure is
presented in Figure 3,2 and a description of the structure

is given in Section 3,5,
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Legend

FIGURE 3,2 A perspective view of the molecular
structure of cis-PtC12(CO)PEt3. Hydrogen atoms are

omitted. The vibrational ellipsoids display 50%

probability.




FIGURE 3,2
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3.4 Discussion

The crystal and molecular structure of cis—PtClz(PEt3)2

The crystals contain discrete, monomeric
_c_:_i_g-PtClz(PE’cB)2 units., The shortest distances
between the atoms in different molecules are close %o
the sum of the.corresponding van der Waals radii,

The platinum co-ordination is square-planar with
a slight pyramidal distortion. .However, the individual
displacementsof the platinum, phosphorus and chlorine
atoms from the weighted PtClzPQ least-squares plane
do not exceed 0.08%8 (Table 3.7). Intramolecular
steric strain is relieved, at least partly, by distortions
of the valency angles, subtended at platinum by cis-donor
atoms, by up to 9°from the ideal value of 90° (Table 3.4).
The two phosphine ligands interact somewhat differently
with the adjacent cis-chlorine atoms [C(1)...C1(1) 3.41,
c(3)...c1(1) 3.30, ¢(7)...C1(2) 3.188]. This may
explain the difference in length [0.011(2)X] between
the chemically equivalent Pt-Cl bonds [Pt-C1(1) 2.366(1)
and Pt-C1(2) 2.355(2)8]. The Pt-P bond lengths
[2.257(1) and 2.262(1)8} are more nearly equal, The
mean Pt-P and Pt-Cl distances agree well with corresponding
values in gié-Pt012(PMe3)283 (see below).

Thé chemically equivalent bond lengths and valency
angles within the two triethylphosphine ligands agree
to within the experimental error and their average values

are in good agreement with those found in other cis-PtCl2(PEt5)L
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complexes (Table 3,8). The opening of the Pt-P-C
angles, which are typically 3-6° greater than the
tetrahedral angle, and a comparable closure of the
C-P-C angles, are general features of transition metal-
phosphine complexes. They have given rise to the
suggestion that the phosphorus 3s orbital is concentrated
in the I-P bond. Recent e.p.r. studies of metallophosphine
complexes lend supvort to this viewjoo The experimentally
determined positions of the phosphine hydrogens are in
accord with the stereochemistry of the tetrahedrally-
-hybridised carbon atoms to which they are attached, The
C-H bond lengths range from 0.8(1) to 1.2(1)8, with a
mean value of 1,0(1)%,

In both phosphines the conformations about the
P-C and C-C bonds are approximately staggered and each
ligand is oriented so that one d-carbon atom [0(5) and
C(7)} lies close to the platinum co-ordination plane.
However, a significant conformational difference is
revealed by the Pt-P(1)-C(5)-C(6) and Pt-P(2)-C(7)-C(8)
torsion angles of 174.7(4) and -75.7(6)°. The
conformation of the phosphine containing P(1) atom is
that usually found in platinum (II) complexes (see below),
with the carbon atoms of one ethyl group lying
approximately in the metal co-ordination plane, normal
to which is a coplanar C-C-P-C-C unit formed by the
carbon atoms of the two remaining ethyl groups. The
conformation displayed by the phosphine containing P(2)
atom differs by a 120° twist about the P-C bond lying

in the co-ordination plane.
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The crystal and molecular structure of cis-PtCl2(CO)PEt3

The crystal contains discrete monomeric molecules,
Intermolecular distances are close to the sum of the
corresponding van der Waals radii.

The molecules exhibit the expected cis-square-planar
co-ordination around the platinum atom and nearly ideal
Cs symmetry. Thus, the individual displacements of the
Pt, P, C1(1) and C1(2) atoms from their weighted least-

A -squares plane do not exceed 0.0023; the displacements

of the C(1), 0, C(4) and C(5) atoms from the same plane

are less than 0,068 and the differencés in displacement

of the two pairs of atoms approximately related by mirror
symmetry do not exceed 0.04% [0(2) and C(6), ¢(3) and C(7)].

Bond lengths and angles in the triethylphosphine
ligand are normal (Table 3.8). Conformation of this
ligand is the common one, also displayed by the phosphine
containing P(1) atom in gig-PtCIE(PEtS)Z.

The molecule is subject to some steric strain,
This is evident from intramolecular non-bonding
distances {C(1)...C(4) 3,15, C1(2)...C(2) 3.48 and
Ci(2)...C(6) 5.493] and the platinum valency angles
[P-Pt-C(1) 94.7(4) and P-Pt-C1(2) 87.9(1)°].

The Pt-C1(1) and Pt-C1(2) distances [respectively
2.368(3) and 2.296(4)% ] show that the triethylphosphine
lirand exerts a substantially larger trans-influence
than the carbonyl group. The Pt-P distance (2.265(3)2]

reflects the cis-influence of the carbonyl group (see below).
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The Pt-C distance [1.855(14)3] is the same as that in the
analogous compound gig-PtClz(CO)PPhs [1.858(7)3] . Little can
be concluded from a comparison of these two distances with
the corresponding ones , mainly of low accuracy, found in other

platinum(II) carbonyl complexes (Table 3.9).

TABLE 3,9 Bond lengths (8) and angles (o) in some square-

~planar platinum(II) carbonyl complexes

Compound Pt-C C-0 Pt~-C-0 Ref,

trans-PtClz(CO)-
(ON-06H4—OMe) 1.74(4)  1.16(4)  178(3) 101

[trans-PtCl(CO)(PEt3)2]+ 1.78 1,14 171 102
1.855(14) 1.124(19) 176.5(12)  This work
1.858(7) 1.114(8) 175.6(7) 96

cis-PtClz(CO)PEt3

3
[trans-Pt(PEt3)2(CO)-
06H401]+ 1.97(5) 1.06(6) 171(5) 103

gig-PtClz(CO)PPh
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Triethylphosphine: molecular mechanics calculation for

the free molecule and conformations in PtII - PEt3 complexes

The tendency of triethylphosphine ligands to
exhibit exclusively one particular conformation
in square-planar complexes has already been mentioned,
In order to understand this result, the relative energies
of the minimum—energy conformations of the isolated
triethylphosphine molecule have been calculated using
the molecular mechanics method, Apart from a study

of triphenylphosphine moleculeﬂ04

in which the ring
geometry was held invariant, this appfoach does not
appear to have been used before to study phosphine
conformations., The calculations will first be
described and the results will then be compared with
the available structural data on platinum (II)—triethyl-
phosphine complexes.,

The computational procedure used has been
105

successfully applied to many organic systems, The

potential energy of the molecule is given by:
E =V(r) + v(6) + v(w) + V(nb).

The potential energy functions used to describe the
deformations of bond lengths, Ar, and valency angles,
A8, (from hypothetical strain-free values r, and 8, ) are

V(r)=1/2krAr2

v(6)=1/2k, (A6-|x}01)?
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where kr and ky are harmonic stretching and bending
force constants and ké allows for anharmonicity.
For torsional rotation about P-C and C-C bonds a

three-fold potential energy of the form
V(w)=1/2kw(1+oos3w)

was used; w is a torsion angle and kw the contribution
made by that torsion angle to the total height of the
energy barrier, Non-bonding interactions were represented

by a Lennard-Jones potential of the forms

V(nb):e [—20(_6+e12( 1-d')_], d=r1 2/1?1 2*

where Ty is the internuclear distance and r1§ depends
only on the chemical nature of the atoms involved in

the contact. The force-~field parameters used are
summarised in Table 3,10, They were taken from standard
sources, supplemented by force constant data for
trialkylphosphines obtained spectroscopically. The
parameters r, and 6, for bonds and angles involving
phosphorus atom are mean values for platinum (11) -
triethylphosvhine complexes., It should be noted that

no allowance was made for coulombic interactions,

The calculations ﬁere performed on a PDP-11
computer using Dr. D.N.J. White's program PECALC. To
minimise computing time the assumption was made that
the lowest energy conformations of triethylphosphine
will be those involving staggering about the P-C and

C-C bonds. Seven such conformations, A-G, are possible

(Table 3011).
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| TABLE 3,10 Potential field parameters used for PEtL

3
Bonds k (kcalmol-1ﬁ-2)a r (%)
r (o]
pP-C 407.52 ' 1.827
c-C 633.6 14523
Cc-H 662.4 1.10
Angles ke(kcalmol-1deg-2)b ke,(deg-1)b 8(®)
C-P-C 0.0116 - 105.2
P-C-C 0.0136 ‘ - 11443
P~-C-H 0.0100 - 97.5
C-C~H 0.0160 . 0.,0096 109,5
H-C-H 0.0142 0.0096 108.2
Torsion angles kw(kcalmol-1)
H-C-C-P 3,96°
C-C-pP-C 3.84d
H-C-P-C 3.8hd
H-C-C-H 3.96°
Non-bonding potentials
-1.e x e
Type ¢(kcalmol ) r12( )
PeooC 0.076 L,025
P...H 0.033 3.65
C...C 0.120 3.85
C...H 0.0299 3.35
H...H 0.0160 3.10

aRef. 106;bRef. 104;c Ref. 107;dRefs. 108 and 109;eParameters supplied by
Dr., D.N.J.White.
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For each possible conformation the geometry was
adjusted by an iterative procedure so as to minimise
the potential energy, E. It took about 100-150 cycles
of refinement to bring the energy for a conformation
- close to a minimum, as measured by the quantity (9E/3p).
The results of such calculations indicate D as
the mninimum energj conformation of the isolated molecule,
followed closely by C and F. Although the differences
in energy between the conformations are not dramatic,
it is remarkable that of 28 triethylohosphine ligands
attached to platinum (II), for which structure analyses
are available, 24 exhibit copformation D. ¥oreover,
in every case the observed conformation differs only
slightly, if at all, from the idealised fully-staggered
D conformation, This is shown in Table 3%,12A where
the deviations of the Pt-P-C-C torsion angles WiaW, and
W from the idealised values of 180, 60 and -60° are
presented. The average deviation <]A[> is 90, or
less, for the 24 ligands., The tendency for one
L-Pt-P-C torsion angle to be close to zero is also
- obvious from the Table 2.12,A,
O0f the four triethylphosphine ligands which do
not display D conformation (Table 3.12B) two have the
relatively low energy C arrangement. The complex
gig—PtClz(PEt3)2 is especially interesting, since it
displays both a high energy G and low energy D
conformation, It is also apparent from Table 3.12B

that the mean deviations of the Pt-P-C-C angles from
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idealised Values,<|AJ> y are appreciably greater than
corresponding values listed in Table 3.124,

The calculations thus indicate that the conformation
usually adopted by triethylphosphine ligand in a platinua(II)
~complex is that which gives the lowest energy for the
isolated molecule, The incorporation of the ligand
into a square-planar complex evidently does not normally
involve a significant increase in conformational energy.
Indeed, the marked tendency of the ligand to adopt
conformation D rather than C or F might indicate that
complex formation tends to increase the energy difference
between D and other conformations.

The calculations are also relevant to Tolman's
use of the minimum cone angle 6 as a measure of the
steric bulk of different phosphines.66 His wvalue
of 1320 for triethylphosphine would appear to be
derived from conformation B (see Table 3.,11). This
is neither the conformation which minimises the cone
angle, nor is it found in platinum (II) complexes.

The experimentally determined molecular structures

and the Tolman averaging formula 6:2/3{91/2 % give

cone angles'of 145-1500 for D conformations, and 157°

for the G conformation found in 9_i_§_—Pt012(PEt5)2.

The cone angle concept has undoubtedly been helpful

in ratiénalising properties of the complexes in solution,
such as their n.m.r. parameters and heats of ligand
replacement, but the above considerations suggest that it

may not be useful in rationalising solid state structures.
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Cis- and trans-Influence of ligands in giﬁ—PtCI2(PEt3)L

complexes

The structural work described earlier in this
Chapter forms part of a more general study of
g_s_—PtCIQ(PEtB)L complexes. Bond length data for eight
such complexes are presented in Table 3,13, together with
corresponding 1J(Pt-PEt3) coupling constants (see also
Figure 3.3).

The trans-influence series.derived from the
Pt-Cl(trans to L) distances in Table 3.13 bears little
relafionship to the cis-influence series obtained from
the Pt-PEt3 bond lengths, This Qould appear to indicate
that different electronic mechanisms are involved, The

cig-inflvence series seems to reflect mainly the T-acidity

of L: the shortest Pt-PEt3 bond occurs cis to chloride,

which has little f-acidity, and the longest Pt-PEt_, bonds are those

3

cis to phosphite, carbonyl and trifluorophosphine, which
_are usually considered to be Ji-acids, The lengthening of

the Pt-PEt., bonds can then be ascribed to competition between

3

PEt, and L for metal di electrons, The smaller variations

3

in Pt-Cl(cis to L) distances may then arise from variations
in trans~influence of PEt3 induced by L. Alternatively, Pt-L
backdonation may directly strengthen the Pt-C1l(cis to L)

bonding through an electrostatic effect,

Pinally, it should be noted that the Pt-—PEt3 bond
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FIGURE 3.3 A plot of Pt-Cl(cis to L) versus Pt-P bord lengths in
cis-PtClZ(PEtB)L complexes (see Table 3,13).The ligands L and the
unweighted least~squares trend line are shown. The errors indicated

are standard deviations.

225

£

CNPh

C(OEt'NHPh

Pt -P(A)
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lengths, reflecting the overall bond order, show only
a very poor correlation with 1J(Pt-PEt3) coupling
constants, which depend mainly on the s-bond order.
This result appears to contradict Pidcock's proposal
that Pt-P bond lengths and coupling constants are

inter-:elated.45



CHAPTER 4

The Crystal and Molecular Structure of a Platinum(II)

Complex Containing ortho-Carborane Phosphino Ligands
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4.1 Introduction

Hill and Silva-Trivino have prepared unsymmetrical
bis—tertiaryphosphino-ggiﬁg-carborane derivatives of
- the type L = Ph PCB10 1OCPR (R=F NIIeQ,Ph) and reacted
them with platinum(II) nitriles to obtain PtC1,L
complexes in which L is thought to behave as a chelating
1igand.123

The electron-withdrawing nature of the ortho-
carborane cage is well establishedﬁzA Accordingly, a
structure analysis of the complex PtClzL(R=F) was
undertaken, in order to study the effects of the electron-
withdrawal by the fluoro- and carborane- substituents
at phosphorus on the metal-ligand bonding., This
appeared to be a natural extension both of the studies
of PMeQCéFS—platinum complexes (described in Part 11,
Ch. 2) and of a previous study in this department of
the unsymmetrical chelate complex gig-PtClQ{(CFB)QPCH -
CH2PPh2}.69 In the mean time Miguel obtained an n.m.r.
spectrun of PtClQL(R=F), which revealed that no fluorine
was present.125 The X-ray analysis was however contin&ed
in order to establish the identity of the compound.

It turned out that the compound contains two
diphenylphosphino-ortho-carborane ligands. One of
these is unidentate and co-ordinated to platinum through
phosphorus, the other one is bidentate and bonded to
platinum through phosphorus and through either a carbon

or a boron atom, thus indicating an insertion of the
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metal atom into g C-H or B-H bond.

Unfortunately, the

X-ray analysis does not allow carbon and boron atom

to be clearly distinguished, However, the structural

and chemical evidence

discussed below suggests that

structure II is more likely than structure I.

(1)

(1)
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4.2 Measurements and Results

Crystal Data

Formula PtCl(PhZPCZB1O 10)(Ph PC,3B, M 11)
.Formula weight | 886433

Crystal syétem monoclinic

a(®) . | 26.,122(3)

b(R) 11.006(2)

o(8) 29.775(3)

B(°) | 106.34(1)

Cell volume (87) 821444

No. of mol. per cell 8

Calculated density(g cm-3) 1.453

#(Mo-K, ) (cm‘1) | 3642

. » 6
Space group I2/a (Czh,ﬁg.15)
Equivalent positions (1/2 1/2 1/2); + (xyz) and

+ (1/2+x,¥,2)



127w

Data Collection Summary

Temperature (°C)
Diffractometer

Radiation
Counter

Scan

Background

measurement

(°)

max

No. reflections with

I>46(1)9 (n)

No. of parameters

refined, (m)

n/m

20

Enraf-Nonius CAD-4F

graphite monochromatised
Mo-K, (A= 0.710698)

scintillation with pulse -

- height analyser
8/26

moving crystal -

- moving counter

25

4855

233

20,8
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Measurement 2nd treatment of intensity data

A needle shaped crystal of dimensions 0.053 x
0.016 x 0.013cm, displaying the forms {101} ,{001} ana
{910}, was mounted in air, Preliminary oscillation
and Weissenberg photographs revealed monoclinic
symmetry and allowed approximate cell parameters to
be determined, The crystal was then transferred to
an Enraf-Nonius CAD-4F diffractometer, in an
orientation such that the angle between the crystal
b-axis and the diffractoheter f-axis was a few degrees.
Final values of the unit cell parameters and the
orientation matrix were determined from the setting
angles of 25 reflections with 14éOé22°. The indexing
of reflections corresponded to a body-centred unit
celly this gave a ﬁ-angle much closer to 90o than
the alternative indexing based on a face-centred (C)
cell, The systematic absences (hkl,h+k+1=2n+1; hol,
h=2n+1) are consistent with the space groups Ia(C:,Eg.9)
and I2/a(Cgh,ﬁg.15). The latter space group led to a
successful solution of the structure,

The intensities of all independent reflections in
the range 2404250 were measured, using the /20 scan
method. The scan width (in degrees) of 0.60+0.35tan®
was increased by 25% at each extremity to allow for
background measurement., The maximum counting time
was 60s, but for stronger reflections it was adjusted

so that é(I)/I was 0.03. In order to check the crystal
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and electrozic stability the setting angles and
intensities of two suitable reflections were remeasured
periodically, XNo significant change either in intensity
or orientation was observed during the experiment. Of
the 7941 intensities measured, 4855, for which I>4¢(1),
were used in the subsequent analysis, The data were
corrected for Lorentz-polarisation and absorption effects,
The transmission factors (on [Folz), based on Gaussian
integration angd a grid of 512 points, were in the range

0.56-0.72,

Structure determination and refinement

The position of the platinum atom was deduced from
a three~dimensional Patterson synthesis, Structure
factors containing contributions for the heavy-atom
scattering only gave R=0,25 and a difference synthesis
which revealed the positions of the rhosphorus and
chlorine atoms. Inclusion of the scattering contributions
for these atoms in the structure factor calculations
gave R=0,17, and the subsequent difference synthesis
allowed the positions of all the remaining non-hydrogen
atoms to be determined. This synthesis contained a
peak, comparable in height with the reaks of phenyl
and carborane carbon and boron atoms, at a distance of
0.688 from a two-fold axis. This peak was thought to
be associated with a solvent molecule. It was included
in subsequent calculations and assigned a carbon scattering

factor, The identity of the solvent was not established

by the analysis,
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The structure was then refined by the full-matrix
least=-squares method; the parameters of different
groups of atoms were refined in successive cycles,
Adjustment of the positional and isotropic thermal
parameterg of all non-hydrogen atoms gave R=0,077.,
Correction for absorption and the introduction of anisotropic
temperature factors for the platinum, chlorine and
phosphorus atoms gave'R=0.042 and RW=O.O62. Before the
final cycles of refinement, an attempt was made to
distinguish between the carbon and boron atoms of the
carborane cages., Inspection of the isotropic temperature
factors of the cage atoms did not suggest that they
could be used to deduce unambiguously the chemical nature
of these atoms. However, a detailed examination of the
interatomic distances within the carborane cages (see
below) allowed atoms C(25) to C(28) to be tentatively
identified as carbon atoms, and the refinement was
completed on this assumption,

In the final cycle of least-squares refinement no
parameter changed by more than 0,03 of its standard
deviation., The final difference synthesis revealed two
peaks of ca. 1.292—3 close to the platinum atom. All
other peaks were lower than O.8e2-3. The adequacy of the
weighting scheme was verified by establishing that mean
values of (\Fo]-chlfﬂgleol) showed little variation
with either 1F01 or sin®, Bxtinction corrections did

not appear to be necessary.

The final atomic parameters and a selection of

functions derived from them are presented in Tabtles

4e1-445,
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TABLE 4,1 Final positional parameters of the atoms (fractional co-ordi-

nates) and isotropic thermal parameters (ﬁx102) of carbon and boron atons

Atonm X y z U(iso)
Pt 0.11994(1) 0.30761(3) 0.09027(1) ——
C1 0.1096(1) 0.1595(2) 0.0285(1) ———
P(1) 0.0871(1) 0.1729(2) 0.1333(1) ——
P(2) 0.1535(1) 0.4798(2) 0.0648(1) ———
c(1) 0.0186(4) 0.1296(9) 0.1153(3) h.5(2)
c(2) ~0,0084(L) 0.134(1) 0.0677(4) 5.8(3)
c(3) -0.0615(5) 0.094(1) 0.0518(4) 7.8(4)
c(l) -0.0883(5) 0.057(1) 0.0839(5) 8.6(4)
c(5) -0,0624(6) 0.060(1) 0.1328(5) 9.4(4)
c(6) ~0.0084(5) 0.099(1) 0.1471(5) 7.9(4)
c(?) 0.1276(3) 0.0413(8) 0.1568(3) 3.9(2)
c(8) 0.1747(4) 0.027(1) 0.1446(3) 5.2(2)
c(9) 0.2088(5) -0.069(1) 0.1646(4) 6.7(3)
c(10) 0.1918(5) -0.152(1) 0.1941(4) 6.7(3)
c(11) 0.1447(5) -0.138(1) 0.2048(4) 7.1(3)
c(12) 0.1122(4) -0,040(1) 0.1857(4) 5.7(3)
c(25) 0.0954(4) 0.2790(9) 0.1823(3) 4.5(2)
c(26) 0.1607(4) 0.306(1) 0.20L0(4) 4.0(2)
B(1) 0.1235(4) 0.393(1) 0.1530(4) 5.9(3)
B(2) 0.1231(5) 0.263(1) 0.2406(4) 5.6(3)
B(3) 0.1702(6) 0.381(2) 0.2560(5) 7.4(4)
B(4) 0.1058(6) 0.397(2) 0.2655(6) 7.9(4)
B(5) 0.0614(5) 0.406(1) 0.1656(4) 5.2(3)
B(6) 0.0689(7) 0.491(1) 0.2177(6) 8.4(5)
B(7) 0.1714(6) 0.462(1) 0.2033(5) 6.6(L)
B(8) 0.1372(7) 0.523(2) 0.2415(6) 8.8(5)
B(9) 0.1078(6) 0.530(2) 0.1791(6) 7.8(4)
B(10) 0.0584(6) 0.327(1) 0.2168(6) 7.3(4)
c(13) 0.2199(3) 0.5086(8) 0.1043(3) 3.6(2)
c(14) 0.2505(4) 0.402(1) 0.1171(k) 5.4(3)
c(15) 0.3013(5) 0.409(1) 0.1499(4) 6.8(3)
c(16) 0.3205(4) 0.521(1) 0.1691(4) 6.0(3)
c(17) 0.2910(4) 0.625(1) 0.1553(4) 6.1(3)
c(18) 0.2395(4) 0.617(1) 0.1225(3) 5.0(2)
c(19) 0.1084(3) 0.6067(8) 0.062673) 3.6(2)
0.577(1) 0.0584(4) 5.5(3)

C(20) 0.0556(4)
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Table 4+1 (contd.)

c(21) 0.0182(5)
c(22) 0.03322(5)
c(23) 0.0858(5)
c(ay) 0.1238(4)
c(27) 0.1654(3)
c(28) 0.1313(4)
B(11) 0.2268(5)
B(12) 0.1742(5)
B(13) 0.1420(6)
B(14) 0.2121(6)
B(15) 0.1127(5)
B(16) 0.1136(5)
B(17) 0.2276(5)
B(18) 0.1754(5)
B(19) 0.1980(5)
B(20) 0.1674(5)
c(29) 0.4757(9)

0.667(1)

0.789(1)
0.822(1)
0.732(1)
0.4855(8)
0.3856(9)
0.511(1)
0.618(1)
0.586(1)
0.575(1)
0.535(1)
0.429(1)
0.411¢1)
0.462(1)
0.366(1)
0.332(1)
0.659(2)

0.0562(5)
0.0611(4)
0.0646(4)
0.0655(4)
0.0051(3)
-0.0336(3)
-0.0047(5)
-0,0246(4)
-0,0845(5)
-0.0616(5)
-0.0410(4)
-0.0888(4)
=0.0517(5)
-0.1022(4)
-0.0096(4)
-0.0687(5)
0.2333(9)

8.0(4)
7.2(3)
6.2(3)
5.2(3)
3.4(2)
4.5(2)
5.8(3)
5.3(4)
6.6(4)
6.9(4)
5.1(3)
5.6(3)
6.2(3)
S.4(3)
5.1(3)
5.8(3)
18(1)

) 2
TABLE 4.2 Anisotropic thermal parameters (ix103) of the heavy atoms ©

Atom Uss U, Uss U Uiz U,y
Pt b5.4(2) 24.2(2) 29.3(2) =-4.0(2) 15.2(1) -0.8(2)
€1 93(2) 34(1) 45(1) =15(1)  32(1) -12(1)
P(1) L6(1) 31(1) 34(1) -5(1) 15(1) 2(1)
P(2) 37(1) 26(1) 29(1) o(1) 10(1) (1)

£ Ann e
exp(-2ﬁ§=1j= h.h.a.d.U

* The form of temperature factor is 113158385 ij)
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TABLE 4,5 a) Deviations of atoms (Xx103) from, and

the equation of, the weighted least-squares plane

defined by the atoms Pt,C1,P(1),P(2), and B(1)

Pt 0,C1 0,P(1) -17,P(2) -13,B(1) 83,

c(25) 27,c(27) -73,c(28) =657

0e844X = 0,330Y + 0442472 = 1,981%

b) Selected intramolecular distances™ (2)

Pt  «es C(25)
Pt ees C(26)
P(1) eee B(1)
P(1) eee C(26)
P(1) «+o B(5)

5.00
3.25
2461
2.83

2.88

Pt
Cc1
P(2)
P(2)

P(2)

e+ B(5)
eee C(28)
ees C(28)

ese B(15)

eee B(19)

3e24
3424
3400
3.09
3.04

*X,Y,Z, refer to an orthogonal co-ordinate system

defined by a*,b, and

Ce

+There are no intermolecular distances shorter than
the sum of the corresponding van der Waals radii.
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Legend

FIGURE 4,1 A perspective view of the molecular structure

of PtCl(thPC2B1 8 0)(Ph2PC-2B1 OH“). The vibrational
ellipsoids of the Pt,Cl, and P atoms display 50% probability.
For clarity , carbon and boron atoms are represented,
respectively, by open and diagonally-shaded circles of

arbitrary size; they are labelled by numbers only,

corresponding to those listed in Table 4.1,
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4.3 Discussion

The crystals are composed of discrete, monomeric
PtCl(Ph2P02B1OH10)(Ph2PC2B1OH11) molecules and of
disordered solvent molecules, separated by normal
van der Waals confacts. The solvent was not
identified in the course of the analysis, The
chemical history of the sample suggests that it
might be acetone, A view of the molecular structure
of Ptcl(PhQPczB1OH1O)(Ph2PczB1OH11) is shown in
Figure 4.1. The platinuﬁ atom is in a distorted
square-planar environment with two phosphine ligands
trans to one another, The grtho-carborane substituent
of one phosphine is metallated to form a four-membered
Pt-P-C-(cage atom) ring., The geometry of each

carborane group is icosahedral.

Carborane Icosahedra

a) Identification of boron and carbon atoms

The nearly ideal icosahedral CQV geometry of the
ortho-carborane cage is well established from X-ray
structural studiesj2643AHowever, the relative
insensitivity of the X-ray diffraction method to the
chemical character of the atoms in the carborane units
.makes it difficult to distinguish between carbon and
boron atoms. In many derivatives of icosahedral
carboranes the situation is further complicated by

126,127
the presence of disorder. Iievertheless, it is well
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established that the bond distanées in ordered
ortho-carboranes follow the trend C~C<C-B<B-B, although
the ranges of the different types of bond lengths
overlap with one another, .

Accordingly, the two atoms in each icosahedron
which form the shortest set of polyhedral bonds were
identified as carbon atoms. This criterion is based
on the assumptions (i) that there is no disorder between
carbon and boron sites and (ii) that bonding to the
phosphorus and platinum atoms does not effect the bond
lengths within the icosahedra.

The mean polyhedral bond lengths (R) in the two

icosahedra are:

Icosahedron A [B(1)=B(10),c(25).c(26)]

c(25) c(26) B(5) other atoms

1.70 1.74 1.75 11

Icoszhedron B [B(11)-B(20),c(27),c(28)]

c(27) c(28) B(19) other atoms

1,71 1,69 1.73 »1.76

For icosahedron B the geometrical criterion strongly
suggests that C(27) aﬁd C(28) are indeed carbon atoms:
c(27)-c(28) [1.658(12)2] is the shortest cage bond.
The resulting assignment is that of a 1-P-1,2~

dicarbadodecaborane, as expected, .In the case of

icosahedron A, the mean cage bond lengths for C(26)
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and B(S) are rather similar and the geometrical
criterion does not give a clear-cut result. It

should however be noted that switching the chemical
identities of C(26) and B(5) does not alter the
formulation of A as a 1-P-3-Pt-1,2-dicarbadodecaborane.
The final isotropic temperature factors (Table 4.1)
support the chemical identification shown in Figure 4.1.
The lowest temperature factors in the polyhedra are
those of C(25)~C(28), a result not expected if these
are truly boron atoms. The analysis thus suggests

that structure II is more likely than structure I.

At the time of writing an attempt is being made by
Hill and Silva~Trivino to obtain further n.m.r,

evidence, which might settle this point unambiguously.
b) The geometry of the carborane cages

The C-C, C-B and B-B distances in icosahedron B
agree well with corresponding distances in other ortho-
carboranes (Table 4.6). Some'rather untypical bond
lengths are found in icosahedron A: thus the bonds
¢(25)-B(1) and C(26)-B(1) l:respectively 1.,802(15)
and 1.828(14)2:]are unusually long for ortho-carborane
C-B bonds (see Table 4.6),while (¢(25)-C(26) [1.672(14)2]
is slightly longer than C(27)-C(28) E.658(12)€L These
ﬁond lengths may reflect a distortion of icosahedron A,
arising from a radial displacement of the B(1) atom
towards the platinum atom. Iioreover, although the

polyhedral angles approximate regular icosahedral values
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TABLE 4.6 Mean bond lengths () in ortho-carboranes®

Compound C-C C-B B-B Ref

@bB1OH1O(CCHzBr)2 1464 1472 1,77 128
b
(e-c,B, . 1), 1470 1.72 1477 126
0-B, ,C1gH,CH, 1,67 1.71 1479 129
o—B1OBr2H802H2 1,63 172 1.76 130
0-B, Br H.C.H 1.66°  1.71°  1.78 127
1077377272 * ¢ *

0-B, .Br H,_C, (CH 1.65 1.72 1.77 131

107747272 3)2

Carborane cage A

PtCl(thPC231OH1O)_

(thpc

»B40H14) 1.67(1) 1.73(2) 1.80(1) This work

Carborane cage B

PtCl(PhQPC2B1OH1O)—

(Ph2P02B1OH11) 1.66(1) 1.71(1) 1.78(1) This work

The estimated standard deviation, presented in parentheses,

of the mean of I independent observations is given by the
- , . . th

expression éz=zz_1(xi—x)2/(ll—1 )1, where x; is the it and

X the mean value.

b Includes atomic sites for which disorder is likely.
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of 60 and 108° [icosahedron Az 55(1)-64(1)°, mean 60°;

100(1)=117(1)°, mean 106°; icosahedron Bs 57(1)=-64(1)°,

mean 60°; 103(1)=117(1)°, mean 108§], the mean angles
at B(1)[57 and 102?], are the smallest for any of the
twenty four atoms in the two icosahedra,

The constraint imposed by the Pt,P(1),c(25),B(1)
chelate ring would appear to be a major factor in the

distortion of A from a normal ortho~-carborane geometry.,
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Phosphine ligands

Each of the four phenyl rings is planar to
within i0.0BX and the mean phenyl C-C bond length
of 1.40(2)% is normal. The P-C(phenyl) distances
[1.783(10)-1.829(7)3] are on average slightly
shorter than the mean value of 1.828(1)R obtained
for such bonds by Domenicano, Vaciago and Coulson;7
they are also shorter than the P-C(cage) distances
[1.834(10) and 1.888(10)f]. As expected, the bond
angles at the phosphorus atoms deviate somewhat from
the ideal tetrahedral angle of 1090. In the case
of P(1), its incorporation in the four-numbered

chelate ring leads to an unusually small Pt-P(1)-C(25)

angle of 93.2(3)0.

The platinum co=ordination

The platinum atom displays significant deviations
from ideal square-planar co-ordination. Thus the atom
B(1) lies 0.0838 from the metal co-ordination plane
[aefined vy ft,P(1),P(2),01, and B(1)] (Table 4.5),
whereas the other donor atoms are within 0.028 of
this plane. The displacenent of ¢(25) from the co-
ordination plane is only 0.0273. The constraint
imposed by the four-membered chelate ring leads to an
unusually acute P(1)-Pt-B(1) angle of 73.6(3)°.
Simultaneously the P(2)-Pt-Cl angle opens to

106.0(1)°.
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The disposition of icosanedron E with respect to
the metal co-ordination plasne is such thaf Cc(27) and
C(28) are displaced from it by 0,07 and 0,668,
respectively., This leads to an intramolecular C(28)se+Cl
contact of 3.243. If the position of the hydrogen
atom attached to C(28) is deduced on the assumption
that C(28) has the stereochemistry expected for a
carbon incorporated in regular carborane icosahedron,
then the Cle¢**H contact is estimated to be no greater
. than 2.43. This is substantially less than the sum
of the appropriate van der Vaals radii(ca. 3.OXf8and
may be compared with CleseH contacts of ca. 2.5&,
established by neutron diffraction analysis, in
structures containing Clese+H-N hydrogen bondsJBSThere
is thus a strong possibility that Cl and C(28) are
linked by a weak intramolecular hydrogen bond,

The two Pt-P bond lengths differ by 0.026(4)%,
the shorter bond being that involved in the chelate
ring. Both bonds are in the range 2.28—2.322 found
for Pt—P(jgggg to P) distances in mono-tertiary phosphine
platinum(II) complexes.

The Pt-B(1) distance is 2.073(9)3. This appears
to be the first determination of a PtII-B(carborane)

&-bond length. It is slightly shorter than the

Pt-C(g;EQQ-carborane) distance of 2.13(1)R found in
1= [(p-n-Pr;) Pt (P-n-Pr, CECH,CH )| ~2-C(Ho1,2-(8-B, (Cpk ) 30

and it is similar to the mean value of 2.083 recently
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. . A . 1I . .

proposec for i -CSDB bond lengihs subject to low trens-—
s 137 . Al
influence ., The Pt-Cl{trzns to 3} bond lensth of

2.415(3)3 lies at the upper end of the range of values

observed for Pt-Cl distances (2.28-2.453),L8 arnd it
indicates that the trans-influence of a ¢~bonded boron ztom

is high,(At this point it is worth noting that high trang-~
influence , on Pi-H bond, of carborane cage d-bonded

to platinum atom through a carbon atom has been suggested

on the basis of J(Pt-H) n.m.r. data.® ) Indeed, the

Pt-C1(trans to C) distances in trams—PtCl(Cstiﬁea)(Pﬂe2Ph)2

is also 2.415(5)3,56 indicating that d-bonded boron and
sp3-hybridised carbon atoms have comparable trans-influence
on Pt-Cl bonds. For alkyl, and now by extrapolation for

d-bonded boron, high trens-influence is thought to arice
from the strongly covalent nature of the bond formed with
jpla.'l;.i.num.l‘6

This work provides the first structural example of a

1-phosphino-ortho-carborane ligand formirg a four-membered
metal-P-C-(cage atom) chelate ring.The details of the
molecular geomeiry suggest, but do not conclusively prove,
that the cage atom incorporated in the ring is boron
rather than carbon. In most complexes containing ortho-
carboranes, the metal-carborane linkage involves a N-C
é-bond,e.g. ML X(4-carborane) [ 1=Pt,Pd §1=PEt, PPhs, PFh e,

PPhKeQ;X:Cl,H;d-carborane:Z-R—1,2- or T-R-1,7-B,,C,5,,
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. 1 139-12
(R=CH Pn,H)l, although M-carborane J-interactions

3!

and_M°'~H-B co-ordination have also been observedj
The bulk of such species have been synthesised by
reaction of t1-Li-ortho-carborane derivatives with
mefal halides, resulting in elimination of lithium
halide,

lMore pertinent to the present work is the study

by Hoel and Hawthorne of oxidative addition reactions
of iridium(I) species with 1—(1,2-02B1OH11)PMe2, where
extensive spectroscopic evidence indicates that iridium(I)
forms an Ir-P-C-B chelate ring, by insertion of the
metal into a B-H bond.vA From these and other experimentsﬂ'5
it has been concluded that “Werminal B-H groups are much
more reactive with low-valent transition metal complexes
than ordinary C-H g:coups'.m6 The molecular geometry

of the platinum(II) complex described here is compatible

with this observation.



CHAPTER §

The Crystal and Molecular Structure of

cis-Dichloro[1,2-bis(trifluoromethylthio)propane]platinum(II)
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5l Intrpduction

bMany fluorinated bis(alkylthio)ethanes, containing
electron—withdrawing groups attached to sulphur,have been
prepared and characterised4u7At present,little is known
about their properties as ligands., Accordingly,Sharp and
co-workers have recently prepared and spectroscopically
characterized the following complexes:

I PtC1 (heSCF CH SMe)

2

II. PtC1 (CF SC.H SCFB)

oMy

I1I PtClz(CFBSCHMeCH

2SCF3).%8

Compound III contains three asymmetric atoms and the
chelate ring introduces a further asymmetric centre, Hence,

the compound can exist in eight diastereoisomeriq forms:

W M A
WA Y

O-5 , o—C , @D-—(3F3



19F n.,m.r. analysis of III in acetone solution, over a
large temperaﬁure range (173 - 323°K), established the
presence of only four isomers.w8 These have been
associated with four diestereoisomeric forms and rapid
interconversion of the isomers does not appear to occur.
Furthermore, long range F-F coupling has been observed
for two of the isomers, presumably those with a syn
arrangement of the trifluoromethyl groups.MBIt was felt
that structure analysis of the compléx in the solid-
state might contribute to thé interpretation of these
results,

More relevant to the work described in this thesis is
the effect of electronegative substituents attached to the
sulphur atom on the metal-sulphur bonding. Strong
electron-withdrawing groups linked to the sulphur atom
may cause a contraction of sulphur lone pair or.'biteza.ls,11'9
thus reducing their availability for co-ordination; they
can also promote back-bonding from the metal d orbitals
of appropriate symmetry into the vacant sulphur 34 orbitals,
thus strengthening the metal-sulphur bond. In this context
it is worth noting that trifluoromethyl comes highest cn
Tolman's scale of the electron-withdrawing ability of
substituent groups in phosphines.63

Evidence for and against the existance of M-»3 back-

1
bonding is still scarce and contradictory. Thus,

MBssbauer and i.r. spectra of the complexes C6F58Fe2(00)6SR

(R = C6H5 or C6F5) have been explained by increased
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metal—ssulphur backbonding when R = C6F5JSZ Somewhat
surprisingly, it has also been suggested, on the basis

of ionization potential data for complexes L1L2Fe2(CO)6
(L1,L2 = SR or PRQ), that phosphorous donor ligands

are less effective J~acceptors than sulphur donor ligandsj53
In contrast, MBssbaver and i.r. data for some mercapto

iron derivatives suggest that the T-acidity of sulphur

154

is smaller than that of phosphorous, and f-bonding is

thought to be totally absent in some_metal—sulphur bonds.155
At present, there are very few X-ray structural studies
relevant to this problem. The synthesis of the complex
gig—PtClz(FBC SCF&eCHQSCFa) provided an opportunity to
investigate the effect of trifluoromethyl substituents on

the trans-influence and bonding to platinum of thioether

1igands.

5.2 Results and Discussion

A full account of the structure analysis of

cis—PtClQ(FBCSCHMeCH SCFB) has been published (see inside

2

back cover), and accordingly only brief details of

the experiment and salient results will be presented here.
2301 Diffractometric data ,with I>34(1) , corrected for

Lorentz-polaéisation and absorption effects, were used in

the analysis, The structure was solved by the heavy-atom method

and refined by the full-matrix least-squares procedure, The
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final structural model, involving anisotropic non-hydrogen
atoms and isotropic hydrogens, gave R = 0.054.

The analysis revealed the expected cis-square-planar
co~ordination at the platinum atom (Figure5.12The methyl
group attached to the C(2) atom is pseudo-equatorial
relative to the almost symmetrically-puckered chelate ring.
The CF3 groups are in a syn arrangement. The relevant
information for platinum (II) complexes is not available;
in bis(thioether) and bis(selenoether) chelate complexes of
palladium (II),however, the terminal substituents at the
Group VIA donor atoms are usually in syn posi‘l:ions.156'157

Although the intermolecular distances are predominantly
of the van der Waals type, there are strong interactions
between pairs of centrosymmetrically related molecules
(Figures.z). The arrangement is such that the platinum
co-ordination planes are antiparallel to each other and the
metal~ligand bonds are eclipsed. The Pt...Pt separation
(3.422) is too long to reflect normal covalent bonding, and
it is longer than the corresponding distances in FKagnus' Grecen
Salt (3.252) and related complexesjssln this conteit it is
worth mentioning that a semi-empirical M.0. calculation on
Magnus' Green Salt indicates that the covalent Pt - Pt bond
order is about 0.04.159 The Cl...S separations (3.35 and

3.383) are slightly shorter than the Pt...Pt contact, thus

introducing a small pyramidal distortion of the co-ordination



=153

geometry of platinum. The pairing of the centrosymmetrically
related molécules may therefore be exélained by a weak
electrostatic interaction between sulphur and chloro ligands.
The Pt-Cl distances are at the lower end of the range
of values observed for terminal PtII-Cl distances
(2,26 - 2.45x)f8I%us, the trans-influence of the thioether
ligand is relatively weak in this compound. The Pt-S
distances [2.2%9(3) and 2.260(3)R%] are shorter than the sum
of the appropriate covalent radii (ca. 2.343)68 and the
longer bond is adjacent to the chelate-ring methyl substituent.
The effect of trifluoromethyl groups on the metal-ligand
bonding is difficult to establish, for very little comparative
structural information is available (Table 5.1). Furthermore,
the influence of the strong S...Cl intermolecular interactions
on the bonding vithin the molecule is difficult to 4ssess.
Of the compounds containing mutuwally trans sulphur
and chlorine atoms (Table 5.1), gig—PtClQ[S(p-C6H4CI)212,
where the Pt-S and Pt-Cl bond lengths are 2,285(7) and
2.300(5)2, is perhaps most closely related to gig—PtClé-
(CFBSCHMeCstCFB). The comparison of bond lengths in the
two compounds suggests that the electron-withdrawing
trifluoromethyl groups may be responsible for a slight
- shortening of the Pt-S bonds in the latter., It should however
be noted that a Pt-S5 distance of 2.26X has been reported for
_c_:_i_s-Pt012[Iv1eSCH20H2(COOH)CNH2] , although the accuracy of this

result is low. From Table 5.1 it is also apparent that
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Pt-S(DMSO) bonds are substantially shorter than Pt-S(thiocether)
bonds, but that the trans-influence of both types of sulphur-
donor ligands on Pt-Cl distances is comparable. The
conformations of the two trifluoromethyl groups are similar
(corresponding torsion angles about the S-C bonds agree to
within 8°), and such that the C-F bonds involving the F(3)

and F(6) atoms are pointed towards each other so that the
P(3)s¢.F(6) non-bonding contact is 2.82%. This is somewhat
greater than the sum of the van der Waals radii (ca. 2.703),68
but nevertheless may be responsible for the F—F coupling
observed in acetone solution. The C~F bond lengths and

F-C-F angles, with respective means of 1.305(7)& and 107.7(6)°,
are normal, The S~C-F angles involving F(3) and F(6) atoms
are some 50 larger than the other S-C-F angles.

The co-ordination of the sulphur atoms is approximately
tetrahedral. The four S-C bond lengths agree to within
experimental error, the mean value of 1.835(3) being typical
for a bond of unit order.

The chelate ring has a symmefrical—puckered gauche
conformation, as evident from the C-C-5-Pt and C-5-Pt-5
angles [C(2)c(3)s(1)Pt -37(1),c(3)c(2)s(2)Pt -33(1)°%;
c(3)s(1)Pts(2) 11(0.5),¢(2)s(2)Pts(1) 10(0.5)°].

The molecules of cis-PtClQ(CFBSCHMeCstCFB) contain
four chiral centres: the asymmetric atoms S(1), $(2) and
C(2), and the chelate ring. Thus eight enantiomeric pairs

of diastereoisomers may exist., The crystalline form studied
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here contains equal numbers of enantiomeric molecules., In those
in which the chelate configuration is 5W?(1)C(3)C(2)S(2) torsion
angle +47°, as in Figure 5.11, the absolute configurations at

5(1), s(2) and C(2) are respectively (R),(S) and (s).
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Legends

FIGURE 5.1 A perspective view of the molecular structure

of Cis-Pt012(FBCSCHMeCH SCF3)' The vibrational ellipsoids

2
display 50% probability. Hydrogen atoms are omitted for

clarity.

FIGURE 5.2 Molecular packing in a crystal of

cis-PtClz(FBCSCHMeCH SCF3)° For clarity, atoms are

2

represented by circles of arbitrary size. Hydrogen

atoms are omitted,
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CHAPTER 6

Phe Crystal and Molecular Structure of

Di—f—chlorodi(propionyl)bié(dimethylphenylphosphine)diplatinum(II)



6,1 Introduction

The compound [Ptz(r—Cl)Z(COEt)Z(PHeQPh)2] was
prepared in this department by Dr. R.J. Cross and kr.
G.K. Lnderson who also examined its 51P n,m,r, spectra
in various solvents. These spectra indicate that the
compour:d exists in solution as z mixture of readily-
interconvertable cis- and trans-isomers., The most
remarkable featuresof the spectra are the 1J(Pt-P)
coupling constants, which are ca. 5400Hz for both
isomers, The values are at the upper end of the range
for 1J(Pt-P) coupling constants for halogen-bridged
binuclear platinum(II) complexes containing tertiary

167-169

phosphines. They are almost twice as large as the

1J(Pt—P) values for mononuclear cis-dichloro(monotertiary-
phosphine)platinum(II) speciesj70

In binuclear complexes the coupling constants do
not depend only on the nature of the halide bridge, being
much lower in tetrzhalide species than in di-organodihalide
complexes {e.g. trans- [Ptz(tﬂ—m.)éClz(Pi'«EezPh)z] ,
1J(Pt-P) = 3931&2“9}. It has therefore been suggested
that organic ligands indirectly influence the Pt-P
bonding by weakening the halogen bridgej58 4 cis-influence
mechanism seems equally plausible in view of the similar
coupling constants displayed by the cis- and trans-
isomers of [Pt2(ft—01)2(COEt)2(Pi-ie2Ph)2]. In mononuclear
complexes variations of ca. 1000Ez in 1J(Pt-P) values
170

due to change of cis-lizand have been observed.

To examine the bridge-weakening effect of organic
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ligands, and also because of the proposed correlation
between Pt-P coupling constants and bond 1engths,msa
‘structure analysis of jgégﬁf[Pt29w-Cl)2(COEt)Q(PﬁezPh)Q]
has been carried out. Only this isomer is obtained
on recrystallisation from methylene chloride/ether.

Up till recently the discussion of the mutual
influence of ligands ‘has been concentrated on mononuclear
speciesf's'w'l'9 and the results of this analysis are pertinent

to any consideration of such effects in halogen-bridged

binuclear complexes.
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6.2 Experimental

Crystal Data

Formula | srans- [P, (1-C1) ,(COEt) (e, Ph), |
Formula weight - 851.3
Crystal system . triclinic
a8) 7.839(1)
b(R) 8.531(1)
o(R) | 11.892(1)
d(?) 75.88(1)
B(°) - 73.19(1)
¥(°) » 65.05(1)
Cell volume (2°) 679.06
No. of mol. per cell 1 |

Calculated density (g cm™>) 2.082

@(Ho-K, ) (em™ 1) 107.2
Space group P
Equivalent positions Xyz, Xyz

Molecular symmetry Ci
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Data Collection Summary

Temperature (°C)
Diffractometer

Radiation

Counter

Scan

Background
measurement

Omax ( o)

q_(see Part I, Ch.3)

No. of reflections with

1734(1), n
No. of parameters, m

n/m

20
Enraf-Nonius CAD-4F

graphite-monochromatised

Mo-K4 (A=0.71069%)

scintillation with pulse-~
~height analyser

e/26

moving crystal-
-moving counter

30

0.04

3194

136

23,5
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Measurements

The photographic measurements were in accord with
triclinic symmetry. The preliminary cell dimensions
obtained from oscillation and Weissenberg photogravhs
were later refined on én Enraf-lionius CAD=-4 diffractoneter
from the setting angles of 25 reflections [with 14(0(190}
from diverse regions of reciprocal space. The structure
was satisfactorily refined in the centrosymmetric space
group PT.

The intensities of all independent reflections
[in the range 2464300] were measured by a symmetrical
9/26 scan., The © scan width (in degrees) of 0.06 +
0.%35tan® was increased by 25% at each of the scan ends to
allow. for background measurements, The maximum
counting time was 60 s, but for stronger reflections
it was adjusted so that 4(I)/I was 0.03. In order
to check the crystal and system stability two standard
reflections were remeasured periodically throughout
the experiment. No significaﬂt change either in
intensity or orientation was observed during the
experiment. Of the 3762 intensity measurements, 3194,
for which I»36(I), were used in the analysis.

Data were corrected for Lorentz, polarisation and
absorption effects. The transmission factors on‘F5|2,
derived by Gaussian integration and a grid of 640 points,
were in the range 0,17 - 0.60., The crystal used was

plate-shaped, the largest faces being (001) and (007).
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Structure analysis

The position of the platinum atom was derived from
the three-dimensional Patterson synthesis, The positions
of the other non-hydrogen atoms were obtained from a
subsequent difference synthesis, Full-matrix least-
squares adjusitment of the positional and isotropvic
thermal parameters converged with R = 0.139, When
atomic thermal vibrations were treated anisotropically
R fell to 0,095, Data were then corrected for absorption
effects, giving R = 0.028; Eydrogen atoms were found
from the subsequent difference synthesis and were
included in the further calculations but their parameters
wére not refined, The final values of R and Rw vere
0.026 and 0,033, A final difference synthesis contained
regions of * 1.6 eﬁ_3 close to platinumj elsewhere
function values were within ¥ 0.8 eR_B. liean wvalues
of ([F;{—\in)2/62(|Foi) showed no significant variation
with |F4| or sin €.  Extinction correction did not

appear to be necessary.
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TABLE 6.2 Fractional co-ordinates of hydrogen atoms.The isotropic

temperature parameter assigned to each hydrogen atom was 0.08_82.

;ﬁ.tom+ X y z

H(1)C(2) 0.142 =0.512 0.120
H(2)C(2) -0,056 -0.455 0.103
H(3)C(3) 0.081 =0,703 0.322
H(4)C(3) ~0.150 -0.628 0.309
H(5)C(3) 0.021 -0.772 0.218
H(6)C(4) 0.028 =0.235 0.437
H(7)C(k) 0.219 -0.23h 0.462
H(8)C(L) 0.061 ' -0.052 0.399
H(9)c(5) 0.358 -0.005 0.199
H(10)c(5) 0.510 ‘ -0.180 0.272
H(11)C(5) 0.500 -0.180 0.132
H(12)C(7) 0.526 =0, 474 0.091
H(13)C(8) 0.689 -0.784 0.122
H(14)C(9) 0.660 -0.963 0.316
H(15)C(10) 0.492 -0.839 0.479
H(16)C(11) 0.294 -0.547 0.468

T H(n)c(m) is hydrogen atom attached to carbon atom C(m)
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TABLE 6.4 Selected interbond angles (°)
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TABLE 6.6 The equation of, and individual displacements

of atoms (103x 2) yfrom the weighted mean plane [defined
by the atoms  Pt(1), Pt(1'), c1(1), ci(1'), (1), P(1'),
¢(1) and c(1')].

~0.313X + 0.769Y + 0.557% = 0.000"

pt(1) o0.0(1), c1(1) 2(1), (1) 2(1), c(1) 13(5),
Pt(1') 0.0(1), c1(1') -2(1), P(1') =2(1), c(1') -13(5)

X,Y,Z, refer to an orthogonal co-ordinate system

defined by a*,b, and c.
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Legend

FIGURE 6.1 A perspective view of the molecular
structure of trans- [Ptz({»i-Cl) o(COEt),(Plie,Ph),].
The thermal ellipsoids display 50% probability.
Hydrogen atomsg are omitted for clarity. The small
circle represents a crystallographic centre of

symmetry.
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6.3 Discussion

The crystals are built from discrete binuclear
molecules separated by normal van der Waals contacts,
Final atomic parameters and a selection of functions
‘derived from them are presented in Tables 6.1 - 6.6,

An ORTEP drawing of the molecule is shown in the
Figure 6.1, |

Bach molecule is constrained to exact Ci symmetry.
This implies both that the crystals contain. the
trans~isomer and also that the Pt2012 moiety is exactly
planar, Each metal centre has a slightly distorted
square~planar co-ordination, with the two planes sharing
a common edge so that the two platinum and six ligand
donor atoms are all within 0.0132 from their mean plane
(Table 6.6), Bond lengths and angles within the PMe,Ph
ligand are unexceptional; the mean values of P-C and
C-C bonds are 1.806(6) and 1.379(7)R, respectively.
The Pt-C-C and C~P-C angles are as expected, resvectively
greater and smaller fhan the te%rahedral value [mean Pt-P-C
113.7(9), C-P=C 105.4(8)°]. The conformation
adopted by the ligand is such that methyl carbon C(5)
lies close to the metal co-ordination plane and the
phenyl ring plane passes near thé atom C(4), as shown
by €1{1) = Pt(1) = B(1) - ¢(5) and c(4) - P(1) - c(6) - c(11)
tofsion angles of =-9.6(3%) and 5.2(5)°, respectively.
Bond lengths and valency angles within the propionyl
ligand are also normal. The P(1) - Pt(1) - c(1) - 0(1)

and Pt(1) - ¢c(1) - c(2) - ¢(3) torsion angles are
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72.4(4) and 161.1(5)°.  This conformation leads to a
somewvhat shqrt intramolecular Pt,..H contact, involving
a hydrogen atom attached to C(2), of 2.8R8,

Examination of the metal-ligand bond lengths
provides two interesting points. First, despite the
large 1J(Pt-P) coupling constant (ca.5400Hz), the Pt(1)-P(1)
disténce [2.209(1)31 is only slightly shorter than the
range of comparable Pt-P(trans to Cl) bond lengths [2.21 —2.288]
in mononuclear complexes containing alkyl- or aryl-substituted
tertiary phosphinesj70 Indeed, it is equal, to within
experimental error, to the shortest such value, 2.214(1)%
in the anion [PtClB(PEtB)]_, which displays a 1J(Pt-PEt5)
coupling constant of 3704Hz,60 some 30% smaller than that
for w-[mé(pm)écom)2(PMe2Ph)2], This suggests
that the proposed correlation between Pt-P coupling
constants and bond lengths['5 breaks down if the complexes
compared differ greatly. Second, the substantial
difference between the two Pt-(-C1l)bond lengths [0.105(2)2]
indicates that d-propionyl exerts a much greater trans-influence
than phosphine on the bridging chloriné ligands. This is a
somewhat surprising‘result, since Pt-Cl distances in
mononuclear complexes i?.36 - 2.592} trans to tertiary
phosphine are only slightly shorter than the corresponding
distances [?.40 - 2.422] trans to d-carbon donors,l’7
suggesting that the trans-influence of phosphines is only
slightly lessvthan that of d-carbon donor ligands.

The generality of these observations appears to

be confirmed by an examination of metal-ligand bond
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17-179

lengths in tr:ns-_?tz{ﬁ—Cl)2K2Y2] conplexes (Tablo 6.7/
In these molecules each bridzirng chlorine atom vparticinates
in two Pt-Cl bonds which are trars to different terminal
ligands., Tre data in Table 6.7 do not indicate any
significant relationship between the lengths of the two
Pt;QbCI)bonds formed by a given chlorine atom, Instead,
each Pt—QbCl)distance apnears to reflect the influence

of the trans-terminal ligand, according to the series

C1<m-(C=C)< Aslie 4P33<3—C. Apert from the previously

3
noted disparity between PR3 and é-carbon donors)this

‘series ap?ears to be identiczl with that derived fronm
mononuclear comple}ces.['6'4g The terminal platinum-ligand

bonds in Table 6.7, including those to tertiary vhosvhine,
appear on average to be ca. 0.032 shorter than
corresponding bonds itrans to chlorine in mononuclear
complexes, while the Pt-gb01)bonds are typically ca. 0.032
longer than Pt-Cl bonds in mononuclear complexes trans

to similar ligands, Thus bridging chlorine atoms form
weaker bonds to platinum and have a lower trans-influence
than terminal chlorine atoms, The participation of
bridging chlorine atoms in two Pt-Cl bonds, compared

with only one for a terminal chlorine atom, seems the
obviou; reason for this, In terms of the d-trans-influence

theory bridging chlorine atoms are weaker donors, teinz
effectively more electronegative, than {erminal chlorine
" atoms, The features apparent in Table 6.7 therefore

seen to be accounted for by current views of trans-iniluence,
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PART III

The Crystal and Molecular Structures of
Two Binuclear Platinum(I) Complexes Containing

Bridged lMetal-lMetal Bonds

I [Pt(u(;&-dppm)]z

II [Pt201(co)(§u-dppm)2](PF6)

‘dppm:Bis(diphenylphosphino)methane
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7.1 Introduction

In the past 15 years it has been abundantly deronstreied
that the transition metals can form direct metal-to-retal
‘bonds. Recent suggestions that metal cluster;&)and
binuclear complexesw1 may be capable of new modes of
catalytic activity have stimulated interest in their chemical
behaviour and structural properties. It is also hoped that
further experimental and theoretical studies of these
compounds may help bridge the gap between current understandins
of co-ordination and surface chemistry.

This part of the thesis describes the X-ray structure
analysis of two dimeric platinum(I) complexes conteining
metal-metal bonds. Platinum(I) is an uncommon oxidation
state of platinum, Its well~charactefised complexes are
still relatively rare and only a few of these have been
examined crysfallographically. They involve metal centres
co-ordinated by a variety of ligands, displaying different
electronic and steric properties, and contain metal-metal

182-186 187188
bonds with and without bridging groups.

The compound EPtCl(H—dppm)]g, I, where dppm =
(CéHS)ZPCHZP(CéHB)Q, was first obtained by Glockling and
Pollock,189 and later by Brown gjﬁgl.}q) using different
synthetic routes. Glockling and Pollock assigned it a
chloride-~bridged structure, (A).' This, however, wvas
subsequently questioned by Schmidbaur g}_@ljg1 who proposed
a dppm-bridged structure, (B), by analogy with a related

gold(II) complex, The latter structure was stronsly

supported by detailed spectroscovic evidence (n.m.r., 1.T.
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and Raman) of Brown et al,'90

*éz
Ph C Ph P/ PPh2
P2 L 012 2‘
H C/\ / \ <N\ c P L
25 Pl Pt /CH2 l t t cl
RN e
Ph, ct Phy pth\\\ //Pﬂb
oy
(A) | - (B)

Brovn et al. also showed that I reacts with carbon
monoxide in methanol to form an ionic complex,
[Ptzcl(CO)(ﬁ-dpim)z]Cl, which can readily be isolated as
the hexafluorophosphate salt [PtQCI(CO)QL—dppm)Z](PF6), 11,

181

on addition of hexafluorophosphate. On the basis of
spectroscopic data (n.m.r., i.r. and Raman) they suggested

structure (C) for the cationic complex.,

thP/ \Pph

T

Cl Pt Pt——=CO

thp\c P

Ha

(C)
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An interesting feature revealed by formation of these two

salts is the ability of carbon monoxide to compete with

chloride for the platinum(I) centre; displacement of
chloride by CO is not known in square-planar platinum(II)
complexes.,

The results of the work described here estabiished

(B) and (C) as the correct structures for the complexes

I and II,
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7.2 Byxrerinenisl

The X-ray aralyses of I and II were carried out by
similar methods, Details peculizr to each are nresented
in the accompanying Crystal BHatz and Data Collection and

Refinement Tables.

Measurement and structure znalvses

The space group and preliminary cell dimensions fof
each compound were determined from rotation and Weissenberg
photographs, The crystals were then transferred oﬁto a
Hilger and VWatts Y-290 diffractometer, equipped with a
graphite monochromator and a scintillation counter with
a pulse-height analyser, Final values of cell parzmeters
(r = 2100) were.obtained by a least-sguares refinement of
the setting angles of 11 reflections [with 1246(170 for I
and 11<6418° for II], which have been chosen from diverse
regions of reciprocal space. Intensities of all
independent reflections with 6(io-K, )< 30° for I, and
8(Mo-K,) £ 25° for II, were measured. Symmetrical ©/26
scan technigue and stationary crystal-stationary counter
background cocunting were emvloyed.

The intensities were corrected for Lorentz-polarisation
effects and for the variations in intensity of three
periodically-remeasured standard reflections, but not for
extinction nor 2bsorption. A satisfactory allowance for
absorption was not possible beczuse of difficulties in

defininz 2deguately the shane of the specimens. Tre



-? 8‘4—-

transmission factors ont?lz were estimated to be ca, 0.3 - 0.4
for I and 0.2_- 0.4 for II,

For each compound the positions of the platinum atoms
were obtained from the three-dimensional Patterson synthesis,
Refinement of the positionazl and isotrovic thermal paraneters
of the platinum atoms gave R = 0,25 for I and R = 0.24 for II,
The positions of the other atoms, apart from those of
hydrogens, were determined from subseguent difference
syntheses. The structures were refined by the method of
block-diagonal least-squares., = The refinement converged
with R and Rw values of 0,086 and 0,108 for I, and 0.082
and 0.098 for I1I,. Anisotropic temperature factors were
used only for Pt, Cl and P atoms in the case of I and for
Pt, C1, P, O, F and the carbonyl carbon atoms in the case
of IT, No dllowance was made for the scattering of the
hydrogen atoms, Pinegl difference syntheses showed a
number of peaks in the vicinity of the platinum atoms
[up to 3.5 e22 for T ana 3.4 e®3 tor II]. The mean
values of (|Fo[-|Fc])2A52(IFoi) showed no systematic

trends when analysed as a function of |Fo] or sin@.

The final atomic parameters, and a selection
of functions derived from them, are presented in Tables
Te1=7+7. Views of the molecular structures of I and II

are shown in Figures T.1 and 7.2, respectively.
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Compound

-185=-
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Formula

Formula weight
Crystal system
a(R)

b(R)

c(®)

B(°)

Cell volume (RB)

No. of mol.
per cell

Calculated density
(g cm™3

«(MO—K¢)(cm-1)
Space group

Equivalent
positions

[PtCl(!;.L-dppm)]2

1229.9
monoclinic
13.592
16.577
21.438
105.63
4651.6

4
1.756

63.4
P21/c

¥ xyz)

i(xi%‘Y9%+Z)

[?t201(co)(¢-dppm)2](PF6)

1367.4
monoclinic

12,919

'150576

25.151
94.82
50433

4

1.801

59.2

P21/n(022 , No. 14)

*(xyz)
i(gZx,%-y,%+z)
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Summary of Data Collection and Refinement

Compound I } II
€y () 30 25

Scan width A6(°) 0.6 0.5
Step size in 8(°) 0,02 " 0,02
,(s) 75 50

T, (s) 15 15

9(see Part I, Ch.3) 0,04 0.04
No. of reflections .
with I34(I),n 4307 5646
No, of parameteré P 274 | 345
n/p 157 1644
R (%) 8.6 8.2
R (%) ~10.8 9.8
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TABLE 7.7 Final fractional co-ordinates of atoms and isotropic

thermal parameters (?.MOB) of carbon atoms

a) [PtCl(,u-dppm)J2 (1)

Atom X ¥ z U(iso)
P£(1) 0.28976(6) 0.06208(6) 0.23640(4) -
Pt(2) 0.09531(6) 0.07584(5) 0.17005 (k) -
c1(1) 0.4674(L) 0.0546(6) 0.2953(3) -
c1i(2) -0.0773(4) 0.0833(5) 0.1031(3) -
B(1) 0.3294(4) 0.0256(4) 0.1431(3) -
P(2) 0.2L58(4) 0.0899(4) 0.33%02(3) -
P(3) 0.0513(L) 0.0219(4) 0.2555(3) -
P(4) 0.1568(4) 0.1352(4) 0.0939(3) -
c(1) 0.237(2) 0.06%(2) 0.066(1) 47(6)
c(2) 0.113(2) 0.090(2) 0.324(1) 43(6)
c(3) 0.342(2) -C.083(2) 0.135(1) 53(7)
c(h) 0.446(2) 0.065(2) 0.131(1) L1 (6)
c(5) 0.205(2) 0.014(2) 0.397(1) 49(6)
c(6) 0.285(2) 0.190(2) 0.369(1) 42(6)
c(?) -0.085(2) 0.025(2) 0.256(1) 41(6)
c(8) 0.088(2) -0.085(2) 0.279(1) 48(6)
c(9) 0.2540(2) 0.226(2) 0.118(1) 47(6)
c(10) 0.066(2) 0.171(2) 0.017(1) 44(6)
c(11) 0.296(2) -0.127(2) 0.079(1) 6L (8)
c(12) 0.3204(2) -0.206(2) 0.077(1) 68(8)
c(13) 0.358(2) -0.251(2) 0.128(2) 82(10)
c(1b) 0.404L(2) -0.205(2) 0.187(2) 80(9)
c(15) 0.398(2) -0.127(2) 0.191(1) 65(8)
c(16) 0.498(2) 0.c27(2) 0.090(1) 55(7)
c(1?7) 0.582(2) 0.063(2) 0.077(2) 69(8)
c(18) 0.617(2) 0.141(2) . 0.102(1) 66(8)
c(19) 0.569(2) 0.178(2) 0.142(1) 60(7)
c(20) 0.485(2) 0.143(2) 0.157(1) 50(6)
c(21) 0.3L6(2) -0.048(2) 0.385(1) 57(7)
c(22) 0.282(2) -0.110(2) 0.435(2) 72(8)
c(23) 0.283(3) -0.087(3) 0.501(2) 121(14)
c(an) 0.332(2) -0.022(3) 0.510(2) 115(14)
c(25) 0.296(3) 0.031(2) 0.459(2) 91(11)
c(26) 0.395(3) 0.199(3) 0.295(2) 101(12)
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c(27) 0.421(3) 0.280(3) 0.426(2) 96(11)
c(28) 0.358(2) 0.333(2) 0.420(2) 79(9)
c(29) 0.253(2) 0.223(2) 0.406(1) 69(8)
c(30) 0.216(2) 0.247(2) 0.373(1) 62(8)
c(31) -0.120(3) 0.082(2) 0.296(2) 92(11)
c(32) -0.227(3) 0.070(3) 0.295(2) 101(12)
c(33) -0.289(2) 0.034(2) 0.252(2) 72(9)
c(3h) -0.254(2)  -0.019(2) 0.216(2) 75(9)
c(35) -0.149(2)  -0.022(2) 0.214(1) 54(7)
c(36) 0.039(3)  -0.123(2) 0.320(2) 84(10)
c(37) 0.067(3) -0.206(2) 0.337(2) 86(10)
c(38) 0.138(2) -0.240(2) 0.314(2) 73(9)
c(39) 0.184(4) -0.205(2) 0.273(1) 62(7)
c(40) 0.158(2) ~-0.121(2) 0.254(1) 45(6)
c(l1) 0.254(2) 0.258(2) 0.181(1) 67(8)
c(42) 0.325(3) 0.323(2) 0.199(2) 89(10)
c(h3) 0.372(2) 0.354(2) 0.156(2) 78(8)
c(Ll) 0.3260(2) 0.324(2) 0.096(1) 65(8)
c(45) 0.291(2) 0.256(2) 0.075(1) 66(8)
c(L46) 0.039(2) 0.249(2) 0.011(1) 54(7)
c(&47) ~0.029(2) 0.278(2) -0.052(2) 77(9)
c(48) -0.059(2) 0.219(2) -0.101(1) 69(8)
c(k9) -0.028(2) 0.139(2) -0.092(1) 60(7)
c(50) 0.035(2) 0.111(2) ~0,030(1) 47(6)
b) [Ptacl(CO)(u-dppm)aj(PF6) (11

Atom X y Z U(iso)
Pt(1) 0.31035(6) 0.37598(5)  0.18583(3) -
Pt(2) 0.31210(6) 0.22834(5)  0.13607(3) -
c1(1) 0.3057(4) 0.5082(3)  0.2333(2) -
P(1) 0.4270(4) 0.4350(3)  0.1326(2) -
P(2) 0.2056(4) 0.3154(3) 0.2451(2) -
P(3) 0.1376(4) 0.2308(3) 0.1460(2) -
P(4) 0.4866(L) 0.2544(3) - 0,1270(2) -

0 0.30L(2) 0.044(1) 0.0967(9) -
c(51) 0.310(2) 0.114(2) 0.110(1) -
P(5) 0.73L2(6) 0.2592(5)  0.4540(2) -
F(1) 0.823(2) 0.255(2) 0.426(1) -
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Table 7.71.b) (contd,)

F(2)
F(3)
F(4)
F(5)
F(6)
c(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(?)
c(8)
c(9)
¢(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)
c(19)
c(20)
c(21)
c(22)
c(23)
c(ah)
c(25)
c(26)
c(27)
c(28)
c(29)
C(30)
c(31)
c(32)
c(33)
C(34)

0.692(2)
0.771(2)
0.636(2)
0.672(3)
0.797(2)
0.485(2)
0.130(1)
0.372(2)
0.538(1)
0.104(2)
0.284(1)
0.057(1)
0.068(1)
0.577(2)
0.551(2)
0.333(2)
0.292(2)
0.292(2)
0.330(2)
0.368(2)
0.607(2)
0.688(2)
0.703(2)
0.633(2)
0.553(2)
0.064(2)
-0.027(2)
-0.072(2)
-0.032(2)
0.054(2)
0.311(2)
0.378(2)
0.413(2)
0.385(2)
0.322(2)
0.04L(2)
-0.017(2)
-0.062(2)
-0.054(2)
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0.178(2)
0.3565(1)
0.262(3)
0.307(2)
0.216(2)
0.358(1)
0.225(1)
0.516(1)
0.450(1)
0.378(1)
0.279(1)
0.144(1)
0.325(1)
0.267(1)
0.178(1)
0.488(2)
0.558(2)
0.638(2)
0.666(2)
0.601(2)
0.536(2)
0.580(2)
0.571(2)
0.523(2)
0.482(1)
0.451(1)
0.491(2)
0.459(2)
0.387(2)
0.349(2)
0.341(2)
0.308(2)
0.229(2)
0.167(2)
0.195(1)
0.069(1)
0.001(1)
0.005(2)
0.085(2)

0.428(1)
0.480(1)

0.480(1) -

0.411(1)
0.502(1)
0.0918(8)
0.2170(8)
0.0870(8)
0.1677(7)
0.2712(8)
0.3037(8)
0.1174(7)
0.1229(7)
0.1872(8)
0.0858(8)
0.031(1)
0.000(1)
0.014(1)
0.065(1)
0.1011(9)
0.1400(9)
0.168(1)
0.223(1)
0.2505(9)
0.2241(9)
0.2431(9)
0.258(1)
0.306(1)
0.331(1)
0.315(1)
0.343(1)
0.389(1)
0.392(1)
0.352(1)
0.3058(9)

0.1L46(9)

0.1214(9)
0.070(1)
0.043(1)

54(5)
50(5)
60(5)
49(5)
54(5)
51(5)
h7(h)
LL (L)
57(5)
56(5)
74(6)
71(6)
73(6)
91(8)
65(6)
68(6)
&2(7)
88(8)
70(6)
62(6)
65(6)
92(8)
106(10)
93(8)
74(6)
77(7)
&4(7)
82(7)
85(8)
64(6)
62(6)
66(6)
§2(7)
10h(9)



Table 7.1.b) (contd.)

c(35)
C(36)
c(37)
c(38)
c(39)
c(L0)
c(u41)
c(42)
c(L3)
c(Lb)
c(45)
c(46)
c(47)
c(48)
c(49)
c(50)

0.012(2)
-0.033(2)
-0.087(2)
~0.042(2)

0.051(2)

0.110(2)

0.536(2)

0.607(2)

0.705(2)

0.741(2)

0.676(2)

0.619(2)

0.671(3)

0.640(2)

0.569(3)

0.520(2)

0.152(2)
0.337(1)
0.414(2)
0.47L(2)
0.460(2)
0.384(1)
0.248(1)
0.264(2)
0.294(2)
0.309(2)
0.297(1)
0.122(2)
0.057(2)
0.055(2)
0.115(2)
0.177(2)

0.066(1)
0.1364(1)
0.1214(9)
0.088(1)
0.072(1)
0.0897(8)
0.2372(8)
0.2832(9)
0.2799(9)
0.229(1)
0.1830(9)
0.108(1)
0.078(2)
0.023(1)
0.001(1)
0.032(1)

90(8)
62(6)
72(6)
76(7)
74(6)
56(5)
58(5)
70(6)
72(6)
85(7)
62(6)
99(9)
120(10)
103(9)
120(10)
94(8)
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TABLE 7.6 Deviations of atoms (8 x 103) from, and

equations of, their weighted mean planes

a) [PtCl(,u-dppm)]2 (1)

(1) Pt(1) -2, Pt(2) -1, c1(1) -61, P(1) 86, P(2) 84.

-0.189X - 0.969Y + 0.161Z = -0.710"

(ii) P(1) 2, Pt(2) -1, c1(2) 127, P(3) -66,P(4) -66.

0.158X - o.9o4i - 0.3972 = -2.480"

b) [Pt2Cl(CO)(ﬂ—dppm)é](PF6) (11)

(i) Pt(1) -4, Pt(2) o, c1(1) 11, P(1) 102, P(2) 92.

0.735X - 0.289Y + 0.613% = 3,823"

(ii) Ppt(1) o, Pt(2) -3, c(51) =265, P(3) 87, P(4) 99.

-0.126X + 0.468Y — 0.8752 = =1,791"

* X,Y,Z2 refer to an orthogonal basis set defined by a¥*, b and c,
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TABLE 1.7 Selected intramolecular non-bonding distances

(X) less than the sum of the appropriate van der Waals radii

Compound [PtCl(,u—dppm)]2 (1) [Pt201(co)(¢-dppm)é](PFé) (11)

c1(1)...c(4) 3.45 | 3,55
c1(1)...c(20) 3437 3.28
€1(1)...C(21) 3.32 3,28
c1(2)...Cc(10) 3435 -
c1(2)...c(7) 343 -
c1(2)...c(35) 3,29 -
¢(51)...c(10) - | 3,30
C(51)...C(7) - 3440
Pt(1)...c(1) 3,52 3.43
Pt(1)...c(2) 3445 3443
P£(2)...C(1) 332 3.29
Pt(2)...C(2) 3.24 3.23
c(1) ...c(11) 3,25 3412
c(3) +..C(16) 3014 5.20
c(1) ...c(50) 3,06 3.24 |
¢(2) ...c(30) | 3,01 3.24

c(2) ...c(31) 3,05 : 317



~206—

Legends

FIGURE 7.1 A perspective view of the molecular structure

of EPtCl(ﬂ-dppm)]z. The vibrational ellipsoids of the
Pt,Cl and P atoms display 50% probability., For clarity,
all carbon atoms are represented by circles of arbitrary
sizey they are labelled by numbers only, corresponding

to those listed in Table 7.1 a,

- FIGURE 7.2 A perspective view of the cation

[PtéCl(CO)(«—dppm)Z]+. The vibrational ellipsoids of

Pt, Cl, P, 0 and C(51) atoms display 50% probability.

For clarity, all other atoms are represented by circles

of arbitrary size and labelled by numbers only, corresponding

to those listed in Table 7.1 b.
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T3 Results and Discussion

The crystal structure of I is built of discrete
binuclear molecules, and that of II of discrete cations
and anions, separated by normal van der Waals contacts,
Thus, in I the shortest distance between non-hydrogen
atoms in different molecules is C(12)...C(48)i = 3,468,
and in IT the shortest distance between non-hydrogen
atoms in different cations and anions is C(‘I)...C(30)ii =
3,448; the superscripts i and ii represent the xyz and
2-x,5+y,5-2 transformations of the co-ordinates listed
in Table T.1.

The molecular structure of I, shown in the Figure 7.1,
comprises two Pt-Cl fragments linked directly through a
Pt-Pt bond and bridged by two dppm ligands., The structure
of the cationic complex II, shown in the Figure 7.2, is
closely similar and can bé considered as derived from that
of I by substituting one chloride ligand by a carbonyl |
group. Hence, the results of this work prové the
structures (B) and (C), deduced from spectroscopic data,
to be correct for I and II, respectively.

The octahedral hexafluorophosphate anion in IT
displays no unexpected structural features (Tables Te3,a
and T.4,2). The mean value of P-F bond lengths is
1.50(8)3, and the F-P-F angles are in the ranges
83(2)-95(2)° ana 175(2)-178(2)°.

The non-bonding intramolecular distences in I and II,
shorter than the sum of the appropriate van der Waals

radii are presented in the Table Tele They do not reveal
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the presence of any unusually strong repulsive intramolecular

interactions,

Geometry of the doom ligands

Bis(diphenylphosphino)methane, éppm, can act as a
unidentaté192 or bidentate ligand in metal complexesj93
Flexibility of this ligand, arising from its ability to
rotate internally about each of the two methylene carbon-

—-phosphorus bonds, allows it to function as a bidentate

ligand in two different ways.mA

The ligand can make
two P-l bonds involving one metal centre only (D), and
thus form a four-membered metallocyclic ring, such as,
for example, in PtPhZ(dppm).193 It can also act as a
bridging ligand,forming P-l1 bonds with two metal atoms (E).

In the latter mode of co-ordination the conformations of the

two PPh2 groups about CH2-P bonds are such as to make the

phosphorus donor orbitals nearly pallarel to each other;

the bite of the ligand is such as to make it suitable for
bridging metal atoms which are about 2.5 to 3.0 K‘apart.
Since the transition mefals in low oxidation states display a
tendency to form metal-to-metal bonds this mode of dppm
co-ordination usually results in formation of the five-

menbered metallocyclic rings.
N
. Ph2
///R\\\\\‘
H,C /M !
M_________-
\\\P

(D) | (E)
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In the complexes I and II the dppm ligands adopt a
bridging mode of co-ordination. Their prefercnce for (2)
. I , 2),

rather than (D), mode is likely to arise from the steric
strain,which is smaller in a five-membered than in a
four-membered ring.

In each complex the two dppm ligands display
similar conformations and the molecular structures of
I and II therefore approximate to 02 symme%ry, the two-fold
axis coinciding with essentially linear Cl-Pi-Pt-Cl
or Cl-Pt-Pt-CO unit. Furthermore, the conformations of +the
dppm ligands are essentially the same in both complexes as
is evident from a comparison of the relevant torsion angles
listed in Table 7.5. Thus conformations about C(1)-P(4)
and C(2)—P(3) bonds are practically staggered {the
P-C-P-Pt(2) torsion angles being -52(1), -58(1)° for I
and 60(1), 57(1)° for II*|, while those about the C(1)- P(1)
and C(2)—P(2) bonds are closer to eclipsed [the P-C-P-Pt(1)
torsion angles being 11(1), 27(1)° for I and -28(1), -15(1)°
for II]. The P(1)-C(1) end P(2)-C(2) bonds are nearer to
eclipsing the Pt(1)-Pt(2) vector than are the P(3)-C(2) eand
P(4)-C(1) bonds, as is apparent from the respective
Pt-Pt-P-C torsion angles of 25.4(9), 10.2(9), 56.,2(8) and

61.6(9)° for I and ~10.5(8), =25.7(7), =65.2(7) 2nd -57.1(7)°

for II.

*¥ The opposite signs of the corresponding torsion angles in
the two complexes arise from different enantiomers, chosen
d molecules,

from the pairs of centrosymmetrically relate

to represent the asymmetric units in I and II.
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The bond lengths and angles within the dppm ligands
are unexceptional, The mean values of P-C and C-C bonds
are 1.85(1) and 1.39(1)R for I and 1.82(1) and 1.40(1)%
for 1I. In both compounds P—CH2-P angles are close to

the tetrahedral value [104(1) and 107(1)° for I and 107(1)
and 106(1)° for 11, |

Co-ordination of the metal atoms

In both compounds the co-ordination around the
platinum atoms is square-plenar with small tetrahedral
distortions, These distortions are evident from the
valency angles subtended at the metal centres (Table 7.4)
and from the displacement of atoms from their mean planes
(Table 7.6). On average, the distortions are slightly
' higher in II than in I and this feature of the molecular
geomnetry may reflect different properties of the carbonyl
and chloride ligands.

Perhaps the most interesting structural feature is
the twisted configuration of the molecules as a whole,

In each compounds the two metal co-ordination planes are
mutually rotated about the Pt-Pt bond, to afford a
dihedrel angle of 38.6° in I and 40.1° in II. This,
however, leads to only slight angular distortions in the

PtQPzC rings (see above) . Thus the flexibility of the

dppm ligands allows minimisation of antibonding interactions

between filled interaxial d orbitals of the metal atoms.

In the platinum(I) anion [PtCIQ(CO)]g_, where the constrazint

of the bridging groups is not present, the corresponding
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dinedral angle is ca. 600J87this has been interpreted as

a compromisg between the tendency of the filled interaxial
metal d orbitals to be positioned as fér from one another
as possible (dihedral angle 450) and the tendency of the
ligands attached to the adjacent metal atoms to minimise
their steric repulsions (dihedral angle 900)187

The Pt-Pt bond in I [2.651(1)%] is somewhat shorter
than the Pd-Pd bond [2.699(5)8] in the isomorphous and
isostructural palladium analogue, [PdBr(&-dppm)]z.ms
In IT the Pt-Pt bond is 2.620(1)3. The metal-metal
bonding is discussed below,

The Pt-Cl bond lengths in I [2.401(5) and 2.408(5)R ]
and II [2.383(5)8] are similar to the corresponding ones
in the'EPt012(co)]§‘ anion [2.382(10) and 2.426(9)81."

They are close to the upper end of the range of Pt-Cl
"distances observed in square-planar Pt(II) complexes,[‘8
and may suggest a relatively high trans-influence of
the Pt-Pt bond,

The Pt-P distances in I [2.250(7) - 2.294(4)% ]
and IT [2.291(5) - 2.308(5)% ] are within the range of Pd-F

distances [?.26(1) - 2.32(1)2] in [?dBr(ﬂ—dppm)]z.

Metal-metal bonding in platinum(I) complexes

Although complexes containing metal—to-metal
bonding have been intensively studied in recent years,
theoretical treatment of their structural properties is

186

still at an early stage of its development., It has,

however, been suggested that the strength an@ length of
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the metal-metal bonds may depend on the formal oxidation
state of the metal atoms and also on electron-donating,
or electron-withdrawing, properties of the ligands bonded
to the metal.,

The metal-metal distances in platinum(I) complexes
examined crystallographically, including-I and II, are
listed in Table 7.8. They display a range of values,
2,58 - 2,658, and are usually shorter than Pt(0)=Pt(0)
distances in binuclear complexes and clusters [2.65 - 2.79B]jg7
The range of the observed Pt(I) - Pt(I) distances is
likely to reflect different electronic and steric
properties of the variety of ligands represented in
Table T7.8. The only complexes in this Table which are
closely similar to one another are I and II. .

The square-planar co-ordination at the metal centres
in I and ITI suggests that dsp2 hybrid orbitals are used
to form platinum-ligand bonds, These hybrid orbitals
are not entirely emvoty, as in platinum(II) d8 complexes,
since one of them contains an electron, Coupling of the
unpaired electrons of the platinum atoms results in
formation of a covalent metal-metal bond. In ITI the
Pt-Pt distance [2.620(1)8] is shorter than in I [2.651(1)&],
and this is compatible with Raman V(Pt-Pt) frequencies of

181

157 en~' in IT and 150 cm"1 in I Contraction of the

P+(I) - Pt(I) bond by ca. 0.03%, which occurs on
substitution of one Cl-ligand in I by the strongly fi-acidic
CO group, can be attributed to some depopulation of the

filled antibonding d orbitals of the metal atoms, Such an
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electronic effect may lower the repulsive interactions
between antibonding orbitals of the platinum atoms and
thus contribute to further stabilization of the Pt-Pt
bond, A similar mechanism is likely to operate in
binuclear platinum(0) complexes, as shown recently by
Extended Hiickel lMolecular Orbital calculations on

complexes Pt2L4, where L = PHB,CO.197
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ummary
AN
In the complexes cis-[PtClz(PEt3)L], where L = c1~

’

CmPhCHZ)Z, C (OEt) NHPh, CNPh, CO, PEt3, P(OPh)3 or PF3,
ligands L exert cis-influence on the Pt-P bond lengths

lca. 0.0si),which is almost as large as their §£§Q§-influence
n the Pt-Cl(trans to L) bond lengths (ca. 0.073). The two
eﬁectg are independent of each other and lead to different
is- and trans-influence series of IL. The trend in

Cl(cis to L) distances, displaying a variation of about
1033, reflects the change in the length, and presumably
trength, of the Pt-~P bonds.

The X-ray analysis of gi§f[PtC12(PBt3)(CO)] was based on
iffractometric intensities of 1820 independent reflections.
‘e crystal structure was solved by the heavy atom method and
fined by full-matrix least-squares to R = 0.037. The
Ystals are orthorhombic, space group 29521, a =_l2.777,
= 8.587, ¢ = 11.424£, Z = 4. They are built of discrete
homeric molecules with cis-square planar geometry.

lected bond lengths are: Pt—C 1.855(14), Pt-P 2.265(3),

o
*Cl(trans to C) 2.296(4) and Pt~Cl(trans to P) 2.368(3)A.

265
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In square planar transition metal complexes the effects
of ligands on the strength of cis-metal-ligand bonds are of
interest, not only intrinsically, but also because they are
germane to the much studied phenomenon of trans-influence.

The existance of cis-influence in platinum(II) complexes
has been inferred from spectroscopic results [1].

We, however, first noted in 1974 that the bond lengths in

gig—[PtCl2(PPh3)(CO)], compared with those in other

cis-[PtClz(PR3)L] complexes (PR3 = PMe PEt., or PEt,Ph and

37 3

L = PMe3, carbenoid or isocyanide), indicate that the carbonyl
group weakens the Pt-P and strengthens the Pt-Cl bonds cis

to itself; this was in conformity with trends displayed by
lg(Pt-P) coupling constants and v(Pt-Cl) stretching frequencies
in analégous complexes [2]. While we considered it likely

that these observations reflect a cis-influence of the

carbonyl group, we pointed out that since the complexes

compared contain different PR3 ligands the effects of the
phosphine substituents may also be involved [2-4]. Variations
‘in the Pt~P bond lengths in the complexes gig—[PtClz(PR3)L] have
also been noticed by Russell et al. [5].

To investigate variations in the lengths of platinum-

ligand bonds cis and trans to L, originating from change in

the nature of L only, we have chosen to examine a series of
triethylphosphine complexes gig—[PtClz(PEt3)L].
Crystallographic studies of such complexes with L = C1 ,

C (OEt)NHPh, C (NPhCH

CNPh, PEt PF. or P(OPh)3 have already

2)2' 3' 3

been carried out in this laboratory and elsewhere [6-12], and
we report here the results of an accurate X~ ray analysis of the
compound with L = CO. The crystal structure of this compound

was first determined by E.M. Badlev, using photographic

diffraction data, but the results obtained are of low accuracy [9].



ggperimental
AT

Crystals of cis—[PtClz(PEt3)(CO)] are air-stable

transparent needles elongated along a.

(rystal data

C7H15C120PPt, M.W. = 412.2. Orthorhombic, space group

o o
pca2;, a = 12.777, b = 8.587, ¢ = 11.424a, U = 1253.4A°,

1= 4, D_ = 2.184gcm >, F(000) = 768. Mo-K, radiation,

i

° -1
0.710693, u(Mo-K ) = 118.3 cm ™.

leasurements

A crystal of approximate dimensions 0.50 x 0.21 x 0.24 mm
was selected for the analysis and its principal faces,
belonging to the forms {100}, {010} and {001}, were‘indentified
by optical goniometry and X-ray measurements.

The crystal symmetry and preliminary unit cell dimensions
vere determined from oscillation and Weissenberg photographs.
'Wstematicélly absent reflections are consistent with space
groups ggng (No. 29) and Pcam, the latter being an unconventional
setting of the space group Pbcm (No. 57). The non-centro-
symmetric space group 25321 was later proved correct by a
suiccessful structure analysis. The preliminary unit cell
limensions were adjusted by a least—squarés treatment of the
setting angles for 22 reflections, centred on a Hilger and Watts'
1290 four-circle diffractometer controlled by a PDP8 computer.

The intensities of reflections were measured on the Y290
liffractometer, using molybdenum radiatioq, a graphite
lonochromator and a pulse-height analyser. The 6-26 scan
technique was employed. Each reflection was scanned through
16 range of 0.6°, with a scan step of 0.02° and a counting
tine of 2s per step. The local background was counted for 15s at

tach end of the scan range. The intensities of two strong
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reflections, periodically remeasured throughout the ekperiment,
varied by less than * 5% of their mean values.

The integrated intensities, I, and their standard deviations,
o(I), were obtained using relationships described earlier
(3 = 0.04) [13]. They were corrected for Lorentz, polarisation,
counting-loss and absorption effects. The transmission factors
on g?, calculated by Gaussian integration, varied between 0.07
and 0.16;

The intensities of all hkl reflections with 6 (Mo-K )< 35°
were measured.  Of these, only 1820 (ca. 66%), for which

I>30(I), were used in the subsequent calculations.

Structure analysis

The position of the platinum atom, at z = 1/4, was found
from a Patterson function. With Z = 4, the space group Pcam
would then require all molecules to lie in mirror planes
normal to < This proved incompatible with the difference
synthesis phased by the platinum atom, and the space group
22321 was therefore adopted in the subsequent analysis.
Interpretation of this synthesis was complicated by pseudo-
symmetry, giying rise to four possible arrangements for atoms
co-ordinated to platinum. Each of these arrangements was>
refined and the one which gave an acceptable set of platinum-
ligand bond lengths and angles, and also the lowest value of R,
was used in further calculations. The positions of the
remaining non-hydrogen atoms were determined from subseguent
difference syntheses.

The structure was refined by a least-squares minimisation
of the function Z{(Igol—igcl)/d(go)}z. The atomic scattering
factors were taken from ref. 14, and the anomalous scattering
of platinum, chlorine and phosphorus atoms was accounted for

f147. Hydrogen atoms were not located. Refinement of the !



ssitional and anisotronic vibrational paviioters of all ron-
ydrogen étomscomergai at R = 0.037 and Bw = 0.047.

The correctness of the indexing of reflections was then
aified, by refining the structure with hkl reflections
rindexed as hkl. This refinement converged at R = 0.039
A4 R, = 0.049, both significantiy greaterathan the values
tained with the original indexing.

In the last cycle of refinement all parameters shifted

; <0.050. The standard deviation of an observation of unit

sight was 1.71.

The mean values of (]Eoi—[gc[)z/cz(go)

- wed no systematic trends when analysed as a function of

BLE 1

ACTIONAL ATOMIC COORDINATES

©-m

~0.1503(13)
~0.0189 (10)
~0.1042(12)

-0.4099(17)
-0.3149(13)

~0.2477(17)

X Y 'z
3 0.04379(3) 0.03769(3) 1/4
2L) 0.1001 (3) 0.2962(3) 0.2146(3)
) 0.1884(3) -0.0513(4) 0.1511(4)
~0.0024 (2) -0.2141(3) 0.2789(3)
y -0.1411(8) 0.1743(13) 0.3710(14)
1) -0.0731(11) 0.1187(14) 0.3245(14)
3 0.1003(9) -0.3213(15) 0.3563(12)
3 0.1231(13) -0.2580(19) 0.4789(15)
f -0.1270(11) ~0.2363(15) 0.3580(13)

0.3829(15)
0.1414(11)

0.0656 (15)




270

TABILS 2

THERMAL>PARAMETERS OF ATOMSa

Atom LAE] %2 Y33 U Y3 LPE!
Pt 45.1(2)  33.5(1)  45.2(2) 1.5(1) -0.4(3) -4.1(3)
ci(l)  77(2) 38(1) 75(2) -8(1)  -6(2) 3(1)
cL(2)  64(2) 58(2) 92(3) 0(2)  32(2) -10(2)
P 45(1) 34(1) 45 (1) -1(1)  -1(1) -5(1)
o 67(7) 68(6) . 147(12)  25(6)  25(8) -18(8)
c(1) 57(7) 37(5) 83(9) -6(5)  4(7) -2(6)
c(2) 45(6) 48 (6) 63(7) 5(5)  -6(5) 1(5)
c(3) 73(9) 79(9) 69(9) 12(8)  -13(7) -3(8)
c(4) 57(7) 53(7) 58 (7) -5(6) 8 (6) -4 (6)
c(5) 87(10)  51(6) 80(10) -15(7) .  6(9) 2(7)
c(6) 61(7) 41(5) 50 (6) -1(5) 0(5)  -13(5)
c(7) - 62(8) 69(9) 69 (9) 6(7)  -17(7) -6(8)

a Each atom was assigned an anisotropic temperature factor of

_ 3 3
I I nh.alalu).
i=1 j=1" 71T

the form exp(-2 x 10
IEOI or sinf.¥* The extreme function vaiues in the final
difference synthesis (1.5 and -1.6 eA°*3), were associated
with the position of the platinum atom. The final positional
and vibrational parameters of atoms are presented in Tables
1 and 2, and a view of the molecular structure is shown in
Figure 1.

The computer programs used are listed in ref. 12.

* A list of the final values at ]EOI and fgcl can be
obtained from the authors on request.
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Figure 1. A perspective view of the molecule, with thermal
ellipsoids displaying 50% probability. Hydrogen

atoms are omitted.

Results and discussion
L e O N e Vo Vo o N o)

Crystal and molecular structure of gigf[PtClz(PEtB)(CO)]

The crystal structure is built of discrete monomeric
molecules. The shortest distances between atoms in different
molecules are close to the sums of the appropriate van der
Waals radii. » |

The molecules display a cis-square planar coordination
around the platinum atom and almost ideal gs symmetry.

The orientation of the phosphine ligand, evident from
the Cl(2)-Pt-P-C torsion angles (Table 3), is such as to
bring the ethyl group involving the atoms C(4) and C(5) into
the .coordination plane of platinum. The arrangement of the
other two ethyl groups is such as to make the planes through
the atoms P, C(2) and C(3) and P, C(6) and C(7) nearly coincident
(dihedral angle 3°), and both normal to the plane defined by
the atoms P, C(4) and C(5) (dihedral angles 93 and 90°).

The conformations about the P-C bonds are staggered, as shown
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by the Pt-P-C-C torsion angles (Table 3). From an inspection of

models it appears that such a conformation of the PEt, ligand

3
and its orientation, with respect to the coordination plane

of the metal atom, are favourable for the minimisation of

steric repulsions in a square planar molecule. It is therefore
not surprising that similar PEt3 conformations and orientations
have been observed in several other gig-[?tClZ(PEt3)L]

molecules [12]. The bond lengths and angles in the triethyl-
phosphine ligand are normal (Table 3), the Pt-P-C and C-P-C
angles showing the expected deviations from the ideal
tetrahedral value [15].

The non-bonding intramolecular contacts and the angular
distortions in the coordination plane of platinum indicate
that the molecule is subject to some steric strain. Thus the
C(1)-..C(4), CL(2)...C(2) and C1(2)...C(6) distances are 3.15,
3.48 and 3.493, respectively, and the P-Pt-C(l) and P-Pt-C1(2)
angles deviate from 90° by 4.7 and -2.1° (Table 3). The
individﬁal displacements of the Pt, P, CLl(l) and Ccl(2)
atoms from their least-squares plane* do not exceed 0.00ZR;
the displacements of the C(l), O, C(4) and C(5) atoms from the
same plane are less than 0.0Gi.

The Pt-Cl (1) and Pt-C1(2) distances, 2.368(3) and
2.296(4)£ respectively, show that the triethylphosphine ligand
exerts a substantially larger trans-influence than the carbonyl
group, while the Pt-P distance [2.265(3)£] reflects the
¢is-influence cf the carbonyl group (see below). The
Pt—-C distance {l.855(14)£] is the seme as that [1.858(7)3] in

the analagous compound cis—[PtClz(PPh3)(CO)], and indicates that

“*—
* Defined by the equation -0.518X + 0.01lY - 0.855Z =-2.729;
X, ¥, and Z are co-ordinates referred to orthonormal axes

along ar R, and 5.*



tire co-ordinated carbon menoxide possesses appreciable

r-acceptor properties [4].

TABLE 3

SELECTED INTERATOMIC DISTANCES AND ANGLES

Bond lengths (5)

pt-C1 (1) 2.368(3) P-C(6) 1.806(13)
Pt-C1(2) 2.296(4) c(2)-C(3) 1.529(21)
Pt-P 2.265(3) C(4)-C(5) 1.546(20)
pt-C (1) 1.855(14) c(6)-C(7) 1.507 (20)
P-C(2) 1.830(13) 0-C(1) 1.124(19)
P-C.(4) 1.840(14)

Bond angles (°)

C1(1)-Pt-C1(2)  89.0(1) Pt-P-C(2) 111.4(4)
Cl(1)-Pt-C(1) 88.4 (4) | Pt-P-C(4) 113.3(4)
P-Pt~C1(2) 87.9(1) Pt-P-C(6) 111.2(4)
P-Pt-C (1) 94.7(4) c(2)-pP-C(4) 109.3(6)
C1(1)-Pt-P 177.0(1) C(2)-P-C(6) 105.3(6)
C1(2)~Pt-C(1l)  176.9(4) C(4)-P-C(6) 106.0(6)
P-C(2)-C(3) =~ 113.6(9) P-C(6)-C(7) 113.6(9)
P-C (4)~C(5) 110.9(10) Pt-C(1)-0 "176.5(12)
Torsion angles (°)

Cl(2)-Pt-P-C(2)  58(1) Pt-P-C(2)~-C(3) 62(1)
C1(2)-Pt-P-C (4) ~178(1) Pt-P-C(4)-C(5) -176(1)
C1(2)-Pt-P~C (6) -59(1) PE-P-C(6)-C(T)  ~-62(1)
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cis—- And trans-influence of ligands in cis-[PtC1l

complexes

Accurate crystallographic studies are now available for

A

2(PEt3)L]

eight complexes of the type cis—[PtClz(PEt3)L], where the

ligands L display a wide range of electronic properties.

Both strong and weak o-donors, such as PEt3 and €17, and also

strong and weak T-acceptors, such as CO and carbenoid, are

represented.

in Table 4, together with the

The bond lengths in these complexes are listed

1_J_(Pt—PEt3) coupling constants.

They enable us to examine in some detail the dependencé of

metal-ligand bonding upon the nature of the ligands L.

TABLE 4

o .
BOND LENGTHS (A) AND COUPLING CONSTANTS (Hz) in

cis—[PtClz(PEt3)L] COMPLEXES

L PE-P (gigfﬁi L) (Egggécio L) (PigPEtB) Ref.
c1” 2.215(4) 2.382(4) 2.301(3)2 3704 6
C(NPRCH,),  2.234(3)  2.381(3)  2.362(3) 3720° 8

CNPh 2.238(8) 2.365(11)  2.333(12) 3049 9
C(OEt)NHPh  2.239(8) 2.367(7) 2.361(5) - 7

PEt, 2.255(2)%  2.361(6)° 2.361(6)2 35159 10

co 2.265(3) 2.368(3) 2.296(4) 2754° This work
P (OPh) 2.269(1) 2.355(2) 2.344(2) 32104 12

PF, 2.272(3) 2.357(3) 2.305(3) 2760 11

Mean value. b Ref. 16. Ref. d Ref. 17.

9.



The Pt-Cl(trans to L) bond lengths in Table 4 display
a variation of about 0.07£ and increasc along the series
o=c1” = PF3<CNPh_<_P(OPh)3<PEt3:C (OEt) NHPh-=C (NPhCH,) , . This series
reflects the increasing o-basicity and decreasing m-acidity
of the ligands and it is therefore compatible with current
views on the trans-influence of ligands in transition metal
complexes [1,13,19]
The platinum-ligand bonds cis to L are also affected by
the nature of L. The Pt-P distances vary by about 0.063,
ilmost as much as the Pt-Cl(trans to L) distances. The variation

. o
in Pt-Cl(cis to L) distances is smaller, ca. 0.03A, but still

statistically significant. In addition, we note that the

- 2.40 l——

v :C(NPnCsz

"C(OEt)NHPH

ot gers 1

P(OPh),
235—
233 1 | H i | | 1 1 ] 1
2.20 225 . 230"
Pt-—-p &
igure 2. A plot of Pt-Cl{cis to L) versus Pt-P bond

lengths in cis-[PtClz(PEt3)L] complexes
(see Table 4). The ligands I, and the unweighted
least~squares trend line are shown. ° The errors

indicated are standard deviations.
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Pt-Cl(cis to L) distances display a consistent trend,
illustrated in Figure®2: they decrease as the Pt-P distances
increase'(linear correlation coefficient -0.9).

Considering the cis-influence of ligands as their ability
to weaken the cis-metal-ligand bonds, it is obvious that in
giﬁ-[?tClz(PEt3)L] complexes the ligands L can be arranged in a
cis-influence series on the basis of either the Pt-P or
Pt~Cl(cis to L) bond lengths. The Pt-P distances, 'which
display greater variability, increase along the series

Cl-<C(NPhCHz)2:CNPh:C(OEt)NHPh<PEt3:CO:P(OPh)33PF This,

3
of course, is approximately a reversal of the series of
increasing Pt-Cl(cis to L) distances.

The cis-influence of ligands L may arise either from their
steric or electronic properties, or perhaps from a combination
of both. It is now recognised that in severely overcrowded
platinum(II) complexes the steric repulsions between ligands
can lead to considerable lengthening of Pt-P bonds. Thus in
trans- [PEI,{P(C.H ) ,},] [20] the Pt-P bonds are about 0.06A
longer than in Egggg-[PtBrz(PEt3)2] {211, and this is attributed
mainly to the change in steric demands of the ligands in
the two complexes. In the less crowded gggj[PtClz(PEt3)L]
molecules discussed here the steric interactions of ligands are
expected to be considerably weaker. To what extent, if at all,
they affect the length of the Pt-P bonds is difficult to
establish, since the force constants required for molecular
mechanics calculations are not known. In this predicament we
note that the observed cis-influence series bears
little relationship to the size of ligands I, as measured, in
the absence of a less crude estimate, by Tolman's cone angle

(95,102,104,130 and 132° for Co, cl~, PF P (OPh) 5 and PEt,,

3’ 3
respectively) [22]. Ligands of similar size, such as cl, co

and PF3, occur at opposite ends of the series, while ligands
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‘leulations, that cis- and trans-

of different size, such as Co, PF3, P(OPh)3 and PEt3, exert

similar cis-influences. Furthermore, on steric grounds one
iight expect both bonds cis to L to lengthen as L becomes larger,
thus leading to a positive correlation between the Pt-P and
#-Cl(cis to L) distances. The observed correlation is,
pwever, negative. We therefore consider that the steric
roperties of L are at most a minor factor in determining their
osition in the cis~influence series and, consequently, that the
is-influence of I is predominantly an electronic éffect.

Another important observation emerges from the bond length
ata in Table 4: €is~ and trans-influence of L are not related
» each other, for the Pt-P and Pt-Cl(cis to L) distances-

fow no correlation with the Pt-Cl (trans to L) distances.

Ms indicates that cis- and trans-influence are transmitted

. lrough different electroniec mechanisms in the molecular

- ramework. Current theories emphasize that only those ligands

hich are strong o-bases exert high trans-influence {1,18,19].

tom the observed trans-influence series of ligands L, PEt3

3¢ or PF3.

le same relative basicities of the three phosphorus-donor

$ expected to be a stronger base than Cl, P (OPh)

ljands are evident from i.r. and u.v. spectroscopic data [22].

le ordering of Ci~, PEt,, P (OPh) 5, and PF3 in the cis-influence

ries is then obviously not related to their ¢-basicities.
is is consistent with Syrkin's theory [23], which considers that

teractions betwszen mutually cis o-bonds are of minor importance,

4 which has been followed in most subsequent discussions of

ans-influence of ligands. Zumdahl and Drago however have

-#dicted, on the basis of extended Hlickel molecular orbital

influence transmitted through

‘onds are of comparable magnitude [24]. T
The lQ(Pt—PEt3) coupling constants, which are thought

measure the s-component of the Pt-p o-bond [251, display
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a range of ca. 1000 Hz in gii—[PtClz(PEt3)L] complexes (Table 4).
However, they show o?ly an indifferent correlation with

the Pt-P bond lengths, which reflect the overall Pt-P bond order.
In the complexes with L = PEt3 and CO, the Pt-P bond lengths

are equal to within experimental error despite a difference in
the coupling constants of 761 Hz. It therefore appears that,
although both the overall and s~electron Pt-F bond orders are
sensitive to fhe nature of the cis~ligand, there is no simple
correspondence between the two quantities. ‘

In the cis-influence series of L the ordering of ligands
shows an obvious tendency: 1ligands which are considered to be
strong m-acids, notably CO and PF3, occur at the upper end of
the series, while weak m-acids, such as Cl~ and carbenocid, occur
at the lower end of the series. We therefore suggest that the
cis-influence of L may reflect its T~acceptor properties. The
lengthening of the Pt-P bonds can then be rationalized on the
basis of an increasing competition between the L and PEt3 ligands
for the metal atom d,-electrons. A necessary assumption here
is that the PEt3 ligand is a m-acid, albeit a weak one. The
Pf—Cl(gig to L) bond lengths may also be directly affected by
the ligands L, increased Pt+L backdonation leading to enhanced
electrostatic attraction between platinum and the chloride
ligand. Alternatively, it may be considered that the ligand L
influences the Ccis-Pt-Cl Lkond only indirectly, by modifying
the trans-influence of the phosphine.

In conclusion we note that the Pt-P bond is more sensitive
to the nature of the cis-ligands than the Pt-Cl bond. It
then follows that platinum-phosphorus bond lengths, coupling
constants or stretching frequencies will provide a valid
measure of trans-influence of ligands only if in the compléxes
compared the ligands cis to phosphorus are always the same.

This precaution is less important if Pt-Cl bond parameters are

used as a measure of trans-influence.
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-2 Crystal and Molecular Structure of cis-Dichloro[1 2-bls(tnfluoromethylthlo)

-pane] platinum(II)
; BNOJLOVIC-MUIR, K. W. MUIR and T. SOLOMUN

. fed August 4, 1976

-wwiistry Department, University of Glasgow, Glasgow G12 800, U.K.

te crystal structure of cis-PtCl,( F;CSCHMeCH ,-
") has been determined by X-ray methods. The
yound crystallises in the monoclinic system,
.1group P2\/n, with four molecules in a unit cell
12.942(2), ¢ =
40(2) A, B = 91.42(2)°. The structure has been
‘vd by full-matrix least-squares to R 0.054 (on
] for 2301 diffractometric intensity data. The
«uls contain discrete monomeric molecules in
ih the platinum atom displays the expected cis-
re-planar co-ordination. Selected bond lengths
Pt-S 2.239(3) and 2.260(3), and Pt—Cl 2.290(4)
'2.295(3) A. The metal-ligand bonding does not
“ur to be strongly influenced by the electron-
trawing properties of the trifluoromethyl sub-
mts of the sulphur atoms. The chelate ring has
- wmetrically-puckered gauche conformation. The
iyl substituent is pseudo-equatorial and the tri-
wmethyl groups are mutually syn. Pairs of
- vsymmetrically-related molecules are arranged
Wt there are short S--+-Cl and Pt-- Pt contacts
134 A

duction

is by now well established that the presence of
on-withdrawing substituents on a ligand donor
Ttends to shorten, and hence presumably to
ithen, transition-metal~ligand bonds. Churchill
town, for example, that the metal—carbon bonds
horter in fluorcalkyl complexes than in alkyl
dexes of similar formulation and has discussed
me length the electronic factors which may be
-nsible for this phenomenon [1]. The contro-
rover the extent of backdonation in transition-
‘+phosphine complexes has led to much interest
- ‘trelationship between M—P bond lengths and the
-son-withdrawing ability of the substituents of
hosphorus atom. At present one of the strongest
ents in favour of the significant M->P back-
ion is based upon the shortening of the Cr—P
‘length in X3PCr(CO)s complexes by 0.11 A
'X is changed from CgHs to C4HsO [2, 3].
t have recently shown that the metal-ligand
g in cis-M'Cl, [Ph,PCH,CH,P(CF;);] com-

plexes, where M = Pd or Pt, is sensitive to the
electron-withdrawing properties of the substituents
on phosphorus [4]. The M-P bond lengths differ by
ca. 0.07 A, the shorter bond being adjacent to the
trifluoromethyl groups. The M—Cl distances indicate
that the trans-influence of the P(CF;), group is much
weaker than that of the PPh, group. In this context
it is worth noting that trifluoromethyl comes highest
in Tolman’s ranking of substituent electron-with-
drawing ability [5].

The recent synthesis of the complex cis-PtCl,-
(F3CSCHMeCH,SCF;) has given us the opportunity
to investigate the effect of trifluoromethyl substitu-
ents on the trans-influence and bonding to platinum
of a thioether ligand [6]. A further motive for the
structure analysis was provided by the F n.m.r.
spectrum of the complex in acetone at ambient
temperature. This spectrum is consistent with the
presence in solution of four diastereoisomeric forms
of the complex. Over the temperature range 173-323
°K rapid interconversion of isomers does not appear
to occur. Two of the isomers display long range F~F
coupling which may be associated with a syn arrange-
ment of the trifluoromethyl groups [6]. We felt that
the determination of the molecular structure of the
complex in the solid-state might contribute to the
interpretation of these results.

Experimenta]

Crystal Data

PtCl,(F3CSCHMeCH,SCF3), M = 510.2, mono-
clinic, a = 7.557(2), b = 12.942(2), ¢ = 12.340(2) A,
g = 9142(2) U=12065A%Z=4,D,=2.808¢g
em™3, F(000) = 936, Mo-K,, radiation, A = 0.71069 A,
u(Mo Kq) = 125.7 em™?, space group C3;, (No. 14)-
P2,/n with equivalent positions t(x,y 2), +(Bt+x,
% —J %' + Z)'

Measurements

The crystals are needles clongated along a. The
dimensions of the specimen used in the analysis
were 0.66 X0.14 X0.16 mm. The space group and
approximate cell dimensions were determined from
Weissenberg and rotation photographs. Final values
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TABLE L. Final Fractional Co-ordinates and Thermal Parameters

Atom x2 vy z Uiso Ujzs Uss Uja Uys U,s
or U“ .

Pt 09767(6) 09798(3) 07246(3) 401(3) 334(2) 380(2) -33(2) 65(2) -34(2)

S(1) —-0400(4) 0337(2) 2163(2) 55(2) 40(2) 42(2) -2(1) 8(1) 41

S(2) —1189(4) 2167(2) 0477(2) 55(2) 35(1) 43(2) o(1) 4(1) 1(1)

CI(1) 2361(5) 1594(3) —-0779(3) 69(2) 65(2) 49(2) -10(2) 21(2) 2(2)

Cl(2) 3134(4) —0246(3) 0978(3) 48(2) 54(2) 79(2) 11(2) 2(2) ~4(2)

F1) 0582(17) 3776(7) —0075(10) 128(10) 58(6) 126(9) -28(6) 41(7) 7(6)

F(2) —-1388(16) 4107(6) 1021(10) 124(9) 40(5) 136(9) 2(5) 50(7) -8(5)

IF(3) 1017(17) 3406(7) 1584(10) 140(10) 59(6) 129(9) -30(6) -60(8) 5(6)

rF@) —-0438(17) 0836(8) 4188(6) 133(8) 122(9) 40(5) -1(7) . 18(5) -2(5)

F(5) 2087(15) 0503(10) 3583(9) 106(8) 127(9) 99(8) 54(8) —48(7) -31(7)

I'(6) 0874(13) 1939(7) 3266(7) 106(7) 68(6) 66(5) —11(5) -17(5) —-15(5)

c(1) -0182(21) 3418(10) 0776(13) 71(10) 34(7) 74(10) 5(7) 1(8) 5(7)

C(2) -2550(17) 2070(10) 1701(11) 48(7) 47(T) 65(8) 6(6) 7(6) 17

C(3) -2561(17) 0969(11) 2084(11) 44(7) 63(8) S1(D 1(7) 12(6) 8(7)

C(4) -4430(19) 2454(12) 1455(13) 51(9) 66(9) 87(11) mn -1(8) -5(8)

C(5) 0610(21) 0959(12) 3367(10) 77(10) 67(10) 38(7) 1209) —1(6) =27

H(1) -309 093 282 74)

H(2) -333 055 156 11(6) -

H(@3) -201 251 230 9(5)

H4) -499 201 088 11(6)

H(S) -516 239 213 7(4)

H(6) ~-443 319 122 15(7)

2 Fractional co-ordinates have been multiplied by 10° for Pt, by 103 for H, and by 10? for other atoms.

3
anisotropic temperature factor is exp(—2a2 X 10" z
for hydrogen atoms are multiplied by 102, =1

of the unit cell dimensions and the intensities of
all unique reflexions with 8(Mo-K,) < 30° were
measured using standard techniques [7} on a Hilger
and Watts Y290 diffractometer. Each reflexion was
scanned symmetrically over 35 steps of 0.02° in 8/w.
At each step counting continued for 2.5 s. The back-
ground was measured at each extreme of the scan for
IS s, with crystal and counter stationary. The inten-
sities of three standard reflexions, which were
periodically remcasured during the experiment, dis-
played only random fluctuations of less than 5% of
the corresponding mean values.

Structure amplitudes and their standard deviations
were derived as described previously, the empirical
factor g being taken as 0.04 [7]. Corrections were
made for absorption using a Gaussian integration
method. The transmission factors on F§ ranged
between 0.14 and 0.23. A total of 2301 unique re-
flexions with I = 30(I) were used in the subsequent
analysis.

Structure Analysis

The platinum atom was located from the three-
dimensional Patterson function and the other atoms,
except for hydrogen, from subsequent difference
syntheses.

® The form of the

3
j§1 Uyghshiaiay, where n = 4 for Pt and 3 for other atoms; Uy, valucs

The structure was refined by full-matrix least-
squares minimisation of Z{(IFgl — IF.))/o(Fo)}*.
Atomic scattering factors, apart from that for hydro-
gen {8], and also the anomalous dispersion correc-
tions for Pt, Cl, and S atoms were taken from Inter-
national Tables [9]. Adjustments of the positional
and isotropic vibrational parameters of the non-
hydrogen atoms led to R = 0.08. When anisotropic
temperature factors were introduced R fell to 0.064.
The positions of the hydrogen atoms were then cal-
culated so as to be consistent with the stereochem-
istry of adjacent carbon and sulphur atoms; they werc
compatible with appropriate peaks in a low-angle
difference synthesis. Allowance was then made for
the scattering of the hydrogen atoms; the calculated
positional parameters were kept fixed but the iso-
tropic themmal parameters were allowed to vary.
Values of R and R’ were thus reduced to 0.058 and
0.065. The absorption correction was then applied
and the refinement converged with R 0.054 and
R’ 0.060. In the final cycle of refinement no para-
meter of a non-hydrogen atom shifted by more than
0.020. The final difference synthesis was featureless,
apart from extreme function values of + 3.0 and
— 4.8 eA~3 close to the position of the platinum
atom. The adequacy of the weighting scheme was



ure of cis-{PtCly (F3CSCHMeCH,SCF4)]

4LE IL Interatomic Distances (A) and Angles (°)

71

. Jond Lengths

{(8)-F(6)

(c) Intramolecular Non-Bonded Distances

S 2.239(3) F3)---F(6) 2.817(14)
0 2.260(3) S(1)---CI(2) 3.167(5)
) 2.295(3) S(2)--+CI(1) 3.218(5)

0] 2.290(4) S(1)---5(2) ©3.199(4)

+C3) 1.83(1) Cl(1)---CI(2) 3.264(5)
;t-C(S) 1.84(1) (d) Intermolecular Contacts Less than the Sum of the van

-8 gg; :ggg; der Waals Radii

0(3) 1.50(2) S(1)---C11h 3.352(5)
1) 1.53(2) 5(2)-+- Q2H 3.382(5)

: -:F(l) 1.30(2) Pt---ptl 3.417(1)

FFQ) 1.32(2) Ci(1)---c(2™ 3.560(14)
HE) 1332 (‘1(1)»--0(33I 3.693(14)
- {+F(4) 1.31(2) Ci(1)---C(4™ 3.793(15)

‘+F(S) 1.28(2) Roman numerals refer to the folllwing transformations of
- +F(6) 1.29(2) the fractional co-ordinates in Table I:

. iterbond Angles 1 x z;

Pt-5(2) 90.6(1) I Vaex, itz
- P=CI(1) "178.2(1) L1 +x, z

Pt—C1(2) 88.7(1) (e) Torsion Angles

“r—-CI(1) 89.9(1) PIS()C(S)F(4) 163(0.9)

“Pt-Cl2) 179.0(1) PES(1)C(S)I(S) ~79(1.1)
7 HR-ClU2) 90.8(1) PS(1)C(5)F(6) 43(1.2)
~-C3) 102.9¢4) CB)S()C(S)F(4) 55(1.1)

h-C() 106.6(5) COIS(CSHF(S) 173(1.0)

S(1)-C(5) 10L.5() C(3)S(1)C(5)F(6) ~64(1.2)
- -C) - 106.2(5) PIS(2)C(1)F(1) 85(1.1)

- h-c 105.0(4) PLS(2)C(1)F(2) ~158(0.9)
H2)-C2 - 976(7) PIS(2)C()F(3) -37(1.2)
€2)-CG) 109.2(9) CQ)SICAI) ~167(1.1)
LD-C4) 110.4010) C(2)S(2)C(1F(2) ~50(1.1)
-4 111.0(11) C)SQCHI3) 72(1.2)
10)-C(2) 115.5(9) PtS(1)C(3)C(2) ~37(1.0)
AD-F(D) 110.2(10) C5)SCBIC(2) 73(1.1)

AD-r@) 411101 S(HCB3)C(2)S(2) 47(1 2)
1)=F(3) 114.5(10) S(1)C(3)C(2)C(4) 169(0.9)
AD-F(2) 105.6(12) C3)C2)S(2)PL -33(1.0)
UD-F(3) 107.6(13) CIC(S2)C(1) ~142(1.0)
U-F@3) 107.4(12) C(4)C(2)S(2)Pt ~156(0.9)
U8)-F(4) 108.9(11) CIC)S2)C(D) 95(1.0)
AS)-F(5) 108.0(11) C)S(2)PLS(1) 10(0.5)
- 5)-F(6) 114.4(10) C(DS(2)PIS(1) 112(0.5)
“ gg;':‘g; :ggggg S(2)PLS(1)C(3) 11(0.5)
10960143 S()PIS(1)C(5) 96(0.5)

Ed by cstabhshmg that mean values of lFyl — in Figurc 1. Final observed and calculated structure

”/'(Fo) showed little variation with either IFylor amplitudes may be obtained by application to the

\ The standard deviation of an observation of Editor.

leight was 2.0, Extinction corrections were not The programs used in this work were the HILGER
"f*d‘ data processing program of P. R. Mallinson, K. W.

~t final atomic parameters and a selection of Muir and D. N. J. White, the Hilger and Watts soft-

ims derived from them are presented in Tables ware system for the Y290 diffractometer, and J. M.

A perspective view of the molecule is displayed Stewart’s X-RAY72 system.
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TABLE III. Equations® of, and Atomic Displacements
(A x103) from, Weighted Least-squares Planes.

Plane 1, defined by Pt, S(1), S(2), Ci(1) and CI(2):

—0.499X — 0.637.Y — 0.587 Z=-1.689;

Pt —2(1), S(1) 28(3), S(2) 12(3), CI(1) 35(4), CI(2) 16(4).
Plane 2, defined by Pt, S(1), S(2), C(2), C(3):

-0.488 X — 0.633 ¥ - 0.600Z = —~1.689;

Pt 0(1), S(1) —9(3), S(2) 6(3), C(1) ~1608(15),

C(2) ~300(13), C(3) 328(13), C(4) 257(15),

C(5) -1765(15).

%1n terms of orthogonal co-ordinates X, Y, Z alonga, b and c*.

Fig. 1. A perspective view of the molecule.

Discussion

The crystals contain PtCl,(F;CSCHMeCH,SCF;)
molecules which exhibit the expected cis-square-
planar co-ordination at the platinum atom (Figure 1).
The methyl group is pseudo-equatorial with respect
to the chelate ring and the trifluoromethyl substitu-
ents of the sulphur atoms are mutually syn. Com-
parisons with other bis(thioether) chelate complexes
of platinum(il) cannot be made since there is no
structural information available. However, in bis-
(thioether) and bis(selenoether) chelate complexes
of palladium(II) the terminal substituenis of the
group VIA donor atoms are usually found to be
syn [10, 11]. The only exception involves an unusual
macrobicyclic ligand where the anti configuration
may well be a consequence of the constrained
geometry of the ligand {12]. _

The crystal packing is predominantly of the van
der Waals type (Table 11d), but it also involves strong
interactions between pairs of centrosymmetrically-
related molecules (Figure 2). The consiituent mole-
cules of each pair are arranged so that the platinum
co-ordination planes are antiparallel and the metal—
ligand bonds are eclipsed. The resulting Pt---Pt
separation of 3.42 A is too long to be indicative of
normal covalent bonding; the lengths of Pt—Pt single
bonds in platinum(lI) complexes are typically 2.77—
2.87 A [13, 14]. The Pt---Pt contact is also longer

Lj. Manojlovic-Muir, K. W. Muir and T. Solomy,,

a/2 I

c2t

Fig. 2. The crystal packing.

than the corresponding distance in Magnus' Green
Salt (3.25 A) [15] and related compounds. However,
it agrees well with the value of 3.39 A found in cis-
dichloro{ethylenediamine)platinum(II), crystals of
which contain infinite stacks of molecules arranged
so that adjacent metal co‘ordination planes are
antiparallel [16]. In cis-PtCl,(F;CSCHMeCH,SCF5)
the formation of infinite stacks of molecules appears
io be prevented by the syn trifluoromethyl groups,
which lcave only one side of the metal co-ordination
plane open for close approach to a neighbouring
molecule. The eclipsing of the metal-ligand bonds
leads to intermolecular Cl-++S separations of 3.35
and 3.38 A which are slightly shorter than the
Pt--+Pt contact. This is brought about by a small but
significant pyramidal distortion of the platinum
co-ordination. The displacement of the platinum
atom from the weighted PtS,Cl, plane is —0.002(1)
A, whereas the displacements of the atoms S(1),
S(2), CI(1), and CI(2) are respectively 0.028(3),
0.012(3), 0.035(4), and 0.016(4) A (a positive
displacement is in the direction of the centrosym-
metrically-related molecule). This contrasts with the
situation in complexes containing covalent Pt-Pt
bonds, such as bis(ethylene-1,2-dithiolato)platinum
(I1) dimer, for example [13], where the metal atoms
are displaced by ca. 0.1 A from their co-ordination
planes towards rather than away from each other.
Accordingly, we consider that the pairing of centro-
symmetrically-related cis-PtCl,(F;CSCHMeCH,SCF;)
molecules is best explained by electrostatic inter-
actions between electron-deficient sulphur atoms
and negatively charged chloro ligands and that there
is little, if any, direct bonding between the platinum
atoms. This view is in conformity with a semi-
empirical M.O. calculation on Magnus’ Green Salt
which indicated that the covalent Pt—Pt bond order
is about 0.04 [17].

Despite the pyramidal distortion of its co-ordina-
tion, valency angles subtended at the platinum atom



ftructure of cis-[PtCly (F3CSCHMeCH,SCF3)]

~ ye all within 2° of the ideal values of 90 or 180°.

The Pt—Cl bond lengths are equal. Their mean of
1293(3) A lies at the lower end of the range of
erminal  PtYI-Cl distances (2.26-2.45 A) [18],
ndicating that in this compound the trans-influence
of the thioether ligands is relatively weak. The Pt-S
fistances of 2.239(3) and 2.260(3) A differ slightly,
e longer bond being adjacent to the chelate-ring
nethyl substituent. Assessment of the influence of
he electron-withdrawing trifluoromethyl groups on
he metal-ligand bonding is rendered difficult by the
ick of structural data on related compounds. The
roblem is further complicated by the participation
f the sulphur and chlorine donor atoms in strong
atermolecular interactions. Perhaps the most directly
omparable structure is that of cis-PtCl, [S(p-
sH4Cl)2], where the mean Pt—S and Pt—Cl distances
re 2.285(7) and 2.300(5) A [19]. Shorter, but less

. gcurately determined Pt—S distances of 2.25 A trans

0 amine in chloro(glycyl-L-methionine)platinum(I1)
nd of 2.26 A trans to chlorine in dichloro(L-
sethionine)platinum(Il) have also been reported
20]. In the latter compound the Pt—Cl (trans to S)
ond length is 2.32 A. The only other Pt—S (thio-
ther) distance which has been determined is that for

12 1 bridging bonds in p-(SEt,),(PtBr,),; the mean

due of 2.22(1) A is remarkably short, for reasons
hich at present are uncertain [21]. We can suggest
nly tentatively that, by comparison with cis-PtCl,-
Yp-CcH4Cl)yY 5, the trifluoromethyl groups in cis-
1Cl,(F3CSCHMeCH, SCF3) have little effect on the
ms-influence of the thioecther ligand, but that
iey may be responsible for a contraction of the Pt—8
onds by 0.03-0.05 A.

The two trifluoromethyl groups adopt similar
mnformations relative to the chelate ring, so that
uresponding torsion angles about the S—C bonds
ree to within 8°. The conformations are such that
e C—F bonds involving the atoms F(3) and F(6)
tint inwards and almost towards each other. The
sulting F(3)---F(6) non-bonded contact of 2.82 A,
lough greater than the van der Waals diameter of
horine (2.70 A), nevertheless suggests that the

omer present in the solid may be one of those which -

splay F-F coupling in acetone solution. Inter-
tingly, the S-C~F angles involving F(3) and F(6)
¢ both some 5° larger than the other S~-C—F angles
hich average 109.6(7)°. However, there are no sig-
ficant differences between the C-F bond lengths

- tbetween F—C—F bond angles, the respective means

+~ ting1.305(7) A and 107.7(6)° .*

©

Both sulphur atoms adopt similar quasi-tetrahedral
+ordinations. Corresponding interbond angles at

*Limits of error on means are standard deviations and are

" It larger of the estimates: (?0{2)"/' and [iE(xi - %2

n— 1)]"”, where the n individual bond lengths, or angles,
 thave standard deviations 0; and mean x.
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sulphur agree to within 4°, and all are less than the
tetrahedral angle (109.5°). The four S—C bond
lengths agree to within experimental error, the mean
value of 1.835(7) A being typical for a bond of unit
order.

The chelate ring has a symmetrically-puckered
gauche conformation. This is apparent from the inter-
nal torsion angles: the CCSPt angles differ by only 4°
and the CSPtS angles by 1°. It is also evident from
the displacements of the atoms from the weighted
PtS,C, mean plane (Table III); the platinum and
sulphur atoms lie within 0.01 A of the plane whereas
the atoms C(2) and C(3) are displaced by nearly
equal amounts (0.30 and 033 A) in opposite direc-
tions.

Molecules of cis-PtCl,(F3CSCHMeCH,SCF3) con-
tain four chiral centres, namely the asymmetric atoms
S(1), 8(2), and C(2), and the chelate ring, so that in
principle eight enantiomeric pairs of diastereoisomers
may exist. The crystalline form which we have studied
is, of course, racemic. In those molecules in which the
chelate ring configuration is & [S(1)C(3)C(2)S(2)
torsion angle +47°, as in Figure 1], the absolute
configurations at the atoms S(1), S(2), and C(2) are
respectively (R), (5), and (§).
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