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CHAPTER ONE

General Introduction



GENERAL INTRODUCTION

Mass spectrometry has grown within the last fifty years from a rel

atively simple physical phenomenon to a technique of major importance in 

analytical chemistry. This rapid progress has been made possible by the 
invention of new methods and applications together with ready availability 

of increasingly sophisticated commercial instruments. The analytical 
requirements of the petroleum industry were responsible for many of these 

developments, particularly during the Second World War^^. Commercial 

instruments at that time employed the electron impact method of ioniz

ation, normally at ’JO electron volt energies. Due to inherent advan

tages with respect to qualitative and, more importantly, quantitative 

analysis this method is still the most prevalently used. More will be 

said about the advantages later in this Chapter. All the mass spectra 

subsequently referred to will be mass spectra produced by this means, 

unless stated otherwise. The needs of the petroleum industry, particul

arly quantitative analysis of mixtures, also favoured the utilisation of 
computer methods.

A short description will now be given of such analyses together 
with some other applications involving computer methods, in order to 
place the present study in perspective.

1. Mixtures Analyses

The large numbers of tedious calculations involved in mixtures
analysis provided the impetus for some of the first routine applications

of computing methods in mass spectrometry. Such analyses are basically

quantitative in that the spectra of the components in the mixture be

known. Some requirements for satisfactory analytical work are disoussed
(2)by Barnard , the major ones being:



a) In the pressure ranges normally employed the mass spectra of 

mixtures are linear superpositions of the individual mass 

spectra of the components*

b) The fragmentation patterns of the components should not vary 

significantly during the analysis and nor should their sen

sitivity coefficients (an explanation of the latter follows)*

The above conditions are generally satisfied where:

1 o 70 eV. electron impact energies are used* Around this figure
(3)the ionization efficiency is nearly independent of the energy ,

-52© Ion-source pressures of less than 10 Torr are employed in 

order to minimise ion-molecule collisions which perturb the 

fragmentation patterns*

3* Ion-source temperatures are kept constant* .

4* Instrumental electronics are well adjusted.

There are two major methods of mixtures analysis:

A. Using Pressure Measurements*

B* Using a Calibration Mixture.

A.requires that the sensitivity coefficients, S. ., be obtained for■̂3
>1 11 » u

each component, j, at each of the mass values, i, used in the analysis.

The sensitivity coefficients so defined have dimensions of peak height 

(or, more accurately, area) per unit pressure, where the partial 

pressure of each component is required* The values of are obtained 

by measuring the pressures of individual samples of the components when
n i\their mass spectra are being obtained* At least n peaks are considered

u itwhere n is the number of components* The product of the sensitivity

coefficient, S . a n d  the partial pressure, p., is the contribution of 3-0 J
" H <• IIcomponent, j, to the height, H., of the mass peak, i, in the spectrum of

<i 11
the mixture* A set of n, or more, simultaneous linear equations is set



up and solved for p

+ S. ,p =* H4 1n *n 1

O O

o

Some excellent discussions of these quantitative methods, which have
(4)remained largely unchanged for twenty-five years, are given by Barnard ' 

and the notation used in equations (1) is as used by R e e d ^ \  Matrix 

notation is useful in representing this system of equations more com

pactly:

The method involves the inversion of matrix S and requires the 

following information:

Sp = h . . . .  (2),

where the required partial pressures are:

p = S~^h

(a) Identities of the components.

(b) Mass spectra of the components.

(c) Mass spectrum of the unknown mixture.

(d) Pressure of each pure component during recording of its

spectrum to permit calculation of S. ioe0 the method

requires pressure measurements.

Some considerations in solving such systems of equations are given 

by Barnard and Fox^^0



4.

B«
In order to avoid making pressure measurements, which may be dif

ficult in certain cases, alternative methods have been devised,
(7)Johnsen used a two-component calibration mixture, i*e* of known com

position, to obtain a mass spectrum* The ratio of known uni-component 

peaks in this spectrum was used to determine the composition of any other

mixture of the same two components* The general solution of this stan-
(8)dard mixture technique was recently published by Ruth * Information 

(a), (b) and (c), above, is still necessary; (d) is satisfied by 

obtaining the mass spectrum of a calibration mixture of all the com

ponents where their mole fractions are accurately known,, The accuracy 

of the method does not therefore depend on the accuracy of pressure 

measurements but on the accuracy with which the calibration mixture is 

made up* Since many situations arise where no pressure measurements are 

possible, only application of this technique seems capable of solving the 

problem eagB as when a sample is introduced directly into the ion source 

by means of a probe*

Equations (1) were written with a view to deriving the partial 

pressures of the components* The sensitivities for each component 

differed according to the mass number used* If the equations are re

written incorporating the mass spectra of each component, given as a 

percentage of the base-peak (largest peak), then a sensitivity coefficient 

for each component may be defined. The latter gives the actual abun

dance of the base-peak in so many units per unit pressures

a i * ^ A * ^ A  ^  * 0 0 * * a i * * ^ N * B N  =  ^ i  0 * *
U ilfor each mass number, i*

p^ is the partial pressure of component A, etc*
If |ia^ is the abundance at mass i in the spectrum of component A



expressed as a percentage of the base-peak.

Since these new sensitivities are constant for each component, it is

usual to combine the factors S.,p. giving X,, referred to as composites,J O  0
The equations (4) may be re-written with composites:

X^,a^ + = ®i o • , (5 )

and in matrix notation:

xA — h , o o  (6)

The solution, x, of this equation may be achieved in practice by

employing a number of important considerations and time-saving procedures.

Some methods are discussed by Barnard^\ Barnard and Fox^^ and Kiser^^

Many factors such as random changes of sensitivity, interference effects,

preferential adsorption and desorption, and fractionation can cause

disparities in the results obtained. These effects are discussed by 
(2)Barnard and also in Chapter 3 of this thesis. Consistent results are 

normally obtained where the mass spectrometer is used regularly. In a 

properly adjusted and maintained system, calibrations need be performed 

only every mon.th or s o ^ ^ .

Such methods of analysis can only be used to determine mixtures con

taining no extra components although, by examination of residues, the 

unexpected presence of the latter may be detected©

Related methods utilizing the molecular weight distribution in the 

mixtures spectrum together with inverse matrices have been used to give

so-called ,,type-analysesn i.e, the amounts of various types of compounds 
(12)present e.g. aromatics, branched-chain hydrocarbons or sulphur com-

(13)pounds. In one recent case the composition is accounted for in 

terms of four saturated hydrocarbon types, twelve aromatic hydrocarbon



types, three thiopheno types and six unidentified aromatic groups,
(14)High resolution mass spectrometry has contributed significantly 

to the qualitative aspects of mixtures analysis by recognition of single
, (15)compounds * •

Both high resolution and low electron energy has proved to be a

powerful combination for qualitative analyses of very complex mixtures
(16)e.g. crude oil fractions, .

2. Gas-Liquid Chromatography/Mass Spectrometry

Some of the potential of electronic computers in mass spectrometry 

is being shown by large computerized-GC-MS systems0 Excellent
(1 7)descriptions of some of the major developments are given in Waller

(18)and in a recent review by Burlingame and Johanson .

5. Spectrum Recognition

i.e. recognizing a mass spectrum as being characteristic of some

chemical compound is almost impossible without computer aid. The major

difficulties are the large numbers of chemical compounds and the fact that

characteristic spectra can vary considerably according to the type of mass

spectrometer used. Several methods of approaching the problem have been

devised involving comparison of the test spectrum with spectra held

within the computer. Use of only the six strongest peaks together with

internal computer techniques have greatly reduced the time necessary to 
(19)effect comparisons . Information theory has been employed to compare 

spectra using the eight largest peaks^^\ A review is given by Ridley^  ̂ 

Recent work has considered the possibility of identification using 

binary-coded spectra (i.e. only the positions of masses, presence or 

absence of peaks) and optional weighting of certain masses with
/pO p7\surprisingly good results ' . These studies will be shown to have



considerable influence on the present work (Chapter 5)*

For some analytical work a complete identification is not really 

necessary, only a ''.etermination of the types of molecules present being 

requiredo An approach to this problem was given above - "type analysis". 

A new technique considering the recognition of features peculiar to
(24)classes of compounds is given by Crawford and Morrison and extended

(25)by Smith in a form suitable for use by a small computer. Artificial

intelligence methods (see below) are being applied to the problem with
( 26 )encouraging results . The computer programme learns to recognize 

features in patterns, based on its past experience.

4. Spectrum Interpretation

Recently adapted artificial intelligence techniques have been

applied to mass spectra in order to work out the structure or possible
(27)structures of the parent compound. The HEURISTIC DENDRAL programme

generates possible structures and proceeds to eliminate them on the basis

of mass spectral and other information. A simpler method by Crawford 
( 28)and Morrison termed "ab-initio" is less systematic and is at an early 

stage of development. A strategy is employed which is similar to that 

of the mass spectroscopist and in the same way it is not always suc

cessful! It is potentially more suitable for dealing with large 

structures than the current DENDRAL methods.

5. Learning Machines

The computer, when used as a learning machine, has been able to

predict the molecular formula of a compound given its low resolution mass 
(29)spectrum . The programme is provided with large numbers of low 

resolution spectra with the corresponding molecular formulae. In this 

way it can be trained to recognize the latter given a spectrum, the degree



of success being related to the degree of training.

Is.
Calculation of the most likely molecular weight has been an inter

esting application of computer m e t h o d s G i v e n  a low resolution 

spectrum lacking a parent ion the programme calculates the most likely 

value of the latter based upon the fragments provided.

An important biological application is in the field of protein
. (31)sequencing' .

The future of computing is mass spectrometry is assured particularly
(17)with the utilization of such systems as described by Waller ,

(32) (33) (34)Burlingame , Biemann and Henneberg . Needless to say, an

important part of the development of mass spectrometry is assured by com

puter applications. The latter will become of increasing use in the 

analysis of mass spectra obtained by other means e.g. ion-cyclotron
/ <7r \ / 7/* \ ( 70 \

resonance , chemical ionization , field ionization and, no 

doubt, a host of other useful techniques, as yet undiscovered.

9. Mixtures Analysis without Prior Knowledge of Components

All previously described methods of mixtures analysis have required

either that the components be known or that the computer be programmed

with information concerning likely components. The subject of the

present study is that of mixtures analysis without prior knowledge of the

numbers and types of compounds present. This may be regarded as an

extension of the conventional methods outlined in Jj, above, and would have
( 38)been studied in depth some time ago had not GLC methods arrived on the



scene* Although such methods are now very efficient some limitations 
(39-41)still exist e.g. organometallic petroleum additives* Hence some

revival of interest is being shown in the fractionating properties of 

the mass spectrometer itself, particularly using the direct insertion 

probe
(43)Nearly fifteen years ago Meyerson derived for the first time the 

spectra of the components of binary mixtures, without prior total separ

ation or knowledge of their identities* Two different mixtures of the 

compounds are necessary. At least one peak in each pure component 

spectrum (unknown) must be unique to that spectrum*, Such unique peaks 

are detected by listing peak ratios at each mass in the two spectra and 

mas3 numbers chosen where the ratios are highest and lowest; peaks at 

these masses contain the least contribution from the other component.

The ratio of the abundances of a peak unique to one component is found 

and all the peaks in one mixtures spectrum multiplied by it. Subtraction 

of the product from the other spectrum yields the mass spectrum of one 

component* The other may be obtained using the other ratio or by 

difference. Meyerson succeeded in identifying an unsuspected impurity

by this method.
(44)McCormick has used the same technique to separate and identify

a mammein homologue of molecular weight 358, present as an impurity, in
(45)studies of the compounds derived from Mammeia Americana . Frac

tionation was performed by thin-layer chromatography. The spectrum of 

a disulphide impurity present in a sulphoxide sample was separated by 

L a u r i e u s i n g  the same method. Fractionation in this case was

performed by adjustment of the direct insertion probe to give different
(47)spectra at a constant monitor current reading «

It was believed, by Monteiro^*^, that behind the empirical approach



of Meyerson a more general theory might be hidden that could be made to

yield the mass spectra of the components of a mixture starting from

several different mixtures. The development of such a theory has been
(49)made by Monteiro and Reed and this work forms the background of the

present study. The method requires that

(a) there be more different mixtures spectra than there 

are components (at least one more) 

and (b) each unknown component spectrum has at least two peaks 

which are unique i.e. uni-component.

In a few suitable cases condition (b) could be reduced to only one 

unique peak per component. Effusiometric techniques, which are experi

mentally exacting, would have to be employed. Further details are given 

in Chapter 6.
(49)A reading of this work by Monteiro and Reed is essential for a 

proper understanding of what follows although additional explanations 

have been attempted at each stage.

The basis of the analysis begins with an extension of equation (6) 

to include a number of different mixtures of the same components i.e.

one mixture xA = h . . .  (6)

several mixtures XA = M . . .  (7)

The latter equation may be written out in full for L mixtures of N 

components A, B, . . • N, the highest individual masses being rawa, mwb, 

etc. and the highest mass being mw.



XAI *BI * * * * *NI 

XAII ^ 1 1  * * ° * ^NII

CAL XBL * * * 0
COMPOSITIONS

2 mwa
b. b« • « • » b ,1 2 mwb

1 “2- mwn
COMPONENTS

(rows)

h11 h2I mwl
h1II h2II • • • • hmwII

h1L h2L
MIXTURES

(rows)

• hmwL

The elements of the matrices have the same meanings as before*

Spectra are represented by rows and this convention is adopted in all that 

which follows, including computer manipulations* The columns may be 

referred to as Mass-Profiles.

A computer programme was used by Monteiro to analyse numerically 

exact mixtures, calculated in such a way that they satisfied the necessary 

conditions* The programme was stated to be at an intermediate stage of 

development, incapable of application to all experimental data since a 

statistical treatment was not included* This leads to a statement of the 

current problem and its associated study*

The Problem

Examination of the afore-mentioned computer programme with a view to 

its experimental application and the development and improvement of the 

methods used, in order to widen its scope.

Practical Interest

It is probably a fact .that most of the samples run in an industrial 

laboratory are mixtures, owing to the fact that fine separation procedures 

(e.g. preparative GLC techniques or liquid chromatography^^) can be



time-consuming and in many cases unnecessary. A rapid separating tech

nique, e.g. column chromatography with FLORISIL, may he conveniently 

employed to obtain simple mixtures of up to, say, ten components. Such 

mixtures may contain high molecular weight oil additives, perhaps with 

an organometallic content. Examination of these materials is conveniently 

done by allowing the mixture to distil from the direct insertion probe 

i.e. utilizing the fractionating properties of the mass spectrometer.

The initial spectra consist of the volatile constituents, more heat/time 

being required to observe those which are less volatile and generally 

more interesting. In many cases it is possible, by examination of suc

cessive spectra, to pick out spectral features from a number of the com

ponents. Part of the present work might then be considered with such a 

technique in mind.

The mixtures spectra referred to will be spectra obtained by frac

tionation within the mass spectrometer itself, either the gas-inlet system 

or direct insertion probe, although much of what follows applies to spectra 

obtained in other ways. e.g. running mixtures obtained by thin-layer 

chromatography•

The next Chapter includes some explanatory notes and initial attempts 

at applying the afore-mentioned programme to experimental data*

The method will henceforth be referred to as the wab-initio11 mix

tures analysis#



CHAPTER TWO

I - Some Explanations 

II - The Algol Computer Programme



I - SOME EXPLANATIONS

It may help to clarify the formation of a mixtures array by con

sidering a simple example e.g. the formation of seven different mixtures

of four components each. This is done by mixing four mass spectral

vectors, (A. A_ « o o AQ), (B. B0 • • , BQ) etc., together; each vector
1 £ o 1 £ o

has eight elements (peaks).

The mixtures array, M, is formed by performing a simple matrix multip

lication:

'xa1 Xb, Xd Xdl‘ _A1 A2 ' • • A8 "M11 «12 * * * M18

Xa2 Xb2 Xc2 Xd2 B, B2 * ' • B8 M21 M22 * • ° M28
• • • • C, C2 * . . Cg • o •

• • • • D1 D2 * * ' D8 o # o

•

_ Xa7

♦

*b7

•

Xc7

•

Xd7

•

M_.
71

•

“72 *

•

• • M78
M

The elements of X have the same meanings as before. 

Element  ̂ consists of

Xa1 *A1 + ,B1 + Xc1 *C1 + Xd1 *D1

and the element i0

Xa1 *A2 + Xb1 *B2 + Xc1 ,C2 + Xd1 *D2

. . . (8)

etc. so that the first mixtures spectrum is formed by mixing the four 

spectra of matrix A together in relative amounts given by the first row 

of matrix X. The second mixture, (l^ is formed by

mixing according to the second row of X, and so on. The four spectra 

will then be mixed up linearly within all seven mixtures spectra. If



14.

(51)the rows of X are all linearly independent then the rows of M will be

different but only four of them will be linearly independent. This means

that at least four mixtures spectra would be necessary to construct one of

the others through multiplication by suitable factors and addition of
results (Jacobi operations)(49»5l)^ asguined, of course, that the

rows of matrix A are linearly independent, like mass spectra. The rank 
(49 51 52)* * ' of the matrix, M, is then four and this may be determined

(53.54)experimentally by well known methods ' .

In the previous chapter equation 7 was used to represent the mixtures 

array formation:

XA = M

Since it is desired to derive both A and X from M, it is obvious
(49)that M must satisfy certain conditions • These have already been 

mentioned in Chapter 1, but will be repeated here in greater detail:

(1) at least one more row than there are components, where 

the rows are distinct*

(2) at least two uni-component peaks for each component.

In certain circumstances this can be reduced to one 

per component (see Chapter 6)

(3) for a quantitative analysis the pressure of each 

mixture is required or must be the same in all cases.

The basis of M satisfying certain conditions must come from the prop

erties of A i.e. the unknown spectra themselves, as X is of a general

nature; the fractionation or mixing cannot be expected to satisfy any
(49)conditions apart from being random . By examination of M the prop**

erties of A must reveal themselves. The difficulty arises because an



15.

infinite number of solutions exists where no conditions are imposed. A 

mathematical representation of such a situation may be given as follows:

M = XA . . .  (7)

This equation, where A is the desired solution, is equivalent to

M = X B B“1 A

where B is any matrix (of correct dimensions)

i.e. M = X1 A1

1and A is another solution. Also

jur y11 .11 .M = X A etc.

It might be helpful at this stage to touch upon the reason 

condition (2), above, is necessary. i.e. having to know which 

unique to each component. (see Chapter 5 for more details), 

be fixed in some way then A can be determined uniquely:

A = X”1 M

A convenient way of fixing X is by considering the behaviour of a

peak unique to each component. These are most readily located if there 
(49)are at least two . The size of a unique peak in each mixture is 

directly proportional to the amount of component present. Such a propor

tionality constant is related to the peak sensitivity coefficient and is 

unknown as the pattern and instrumental sensxtivity are unknown. If the 

unique peak heights U ^, for component A in mixture 1, and etc. 

multiplied by the unknown constant for the first component, A, are sub

stituted in the first column of X in equation (8), and the same is done

why

peaks are 

If X can



for the other components a matrix X, obtains which is equivalent to X

V Ua1 k2#Ub1 k3*Uc1 k4#Ud1

k1-Ua2 k2*Ub2 k3#Uc2 k4*Ud2

k1*Ua7 k2,Ub7 k3#Uc7 k4#Ud7

i.e. X,ku

X ^  is equivalent to the product:

Ua1 U01 Ud1
Ua2 \ 2 Uo2 Ud2

Ua7 Ub7 Uc7 Ud7

I.e. I I

where X^ is known and K is a diagonal matrix of constants.

On substituting into equation 7

M = X KA u

is produced. Only normalised spectra, given by KA, may be obtained in 

this way:

X "1M = KAu

i.e. by inversion of X^, the matrix of unique peak heights.

A similar result was derived by Monteiro and Reed^*^ who gave the



equation

QM =  KA

where Q is a matrix of unknowns which on multiplication into M gives the 

normalised component spectra. Q may be found by equating its unknown 

elements to known zeros in KA (found by knowing the positions of unique 

peaks, for example)* The latter method is to be preferred because it is 

more amenable to solution by a least squares method i.e. statistically 

advantageous. (see Chapter 5 - IV).



II THE ALGOL COMPUTER PROGRAMME was an attempt to put into practice the
(49)principles laid down in the afore-mentioned paper . It was stated to 

be at an intermediate stage of development, incapdble of application to 

experimental data because it lacked a statistical treatment. Monteiro 

used this programme to solve numerically exact mixtures arrays satis

fying the necessary conditions; individual component spectra were obtained.
(55)The programming language used was Whetstone Algol punched on paper- 

tape for use with the English Electric KDF9 computer*

The first stage in the examination of the programme involved pro

cessing an experimental array obtained by fractionating a four-component
(56 )mixture in the gas-inlet system of the A.E.I. MS9 mass spectrometer .

Experimental details are given in Section II of the next Chapter. Meas-
( 56 )urements obtained from ultra-violet charts were checked and punched on 

paper-tape in the required format together with certain arbitrary para

meters as outlined i n ^ ^ o  The programme failed to produce the desired 

result•

Investigation of the failures began with a detailed examination of 

the programme in order to understand what it was doing. Various sections 

were found to be redundant, having been included for testing purposes.

Other sections which were found to function independently in order were 

dissected out giving a number of sub-programmes capable of independent 
testing.

The section which read in data was simplified and a background sub

traction sub-programme discarded as being unnecessary for development 

purposes. In later work it was never re-introduced since considerable 

variation in background was experienced during experiments.

The first sub-programme to be tested was that used to determine the
(53 54)rank of the array. Gaussian elimination ' was employed and some



explanation was given . The programme required three parameters, 

referred to as tolerances, to allow for round-off (see Chapter 4) i.e.

in order to decide when a transformed element could be zeroc It was

decided to investigate the effect of these parameters (which are roughly 

related) on the rank obtained as this could vary widely. Two of the

values were fixed at what was thought to be reasonable levels and the

third varied by writing a loop into the programmeo This is illustrated 

by the block diagram:

l *  t o l e r a n c e .
VALUE.

X  a So Pie.
iMcACMEkrr

To L *4  
T o L + x

PR1MT
RANK

RANK

F in is h  on 
condition

It was found that the rank, decreased as the TOL value was increased 

and so by varying the latter any reasonable rank could be obtained.

The loop proved to be very slow, taking up to one hour to cover a 

reasonable range of values.

In view of the above and other experiences a strong case was made for 

changing the computer system used. Some disadvantages of the Algol



system are summarized below:

1 • The particular system in use was old and suitable 

advisory services almost non-existent*

2. Both programme and data were necessarily on punched 

tapes which proved to be cumbersome, particularly in 

view of their size. Large amounts of time were 

required for corrections to be made*

3* Turn-round time was very long as the system involved 

over-night running only. Runs could easily take 

several days, or more, if hampered by tape errors or 

machine break-downs.

4. Actual running times were long compared with other 

available systems.

In view of possible alternatives two paths were followed simul

taneously:

Short Term: Conversion of the programme to a similar ALGOL language on

punched cards.

Longer Term: A programmer with experience in both ALGOL and FORTRAN IV 

languages was charged with converting the original prog

ramme. This work is duly acknowledged and was undertaken 

considering current departmental developments.

The initial delay in real development was considered to be worth

while and this was eventually shown to be the case.

Some advantages of the changes are:

Punched cards allow changes to be made, in both prog

ramme and data, reliably in a much shorter time.



20 Development time was reduced by much improved turn- 

round of work.

3. The IBM 370/155 system on FORTRAN IV allows instant 

access to valuable scientific sub-routines and statis

tical packages.

4. Advisory services were much more efficient.

The initial conversion to FORTRAN IV took several months. The

conversion to punched-card ALGOL also took several months as the lang

uages were not identical and many problems were encountered.

Eventually FORTRAN IV (IBM 370/155) was used for all programming 

and the ALGOL system (KDF9) abandoned, except for one case (see APPENDIX

A).
The investigation of the rank-determining programme, necessary for 

the subsequent analysis, will be outlined in Chapter 4» together with 

details of subsequent improvements.

The next Chapter deals with some factors to be considered when 

obtaining a suitable mixtures array in the laboratory.
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I Some Factors Relating to Spectra Collection

M = XA

As discussed in Chapter 2, M is an array of mixtures spectra cons

tructed from pure component spectra A, in relative amounts given by X0 

It is required to determine both A and X, In “ab-initio1* analysis this 

information must be derived from an examination of array M which is the 

only experimentally known quantity. Some of the properties of such an 

array will now be discussed together with some properties to facilitate 

its analysis. These latter properties will have a strong bearing on 

experimental method.

Where M contains real spectra (as opposed to calculated mixtures) 

each element (peak) will deviate from its average value by an amount 

depending on a number of factors. Assuming that the component spectra 

are linearly additive and response linear with respect to partial pres

sure (see Chapter 1, section i) then some of the more important factors
are:

(a) scanning speed

(b) amplification level (related to sample pressure)

(c) errors of measurement (human or digitiser)

(d) source temperature changes

(e) timing of instrumental electronics

(f) impurities and adsorption/desorption

(g) arcing - related to condition of instrument

(h) peak height/area approximation

The problem of interference has been largely overcome in modern 

instruments^^fî *  Limitations in the superposition of mass spectra



(59)are discussed by Careri .

Each of the above-mentioned faotors will be discussed later in more 

detail. Fluctuations caused by these effects tend to swamp the 

interesting properties of array M making their detection difficult. The 

minimization of the fluctuations is all the more important because the 

subsequent use of numerical methods superimposes round-off errors. The 

latter are discussed in Chapter 4.

The important point is simply that bad data cannot be compensated 

for by computer methods i.e. the accuracy of the calculated A matrix can 

be no better than the M matrix from which it deriveso This problem is 

discussed by Barnard^^ in connection with conventional mixtures comput

ations.

A statistically well-conditioned mixtures array might be defined as 

conforming to the following rules %

1. The percentage error in any element should be a 

minimum. Large fluctuations will tend to decrease 

the important differences between mixtures spectra.

(see 3. below).

2. Each mixtures spectrum should be made in such a way 

that a minimum degree of fractionation or pressure 

change can occur during its scan. If such condi

tions are not satisfied the essential linear nature 

of the mixtures spectra will be destroyed i.e. the 

recorded spectra will not consist of fixed mass 

spectra superimposed linearly. A simple method of 

checking this effect will be given.

3* It is necessary to have at least one more distinct
(49)mixtures spectrum than there are components .



Where the spectra are experimental they must be 

statistically distinct. .A simple method of investi

gating this condition will be described.

Some of the afore-mentioned factors causing fluctuations and errors 

will now be discussed in more detail.

(a) Scanning Speed

This must be adjusted to deal with two situations;

(a) 1. For a fast scanning speed the fluctuation size increases, parti

cularly for the smaller peaks where fewer ions are being collected^^0 

Depending on the type of instrument used the fluctuations can usually be 

held to within 5$ at reasonably fast s p e e d s i n  compensation for

possible ill-effects of fast scanning, more spectra are obtained. These
(61)can be averaged by a small on-line computer system producing a corres

ponding increase in accuracy.

(a) 2. If scanning speed is too slow to capture the instantaneous

condition of the changing system a mixtures spectrum is obtained which is

unsuitable for inclusion in M (see condition 2. above)

Scanning speed should therefore be balanced with the rate of frac

tionation of the mixture, normally carried out in the inlet-system or 

ion-source of the mass spectrometer. The correct speed to use will 

depend on a number of factors including sample quantity, type and the 

temperature and nature of the inlet-system or ion-source0 It is best 

found by trial and error until experience is gained. The rate of 

fractionation can perhaps be reduced by performing the experiment at a

lower temperature. A particularly suitable method might be that
(62)described by Bokhoven and Theeuwen .



(b) Amplification Level

The peak heights, measured on a chart for small intensity ions, are 

less reliable because fewer ions are being collected. This effect is 

increased with scanning speed and amplification level. The latter will

generally require some adjustment between scans as the ion-source pres

sure changes during the experiment. This is lower towards the end of 

the fractionation as the sample is pumped away (see (g) below).

(c) Errors of Measurement and Transcription

In the case of a good automatic data acquisition system these will 

merely be the digitiser errors, probably increasing with scanning speed. 

The present study initially involved measurement of all charts (Honeywell, 

ultra violet) by hand, in millimetres. Peak heights were noted on the 

chart itself, multiplied up according to the relevant scale factor and 

transcribed on to graph paper. This allowed comparison of spectra in 

order to detect gross errors and missing numbers0 Further transcription 

and card-punching completed the process. This system proved capable of 

producing:

1• large relative errors in small peaks

2. large errors in scale-multiplied peaks (i.e.

conversion between chart scales)

3* gross errors and missed measurements (e.g. failure 

to scale-up a peak)

4. errors of transcription and punching

It is obvious that large errors can have serious consequences 

In the absence of automatic on-line facilities it was apparent that a 

faster and less error-prone system had to be developed. This feeling 

was reinforced by the need for large amounts of data in any statistical



study. . The development of a suitable semi-automatic system is given in 

Section III.

(d) Temperature Effects

In general, mixtures analyses should be run isothermally since 

changes in ion-source temperature can cause changes in the component 
spectra. This phenomenon is well known^^ 66)^ SyS-fcem Would again

lose its linear characteristics. It is thought that small temperature 

gradients of the order of ten to twenty Centigrade Degrees, around normal 

operating temperatures, would be unlikely to alter the patterns signi

ficantly (to some extent dependent on the particular substances employed). 

Such temperature gradients would have useful fractionating properties if

used in conjunction with e.g. the G.E.C. - A.E.I. heated direct insertion

prob<
(67)
probe^*^. Temperature effects using a similar system have been reported

, their magnitude depending on the temperature gradients and parti

cular substances employed. An investigation of the fluctuations, mainly 

due to source temperature changes, present in high resolution spectra has 

been undertaken^*^ •

(e) Tuning will be discussed in Section II. «. See also ref. (83)-repeller
potential

(f) Impurities

These do not necessarily refer to fully recognizable components of 

the mixture introduced for analysis but could be background impurities 

increasing in significance as they are desorbed (perhaps preferentially 

by a component of the mixture) from the inlet and ion-source surfaces.

It is obvious that analyses should be conducted only after extensive 

bakingo As this is not always effective or practicable it may be that 

flooding the system with a desorbing agent such as ammonia or pyrrolidine 

will suffice. The unexpected presence of desorbed impurities during an



experiment was discovered and is described in connection with MIXTURE II 

in Chapters 4 and 5*

(g) Arcing

This affects only one spectrum at a time and frequency depends on 

the type of sample, its pressure and the condition of the instrument. It 

is always easily detected and leads to rejection of the affected spectrum.

(h) Peak Height/Area Approximation

The ion abundance is taken to be proportional to the peak height.

This is only possible where the peaks always have the same widths in the 

base and are of simple geometric shape. Consideration is given to this 

is Section II (experimental).

An experimental scheme is then required which will provide a mixtures 

array satisfying the above requirements i.e. one in which the analyst can 

have confidence. The particular scheme devised is shown in block 

diagram form - FIGURE f. Spectra are examined visually is Checking 

Scheme I and, if not rejected, more carefully by computer methods in 
Scheme II.

A. Experimental Methods are outlined in Section II.

B. The spectra were obtained in groups of at least two “identical" 

spectra by successive scanning (described in Section II). This simple 

requirement has the immediate advantage that:

a. all gross errors of measurement and transcription

can be detected and localised by comparing the spectra 

of such a group.

b. possible fractionation or pressure change during a



scan is detected because then no neighbouring spectra 

would be "identical” i.e. condition 2* above, is 

tested*,

Co where more than two "identical” spectra can be obtained 

a statistical bonus is gained in providing some measure 

of the fluctuations in a particular array* 

d. as no automatic measuring facilities were available a 

preliminary visual comparison of the spectra was 

possible. The comparison is represented as Checking 

Scheme I in FIGURE T and enables a quick decision to 

be made as to the suitability of the spectra for time- 

consuming measurement. In several cases this prelim

inary check revealed that fractionation was too fast 

or the scanning speed too slow. This allowed the 

experiment to be repeated with more success*

C. and Measurement and Card-Punching

Initially these sections were separate but became a single operation 

on introduction of the semi-automatic system (Section III of this Chapter).

It.
The existence of groups of identical spectra greatly simplifies 

screening of the data by computer* As will be shown a computer examin

ation can be very revealing and could be performed at once where on-line 

facilities exist.

Checking Scheme II (FIGURE j) involves a further check for gross 

errors and illustrates the nature of "identical” when considering such 

groups of spectra. This involves a study of the differences between 

spectra and introduces the term "Degree of Fractionation” and the use of
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Product-Moment Correlation Coefficients (see APPENDIX c). It is obvious 

that the greater the degree of fractionation of the components, the more 

distinct will be the mixtures spectra obtained and the more reliable the 

final results i.e. the significance of the inherent fluctuations will be 

reduced. An equivalent way of saying this is that the elements of the 

unknown matrix X, as previously defined, should be as diverse as possible. 

Such considerations are directly related to condition above.

The use of product-moment correlations are well known in scien

tific applications, particularly psychological ones (see APPENDIX c).
The checks being made in this scheme are then:

a. there are no gross errors within the matrix.

b. each spectrum in a group (as previously defined) 

actually belongs to it i.e. no fractionation or 

pressure change is occurring.

These tasks are performed by a FORTRAN IV sub-routine called 

SCREEN, described in APPENDIX B as are all subsequently mentioned sub

routines.

a., above, is accomplishjd by comparing the spectra in a manner which 

reveals the position of a serious deviation. For this purpose it is 

best to have at least three spectra per group.

b., above, is accomplished by computing product-moment correlation 

coefficients (as described in APPENDICES B and c) of the first mixture 
spectrum and all others in the matrix. A sub-routine called FRACT is 

used by SCREEN to compute the correlation matrix of all the spectra.

The required coefficients are present in the first row of this matrix.

Each coefficient is a statistical measure of the similarity between the 

first spectrum and each subsequent one. A value of +1.000 means that



the spectra are identical or proportional* In practice this might be 

+0*998 owing to experimental fluctuations* The coefficient values can 

range down through 0*000 (no correlation) to -1*000 (inverse correlation)* 

It may be convenient at this time to illustrate by means of a 

FRACTIONATION DIAGRAM the type of results obtained - FIGURE 2* The 

diagram is obtained by plotting the correlation coefficients against 

spectrum number, in experimental order* In the experimental case (b ) 

fractionation is found to be taking place within groups of supposedly 

identical spectra (as shown in (A))* If this is judged to be slight it 

may be ignored or the groups re-arranged in some way for subsequent 

averaging of suitable spectra. The diagram shows that 3 would be better 

considered as two separate groups, containing two nearly identical 

spectra each* The final spectrum in 4 would be rejected because it does 

not correlate well with its immediate neighbours*

The "Degree of Fractionation" may be taken as the smallest corre

lation coefficient* This value, however, can have no real physical 

meaning attached to it i.e. it is not translatable into any physical or 

chemical coefficient and will only be used here for reference purposes*

As will be seen it is not necessarily the final coefficient owing to the 

fact that a later mixture may by chance correlate highly with the first* 

The coefficients, as used here, do give an overall measure of the degree 

of similarity between mixtures spectra.

Some preliminary results are listed in Section IV of this Chapter*
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II Experimental - Collection of Spectra 

General Considerations

Tuning of Instruments A.E.I. MS9> MS12 and G.E.C. - A.E.I. MS902S.

The instruments were tuned in the manner recommended by the manu

facturers except that particular attention was paid to peak shape. 

Considering that peak height was to be used as the measure of ion 

abundance in all cases it was essential to obtain peaks which were flat- 

topped (or trapezoidal) i.e. gaussian shapes were to be avoided.

Background
Experiments were carried out after baking the instrument for several 

days<> Before the introduction of the mixture in each case background 

spectra were obtained at a variety of amplification levels in order to 

have some measure of their significance. Such measures were later found 

to be inaccurate representations of background levels on sample intro

duction probably because adsorbed impurities were preferentially desorbed 

by components in the mixture (see Mixture II, below).

Source Pressure

It was considered desirable for afore-mentioned reasons to maintain
-5low pressures,'less than 10 Torr, in the ion-source.

Two types of mixtures experiments were performed using:

(a) The A.E.I. Cold-Inlet System^^.

(b) the G.E.C. - A.E.I. Heated Direct Insertion System

Fractionation Methods

(a) A simplified drawing of the gas-inlet system is shown:
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The general principles of the method adopted were as follows:

1. Sample of mixture (ca. 0.1 ml.) placed in bottle as shown.

2. De-gassed with liquid nitrogen in the usual manner0

3. On thawing some mixture vapour was allowed to enter the ion-

source via a doser to regulate the amount, an expansion vessel

and a leak.

4. Some time (a minute) was allowed for equilibration i.e. cons

tant ion-current monitor reading. Several spectra were taken 

in succession, at constant monitor reading when the pressure 

was low enough. The latter was adjusted by pumping some 

sample, if necessary, from the ion-source. Charts were 

numbered in groups as defined in Section I0

5. Spectral changes were observed by switching over to the oscil

loscope If no change in the pattern was observed after

a few minutes some of the mixture was pumped away. If a

change was observed some spectra were taken after equlibration.

6. Where no significant change was noticed after several such 

attempts the system was evacuated and some of the sample in 

the bottle pumped away. The whole process was then repeated 

on re-admission until the sample bottle was exhausted.



Several mixtures were obtained in this way:

MIXTURE I COMPONENTS

Instrument: MS 9 25$ THIOPHENOL

No. of Spectra: 17 25$ n - HEPTANE

No. of Groups: 6 25$ ISO - OCTANE

25$ £  - XYLENE

MIXTURE II

Instrument: MS12 25$ n - PROPYL ETHER

No. of Spectra: 133 25$ . TOLUENE

No. of Groups: 36 25$ BENZENE

25$ ETHYL ACETATE

MIXTURE III

Instrument: MS12 100$ ETHYL ACETATE

No. of Spectra: 16

No. of Groups: 1

MIXTURE IV

Instrument: MS12 20$ N,N - DIMETHYLANILINE
No. of Spectra: 35 20$ TOLUENE

No. of Groups: 8 20$ BROMO - ETHANE

20$ 0 - DICHLOROBENZENE

20$ THIOPHENOL

Mixtures II and III were obtained consecutively* Scanning speed 

was the same in all cases taking approximately ten seconds to cover these 

mass ranges*

Towards the end of each experiment care was taken to ensure that the



amplification level necessary to obtain measurable spectra was not too 

high i.e0 such that the spectra could contain a significant portion of 

the previously observed background.

(b) Heated Direct Insertion System

The G.E.C. - A.E.I. Heated probe consists of a hollow probe into 

which cooling gas may be blown. The tip contains a thermocouple and 

heater surrounding a glass sample cup; the instrument has a working temp

erature range of -50°C. to +350°C.

The method of placing samples in the cup suggested by G.E.C. - 

A.E.I.^^ was adopted i.e. dry glass wool was placed inside surrounding 

a small sample tube made by sealing a capillary tube at one end. The 

situation is shown in the diagrams

GLASS P«OB£-T\P

SAMPLE TUBE

GLASS WOOL

HEATfcR

MIXTURE V COMPONENTS
Instruments MS902S 0.6 m.g. CHOLESTAN

No. of Spectras 28 0o8 m.g. 5<- CH0LESTAN-3-0NE

No. of Groupss 15 1.1 m.g. STIGMASTERYL ACETATE

Scanning Speeds as before



The above spectra were obtained according to the following method:

1• 0o6 mg* of the steroid sample were placed evenly in the sample tube

using pure diethyl ether.

2. The probe itself was baked in the source for one hour before the 

experiment.

3® The probe was removed and the source temperature allowed to equili

brate at 95°C. with the electron beam switched on. This temper

ature was maintained throughout0

4* Background was negligible at reasonable amplification levels.

5* The sample tube was placed in the probe-tip and inserted into the

source. The probe temperature remained constant at approximately 

35°C. throughout the experiment.

6. Spectra were immediately visible. At constant ion current reading

several spectra were taken rapidly, the first being used to adjust 

chart peak heights. Three spectra were finally obtained after 

checking visually for fractionation (Checking Scheme I - Section I 

of this Chapter).

7* Patterns were observed on the oscilloscope between running of groups 

of spectra at constant ion current. When a new stable pattern was 

recognizable more spectra were taken.

8. The rate of fractionation was slightly increased where necessary by

making slight adjustments in the heater control such that no temper

ature change was observed.

9o Fifteen groups were obtained. Five were rejected on employment of

Checking Scheme I.

MIXTURE VI

A similar technique was employed with an unknown mixture thought to



consist of a side-chain cyclohexanone with an acidic impurity i.e. 

probably a binary mixture. Seventeen spectra were obtained.

Unfortunately the lowest source temperature possible at the time of 

the experiment was 165°C. thereby causing more rapid fractionation.

This could have been offset by cooling the probe in some way but there 

was insufficient time. The spectra were not rejected but subjected to 

analysis in order to compare results obtained from Mixture V.

It has not been considered necessary to list copious details of the 

above experiments. The emphasis has been on allowing the experimental 

requirements to be as unexacting as possible by employing simple tech

niques. Several more experiments would be necessary in order to devise 

a standard procedure e.g. of source and probe temperatures and sample 

weight. The rate-determining step in the current investigation was that 

of spectrum measurement and computer acquisition. These topics are 

discussed in the next Section.



Ill - Spectrum Measurement

In view of the numbers of spectra to be measured during the course 

of this work (for statistical reasons) an automatic or, at least, semi

automatic system is to be preferred. This is not only because of the 

boring and repetitive nature of the work but also the extreme error- 

proneness of any hand measuring system where numbers must be written down, 

perhaps multiplied up, and re-copied (in order to punch cards etc.).

A semi-automatic device was available in another department and it 

was decided to adapt this for mass spectral use. The device is a 

"pencil-follower"and consists of a glass table beneath which is a 

sensitive magnetic detector movable in two dimensions by means of a servo

mechanism. A diagram is given in APPENDIX A. The detector follows a 

magnetic pencil moved on the table and the co-ordinates of its position, 

to 0.1 mm., continuously fed to a pair of digital voltmeters. On 

depression of a foot-pedal the co-ordinates are punched on to paper tape.

The pencil was moved by hand over charts held horizontally by means 

of a specially constructed perspex rectangle.

The paper-tapes, obtained in the manner described in APPENDIX A , are 

processed by a computer programme and the spectral peak heights punched 

directly on to-cards for storage and subsequent analysis.



IV - Pre-treatment of Data

Application of SCREEN revealed hitherto undetected gross errors and 

spectra correlating differently from their immediate neighbours. Elim

ination of such "odd" spectra was accomplished by SELM. Averaging of 

spectra in re-arranged groups was carried out either by MAV or MSTATS 

(details in APPENDIX B).

MIXTURE II

Preliminary computer analysis using SCREEN revealed twenty-three 

human errors (these spectra were measured by hand). Corrections were 

made by reference to the original charts. A primary data matrix con

taining 133 spectra in 32 groups with 37 masses in range m/e 103-45 wa3 

obtained. The whole matrix vms stored on a disk-file^^ for subsequent 

recall and processing.

Spectral correlation coefficients were obtained (SCREEN) by corre

lating the first spectrum with all others in four groups since there are 

more spectra than masses in this case. i.e. the first spectrum was 

placed first in four sub-martrices of the whole and the four corresponding 

correlation matrices calculated as discussed in APPENDIX B. The reason 

for adopting this procedure where there are more spectra than masses is 

given in APPENDIX C.

The first rows of the correlation matrices are shown in TABLE 1•

Nine spectra do not correlate well with their neighbours and these were 

eliminated. Twenty-three new groups were formed and averaged using 

MSTATS. It is apparent from TABLE 1 that the fractionation was not a 

straightforward one in that the final spectrum does not have the smallest 

coefficient. The effect is ascribed, at least partly, to desorption 

phenomena (see Chapter 4 and 5-Il)*

In spite of this twenty-three mixtures spectra were obtained. The



fractionation may be represented by the correlation coefficients obtained 

for these spectra using FRACT:

SPECTRUM COEFFICIENT

1 1.0000
2 0.8019
3 0.8336
4 0.8056
5 0.7809
6 0.8048
7 0.7883
8 0.8118
9 0.7874
10 0.8044
11 0.6805
12 0.5748
13 0.1512
14 0.1881
15 0.1574
16 0.1858
17 0.2789
18 0.3306
19 0.5105
20 0.6754
21 0.8625
22 0.8114
23 0.9591

or these figures may be plotted and shown in FRACTIONATION DIAGRAM form 

as is FIGURE 2.C. It is apparent that this diagram allows a measure of 

the similarity between all mixtures spectra. Such a measure will be an 

important consideration in choosing suitable spectra for subsequent 

analysis.

The other mixtures, measured as described in Section III, were 

similarly treated and some coefficients are listed in TABLES 2. 5 and 4o

In each case the correlation coefficients vary with the particular 

masses chosen. As could be predicted where the higher masses are used 

much greater differences in coefficients are observed because there is 

less likelihood of overlapping i.e. fewer components are present at 

higher masses and so greater changes in patterns are observed. An



extreme example of this would be a series of uni-component peaks all 

unique to different components; as the fractionation proceeds the change 

in pattern would be v. maximum. Examples of this effect are shown for 

Mixtures IV and V in TABLES 5 and 4 respectively.

MIXTURE I
The results in TABLE 2 indicate that the degree of fractionation 

obtained was not very good compared with Mixture II for instance.

MIXTURE II

The upward swing in coefficients from spectrum 13 (FIGURE 2.C) 

coincides with a sudden increase in intensity of ions m/e 87 and 58.

This increase is ascribed to an impurity or impurities appearing in the 

system, perhaps by preferential desorption in the inlet-system or ion- 

source.

MIXTURE III - TABLE 2

The effect of inherent fluctuations on the coefficients in this case 

is shown to be very slight. The spectra were obtained using similar 

conditions to those for Mixtures I, II and IV.

MIXTURE IV

Once again the general shape of the curve (if the coefficients in 

TABLE 3 were plotted) is as in Mixture II. The increase in coefficients 

towards the final spectrum could be due to impurities. The effect is 

partially offset by excluding those peaks due to air. (increased 

amplification in final spectra).

MIXTURE V - TABLE 4

The coefficients obtained are very encouraging and indicate that the 

fractionation was under reasonable control with relatively little effort.



MIXTURE VI - TABLE 4

As expected, the coefficients show that fractionation was too rapid 

for the scanning speed used. However, averaging produced six spectra 

(see below).

The spectra present in most of the above arrays were grouped 

according to their correlation coefficients (the re-grouping described in 

Section i) and the groups averaged giving a final mixtures array in each 

case:

MIXTURE NUMBER OP SPECTRA NUMBER OP MASSES

II 23 (133) 37
IV 8 (35) 88
V 12 (28) 142

VI 6 (13) 71

The values in brackets indicate the numbers of spectra originally 

present in each array. The m/e values of each peak measured are given 

in the TABLES.

A sub-routine called MASSES was written to pick out the most sig

nificant masses for analysis (see APPENDIX B for details)o
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• TABLE 1

MIXTURE II

CORRELATION COEFFICIENTS 

spectrum 1 with:

spectrum COEFFT. spectrum COEFFT. spectrum COEFFT. spectrum COEFFT.

2 0.9998 35 0.7866 68 0.8032 101 0.1752
3 0.9999 36 0.7923 69 0*8100 102 0.1417
4 0.9970 37 0.7888 70 0.8036 103 0.1452
5 0.9990 38 0.7786 71 0.7890 104 0.1506
6 0.9992 39 0.7818 72- 0.8136 105 0.1586
7 0.8093 40 0.7942 73 0.7996 106 0.1637
8 0.7994 41 0.7949 74 0.7996 107 0.1692
9 0.8068 42 0.7941 75 0.6727 108 0.1808
10 0.8078 43 0.7867 76 0.6714 109 0.1836
11 0.8068 44 0.7940 77 0.6757 110 0.1817
12 0.8016 45 0.8008 78 0.6321 111 0.1772
13 0.8126 46 0.8000 79 0.6929 112 0.1790
14 0.8197 47 0.7979 80 0.5758 113 0.2478
15 0.8099 48 0.8047 81 0.5473 114 0.2999
16 0.8355 49 0.8103 82 0.5371 115 0.3231
17 0.8472 50 0.8179 83 0.5558 116 0.3280
18 0.8341 51 0.8136 84 0.5652 117 0.5036
19 0.8397 52 0.8162 85 0.5688 118 0.5089
20 0.7857 53 0.7583 86 0.5738 119 0.5949
21 0.8247 54 0.7720 87 0.5568 120 0.6709
22 0.8119 55 0.7824 88 0.5578 121 0.6723
23 0.8053 56 0.7886 89 0.5092 122 0.7752
24 0.8063 57 0.7859 90 0.5822 123 0.7926
25 0.8169 58 0.7898 91 0.6444 124 0.7948
26 0.7921 59 0.7792 92 0.2005 125 0.8025
27 0.7710 60 0.7834 93 0.1603 126 0.8054
28 0.7866 61 0.7741 94 0.1354 127 0.8650
29 0.804*0 62 0.7768 95 0.1320 128 0.8696
30 0.8169 63 0.7900 96 0.1248 129 0.9442
31 0.8080 64 0.7861 97 0.1257 130 0.9551
32 0.7856 65 0.7719 98 0.1961 131 0.9506
33 0.7842 66 0.7820 99 0.1882 132 0.9670
34 0.7818 67 0.7976 100 0.1716 133 0.9608

PEAKS - 103, 102, 93-37, 79-73, 71, 70, 66-55, 53-49, 46, 45
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TABLE 2

MIXTURE 1 MIXTURE III

CORRELATION COEFFICIENTS CORRELATION COEFFICIENTS

spectrum COEFFT.

1 1.0000
\2 0.9996
3 0.8468
4 0.8491
5 0.8435
6 0.8585
7 0.8418
8 0.8378
9 0.8370

10 0.8408
11 0.8259
12 0.8344
13 0.8219
14 0.8265
15 0.8322
16 0.8272

spectrum COEFFT.

1 1.0000
2 0.9999
3 0.9999
4 1.0000
5 0.9998
6 0.9999
7 0.9997
8 0.9999
9 0.9999

10 0.9999
11 0.9997
12 0.9998
13 0.9999
14 0.9999
15 0.9999
16 0.9999

PEAKS - 107-105, 103, 100, 
99-97, 92, 91, 85- 
SI, 79-77, 72-65, 
63, 62

*0



TABLE 5

MIXTURE IV CORRELATION COEFFICIENTS

88 PEAKS (INC. AIR) FIRST 60 PEAKS (EXCL. AIR) FIRST 35 PEAKS

1oOOOO 1.0000 1.0000
0.9986 0.9998 0.9999
0.9968 0.9997 0.9998
0.9979 0.9998 0.9997
0.9982 0.9998 0.9999
0.9979 0.9998 0.9998
0.6297 0.4128 0.3855
0.6359 0.4042 0.3763
0.6144 0.4050 0.3782
0.6368 0.4063 0.3785
0.6276 0.4032 0.3766
0.0530 0.0440 -0.0162
0.0379 0.0333 -0.0291
0.0399 0.0204 -0.0435
0.0396 0.0187 -0.0456
0.0289 0.0024 -0.0623
0.0259 0.0011 -0.0656
0.0236 -0.0033 -0.0695
0.0226 -0.0037 -0.0693
0.0196 -0.0560 -0.1246
0.0259 -0.0574 -0.1256
0.0196 -0.0574 -0.1255
0.0234 -0.0579 -0.1258
0.6983 -0.0811 -0.1331
0.7088 -0.0826 -0.1331
0.7073 • -0.0810 -0.1311
0.7214 -0.0844 -0.1358
0.3163 -0.0798 -0.1274
0.2953 -0.0816 -0.1290
0.2991 -0.0808 -0.1281
0.3052 -0.0825 -0.1290
0.5249 -0.0801 -0.1308
0.5097 -0.0817 -0.1317
0.5091 -0.0810 -0.1317
0.5362 -0.0832 -0.1340

PEAKS - 149-145, 121, 120, 113-102, 95-89, 87-49, 46, 45»5, 45-34, 32-24
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TABLE 4 

CORRELATION COEFFICIENTS 

MIXTURE V MIXTURE V MIXTURE VI

13 SPECTRA

11 PEAKS

SPEC. COEFFT.

1 1.0000
2 0.9741
3 0.8898
4 0.8862
5 0.8728
6 0.8677
7 0.8528
8 0.7496
9 0.7338

10 0.6353
11 0.6248
12 0.5684
13 0.5638

28 SPECTRA 12 AVERAGED GROUPS

142 PEAKS FIRST 25 PEAKS

SPEC. COEFFT. SPEC. COEFFT.

1 1.0000 1 1.0000
2 0.9994 2 0.9681
3 0„9992 3 0.9642
4 0.9750 4 0.9221
5 0.9744 5 0.9173
6 0.9577 6 0.8794
7 0.9699 7 0.8373
8 0.9694 8 0.7846
9 0.9424 9 0.7088

10 0.9413 10 0.6237
11 0.9377 11 0.6222
12 0.9340 12 . 0.5659
13 0.9118
14 0.9131
15 0.9166 MIXTURE V PEAKS - 394. 387.
16 0.8949 386, 372, 371, 358, 357,
17 0.8879 364-255, 247-242, 234-227,
18 0.8539 220-213, 205-199, 193-185,
19 0.8514 179-173, 167-157, 152-145,
20 0.8036 139-131', 125-117, 111-105,
21 0.8066 97-91, 85-77, 71-65, 57-50,
22 0.7358 45-41.
23 0.7570
24 0.7016
25 0.7246
26 0.6727
27 0.6737
28 0.6692
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DETERMINATION OF THE NUMBER OF SIGNIFICANT COMPONENTS

I - Matrix Rank Analysis

An essential part of the “ab-initio" analysis of the mixtures array 

must necessarily be the determination of the number of components making 

significant contributions. As discussed in Chapter 2 f this is equal to 

the rank of the matrix. Initial experiences of using the Algol Prog

ramme is also given in Chapter 2 together with references to the method
(53.54)used i.e. Gaussian elimination ' . This procedure is used to trans

form certain elements to zero or small numbers which may be taken to be 

zero. Testing a transformed element against zero is accomplished in the 

programme by tolerance values which set quite arbitrary limits. Rows of 

the array undergoing transformation are interchanged where necessary to 

provide a pivot element greater than zero. The meaning of "pivot element" 

is given later in this Chapter where Gaussian elimination is more fully 

explained*

The generally recommended method of rank determination by Gaussian 

e l i m i n a t i o n ^ i n v o l v e s  the interchange of rows and columns (pivoting) 

to provide the largest possible matrix element as divisor. This process 

minimises error build-up during the transformation and will be discussed 

in greater detail*

When the tolerance values are zero it is obvious that (a) round-off 

errors and (b) experimental fluctuations will raise the rank to a maximum*

(a) Round-off

Consider the matrix



The rank is one because one row is a multiple of the other. (in a 

more complex example it could be some linear combination of any of the 

other rows). In the computer, however, round-off is present and the 

matrix might be

1.000 0.333

2.000 0.667

The rank is now two. As shown in this simple example when decimals 

are rounded off the rank is increased. This is because 0.667 is not 

exactly twice 0.333* If» however, it is allowed to be twice by means of 

a suitable tolerance value, the rank will again be one. In this case the 

necessary value would be greater than or equal to 0.001 i.e. the value 

obtained by subtracting twice the first row from the second. In a more 

complex example, where more operations are required to reduce the matrix, 

the tolerance would have to be greater in order to allows for increased 

round-off errors. The actual value used will depend on the number of 

decimals and the number of operations involved.

In the case of the numerically exact mixtures arrays solyed by the 

Algol P r o g r a m m e any sman  tolerance, sufficient to overcome round-off, 

enabled the correct rank to be obtained. The situation with experi

mental data is quite different.

(b) Experimental Fluctuations

If the mixtures array contains these relatively large errors a much 

greater tolerance value is needed to produce a satisfactory rank. The 

actual magnitude of this tolerance will vary with the magnitudes of the 

fluctuations and the number of operations in a particular array. The 

reason is that the transformed elements, which could be zero, have much 

greater errors associated with them. This leads to the question of
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significance when dealing with mixtures spectra.

Significance

An experimental mixture may contain several major components and a

number of minojr ones in which the analyst has less interest. It is

easy to envisage a mixtures array made up of four component spectra in

similar relative amounts. If other arrays are visualised having smaller

and smaller relative contributions from one of the components, a stage is

eventually reached where difficulty is experienced in choosing between

ranks three and four. At this stage the contribution of the fourth

component is on the threshold of significance. The tolerance values

used will therefore have to be chosen with this in mind. As will be

shown such a problem need not be a serious one.

Having decided to change computer systems work was begun on the rank

analysis of mixtures arrays. The rank determining sub-routine available
(71)with the I.B.M. Scientific Library was utilised for this purpose.

Its use involved reading in an array together with a suitable factor 

which, on multiplication by the largest element, produced a tolerance.

The array, M, is effectively transformed according to

m \  . = M. . - M.. .M. .
i j  i1  1.1

Mi,

where  ̂ is the largest element pivoted to the leading position by
1

suitable interchange of rows and columns. The largest element in M is

compared with the tolerance and if it turns out to be effectively zero
1

the rank is one. If not it is pivoted to become M ^  and the elimination 

repeated to give MV^ etc., until the rank is found.

The immediate advantages of this system over the previous method

were:



.(l) speed of operation 

and (2) complete pivoting was used.

The disadvantage was the inaccessibility of the sub-routine for 

development purposes e.g. the inclusion of further tolerances as in the 

Algol Programme. The problem was not considered insurmountable at this 

stage and ’’looping" studies were begun (see Chapter 2 - II). It was 

hoped to relate empirically the tolerances necessary to give correct 

ranks for a number of known arrays. Progress was held up by the need 

to obtain suitable arrays by previously described methods.

Work was then channelled into two areas:

(a) obtaining and measuring mixtures arrays for testing purposes.

(b) writing a new programme in FORTRAN IV readily capable of modifi

cation.

(72)Coinciding with this work discussions at Esso Research Centre

(Abingdon, Berkshire) revealed relatively long-established applications
(73)of matrix rank analysis . These were mainly in the field of bio

chemistry for arrays of absorbtion data analogous to the mass spectral 

arrays considered here. Two particular methods of a similar nature 

seemed to be of particular relevance to the current problem. A combin

ation of these techniques was then incorporated into the new programme 

mentioned in (b), above.
(74)The first is due to Wallace and Katz . The Gaussian elimin

ation is performed a3 previously described i.e.



No single tolerance is incorporated "but a companion matrix, S, is 

constructed the elements of which are the individually estimated errors 

in M.

As M is reduced by the elimination process S is transformed according
(75)to the error propagation equation' "  :

s'.. - I s. .2 + s. 2, 1J I 1J

1 cH 
•H

2 2 + S., . ll ~M. !2 2 r+sn
Mn Mn M n

The procedure is the same as that previously described except that

the largest element in M* is compared with its corresponding error in S* ,

perhaps multiplied by a suitable constant. The reason for this suggested
extra criterion is not explained but may help to take account of inac-

(75)curacies in the original error estimates. In a study by Ainsworth' 7 

■chere was some doubt as to the existence of a third component as a trans

formed pivot element was not much greater than its error. Perhaps this 

is not surprising in view of the illustration of "significance" given 

earlier.

The possibility of including an extra criterion was kept in mind 

when applying the method to mass spectral data with its relatively large 

and varying errors.

The second method, due to Katakis' , is similar to the above but 

has a statistical advantage. Instead of comparing only the pivot 

element with its transformed error he suggests comparing all the elements 

in the transformed data matrix with their corresponding errors. In this 

way a percentage of elements may be allowed greater than their errors.

It is apparent from the error propagation equation that the value 
of any element in S 1 cannot exceed twice the value of the largest element 

in S and will probably be much less. This is only true where the matrix



has been pivoted i.e.  ̂ is always greater than etc. If the matrix 

is not pivoted the errors can become very large indeed, particularly where 

the divisors (leading elements) are small.

The remaining problem in application of the technique is the cons

truction of the error matrix itself. Here several possibilities exist 

depending on the nature of the particular data:

1• Where large spectral groups are obtained from the fractionation, the 

averaged deviations from the mean (for each peak) are given by sub

routine MSTATS. These values can become the elements of S corres

ponding to the Elements of M, the averaged data matrix. This would 

be suitable where good on-line facilities are available.

2. Where fewer spectra are obtained in each group (e.g. two or three) 

it is convenient to form the error matrix elements as some fixed 

percentage of the corresponding averaged data matrix elements e.g.

5 &

Another possibility borne in mind was that of defining the percentage 

by obtaining an experimental array with one component. This could be run 

immediately after the mixture has been pumped away. (Mixture III, 

described in Chapter 3 - II,is such an array). The percentage error 

required to give a rank of one could be used to choose the value for the 

mixtures analysis. However, the difference in numbers of operations 

required to give the results in both cases would have to be taken into 

account.

The sub-routines used to determine rank in both cases 1. and 2. are 

described in APPENDIX B. They are called GAUSAV and GAUSP respectively.

The effect of some extra criterion on the rank obtained is built 

into both sub-routines thereby giving the degree of sensitivity of results



to changes in the errors used. The elements of the error matrices in 

both cases are altered by some constant factor and the determination 

repeated. A diagrammatic illustration is given;

FIGURE 3.
cftrreRiort

The programme lists "rank statistics” i.e.

(a) percentage of transformed elements greater than errors 

and (b) pivot element and its error
(74)after each elimination step. The original data of Wallace and Katz 

was processed and yielded the same transformed matrix elements and errors.

Results are given in TABLES 5 - 1 0  for the mixtures obtained as out

lined in Chapter 3 - II.

MIXTURE I (TABLE 5)

After three eliminations at an error of 5$ the absolute value of the 

largest element (-32.3) is less than its error but a substantial per

centage (j6.3) of values are greater than their corresponding errors.

After four eliminations the largest element (23.8) is not much less 

than its error (29.5)*
0



The columns showing the corresponding errors and percentages at yfo 

and 7$ give some indication of the error sensitivity of results.

The most probable rank, based on these figures, is three, possibly 

four. The difficulty is probably because the spectra are all fairly 

similar - a low degree of fractionation i.e. perhaps the compositions 

covered by these mixtures are biased in favour of three components where 

one has either been pumped too quickly or too slowly.

MIXTURE II (TABLE 6 )

Results using both GAUSP and GAUSAV on the averaged array are given 

(errors in B. were produced by sub-routine MSTATS).

In both cases the absolute value of the largest element drops 

sharply after four eliminations. This most probably indicates the pres
ence of four major components. After five eliminations the largest elem
ent is approximately equal to its error indicating a fifth component of 
lesser significance. The presence of a sixth minor component is also 

indicated but this could be due to the size of the array and some inaccur

acy in the error transformation equation.

TABLE 6-jB yields a similar result using arbitrary criteria within 

the ranges covered. Smaller percentages are obtained because the errors 

happen to be larger. Bigger "percentage greater" values are also caused 

by taking the percentage of each peak as the error in GAUSP; many small 

peaks will be greater than their tiny errors after transformation i.e. 

the actual percentage error in small peaks may easily be 50$* In this 

respect GAUSAV which uses the actual error in each peak is better but 

large numbers of spectra are necessary*
The fifth component (or fifth and sixth) was thought to be present 

mainly in the final ten spectra corresponding to sudden increases in the 

intensities of ions at m/e 87* 75 and 58* In TABLE 7 rank analyses for



A, the first nine spectra and B, the final ten spectra are given. No 

significant difference is observed.

In TABLE 8 results from the elimination of the whole array of 124 

spectra are given. As expected the figures are not very good although 

the sudden decrease in size of the largest element is still present after 

four eliminations.

MIXTURE III (TABLE 8 )

The rank is clearly one. Large "percentage greater" values after 

one elimination are caused by the method of initial error calculation 

(see MIXTURE II, above).

MIXTURE IV (TABLE 9)

A. (INCLUDING AIR) The rank is six, possibly seven.

B. (EXCLUDING AIR) The rank is five, possibly six.

MIXTURE V (TABLE 10)

The indicated rank is three in both cases.

MIXTURE VI (TABLE 5)

The rank indicated by GAUSP is clearly two.

Some Conclusions and Comments

1 • The rank determination is best where few spectra are used i.e. where
*small numbers of operations are necessary e.g. compare rank analysis 

on 124 spectra in TABLE 8.

2. Results obtained for each mixture are clearly satisfactory and not 

very sensitive to changes in the initial error values used. The 

usefulness of the "percentage greater" columns (Katakis) would be 

increased where the errors in the peaks are estimated, individually 

e.g. b£ MSTATS where sufficient numbers of spectra are available.



An improvement could probably be made by using sub-routine MASSES to 

remove the very small mass-profiles from consideration. An alter

native improvement would be to increase the percent error in the 

smaller peaks.

In both GAUSP and GAUSAV the elimination process is repeated each 

time a new percentage error or criterion is used (see FIGURE 3)*

In future work this need be performed once and only the new errors 

transformed (see APPENDIX B).



TABLE 5

MIXTURE I 16 SPECTRA, 28 MASSES, 4 COMPONENTS

STEP LARGEST ELEMENT ERROR
3$

AT:
5$ 7io

cJo > ERROR AT: 
3^ 51° ii°

0 1080.0 32.4 54.0 75.6 100.0 100.0 100.0
1 302.3 10.1 16.8 23.5 80.2 72.6 63*5
2 71.2 23.6 39.4 55.1 54.7 40.4 29.4
3 -32.3 52.1 86.8 121.5 33.8 20.6 12.9
4, -23.8 17.7 29.5 41.3 30.2 16.3 9.4

MIXTURE VI 6 SPECTRA, 71 MASSES, 2 COMPONENTS

STEP LARGEST ELEMENT ERROR AT: 
y/o 5 io ii

i  > ERROR AT:
y/o bi 7/

0 10542.4 316.3 527.1 737.9 100.0 100.0 100.0
1 1642.2 52.1 86.8 121.4 99.1 99.1 98.9
2 -116.1 69.5 115.8 162.1 66.7 48.6 29.3
3 -33.2 34.1 56.8 79.5 43.6 22.1 13.2



TABLE 6

A. MIXTURE II 23 SPECTRA, 37 MASSES GAUSP

STEP LARGEST ELEMENT ERROR
3f<>

AT: 
5 % li°

$ > ERROR AT: 
Jfo & rfo

0 424.9 12.8 21 „3 29.7 100o0 100.0 100.0
1 291 .1 8.9 14.9 20.8 93.4 90.3 87.0
2 -217.1 12.0 20.0 28.0 84.4 76.5 69.0
3 149.3 5.6 9.4 13.2 64.7 51 .0 41 .6
4 27.2 6.4 10.6 14.9 53.1 36.4 27.1
5 12.5 4.3 7.2 10.1 47.9 28.3 18.8
6 -8.7 6.8 11.4 15.9 36.2 17.5 10.4
7 6.3 5.4 9.0 12.6 31.5 15.2 9.8

B. MIXTURE II 23 SPECTRA, 37 ‘MASSES GAUSD
(AVERAGED DEVIATIONS AS ERRORS)

STEP LARGEST ELEMENT ERROR
2

, TIMES 
6 8

io > ERROR AT: 
x2 x6 x8

0 424.9 ■7.8 23.4 31 .2 93.3 86.8 83.5
1 291.1 13.2 39.5 52.7 77.3 52.3 46.0
2 -217.1 16.2 48.5 64.7 60.0 29.8 23.7
3 149.3 5.8 17.3 23.0 33.2 12.2 8.2
4 27.2 8.0 24.0 32oO 19.1 1 .4 0.3
5 12.5 11.5 34.4 45.9 13.9 0.5 0.0
6 -8.7 34.1 102.4 - 8.0 0.2 -
7 6.3 17.8 53.5 4.8 0.0



TABLE 7

A. MIXTURE II FIRST 9 SPECTRA. 37 MASSES

STEP LARGEST ELEMENT ERROR 
y /o ,

AT:
5$ l/°

/o >ERROR AT: 
y / 5 /o ii°

0 424.9 12.8 21.3 29.7 100.0 100.0 100.0
1 -217.9 12.0 20.0 28.0 88.5 85 d 80.6
2 186.3 5.7 9.5 13.4 60.8 47.8 42.0
3 149.3 5.6 9.4 13.2' 55.4 40.2 32.8
4 27.3 6.4 10.6 14.9 33.3 15.8 10.3
5 -4.9 11 .1 18.5 25.8 15.6 3.9 ' 1 .6
6 -4.9 4.9 8.2 11.4 5.4 0.0 0.0

B. MIXTURE II LAST 10 SPECTRA, 37 MASSES

STEP LARGEST ELEMENT ERROR AT:
y /° y / r /

i 7 ERROR AT: 
y/o y/o ii°

0 297.3 8.9 14.9 20.8 100.0 100.0 100.0
1 67.4 2.2 3.6 5.1 86.1 78.4 72.5
2 25.5 1.5 2.5 3.5 73.2 61.1 54.3
3 22.7 3.4 5.7 8.0 66.0 48.7 34.9
4 -6.7 3.3 5.4 7.6 61.1 39.4 26.3
5 -5.8 2.8 4.6 6.4 38.1 23.1 10.6
6 -2.4 2.1 3.5 4.9 34.7 12.9 9.7
7 3.5 2.5 4.2 5.8 27.8 12.2 8.9

See FRACTIONATION DIAGRAM in FIG. 2(c)

SP£CTRU<*



.TABLE 8

MIXTURE II 124 SPECTRA, 37 MASSES

STEP LARGEST ELEMENT ERROR AT: 
3f° 5 f° i f

f  y ERROR AT: 
Jfo 5f° i f

0 428.5 12.8 21.4 30.0 100.0 100o0 100.0
1 283.1 8.7 14.5 20.3 93.0 83.3 83.6
2 -224.9 11 .8 19.7 27.6 86.4 IQ .2 71.5
3 147.8 5.6 9.4 13.2 63.6 48.9 38.6
4 24.6 1.5 2.5 3.5 53.6 36.7 26.3
5 -22 .6 5.7 9.5 13.3 46.4 32.3 22.8
6 17.9 6.8 11.4 15.9 40.8 25.5 17.0
7 -10 .5 2.9 4 .8 6.7 32.2 18.8 12.2
8 -10 .6 2.5 4.2 5.8 31.5 17.9 11.3
9 -9 .1 1.6 2.7 3.7 27.5 13.9 8.5

10 - 9 .0 2.0 3.3 4.6 27.3 13.6 7.5
11 - 8 .2 3.4 5.7 8 .0 29.0 14.3 7.6

MIXTURE I I I  16 SPECTRA, 27 MASSES, 1 COMPONENT

STEP LARGEST ELEMENT ERjROR AT: 
3$ 5^ i f

f  7ERROR AT:
jfo  Jfo lf°

0 2900.3 87.0 145.0 203.0 100c0 100.0 100.0
1 -65.1 . 60.7 101.1 141.6 33.6 24.4 18.5
2 29.8 27.3 45.4 63.6 23.7 14.3 7.7
3 18.6 34.9 58.2 81.5 13o8 5.4 1.9
4 -19.1 31.8 53.0 - 8 .7 3.3 -

5 16.8 51.4 85.7 1.7 0 .0 ••
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• TABLE 9

MIXTURE IV

A. 8 SPECTRA, 88 MASSES (INCLUDING AIR PEAKS)

STEP LARGEST ELEMENT ERROR
5^

AT:
r/> 9^

7ERROR AT: 
Jfo 7^ Offo

0 13234.7 661.7 926.4 1191.1 100.0 100.0 100.0
1 8090.8 406.5 569.1 731.7 98.0 96.9 96.4
2 6193.7 354.5 496.3 638.2 90.1 85.9 81.4
3 3016.6 236.9 331.8 426.6 86.4 80.5 76.2
4 1098.8 176.5 247.2 317.8 * 60.7 50.0 42.3
5 -534.4 156.2 218.7 281 d 37.8 26.9 20.9
6 275.9 216.9 303.7 390.5 19.5 8.5 4-. 9
7 -53.3 210.2 294.3 378.4 4.9 1.2 0 .0

B. 8 SPECTRA, 60 MASSES (EXCLUDING AIR PEAKS)

STEP LARGEST ELEMENT ERROR AT: 
5f° ii° 9<fo

<fo >ERROR AT: 
5 <?o tfo 9^

0 8127.4 406.4 568.9 731.5 100.0 100.0 100.0
1 6898.6 348.5 487.9 627.3 89.3 86.4 82.8
2 3160.1 236.9 331.8 426.6 84.8 80.7 74.4
3 2243.2 112.5 157.5 202.5 49.5 38.2 29.5
4 -406.6 14606 205.2 263.9 43.8 33.0 24.1
5 273.6 210.4 294.5 378.7 29.1 18.8 13.3
6 84.4 105.2 147.2 189.3 18.5 14.8 13.0
7 -58.6 226.9 317.7 408.1 0.0 0.0 0.0
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TABLE 10

V

12 SPECTRA, 142 MASSE

iRGEST PEAK ERROR
'3/®

AT:
- 1$

i  >ERROR AT :
3 i° 5#

6762.7 202.8 338.1 473.4 100o0 100o0
1717.8 54.9 91.4 127.9 97.5 95.3
995.3 64.3 107.1 149.9 91 „1 84.4

-107.6 102.7 171 .2 239.6 47.8 25.3
-104.4 123.7 206.1 288.5 * 22.3 7.1
-76.0 95.7 159.5 223.3 10.2 2o3
-72.6 139.1 231.8 324.5 2.1 0.2
50.3 235.2 391.9 0.9 0.0

12 SPECTRA, 60 HIGHEST MASSES

LARGEST PEAK ERROR AT: 
3$ 5$

i  7 ERROR AT: 
3$ 5^

6762.7 
1627.6 
334.1 
-84.8 
-99.7 
-44.6 
48.6 

-52.3

202.9
52.4

131.4
85.4
140.4 
69.9

155.3
173.8

338.1
87.3

219.0
142.3
233.9
116.4
258.9

473.4
122.5 
306.6. 
199.2
327.6 
162.9 
362.4

100.0 
98.2 
57.2 
37.0 
11.8  

2 .6  
0.9 
0.4

100.0
96.3 
37.9
12.3 
2.0 
0.5 
0.0



-II - Principal Components Inalysis

This is a long established, technique having been extensively employed.
/ rjr N

in the analysis of psychological data . Recent years have seen its
(7R^ (70 ̂application to a number of spectroscopic and chromatographic prob

lems, A short explanation of the method and its terminology is included

in APPENDIX C o The number of factors needed to account for the 
/ \

VARIANCE in the mixtures data is estimated. This is done by forming
(78)a correlation matrix and computing its EIGENVALUES . The method 

requires fewer operations than Gaussian elimination and so error build-up 

is much reduced. As with Gaussian elimination no gross errors can be 

tolerated as they would introduce more variance to be accounted for i.e. 

extra components would be found.

The criterion problem still exists because it is necessary to decide 

on the number of significant eigenvalues i.e. above some pre-set tolerance 

value o

A certain amount of the variance in each array is accounted for by 

the inherent errors in the data. As the levels of these vary between 

experiments so will the eigenvalue threshold of significant components.

Eigenvalues are computed by sub-routine PCA which is explained in 

APPENDIX B.

Results obtained for each mixture are given in TABLES 11 and 12.

If values of logarithms are calculated as indicated it would seem that 

the number of components is given by the positive values in each case (see 

(78)).

MIXTURE I (TABLE 11 )

The fourth factor accounting for the variance has a negative loga

rithm. The rank is then probably three i.e. in agreement with the rank 

analysis (see MIXTURE IV).
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MIXTURE II (TABLE 11)

Four major components are indicated by the logarithms* The sixth 

component gives a negative value„ The effect of processing a large array 

is similar to that in rank analysis0

MIXTURE III (TABLE 11 ) ONE COMPONENT

The rank is clearly one. The eigenvalue 0o002 gives an indication 

of the significance of the inherent fluctuations in the spectra. This

second factor and subsequent factors ^0.001 account for the ’’error vari

ance’4 .

MIXTURE IV (TABLE 12)

The effect of including air peaks is as before i.ec the rank increases 

by one. Results for eight spectra (averaged groups) indicate that a first 

negative logarithm of the value shown could represent a significant factor; 

otherwise the rank could be four. Where all 35 spectra are considered 

the rank is five.

MIXTURE V (TABLE 12)

The rank is three where 142 masses are used. Consideration of the 

60 highest masses reduces the apparent rank i.e. one of the components

.appears to have less significance in this range.

MIXTURE VI (TABLE 12)

The number of components is two.

No serious differences are observed in results obtained from both 

Principal Components Analysis and Rank Analysis in each case (where 

constant criteria are used).

It appears, from the few examples tested and the criteria used, that 

the method if Principal Components tends to produce a minimum rank whereas



the method of rank analysis tends to be more generouso A combination of 

both might prove useful«
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TABLE 11

EIGENVALUES ->

MIXTURE I 16 SPECTRA, 28 MASSES

NUMBER X. In ( A .10 2 )

1 16.258 7.594
2 0 .604 4.101
3 0 .119 2.477
4 0 .007 -0 .5 5 7
5 0.002 -1 .6 0 9
6 0.002 -1 .6 0 9
•
• <0.001 -

MIXTURE II

124 SPECTRA, 57 MASSES

NUMBER A_ In  ( A  .102 )

1 20.797 7 .640
2 9.785 6.886
3 4 .600 6.151
4 0 .819 4.406
5 0 .507 3.425
6 0 .18 8 2.934
7 0.105 2 .549
8 0 .070 1 .947
9 0.059 1.770

10 0 .046 1 .526
o © •

25 SPECTRA, 57 MASSES

NUMBER A_ In  ( A  .1 0 2 )

1 16.062 7 .382
2 5.496 6.509
3 0 .804 4 .588
4 0 .606 4.105
5 0 .162 0 .482
6 0.005 -0 .6 5 5
7 0 .004 -1 .0 5 0
8 0 .003 -1 .5 4 7
9 0.001 -2 .2 0 7
• <0.001

MIXTURE III 16 SPECTRA, 27 MASSES ----- ONE COMPONENT

NUMBER In  ( A  ,10 2 )

1 15.997 7 .378
2 0.002 -1 .6 0 9
3 <0.001 -
•
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TABLE 12

MIXTURE IV

8 SPECTRA, 88 MASSES 8 SPECTRA. 60 HIGHEST MASSES
(INCLUDING AIR PEAKS) (EXCLUDING AIR_PEAKS)______

NUMBER A. In ( A .102)
1 5.137 6.242
2 1.771 5.177
5 0.824 4.416
4 0.195 2.970
5 0.068 1 .917
6 0.004 -0.916
7 0.001 -2.503

55 SPECTRA. 88 MASSES

NUMBER A In ( ._102}
1 21.379 7.668
2 8.597 6.757
3 3.716 5.918
4 0.984 4.589
5 0.285 3.350
6 0.018 0.588
7 0.005 -0.617

MIXTURE V

12 SPECTRA, 142 MASSES

NUMBER A. In (A .102)
1 11.292 7.029
2 0.664 4.196
3 0.036 1.273

• 4 0.002 -1.514
5 0.002 -1.609
6 0.001 -2.079
7 <0.001

NUMBER X. In ( X ,102)
1 5.436 6.298
2 1 .473 4.968
3 0.750 4.317
4 0.335 3.513
5 0.0C4 -0.821
6 0.001 -2.056
7 <0.001 —

55 SPECTRA. 60 HIGHEST PEAKS

NUMBER In (A #10S)
1 21.921 7.693
2 7.883 b.670
3 3.617 5.891
4 1.543 5.039
5 0.018 0.621
6 0.006 -0.462
7 0.004 -0.821

12 SPECTRA, 60 HIGHEST PEAKS

NUMBER In (A ,102)
1 11.252 7.026
2 0.736 4.298
3 0.0088 -0.131
4 0.0016 -1.858

MIXTURE VI 

6 SPECTRA. 71 MASSES

NUMBER A. In (A.102)
. 1 12.031 7.093
2 0.958 4.563
3 0.008 -0.198
4 <0.001

>
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Ill - GENERAL C0NCLU3IOKS

Results indicate that a statistical package has been produced which 

allows the determination of the number of significant components in a 

suitable array of mixtures spectra. The package is shown in the diag

ram;

ARRAY

It may be that once a uniform experimental method is established, 

such analyses may be carried out more simply by employing a fixed and 

reliable criterion giving the most likely rank. Such a system would 

facilitate the operation of a fully automatic mixtures analysis programme.

The next Chapter considers some methods of detecting the components 

contributing to each column of the mixtures array<>

a



CHAPTER FIVE

Pattern Separation Techniques

I “ De~fcermination ^he Components present 

in Mixtures Peaks 

II - Mass Profile Correlation Analysis 

H I  " Region Peak Analysis 

IV - Spectrum Derivation and Refinement



PATTERN SEPARATION TECHNIQUES

I - Determination of the Components present in Mixtures Peaks

The next stage in the analysis according to Monteiro and R e e d ^ ^  is 

a determination of the components contributing to each peak i,e, each 

column in the mixtures array as previously defined. This process will be 

referred to as peak analysis . At this point the determination takes 

little account of the relative amounts of the components but endeavours 

to say whether they are present or absent in any column. The maximum 

number of possibilities for any mixture may be illustrated by a Venn 

Diagram e.g. for a three-component mixture :

Afe AC

i.e. seven distinct mixtures peaks are possible. For a more com

plex mixture the maximum number increases dramatically,being

M=N
ir*  v/  ■ MJ (N - M)J
M=1

for an N-component mixture. This equation is simply a summation per

formed on the well-known equation giving the number of combinations of
( 8 0)items taken M at a time' .

The method of peak analysis proposed by Monteiro and R e e d  ̂ 9) requ

ires the existence of

(a) at least two uni-component peaks for each component i.e. at 

least two columns of the mixtures array should be unique to 

each component.
or (b) one uni-component peak per component where an effusiometric



69.

(81)method' ' is applicable (see Chapter 6-1).

Once a uni-component peak (column of the array) has been identified 

for each component further peak analysis is possible

The reason for (a), above, is to alio?/ the detection of the unique 

peaks as the relevant columns are proportional. The method of analysing 

other peaks involves the formation of suitable sub-matrices of the array 

and evaluation of their d e t e r m i n a n t s B e f o r e  discussing how this is 

done it is convenient to discuss the reasons for determining which col

umns are uni-component and carrying out further peak analysis.

A simple illustration of the equations which may be set up to solve 

a five-component mixture are shown below. The meanings of the arrays are 

given in and also on page 17 of this thesis

" k
1

o<
2

aC
3

c<
4

oC
5 ral l m i 2

m , 7 • 
1 3

a . a „
2 a 3

• • • •

* 2 ^ 3 * 4 / * 5 m 2 1 m 2 2 m 2 3  • • • •
s=

h l b 2 b 3
• • • •

* i * 2 * 3 * 4 * 5
m 5 i

m 32
1H 7 7  . • • •

3 3
C-

°2 c 3
• • » •

S 2 8 3 8 4 * 5 m 4 1 m 4 2 m 4 3 d l d 2 d 3
• # • •

* 2 0 3 0 4 * 1 _ m 5 l V
m _  _ • • • .
3 3

e.
e 2 e 3

• • • ♦

or
/ /QM = A

Q, is a, matrix of unknowns which will give the required normalised 

component spectra on multiplying into M /. The latter is a data matrix 

(the only known quantity) whose rows are five distinct mixtures spectra.

A* is a matrix containing the five normalised component spectra.

The important consequence of analysing the columns of M 7 (M) is 

that the positions of zeros in A are immediately known. Every zero 

found in the first row of A may be used to form an equation given by the 

relevant*sum of products in Q, and M . At least four such equations are



necessary to determine o^, anî  (since these are equated to

zero). Once the constants have been determined the first row of A (first

component spectrum) is known. The minimum conditions (properties of A
/ *and M ) required for the determination are :

(a) at least four (or one less than the rank) of the elements in 

the first row of A are zero, and

(b) all other components contribute to this set of peaks i.e. not 

necessarily to each and every member. This is to ensure that 

the system of simultaneous equations has maximum rank, there 

being four unknowns in this case.
( 82 )These requirements are described in a similar form by Thurstone' ' 

and by Ainsworth^^^

Part of A* might have the form :

_  4 + 4 1
• • • . •'+ + + 0 + 0 + 0 0 + + . • • • A
• • • . + + + + + 0 + + 0 .................... B

0 0 0 + + .................... C
+ + + 0 0 .................... D
0 + + 0 E

I* n+, any number greater than zero. 
0*, zero.
V, any number.

The components are A, B, C, D and E. The conditions necessary to 

determine the first row are satisfied (at indicated masses).

Four equations can now be set up in an(* may

set to -1 since the equations are set to zero. In this way the spectrum 

of A may be derived.
The simplest way in which both conditions (a) and (b) may be satis- 

fied for all components is to have identified one uni-component peak per



component. This may again be illustrated by part of A :

+ 0 0 0 0
0 + 0 0 0
0 0 + 0 0
0 0 0 + 0
0 0 0 0 +

where four equations satisfying (a) and (b) are possible for each 

of the five components.

It is easily seen that the important consideration is not necess

arily the fact that a peak is uni-component but that both conditions can 

be shown to be satisfied.

The afore-mentioned Algol p r o g r a m m e ^  relies on the detection of 

proportional columns to locate unique peaks so at least two for each com

ponent are necessary. In this present case five such groups would have to 

be detected or the programme would £all • A short account of the numeric

al method used will now be given in order .to eompare it with other 

possibilities.

The largest mixtures spectrum is placed first and all other spectra 

divided by it. Where the divisor is too small by comparison with some 

tolerance the peak is not considered i.e. cannot be analysed. The first 

column of quotients is then subtracted from all other columns. When a col

umn of zeros is obtained then another mass of the same type has been loc- 

ated i.e. the original columns were proportional. Such detected masses 

are then eliminated from further consideration as they have been identified 

as uni-component. The process is begun again by comparing the next avail

able mass (column) with every other remaining mass. Such subtractions 

are continued until all possibilities have been exhausted and N groups 

of uni-component peaks found where N is the number of components.



The method was found to work well with calculated data but was un

suitable for use with real data. Some disadvantages of the method are

(i) The use of division to compare the profiles may make analysis of

some masses difficult or impossible. Since fractionation is taking 

place the biggest number at a certain mass may not be in the big

gest spectrum, which is placed first as divisor. This difficulty is 

illustrated by :

The divisor at mass jj is very small and would lead to large differ

ences being obtained on subtraction of quotients. This mass may be 

unique to some component but might not be detected as unique , 

although s

(l) other peaks unique to the same component exist 

and 2) there might be significant contributions at this mass number

(2) When a peak is located as a member of a uni-component group it is 

eliminated from further consideration i.e. it is not possible to 

compare the uni-component mass profiles within a group. The partic

ular masses being eliminated are regulated by means of a single

1 2 5

Later Mixture 
Spectrum

1 2  3

as fractionation proceeds e.g. this component might be

relatively involatile taking longer to appear significantly

in M.



arbitrary tolerance value which may be difficult to define experimentally, 

particularly in view of (l) , above. Considerable difficulty was exper

ienced in detecting the groups of Mixture II by this method.

(3) Only the information from the first mass in each group of uni-compon- 

ent masses is retained and utilized in the subsequent analysis. The 

programme appears to use the first uni-component peak heights them

selves and the corresponding columns of the data matrix to form a 

matrix like as described on page 16 (Chapter II) i.e. the 

numerical method used differs from that method described by Monteiro 

and Reed but is really equivalent to it. The present observation is 

then the limited amount of information used to determine A and the 

fact that it is the first unique mass in each group which is taken.

In many cases the latter will be the smaller isotope peak in a parent 

ion group. The use of such relatively small numbers could lead to num

erical problems as discussed by Barnard and Fox^^ particularly in 

view of the experimental fluctuations present.

(4 ) No other peaks are analysed. This would provide more zeros in each 

row of A leading to a larger number of equations. Solution of the 

latter by a suitable least-squares metho d ^ ^  would produce a more 

reliable result.

A more practical and flexible approach was then sought in order to 

remove or reduce some of the above disadvantages. Methods of tackling 

each of these problems will be discussed and illustrated by experimental 

results.

The division method of proportional column detection was replaced by 

a method involving the subtraction of mass profiles normalised to the same 

sum. In' this way all masses could be tested i.e.

the first column was subtracted from all others and the differ-



-ences subjected to some analysis :

1. each was compared with some tolerance value related to the size 

of the data fluctuations and the differences in sizes of the 

original profiles.

2. a facility was provided to allow a certain number of differ

ences to be greater than this tolerance.

3* the average absolute deviation for each difference was obtained.

In the case of calculated data all differences would be zero where 

proportionality exists. In experimental cases both experimental errors 

and errors produced during the normalisation are introduced. The disad

vantage of the method is then where proportional mass profiles have very 

different sizes i.e. a small peak and a large peak due to the same compon

ent .

Columns which were particularly small before normalisation will 

produce larger deviations from zero on subtraction and so should require 

larger tolerance values. This allowance was not made in view of the fact 

that less significance should be given to numbers which were originally 

quite small and relatively inaccurate.

Difference values obtained for masses 103 and 102 (both unique to 

n-propyl ether) in Mixture II are given in Table 13 . The second set of 

values given are for masses 92 and jjl (unique to toluene). Differences 

for masses 102 and are provided for comparison.

The values were calculated using the sub-routine FILTER. Once a

peak is found to be potentially uni-component it is not eliminated from

.further comparisons. An overall picture of the detection is then obtained.

In this way the analyst is able to exercise his judgement in deciding

whether a peak is really uni-component or not, perhaps by comparing values

with those for peaks which are obviously unique. Thus (2) is satisfied, 
w

Only peaks satisfying certain criteria are stored for printing out 

and subsequent use. The difficulty of defining these criteria was obvious



during examination of peaks in Mixture II. However, employment of generous 

criteria gave large numbers of possible uni-component peaks i.e. peaks 

obviously not unique were excluded from consideration. Examination of the 

set of possible unique peaks allowed the most likely to be chosen.

On a statistical basis the greater the degree of fractionation 

and the larger the number of distinct spectra the more efficient will 

be the detection of groups of unique peaks. If these conditions are not 

well satisfied then many more columns might appear to be proportional 

considering the fluctuations present in the data.

In attempting to overcome such difficulties (i.e. of defining a 

tolerance value and comparing it with a number of differences) a new and 

more direct approach to unique peak detection was successfully investig

ated. This is discussed in the next Section.
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TABLE 13

DIFFERENCES
MASSES 103 with 102 92 with 91 102 with 92

-9.7
3 . 6  

2.1
21.8
26.5

-  3 . 7  

6.8
7 . 6

9 . 6  

4.8
2 1 . 7

-  1 . 7

-  7 . 7  

0.8
- 7 . 1

- 1 1 . 9  

-11.8
-  3 . 0

-  9 . 5  

- 6.0
- 1 1 . 7

- 1 3 . 1

-  8 . 4

0.5 
-  2.0 
1.0 

-  0.0 
0.6 
0.7

-  1 . 4  

1.2
- 1.0

4 . 1

- 7.3 
1.0

-  0.0 
0.8

-  0.0 
-  0.1
-  0 . 4  

1.6
- 0.9
-  2.1

0.5
2.7

0.6

42.5
- 131.4 
- 62.8
-113.7
- 117.8
- 67.3
- 64.2
- 47.6
- 46.0 
- 7.5
64.4
82.9
65.5
85.1
57.2
56.6
27.6 
38.8 
32.4
31.2

25.9 
25.1

23.0

absolute 
average 
differences 
over 23 
spectra in 
each case

9.15 1.32
UNIQUE 
but one 
profile 
originally 
much bigger 
than other

UNIQUE
57.24
NOT UNIQUE



II - Mass Profile Correlation Analysis

The previous section described methods used to detect prop

ortional columns in the mixtures array. Whereas in Chapter 3 the rows 

of the mixtures array were correlated this new method of detecting uni

component peaks involves correlating the columns. At least two uni

component peaks per component are still required but the method will be 

shown to be of greater potential than was first thought.

It is obvious that the correlation coefficients (see Appendix C) of 

mass profiles unique to the same component will be very high, i.00000 in 

numerically exact cases. In experimental situations this could be 

0.990 depending upon the size of the particular fluctuations present.

Thus, by forming a correlation matrix of the masses and searching for 

very high values all clusters of uni-component peaks may be identified in 

one single operation. The degree to which a profile may be considered as 

having one major component is given simply by the correlation coefficient.

Part of the Mass Profile Correlation Matrix for Mixture II is given 

in Table 14

Such an analysis is best accomplished where there are more spectra 

than masses. Thus the method would be particularly valuable where a fast 

and accurate data acquisition system is available. Large numbers of 

distinct spectra are, of course, to be preferred for any method of analysis 

where large experimental errors are involved. By means of a simple tech

nique the method will be shown to be practicable in cases where there are 

more masses than spectra so this need not necessarily be a serious limit

ation.

The sub-routine which performs the analysis is called MC . The 

afore-mentioned sub-routine FILTER may be used initially to exclude all 

peaks which are obviously multi-component (or uni-component where only one 

exists). This is done by providing a tolerance large enough to allow



some multi-component peaks to be included* Mass correlation analysis 

may then be applied to the set obtained. Thus FILTER provides a con

venient filtering mechanism to avoid peaks being considered by MC 

which are clearly not proportional to any of the others. The mechanism 

may be represented diagrammatically thus :

MC

clusters

It is reasonable to suppose that any method of pattern separation 

using all available information will give better results. If equations 

are formed using all the zeros found in the uni-component peak detection 

better solutions should be obtained. Least-squares methods of dealing 

with such systems of equations would be particularly useful. If this is 

not done the system will tend to be more ill-conditioned i.e. a small 

amount of numerical information is being used to derive a large amount 

(the component spectra). This will be discussed in Section IV where 

spectrum derivation is considered.

Further peak analysis was considered desirable, if not essential, 

when processing experimental data in order to provide positions of 

further zero elements in the unknown spectra and hence more simultaneous 

equations • More zero elements will also help to overcome the ill- 

conditioning by providing more absolutely determined spectral features.



Such peak analysis, if extensive, could he extremely valuable for

identification purposes in its own right. This has been shown by recent 
(22 23)work * ' involving binary-coded spectra and has to some extent shifted

the emphasis of the present study away from a numerical calculation of 

relative peak heights.

Methods of peak analysis involving determinants are suggested by 

Monteiro and R e e d ^ ^  and by A i n s w o r t h t h e  latter for use with 

equivalent absorbtion spectral data. They both involve forming suitable 

sub-matrices of the unique columns of the mixtures array in various 

combinations with unknown multi-component columns, taken one at a time.

If the determinant of such a sub-matrix is found to be zero then the rank 

of the sub-matrix is less than its smallest dimension. This method is 

not readily programmable in a general sense and would require the calc

ulation of prohibitively large numbers of determinants. The latter 

could be readily found by means of the error compensating sub-routines 

GAUSAV or GAUSP developed in the previous Chapter. The real problem is 

then the formation of suitable sub-matrices where large numbers of poss

ible combinations present themselves.

A simpler solution to the problem presented itself in utilisation 

of the large quantity of hitherto unused information present in the mass 

correlation matrix. A mass profile containing a large contribution from 

e.g. component B will correlate highly with a mass profile which is 

known to be unique to B. If the correlation coefficients of a mass prof

ile under test with each unique mass profile be listed (they are all 

present in the matrix) it is possible to accomplish much valuable peak 

analysis with vexy little effort. So far only large correlations have 

been mentioned. It is obvious that a small correlation means that the 

mass under test is less likely to contain that particular component as one 

or two with which it correlates highly.



The listing for a five-component calculated mixture is shown in 

Table 15 with the corresponding pure-component spectra in Table 16. The 

listing was produced by sub-routine CDG.

The particular coefficient obtained will depend on the relative 

amounts of the components present and the particular correlation 

coefficients of their unique mass profiles. In this case the latter are 

shown at the foot of Table 15

It appears that in any mixed mass profile a small or negative 

correlation with a uni-component profile need not necessarily mean an 

absence of that component. It could mean a relatively small contribution 

compared with the contribution from another component; or a smaller 

contribution from the latter where it correlates badly with the uni

component profile. This consideration may be illustrated by reference to 

mass 19 (Table 15) which has a relatively small contribution from com

ponent A compared with component B; its correlation with a profile unique 

to A is - 0.15 (yet it contains A) and with B it is 0^21.
In Chapter 6-IIlthe use of such correlation coefficients in peak 

analysis is illustrated by a numerical example.

Part of the COMPONENT DIAGRAM for experimental Mixture II is given 

i*1 Table 17 • The corresponding spectra are shown in FIGS. 4 and 5. It 

was clear from the first four columns that ions having m/e 0J_9 75« 66, 64, 

58 and 57 have large contributions from other components, probably 

impurities i.e. their mass profiles correlate well with each other but
it

badly with the four pure component profiles. The impurity uni-component 

peak was taken as m/e 58 and all correlations included in the fifth 

column (see note on weighting at end of Appendix C). This result was 

borne out by the rank analyses described in Chapter 4*

The construction of such a table, taken ftom the correlation matrix 

assumes that there are more spectra than masses for best results. By



means of a simple device this condition can always be satisfied:

Fewer Spectra than Masses

A mass profile known to be unique to the first component, A, may be 

correlated with all other masses in groups containing fewer masses than 

the number of spectra available e.g. if there are three times more masses 

than the number of spectra, ”n", then the correlations may be:

first unique peak with masses 1 to h
first unique peak with masses n-f 1 to 2n
first unique peak with masses 2n+ 1 to J>n

In this way the first column of the COMPONENT DIAGRAM may be

produced.

The second column is formed by correlating a mass profile, unique 

to the second component, with all others in similarly sized groups i.e. 

less than "n" • The first mass to be considered this time will be that 

where the significant contribution from the second component appears.

This mass may be determined by a more sophisticated application of matrix 

rank analysis as described in the next section.

The remainder of the COMPONENT DIAGRAM is obtained in the same way.

Once the diagram is complete all small coefficients will indicate 

small or zero contributions from the relevant components. This is not . 

unfortunate because interest really lies in the identification of zero 

contributions. Doubts may be cast on a small coefficient by the other 

coefficients in that row of the diagram which might show a large correl

ation with another component. Further qualification is obtained by the 

correlations between the unique mass profiles themselves. Experience 

gained by forming diagrams for numbers of known mixtures will improve an 

understanding of the limitations of the method enabling spectral features 

to be guessed reliably.
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TABLE 14
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TABLE 15

CORRELATION COEFFICIENTS

MASS RELATIVE CONTRIBUTIONS OF THE 5 
IN CALCULATED MIXTURES SPECTRA

COMPONENTS

A B C T> E
1 1 00 1 00000 0 00064 0 53909 -0 70015 -0 31722
2 2 00 1 00000 0 00064 0 53909 -0 70015 - 0 31722
3 3 00 1 00000 0 00064 0 53909 - 0 70015 - 0 31722
4 4 00 1 00000 0 00064 0 53909 — 0 70015 -0 31722
5 5 00 1 00000 0 00064 0 53909 -0 70015 ••0 31722
6 6 00 1 00000 0 00064 0 53909 -0 70015 •0 31722 •
7 7 00 0 00064 1 00000 -0 62670 0 48260 0 84552
8 8 00 0 53948 0 84235 — 0 23715 0 02901 0 54097
9 9 00 0 0*953 0 99080 t*0 59958 0 44777 0 82897
10 10 00 0 00064 1 00000 -0 62670 0 48260 0 84552
11 11 00 0 68973 0 72451 -0 08220 “ 0 13316 0 39356
12 12 00 0 53909 *-0 62670 1 0 8 0 0 0 "0 9061 1 -0 82860
13 13 00 0 57024 m 0 56631 0 99717 -0 91177 — 0 79476
14 14 00 0 79147 — 0 42732 0 94040 -0 93607 -0 71170
15 15 00 -0 70015 0 48260 *■0 9061 1 1 00000 0 84104
16 16 00 *0 70015 0 48260 I* 0 9061 1 1 00000 0 84104
17 17 00 0 50242 -0 63937 0 99751 — 0 87398 -0 81148
16 18 00 1 00000 0 00064 0 53909 ■0 70015 -0 31722
19 19 00 *0 01366 0 97239 -0 71712 0 60175 0 91993
20 20 00 0 53909 *0 62670 1 00000 •*0 90611 «4 0 82860
21 21 00 0 08512 0 99253 *0 52693 0 38446 0 79243
22 - 22 00 -0 56315 0 65944 -0 90972 0 97221 0 94431
23 23 00 - 0 31722 0 84552 -0 82860 0 84104 1 00000
24 24 00 — 0 31722 0 84552 — 0 82860 0 84104 1 00000
25 25 00 0 00064 1 00000 - 0 62670 0 48260 0 84552
26 26 00 -0 29966 0 85259 -0 80247 0 82385 0 99892
27 27 00 -0 47896 0 74186 -0 09336 0 93523 0 97804
28 28 00 "0 62885 0 61721 *-0 92910 0 98698 0 91084
29 29 00 0 56447 .-0 61418 0 99954 -0 91333 *•0 82354
30 30 00 0 91352 0 25302 0 36038 -0 43038 0 02743
31 31 00 0 65554 «0 56179 0 98943 - 0 93298 — 0 79755
32 32 00 0 89020 0 45577 0 18901 *•0 39437 0 11048
33 33 00 *-0 30811 0 65948 -0 87127 0 89477 0 93144
34 34 00 -0 70015 0 48260 -0 90611 1 00000 0 84104
35 35 00 — 0 67693 0 51890 *0 89817 0 99810 0 86797
36 36 00 -0 31722 0 84552 — 0 82860 0 84104 1 00000

SELF CORRELATIONS * INTER-UNIQUE

2 2,00
7--- 7,00-
12 12,00 
15 15,00 
24 24,00

1,00000 
-  0,00064 

0,53909 
-0,70015 
-0,31722

0,00064 
-1,00000 
-0,62670 
0,48260 
0,84552

0,53909 
-0,62670 
1,00000 

-0,90611 
-0,82860

-0,70015 
0,48260 

-0,90611 
1,00000 
0,84104

-0,31722
0,84552

-0,82860
0,84104
1,00000



TABLE 16

------^

MASS COMPONENT SPECTRA
A c D £

i 13 00 0 0 0 0 0 0 0 0
2 111 00 0 0 0 0 0 0 0 0
3 2 30 0 0 0 0 0 0 0 0
4 1 00 0 0 0 0 0 0 0 0
5 19 00 0 0 0 0 0 0 0 0
a 83 00 0 0 0 0 ' 0 0 0 0
7 0 0 44 00 0 0 0 0 0 0
8 14 00 53 00 0 0 0 0 0 0
9 2 00 99 00 0 0 0 0 0 0

10 0 0 32 00 0 0 0 0 0 0
U 77 00 196 00 0 0 0 0 0 0
12 0 0 0 0 88 00 0 0 0 0
13 0 0 14 00 77 00 0 0 ' 0 0
14 47 00 18 00 119 00 0 0 0 0
15 0 0 0 0 0 0 457 00 0 0
16 0 0 0 0 0 0 106 00 0 0
17 0 0 0 0 140 00 27 00 0 0
18 26 00 0 0 0 0 0 0 0 0
19 24 00 14-9 00 0 O 58 00 0 0
20 0 0 0 0 16 00 0 0 0 0
21 0 0 333 00 24 00 0 0 0 0
22 0 0 •0 0 0 0 199 00 114 00
23 0 0' 0 0 0 0 0 0 28 00
24 ,0 0 0 0 0 0 0 0 94 63
25 0 0 65 30 0 0 0 0 0 0
26 0 0 6 00 7 00 5 00 69 00
27 - 0 0 6 03 0 0 60 00 73 00
28 ~ 0 0 27 00 0 0 88 00 0 0
29 2 00 0 0 66 00 0 0 0 0
30 33 00 0 0 22 00 21 00 20 00
31 9 00 0 0 57 00 0 0 0 0
32 81 00 91 00 0 0 0 0 5 00
33 39 00 0 0 0 0 99 50 4 00
34 0 0 0 0 0 0 41 20 0 0
35 0 0 2 00 4 00 59 00 4 00
36 0 0 0 0 0 0 . 0 0 4 00



TABLE 17

CORRELATION COEFFICIENTS

MASS r e l a t i v e
- IN FIRST

CONTRIBUTION'S OF THE 5 COMPONENTS 
90 GOQD'SPECTRA

_ P R M 'V l  E.Th£l £ E Ki J t N t pictr*re. j M 1 T

1 103 00 0 98878 0,47170 0,76064 0.86640 -0 09460
2 102 80 1 0 0 0 0 0 0*46593 0.76277 0,87319 - 0 10592
3 93 00 0 48387 0.99450 0,06577 3.37181 0 12499
4 92 00 0 46593 1 . 0 0 0 0 0 0,34513 0,05335 0 14496
5 91 00 0 45159 0,99857 0,03066 0,03678 0 14430
6 90 00 0 50271 0,98848 0,06654 0,09715 0 15809
7 89 00 0 78524 0,85137 0.44193 0,49824 0 12149
8 88 00 0 85414 0.02805 0.93130 0,99391 -0 02796
9 87 00 -0 37521 3,18511 -0.19989 -0,3451 I e- 99464

10 79 00 0 75155 0.03140 0,98636 3.93448 -0 20056
U 78 00 0 76277 0,04513 1,00000 0,91280 -O 20405
12 77 00 0 75782 0,38493 0.99233 0.89853 -0 18439
13 76 00 0 77717 0,13047 0.98107 0.91168 — 0 04842
14 75 00 -0 21487 0,11893 -0.28254 -9.16497 0 99095
15 74 00 0 90363 0,39590 0.86174 0,88687 0 08460
16 73 00 0 99743 0,42609 0,78729 0.89711 — 0 10100
17 71 00 0 89251 0,14815 0,84853 3,94435 — 0 08934
18 70 00 0 83967 -0,00440 0.91639 0.99682 -0 06212
19 66 00 — 0 12552 0,41804 -0,33427 -0.22657 3 92695
20 65 00 0 42745 0.99268 -0,00381 B,01233 0 19730
21 64 00 -0 22661 0,20810 -0,35505 -0.23286 0 97672
22 63 00 0 69693 0,78525 0,41377 0,42831 0 12751
23 62 00 0 78737 0,77432 0,48323 0,54439 0 16741
24 61 00 0 87319 0,05335 0,91280 1 .00000 -0 05838
25 60 00 0 81761 0.13237 0.79052 0,93204 0 28444
26 59 00 0 91933 0,47261 0.65175 0,82185 B 26891
27 58 00 -B 10592 0.14496 -0,20405 -0,05838 1 00000
28 57 00 •0 23793 0,11534 -0,33324 -0,19954 0 98894
29 56 00 0 34173 0,32733 0,17483 0.34745 0 88192
30 55 00 0 99383 0.44553 0,77343 0,88415 -0 07675
31 53 00 0 76607 0,58870 0.67348 0.67254 0 29132
32 52 00 0 77693 0.11035 0,98934 3,89575 -0 19552
33 51 00 0 03928 0.33334 0.91515 0.84241 -0 12841
34 50 00 0 80935 0,24678 0.91015 0,84491 -0 13972
35 49 00 0 33772 0,21578 0,35485 0.41901 0 75469
36 46 00 0 88551 0,62427 0,66723 0.76172 0 24338
37 45 00 0 88352 0,07604 0,89032 0,99363 -0 01343

SELF CORRELATIONS - INTER^UNIQUE

2 102,00 1f000O0 0.46593 0,76277 0,87319 -0.10592
4 92,00 0,46593 t ,00000 0,04513 0,05335 0, 14496

U 78,00 0,76277 0,04513 1,00000 0,91280 - O ,20405
24 61,00 0,87319 0,05335 0,91280 1,00000 -0,05838
27 58,00 -0,10592 0,14496 -0,20405 -0,05838 1,00000



Ill - Region Peak Analysis

The chances are in any mixture most components will have different 

molecular ion m/e values or different m/e values of first significant 

appearance. If a rank analysis is performed on sub-matrices, of a 

mixtures array M, formed by including increasing numbers of mass profiles 

down the mass range it is possible to detect the masses at which signif

icant contributions of successive components first occur. This is 

illustrated in Table 18 by a .three-component example.

It is thus possible to determine large numbers of zeros in the un

known component spectra as a direct result of such an analysis. As the 

GAUSP or GAUSAV sub-routines are ideally suited for use with such variable 

sizes of sub-matrices they were incorporated into a region peak analysis 

sub-routine called RPA. This gives a statistical table for each sub- 

matrix and can give the mass positions where the rank has increased*

The use of this technique also reduces the number of masses to be 

analysed but the reduction need not be a significant one. This depends 

on the positions of first significant ions for each component.

If the difference in numbers of mass profiles between the first 

component and the last is at least one less than the number of components 

an interesting result obtains i.e.

the spectrum of the lowest molecular weight component may be 

derived directly without any knowledge of unique peaks or zeros.

e.g. in Table 18 there are six zeros between the highest mass and the



first appearance of the third component. Thus the third component 

spectrum may be derived directly because the necessary conditions are 

satisfied i.e. known zeros in the first six masses and all other com

ponents contributing to them. An illustration of such a determination 

will be given in Chapter 6-III.

The zeros found by this simple technique may also be used to check 

and refine spectra derived by other methods.
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TABLE 18

UNKNOWN COMPONENT SPECTRA

A

B

C

+ + + + .
0 0 0  + + + + «

0 0 0 0 0 0 + +

CORRESPONDING MIXTURES SPECTRA

sub 
matrices

+ + 

+ + 

+ + 
2

+ » + * + + ! + !  + + + + + + +

+ + + + !+ +  + + + + + +• 1 1

i i
i i i + - positive element 

0 - zero 
• - any element

RESULTS OF RANK DETERMINATIONS

submatrix rank
1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
• 3
• 5



IV - Spectrum Derivation and. Refinement

Derivation

The Algol programme(4®) method will not be described in detail, 

suffice to say that

(a) the peak analysis and spectrum derivation sections are 

tied together.

(b) only a little information, the first unique peak in each 

component group, is used.

(©) N mixtures spectra are chosen during the rank determining 

step as being the first N spectra which are distinct and 

not necessarily the most distinct spectra in the array.

The more different are the spectra used to form the

equations the more significant will be the results. It

is clear that the N most distinct spectra (patterns) 

should be chosen.

The derivation method adopted here incorporates the following :

(1) choice of the most distinct spectra.

(2) utilization of all known zero elements to form equations.

A sub-routine called U11IQ.S is provided with all clusters of unique 

peaks and uses a least-squares method to solve all the equations it 

constructs•

A similar sub-routine called ZEROS is provided with the positions 

of all zeros in the unknown spectrum where these are known from uni- 

component peaks or other sources.

Both sub-routines use a method which calculates the matrix Q ,

as previously described, and produce normalised component spectra. An

example‘'of the use of ZEROS is given in Chapter 6-III. Pull details of 

both sub-routine3 are to be found in Appendix B .



Any spectra derived as a result of either method should roughly 

agree with the pattern of correlation coefficients in the corresponding 

column of the COMPONENT DIAGRAM (Section II). This can therefore serve 

as a semi-quantitative check on any spectra produced.

The most distinct mixtures spectra are recognised as having the 

most diverse correlation coefficients given by the sub-routine ERACT (see 

Chapter 3).

Refinement

Refining methods are based on subjecting the derived spectra to

some check. The spectra may be mixed together in proportions dictated
aby their unique peak sizes to form an array M . The difference between 

this and the original matrix, M*, gives a residue matrix R.

/ //R = M - M

An examination of R at each mass number gives an indication of 

the errors present. These may be considerable, anyway, if only one 

unique peak is used to re-combine each derived spectrum; several should 

be tried, if possible. The sub-routine RESIDU will produce R for any 

set of spectra derived and also gives the sum of the deviations at each 

mass number. Any method of refinement will involve minimisation of the 

residues. Some refining was carried out by a sub-routine REFINTJ which 

is given the masses present in each cluster of unique peaks and alters 

the spectra accordingly i.e. where spurious numbers appear in positions 

which should contain zeros.

The particular mixtures spectra used (M*) are shown in Table 19 

and the component spectra derived using the following unique peaks :



from masses no. of equations

n-propyl ether 102,73 4
toluene 55,92 4
ethyl acetate 61 5
benzene 78 5

Only these mass profiles were judged, to be suitable for inclusion 

in the simultaneous equations by virtue of their sizes.

The matrix Q derived from the equations is shown in Table 20 

together with the derived spectra. Table 21 shows the spectra after 

application of REFINU i.e. introduction of zeros given by unique peak 

positions (including unique peaks having profiles considered numerically 

too small for inclusion in UNIQS).

The matrix R given by RESIDU for the refined spectra, using 

masses 102, 92, 78 and 61, are given in Table 22. The differences 

between this case and the residues obtained using the original derived 

spectra are slight except at the unique mass positions, (original 

residues are not shown). The right hand column lists the absolute sums 

of the deviations for each masso The fact that most of the deviations 

are negative illustrates- the defiency in using only one unique peak per 

component in RESIDU. Perhaps the deviations could be reduced by:

(a) trying a variety of unique peaks in RESIDU.
(b) altering the unique peak heights relative to all 

others.
(c) a different choice of N mixtures spectra originally 

where N is the rank of the array.

Pure component spectra were obtained for the four major compon

ents under almost identical conditions and are shown beside the calcul

ated spectra in FIGS. 4 and 5«

It was found that the best results were obtained where only the 

larger unique mass profiles were used i.e. where the inherent fluctuat- 

ions have less significance. This will also be considered to some



92.

II II
extent in the next Chapter where methods of analysing more difficult 

mixtures arrays are considered.
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TABLE 12

mixtures spoctra

103,0 1 63 4- 87 7 67 2 ,36
102,0 14 25 59 53 87 60 24 ,32
93.0 2 78 2 37 9 47 4 57
92,0 30 82 26 07 121 03 56 19
91,0 50 80 43 03 194 13 92 62
90,0 1 87 1 83 6 50 3 23
89,0 3 02 4 00 10 77 4 53
88,0 . 5 90 17 27 13 70 3 62
87,0 0 90 2 30 '2 97 1 53
79,0 9 63 10 87 9 10 2 58
78.0 136 6# 150 80 129 30 31 01
77.0 29 60 28 50 28 33 7 74
76.0 7 72 8 60 7 93 2 58
75,0 3 55 4 37 5 60 2 81
74,0 9 23 12 07 18 17 5 76
73,0 49 83 191 70 262 43 72 62
71.0 1 83 4 80 4 67 1 54
70,0 17 67 51 60 37 47 8 77
66,0 i 55 1 40 3 80 2 21
65,0 7 82 6 77 28 03 13 74.
64.0 1 73 1 67 4 93 2 74
63,0 10 27 1 1 20 26 00 10 94
62.0 4 13 7 33 11 27 5 17
61.0 30 32 89 00 73 10 17 32
60.0 2 60 7 10 6 10 1 99
59,0 8 77 34 17 46 07 14 12
58.0 2 27 5 60 6 60 2 70
57,0 3 07 8 10 16 33 7 39
56,0 1 50 3 03 3 93 1 59
55,0 11 48 41 50 57 20 16 29
53.0 2 57 ' 2 73 4 10 1 89
52,0 31 72 34 43 31 77 9 68
51,0 32 10 35 17 42 83 14 92
50.0 27 50 31 57 34 67 11 82
49,0 4 75 5 40 5 97 2 28
46.0 2 43 3 83 6 07 2 56
4-5,0 35, 00 106 07 87 30 23 41

*
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TABLE 20

MATRIX Q

0, 01 -0,23 0,53 -1 ,00~
0,00 -0,08 0,34 -1 ,00
0.14 -0,37 0,52 -1
0.51 -0,32 0.41 -i ,00

rnasg component npectra

103,0 2 61 0,57 0*43 0 20
102,0 38 20 0,90 9.11 (? 21
93*0 0 76 5.11 1 .*17 0 02
92,0 6 16 57 , 13 9,9 4 2 22
.91,0 3 86 100,00 6,50 1 36
90,0 1 24 3,88 2.28 •0 43
89,0 0 87 4,02 0,'34 0 3?
88*0 2 54 1 ,35 16,66 0 99
87 ft 0 2 54 2.33 5.85 1 32
79,0 2 23 1,34 3.94 5 99
78.0 0 05 0.02 0,32 100 00
77.0 0 62 1 ,88 5,57 22 63
76,0 2 51 2,00 4.31 4 31
75,0 4 54 4,15 8,26 0 17
74.0 4 34 2.08 4,30 5 89
73,0 100 00 0,02 2.39 0 09
71,0 1 13 1.18 5,17 0 47
70.0 6 50 1 ,16 47.60 1 49
66,0 2 71 3,39 4,40 0 68
65.0 3 04 15,78 5,05 0 87
6 4 P 0 2 70 3,95 4.56 0 81
63,0 0 14- 10,11 1 ,20 3 24
62,0 4 85 6,38 11 .80 1 69
61,0 0 03 0,08 64,48 0 13
60 , 0 2 29 1,66 8,75 0 90
59.0 10 22 4,56 13,17 3 47
50 p 0 2 73 3,02 8,34 1 36
57,0 3 42 8.26 12,11 3 79
56,0 1 19 1 ,66 3.72 0 38
55.0 19 82 1 *, 42 2,70 0 14
53.0
52.0
51.0

1 96 2,38 3,31 0 55
6 94 5,94- 11,05 19 65
4 83 11,07 8,92 17 90

50,0 6 34 '8.94 12,67 14 67
49,0 2 24 2.31 '4.05 2 02
46,0 1 38 2.68 3.91 0 08
45,0 13 04 8,62 103.00 h -------

7 23



TABLE 2J.

95-

mass refined component spectra

103,0 2,61 0,0 0.0 0.0
102,0 38,28 0,0 0.0 0.0
93,0 0,0 5,11 0,0 0,0
92,0 0.0 57.13 0,0 0.0
91,0 0,0 100,00 0.0 0,0
90,0 1.24 3,88 2.28 0.43
89.0 0.87 4.02 0,04 0,37
88.0 0,0 0.0 16.66 0.0'
87.0 2,54 2.33 5.85 1,32
79,0 0.0 0,0 0.0 5,99
78,0 0,0 0,0 0.0 100.00
77,0 0,62 1 .88 5.57 22.63
76.0 2.51 2.00 4,31 4.31
75,0 4,54 4.15 8.26 0,17
74,0 4.34 2.08 4,30 5,89
73,0 100,00 0.0 0,0 0,0
71,0 1.13 1.18 5.17 0.47
70.0 6.50 1.16 47.60 1.49
66.0 2.71 3.39 4,40 0,68
65.0 0,0 15.78 0.0 0 . 0 “
64,0 2,70 3,95 4.56 0.81
63,0 0,14 10,11 1,20 3.24
62,0 4.85 6,38 11,80 1.69
61.0 0,0 0.0 64.48 0,0'
60,0 2.29 1,66 8.75 0.9®
59.0 10.22 4.56 13.17 3,47
58,0 2.73 3.02 8.34 1.36
57,0 3.42 8.26 12.11 3.79
56,0 l.l* 1.66 3.72 0.38
55,0 19,82 0,0 0,0 0,0 '
53.0 1,96 2.38 3.31 0.55
5 2 10 6.94 5.94 11,05 19.65
51.0 '4.83 11 .07 8.92 17,98
50.0 6.34 '8.94 12.67 14.67
49.0 2.24 2.31 4,05 2,32
46.0 1.38 2.68 3.91 0.08
45,0 13,04 8.62 100,00 7.23



TABLE 22

mass deviations sum

103 0 0 66 0 ,81 1 70 0.70 3,87
102 0 0 00 0 00 0 00 0,00 0.00
93 0 0 03 0 04 -1 36 -0,46 1 ,88
92 0 0 00 0 00 0 00 0,00 0,00
91 0 -3 14 -2 59 -17 73 -5,73 29,20
90 0 - 2 35 - 5 66 -7 69 -2.1 1 17.82
89 0 0 00 0 20 -0 26 * -0,10 0,57
88 0 -1 93 • 5 72 -5 18 -0.85 13.69
87 0 -5 65 -12 76 -16 11 -4. 35 39.0/
79 0 1 46 1 84 1 36 0,72 5.37
78 0 0 00 0 00 0 00 0,00 0,00
77 0 • 5 17 -15 13 -12 64 -3.01 35.95
76 0 -2 21 -8 66 -12 50 -3.48 26,86
75 0 -4 50 -16 24 -23 16 -6,43 50.33
74 0 -3 57 -10 45 -8 67 -2,03 24,72
73 0 12 61 36 17 33 58 9.08 91.43
71 0 -2 30 -5 34 - 6 89 -1.87 16.40
70 0 -9 79 -26 98 -35 75 -9.75 82.27
66 0 -4 28 -11 45 -15 44 -4,23 35.41
65 0 -0 69 - 0 43 -5 39 -1 ,77 8.29
64 0 ■*4 66 -11 66 -15 84 -4.33 36.69
63 0 -0 23 17 -1 29 -8.42 2,10
62 0 •*8 97 -21 95 -28 91 -7.89 67,72
61 0 0 00 0 00 0 00 0.00 0,00
60 0 - 4 50 -10 67 -13 76 -3.73 32,65
59 0 -8 43 -7 22 -6 41 -1.47 23,53
58 0 -6 16 -13 59 -17 27 -4, 67 41.69
57 0 ■ 13 54 -23 43 -27 62 -7.34 71 .92
56 0 -2 10 -5 27 -7 00 -1.91 16.28
55 0 4 10 10 67 1 1 83 3.69 30.29
53 0 -1 75 -6 78 -9 87 -2,75 21.15
52 0 -6 11 -23 95 -34 63 -9,64 74.33
51 0 "4 42 -1 6 82 -25 02 -7,00 53.26
50 0 -5 68 -21 98 -32 12 •8,96 68.74
49 0 -1 99 -7 78 -11 27 -3.14 24.17
46 0 -1 47 -5 05 -7 31 -2,03 15.87
45 0 -31 39 -67 07 -83 .51 -22.45 204,42
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CHAPTER SIX

Extension of Mixtures Analysis Theory 

N otes on Q,uanb 1 to.tiv e Analysis 

Exomule of the Application of the

UNRAVL Procedure



I - Extension of Mixtures Analysis Theory.

. As discussed by Monteiro and R e e d ^ ^  effusiometry  ̂could provide 

a method, albeit a difficult one, of detecting a peak unique to a component 

where only one such peak exists. A logarithmic plot of its abundance with 

time will yield a straight line where a leak has been used in the inlet - 

system. The method is therefore only applicable where the components are 

sufficiently volatile to allow their entry into the ion-source via a leak.

It is also apparent that if there is only one peak unique to a particular 

component there might just as easily be none (apart, perhaps, from the high

est mass peak).

A more complex example of this type of approach has been given by 

Grigsby and C o l e ^ ^  where graphs of peak height vs. time were plotted 

and fitted to a polynomial by the involved least-squares technique of 

Sillen^^^. This was done for materials distilled from the direct insert

ion probe and its application to the problem, where a leak could not be 

used, was considered. It was claimed that the components present.in some 

peaks could be identified but this was not their aim. However, such a 

method would still be experimentally exacting and the necessary computer 

programming difficult and time consuming.

Both of the above methods would still require at least one unique peak 

for each component. The simplest method at p r e s e n t r e q u i r e s  at least

two unique peaks per component for a direct analysis.
( 87 }It was thought by Reed' u  that the problem should be capable of a 

unique solution where there are two peaks unique to one component and one 

peak unique to each of the others.

One can imagine situations in which one component has several unique 

peaks, another component has one unique peak and some other component none



at all. A method is then required which is not experimentally exacting , 

uses all the information it has derived and yields a complete or partial 

solution when it can proceed no further.

The following is a simple illustration of the development of such a 

method. A generally applicable system is devised which greatly reduces the 

current restrictions. For statistical reasons the method functions more 

reliably where there are large numbers of spectra. This is true of any 

method of mixtures analysis where the data contains inherent fluctuations.

As discussed in Chapters 2 and 5 > unique peak detection may be con

sidered as a convenient method of detecting zeros in the unknown spectra 

and ensuring that condition (b) of Chapter 2 is satisfied. Any method of 

reducing the present restrictions must necessarily involve an alternative 

method of doing this. One possible solution to this problem presented it

self in Chapter where mass profile correlations were introduced.

The first column of a COMPONENT DIAGRAM can be obtained without 

reference to groups of unique peaks if it is assumed that the highest mass 

peak in the mixture is unique to the first component. This is done by 

calculating correlation coefficients of the first mass profile (highest mass 

or unique peak where known) with all others. Similarly any other column of 

the COMPONENT DIAGRAM is found by correlating another unique profile with 

all other profiles. The tendency of a component to be absent from a partic

ular mass is given by a small coefficient, subject to certain qualifications 

(see Chapter 5“H)*

In order to simplify the description and development it will be ass

umed that the highest mass in the mixture is unique to one of the compon

ents, A, the others being B, C, and D , all in an array, M, of rank four. 

No peaks have been detected as unique to any of these components i.e. there

could be one peak unique to any of them but these cannot be detected since 
a

at least two are required.



In order to calculate the spectrum of A it is necessary to:

(a) detect as many mass numbers as possible to which A does not 

contribute (at least one less than the number of components), 

and

(b) be sure that all other components contribute to this set of

masses.

If sufficient numbers of zeros are detected then the chances are that 

condition (b) is satisfied. This latter condition, is necessary to ensure 

that the system of simultaneous equations has maximum rank, as previously 

discussed.

The positions of zeros in the spectrum of A may be found in two ways:

(1) As before, utilizing peaks found unique to other components

(does not apply in this particular case).

(2) Using information derived from the COMPONENT DIAGRAM. In this 

particular case the first column is known.

As discussed in Chapter 5-IV the zeros detected in this way may be 

used by sub-routine ZEROS to derive the spectrum of A. Since the positions 

of many of the zeros may have been guesses it is best that several combin

ations be used in order to check the accuracy of the result i.e. if the 

derived spectrum changes significantly on leaving out a zero or several 

zeros then a wrong choice has been made. The process may be repeated until 

a reliable spectrum is obtained i.e. one formed using several different 

sets. Further details are given in Section III. The sub-routine TRIAL 

produces spectra for any number of combinations of such zeros.

Once the spectrum of the first component is derived it may be sub

tracted from each mixtures spectrum in the array M by taking account of 

its unique peak sizes, in this case the first peak. This may lead to error 

build-up as in the subtraction technique of Kiser^10  ̂in conventional



mixtures analysis. V/here several unique peaks are available the accuracy of 

the subtraction procedure may be improved.

If is a matrix whose rows are the spectra of A as they appear in
tM then a matrix M is obtained on subtraction:

M7 = M - Ua

The rows of U are obtained by considering the size of the unique
/peak in each row of M. The matrix M has rank one less than M and it 

is apparent that all peaks previously containing A contain it no longer. 

This important result means that mixtures peaks which originally contained 

A in combination with one other component now contain only the latter i.e. 

are now uni-component.

The minimum condition necessary to derive the second component, B, is 

that at least two of the columns of M originally contained contributions 

from both A and B only. On subtraction two peaks unique to B would be
ii ii

left and detected by the perfect correlation of their mass profiles (see

Chapter 5-II and sub-routine MC).

Once a peak unique to B is found the absence of this component in all

other peaks may be indicated, as before, by correlating the mass profiles.

Zeros thus found may be used to derive a consistent spectrum of B. Form-
/ation of a matrix by considering the unique peaks in M , and its

subtraction would yield a new mixtures array I

// /M “ M - U, b

M* has rank two less than M. Peaks which previously contained 

B and C or A,B and C would now be unique to component C and could be*" 0 — I  ■
readily identified by mass profile correlation provided there were at least -



two of them.

The spectrum of C may now be derived d subtraction from M

should yield the spectrum of D, the remaining component:

/// //
M = M - Uc

///
i.e. M contains the spectra of D as they appear in M.

The above development represents the worst possible case and in 

practice many more unique peaks would probably come to light very early in 

the process, before error build-up could seriously affect the results. As 

soon as unique peaks are detected more zeros become known and also the rel

evant columns of the COMPONENT DIAGRAM may be constructed. As discussed 

in Chapter 5-H the more columns of this which are available the more 

accurate will be the initial guesses as to the positions of zeros. Further 

zeros may be detected by the Region Peak Analysis as described in Chapter 

5-III.

The method is then capable of application in any situation between the 

following limits:

(a) several unique peaks per component, and

(*) one peak unique to the first component if this of highest mass.

OR

two peaks unique to the first component

AND

etc.

two peaks containing a first, second, third and fourth component.

two peaks containing a first component and second component. 

two peaks containing a first, second and third component.

The accuracy of a determination would decrease between (a) and (b) but



can always be checked in some way:

(1) using sub-routine RESIDU to recombine spectra utilizing several 

unique peaks, perhaps.

(2) using various combinations of zeros to examine the stability of 

the derived spectrum (see Section III, sub-routine TRIAL).

(3) observing the values calculated in a spectrum which should be 

zero.

(4 ) comparing the spectral pattern with the corresponding column of 

the COMPONENT DIAGRAM (see Section III).

The method described above has been partially programmed and an ex

ample using a calculated five-component mixture containing only one single 

unique peak will be described in Section III. The system of sub-routines 

has been named UNRAVL .

The next section contains a few notes on quantitative analysis 

illustrated by the above example.



II - Notes on Quantitative Analysis

An approximate quantitative distribution of the spectra in M may be
ill

obtained by considering the matrices Ua , , U g and U^= M . If

£U is the sum of* all the peaks in U and T)m is the sum of all peaks a a
in M then the percentage contribution of the spectrum of A to M, by 

total ion current, is given by

E Ua . 100
E -

The percentage of component N is similarly given by

C Un . 100 
E m

Results may be checked by summation as the sum of the ion currents 

of all the components as they appear in M should equal the sum of the 

ion currents in M, i.e.

£ m - I X  + I X  + E uo + £ ud

The method does not, of course, apply only to UNRAVL but may be 

used where the component spectra and unique peaks are known.

A proper quantitative analysis of the mixture may be made by knowing 

the sensitivities of the components.



Ill - .Application of the TINRAVL procedure to solve a five-component 

system of mixtures in which there is one single peak unique to 

only one of the component spectra..

The method is applicable to any case between the limits discussed in 

Section I of this Chapter.

Five pure-component spectra, A - E, as illustrated by the columns in 

Table 25A were mixed together in different proportions to give forty 

distinct mixtures spectra, five of which are shown in Table 25B♦ All forty 

mixtures spectra were stored on a disk-file and were numerically exact i.e. 

no errors were associated with them,

A mass profile correlation matrix was formed using sub-routine MC and 

no groups of at least two proportional profiles detected (such profiles 

would have correlation coefficients of exactly 1.00000 since the mixtures 

were calculated). The first mass profile was then assumed to be unique to 

the first component (highest mass), A , and its correlations with all other 

masses examined (Table 23C). The most negative and smallest values were 

taken to represent those masses least likely to contain any contribution 

from A i.e. detection of the most likely positions of zero elements in the 

spectrum of A. These mass numbers were re-arranged in order of likelihood 

of containing no A, i.e.

MASS COEFFT.
9.0 - 0.17905
4.0 - 0.15085
6.0 - 0.12714

18.0 - 0.11924
5.0 - 0.08600

10.0 - 0.05407
15.0 0.01660
21.0 0.05069
14.0 0.07436
25.0

•
0.12671
#

•
€

_____ __ 1

•
*tc.
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Two of the masses listed above i.e, "5.0" and "14.0" have contrib

utions from A but this is not knorn from the coefficients. If all the 

masses contained no A and all such zero positions (/S' 4) were used in var

ious combinations to form equations and hence spectra of A, all such spectra 

would be identical - provided that the rank of each system of equations is

four, as discussed in Chapter 5~I> condition (b).

If a peak containing some contribution from A is used to form an 

equation in such a combination a deviant, erroneous spectrum will be 

produced.

A sub-routine called TRIAL was written to produce spectra for any 

desired number of combinations of zeros guessed from the correlation 

coefficients. Five representative mixtures spectra were chosen (in the case

of experimental data FRACT would be employed to pick the best spectra as

previously discussed). Some of the spectra derived for the above example 

are listed in Table 24 together with the particular masses used in each 

case. From the whole set tried it was apparent that masses "5.0" and 

"14.0 " were "bad" i.e. combinations containing them produced spectra 

deviating greatly from the majority. The sub-routine ZEROS, similar to 

the afore-mentioned UlTIQS, is called by TRIAL and uses the zeros to 

derive a spectrum. A warning is given when the system of equations has 

rank less than the number of unknowns e.g. combination of "4.0", "6.0" , 

"18.0" and "23.0" had rank three since no contribution from E is 

present ( Table 24). In later work employment of GAUSAV or GAUSP is 

recommended.

A spectrum produced by TRIAL can be easily checked because the patt

ern of peaks should be roughly similar to the pattern of correlation 

coefficients (in this case Table 23C). It is seen that the deviant spectra

are very different.
*0

Once a consistent spectrum is found the corresponding zero positions% 

in this case at masses "9»0" \ "4.0" , "6.0" and "18.0", are fed to a sub-



routine called UNRAVL. In dealing with experimental data any number 

greater than four could be used to.give a least-squares solution. TRIAL

and UNRAVL can accept any number.

UNRAVL uses a peak unique to this component to subtract the der

ived spectrum from all forty mixtures spectra. A matrix U is formed as

described in Section I and subtracted from the original mixtures array, M,

forming The existence of large negative peaks at various masses in a

real situation would indicate errors and allow adjustment of relevant peak 

heights in the derived spectrum. Estimates of errors may also be made by 

performing UNRAVL using various unique peaks where these are known.

The first five mixtures spectra in M / are shown in Table 25A. The 

first mass profile is, as expected, reduced to zero and the rank of the 

mixtures array is now four. UNRAVL also writes Wl' on to the same disk- 

file, replacing M, and a new mass profile correlation analysis is carried 

out.

Examination of the correlation matrix revealed two clusters of unique 

peaks i.e. unique to two components designated B and C. Peaks present 

in each cluster were:

B - "2.0" , "5.0" , "20.0"
C - "14.0" , "17.0"

The relevant correlation coefficients for these masses are given in 

Tables 25B and 25C •

The masses in these Tables were re-arranged in order of least likeli

hood of containing their respective components: .

B C
MASS COEFFT. MASS COEFFT.
10.0 - 0.06559 * 2.0 - 0.04004
16.0 - 0.06122 * 5.0 - 0.04804
9.0 - 0.05311 * 20.0 - 0.04804

*17.0 - 0.04804 12.0 0.01771
*14.0 - 0.04804 7.0 0.02040
* 5.0 - 0.01626 13.0 0.02882

etc.
__ ___ j...... .

etc.
- -.....  1

The starred masses indicate that the information was also available



from the cluster of peaks found unique to the other component. This 

illustrates the fact that as the analysis proceeds any nevr information can 

be used to improve its accuracy.

Since the rank of M7 is four only three suitable equations are nec

essary to derive the spectrum of B or C.

Derivation of B and C Spectra

Positions of zeros indicated by the above Tables were used by TRIAL 

to find consistent spectra, as before.

The most consistent spectrum of B is given in Table 26A and com

pares well with the coefficients in Table 25B , as a check. Once again, 

suitable spectra (four, this time) were chosen at random although this 

would be best done by FRACT. Note was taken of the masses giving this 

derived spectrum in TRIAL.

The spectrum of C can be obtained in two ways:

l/ derived immediately from M 7 in the same way as the spectrum 

of B, or

2/ the spectrum of B may be taken from M 7giving M (using

UNRAVL). New clusters of peaks unique to C would be found 

on application of MC. In the present case clusters would 

also be found for components D and E i.e. enough inform

ation would be available to derive spectra of C , D and E 

directly from M in the usual way.

In the present case of numerically exact mixtures the results of 1/ 

and 2/ would be almost identical so 1/ will be described as an 

illustration of the procedure in a less favoured example.

The whole procedure is illustrated by the block diagram in FIG. 6 and can 

be accomplished by the sub-routines listed at the end of APPENDIX B.

Both 1/ .and 2/ , above, would be carried out i.e. a mass correlation 

matrix is listed after subtraction of each component. The system is then



quite flexible allowing decisions to be made at each step.

The spectrum of C derived is given in Table 26B and compares 

well with the coefficients in Table 2% . Note was made of the masses 

used to derive this spectrum.

Sub-routine UNRAVL was given this mass information for compon

ents B and C, derived each spectrum in turn and subtracted them from
/ ///M giving an array M of rank two. In this case UNRAVL is activated

n iitwice by the parameter NREDS being set equal to two. During the

earlier subtraction of A this parameter was set to one. 
tuPart of M is shown in Table 26C . Mass correlation analysis 

revealed two clusters of uni-component profiles. One was due to compon

ent D and the other to E. The masses were :

D E
6.0 10.0
7,0 11.0
8.0 15.0

12.0 16.0
19.0 24.0
•23.0

These masses are equivalent to those which would be found as the 

highest and lowest ratios in Meyerson *s method of solving binary mix-* 

ture3^ ^ \  Actual coefficients are listed in Tables 2rJk and 27B. VLm 

then contains forty binary mixtures.spectra. They may be separated by 

Meyerson’s method or by an equivalent UNRAVL method using two spectra. 

The latter has the advantage that all the uni-component peaks are used at 

the same time to give an averaged solution.' Two spectra were chosen from 

. The zeros in the spectrum of D are at masses M10.0M, "11.0", 

"13.0", "16.0" and "24.0" . Similarly the zeros in the spectrum of E 

are those at masses unique to D. Submission of both sets of masses to 

UNRAVL (NREDS =» 2) produced the spectra of D and E shown in Tables 27C 

and 27D » respectively.



TRIAL and UNRAVL as described in APPENDIX B and FIG. 6 can 

be applied to any situation where fewer than N clusters of uni-component 

peaks are detected, the rank of the array being N. The limitations are 

discussed in Section I.

The unravelling process at each stage in the above example is 

illustrated by the peak compositions in Table 28.

Determination of the spectrum of E immediately from M

If the first eight masses are introduced into TRIAL as having zeros 

in the spectrum of E the latter is immediately derived and may be used 

to check the spectrum of E as derived during the last stage of UNRAVL. 

The zeros in this case may be obtained by employment of sub-routine RPA 

as discussed in Chapter 5-III. A spectrum of E derived from M, by

chance, is the ninth column in Table 24 . It is identical to the spec

trum given by the first eight zeros and may be compared with the spectrum 

iR Table 27D i.e. the spectrum given by UNRAVL. The slight differences 

may be accounted for by :

(1) round-off (see Chapter 4-1)
(2) errors introduced by the subtraction, process.
(3) perturbations in the derived spectra caused by the rank of the

system of simultaneous equations being affected by the chance 
presence of a relatively minor component i.e. at the particular 
masses considered one of the components may be present to a 
lesser extent than the others. This reinforces the desirability 
of using as many masses as possible when forming the equations. 
Such perturbations are noticeable on comparison of spectra from 
TRIAL.

Application of UNRAVL may prove useful in separating the super

imposed spectra of pyrolysis products, where the existence of two unique
I'0

peaks per component is less likely. This would also apply to species being 

formed thermally in the ion-source.
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TABLE 2?
110

A B c D E
41 1,000 0 000 0,000 0 ,000 0 8 000
14 000 253 000 0,000 0 00 0 0 ,000
65 000 22 000 0„ 000 0 ooo 0 ‘ 0 0 0
0 000 u 000 77 ,000 0 000 0,009

50 000 18 000 5 60,00 0 0 ooo o ‘ ooo
0 000 0 000 14-0,000 27 ooo 0,000
0 000 Hi ooo 0,000 840 000 0 f 000

140 000 333 000 0e0Q0 840 ooo 0#ooo
0 000 0 ooo 666,000 7 ooo 9 9,000
0 000 0 ooo 90*000 0 000 860 8 000
0 000 560 ooo 65,000 0 ooo 2$f 000

100 000 22 ooo 0,090 50 000 o, ooo
0 000 19 ooo 0,000 0 ooo 16 , 0 0 020 000 0 ooo 77*000 0 000 0 $ 0 0 00 000 45 ooo 190,000 99 ooo . 20,00070 000 0 ooo 0, 000 0 ooo 165,00090 000 0 ooo 200,000 0 ooo 0,0000 000 20 ooo 90,000 0 ooo 0,000120 000 0 000 0,000 55 000 0,000580 000 100 000 0,000 0 ooo (3,0000 000 0 000 0, 0 00 25 ooo 100,0000 000 155 000 23.000 99 000 50,000
0 000 0 ooo 80,000 110 ooo 0,000

77 000 23 ooo 0,000 ‘ ' 0 ooo 111,000
1 90 000 46o 000 80,000 0 OOP 0,000

1.00
2.00
3.00 
4, 00
5.00 
C.00 
7 .00
a.?«5
9.00 

10.00 
11 .00 
12,00
13.00 
14. 70
15.00
1 6 . 0 0
1.7.00
18.00
19.00
20.00 
21.00 
22,00 
23,70
2 4 . 0 0
25.00

B.
250.710 423,330 41,100 295.920 427.440
71.790 67,550 16,580 63,792 115.735
45,150 71 ,570 7,820 51.471 76.398
80.777 3.371 0,848 34,542 8,309

597.016 58,416 6.136 269,421 78,910
143.204 6.454 3,049 74,140 24.368
111.750 199,710 101.076 544.365 649,189
252,650 390.530 128.396 692.296 883.567
749,515 26,435 41,909 357,590 60,163
768.902 184.974 356.651 733.500 278,358
225.542 123,327 43.974 165.788 234.232
71.500 118,120 16,940 107,671 148.79^
17,747 7.422 7,775 16.994 12.718
89.477 21.031 2.008 45,970 23,510

228,080 35.594 22.141 165,034 102.363
176.729 107.492 75,425 184,050 125,600
255,620 93.820 9,020 146.8^*0 100.640
95.324 •• 4,704 1.209 41,146 11.166
78.700 135.150 18,182 120.500 164,400

378.800 618,400 64.000 438,830 643,190
83.730 26.700 44.280 96,500 50.000

112.346 64,194 41.165 144.217 150,074
91.288 23.548 12,372 101,000 82,016
142.885 107.949 55,112 150,233 124.798
311.188

0

292.748 46.608 267,258 384.370

C.
1,00000 
0.32376 
0.95771 
•0.13083 
•0.08600 
•0,12714- 0.37499 
0.51974 
■0.17903 
■0.05407 
0.25137 
0.93198 
0.19129 
0.07436 
0,01660 
0.35485 
0.25535 
■0.11924 
0.95925 
0.98748 
0.03069 
0.31856 
0,12671 
0.66990 
0.55467
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TABLE 24

70, 8G 
2,40 
11 .21 
0.00 
8.63 
0.00 
0.04 

24.09 
0.0 
0.05 
0.02 

17.24 
0,00 
3.45 
0.01  

12.06 
15.52 
0.00 

20,69 
100.00 
0,01 
0.01 
0.00 

13.27 
32.74

0.01  
0.01 
0.00 
0,00 
0.00 
0,0 
0,03 
0,03 

11.51 
100.00 

2.92 
0,00 
1.86 
0.00 
2.33 

19.19 
0.60 
0.00 
0 .00 
0.01  

11.63 
5.82 
0,00 

12.91 
0.01

Z

50,68
20.33
9 .63
0.00
0.00
0,00

66.41 
1 0 0 . 0 0
0.00

71.95
42.44
17.42 
2.76 
1.44 
9.33

22.67
8.42
0,27

18.61
78,87
10.24
22. 21
6,56

20,63
56,19
cawwa 
10

70.86 
2,42 

11.21 
0.00 
8,62 
0.00 
0.00 

24,14 
0.00 
0.00 
0,01 
17,24 0.00 
3 „ 45 
0,00 

12.07 
15.52 
0,00 

20.69 
100.00 0.00 
0.00 0,00 

13, 28 
32.76

II

70,86 
2,41 

11 . 21  
0.00 
8.62 
0.00 
0.00 

24,14 
0.00 
0.00 
0, 00 

17.24 
0.00 
3.45 
0.00 

12,07 
15,52 
0.00 

20,69 
100.G0 0.00 

0,00 
0.00 

13.28 
32.76

!Z

42.49
1.45 
6.72 
0.00 
5.17 
0,00 
0.00

14.40
11.51

10$.00 
2.91 

10,34
1. 66 

. 2.07
2.33 

26 • 42 
9.31 
0.00

12.41 
59.97
11.63 
5.81 0.00

20.87
19.64

70.86
2,40 

11 .21
0.00
8,63 
0.00 
0.04 

24.09 
0.01 
0.04 
0,02

17.24 
0.00
3.45 
0.00 

12.08
16,52 
0.00

20.69
100.00 0.00 

0.01 
0.00

13.28 
32,74

70.86
2.41

11.21"0,00 
8.62 
0.00
0.00

2 4 . 1 4
0,00
0.00
0,00

17,24
0.00
3.45
0.00

12.07
15.52
0.00

20.69
100,00

0,00
0.00
0.00
13,28
32.76
______

70. 86 
2,42 

11.21  
0.00 
8.62 
0.00 
0.00 

24,14 
0.00 
0,00 
0.01 

17.24 0.00 
3.45 
0.00 

12.07 
15.52

20.69 
100 .00  0.00 

0 .00 0,00 
13.28 
32, 76

23.53 
21,49 
5,52 
0.00 
3.99 
0.00 

73,83 
10(3,00 0.00 
80.00 
47,19 
1 1.38 
3.07 
0,00

10.38 
19.61
2.16
0,30

11.11
41.38
11.38 
24,69
7.29 
16,79^ 
47.30

70.86 
2.42 

11.21 
0.00 
8.62 
0,00 
0,00 

24,14 
0,00 
0,00 
0.00 
17.24 0,00 
3.45 
0.00 

12.07 
15,52 
0.00 

20.69 
100.00 

0.00 
15.00 
0.00 

13.28 
32.76

8

70.86
2.41

1 1 . 2 1
0.00 
8.62 
0.0 
0.00 

24.13 
0,00 
0.01 0.00 

17.24 
0.00 
3.46 
0.00 

12.07 
15.52 
0. 00 

20.69 
1100.00 

jtf.00 
0.00 
0.00 

13.27 
32.76

Spectrum Masses used

1 9 4 6 18
. 1 9 4 6 5

3 9 4 6 10 I
4 9 4 6 15 !5 9 4 6 21
6 9 4 6 14
7 9 4 6 23
8 9 4 6 13
9 4 6 18 14
10 4 6 18 23
ii ' 4 6 18 13
,Z [ 9 4 6 18 10 15 21 23 

and 13



TABLE 23

1,0 0.00 0.00 0.00 0.00 0.00
2,0 63,29 91. 12 306.19 86,03 2.55
3,0 5.50 7.92 26.63 7.48 0.22
4.0 80.78 12.76 17.89 5.04 43.68
5.0 566,50 62.63 28.64 8,13 316,79
6.0 143,20 14,58 29.53 4.28 86.72
7.0 111.60 56.59 999.25 155.30 236.21
8.0 167.44 136.89 1268.44 230,87 238,66
9.0 749,51 67.93 19,36 84.90 378.63

10,0 788,73 17,43 35.21 708,49 61,80
11.0 225,46 208,27 679,26 211.20 42,32
12.0 10.51 8,93 78,14 14,48 14.23
13.0 17.74 6.9 9 23.62 19,63 0.21
14.0 77,27 7.72 0,94 0.26 43.53
15,0 228,06 37,41 159,62 46.31 135,61
16.0 134.06 1,69 6,66 135,89 0.22
17.0 200,71 20.05 2.45 0.72 113,08
18.0 95.32 16.23 25.31 7, 12 51.09
19.0 5.51 1.11 56,67 7.7® 15.41
20.0 25.01 36.02 121,02 34.00 1.01
21.0 83,71 1.47 29.71 85,84 7.10
22.0 112.30 60.53 291,72 107.81 42,30
23,0 91,27 10.21 114.26 15.68 76.02
24,0 95.94 9,42 32.32 99.24 0.38
25.0 195,35 173,70 557.69 156.70 49,88

MASS 2.00 MASS 14,00
0,20628 1 e0 *0,21717
Xf00000 2 * 0 w0t04804
1,00000 3,3 -0.04805
0f13082 4,0 0 198398

*0,01626 5,0 0.99949
0.00072 6,0 0 j98967
0;47308 7,0 0,03985
0,67021 8,0 0,02040

*0.05311 9,0 0,98956
*0,06539 10,0 0,20075
0,99156 U , 0 0,07388
0,69380 12,0 0#0l771
0,74420 13,0 0,02882

*0,04804 14,0 1,000000,27155 15,0 0,88867
‘•0,06122 16,0 0,09923
*0 j04804 17,0 1,00000
0.16948 18,0 0,97625
0.33377 19,0 0,05077
1 ,00 0 0,0 20,0 *0,04804
0,00173 21,0 0,10791
0,88593 22,0 0,12432
0,20237 23,0 0,71137
0,14238 24,0 0,08865
0,98467 25,0 0,12689
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TABLE 26

0.0 Be 0,0
45,21 0,00
3,93 0,00
2, t50 11,56
3,22 84,08
0,06 21,02

17,97 0,00
57,76 0,00
0,00 100,00
0,00 13,52

100,00 9,76
3,03 0,00
3,39 0,00
0,00 11,56
7,82 28,53
0,03 0,00
0,00 30,03
3,57 13,51
0.11 0,00

17,87 0,00
0,06 0,00

27,46 3,45
0,24 U . 0 1
4,13 0,00

82,19 12,01

1 0 0 0 0 0 0 0 0 0
2 0 **0 00 0 00 0 00 0 00
3 0 «0 00 0 00 W 0 00 0 00
4 0 0 00 0 00 0 00 *0 00
5 0 *0 00 0 00 0 00 0 00
6 0 2 63 0 43 27 44 3 67
7 0 86 41 20 36 877 51 121 10
8 0 86 58 20 47 877 24 120 95
9 0 81 13 1 15 11 21 82 51

10 0 698 40 8 41 , 34 11 708 16
U 0 20 24 0 19 1 14 20 66
12 0 5 15 1 22 52 22 7 20
13 0 12 99 0 16 0 64 13 18
14 0 *0 00 *0 00 "0 00 *0 00
15 0 26 43 2 60 104 21 30 74
16 0 134 02 1 64 6 49 135 84
17 0 0 00 0 00 0 00 0 00
18 0 *0 00 0 00 0 00 0 00
19 0 5 35 0 88 55 89 7 48
20 0 *0 00 W0 00 0 00 0 00
21 0 83 63 1 36 29 33 85 74
22 0 50 78 2 88 105 44 55 46
23 0 10 65 1 70 111 65 14 94
24 0 90 16 1 10 4 36 91 38
25 0 • 0 00 0 00 0 00 0 00
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TAT3I3 27

MASS 6,00 MASS 10,00
0,0 1,00 0,8’
0,141391 2,00 0,0/037*0.06544 3.00 0,24079
0,22161 4,00 *0 0 07736
0,24512 5,00 *0,29631
1,00000 6.00 *0 »0 4109
0,99957 7.00 *0,04255
0,99959 8,00 *0,04251
0,01268 9,00 0 ‘ 99855

•*0,04109 10.00 1,00000
*0-, 04036 U ?00 0,99939
0,99959 12,00 *0,04252
*0,04103 13,00 1|0OO00
«0f1905a 14,00 *0.10980
0,96581 15.00 0^ 21774-

*0.04113 16 s 00 1^000(30
«0;02120 17,00 0,38412
0,20805 18*00 *0,15989
1,00000 19,00 *0.04108

*0,04410 205G0 *0,09314
0,14569 21.00 0.98251
0.82652 22.00 0 J 527 89
1,00000 23,00 *0,0 410 3

*0,04114 24.00 1,00000
*0,07173 25,00 0,20197 1

0.0 1.00 0 * 0
0,00 2 500 C , O0
0,00 3,00 0,00
0.0 4.00 0,0
0,00 5.00 0 f 03
2,98 '' ' 6^00 0.15

99,21 7,00 0,22100.00 8,00 0,34
0,94 9,00 11,43
0,03 10,00 100,00
0.42. ' 11,00 3.21
5.95 12,00 0.02
0,01 13.00 1,87
0.0 14,00 0.0
11,70 15.00 2.35'
0,17 ' 15; 00 19.06
0.0 17,00 0,0
0.0 18,00 0.0
6,06 19.00 0,31
0,0 20,00 0,0
2,71 21,00 11,79

11,58 22,00 5,92
11,99 23.00 0,71
0,11 24 j 00 12, 82
0,00 25,00 0,00

• \
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TABLE 2G

Peak Compositions at Each Sta^e of the Unravelling Procedure

Mass M m ' in M

1 A 0 0 0 0

2 AB B 0 0 0

3 AB B 0 0 0

4 BC BC C 0 0

5 ABC BC C 0 0

6 CD CD CD D 0

7 BD BD D D 0
8 ABD BD D D 0

9 CDE CDE CDE DE E

10 CE CE CE • E E

11 BCE BCE CE E E

12 ABD BD D D 0

13 BE BE E E E
14 AC C C 0 0
15 BCDE BCDE CDE DE E

16 AE E E E E
17 AC C C 0 0

18 BC BC C 0 0
19 AD D D D 0
20 AB B 0 0 0
21 DE DE. DE DE E
22 BCDE BCDE CDE DE E

23 CD CD CD D 0
24 ABE BE E E E

25 ABC BC C 0 0
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APPENDIX A

The method of preparing tapes from the d-mac "pencil-follower" will he 

illustrated by an example in which three simple spectra of six masses 

each are measured. The third mass in case has been measured on the second 

galvanometer scale (xlO) on ultra-violet sensitive paper and the fifth 

mass on the third scale (x30).

A print-out of the tape (with explanations) is given below together 

with the corresponding computer programme.

The programme ignores all "xn co-ordinates though use could be made of 

these to fix mass numbers. Repetition of base-line digitisations is made 

each time to allow termination of the process when desired (removal of the 

perspex rectangle).

In practice charts were prepared beforehand by ringing those groups of 

peaks to be digitised. During digitisation several carriage returns were 

introduced (via the key-board) after each group. The patterns produced on 

printing out tapes (flexowriter) were used to check for missing numbers 

and extra digitisations.

The programme listed below is written in Egdon Algol for use with the 

English Electric KDF9 computer which has a tape-reading facility. Base

line "y" co-ordinates are subtracted from relevant peak co-ordinates to 

yield peak heights which are scaled up as necessary. A FORTRAN IV 'sub

routine called CARD is then called up to print out the spectra and punch 

them on to cards in any desired format.

A diagrammatic plan of the "pencil-follower" is given in FIG. A.
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S P E C T R U M  H U M B E R

E T C .

SPECTRUM NUMfeEP, 
E T C .
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'BEGIN'
' REAl'
F'
V'Y3'
y b #
.Fi'F2'Yl, Y 2 # DJS#XJ 
' IN TE GE R'FM|
LABEL,I # J / K , N E * P # F M T J  
M N y E G E R '  ' a ^RAY' 
s l a b c  i ' t'2o>;

'ARRAY'
M A S S (
P E a M  1' .'20, 1' »' ISO);

FM sLAYOUT(,('’lDnD,DB' )' >;
■ F ^ T s L A Y 0 U T ( M M 5 i * ‘lD0DDtn DD' )' >l
W R J t E T < 7 0 / ' ( ' R E A O  TEST T APE  3 S d E C T r A A.n O B A S E U J N E s O i >•* U A B e u s r e a o c ^ o ):
OUTPUT! 7 Q, L 4 B E L ) J  
F )" R E A D ! 20 ) J 
.■0UTPUT(70#Fp;
F 2 s R E A D C 2 0 ) i
0 U T p !J T< 70 ^F 2> ;
W R j T E T < 7 0 # M ' M ' C C '  > "  )' >5

I- u

S U A B ( I ) = R : A D ( 2 Q ) ;
0 U T p U T ( 7 0 / S l a B < I )); 
•DISb REA 0( 20 );  
Y I = R E A D ( 2 0 > ;
■ 0 U T P U T < 7 0 ' Y j >; vD I S = R E A O ( 2 0 ) 1  
Y 2 c r EAD ^2 0) ; -
O U T P U T  < 7 0 , Y£ > J
D I S ^ R E A D ( 2 0 j i  
Y 3 = R E A 0 ( 2 O ) j
0 U T p U T ( 7 0' Y 3 i I 
H R I T E T ( 7 0 ' ' ( " ( ' C C C # > "  ) ' >J 
wr1t£t<70''<"('ccc' ) " ) ' ) ;
WRJ T E ( 70# L A Y O U T ( ' ( ' N D D D ' > ' > , S L A q < \ ) ) l  
U R J T E T < 7 0 # M " ( ' C C ' ) * '  >' )i 

'FOR' Usi 'STEP' 1 'UNTIL' Is0 '[>0'
'BEGIN'
X s READ(20>J

O U T P U T ( 7 0 ' X ) ;
'IF' A B S ( X - 9 9 9 9 9 9 )  'LT' 0•0} ' T h E n '
'GOTO' us;'IF' A 9 S ( X - 9 9 9 9 )  'LT' 0 ♦Ot #T H E m '
'BEGIN'
1 * u u  
'GOTO' Lj;
' E N d M'IF' X 'LT' O fQ 'AND' X 'GT' »Z90 'tHEN'
'BEGIN'
y b » y 2;
f b f i ; ' g o t o ' l«j 
' E N 0 ' J'IF.' X 'LT' "»5t0 'AND' X ' G T # « l 2 » 0  ' t H e n ' . •
'BEGIN' „w ovtRuefiF
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Y9=Y3;
'GOTO' L4;

'END';
Y ? R E A D < 2 0 > J

0 U T P U T ( 7 O ' Y > i  
PEA k ! I,J > s (y- y i ); 
0 U J P U T ! 7 0 , P E A K (  I#J> >J 

'GOTO' L3J 
L 4 ' s'
DISsR E A D !20 ) J
y r R e a d u q i ;

O U T P U T (?0#Y } )
P E A K ! I # J > a F # < Y « Y a j j  
O U T P U T ! 7 0 , PEAK! I#J> >J

13'#'
' E N d 'J 
L 5 ' ♦'NEXoqj;
= 0 U T P U T ( 7 0 ' N £ X P )  J 
KSJ-IJ

o u t p u t ( 7 0 # k >;
W R l T E T < 7 0 # ' { " ! ' C C ' ) ' ' ) ' > iCARD! PEAK, iJ(;XP| K ) j 
'END'

e g t r a n c o m p i l e r MARK NO# 302 dateS U B R O U T I N E  C A R 0 { X / N , »!)DIME'JSI o N X!2 0, I 5Q >
10 F O R MA T!  I OF 7 • \ )
1 i F OR MA T!  JOFIO.2)

DO \00 Jb J'N 
100 PUNCH 10,!X!I'J )'Jb I#M)

DO 200 JPi'M 
200 PRJNT U' !X( J# J>' Is I'N)

RETURN 
END

25/07/73



FIG. A

XoX3
e- wic.

£
£
O



APPENDIX B.

Although considerable time rras spent writing and developing the 

programmes it cannot be claimed that the methods used are the best with 

regard to saving of time and storage space.

It has not been the purpose of this rrork to produce a single computer 

programme but rather a number of useful sub-routines which can be conven

iently joined by the user depending on his particular needs. The present 

system allows the analyst to interact with the data and bring his judge

ment to bear on the problem. Several examples of calling programmes are 

given.

In one case use was made of COMMON statements to reduce storage 

requirements (rank analysis on Mixture II). It is obvious that greater use 

could be made of such statements in future.

The programmes were not written by a specialist and the particular style 

used is very simple. Anyone with a knowledge of FORTRAN IV should experience 

little difficulty in following them. It cannot be claimed that the best poss

ible numerical methods have been used but the system is now a very flexible 

one.

Array Dimensions. In each case the array dimensions as written at the begin

ning of each programme should be equal to or greater than the actual dimensions 

used. It is important to ensure that corresponding arrays in a series of sub

routines called by one programme have identical dimensions.

In the sub-routines FRACT, MC, CDG, and PCA each of which call up an

I.B.M. Library sub-routine, CORRE, the dimension statements must contain

exact dimensioi-3 unless the sub-routine ARRAY is also used. An example of the

use of ARRAY in variable dimensioning is given in sub-routines UNIQS and ZEROS.
(71)Details of the storage methods used are given in the I.B.M. manualw  ' •

CORRE compuJte3 means, standard deviations and product-moment correlation 

coefficients.



Hams Reference Page No.

PRA general 123
PRAG general 123
SEIM general 124
SELECT (MASSES) general 125

example: Use of SCREEN Chapter 3 126
SCREEN tt 127,128
FRACT general 129,130
DATA general 130
DIFF Chapter 3 131,132
MAV ii 133
MSTATS n 134,135
example: Use of GA.USP Chapter 4-1 136
GAUSP •i 137
GAUSS ii 138,139
ELIM n 140
PIVOT it 141
GAUSAV ii 142
PCA Chapter 4-II 143

FILTER Chapter 5-1 144,145
MC Chapter 5-II 146
CDG it 147,148
RPA Chapter 5-IH 149

example: Use of UNIQ.S Chapter 5-IV 150
data listing: Mixture II it 151
UNIQS ii 152,153
ARRAY (double precision) ii 154
RESIDU ii 155
REFINU it 156

example: Use of TRIAL Chapter 6-III 157
TRIAL •i 158
ZEROS •t 159,160
SEL general 160
example: Use of UNRAVL Chapter 6-III 161

UNRAVL ii 162
—
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i IV G L E V E L  20 P R A D A T E  = 7 3 2 0 0

S U B R O U T I N E  P R A C A , N E X P , N O M )  
D I M E N S I O N  A C 2 8 , 1 4 2 )

Cc cc S U B R O U T I N E  P R I N T S  A

1 F O R M A T C 1 2 F 1 0 . 3 , / / )2 F O R M A T ( 1 2 F 1 0 , 3 )3 F O R M A T C / / / / / )4 F O R M A T ( / / )
J L = 0JT = 0 J H = 0  100 J T = J T + i  J l s J H + i
J H = M I N 0 ( J H , N O M )P R I N T  4DO 2 00 1 = 1 f N E X P  
P R I N T  2 , ( A C I , J ) , J = J L , J H )  2 0 0  C O N T I N U EI F C J H , L T , N O M ) G O  TO 100
PRINT 3-R E T U R N
E N D
S U B R O U T I N E  P R A G (A , N E X P , N O M , M , N )
D I M E N S I O N  A ( 2 8 f 142)C I N P U T -C M A T R I X  A H A V I N G  N E X P  R O W S  A ND N O M  C O L U M N S

C O U T P U T "C R O W S  M TO N A RE P R I N T E D  O U T
1 F O R M A T ( 1 2 F 1 0 , 3 , / / )2 F O R M A T ( 1 2 f 10,3)
3 F O R M A T (/////)4 F O R M A T ! / / )

J L = 0J T = 0  J H = 0  100 J T = J T + 1  J l = J H + l  
J H = J T * 12 J H = M I N 0 ( J H , N O M )
P R I N T  4 DO 200 I = M , N P R I N T  2 , ( A C I , J ) , J = J L , J H )  

2 0 0  C O N T I N U EI F ( J H , L T , N O M ) G O  T O  100
P R I N T  3R E T U R N
E N D

C
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W-IV G L E V E L  20 S E L M  - O A T E  = 7 3 2 0 7
SUBROUTINE SELMCA,NOS,N0M,K)

^^PRO&RAh^Ll^LNATES^CE^A'lN^SP^CT^A^FRCH UATA^MATRI
G-IVIU& c o n t r a c t e d ARRAY,
INPUT - A, OF NOS RQlVS AND NOM COLUMNS,
READS IN FGRMU4-) INTEGERS WHICH ARE RON NUMBERS OF
o n d e s i r e p s p e c t r a ,
f i n a l CARD CONTAINS 0,
OUTPUT - CONTRACTED ARRAY A WITH K RONS,

DIMENSION AC133/37) 
DOUBLE PRECISION A

1 FGRMATCI4)K=1
L=0
READ t,IL DO 100 Isl/NQS 
K=I-L
IF(I,EQ,IL)GOTO 120 
DO 110 J=l,NOM 

110 A(K,J)aA(IrJ)
GOTO 100 

120 CONTINUE 
L=L+1 
READ l,IL 

100 CONTINUE 
RETURN 
END

•0

09/
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AN IV G L E V E L  20 S E L E C T  D A T E  = 7 3 2 0 7
SUBROUTINE SELECT(A,NOM,NOC) *

C
C   ̂X--| |  ̂X X X X  XX> - X X X X X X  X X * X * X X  ft iX Ji X*mL X  iXX- X«X *4*X X X - X X  -X*X ft *
C THIS PROGRAM FORMS A CONTRACTED ARRAY 'A1 BY
C CHOICE OP CERTAIN ROWS (SPECTRA) PHQrt 'A1,
C
C INPUT -
C A, INITIAL DATA MATRIX,
C NOM, NO, OF COLUMNS OP A
C N.OC, NO, OP ROWS SELECTED,
C READS IN -
C KVS, VECTOR CONTAINING NQC i n t e g e r s GIVING ROW
C NUMBERS SELECTED, PORm AT(1214)
CC SUBROUTINE 'MASSES' IS SIMILAR BUT COLUMNS ARE
C SELECTED.

X X  -XX X  X X .X  -*i»..ft

DIMENSION A(23,37),KVS(10)
DOUBLE PRECISION A 

3 FORMAT! 12140
READ 3, CKVS(I),I=l,NOC)
DO 100 1=1,NOC 
DO. 100 J= 1,NOM 
K=KVS(I)

100 A ( I # J ) s A ( K # J >RETURN
end
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IV G L E V E L  23 M A I N  D A T E  = 7 3 2 ^ 7
DIMENSION AC28, 142),AT Cl 42,28),KVG(28)

C
C EXAMPLE OF USE OF 'SCREEN’.
C REF. MIXTURE V,
C
C PROGRAM READS IN -
C NOS, NUMBER OF ROWS IN ACSPECTRA),
C * NOM, NUMBER OF PEAKS (COLUMnS'OF Ajf
C NOG, NUMBER OF GROUPS'OF "IDENTICAL " SPECTRA,
C KVG, VECTOR CONTAINING ROW NUMBERS OF FINAL
C SPECTRA IN EACH GROUP,
C A, MIXTURES s p e c t r a ,
C A IS PRINTED OUT, TRANSPOSED AND PASSED
C TO 'SCREEN',
C

1 FORMAT(14)
2 FORMAT(10F7,1)3 F O R M A T (1214)

READ 1,N0S 
READ i,NOM 
READ 1,N0GR E A D  3 , ( K V G ( I ) , I = 1 , N 0 G )
DO 100 1=1,NOS
READ 2,CAClrJ>*JsijNOM)

100 CONTINUE
CALL PRAG(A,N0S,N0M,1,N0S)

C
C TRANSPOSE MIXTURES ARRAY,
C

DO 150 1=1,NOS 
DO 150 J=1,N0M 

150 ATCJ/D=A<I#J>CALL SCREEN(A > AT,NOS,NOM,KVG,1)
C A L L  E X I T  E N D
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AN IV t, L E V £ L  20 S C R E E N  r D A T E  = 7 3 2 0 7
SUBROUTINE SCREENCA,AT,NOS,NOM,KYG,ITI)
DIMENSION AC28, 142), AH (28, 14-2), ATC142, 28) ,FC (£8) 
DIMENSION KVGC28),TICC28)

C
C PURPOSE-
C THIS PROGRAM PROCESSES MIXTURES SPECTRA FROM
C A MASS SPECTROMETER. THE SPECTRA ARE IN
C THE FORM OF GROUPS OF ’’IDENTICAL" SPECTRA
C WHICH ARE EXAMINED TO REVEALc p o s s i b l e g r o s s e r r o r s .
C INPUT-
C A IS MIXTURES ARRAY.
C AT IS TRANSPOSE OF MIXTURES ARRAY,
C NOS IS NUMBER OF SPECTRA I.E. ROWS OF A,
C NOM IS NUMBER OF PEAKS I.E. COLUMNS OF A,
C KVG IS A VECTOR CONTAINING ROW NUMBERS OF ENDS
C OF EACH EXPTL, GROUP,
C IF III=1 A FULL P/O OF EACH EXPTL, GROUP
C IS GIVEN.
C IF ITI=0 A FULL P/O IS GIVEN ONLY WHERE GROSS
C ERRORS ARE DETECTED,
C OUTPUT-
C CORRELATION COEFFICIENTS OF ALL SPECTRA,
C LOCATIONS OF GROSS ERRORS IN SPECTRAL GROUPS,

' C SPECTRA IN EACH GROUP ARE'NORMALISED TO
C THE SUM OF THE LARGEST ION CURRENT,
C MATRIX AN THUS FORMEDIS PASSED To ’DIFF',
C OTHER SUBROUTINES REQUIRED- „
C PRa g >f r a c t ,d i f f ,da t a

1 FORMAT! I4-)
5 FORMAT(IX/1FULL P/O EVERY GROUP’,///)
6 FORMATCIX*’P/O SUSPECT GROUPS ONLY1#///) 

CALL FRACT(AT,NOM,NOS,KVG,FC)
7 FORMAT(IX*'SUBMATRIX IN o r i g i n a l FORM’,//) 

IF(ITI,EQ.0)GOTO 51
• PRINT 5 
GOTO 55 

51 PRINT 6 
55 CONTINUE 

K=l 
M=1

50 N=KVG(K)
NUMGP=N-M+L

CC FINDS LARGEST SPECTRUM IN GROUP BY SUM,
C

BIG=0,0DO 130 Is 1,NUMGP
L=M+I-1
TIC(I)=0,0
DO 140 Js1,NOM
TICCI)-TlC(I)+ACL/J)

140 CONTINUE
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AN IV G L E V E L  20 S C R E E N  c o n t ’p D A T E  = 7 3 2 0 7
IF CTIC(I),GTfBIG)BlG=TIG(I)

130 CONTINUE
NORMALISATION OF OTHER MEMBERS TO THIS SUM,«*

DO 150 I=1,NUMGP 
L b M + I - 1DO 150 Jrl,N0M 

150 ANCI,J):=ACL, J)*BIG/TICCI)C A L L  D I F F ( A N , n O m g P , N O M , P C , M ,  ITI#- ITO)
I F C C I T O . E Q . 0 ) fA N D . ( I T I . E Q . 0 ) )G O T O  170 P R I N T  7CALL P R A G ( A # N U M G P , N Q M , M , N )

170 IF(N,E(JtNfOS)GOTO 500 
MsN + l 
KsK+l G O T O  50 

500 R E T U R N  
END

\
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iN IV G L E V E L  20  F R A C T O A T E  = 7 3 2 0 0
SUBROUTINE FRACTCX,N,M,KVG,FC)
DIMENSION X (14-2, 28)
DIMENSION BC200),FCC203),SC20B),TC200),XBAR(200),KVGC200) 
DIMENSION VC8000),RC8000) ’

C
C'1’’ ’ ' '
C x is THE TRANSPOSE OF THE CONVENTIONAL

• C DATA MATRIX, THERE MUST BE MORE MASSES
C THAN SPECTRA I.E. N>=H, DIMENSIONS OF X
C IN STATEMENT MUST BE (N,M) u n l e s s 'a r r a y '
C IS USED,
C N IS THE NUMBER OF MASSES,
C M IS THE NUMBER OF SPECTRA,
c KVG CONTAINS ROW NUMBERS OF FINAL
C SPECTRA IN EACH GROUP,c
C OUTPUT*
C FC CONTAINS CORRELATION COEFFICIENTS OF
C FIRST SPECTRUM WITH ALL OTHERS IN ORIGINAL
C ARRAY/ GROUPED ACCORDING TO EXPYL, GROUPS,C . . . . . . .
C SUBROUTINES DATA AND PRAG ARE REQUIRED,
C CORRE IS AN I.B.M, SCIENTIFIC SUBROUTINE
C ' IT CALCULATES THE PRODUCT*MOMENT CORRELATION
C COEFFICIENTS,
c

1 FORMAT(14)
2 FORMATCIX,14,2X,'SPECTRA')
3 FORMATCIX,14,2X,'MASSES',//)
4 FORMAT!///)
5 FORMATCIX,14,3X,F12,5)
6 FORMATCIX,'SPEC',3X,'FRACTN. COEFFICIENT',//) 

PRINT 2,M
PRINT 3,N 
I Osl
CALL CORRE(N,M,10,X,XBAR,S,V,R,FC,0,T)
I = tDO 110 Jsl,M 
IF CI”J)102,104,104 

102 L=I+CJ*J-J)/2 
GOTO 110 

104 L=j+CI*I-I)/2 
110 FCCJ)=RCL)‘

PRINT 6 
Kc 1
KV=KVG(K)
DO 100 Isl,M 
WRITE C6,5) I,FC(I)
IFCI.NE,KV)GOT0 100 
IFCKV,EQ.M)GOTO 100 
PRINT 4 K s K  + 1 
KVsKVG(K)
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AN IV G LEVEL 
100

\

AN IV G LEVEL

CCcc

20 FRACT DATE
CONTINUE
RETURN
END

20 D A T A  - D A T E
s u b r o u t i n e  d a t a

THIS DUMMY SUBROUTINE IS USED 
WITH FRACT,MC AND PCA (ct>&)

R E T U R N
END

7 3 2 0 0

7 3 2 0 0
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IV C LEVEL 20 DIFF DATE = 73207  0 9 /

SUBROUTINE DIFFCAN,MUMGP,NOM,FC,M,ITI,ITO)
DIMENSION AN(28,142) ,PC28,142) ,FCC28;> ,DEVC28)

C
C I N P S T ^
C AN,NORMALISED SPECTRA IN GROUP BEGINNING
C WITH SPECTRUM M.
C NUMGP,NO, of s pe c t r a in g r o u p .
C NOM, NO, OF MASSES CCOLUMNS)
C FC, VECTOR CONTAINING SPEC, CORRLN. COEFFTS,
C M, FIRST ROW IN GROUP IS SPEC.MlOF ORIGINAL
C DATA MATRIX,
C
C OUTPUT- ,
C
C POSITIONS OF SUSPECT DEVIATIONS ON SU8-
C TRACTION OF NORMALISED SPECTRA (AND O/P
C OF DIFFERENCES IF 170 OR ITI=1),
C ITO BECOMES 1 IF SUSPECT DEVIATIONS ARE FOUND,
C
C OTHER SUBROUTINES NECESSARY- PRAG,
C
C ADJUSTMENT OF ERROR TOLERANCES - SEE COMMENTS, BELOW
C

1 FORMATCIX,’GROUP BEGINNING SPECTRUM ’,14,///)
2 FORMATCIX,'SUSPECT DEVIATION,,,SPEC NO, ',14,3X, 'MASS ',14)
3 FORMATCIX,///,'NO SUSPECT SPECTRA',///)
4 FORMATCIX,////,1X,'GROUP DIFFERENCE MATRIX',///)
6 F O R M A T C I X , 'SUM DEVIATIONS FRACTN, COEFFT,',//)
C FORMATC1X,F12.5,4X,F12.5)
7 FORMAT(14)
8 FORMATC////)
9 FORMAT(1 I')

PRINT 9 
PRINT 1,M .
CALL PfUGUN, NUMGP, NOM, 1, NUMGP)
ITO = 0

C
C SUBTRACTION OF FIRST SPECTRUM IN EACH NORMALISED
C GROUP TO GIVE DIFFERENCE ARRAY ’D»,

' C 
Cc C a l c u l a t i o n  of % d e v i a t i o n  f r o m  m ean,c cC IF x > 20 AND SPECTRAL ELEMENTS > 1&0.0 THEN ERROR .
C THESE VALUES WILL DEPEND ON THE PARTICULAR UNITS
C USED TO MEASURE SPECTRA
C

DO 120 1=1,NUMGP 
DEVCI)=0,0 
DO 100 J=ri , NOM 
DCI, J)=ANC1,J)-ANCIrJ)
D1=D(T,J)
D2=ABSCDi)



AN IV G L E V E L 20 D I F F  Mur'* ' D A T E  = 7 3 2 U 7
DEVU)=0EV(I)+D2
D(I,J)=(D2/AN(I,J)5*100,0
PER=D(I,J)
IFCPER,LT,20.0)GOTO 100 
K1=AN(1,J)
K2=AN(I,J)
IF(CK1.LT.1 0 0 , 0 ) .ORtCK2,LT.100.0))GOTO 100 
IT 0 -1
PRINT 2,1,J 

100 CONTINUE 
120 CONTINUE 

PRINT 8 
PRINT 5
DO 150 1=1,NUMGP 
NO=ItM-l
PRINT 6,DEVCI),FC(NO)

150 CONTINUE
IFCITO.EQ.DGOTO 140 
PRINT 3 

14-0 CONTINUE
IF(CITI.EO.0).AND.(ITO.EQ,0))GOTO 130 
PRINT 4-
CALL PRAG(D,NUMGP,NOM,1,NUMGP) '

130 RETURN 
END



155.

N IV G U E V E U  20 M A V  D A T E  = 7 3 2 0 0
SUBROUTINE MAVCA,AV,NOS,NOM,NOG)
DIMENSION A(28;i42)fAV(12#i42),KV(30)C

C THIS PROGRAM AVERAGES SPECTRA PRESENT IN GROUPS,
CC A IS THE FULL MIXTURES ARRAY HAVING NOS ROWS,C NOM COLUMNS AND NOG SPECTRAL GROUPSC THE VECTOR KV IS READ IN CONTAINING ROW NUMBERS
C OF THE FINAL SPECTRA IN EACH GROUP, I,E, NOG
C INTEGERS IN ALL,cC AV IS THE AVERAGED DATA MATRIX FORMED,C VALUES IN FIRST AND FINAL COLUMNS OF AV AREC PRINTED AS A CHECK,c.::;. ^ ., ^ ; LIJ c

2 FORMAT(2F10,2)
4 FORMAT(1214)READ Af (KV(I),I=1,NOG)

PRINT 4,CKV(I),I=l,NOG)
Mel 
K=1 

50 N=KV(K) 
v NUMGP = N<-M + 1

DO 130 J= I,NOM 
SUMe0,0 
DO 140 I=M,N 
SUM=SUM*A(I,J)

140 CONTINUE
AVCK,J)=SUM/NUMGP 

130 CONTINUE
IF(KVCK),EQ,N05)G0T0 500 
M e K V C K m  
K = K +1 
GOTO 50 

500 CONTINUE
DO 150 K1=1,K
PRINT 2fAV(Kl#l)fAV(KlfNOM) 

150 CONTINUE 
RETURN 
END



LEVEL 20 MSTATS DATE = 70206
SUBROUTINE MSTATSCA*AV,AYPEV, NOS, NOM, NOG)

C
C
C
C
C
C
Cccccccccc

THIS PROGRAM AVERAGES GROUPS OF 1 IDENTICAL* 
SPECTRA in m a t r i x a g i v i n g av,
INPUT A,
NQM - NUMBER OF SPECTRA ROWS) IN A,
NOM - NUMBER OF MASSES (COLS) IN A AND AV,
NOG - NUMBER OF GROUPS CROWS OF AV),
KYG, A VECTOR CONTAINING ROW NUMBERS DF FINAL 
SPECTRA IN EACH GROUP OF A, IS READ IN FORMC12I4) 
IF THERE ARE < E, 6, 4 SPECTRA/GROUP MAV SHOULD 
BE USED,
OUTPUT
AVDEV IS THE AVERAGED DEVIATION FROM THE MEAN 
VALUE OF EACH PEAK,
% ERRORS ARE PRINTED AND AVERAGE % ERROR,

C
C

DIMENSION A(10,0),AV(10,8),AVDEV(10,8),AN(10,8) 
DIMENSION P E R U 0,8),TIC(10),DEV(10),KVGC10)
K=1

I FORMAT(14)
3 FORMAT(1214)
4 FORMATC1X,’AVERAGED ARRAY’,//)
5 FORMAT(1X,'AVERAGE DEVIATIONS FROM MEAN’,//)
6 FORMAT(IX,’NORMALISED GROUPS',//)
7 FORMAT(IX,1̂  ERROR IN EACH PEAK',//)

13 FORHATC1X,'AVERAGE % DEVIATION = ’,F6,2) 
READ 3,(KVG(I),1=1,NOG)
PRINT 3,(KVG(I),1=1,NOG)
PRINT 6 

50 N=KVG(K)
NUMGP=N*M+i
BIG=0,0
DO 130 I=M,N
TtCCl)=0f0
DO 140 Js1,NOM
TIC(I)=TICCI)+A(I,J)

140 CONTINUE
IF (TIC (I) fG-TtBIG)BlGsTIC(I)

130 CONTINUE
DO' 150 I = M,N
DO 150 Js1,NOM
AN(I,J)=A(I,J)ABIG/TIC(I)

150 CONTINUE
CALL PRAGCAN,NUHGP,NOM,M,N)
DO 160 Js1,NOM 
SUM=0,0 
DO 170 I=M,N 
SUM=SUM+AN(I,J)

170 CONTINUE
AVJ=SUM/NUMGP
SOmDEV=0,0
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IV G LEVEL. 20 M S T A T S  D A T E  = 7 3 2 0 6
DO 180 InM,N 
DIFE = Ayj~AN(I, J)
DEV(I)=ABS(DIFF)
SUMDEV=SUMDEV+DEV(n 

180 CONTINUE
AVDEVCK,J)=SUMDEV/NUMGP 
AV(K,J)=AVJ
PERCK, J) = C100,0*AVDEV(K,J))/AV(K,JI 

160 CONTINUE
IF(N.£Q,NQS)GOTO 500 
L = 1 
M=Ntl 
K = K + 1 
GOTO 50 

500 CONTINUE 
PRINT 4
CALL PRAGCAV,NOG,NOM, l,NOG).
PRINT 5
C A L L  P R A G C A V D E Y r N O G f N O M , l , N O G >
PRINT 7
CALL PRAGCPERfNOGfNOM^l^NOG)
DO 200 Is 1fNOG 
DO 200 Jsl,NOM 

200 SUM=SUM+PER(I#J)
AVPER=SUM/CNOG*NOM)
PRINT 13,AVPER'
RETURN
END

/



N IV G LEVEL, 20 M A I N D A T E  = 7 3 2 0 0
DIMENSION A(28,142),AV(12,142)

C
Qc
C
cccccc
cc
Co.,
c

I N P U T *
Af ARRAY OE MIXTURES SPECTRA HAVING* 
NEXP ROWS (SPECTRA)
NOM COLUMNS (MASSES)
NOG GROUPS OF r,IDENTlCALu SPECTRA8

EXAMPLE OF USE OF GAUSP WITH MIXTURE V

SPECTRAL GROUPS ARE AVERAGED BY MAV GIVING AV 
RANK ANALYSIS IS PERFORMED ON AV,

\ FORMAT(14 )
2 FORMAT(10F7 «I)

READ 1,NEXP 
READ 1,NC)M 
READ I,NOG 
DO 100 1=1,NEXP 

100 READ 2,(ACI,J),J=1,NQM)
CALL PRA(A,NEXP,NOM)
CALL MAV(A,AV,NEXP,NOM,NOG)
CALL GAUSP(AV,NOG,NOM,0,2,0,1,0,10,0) 
CALL EXIT
end



137.

IV G L E V E L  20 M A I N  P A T E  = 7 3 2 0 0

S U B R O U T I N E  G A U S P ( A V , N O G , N O M , I P E R , P E R O R , S T E P , F P E R O R )  
D I M E N S I O N  A V (12,14 2 ) , A G ( 1 2 , 1 4 2 ) , S < 12,142)

C

C T HIS P R O G R A M  D E T E R M I N E S  THE N U M B E R  OF S I G N I F I C A N TC C O M P O N E N T S  P R E S E N T  IN AN A R R A Y  OF M I X T U R E S  M A S SC s p e c t r a ,cC G A U S P  IS THE R A N K  D E T E R M I N I N G  S U B R O U T I N E  W H I C HC T A K E S  THE E R R O R S  IN THE D A T A  M A T R I X  TO BEC A P E R C E N T A G E  ,CC AV is T H E  A R R A Y  OF M I X T U R E S  S P E C T R A  H A V I N GC NOG R O W S  A ND NOM C O L U M N S ,C IPER IS THE N U M B E R  OF T R A N S F O R M E D  E L E M E N T SC A L L O W E D  G R E A T E R  T H A N  T H E I R  E R R O R S - F O R  E X A C T  R A N KC D E T E R M I N A T I O N ,  F OR O U T P U T  OF F U L L  R A N K  S T A T I S T I C SC I PER S H O U L D  BE ZERO,C I PER IS AN I N T E G E R ,C P E R G R  IS THE I N I T I A L  P E R C E N T A G E  E R R O R  T AKEN,C S T E P  IS THE I N C R E A S E  IN % E A C H  TIME,C F P E R O R  IS THE F I N A L  P E R C E N T  E R R O R  TO BE TR I E D ,

8 F O R M A T U X ,  ’P E R C E N T A G E  E R R O R  U S E D  = » , F 6 , 2 , * % * , / / )  40 F O R M A T ( / / / / / / )
50 DO 140 1=1,N OG DO 140 J = 1 , N 0 M A G ( I , J ) = A V ( I , J )

S C I , J ) = A G ( I , J ) * P E R O R * 0 , 0 1  140 C O N T I N U E  P R I N T  40 P R I N T  8,PER ORC A L L  G A U S S ( A G , S , IPER,N O G , N O M )P E R O R = P E R O R + S T E P  I F ( P E R O R , G T , F P E R O R 3G O T O  34 G O T O  50 34 R E T U R N  
E N D



138.

I IV G L E V E L  20 G A U S S  D A T E  = 7 3 2 0 0
SUBROUTINE GAUSSCAG,S,IPER,IFNOG,NOM)
DIMENSION AG(l2, 142), 8(12, 142)

C
tlt, ,, ^  t ti, A ,iJLJL...t iai *111 ..I i t ir     ____ .C THIS PROGRAM IS PART Of- THE RANK DETERMINING

C SUBROUTINE, SUCCESSIVE GAUSSIAN ELIMINATIONS
C ARE PERFORMED ON MATRIX AG AND RANK STATISTICS
C PRINTED OUT,
C
C INPUT*
C AG, DATA MATRIX OF IFNOG ROWS AND NOM COLUMNS,
C S, ERROR MATRIX OF AG,
Q IPER, SEE GAUSP OR GAUSAV
C I DETERMINES THE NUMBER OF ELIMINATIONS,
C
C OTHER SUBROUTINES REQUIRED*
C PIVOT,ELIM
C .i.1.1 1.1 i i i < i i ^ ( i i ^ . i i i | i » i i ■      ̂ i , i i » i i i ^ i i ■ i i i i » i i i .ic 1 F O R M A T (14)

2 FORMAT(F9,3)
3 F0RMATC2F9,3)100 F 0 R M A T C 1 . X , ' R A N K S ' ,  14)

109 F0RMAT(SX»I4,8X,F5,1,8X,F9.3,2X,F9,3)
110 F0RMATC1X,'PERCENT ALLOWED IN RESIDUE = ',14,///)
113 FORMATClXf'NO, E LIH S ' ,4X,'PERCENT'/8X,'PIVOT EL',6X,

1'CORRES, ERROR',//)
PRINT 110,IPER"F I P E R = F L O A T C I P E R )  ,
U»1IX=0
P R I N T  11330 I F ( C L . G T , I F N O G ) , O R . C L , G T tN O M ) ) G O T O  306 
C A L L  P I V O T C A G f S , I F N O G , N O M / L )
IY = 0
00 303 J=L, NOM 
DO 303 I=L,IFNOG 
A s A G C I f J )
AD=ADSCA)

303 IF(AB,GT.SCI,J))IYsIYtl 
NOE=CIFNOO-IX)*CNOM-IX)
PERGs(FLOAT(IY)/FLOATC NOE))*100,0 
GOTO 307

306 CONTINUE 
PERG=0,0 
S(L,L)s0,0 
AG(t,,L)=0,0

307 IF(PERG,GT,FIPER)GO TO 111 
IRANK=IX
PRINT 109,IX,PERG,AGCL,L),S(L,L)
PRINT 108,IRANK 
GOTO 31

111 PRINT 109,IX,PERG,AG(L,L),SCL,L)
IF C(L,GT,IFNOG),0R.CL.GT.NOM))GOTO 31 
CALL EL1M(AG,S,IFNOG,NOM,L)
IXsIXtl



139.

 ̂ IV G l e v e l , 

31

G A U S S
L = L + 1GO TO 30
R E T U R N
END

DATE s 73200



140.

i IV G L E V E L  20 E L I M D A T E  a 7 4 2 0 0
SUBROUTINE ELIM(A,S,NEXP,MOM,L)
DIMENSION A(12,142),SU2,142),AA(12,142),SS(12,142)

’ In Xt A. «il ■ fc ■ A* >4 X «THIS PROGRAM IS PART OF THE RANK DETERMINING 
SUBROUTINE,
GAUSSIAN ELIMINATION IS PERFORMED ON A AND ITS 
ERROR MATRIX S IS TRANSFORMED' AT THE SAME TIME,
ON OUTPUT A IS THE REDUCED ARRAY AND S CONTAINS 
ITS ERRORS,

Cb ACUL)
DO 40 I = Lf NEXP 
DO 40 J=L#NOM
AACI,J)=A(I,J)-A(I,L)*ACL,U)/C 
S5=S(I,J)*SCI,J) 
S1=(A(I,L)/C)*(ACI,L)/C)
$2=CA(UJ)/C)*(A(L#J)/C)
S3 = S(I,L)*S(I,U 
S4=S(L,J)*SCL,J)
SS C X ; J)sS«RTCS5 + S4*-SitS3*S2 + S5*Sl*S2) 

40 CONTINUE
DO 50 I=L#NEXP 
DO 50 JsL/NOM 
A(I,J)=AA(I,J)

50 SCI#J)=SSU,J>
RETURN
END



141.

^ IV G LEVEL, 20 P I V O T  D A T E  = 7 3 2 0 0
SUBROUTINE PIVOT(A,S,NEXP,NON,L)
DIMENSION A C12/M2)/S(12/142)

C
Q THIS PROGRAM IS PART Of' THE RANK DETERMINING
C SUBROUTINE,
C A IS INPUT AND ITS LARGEST ELEMENT PIVOTED TO
C THE LEADING POSITION BY INTERCHANGE OP ROWS AND
C COLUMNS, THE CORRESPONDING ROWS AND COLUMNS OP S,
C THE ERRORM a TRIX OP A, ARE INTERCHANGED AT
C THE SAME TIME,
C
C _ ON OUTPUT A AND S ARE THE PIVOTED MATRICES,

A M A X = 0 t0 J M A X s I 
IMAXsl
DO 10 I = L* N E X P  DO 10 J = L > N O M  A C = A (I , J)
A B = A B S ( A C )A M s A B S ( A M A X )I P (A O .L E ,A M ) G O  TO J0 A M A X = A ( I , J )IM A X = I 
JMAXsJ 

10 C O N T I N U EDO 19 I = L f N E X P  
B ^ A C I / L )A < I , L ) s A ( I , J M A X )A C X /J M A X ) =  B T s S ( I , L )
S(lrL ) = S ( I , J M A X )19 S ( I , J M A X ) = T  DO 30 J = L # N O M  
B = AjCL#J)A ( L r J ) = A ( I M A X i J )  
A C I M A X # J ) s B  T = S ( L , J )S C L # J ) = S ( I M A X , J )30 S ( I M A X # J ) s T R E T U R N  
E N D
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V G L E V E L  20 G A U S A V  D A T E  = 7 3 2 0 7
SUBROUTINE- & A U S A V ( A V ,  A V P E V , N O G ,  N Q r t , T P E R , C R I T , S 7 E P , F C R I T >  
D I M E N S I O N  A V ( 2 3 , 3 7 ) , A G ( 2 3 , 3 7 ) , S ( 2 3 , 3 7 ) , A V D E V C 2 3 , 3 7 )
•mk* »L4»*1̂  iAi4» -4- *4' 4<U* -4 - 4 -  vC*A*U**J»«*>k>«A »li •£•? «L ■ JL«L<i* ~i> >4> *JL«L *4> mL «i U*

SAME AS GAUSP EXCEPT THAT ERROR IN S IS OBTAINED 
PROM <MSTATS‘ AND MULTIPLIED BY CRIT

8 F0RMAT(lX,'ERROR TIMES »,F6.2,//) 
40 FORMAT(//////)
50 DO 140 1=1,NOG 

DO 140 J = 1 ,NOM 
AG(T,J)=AVCl/J)
SCI, J)=AVDEV(l, J)ycCRIT 

140 CONTINUE 
PRINT 40 
PRINT 8,CRIT
CALL GAUSS(AG, S, JPER,NOG,NOM)
crit=crit-pstep 
IF(CRIT,GT.FCRIT)GQT0 34 
GOTO 50 

34 RETURN 
END



143.

i IV G LEVEL 20 PC A DATE = 73204 01-

C 
C 
C C C C C C C C 
C C C,
C 1 F O R M A T C l X f  ‘P R I N C I P A L  C O M P O N E N T S  A N A L Y S I S * , / / )2 F O R M A T ( 6 H 0 M E A N S / ( 8 F 1 5 , S ) )3 F O R M A T C 2 0 H W S T A N D A R D  D E V I A T I O N S / ( 8 F 15 fS ) )4 F O R M A T ( 2 5 H 0 C O R R E L A T I O N  C O E F F I C I E N T S )

5 F O R M A T ( 4 H 8 R O w I 3 / ( 1 0 F 1 2 , 5 ) )6 F O R M A T C 1 H 0 / 1 2 H  EI G E N V A L U E S / C 10F12,5))
7 F O R M A T C 3 7 H 0 C U M U L A T I V E  P E R C E N T A G E  OF E I G E N V A L U E S / (1 0 F 1 2 , 5))8 F O R M A T  C 1 X , 14,* V A R I A B L E S * )9 F O R M A T C 1 X , 1 4 , ’O B S E R V A T I O N S * )

P R I N T  1P R I N T  8 , M P R I N T  9, N 
10=1C A L L  C O R R E ( N , M , I O , X , X 0 A R , S , V , R , D , B , T )W R I T E  (6,2) ( X B A R ( J ) , J = 1 , M )W R I T E  (6,3) ( S C J ) , J = 1 , M )W R I T E  (6,4)DO 120 1 = 1 , M DO 110 J = 1, M 
I F ( I - J ) 1 0 2 , 1 0 4 , 1 0 4  102 L = I + ( J * v W ) / 2  G O T O  110 

104 L a J + ( I * I - I ) / 2  110 D (J ) = R  ( L )120 W R I T E  (6,5) I , ( D ( J ) , J = 1 , M )
MV = 0C A L L  E I G E N ( R , V , M , M V )
C A L L  T R A C E ( M , R , C O N , K , D )DO 130 1 = 1 , K 
L b I + ( I M - I ) / 2  130 S ( I ) = R ( L )W R I T E ( 6 , 6 )  C S ( J ) , J = 1 , K )W R I T E  (6,7) ( D (J ) , J = 1 ,K)R E T U R N
END

S U B R O U T I N E  P C A (X ,M , N , C O N )D I M E N S I O N  X (25,12)
D I M E N S I O N  B ( 2 0 0 ) , 0 ( 2 0 0 ) , S ( 2 0 0 ) , T ( 2 0 0 ) , X 6 A R (200) D I M E N S I O N  V ( 6 0 O 0)
D I M E N S I O N  R C 8 0 P 0 )D I M E N S I O N  T V (8000)

THIS P R O G R A M  P E R F O R M S  A P R I N C I P A L  C O M P O N E N T S ’1”1”A N A L Y S I S  ON M A T R I X  X,
I N P U T  « X IS A R R A Y  TO BE A N A L Y Z E D ,  D I M E N S I O N  IS M BY M W H E R E  N>=H, D IM IN S T A T E M E N T  M U S T  BE (n,M) U N L E S S  ‘ARRAY* IS U S E D  (SEE IBM SSP M A N U A L  TOR ALL D I M E N S I O N  D E T A I L S ) , M E A N S  , S T A N D A R D  D E V I A T I O N S  A ND ALL E I G E N V A L U E S  > C ON ARE P R I N T E D  OUT,
D U M M Y  S U B R O U T I N E  ‘D A T A ’ A L S O  R E Q U I R E D ,



L E V E L  20 F I L T E R  D A T E  s 7 3 2 0 5
S U B R O U T  INE F I L T E R  (AV, IF N O G , N O M , A M A S S ,  TOLL, NGT)DI M E N S  I Of J A V ( 2 3 , 3 7 ) ,A N ( 2 3 , 3 7 ) , D D D C 4 0 0 ) , S I G M A (37)
D I M E N S I O N  D D ( 2 3 , 4 0 0 ) , A M I ( 4 0 0 ) , A M 2 C 4 0 0 ) , A M A S S ( 3 7 ) , S U M (400)

C T H I S  P R O G R A M  D E T E C T S  A N D  S T O R E S  THE C O L U M N S  OF A
C m a s s  S P E C T R A L  M I X T U R E S  A R R A Y  W H I C H  a r e  p r o p o r t i o n a l ,cC m a s s  P R O F I L E S  ( C O L U M N S  OF AV) ARE N O R M A L I S E DC TO THE S A M E  SUM AND E A C H  S U B T R A C T E D  F R O M  E V E R YC O T H E R ,  ALL P A I R S  QF M A S S E S  H A V I N G  O N L Y  (NGT)C D I F F E R E N C E S  > (TOLL) ARE S T O R E D  IN V E C T O R S  AMI AMDC AM?., D I F F E R E N C E S  AND THE A V E R A G E S  OF ABS, D I F F S .C ARE P R I N T E D  OUT FOR T H E S E  P R O F I L E S  ONLY,
CC I F N O G  IS THE N U M B E R  OF S P E C T R A  IN AV (RO*S),C N OM IS THE N U M B E R  OF M A S S E S  IN AV ( C O L U M N S ) ,C A M A S S  J.S A V E C T O R  C O N T A I N I N G  THE M A S S  N U M B E R S ,

C I N T E G E R  X Y,F N O D
1 F O R M A T (14)2 F O R M A T C F 1 0 . 2 )3 F 0 R M A T ( 3 F 1 O , 2)
5 F 0 R M A T ( l X r F 5 . 1 , l X , F f > . l )
6 F O R M A T (///////)7 F O R M A T (12 F B , l ) '
9 F O R M A T ( I X , F 5 , 1 , 1 X , F 5 , 1 , 6 X , F 1 0 , 2 )183 F O R M A T C 1 X , ’M A S S  1 ' , 2 X , » M A S S  2 6X, » D I F F E R E N C E S  //)

170 F O R M A T ( l X f F 9 . 3 , ? X , F 9 , 3 , 2 X r I 2 F 8 , 3 )SIGMAXsO.fl
DO 103 J = 1 , N Q MS I G M A ( J ) = 0 . 0DO 110 I d , I F N O GS I G M A ( J ) = S 1 G M A ( J ) + A V ( I , J )110 C O N T I N U EI F ( S I G M A  C J ) , G T , S I G M A X ) S I G M A X s S I G M A ( J )

100 C O N T I N U EDO 120 J s l , N O MDO 123 1 = 1 , IF N O G
A N ( I ,J )= A V (I ,J ) * S 1 G H A X / S I G M A ( J )

120 C O N T I N U EP R I N T  6 . ,P R I N T  180 P R I N T  6 
X Y= IJ 0 F = N 0 M - 1  DO 130 J 0 = 1 , J 0 F  J I N  = J 0 1 1DO 140 J I = J I N , N 0 M  S U M ( X Y ) = 0 • 0 
IC = 0DO 2 2 0  1 = 1 , I F N O G
DD-D (I ) = A N (I , J I ) " A N ( I , J 0)0 5 = 0 0 0 ( 1 )



145.

N IV G LEVEL, 20 F I L T E R  D A T E  = 7 3 2 0 5
D6=ABS(D5)
IFCD6,GT.T0LL)ICsIC+l

220 CONTINUEI F ( I C - N G T ) 1 5 0 , 1 5 0 , 1 4 0  150 A M i (X Y ) = A N A S 3 (J 0)
A M 2 ( X V ) = A N A S S C J I )  •
DO 163 I~l,IFNOG 
DD(I/XY)=Df;DCI)
A=DD(I,XY)A 8 = A 8 S ( A )
SUM(XY)sSUM(XY)+AB 

160 CONTINUE
SUM(XY)=SUNCXY)/IFNOG 
PRINT 5/AN1(XY)/AM2(XY)
PRINT 7, C D P U f X Y ) , 1 = 1 , IFNOG)
PRINT 2/SUMCXY)
XYsXY+1 

143 CONTINUE 
PRINT 6 

130 CONTINUE 
PRINT 6 
PRINT l,NOPR 
NOPRzXY-l 
PRINT 100 
DO 193 XY=1,NQPR 
PRINT 9,AMIC X Y > #AM2CXY)/5UN(XY)

190 CONTINUE .
RETURN , n
END



146.

N IV G L E V E L  20 MC D A T E  a 7 3 2 0 4
S U B R O U T I N E  M C (X ,M ,N ,B M A S S )D I M E N S I O N  X ( 9 0 , 3 7 )
D I M E N S I O N  B H A S S C 3 7 )D I M E N S I O N  B ( 1 0 0 ) , D ( 1 0 0 ) , S ( 1 C 0 ) , T ( 1 0 1 ) ) , X B A R ( 1 0 0 )  
D I M E N S I O N  V C 8 0 0 0 )D I M E N S I O N  R C S 0 0 0 )

C

C IN M I X T U R E S  A R R A Y  X,
CC I N P U T  * X IS THE C O N V E N T I O N A L  M I X T U R E S  A R R A Y ,C N * N U M B E R  OF R Q w S  ( S P E C T R A ) ,C M « N U M B E R  OF C O L U M N S  ( M A S S E S ) ,C N > = MC DIM S T A T E M E N T  CN,M) U N L E S S  SSP ’A R RAY* U S E DC B M A S S  « A V E C T O R  C O N T A I N I N G  THE M A S S  N U M B E R S  USED,C D U M M Y  S U B R O U T I N E  t D A T A  • ALvSO R E Q U I R E D /
CC THE C O R R E L A T I O N  M A T R I X  OF M A S S  P R O F I L E S  IS P R I N T E D ,

4 FORMAT(25H0CQRRELATION COEFFICIENTS)
5 FORMATClXf* MASS*,F8,2/,(10 F12« 5))

I Qs 1
CALL CORRE(N,M,IQ,X,XBAR,S,V,R,D,B,T) 
WRITE (6,4)
DO 12M IalfM 
DO 110 Jsl,M 
IF (I * J ) 102, 104, 104 

102 L = I+(J*J-*J)/2 GOTO 110 
104 LsJt(I*I-I)/2 
110 D(J)5R(L)
120 WRITE (6,5) BMASS(I) ,(D(J),J=1,M ) 

RETURN 
END



147.

IV G L E V E L  20 C O G  P A T E  s 7 3 2 0 5  P
SUBROUTINE COG C X,M,N,NOC,BMASS)

C T H I S  P R O G R A M  P R O D U C E S  A C O M P O N E N T  D I A G R A M  F R O M
C M I X T U R E S  ARRAY, Xj*
C
C IN P U T  - X OF D I M E N S I O N  (N,M) W H E R E  M IS THE
C N U M B E R  OF C O L U M N S  (MASSES) AND N THE N U M B E R  OF
C M I X T U R E S  S P E C T R A  (ROWS),
C NOC - N U M B E R  OF C O M P O N E N T S .
C B M A S S  * V E C T O R  C O N T A I N I N G  M A S S E S ,
C CDG R E A D S  IN NOC I N T E G E R S  IN F O R M A T (1214) G I V I N G
C C O L U M N  N U M B E R S  OF ONE M A S S  U N I Q U E  TO E A C H  C O M P O N E N T ,
C D U M M Y  S U B R O U T I N E  ' D A T A 1 R E Q U I R E D ,

,   , x .. t,.;   , . , ; , AJ,, AIJL.. ̂  n ., ,,nilU Llt. L, J;t , Lc D I M E N S I O N  X ( 9 0 , 3 7 ) , R M A S S ( 3 7 )
DI  M E N S  I  ON XARC 5 U , 5 0 ) , I U ( 1 0 )
D I M E N S I O N  B ( 1 « 3 ) , D ( 1 0 0 ) , S ( 1 3 0 ) , T ( 1 0 0 ) , X B A R ( 1 0 0 )  D I M E N S I O N  Y C 8 0 3 0 )
D I M E N S I O N  R C B 0 0 P )  .3 F 0 R M A T C 1 2 I 4 )

A F O R M A T ( I / X , 1 M A S S ',7X, 1 R E L A T I V E  C O N T R I B U T I O N S  OF THE', 
112, IX, ' C O M P O N E N T S ' )

5 FORMATClXf'MASS',F 8 . 2 7 , C1PF12,5>)
6 FORMAT(9X,14,F10,2,2X,5F19,5)
7 FORMAT(////)S F O R M A T ( 2 8 X , ' S E L F  C O R R E L A T I O N S  - I N T E R - U N I Q U E ’,//)9 F 0 R M A T C 2 8 X , ' C O R R E L A T I O N  C O E F F I C I E N T S * ,//)

10 F O R M A T ( 2 8 X , ' I N  F I R S T  90 G O O D  S P E C T R A ' , / / )R E A D  3 , ( I U (I ), 1 = 1 , HOC)10=1
C A L L  C O R R E ( N , M , 1 0 , X ,X B A R , S , V ,R , D , B ,T )
P R I N T  9 P R I N T  4 , NOC P R I N T  IP 
K = 1 
11 = 1
KVsIUCK)DO 123 1 = 1 , M I F ( I , N E . K V ) G O T O  120 0 0 * 1 1 0  J s l f M  I F ( I - J )  1.U2, 1U4, 104 102 L = I +  ( )  /2 G O T O  H O  104 L » J + ( I * I - I ) / 2  

113 XABCJr I U s R ( L )
1 1 = 1 1 + 1  K = K + 1I F C K . G T ,  N O O G O T O  150 
KVsIUCK)120 C O N T I N U E  150 C O N T I N U E
DO 163 J s l , M
rRINT,6,J , B M A S 3 ( J ) , C XAB(J , I I ),1 1 = 1, N O C )



148.

\ U  IV G L E V E L  20 C O G  ' D A T E  s 7 3 2 0 5
160 C O N T I N U E  P R I N T  7 P R I N T  6DO 170 K = 1 , N 0 C  J = I U C K )P R I N T  6 , J # B M A S S ( J ) , ( X A B (J , T U , 1 1 = 1 , NOC )
170 C O N T I N U E  R E T U R N  END

\



oo
oo

oo
oo

oo
oo

oo
or

s

V G L E V E L  20 RP A D A T E  - 732155
S U B R O U T I N E  R P A ( A V , N E X P , N O M , I P E R )

-UO-.l, JU-JL-U-U-U-U J— UU.-U-t. J . U - L . U X  J.J.J, J. J. .I. J--U.U-U-U-A-,U U X-lJl.-ia J- -U X - U  U J. J . g a a . l . U . 1 .  U.X.U-U.U-U J..U j*T H I S  P R O G R A M  F O R M S  M I X T U R E S  A R R A Y  S U B M A T R I C E S  C O N T A I N I N G  I N C R E A S I N G  NOS, OF C O L U M N S  ( H A S S E S )  S T A R T I N G  A T  THE H I G H  M A S S  END, R A N K  A N A L Y S E S  ARE  C A R R I E D  35UT ON EACH, 
I N P U T  - AV, M I X T U R E S  A R R A Y ,  N E X P  , NO, OF S P E C T R A ,  NOM, NO, OF M A S S E S  TO  BE C O N S I D E R E D ,  IPER# % OF V A L U E S  A L L O W E D  > E R R O R S ,
m a s s e s  a t  w h i c h  c o m p o n e n t s  b e g i n  to contribute 
S I G N I F I C A N T L Y  A R E  I N D I C A T E D ,

X > i*  'A* J« *1-w L 'L « L  -JU Afc-JL^L-LuL —X» X  X ^ L v L  <X ‘ L>X  X » X  » l-« X rL  «X» »L  X * L  » L iX  X

D I M E N S I O N  A V ( 1 2 ,\4Z)
I F O R M A T  C l  1 )10 F O R M A T C l X , 1 4 , I X , ‘H A S S E S * )  

J1 -2 
91 P R I N T  t

PRINT 10,J1 
PEROR=4.0C A L L  G A U S P C A V , N E X P , J 1 , I P £ R , P £ R 0 R , 1 , 0,6,0)
1FU1.EQ.NOMJGOTO 34 •
J1 —J 1 +1 
GOTO 91 

34 RETURN 
END .
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150.

IV G L E V E L  20 M A I N  O A T E  = 7:5208
DIMENSION AC 133,37),AV(23,37),AMASS(50)
.1. J. i- j— I. U.-I— J— k. JL — L- .1— I. J..1— L J. _l— U -C JL-I— C  .4^ 1— l~X  t , - l - — l . - t— J t j  ».-*iEXAMPLE OF PATTERN SEPARATION
DERIVATION OF'MAJOR COMPONENT SPECTRA - MIXTURE II*
INPUT -
NEXP, NO, ROWS (SPECTRA) IN INITIAL ARRAY.
NOM/ NO. OP COLUMNS (MASSES) IN INITIAL MATRIX.
NOG,NO. OF GROUPS OF »IDENTICAL• SPECTRA FOR AVERAGING, 
NOC/ NO. OF COMPONENTS,

MASSES IN AMASS AND THE PEAKS IN 'A' ARE READ FROM 
DISK-FILE /UNIT 10
SELM RF.ADS IN R O W S  JO BE ELIMINATED, K IS FINAL NO, 
MAV AVERAGES REMAINING SPECTRA,
? SELECT' CHOOSES NOC OF THESE FORMING ARRAY AV 
WHICH IS OUTPUT.
FINALLY’ UNIQS PRODUCES COMPONENT SPECTRA,

D O U B L E  P R E C I S I O N  A, AV
1 F O R M A T ( U )
2 F O R M A T C 1 0 F 7 . 1 )
3 F O R M A T (F6 * 2)
4 F O R M A T ( F 5 . 1)
5 F O R M A T C  «I 1)
7 F O R M A T ( // // // // )
8 F O R M A T ( 1 2 X , F 7 > 1 , 6 X ,6 F 8 .2)

R E A D  1 /N EXP
P R I N T  1 / N F X P
R EA D I, NOM
P R I N T  1 / N O M
R E A D  I ,N O G
P R I N T  I / N O G
R EA D l/ NO C
P R I N T  1/N OC
DO 200 J = l , N O M
R EAP (10,4) A M A S S ( J )
R EA D (10,2) ( A ( I , J ) , 1 = 1 , NEXP)

2 0 0  CONTINUE
C A L L  S E L M ( A , N E X P , N O M , K )
P R I N T  7
C AL L  M A V C A / A V , K , N 0 M , N 0 5 )
C AL L  S E L E C T C A V / N O M / N O C )
P R I N T  5 
P R I N T  7
DO 100 J = 1,N O M  

100 P R I N T  8 / A M A S S ( J ) , ( A V C I / J ) , I = l , N 0 C )  
C A L L  U N I Q S C A V / N O M , N O C / A M A S S )
C A L L  E XI T  
END

\
00/ 4



LISTING OF LATA CARDS

Pattern Separation Example (previous pa^e)

133
37
23
420

21
78
79
89
90
91

107
119
0
6 15 19 23 26 29 46 50 64 72 75

90 94 99 104 106 108 110 112 117 119 124
1 5 11 12 >

7
2 16 30 4 5 24 11
3 • 5 6 7
2 4 24 11

12
1 2 16 30 3 4 5 20 8 24 10
4 8 10 12
2 4 24 11

(each row is a card)



152.

IV G L E V E L  20 U N I Q S  D A T E  = 7 3 2 0 8  065/2*
*

SUBROUTINE UNIQSCAMIX,NOM,woe,AMASS)
C
r*JL Uf L»l, vJ. .lu-U J* 4**^ r4« J. J. iC»ii U< .A*’ 4 4«<X »4* X«4*» L 4^ X  *4* -A- 4. jL 4vL \AJuju^C«A -A .4. *1 «.L i~ ■A«A‘ iI—jI. - AC THIS PROGRAM USES INFORMATION ABOUT POSITIONS OF UNIQUE
C PEAKS (ANY NUMBER PER COMPONENT) TO DERIVE PURE COMP.
C SPECTRA BY A LEAST SQUARES METHOD?
C
C INPUT - NOC IsS NUMBER OF COMPS.,NOM IS NUMBER OF MASSES,
C AMIX CONTAINS'NOC SPECTRA CHOSEN FROM ALL SPECTRA AS
C HAVING THE MOST DIFFERENT PATTERNS,(FROM 'FRACT'),
C AMIX IS PROBA3LY FORMED 8Y SUBROUTINE ’SELECT'
C AMASS CONTAINS MASSES USED.
C READS IN - KM, TOTAL NUMBER UNIQUE PEAKS ,
C KVM - VECTOR HAVING I'M INTEGERS WHICH ARE COLUMN NUMBERS
C OF UNIQUE PEAKS GROUPED ACCORDING T0 COMPONENTS.
C ‘IN’ - VECTOR CONTAINING NOC INTEGERS WHICH ARE POSITIONS
C OF FINAL MASSES OF GROUPS IN KVM (NOT IN AMIX), FINAL
C INTEGER IN VECTOR »IN» IS NMf
CC OUTPUT - Q IS DERIVED q MATRIX,
C 'AN'CONTAINS DERIVED SPECTRA BEFORE REFINING,
C ’AN' AFTER APPLICATION OF ' R £ F1N fJ' CONTAINS REFINED SPECTRA,
C RESIDUES ARE GIVEN BY 'RESIDU',
»L«4ji J,4«-L*L*L V. J. JL.JU<a» V -L..1. * .*■ — 4 , i..C >LXUo"i»»w4<ULU*X>L«L«L«>i«»L4«.l A* J » .L'L ■L*L*L.l»X«L,L

DIMENSION AMIX (23, 37) ,AC50,50),S (50,50)#KVM(50) , IN (50) 
DIMENSION AMASS(50),Q(10,10),DERY(23,37),0(50),Y(50) 
DIMENSION AN(23,37),IPIV(50),AUX(50)
DOUBLE PRECISION AHI X,A,D ,Y ,Q,DER V ,AN ,5,AUX

1 FORMAT(14)
2 FORMATCF6.1) , x
3 FQRMAK8F9.3)
4 FORMAT (////////')
5 FORMAT(1214)
7 FORMAT(12X,F7»1,6X,6F8#2)
8 F0RMAT(12X,4F8.2)
9 F0RMATC12X,'PLLSQ ERROR PARAMETER = ’,14,//)
12 FORMAT!'I')

PRINT l.NOC 
READ 1,NM 
PRINT i,NM
READ 5,(KVM(I),1=1,NM)
PRINT 5,(KVM(I),1=1,WM)
READ 5, (lN(I),i = l,NOC)
PRINT 5,(IN(I),1=1,NOC)
PRINT 12 
1=1 
M1 = 1
N2=IN(L)
NV = M0C**1
DO 200 IY=1,NOC
JX=0
NE=NM-N2FN1-1 
DO 110 J = 1 , M M
IF((J.GE,N1),AND,CJ,LE,N2))G0T0 110 
JX=JX+1



155.

IV G L E V E L  20 U N I Q S  D A T E  =
0

DO 100 1=1,NY 
K=KVM(J)
A(JX,I)=AMIXCI,K)

100 CONTINUE
D(JX)=AMlX(NOC,K)

110 CONTINUE
CALL ARRAY(2,NE,MV,50,50,5,A)
CALL DLLSQtS/D/NE/NV, i, Y, IPIV,1#E-5,IER,AUX) PRINT 9,IER 
DO 120 J=1,NV 
0(IY,J)=Y(J)

120 Q(IY,NOC)="1»0 
Nl=N2tl 
L = L + 1 

200 N2=IN(L)
PRINT 12 
DO 250 IY=1,NOC 

250 PRINT 8, C GLCI Y, J), 3=1,NOC)
DO 160 IY=1,NOC 
DO 1G0 Jcl,NOM 
DERV(IY,J)=0♦0 
DO 160 1=1,NOC 

160 DERVCIT,J)=DERV(IY,J)+Q(IY,I)*AMIX(I,J)
DO 170 I Y=1,NOC ’
AB1G-0.0 
DO 180 J=l,NO«
DEsDERYClY,J)
ABDE=ABS(DE)

180 IFCA8DE.GT,ABIG)ABIG=ABDE 
DO'1.70 J=t,NOM 
DE=DERVCIY,J)
ABDE=ABS(DE)

170 AN(IY, J)=ABDE*100/ABIG 
PRINT 4 
PRINT 4
DO 230 J=l,NOM 

230 PRINT 7,A«ASS(J),CAN(I,J),I=l,NOC)
CALL RESIDU(AMIX,AN,NOC,NOM, AMASS)
CALL REFINU(AN,NOC)
DO 240 *J=l,NOM 

240 PRINT 7,AMASS(J>,(AN(I,J),I=l,NOC)
CALL RES I DU(AMIX,AN,NOC,NOM,AMASS)
RETURN
END

7J2U8 00/^.

/

\



o 
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L E V E L  2 . 1 A R R A Y D A T E  = 7 3 2 0 7
0

SUBROUTINE ARRAYCMODE,I,J,N,M,S,D)
«• » «»•>•*•*« 4(4 «!• » • M <*»»!» 4-» »•» *ifcr «£• «** »** «*»■»*•*»»«** !*0 —■» » ♦*DOUBLE p r e c i s i o n v er s i o n of IBM, v a r i a b l e 

DIMENSIONING SUBROUTINE (SEE IBM -SSP MANUAL)
•A* J « X * A > " l 'U i  X 4 » x L ' I «  - * - V - f  1 —  -*— 1 f f -  «4»t i , « t » 4 » X * L  |, ,J j  1 l i  1 j  ilf i I i J j  I  JL A  4- fc » i» X ^ L . X X ^ ' i » C 4 * - i «J l A .«l  X

DOUBLE PRECISION S,D 
DIMENSION S(i)fO(l)
NI=N~I
IF (MODE-1)100^100 / 120 

100 IJ=I*J+1 
NM=M*J+1 
DO 110 Ksl,J 
NMsNM-Nl 
DO 110 Lsl,I 
IJ=IJ-l NM=NM-1 

110 DCNH)=S(IJ)
GOTO 140 

120 IJ«0 
NM«0
DO 130 K=l,J 
DO 125 Lsl/I- 
IJ=IJtl 
NM"NMI+1 

125 S(IJ)=D(NM)
NM=NMtNI 

130 CONTINUE 
140 RETURN 

END
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IV 0 LEVEL 20 RES I DU DATE = 73208 07/45*

SUBROUTINE RES I DIM AV,AN,NOC,NOM,AMASS)
4̂  ■!» X ^ -A, »L .I- . jL >U «A* ̂  «J-« -Â-Jp 4» •!- U- - A* —4* -1» ■ J ■ ■A» 4« *L JL n̂~i— A* -Aw

THIS PROGRAM CALCULATES RESIDUES FOR DERIVED 
SPECTRA USING ONE PEAK UNIQUETQ EACH,
INPUT - AV » ORIGINAL MIXTURES SPECTRA USED TO 
DERIVE AN v/HERE AN CONTAINS DERIVED SPECTRA,
HOC'is n u m be r op c o m p o n e n t s , ama ss CONTAINS MASSES,
- r ead s IN NOC TNTEGERS in 'iu*w h i c h are c o l u m n 
NUMBERS OF ONE PEAK UNIQUE 10 EACH COMPONENT,

PRINTED OUT - RESIDUE MATRIX AND SUM OP DEVIATIONS.
FOR EACH MASS.

DIMENSION AV(23,37) , AN (23,37) , DEV C50), Gtl (10, 10) ,CALCMX (23^37) 
DIMENSION IU(10),AMASS(50)
DIMENSION DIFF(23,37)
DOUBLE PRECISION A V,AN,DEV,QI,CALCMX,DIFF

1 FORMAT(1214)
2 PORMATC *1’)
6 FORMAT!////////)
12 F0RMATC12X,F7,1r3X,4F8.2,3X,F8.2)

PRINT 2
READ 1,(IUCI),I=1,N0C)
PRINT I,(IU(I),Isl,NOC)
DO 300 IflX=U,NOC 
DO 300 Isl/NOC
K=IUCI) \

300 QKIMX, I)=AV(inX,K)7AN(I,K)
DO 310 IMXsl,NOC'
DO 310 Jsl/NOM 
CALCMXCIMX,J)=0.0 
DO 310 1 = 1,NOC 

310 CALCMXCIMX,J)=CALCMX(IMX,J)+QICIMX, I)*AN(I, J)
DO 320 J=1,N0M 
DEV(J)=0,0 
DO 320 I;sl,NOC
D IFF (I, J) -AV (I, J) *• CALCMX(I,J)
AB=DIFF(IrJ)
ABC=ABS(A8)

320 OEVCJ)=DEV(J)+ABC 
PRINT 6 
PRINT 6
DO 330 J=1,N0M 

330 PRINT 12,AMA5S(J),(DJFFCI,J>,Isl,W0C),DEY(J)
RETURN
END



156.

IV G L E V E L  20 R E F I N U  D A I E  = 7 3 2 0 8  00/;
• ' ■ 0

SUBROUTINE REFINU(AN,NOC)
C
C^  A > » > W « J k <  *1*» i * ^  «!■ -V « i « J . 4 * « i » a | j  •C’Avi -J» <X J.«i«.i.iiL J LC THIS PROGRAM REFINES THE DERIVED SPECTRA IN ARRAY 'AN',
C
C INPUT - AN MATRIX HAVING NOC ROWS DERIVED BY
C 'UN IQS' OR 'ZEROS',
C READS IN -
C NU, TOTAL NO, OF UNIQUE PEAKS KNOWN,
C VECTOR KVU - NU INTEGERS c o n t a i n i n g c o l u m n n o s ,
C OF UN I OljE PEAKS IN MATRIX AN,THESE A«E IN GROUPS
C ACCORDING TO THE COMPONENTS,
C VECTOR JG CONTAINS NOC INTEGERS GIVING POSITIONIS IN
C KVU OF FINAL NUMBERS IN THE NOC GROUPS, (THE
C FINAL INTEGER 1*4 IG WILL BE- NU) ,
C
C OUTPUT - AN CONTAINS REFINED SPECTRA, NOC ROWS,
C

DIMENSION AN(23,37),KVUC30),IG(30) 
DOUBLE PRECISION AN

1 FORMAT(14)
2 FORMAT (1214-)
3 FORMAT('1 ' )

PRINT 3 
READ 1,NU 
PRINT 1,NU
READ 2,CKVU(I),I-i,NU)
PRINT Z,(KVU?I),1=1,NU)
READ 2, (16(1)/1=1,NOC)
PRINT 2,CIG(I),1=1,NOC)
L= i 
M=i
N=IG(L)DO 4J0 i=j,NOC 
DO 420 10=1,NOC 
IF C10.Ed.I)GOTO 420 
DO 420 J=M,N 
K=KVU(JT 
AN(IO,K)s0.&

420 CONTINUE
IF(L.Ea,NOC)GOTO 410 
L = L+1 
M = N+1 
N=IG(L)

410 CONTINUE 
RETURN 
END



157*

IN IV G L E V E L  20 M A I N  D A T E  = 7 3 2 1 3
C• ̂ - A *  X* tm iA flu uX«A»«X* Jj X >̂*»4i »fl«»jL«L vJU » U « I » « X  JL̂ XX»»X*X>»JL̂ V»X «lw4» -A..4*C
C P A R T  OF ’U N R A V L 1 P R O C E D U R E ,
Cc e x a m p l e  of ’trial* AS IN C H A P T E R  6-III,c ~
C R E A D S  IN -
C A/ FULL  M I X T U R E S  A R R A Y  F R O M  D I S K  M U ,
C NOS, ROW  N UM BE R,
C .NOM, C O L U M N  N UM BE R,
C NOC, R A N K  OF A,
C
C S M I X  C O N T A I N S  N OC  S P E C T R A  S E L E C T E D  F R O M  A,
U«»Aw4««̂  A J« X X  X»«X k̂ X X X X X  X wLX X X X  J > X X X X X«iWJ»»A»XXX  ij»X X 4 ».XX X »i%*X X  X X X X X X X A»c

D I M E N S I O N  A ( 4 0 , 2 5 ) , S M I X C 5 , 2 5 ) # A M A S S ( 2 5 )  
D O U B L E  P R E C I S I O N  A , S M l X  

1 F O R M A T (14) 
RE A D  I , NOS  
P R I N T  1,NOS  
R EA D  1 , M O M  
P R I N T  1, N 0M  
R E A D ' 1 , NOC 
P R I N T  1,N0C 

3 F 0 R M A T ( F 7 , 2 )  R E A D  3 , ( A H A S S C I I , 1 = 1 , NOM)
2 F0RMAT(8F9.3)

R E A D  (11,2) ( CACI, J ) ,  1 = 1 , N 0 S ) , Ji=l ,N0M) 
CALL PRA CA,N0 S,N0M )
CALL SEL(A,SMIX,NOM,NOC)

4 F O R M  AT (1 X / FI 0 ■. 2, 6 X , 5 F 10,3) 
DO 100 J= J,NOM

100 PRINT 4,AMASSCJ),(SMIX(I,J),Isl,NOC>
CALL TRIAUSMIX,NOC,NOM)
CALL E X I T  
END
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AN IV G L E V E L  20 T R I A L  D A T E  - 7 3 2 1 3  1
SUBROUTINE TR IAL(AM IX,NOC,NOM)

C
r
C THrs PROGRAM PRODUCES TRIAL SPECTRA f;KUM GUESSED
C POSITIONS OF ZEROS,
C
C AMIX IS A 'HOC BY 1NOM1 MIXTURES ARRAY
C NOC AND NOM H A V E  USUAL MEANINGS'
C READS IN - NZTOT, TOTAL NO * Op ZEROS IN ALL
C COMBINATIONS TO BE TRIED.
C NTRLS - NO, OF GROUPS OF GUESSED ZEROS,
C KVZ - KEY VECTOR CONTAINING COLUMN NOS, (MASSES)c which have zero contributions from the desired
C SPECTRUM (GIVEN BY >MC'). THERE ARE NZTOT INTEGERS
C ORDERED ACCORDING TO THE GROUPS TO BE TRIED,
C NTR - KEY VECTOR CONTAINING POSITIONS IN KVZ OF
C FINAL ZERO IN EACH GROUP CNTRLS INTEGERS),
C
C • 'ZEROS' IS CALLED FOR EACH GROUP OF ZEROS AND ONE
C SPECTRUM DERIVED FOR EACH f
C FINALLY UP TO 18 SPECTRA ARE PRINTED OUT,
•A. JUX«A* J X X X  X  X X X X - X  X X X X X X X X X  XT- X X » C • I-X«L X X X X X X .X X X , L X X X X X • L X X ►!» -L X X X  .X X 11L X XDIMENSION AMIX(5,25),ATR(50,25),DS (25)

DIMENSION KVZC90),MTR(25)
DOUBLE PRECISION AMIX,ATR,DS 

12 FORMAT(FI 0,2)
1 FORMAT(14)
2 FORMAT(1214)
3 FORMAT(\8F7,2)

READ 1,NZTOT 
PRINT i,NZTOT 
READ 1,NTRLS 
PRINT 1,NTRLS
REAP 2,(KVZ(I),1 = 1,NZTOT)
PRINT 2,(KVZ(I),1=1,NZTOT)
READ 2,(NTR(I),1=1,NTRLS)
PRINT 2,(NTR(I),1=1,NTRLS)
Msl ■
K n  

50 N=NTR(K)
PRINT 2, (KVZCI),I = M,N).
CALL ZEROS(AMIX,NOC,NOM,M,N,DS,KVZ)
DO 200 J=1,NON ’ ' '

200 ATR(K,J)=DS(J)
IF(K,EQ,NTRLS)GOTO 500 
M=Mf 1 
K = K*f 1 
GOTO 50 

500 CONTINUE
DO 100 J- 1,NOM 

100 PRINT 3,(ATR(I,J),1=1,NTRLS)
RETURN
END
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IV G L E V E L  20 Z E R O S  D A T E  a 7 3 2 * 3
S U B R O U T I N E  Z E R O S (AM I XrN O C ,N O N , H , N / D S,K V Z )C

Cv 4..t«.i.X4.XJl.X X X  1 -i-LJ— .1. - .1  f,- j ) -I— i~. i -i,-i -1 -1 4- | | -4 _ t  I , f , f |- t ijC THIS P R O G R A M  F O R M S  S I M U L T A N E O U S  E Q U A T I O N S  F R O MC A M I X T U R E S  A R R A Y  A C C O R D I N G  TO P O S I T I O N S  OF Z EROC C O N T R I B U T I O N S  F R O M  THE S P E C T R U M  TO BE D E R I V E D *  TH E S EC P O S I T I O N S  ARE C O N T A I N E D  IN KVZ B E T W E E N  E L E M E N T S  MC AND N. M AND N ARE G I V E N  BY ‘T R I A L ’ .
C S O L U T I O N S  Or THE E Q U A T I O N S  GIVE THE U N K N O W N  S P E C T R U MC ON M U L T I P L Y I N G  INTO THE M I X T U R E S  ARR A Y ,C
C DS F I N A L L Y  C O N T A I N S  THE D E R I V E D  S P E C T R U M ,

D I M E N S I O N  A M I X ( 5 ; 2 5 ) f D S ( 2 S )
DIMENSION AA(lb,15),DCi0),Y(10)D I M E N S I O N  AIJX C 10), S C 1 5, 1 5), K VZ (90)
D I M E N S I O N  I P I V C 1 5 )D O U B L E  P R E C I S I O N  A M I X , A A ,D,Y,DS D O U B L E  P R E C I S I O N  A U X , S  

1 F O R M A T (14)N V s N O O l
NZ=N-M+1C

C NV IS THE NO, OF V A R I A B L E S ,C NZ IS THE NO, OF Z E R O S  IN THE G R O U P  ( = N O t OF E Q U N S , )
CcC AA IS F O R M E D  F R O M  C O L U M N S  OF M I X T U R E S  A R R A Y  H A V I N GC Z E R O  C O N T R I B U T I O N S  F R O M  THE S P E C T R U M  TO BE D E R I V E D ,C AA C O N T A I N S  C 0 E F F T 5 ,C D C O N T A I N S  R , H , S t '
r

DO 110 J s M / N  
K = K V Z C J )
JlsJ-M+lDO 100 1 = 1 , NV
A A C vl 1 / I)=AM1X(I/K)

100 C O N T I N U ED C J 1 > = A M I X ( N 0 C / K )
. U 0  C O N T I N U E
cc ’A R R A Y ’ A L T E R S  S T O R A G E  M O D E  OF AA G I V I N G  S,C D L L S Q  G I V E S  A L E A S T  S Q U A R E S  S O L U T I O N ,
C C A L L  ARRAY(2,NZ,NV,15,15,S,AA) 'C A L L . D L L S Q ( S f D , N Z , N V , I f Y , I P X  V / 1 , E - 9 , I E R , A U X )
C
c 1,B•M, ERROR PARAMETER/ IER/ IS PRINTED
C PRINT 1/IER

Y (NOC ) Sf" J ,0DO 160 J = 1 , N 0 M
D S (J )=0 * 0
DO' 1'70 1 = 1/ NOCDSC J ) = l ) S ( J ) + Y ( I ) * A M I X ( I /  J)

IA A



160.

IV G LEVEL, 20 Z E R O S  D A T E  = 7 3 2 U
170 C O N T I N U E  
160 C O N T I N U E  A B 1 0 = 0, 0 

DO 190 J = 1 , N 0 M  
D E = D S ( J )
A P E = A B 5 ( D E )
IE ( A D E . G T , A D I G ) A R I G = A D E  

190 C O N T I N U E
Cc N O R M A L I S A T I O N  OE S P E C T R A ,
C DO 2 0 0  0 = 1 , N O M  

D E = D S ( J )  
A D E = A B 3 ( D E )  
A D E = A D E * 1 0 0 f0 / A B I G  
D S ( J ) = A D E  2 0 0  C O N T I N U E  
R E T U R N  
E N D

AN IV G L E V E L  20 S E L  ' D A T E  = 7 3 2 1 3
S U B R O U T I N E  S E L ( A , S M I X , N 0 M , N 0 C )cC  ̂ . . ■ . _ j _ i A  t | t t nL ,-JLJ J_ t , f I j t t , t . 4. . J  K , .c’ ^ ^ ^ ^ A S ^ O E L E C T ^ u t ^ N ^ ^ A R R A Y ^ F O R M E ! ^ X" ^ ^ ^ ^ ^ ' ^ a"

D I M E N S I O N  A C 4 0 , 2 6 ) , S M I X (5,25)
D I M E N S I O N  K V 5 C 1 0 )DO-UBLE P R E C I S I O N  A , S M I X  

3 F O R M A T ( 1214)
1 F O R M A T (14)

R E A D  3 , ( K V S ( I ) , I = 1 , N 0 C )
DO 100 1 = 1 , NOC DO 100 J = 1 , N 0 M 
K = K V S ( I )

100 S M I X ( I , J ) = A ( K , J )
R E T U R N
E N D



0

IV G L E V E L  20 M A I N  D A T E  = 7 3 2 1 5  M s

C
L  l . J — I. 1. UJU-J.JI J-JL^J.,1, j, J1..4, -I— *. C-1>JU.U4..U

C PART OP ’UNRAVL' PROCEDURE,
C
C EXAMPLE or 'ONRAVL' as d e s c r i b e d  IN CHAPTER 6-111fc
C READS IN «
C M0Sr MO. OF SPECTRA IN FULL MIXTURES ARRAY,
C NOM, MO. OF MASSES CCOLUMNS) IN~ ARRAY,
C NOC, RANK OF ARRAY,
C NREP5, MO, OF SPECTRA TO 3E FORMED AND SUBTRACTED
C BY UNRAVL. UNRAVL W ill BE ACTIVATED THIS NO, OF TIMES,
C AI1ASS, ARRAY CONTAINING MASS NUMBERS,
C A, FULL MIXTURES ARRAY FtfOH DISK M 1 1,
C
C SliIX CONTAINS NOC SPECTRA SELECTED FROM A* THIS NO•
C GOES DOWN AS THE MIXTURES ARRAY'IS SIMPLIFIED,
C
C MASS PROFILE CORRELATION ANALYSIS IS PERFORMED ON
C EVERY NEW MIXTURES ARRAY .
C

D IMENS ION A (40/25), SttI.X C5, 25 ) , AMASS (25)
DOUBLE PRECISION A,SMIX

1 F0RMATCI4)
2 f 0 R M A T C 8 F 9 , 3 )
3 FORMAT T F 7,2)

READ 1,NOS 
PRINT l,NOS 
READ 1,NQM'
PRINT I.MOM 
READ 1,NOC 
PRINT i,N0C 
READ 1,NRcDS 
PRINT 1,NREDS
READ 3, (ANASSQ), I-t,NOM)
READ (11,2) ( (ACl, J), 1 = 1, NOS ),.) = !, NOM) 
CALL PRACA,NOS,NOM)
CALL Se l ECT(A,SH1X,NOM,NOC)

4- FORMATO X , F 10 . 2/6X, 5P10*3)
DO 100 J=i,HOtt 

100 PRINT 4/AMASSCJ),(SMJX(X,T),T=1,N0C)p o  ?.m i x n ,  N R E D S
200 CALL UNRAVl CA/SH1X,NOS,NOM,NOC,AMASS) 

CALL PRACA/NOS/NOM)
CALL MCCA/NOM/NOS,AMASS)
CALL EXIT 
END



on
oo

oo
oo

o 
oo

oo
oo

oo
oo

oo
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IV G L E V E L  20 U N R A V L  D A T E  = 7 5 2 1 5  1 H
SUBROUTINE UNRAVL(‘A, AMIX,NGS,NQM,NOC,AMASS)

•4-.ujL.u-t a-u. jl -i. j..i, j. j , j . - r . a .  j.-i-.L.i )- ju txjl-»— a— t-i.a. .l.l.l- l.l a. ..L.i..ua._»..la..i..i. a.a.THIS PROGRAM PRODUCES A SPECTRUM FROM POSITIONS OF 
ZEROS, AS FOUND !3Y 1 TRIAL*. THIS SPECTRUM IS THEN 
SUBTRACTED OUT OF THE MIXTURES ARRAY GIVING an ARRAY 
OF LOWER RANK,
A IS THE WHOLE m i x t u r e s a r r a y ,
AMIX IS THE SAME AS DESCRIBED IlN 'TRIAL'.
READS IN -
HZ , NUMBER OF ZEROS USED,
KVZ , KEY VECTOR CONTAINING COLUMN NOS, (MASSES)
WHICH HAVE ZERO- CONTRIBUTIONS FROM THE DESIRED 
SPECTRUM. IJ, HZ INTEGERS.
JU, COLUMN NO, OF PEAK UNIQUE TQ THE DERIVED SPECTRUM,
A MASS PROFILE c o r r e l a t i o n ANALYSIS is CARRIED OUT 
ON THE NEW MIXTURES ARRAY,

■4* iL<L •At* L.L-LvLjL JL4. X  -*L *L .L ii «t»L Jk~ .LJ* ••!»» ■! ni» »Li !■ 0* «L >L -4* <4» J» iL.L J* Ju-L4r

DIMENSION A(40,25),AMIX(5,251,D3(25),U(25)
DIMENSION A M A S S (25),KVZ(50),B(25,25)
DOUBLE PRECISION A,AM IX,DS,U,B

1 F O R M A T (14)
2 FORMAT(1214)
3 FORMAT C* 1')
4 FORMAT (l 2X, F 7 ,1, 3X, 6F8 ,2.)

READ l,NZREAD 2,(KVZCX),I~1,NZ)
CALL ZeROS(AMIX,NOC,NOM,l,NZ,DS,KVZ)
READ 1 , JU 
8 B=DS(JU)
DO 220 1=1,NOS 
AX=A(I,JU)
XK-AX/BB 
PO 220 Jsl,NOM 
U(J)=DSCJ)*XK 

220 A(I,J)=A(I,J)-U(J)
PRINT 3
CALL PRA(A,N0S,N0M)
PRINT 3
DO 230 J=l,NOM 

230 PRINT A,AMASS(J),CAri/J),r=l/5)
CALL MCCANNON,NOS,AMASS)
RETURN *
END



APPENDIX C.

Mean and Variance

In order to summarise a number of measurements (e.g. successively 

scanned mass spectra) it is convenient to calculate their mean (or average) 

and their variance. The latter is calculated by expressing each measure

ment as a deviation from the mean.

The mean is given by , where X is each measurement and "nM the
n

number of measurements.

The variance is given b y i? , where "x" is the deviation of each
n

measurement from the mean.

The mean is a measure of central tendency. The variance is a measure 

of scatter. These two values are useful in summarising the nature of a

distribution of measurements e.g. mass spectral peaks.

Correlation gives a measure of the tendency of two things to vary to

gether i.e. to be associated or correlated. This is sometimes given by 

calculation of the Product-Moment Correlation Coefficient , "r" :

n

^(variance )̂ . J (variance)

where "x" and "y" are the deviations of each.

The product-moment correlation coefficient is by far the most widely

used estimator of the degree of association or correlation. It varies in 
n »*

value from -1 (perfect inverse relation) through zero (no relation) to
u .+1 (perfect positive relation). Some interpretations and limitations of

( QQ \
the coefficient are given by Guilford'

The analysis of variance like most statistical procedures assumes that



sampling is random hence the necessity to acquire large numbers of spectra 

for analysis*

Correlation matrix is a symmetric matrix containing the correlation 

coefficients of each series of measurements with every other. It there

fore has dimensions equal to the number of series being correlated. The
ti ii

elements in the main diagonal are all 1.0 since these are self correl

ation coefficients.

Principal Components Analysis allows, by examination of the correlation 

matrix, an estimation of the minimum number of factors accounting for the 

variance in the data. There is only one possible set of factors for any 

correlation matrix ; the method therefore gives a unique solution. The 

factors found in an array of mixtures spectra bear no relation to the pure 

component spectra apart from their number. This number may be estimated by 

calculating the eigenvalues of the correlation matrix and deciding how many 

are significant. An I.B.M. Scientific Sub-routine called EIGEN may be
/ 7]_)used' ' as described in APPENDIX B (sub-routine PCA). The particular 

technique used is the diagonalization method originated by Jacobi and 

adapted by Von Neumann for large computers.

Weighting

When the correlation matrix is calculated equal weighting is given to 

all the variables no matter how relatively small some of them may be i.e. 

some of the smaller variables are given too much weight. Perhaps this expl

ains the sensitivity of the mass profile correlation matrix for Mixture II to

the impurity peaks (see Table 17)• According to the rank analysis these form-
(90)ed a relatively minor component. This effect is discussed by Hope' . In 

future work it would be better to work with correlations related to the relat

ive amounts as well as the patterns.
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