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CHAPTER ONE

General Introduction




GENERAL INTRODUCTION

Mass spectrometry has grown within the last fifty years from a rel-
atively simple physical phenomenon to a technique of major importance in
analytical chemistry. This rapid progress has been made possible by the
invention of new methods and applications together with ready availability
of increasingly sophisticated commercial instruments. The analytical
requirements of the petroleum industry were responsible for many of these
developments, particularly during the Second World War(l). Commercial
instruments at that time employed the electron impact method of ioniz-~
ation, normally at 70 electron volt energies. Due to inherent advan-
tages with respect to qualitative and, more importantly, quantitative
analysis this method is still the most prevalently used. More will be
said about the advantages later in this Chapter. All the mass spectra
subsequently referred teo will be mass spectra produced by this means,
unless stated otherwise. The needs of the petroleum industry, particul-
arly quantitative analysis of mixtures, also favoured the utilisation of
computer methods.

A short description will now be given of such analyses together
with some other applications involving computer methods, in order to

place the present study in perspective.

l. Mixtures Analyses

The large mumbers of tedious calculations involved in mixtures
analysis provided the impetus for some of the first routine applications
of computing methods in mass spectrometry. Such analyses are basically
quaﬁtitative in that the spectra of the components in the mixture be
known. Some requirements for satisfactory analytical work are discussed
(2)

by Barnard‘' ‘, the major ones being:
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a) In the pressure ranges normally employed the mass spectra of
mixtures are linear superpositions of the individual mass
spectra o. the components.

b) The fragmentation patterns of the components should not vary
significantly during the analysis and nor should their sen-
sitivity coefficients (an explanation of the latter follows).

The above conditions are generally satisfied where:

1. 70 eV. electron impact energies are used. Around this figure
the ionization efficiency is nearly independent of the energy(z).

20 Ion-source pressures of less than 10-5 Torr are employed in
order to minimise ion-mole;ﬁle collisions which perturb the
fragmentation patterns,

3. Ion-source temperatures are kept constant. .

4, Instrumental electronics are well adjusted.

There are two major methods of mixtures analysis:

A, Using Pressure Measurements.

B. Using a Calibration Mixture.

A.requires that the sensitivity coefficients, sij’ be obtained for
each component, 3: at each of the mass values,.i: used in the analysis,
The sensitivity coefficients so defined have dimensions of peak height
(or, more accurately, area) per unit pressure, where the partial
pressure of each component is required. The values of Sij are obtained
by measuring the pressures of individual samples of the components when
their mass spectra are being obtained., At leasthﬁ‘peaks are congidered
where n'is the number of components, The product of the éensitivity
coefficienf, Sij’ and the partial pressure, Pj' is the contribution of
component,"j: to the height, Hi’ of the mass peak,'i: in the spectrum of

" oy

the mixture. A set of n, or more, simultaneocus linear equations is set
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up and solved for pj.

S118P1 + S120p2 + o000 ot S1nopn = H1
321.p1 + 8220p2 4+ o0 6 0 ot Sznépn = H2 o o o (1) °
° . . °

Sn1op1 +Sn20p2+. e o o o +Snnopn=Hn

Some excellent discussions of these quantitative methods, which have
remained largely unchanged for twenty-~five years, are given by Barnard(4)
and the notation used in equations (1) is as used by Reed(S). Matrix -

notation is useful in representing this system of equations more com-

pactlys
Sp=nh e o o o (2),‘
where the required partial pressures are:
p=S"h

The method involves the inversion of matrix S and requires the

following information:

(a) Identities of the components.

(b) Mass spectra of the components,

(¢) Mass spectrum of the unknown mixture.

(d) Pressure of each pure component during recording of its
spectrum to permit calculation of S, j.e, the method

requires pressure measurements.

Some considerations in solving such systems of equations are given

(6)

by Barnard and Fox' ',
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In order to avoid making pressure measurements, which may be dif=
ficult in certain cuses, alternative methods have been devised,

(7)

Johnsen used a fwo-component calibration mixture, i,e, of known com=-
position, to obtain a mass spectrum., The ratio of known uni-component
peaks in this spectrum was used to determine the composition of any other
mixture of the same two components. The general solution of this stan-
dard mixture technique was recently published by Ruth(S)o Information
(a), (b) and (c), above, is still necessary; (d) is satisfied by
obtaining the mass spectrum of a calibration mixture of all the com-
ponents where their mole fractions afé accurately known, The accuracy
of the method does not therefore depend on the accuracy of pressure
measurements but on the accuracy with which the calibration mixture is
made up. Since many situations arise where no pressure measurements are
possible, only application of this technique seems capable of solving the
problem e.g, as when a sample is introduced directly into the ion soﬁrce
by means of a probe,

Equations (1) were written with a view to deriving the partial
pfessures of the components, The sensitivities for each component
differed according to the mass number used. If the equations are re=-
written incorporating the mass spectra of each component, given as a
percentage of the base-peak (largest peak), then a sensitivity coefficient

for each component may be defined. The latter gives the actual abun-

dance of the base-peak in so many units per unit pressure:

aiongpA + biostpB + ¢ 0 0 ¢ o F niogNopN = Hi o e e (4)
for each mass number,”it
Py is the partial pressure of component A, etc.

a; is the abundance at mass i in the spectrum of component A
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expressed as a percentage of the base-pesak,

Since these new sensitivities are constant for each component, it is
usual to combine the factors Sj.pj giving Xj, referred to as composites.

The equations (4) may be re-written with composites:

XA.ai+XB.bi+°....+xN.ni=Hi 000(5)

and in matrix notation:
xA=h 000(6)

L ']
The solution, x, of this equation may be achieved in practice by
employing a number of important considerations and time-saving procedures,

(9) (6) (10)

Some methods are discussed by Barnard “‘, Barnard and Fox and Kiser
Many factors such as random changes of sensitivity, interference effects,
preferential adsorption and desorption, and fractionation can cause
disparities in the results obtained. These effects are discussed by
Barnard(z) and also in Chapter 3 of this thesis. Consistent results are
normally obtained where the mass spectrometer is used regularly. 1In a
properly adjusted and maintained system, calibrations need be performed
only every month or 30(11).

Such methods of analysis can only be used to determine mixtures con-
taining no extra components although, by examination of residues, the
unexpected presence of the latter may be detected,

Related methods utilizing the molecular weight distribution in the
mixtures spectrum together with inverse matrice§ have been used to give
so-called "type-analyses" i.e. the amounts of various types of compounds
present(12) e.g. aromatics, branched-chain hydrocarbons or sulphur com-

(13)

pounds. In one recent case the composition is accounted for in

terms of four saturated hydrocarbon types, twelve aromatic hydrocarbon
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types, three thiopheno types and six unidentified aromatic groups.

(14)

High resolution mass spectrometry has contributed significantly
to the qualitative uspects of mixtures andalysis by recognition of single
compounds£15).

Both high resolution and low electron energy has proved to be a

powerful combination for qualitative analyses of very complex mixtures

(16)

e,2, crude oil fractions.

2, _Gas-Liquid Chromatography/Mass Spectrometry

Some of the potential of electronic computers in mass spectrometry
is being shown by large computerized-GC-MS systems., =~ Excellent

(17)

descriptions of some of the major developments are given in Waller

(18)_

and in a recent review by Burlingame and Johanson

3+ _Spectrum Recognition

i.e. recognizing a mass spectrum as being characteristic of some
chemical compound is almost impossible without computer aid. The mﬁjor
difficulties are the large numbers of chemical compounds and the fact that
characteristic spectra can vary considerably according to the type of mass
spectrometer used. Several methods of approaching the problem have been
devised involving comparison of the test spectrum with spectra held
within the computer. Use of only the six strongest peaks together with
internal computer techniques have greatly reduced the time necessary to
effect comparisons(19). Information theory has been employed to compare

(20). A review is given by Ridley(21).

spectra using the eight largest peaks
Recent work has considered the possibility of identification using
binary~-coded spectra (i.e. only the positions of masses, presence or

absence of peaks) and optional weighting of certain masses with

surprisingly good results(22’23). These studies will be shown to have
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considerable influence on the present work (Chapter 5).

For some analytical work a complete identification is not reaily
necessary, only a ‘etermination of the types of molecules present being
required, An approéch to this problem was given above = "type analysis".

A new technique considering the recognition of features peculiar to

(24)

classes of compounds is given by Crawford and Morrison and extended

(25)

by Smith in a form suitable for use by a small computer. Artificial

intelligence methods (see below) are being applied to the problem with

(26)

encouraging results The computer programme learns to recognize

features in patterns, based on its past experience.

4, Spectrum Interpretation

Recently adapted artificial intelligence techniques have been
applied to mass spectra in order to work out the structure or possible
structures of the parent compound. The HEURISTIC DENDRAL programme(27)
generates possible structures and proceeds to eliminate them on thg basis
of mass spectral and other information. A simpler method by Crawford
and Morrison(zs) termed "ab-initio" is less systematic and is at an early
stage of development. A strategy is employed which is similar to that
of the mass spectroscopist and in the same way it is not always suc-
cessfull It is potentially more suitable for dealing with large

structures than the current DENDRAL methods.

5. Learning Machines

The computer, when used as a learning machine, has been able to
predict the molecular formula of a compound given its low.resolution mass
spectrum(29). The programme is provided with large numbers of low
resolution spectra with the corresponding molecular formulae.' In this

way it can be trained to recognize the latter given a spectrum, the degree
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of success being related to the degree of training.

6.
Calculation of the most likely molecular weight has been an inter-

(30)

esting application of computer methods Given a low resolution
spectrum lacking a parent ion the programme calculates the most likely

value of the latter based upon the fragments provided,

1.

An important biological application is in the field of protein
sequencing(31).
8.

The future of computing is mass spectrometry is assured particularly

(17)'

with the utilization of such systems as described by Waller

(32) (33) (34)

Burlingame , Biemann and Henneberg Needless to say, an

important part of the development of mass spectrometry is assured by com-
puter applications. The latter will become of increasing use in the
analysis of mass spectra obtained by other means e,g. ion-cyclotron

(35) (36) (37)

resonance » chemical ionization s field ionization and, no

doubt, a host of other useful techniques, as yet undiscovered.

9. Mixtures Analysis without Prior Knowledge of Components

All previously described methods of mixtures analysis have required
either that the components be known or that the computer be programmed
with information concerning likely components. The subject of the
present study is that of mixtures analysis without prior knowledge of the
numbers and types of compounds present. This may be regarded as an
extension of the conventional methods outlined in 1, above, and would have

been studied in depth some time ago had not GLC methods(38) arrived on the
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scene, Although such methods are now very efficient some limitations

(39-41) e.g, organometallic petroleum additives., Hence some

still exist
revival of interest is being shown in the fractionating properties of
the mass spectrometer itself, particularly using the direct insertion

probe(42).

(43)

Nearly fifteen years ago Meyerson derived for the first time the
spectra of the components of binary mixtures, without prior total separ-
ation or knowledge of their identities. Two different mixtures of the
compounds are necessary. At least one peak in each pure component
spectrum (unknown) must be unique to that spectrum, Such unique peaks
are detected by listing peak ratios at each mass in the two spectra and
mass numbers chosen where the ratios are highest and lowest; peaks at
theée masses contain the least contribution from the other component.

The ratio of the abundances of a peak unique to one component is found
and all the peaks in one mixtures spectrum multiplied by it. Subtraction
of the product from the other spectrum yields the mass spectrum of one
component, The other may be obtained using the other ratio or by
difference. Meyerson succeeded in identifying an unsuspected impurity
by this method.

(44)

McCormick has used the same technique to separate and identify

a mammein homologue of molecular weight 358, present as an impurity, in
studies of the compounds derived from Mammeia Americana(45). Frac-
tionation was performed by thin-layer chromatography. The spectrum of

a disulphide impurity present in a sulphoxide sample was separated by
(46)

Laurie using the same method, Practionation in this case was

performed by adjustment of the direct insertion probe to give different
(47)

spectra at a constant monitor current reading

(48)

It was believed, by Monteiro , that behind the empirical approach
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of Meyerson a more general theory might be hidden that could be made to
yield the mass spectra of the components of a mixture starting from
several different mixtures. The development of such a theory has been

. _.(49)

made by Monteiro and Reed and this work forms the background of the

present study. The methed requires that

(a) there be more different mixtures spectra than there
are components (at least one more)
and (b) each unknown component spectrum has at least two peaks

vwhich are unique i,e., uni-component.

In a few suitable cases conditio; (b) could be reduced to only one
unique peak per component. Effusiometric techniques, which are experi-
mentally exacting, would have to be employed. Further details are given
in Chapter 6.

(49) by Monteiro and Reed is essential for a

A reasding of this work
proper understanding of what follows although additional explanations
have been attempted at each stage.

The basis of the analysis begins with an extension of equation (6)

to include a number of different mixtures of the same components i.e,

one mixture xA=h ... (6)
several mixtures XA=M e oo (7)

The latter equation may be written out in full for L mixtures of N
components A, B, . o + N, the highest individual masses being mwa, mwb,

etc. and the highest mass being mw.
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The elements of the matrices have the same meanings as before.

Spectra are represented by rows and this convention is adopted in all that

which follows, including computer manipulations. The columns may be

referred to as Mass-Profiles.,

(48)

A computer programme was used by Monteiro to analyse numerically
exact mixtures, calculated in such a way that they satisfied the necessary
conditions. The programme was stated to be at an intermediate stage of
development, incapable of application to all experimental data since a

statistical treatment was not included. This leads to a statement of the

current problem and its associated study.

-

The Problem
Examination of the afore-mentioned computer programme with a view to
its experimental application and the development and improvement of the

methods used, in order to widen its scope,

Practical Interest

It is probably a fact that most of the samples run in an industrial
laboratory are mixtures, owing to the fact that fine separation procedures

(e.g. preparative GLC techniques or liquid chromatcgraphy(5o)) can be
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time-consuming and in many cases unnecessary. A rapid separating tech-
nique, £+8s column chromatography with FLORISIL, may be conveniently
employed to obtain simple mixtures of up to, say, ten components. Such
mixtures may contain high molecular weight oil additives, perhaps with
an organometallic content. Examination of these materials is conveniently
done by allowing the mixture to distil from the direct insertion probe
i.e, utilizing the fractionating properties of the mass spectrometer.
The initial spectra consist of the volatile constituents, more heat/time
being required to observe those which are less volatile and generally
more interesting. In many cases it is possible, by examination of suc~
cessive spectra, to pick out spectral features from a number of the com-
ponents. Part of the present work might then be considered with such a
technique in mind.

The mixtures spectra referred to will be spectra obtained by frac-

tionation within the mass spectrometer itself, either the gas-inlet system

or direct insertion probe, although much of what follows applies to spectra
obtained in other ways. e.Z, running mixtures obtained by thin-layer

chromatography.

The next Chapter includes some explanatory notes and initial attempts
at applying the afore-mentioned programme to experimental data.
The method will henceforth be referred to as the "ab-initio" mix-

tures analysis,



CHAPTER _TWO

T - Some Explanations

II - The Algol Computer Programme
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1 - SOME EXPLANATIONS

It may help to clarify the formation of a mixtures array by con-
sidering a simple example e.g. the formation of seven different mixtures
of four components each, This is done by mixing four mass spectral

vectors, (A1 Ayooo AB), (B1 B, o o B8) etc., together; each vector

2
has eight elements (peaks).

The mixtures array, M, is formed by performing a simple matrix multip-

lication:
[ 1T, .G ]
Xa1 Fo1 Kot Xaq| [A4 A2 o+ - Ag =¥y Mp e o o Mig
Xa2 me xc2 xd2 B1 BZ e B8 M21 M22 ¢ M28
o Y ° ° c1 c2 e o o 08 » o L) * o o (8)
L] L] L] L] D1 D2 * L] L] D8 o L] -]
_.Xa7 Xb7 Xc? Xdz -M71 M72 o o o M7§d
X A M

The elements of X have the same meanings as before,

Blement M11 consists of

'Xa1.A1 + XM.B1 + Xc1.C1 + Xd1.D1

and the element H12 is

Xgpohp * XpgeBy + X g0y + X440,

etc., 80 that the first mixtures spectrum is formed by mixing the four

spectira of matrix A together in relative amounts given by the first row
E E 3 Al 3 - ] 3

of matrix X. The second mixture, (Il21 M22 o o o M28)’ is formed by

nixing according to the second row of X, and so on. The four spectra

will then be mixed up linearly within all seven mixtures spectra. If
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the rows of X are all linearly independent(51) then the rows of M will be
different but only four of them will be linearly independent. This means
that at least four mixtures spectra would be necessary to construct one of
the others through multiplication by suitable factors and addition of
results (Jacobi operations)(49’51). It is assumed, of course, that the
rows of matrix A are linearly independent, like mass spectra. The rank

(49,51,52)

of the matrix, M, is then four and this may be determined
experimentally by well known methods(53’54).
In the previous chapter equation 7 was used to represent the mixtures

array formation:
XA=M

Since it is desired to derive both A and X from M, it is obvious

(49)

that M must satisfy certain conditions These have already been

mentioned in Chapter 1, but will be repeated here in greater detail:

(1) at least one more row than there are components, where
the rows are distinct,

(2) at least two uni-component peaks for each component.
In certain circumstances this can be reduced to one
per component (see Chapter 6)

(3) for a quantitative analysis the pressure of each

mixture is required or must be the same in all cases.

The basis of M satisfying certain conditions must come from the prop-
erties of A i,e, the unknown spectra themselves, as X is of a general
nature; the fractionation or mixing cannot be expected to satisfy any

(49).

conditions apart from being random By examination of M the prope

erties of A must reveal themselves. The difficulty arises because an
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infinite number of solutions exists where no conditions are imposed. A

mathematical representation of such a situation may be given as follows:
M = XA e oo (7)

This equation, where A is the desired solution, is equivalent to

1

M=XBB A

where B is any matrix (of correct dimensions)

and A1 is another solution. Also

1,1

M = X A eto.

It might be helpful at this stage to touch upon the reason why
condition (2), above, is necessary. i.e. having to know which peaks are
unique to each component, (see Chapter 5 for more details). If X can

be fixed in some way then A can be determined uniquely:

A=X "M

A convenient way of fixing X is by considering the behaviour of a
peak unique to each component. These are most readily located if there

(49). The size of a unique peak in each mixture is

are at least two
directly proportional to the amount of component present. Such a propor-
tionality constant is related to the peak sensitivity coefficient and is
unknown as the pattern and instrumental sens.tivity are unknown., If the
unique peak heights Ua1’ for component A in mixture 1, and Ua2 etc.

multiplied by the unknown constant for the first component, A, are sub-

stituted in the first column of X in equation (8), and the same is done
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for the other components a matrix Xku obtains which is equivalent to X

k1.U81 k2.Ub1 k3°Uc1 k4.Ud1
i.e X
. . . . == ku
k1’Ua7 k2.Ub7 k3'U07 k4.Ud7
L. -
xku is equivalent to the product:
Uar Up1 Uor Bar| | %
Va2 Yoo Yoo Ya2 k, #
. . . ) ¢ k3
-] L] L ] * k4
- -
Ya7 Y7 Uo7 Uar

where Xu is known and K is a diagonal matrix of constants.

On substituting into equation 7
M=XKA
u

is produced. Only normalised spectra, given by KA, may be obtained in

this way:

i.e. by inversion of Xu, the matrix of unique peak heights,.

(49)

A similar result was derived by Monteiro and Reed who gave the
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equation
Q! = KA

where Q is a matrix of unknowns which on multiplication into M gives the
normalised component spectra. Q may be found by equating its unknown
elements to known zeros in KA (found by knowing the positions of unique
peaks, for example). The latter method is to be preferred because it is
more amenable to solution by a least squares method i.e, statistically

advantageous. (see Chapter 5 - IV).
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II THE ALGOL COMPUTER PROGRAMME was an attempt to put into practice the
principles laid down in the afore-mentioned paper(49). It was stated to
be at an intermediate stage of development, incapable of application to
experimental data because it lacked a statistical treatment, Monteiro(48)
used this programm; to solve numerically exact mixtures arrays satis-
fying the necessary conditions; individual component spectra were obtained.

(55)

The programming language used was Whetstone Algol punched on paper-

tape for use with the English Electric KDF9 computer,

The first stage in the examination of the programme involved pro-
cessing an experimental array obtained by fractionating a four-component
mixture in the gas-inlet system of the A.E.I. MS9 mass spectrometer(ss).
Experimental details are given in Section II of the next Chapter. Meas-

(56)

urements obtajined from ultra-violet charts were checked and punched on

paper-tape in the required format together with certain arbitrary para-

(48)0 The programme failed to produce the desired

meters as outlined in
result.

Investigation of the failures began with a detailed examination of
the programme in order to understand what it was doing. Various sections
were found to be redundant, having been included for testing purposes.
Other sections which were found to function independently in order were
diesected out giving a number of sub-programmes capable of independent
testing.

The section which read in data was simplified and a background sub-
traction sub-programme discarded as being unnecessary for development
purposes, In later work it was never re-introduced since considerable
variation in background wasbexperienced during experiments,

The first sub-programme to be tested was that used to determine the

(53,54)

rank of the array. Gaussian elimination was employed and some
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(57)

explanation was given The programme required three parameters,
feferred to as tolerances, to allow for round-off (see Chapter 4) i.e.
in order to decide when a transformed element could be zero. It was
decided to investigate the effect of these parameters (which are roughly
related) on the rank obtained as this could vary widely., Two of the
values were fixed at what was thought to be reasonable levels and the

third varied by writing a loop into the programme. This is illustrated

by the block diagram:

—— Alﬁ:‘bﬁ\‘/ TolL =2 TOLERANCE
TOL VALUE
GAUSS

v
RANK
v
PRINT
ARANK
.TOL - x = Soue
ToL+ X INCREHMENT
FINISH ON
CONDITION

It was found that the rank decreased as the TOL value was increased
and so0 by varying the latter any reasonable rank could be obtained.

The loop proved to be very slow, taking up to one hour to cover a
reasonable range of values,

In view of the above and other experiences a strong case was made for

changing the computer system used, Some disadvantages of the Algol
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system are summarized below:

1+ The particular system in uée was old and suitable
advisory services almost non-existent.

2. Both programme and data were necessarily on punched
tapes which proved to be cumbersome, particularly in
view of their size. Large amounts of time were
required for corrections to be made.

3. Turn-round time was very long as the sysfem involved
over-night running only. Runs could easily take
several days, or more, if haﬁpered by tape errors or
machine break-downs.

4, Actual running times were long compared with other

available systems.

In view of possible alternatives two paths were followed simul=-

taneously:

Short Term: Conversion of the programme to a similar ALGOL language on
punched cards.

Longer Term: A programmer with experience in both ALGOL and FORTRAN IV
languages was charged with converting the original prog-
ramme, This work is duly acknowledged and was undertaken

considering current departmental developments.

The initial delay in real ‘development was coﬁsidered to be worth-
while and this was eventually shown to be the case,

Some advantages of the changes are:

1e Punched cards allow changes to be made, in both prog-

ramme and data, reliably in a much shorter time.
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2, Development time was reduced by much improved turn-
round of work,

3. The IBM 370/155 system on FORTRAN IV allows instant
access to valuable scientific sub-routines and statis-
tical packages.

4, Advisory services were much more efficient,

The initial conversion to FORTRAN IV took several months. The
conversion to punched-card ALGOL also took several months as the lang-
uages were not identical and many problems were encountered.

Eventually FORTRAN IV (ImM 370/155) was used for all programming
and the ALGOL system (xpr9) abandoned, except for one case (see APPENDIX
A).

The investigation of the rank-determining programme, necessary for
the subsequent analysis, will be outlined in Chapter 4, together with
details of subsequent improvements.

The next Chapter deals with some factors to be considered when

obtaining a suitable mixtures array in the laboratory.
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Y Some Factors Relating to Spectra Collection

M=ZXA

As discussed in Chapter 2, M is an array of mixtures spectra cons-
tructed from pure component spectra A, in relative amounts given by X,
It is required to determine both A and X. In "ab-initio" analysis this
information must be derived from an examination of array M which is the
only experimentally known quantity. Some of the properties of such an
array will now be discussed together with some properties to facilitate
its analysis. These latter properties will have a strong bearing on
experimental method.

Where M éontains real spectra (as opposed to calculated mixtures)
each element (peak) will deviate from its average value by an amount
depending on a number of factors. Assuming that the component spectra
are linearly additive and response linear with respect to partial pres-

sure (see Chapter 1, section I) then some of the more important factors

ares

(a) scanning speed

(v) amplification level (related to sample pressure)

(c) errors of measurement (human or digitiser)

(d) source temperature changes |

(e) tuning of instrumental electronics

(f) impurities and adsorption/desorption

(g) arcing - related to condition of instrument

(h) peak height/area approximation

The problem of interference has been largely overcome in modern
instruments(58'48)o

Limitations in the superposition of mass spectra
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(59

are discussed by Careri

Each of the above-mentioned factors will be discussed later in more
details Fluctuations caused by these effects tend to swamp the
interesting properties of array M making their detection difficult. The
minimization of the fluctuations is all the more important because the
subsequent use of numerical methods superimposes round-off errors. The
latter are discussed in Chapter 4.

The important point is simply that bad data gannot be compensated
for by computer methods i,e. the accuracy of the calculated A matrix can
be no better than the M matrix from which it derives, This problem is

(6)

discussed by Barnard in connection with conventional mixtures comput~
ations,
A statistically well-conditioned mixtures array might be defined as

conforming to the following rules:

1. The percentage error in any element should be a
minimum, Large fluctuations will tend to decrease
the important differences between mixtures spectra.
(see 3. below).

2. Bach mixtures spectrum should be made in such a way
that a minimum degree of fractionation or pressure
change can occur during its scan, If such condi-
tions are not satisfied the essential linear nature
of the mixtures spectra will be destroyed i.e, the
recorded spectra wili not consist of fixed mass
spectra superimposed linearly. A simple method of
checking fhis effect will be given.

3. It is necessary to have at least one more distinct

(49)

mixtures spectrum than there are components
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Where the spectra are experimental they must be
statistically distinct. A simple method of investi-

gating this condition will be described.

Some of the afore-mentioned factors causing fluctuations and errors

will now be discussed in more detail.

(a) Scanning Speed

This must be adjusted to deal wifh two situations:
a) 1. For a fast scanning speed the fluctuation size increases, parti-
cularly for the smaller peaks where féwer ions are being collectt\ad(ﬂ'o)°
Depending on the type of instrument used the fluctuations can usually be

(60)

held to within 5% at reasonably fast speeds In compensation for

possible ill-effects of fast scanning, more spectra are obtained. These

(61)

can be averaged by a small on-line computer system producing a corres-

ponding increase in accuracy.

fa) 2 If scanning speed is too slow to capture the instantaneous
condition of the changing system a mixtures spectrum is obtained which is

unsuitable for inclusion in M (see condition 2. above)

Scanning speed should therefore be balanced with the rate of frac-
tionation of the mixture, normally carried out in the inlet-systém or
ion-source of the mass spectrometer. The correct speed to use will
depend on a number of factors including sample quantity, type and the
temperature and nature of the inlet-system or ion-source, It is best
found by trial_gnd error until experience is gained. The rate of
fractionation can perhaps be reduced by performing the experiment at a
lower temperature. A particularly suitable method might be that

described by Bokhoven and Theeuwen(Gz).
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(v) Anmplification Level

The peak heights, measured on a chart for small intensity ions, are
less reliable because fewer ions are being collected. This effect is
increésed with scanning speed and amplification level. The latter will
generally require some adjustment between scans as thevion-source Fres—
sure changes during the experiment, This is lower towards the end of

the fractionation as the sample is pumped away (see (g) below).

(c) Errors of Measurement and Transcription

In the case of a good automatic data acquisition system these will
merely be the digitiser errors, probably increasing with scanning speed.
The present study initially involved measurement of all charts (Honeywell,
ultra violet) by hand, in millimetres. Peak heights were noted on the
chart itself, multiplied up according to the relevant scale factor and
transcribed on to graph paper. This allowed comparison of spectra in
order to detect gross errors and missing numbers, Further transcription
and card-punching completed the process. This system proved capable of

producings

1. large relative errors in small peaks

2. large errors in scale-multiplied peaks (igg&
conversion between chart scales)

3« gross e?rors and missed measurements (e,g, failure
to scale-up a peak)

4., errors of transcription and punching

(6)

It is obvious that large errors can have serious consequences .
In the absence of automatic on-line facilities it was apparent that a
faster and less error-prone system had to be developed. This feeling

was reinforced by the need for large amounts of data in any statistical
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study. . The development of a suitable semi-automatic system is given in

Section III.

(d) Temperature Effects

In general, mixtures analyses should be run isothermally since
changes in ion-source temperature can cause changes in the component

(63-66).

spectra, This phenomenon is well known The system would again
lose its linear charactefistics. It is thought that small tempefature
gradients of the order of ten to twenty Centigradé Degrees, around normal
operating temperatures, would be unlikely to alter the patterns signi-
ficantly (to some extent dependent on the particular substances employed).
Such temperature gradients would have useful fractionating properties if
used in conjunction with e.g. the G.E.C. =~ A.E.I. heated direct insertion
probe(56). Temperature effects using a similar system have been reported
(67), their magnitude depending on the temperature gradients and parti-
cular substances employed. An'investigation of the fluctuations, mainly
due to source temperature cﬁanges, presenf in high resolution spectra has

been undertaken(68).

(e) Tuning will be discussed in Section II, . See also ref, (83)~repe11er
potential,

(f) Impurities
These do not necessarily refer to full& recognizable components of

the mixture introduced for analysis but could be background impurities
increasing in significance as they are desorbed (perhaps preferentially
by a component of the mixture) from the inlet and ion-source surfaces.
It is obvious that analyses should be conducted only after extensive

baking, As this is not always effective or practicable it may be that
flooding the system with a desorbing agent such as ammonia or pyrrolidine

will sufficé. The unexpected presence of desorbed impurities during an
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experiment was discovered and is described in connection with MIXTURE II

in Chapters 4 and 5.

(g) Arcing

This affects only one spectrum at a time and frequency depends on
the type of sample, its pressure and the condition of the instrument. It

is always easily detected and leads to rejection of the affected spectrum.

(h) Peak Heirht/Area Approximation

The ion abundance is taken to be proportional to the peak height,
This is only possible where the peaks. always have the same widths in the
base and are of simple geometric shape. Consideration is given to this

is Section II (experimental).

An experimental scheme is then required which will provide a mixtures

array satisfying the above requirements i.e. one in which the analyst can

have confidence. The particular scheme devised is shown in block

diagram form - FIGURE f. Spectra are examined visually is Checking
Scheme I and, if not rejected, more carefully by computer methods in

Scheme 11,
A, Experimental Methods are outlined in Section II,

B, The spectra were obtained in groups of at least two "identical"
spectra by successive scanning (described in Section II), This simple

requirement has the immediate advantage that: .

a. all gross errors of measurement and transcription
can be detected and localised by comparing the spectra
of such a group.

b. possible fractionation or pressure change during a
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scan is detected because then no neighbouring spectra
would be "identical" ji,e, condition 2., above, is
tested,

co where more than two "identical" spectra can be obtained
a statistical bonus is gained in providing some measure
of the fluctuations in a particular array.

do as no automatic measuring facilities were available a
preliminary visual comparison of the spectra was
possible, The comparison is represented as Checking
Scheme I in FIGURE 1 and enables a quick decision to
be made as to the suitabili%y of the spectra for time-
consuming measurement, In several cases this prelim-
inary check revealed that fractionation was too fast
or the scanning speed too slow, This allowéd the

experiment to be repeated with more success,

C, and D, Measurement and Card-Punching

Initially these sections were separate but became a single operation

on introduction of the semi-automatic system (Section III of this Chapter).

E,

The existence of groups of identical spectra greatly simplifies
screening of the data by computer. As will be shown a computer examin-
ation can be very revealing and could be performed at once where on~line
facilities exist.

Checking Scheme II (FIGURE 1) involves a further check for gross
errors and illustrates the nature of "identical" when considering such
groups of spectra., This involves a study of the differences bétween

spectra and introduces the term "Degree of Fractionation" and the use of
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Product-Moment Correlation Coefficients (see APPENDIX C). It is obvious

that the greater the degree of fractionation of the components, the more

distinct will be the mixtures spectra obtained and the more reliable the

final results i.e. the significange of the inherent fluctuations will be
reduced, An équivalent way of saying this is that the elements of the
unknown matrix X, as previously defined, should be as diverse as possible.
Such considerations are airectly related to condition 3, above.

The use of product-moment correlations are well known in scien-
tific applications, particularly psychological ones (see APPENDIX C).

The checks being made in this scheme are then:

a. there are no gross errors within the matrix.
b. each spectrum in a group (as previously defined)
actually belongs to it i.e. no fractionation or

pressure change is occurring,

These tasks are performed by a FORTRAN IV sub-routine called
SCREEN, described in APPENDIX B as are all subsequently mentioned sub-
routines.,
a., above, is accomplish.d by comparing the spectra in a manner which
reveals the position of a serious deviation. For this purpose it is
best to have at least three spectra per group.
b., above, is accompiished by computing product-moment éorrelation

coefficients (as described in APPEHDICES B and C) of the first mixture

spectrum and all others in the matrix. A sub-routine called FRACT is
used by SCREEN to compute the correlation matrix of all the spectra.
The required coefficients are present in the first row of this matrix.
Bach coefficient is a statistical meacsure of the similarity betﬁeen the

first spectrum and each subsequent one. A value of +1.000 means that
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the spectra are identical or proportional, In practice this might be
+0,998 owing to experimental fluctuations. -The coefficient values can
range down through 0,000 (no correlation) to -1,000 (inverse correlation).

It may be convenient at this time to illustrate by means of a
FRACTIONATION DIAGRAM the type of results obtained - FIGURE 2, The
diagram is obtained by plotting the correlation coefficients against
spectrum number, in experimental order. In the experimental case (B)
fractionation is found to be taking place within groups of supposedly
identical spectra (as shown in (A)). If this is judged to be slight it
may be ignored or the groups re-arranged in some way for subsequent
averaging of suitable spectré. The diagram shows that 3 would be better
cqnsidered as two separate groupé, containing two nearly identical
spectra each. The final spectrum in 4 would be rejected because it does
not correlate well with its immediate neighbourse.

The "Degree of Fractionation" may be taken as the smallest corre-
lation coefficient. This value, however, can have no real physical.
meaning attached to it i.e, it is not translatable into any physical or
chemical coefficient and will only be used here for reference purposes.
As will be seen it is not necessarily the final coefficient owing to the
fact that a later mixture may by chance correlate highly with the first,
The coefficients, as used here, do give an overall measure of the degree
of similarity between mixtures spectra.

Some preliminary results are listed in Section IV of this Chapter.
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II Experimental -~ Collection of Spectra

General Considerations

Tuning of Instruments A.E.I. MS9, MSi2 andvG.E.C. - A.E.,I. M3902S.
The instruments were tuned ip the manner recommended by the manu-

facturers excebt that particular attention was paid to peak shape,

Considering that peak height was to be used as the measure of ion

abundance in all cases it was essential to obtain peaks which were flat-

topped (or trapezoidal) i.e. gaussian shapes were to be avoided.

Background

Experiments were carried out after baking the instrument for several
days., Before the introduction.of the mixture in each case background
spectra were obtained at a variety of amplification levels in order to
have some measure of their significance. Such measures were later found
to be inaccurate representations of background levels on sample intro-
duction probably because adsorbed impurities were preferentially desorbed

by components in the mixture (see Mixture II, below).

Source Pressure
It was considered desiravle for afore-mentioned reasons to maintain
low pressures, less than 10"'5 Torr, in the ion-source,

Two types of mixtures experiments were performed using:

(a) The A.E.I. Cold-Inlet System\°0).

(b) the G.E.C. - A.E.I. Heated Direct Insertion System(so)o

Fractionation Methods

(a) A simplified drawing of the gas-inlet system is shown:
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5.

6o

ION
SouQce

+— LEAK

VALVE —» ——3 TO PUMP

«— SAMPLE

The general principles of the method adopted were as follows:
Sample of mixture (ca. 0,1 ml.) placed in bottle as shown,
De~gassed with liquid nitrogen in the usual manner.

On thawing some mixture vapour was allowed to enter the ion-
source via a doser to regulate the amount, an expansion vessel
and a leak,

Some time (a minute) was éllowed for equilibration i.,e, cons-
tant ion-current moniéor reading. Several spectra were taken
in succession, at constant monitor reading when the pressure
was low enough., The latter was adjusted by pumping some
sample, if necessary, from the ion-source, ' Charts were
numbered in groups as defined in Section I,

Spectral changes were observed by switching over to the oscil-

(60). If no change in the pattern was observed after

loscope
a few minutes some of the mixture was pumped away. If a
change was observed some spectra vere taken after equlibration,
Where no significant change was noticed after several such
attempts the system was evacuated and some of the sample in

the bottle pumped away. The whole process was then repeated

on re-admission until the sample bottle was exhausted.
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Several mixtures were obtained in this way:

MIXTURE I COMPONENTS

Instrument:  MS9 25%  THIOPHENOL
No. of Spectra: 17 25% 1n - HEPTANE
No. of Groups: 6 25% IS0 - OCTANE

25% p - XYLENE

MIXTURE IT

Instrument: MS12 25% n -~ PROPYL ETHER

No. of Spectra: 133 25%  TOLUENE
No. of Groups: 36 25%  BENZENE

25%  ETHYL ACETATE

MIXTURE IIT
Instrument: MS12 100% ETHYL ACETATE
No. of Spectra: 16

No. of Groups: 1

MIXTURE IV

Instrument: Ms12 204 N,N - DIMETHYLANILINE
No. of Spectra: 35 20% TOLUENE
No. of Groups: 8 20% BROMO - ETHANE

20% 0 - DICHLOROBENZENE

20% THIOPHENOL

Mixtures II and III were obtained consecutively., Scanning speed
was the same in all cases taking approximately ten seconds to cover these

mass ranges.

Towards the end of each experiment care was taken to ensure that the



. 34

amplification level necessary to obtain measurable spectra was not too

high i.e. such that the spectra could contain a significant portion of

the previously observed background.

(b) Heated Direct Insertion System

The G.E.C. - A.E.I. Heated probe consists of a hollow probe into
vhich cooling gas may be blown., The tip contains a thermocouple and
heater surrounding a glass sample cup; the instrument has a working temp-~
erature range of -50°C. to +350°C.

The method of placing samples in the cup suggested by G.E.C. -
A.E.I.(GO) was adopted i.e. dry glasslwool was placed inside surrounding
a small sample tube made by sealing a capillary tube at one end. The

situation is shown in the diagram:

/ GLASS PROBE-TIP
'

“+—— SAMPLE TUBE

GLASS wool
HEATER
MIXTURE V COMPONENTS .
Instrument: MS902S 0.6 m.g. 5%~ CHOLESTAN
No. of Spectra: 28 0.8 mego 59~ CHOLESTAN-3-ONE
No. of Groups: 15 1.1 m.go STIGMASTERYL ACETATE

Scanning Speed: as-before

-
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The above spectra were obtained according to the following method:

1. 0.6 mg. of the steroid sample were placed evenly in the sample tube
-using pure diethyl ether.

2. The probe itself was baked in the source for one hour before the
experiment,

3. The probe was removed and the source temperature allowed to equili-
brate at 9500. with the electron beam switched on. This temper-
ature was maintained throughout.

4, Background was negligible at reasonable amplification levels.,

5. The sample tube was placed in the probe-tip and inserted into the
source, The probe temperature remained constant at approximately
35°C. throughout the experiment.

6. Spectra were immediately visible. At constant ion current reading
several spectra were taken rapidly, the first being used to adjust
chart peak heights. Three spectra were finally obtained after
checking visually for fractionation-(Checking Scheme I = Section I
of this Chapter). -

7. Patterns were observed on the oscilloscope between running of groups
of spectra at constant ion current. When a new stable pattern was
recognizable more spectra were taken,

8. The rate of fractionation was slightly increased where necessary by
making slight adjustments in the heater control such that no temper-
ature change was observed,

9. Fifteen groups were obtained. Five were rejected on employment of

Checking Scheme I,

MIXTURE VI

A sim%}ar technique was employed with an unknown mixture thought to
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consist of a side-chain cyclohexanone with an acidic impurity i.e,
frobably a binary mixture, Seventeen spectra were obtained.
Unfortunately the lowest source temperature possible at the time of
the experiment was 165°C. thereby causing more rapid fractionation.‘
This could have been offset by cooling the probe in some way but there
was insufficient time, The spectra were not rejected but subjected to

analysis in order to compare results obtained from Mixture V.

It has not been considered necessary to 1ist.copious details of the
above experiments., The emphasis has been on allowing the experimental
requirements to be as unexacting as possible by employing simple tech-
niques. Several more experiments would be necessary in order to devise
a standard procedure g.g, of source and probe tehperatures and sample
weight. The rate-determining step in the current investigation was that

of spectrum measurement and computer acquisition. These topics are

discussed in the next Sectiono‘



3.

III - Spectrum Measurement

In view of the numbers of spectra to be measured during the course
of this work (for statistical reasons) an automatic or, at least, semi-
automatic system is to be preferred. This is not only because of the
boring and repétitive nature of t£e work but also the extreme error-
proneness of any hand measuring system where numbers must be written down,
perhaps multiplied up, ahd re~-copied (in order to punch cards etc.)o

A semi-automatic device was available in another department and it
was decided to adapt this for mass spectral use, The device is a

(69)

"pencil-follower" and consists of a glass table beneath which is a
sensitive magnetic detector movable in two dimensions by means of a servo-
mechanism. A diagram is given -in APPENDIX A, The detector follows a
mégnetic pencil moved on the table and the co-ordinates of its position,
to 0,1 mm., continuously fed to a pair of digital voltmeters. On
depression of a foot-pedal the co-ordinates are punched on to paper tape.

The pencil was moved by hand over charts held horizontally by means
of a specially constructed perspex rectangle,

The paper-tapes, obtained in the manner described in APPENDIX A, are

processed by a computer progr~mme and the spectral peak heights punched

directly on to-cards for storage and subsequent analysis.
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IV - Pre-treatment of Data

Application of SCREEN revealed hitherto undetected gross errors and
spectra correlating differently from their immediate neighbours. Elin-
ination of such "odd" spectra was accomﬁlished by SELM. Averaging of
spectra in re-arranged groups was carried out either by MAV or MSTATS

(details in APPENDIX B).

MIXTURE II

Preliminary computer analysis using SCREEN revealed twenty-three
human errors (these spectra were measured by hand)o Corrections were
made by reference to the original charts. A primary data matrix con-
taining 133 spectra in 32 groups with 37 masses in range m/e 103-45 was

(70)

obtained. The whole matrix was stored on a disk-file for subsequent
recall and processing.

Spectral correlation coefficients were obtained (SCREEN) by corre-
lating the first spectrum with all others in four groups since there arec
more spectra than masses in this case., i.e. the first'spectrum was
placed first in four sub-matrices of the ﬁhole and the four corresponding
correlation matrices calculated as discussed in APPENDIX B. The reason
for adopting this procedure where there are more spectra than masses is
given in APPENDIX C.

The firsk rows of the correlation matrices are shown in TABIE 1.
Nine spectra do not correlate well with their neighbours and these were
eliminated, Twenty-three new groups were formed and averaged using
MSTATS. It is apparent from TABLE 1 that the fractionation was not a
straightforward one in that the final spectrum does not have the smallest
coefficient, The effect is ascribed, at least partly, to desorption
phenomena (see Chapter 4 and 5-II).

In spite of this twenty-three mixtures spectra were obtained. The
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fractionation may be represented by the correlation coefficients obtained

for these spectra using FRACT:

SPECTRUM | COEFFICIENT
1 1.0000
2 0.8019
3 0.8336
4 0.8056
5 0.7809
6 0.8048
7 0.7883
8 0.8118
9 0.7874

10 0.8044
11 0.6805
12 0.5748
13 0.1512
14 0.1881
15 0.1574
16 0.1858
17 0.2789
18 0.3306
19 0.5105
20 0.6754
21 0.8625
22 0.8114
23 0.9591

or these figures may be plotted and shown in FRACTIONATION DIAGRAM form
as is FIGURE 2.C. It is apparent that this diagram allows a measure of
the similarity between all mixtures spectra. Such a measure will be an
important consideration in choosing suitable spectra for subsequent
analysis, \

The other mixtures, measured as described in Section III, were

similarly treated and some coefficients are listed in TABLES 2, 3 and 4.

In each case the correlation coefficients vary with the particular
masses chosen., As could be predicted where the higher masses are used
much greater differences in coefficients are observed because there is
less likelihood of overlapping i.e, fewer components are present at

higher masses and so greater changes in patterns are observed. An
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extreme example of this would be a series of uni-component peaks all
unique to different components; as the fractionation proceeds the change
in pattern would be » maximum. Examples of this effect are shown for

Mixtures IV and V in TABLES 3 and 4 respectively.

MIXTURE I

The results in TABLE 2 indicate that the degree of fractionation

obtained was not very good compared with Mixture II for instance.

MIXTURE II

The upward swing in coefficients from spectrum 13 (FIGURE 2.C)
coincides with a sudden increase in ihtensity of ions ﬁ/e 87 and 58,
This increase is ascribed to an impurity or impurities appearing in the
system, perhaps by preferential desorption in the inlet-system or ion-

source,

MIXTURE III ~ TABLE 2

The effect of inherent fluctuations on the cdefficients in this case
is shown to be very slight. The spectra were obtained using similar

conditions to those for Mixtures I, II and IV,

MIXTURE IV

Once again the general shape of the curve (if the coefficients in
TABLE 3 were plotted) is as in Mixture II. The increase in coefficients
towards the final spectrum could be due to impurities, The effect is
partially offset by excluding those peaks due to air, (increased

amplification in final spectra).

MIXTURE V - TABLE 4

The coefficients obtained are very encouraging and indicate that the

fractionation was under reasonable control with relatively little effort,
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_MIXTURE VI - TABLE 4

As expected, the coefficients show that fractionation was too rapid
for the scanning speed used. However, averaging produced six spectra

(see below).

The spectra present in most of the above arrays were grouped
according to their correlation coefficients (the re-grouping described in

Section I) and the groups averaged giving a final mixtures array in each

case:
MIXTURE NUMBER OF SPECTRA NUMBER OF MASSES
11 23 (133g 37
v 8 (35 88
v 12 228) 142
VI 6 (13) Vi

The values in brackets indicate the numbers of spectra originally
present in each array. The m/e values of each peak measured are given
in the TABLES.

A sub-routine called MASSES was written to pick out the most sig-

nificant masses for analysis (see APPENDIX B for details).
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TABLE 1
MIXTURE IT
CORRELATION COEFFICIENTS
spectrum 1 with:
spectrum COEFFT, spectrum CORFFT. spectrum COEFFT. spectrum COEFIT,
2 0.9998 35 0.7866 68 0.8032 101 0.1752
3 0.9999 36 0.7923 69 0,.8100 102 0.1417
4 0.9970 37 0.7888 70 0.8036 103 + 0.1452
5 0.9990 38 0.7786 71 0.7890 104 0.1506
6 0,9992 39 0.7818 T2 0.8136 105 0.1586
7 0.8093 40 0.7942 73 0.7996 106 0.1637
8 0.7994 41 0.7949 T4 0.7996 107 0.1692
9 0,8068 42 0.7941 75 0.6727 108 0.1808
10 00,8078 43 0.7867 76 0.6714 109 0,.,183%6
11 0.8068 44 0.7940 7 0.6757 110 0.1817
12 0.8016 45 0.8008 78 0.63%21 11 0.1772
13 0.8126 46 0.8000 79 0.6929 112 0.1790
14 0.8197 47 0.7979 80 0.5758 13 0.2478
15 0.8099 48 0.8047 81 0.5473 114 0.2999
16 0.83%55 49 0.8103 82 0.5371 115 0.3231
17 0.8472 50 0.8179 83 0.5558 116 0.3280
18 0.8341 51 0.8136 84 0.5652 17 0.5036
19 0.8397 52 0.8162 85 0.5688 118 0.5089
20 0.7857 53 0.7583 86 0.5738 119 0.5949
21 0.8247 54 0.7720 87 0.5568 120 0.6709
22 0.8119 55 0.7824 88 0.5578 121 0.6723
23 0.8053 56 0.7886 89 0.5092 122 0.7752
24 0.8063 57 0.7859 90 0.5822 123 0.7926
25 0.8169 58 0.7898 91 0.6444 124 0.7948
26 0.7921 59 0.7792 92 0.2005 125 0.8025
27 0.7710 60 0.7834 93 0.1603 126 0.8054
28 0.7866 61 0.7741 94 0.1354 127 0.8650
29 0.8040 62 0,7768 95 0.1320 128 0.8696
30 0.8169 63 0.7900 96 0.1248 129 0.9442
3 0.8080 64 0.7861 - 97 0.1257 130 0.9551
32 0.7856 65 0.7719 98 0.1961 131 0.9506
33 0.7842 66 0.7820 99 0.1882 132 0.9670
34 0.7818 67 0.7976 100 0.1716 133 0.9608

PEAKS - 103, 102, 93-87, 79-73, T1, 70, 66-55, 53-49, 46, 45
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TABLE 2
MIXTURE 1 MIXTURE III
CORRELATION COEFFICIENTS CORRELATION COEFFICIENTS

spectrum COEFFT, spectrum COEFFT.
1 1.,0000 1 1.0000

"2 0.9996 2 0.9999

3 0.8468 3 0.9999

4 0.8491 4 1.0000

5 0.8435 5 0.9998

6 0.8585 6 0.9999

7 0.8418 T 0.9997

8 0.8378 8 0.9999

9 0.8370 9 0.9999

10 0.8408 10 0.9999

1" 0.8259 1 0.9997

12 0.8344 12 0.9998

13 0.8219 13 0.9999

14 0.8265 14 0.9999

15 0.8322 15 0.9999

16 0.8272 ' 16 0.9999

PEAKS - 107-105, 103, 100,
99"977 921 91’ 85'
81, 79-77, T72-65,
63, 62
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 TABLE 3
CORRELATION COEFFICIENTS

88 PEAKS (INC. AIR)

FIRST 60 PEAKS (EXCL. AIR)

FIRST 35 PEAKS

1.,0000
0.9986
0.9968
0.9979
0.9982
0.9979
0.6297
0,6359
0.6144
0.6368
0.6276
0.0530
0.0379
0.0399
0.0396
0.0289
0.0259
0.0236
0.0226
0.,0196
0.0259
0.0196
0.0234
0.6983
0.7088
0.7073
0.7214
0.3163
0.2953
0.2991

0.3052
0.5249
0.5097
0.5091

0.5362

1.0000
0.9998
0.9997
0.9998
0.9998
0.9998
0.4128
0.4042
0.4050
0.4063
0.4032
0.0440
0.0333
0.0204
0.0187
0.0024
0.0011
-0,0033
-0.0037
-0.0560
-0.0574
-0.0574
-0,0579
-0.0811
-0,0826
-0,0810
-0,0844
-0.0798
-0.0816
-0,0808
-0.0825
-0,0801
-0,0817
-0,0810
~0,0832

1,0000
0.9999
0.9998
0.9997
0.9999
0.9998
0.3855
0.3763
0.3782
0.3785
0.3766

-0.0162

-0.0291

-0.0435

-0.0456

-0.0623

-0.0656

-0,0695

-0.0693

-0.1246

-0.1256

-0.1255

-0.1258

-0,1331

-0.1331

-0,1311

~0,1358

-0.1274

-0.1290

-0.1281

-0.1290

-0.1308

~0,1317

~0,1317

-0.1340

PEAKS - 149-145, 121, 120, 113-102, 95-89, 87-49, 46, 45.5, 45-34, 32-24
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TABLE

CORRELATION COEFFICIENTS

MIXTURE V MIXTURE V MIXTURE VI
28 SPECTRA 12 AVERAGED GROUPS 13 SPECTRA
142 PEAKS FIRST 25 PEAKS 71 _PEAKS
SPEC. | COEFFT. SPEC. | COEFFT. SPEC. | COEFFT,

1 1,0000 1 1,0000 1 1.0000
2 0.9994 2 0.9681 2 0.9741
3 0.9992 3 0.9642 3 0.8898
4 0.9750 4 0.9221 4 0.8862
5 0.9744 5 0.9173 5 0.8728
6 0.9577 6 0.8794 6 0.8677
7 0.9699 7 0.8373 7 0.8528
8 0.9694 8 0.7846 8 0.7496
9 0.9424 9 0.7088 9 0.7338

10 0.9413 10 0.6237 10 0.6353

1 0.9377 1 0.6222 1 0.6248

12 0.9340 12 | 0.5659 12 0.5684

13 0.9118 13 0.5638

14 0.9131

15 0.9166 | MIXTURE V_PEAKS - 394, 387,

16 0.8949 586, 372, 311, 358, 357,

17 0.8879 364-255, 247-242, 234-221,

18 0.8539 | 220-213, 205-199, 193-185,

19 0.8514 179-173, 167-157, 152-145,

20 0.8036 139-131, 125-117, 111-105,

21 0.8066 | 97-91, 85-77, T1-65, 57-50,

22 0.7358 | 45-41.

23 0.7570

24 0.7016

25 0.7246

26 0.6727

27 0.6737

28 0.6692
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DETERMINATION OF THE NUMBER OF SIGHNIFICANT COMPONENTS

I -~ Hatrix Rank Apnalysis

An essential part of the "ab-initio" analysis of the mixtures array
must necessarily be the determination of the number of components making
significant contributions. As discussed in Chapter 2, this is equal to
the rank of the matrix. Initial experiences of using the Algol Prog-
ramme is also given in Chapter 2 together with references to the method
used i.e. Gaussian elimination(53’54). This procedure is used to trans-
form certain elements to zero or small numbers which may be taken to be
zZero. Testing a transformed element‘against zero is accomplished in the
programme by tolerance values which set quite arbitrary limits. Rows of
the array undergoing transformation are interchanged where necessary to
provide a pivot element greater than zero. The meaning of "pivot element"
is given later in this Chapter where Gaussian.elimination is more fully
explained,

The generally recommended method of rank determination by Gaussian
elimination(53’54) involves the interchange of rows and columns (pivoting)
to provide the largest possible matrix element as divisor. This process
minimises error build-up during the transformation and will be discussed
in greater detail,

When the tolerance values are zero it is obvious that (a) round-off

errors and (b) experimental fluctuations will raise the rank to a maximum,

(a) Round-off ¢

Consider the matrix
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The rank is one because one row is a multiple of the other. (In a
more complex example it could be some linear combination of any of the
other rows). In the computer, however, round-off is present and the

matrix might be

1,000 0.333

2.000 0.667

The rank is now two. As shown in this simple example when decimals
are rounded off the rank is increased. This is because 0,667 is not
exactly twice 0.333. If, however, it is allowed to be twice by means of
a suitable tolerance value, the rank will again be one. In this case the
necessary value would be greater than or equal to 0,001 i;g; the value
obtained by subtracting twice the first row from the second. In a more
complex example, where more operations are required to reduce the matrix,
the tolerance would have to be greater in order to allows for increased
round-off errors. The actual vglue used will depend on the nﬁmber of
decimals and the number of operations involved,

In the case of the numerically exact mixtures arrays solved by the

(48) any small tolerance, sufficient to overcome round-off,

Algol Programme
enabled the correct rank to be obtained. The situation with experi-

mental data is quite different,

(b) Experimental Fluctuations

If the mixtures array contains these relatively large errors a much
greater tolerance value is needed to produce a satisfactory rank. The
actual magnitude of this tolerance will vary with the magnitudes of the
fluctuations and thé nunber of operations in a particular array. The
reason is thatvthe transformed elements, which could be zero, have much

greater errors associated with them. This leads to the question of
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significance when dealing with mixtures spectra.

Significance

An experimental mixture may contain several major components and a
number of minor ones in which the analyst has less interest, It is
easy to envisage a mixtures array made up of four component spectra in
similar relative amounts. If other arrays are visualised having smaller
and smaller relative contributions from onelof the components, a stage is
eventually reached where difficulty is experienced in choosing between
ranks three and four. At this stage the contribution of the fourth
component is on the threshold of significance. The tolerance values
used will therefore have to be chosen with this in mind. As will be
shown such a problem néed not be a serious one,

Having decided to change cémputer systems work was begun on the rank
analysis of mixtures arrays. The rank determining sub-routine available

(71)

with the I.B.M. Scientific Library was utilised for this purpose.
Its use involved reading in an array together with a suitable factor
which, on multiplication by the largest element, produced a tolerance.

The array, M, is effectiveiy transformed according to

]
M..=M._.-M, .M.
ij ij i1°7 14

M

where M11 is the largest element pivoted to the leading position by

.
suitable interchange of rows and columns. The largest element in M is
compared with the tolerance and if it turns out to be effectively zero

]
the rank is one. If not it is pivoted to become M and the elimination

i
repeated to give ng etc,, until the rank is found,
The immediate advantages of this system over the previous method

were:



49,

(1) speed of operation

and (2) complete pivoting was used.

The disadvantage was the inaccessibility of the sub-routine for
development purposes e.,g, the inclusion of further tolerances as in the
Algol Programme., The problem was not considered insurmountable at this
stage and "looping" studies were begun (see Chapter 2 - II). It was
hoped to relate empirically the tolerances necessary to give correct
ranks for a number of known arrays. Progress was held up by the need

to obtain suitable arrays by previously described methods.

Work was then channelled into two areas:
(a) obtaining and measuring mixtures arrays for testing purposes.,
(b) writing a new programme in FORTRAN IV readily capable of modifi-

cation,

(72)

Coinciding with this work discussions at Esso Research Centre

(Abingdon, Berkshire) revealed relatively long-established applications
(73)

of matrix rank analysis These were mainly in the field of bio-
chemistry for arrays of abéorbtion data analogous to the mass spectral
arrays considered here, Two particular methods of a similar nature
seemed to be of particular relevance to the current problem. A combin-

ation of these techniques was then incorporated into the new programme

mentioned in (b), above.

(74)

The first is due to Wallace and Katz The Gaussian elimin-

ation is performed as previously described ji.e,

M'..=M .~ M .M.
ij ij 317713

My
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No single tolerance is incorporated but a companion matrix, S, is
constructed the elements of which are the individually estimated errors
in M.

As M is reduced by the elimination process S is transformed according

(75) ,

to the error propagation equation

st.= [s..%+s,, M., |2
ij i) ij il 1]
¥

The procedure is the same as that previously described except that
the largest element in M is compared with its corresponding error in s’ ’
perhaps multiplied by a suitable censtant. The reason for this suggested
extra criterion is not explained but may help to take account of inac-
curacies in the original error estimates. 1In a study by Ainsworth(75)
there was some doubt as to the existence of a third component as a trans-
formed pivot element was not much greater than its error. Perhaps this
is not surprising in view of the illustration of "significance" given
earlier.,

The possibility of including én extra criterion was kept in mind
when applying the method to mass spectral data with its relatively large
and varying errors.

The second method, due to Katakis(76), is similar to the above but
has a statistical advantage. Instead of comparing only the pivot
element with its transformed error he suggests comparing all the elements
in the transformed data matrix with their corresponding errors. In this
way a percentage of elements may be allowed greater than their errors.

It is apparent from the error propagation equation that the value
of any element in S' cannot exceed twice the value of the largést element

in S and will probably be much less. This is only true where the matrix
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has been pivoted i.e. M11 is always greater'than Mi1 ete, If the matrix
is not pivoted the errors can become very large indeed, particularly where
the divisors (1eading elements) are small,

The remaining problem in app}ication of the technique is the cons=-

truction of the error matrix itself, Here several possibilities exist

depending on the nature of the particular data:

1. Where large spectral groups are obtained from the fractionation, the
averaged deviations from the mean (for each peak) are given by sub-
routine MSTATS. These values can become the elements of S corres-
ponding to the elements of M, the averaged data matrix., This would
be suitable where good on-}ine facilities are available.

2 Where fewer spectre are obtained in each group (gzgh.two or three)
it is convenient to form the error matrix elements as some fixed

percentage of the corresponding averaged data matrix elements e.g.

5%.

Another possibility borne in mind was that of defining the percentage
by obtaining an experimental array with one component, This could be run
immediately after the mixture has been pumped away. (Mixture III,
described in Chapter 3 - II,is such an array). The percentage error
required to give a rank of one could be used to choose the value for the
mixtures analysis. However, the difference in numbers of operations
required to give the results in both cases would have to be taken into

account,

The sub-routines used to determine rank in both cases 1. and 2. are
described in APPENDIX B. They are called GAUSAV and GAUSP respectively,
The effect of some extra criterion on the rank obtained is built

into both sub-routines thereby giving the degree of sensitivity of results
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to changes in the errors used. The elements of the error matrices in
both cases are altered by some constant factor and the determination

repeated, A diagrammatic illustration is given:

FIGURE 3.

CRITERION

GRUSAV
or 4—

GAuUsSP

¥

RANK
INFORMATION

ALTER
CRITERICN

FINISH -

The programme lists "rank statistics" i.e.
(a) percentage of transformed elements greater than errors
and (b) pivot element and its error
(74)

after each elimination step. The original data of Wallace and Katz

was processed and yielded the same transformed matrix elements and errors.

Results are given in TABLES 5 = 10 for the mixtures obtained as out-

lined in Chapter 3 - II.

MIXTURE I  (TABLE 5)

After three eliminations at an error of 5% the absolute value of the
largest element (122;5) is less than its error but a substantial per-
centage (1§:29 of values are greater than their corresponding errors.

After four eliminations the largest element (gng) is not much less

than its egpor (29.5).



The columns showing the correspohding errors and percentages at 3%
and 7%-give some indication of the error sensitivity of results.

The most probable rank, based on these figures, is three, possibly
four. The difficulty is probably because the spectra are all fairly
similar - a low degree of fractionation i.e. perhaps the compositions
covered by these mixtures are biased in favour of three components where

one has either been pumped too quickly or too slowly.

MIXTURE IT (TABLE 6)

Results using both GAUSP and GAUSAV on the averaged array are given
(errors in B. were produced by sub-routine MSTATS).

In both cases the absolute value of the largest element drops
sharply after four eliminations. This most probably indicates the pres-
ence of four major components. After five eliminations the largest elem-v
ent is approximately equal to its error indicating a fifth component of
lesser significance. The presence of a sixth minor component is also
indicated but this could be due to the size of the array and some inaccur-
acy in the error transformation equation.

TABLE 6-B yields a similar result using arbitrary criteria within
the ranges covered. Smaller percentages are obtained because the errors
happen to be larger. Bigger '"percentage greater" values are also caused
by taking the percentage of each peak as the error in GAUSP; many small
peaks will be greater than their tiny errors after transformation i.e.
the actual percentage error in small peaks may easily be 50% In this
respect GAUSAV which uses the actual error in each peak is better but
large numbers of spectra are necessary.

The fifth component (or fifth and sixth) was thought to be present
mainly in the final ten spectra corresponding to sudden increases in the

intensities of ions at m/e 87, 75 and 58. In TABLE 7 rank analyses for
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A, the first nine spectra and B, the fin#l ten spectra are given, No
éignificant difference is observed.

In TABLE 8 results from the elimination of the whole array of 124
spectfa are given, As expected the figures are not very good although

the sudden decrease in size of the largesl element is still present after

four eliminations,

MIXTURE ITI  (TABLE 8)

The rank is clearly one. Large "percentage greater" values after
one elimination are caused by the method of initial error calculation

(see MIXTURE II, above).

MIXTURE IV  (TABLE 9)

A. (INCLUDING AIR) The rank is six, possibly seven.

B. (EXCLUDING AIR) The rank is five, possibly six.

MIXTURE V  (TABLE 10)

The indicated rank is three in both cases.

MIXTURE VI  (TABLE s)

The rank indicated by GAUSP is clearly two.

Some Conclusions and Comments

1. The rank determination is best where few spectra are used i,e, where
small numbers of operations are necessary e.g. compare }ank analysis
on 124 spectra in TABLE 8.
2. Results obtained for each mixture are clearly satisfactory and not
very sensitive to changes in the initial error values used. The
 usefulness of the "percentage greater" columns (Katakis) would be
increased where the errors in the peaks are estimatbed. individually

oo b§ MSTATS where suffiicient numbers of spectra are available.
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An improvement could probably be made by using sub-routine MASSES to

remove the very small mass-profiles from consideration. An alter-
native improvement would be to increase the percent error in the
smaller peaks.,

In both GAUSP and GAUSAV the elimination process is repeated each
time a new percentage error or criterion is used (see FIGURE 3).

In future work this need be performed once and only the new errors

transformed (see APPENDIX B),
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TABLE
MIXTURE I 16 SPECTRA, 28 MASSES, 4 COMPONENTS
, ERROR AT: % > ERROR AT:
STEP LAR?EST ELEMENT =% s % 3% 50 7%
0 1080.0 32,4 54.0 7T5.6 100,0 100.0 100.0
1 302.3 10.1 16.8 23.5 80,2 T2.6 63:5
2 1.2 23.6 39.4 55.1 54.7 40.4 29.4
3 -32.3 52.1 86.8 121.5 33,8 20.6 12.9
4, ~23.8 17.7 29.5 41.3 30.2  16.3 9.4
MIXTURE VI 6 SPECTRA, 71 MASSES, 2 COMPONENTS
ERROR AT: % > ERROR AT:
STEP LARGEST ELEMENT 35 5% 7% 30 5% ™%
0 10542.4 316.3 527.1  737.9 100,0 100.0 100.0
1 1642,2 52,1 86.8 121.4 99.1 99.1 98.9
2 -116.,1 69.5 115.8 162.1 66.7 48.6 29.3
3 =33.2 34,1 56.8 T79.5 43,6 22,1 13.2
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TABLE 6
A. MIXTURE II 23 SPECTRA, 37 MASSES GAUSP
- ERROR AT: <Y ERROR AT:
STEP LARGEST ELEMENT 3% 5% ,7% 3% 5% 7%
0 424,9 12.8 21,3 29.7 100,0 100.0 100.0
1 291 .1 8.9 14.9 20.8 93,4 90.3 87.0
2 =217.1 12.0 20.0 28.0 84,4 T76.5 69.0
3 149.3 5.6 9.4 13,2 64.7 51.0 41.6
4 27.2 6.4 10.6 14.9 53.1  36.4 27.1
5 12.5 4.3 7.2 10.1 47.9 28.3 18.8
6 8.7 6.8 11.4 15.9 36.2 17.5 10.4
7 6.3 5.4 9.0 12.6 3.5 15.2 9.8
B. MIXTURE II 23 SPECTRA, 37 MASSES GAUSD
(AVERAGED DEVIATIONS AS ERRORS)
ERROR, TIMES % ERROR AT:
STEP LARGEST ELEMENT 5 P s 22 6 <8
0 424.9 7.8 23,4 31,2 93,3 86.8 83,5
1 291 .1 13.2  39.5 52.7 77.3 52.3 46,0
2 =217.1 16.2 48,5 64,7 60,0 29,8 23.7
3 149.3 5.8 17.3 23,0 33,2 12,2 8.2
4 27.2 8.0 24.0 32,0 19.1 1.4 0.3
5 12.5 11.5 34.4 45.9 13.9 0.5 0.0
6 “8.7 34-1 10204 - 8.0 002 -
7 6.3 17.8 53.5 - 4.8 0.0 -
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TABLE 7
A. MIXTURE II FIRST 9 SPECTRA, 37 MASSES
- ERROR AT: % 7 ERROR AT:
STEP LARGEST ELEMENT % 5 7% 5 5ot 7
0 424.9 12.8 21.3 29.7 100.0 100.0 100.0
1 =217.9 12,0 20.0 28,0 88.5 85,1 80.6
2 186.3 5.7 9.5 13.4 60.8 47.8 42.0
3 149.3 5.6 9.4 13.2° 55.4 40.2 32.8
4 27.3 6.4 10.6 14.9 33.3 15.8 10.3
5 -4.,9 1.1 18.5 25.8 15.6 3.9 1.6
6 "409 409 8.2 11.4 504 0.0 0.0
B, MIXTURE II LAST 10 SPECTRA, 37 MASSES
ERROR AT: % Y ERROR AT
STEP LARGEST ELEMENT 3 5 72 524 % 7
0 297.3 8.9 14.9 20.8 100.0 100.0 100.0
1 67.4 2.2 3.6 5.1 86.1 T8.4 T2.5
2 25.5 1.5 2.5 3.5 73.2  61.1  54.3
3 22,7 3.4 5.7 8.0 66.0 48.7 34.9
4 6.7 3,3 5.4 7.6 61.1  39.4 26.3
5 -5.8 2.8 4.6 6.4 38.1  23.1  10.6
6 "'2.4 201 305 409 3407 1209 907
7 3.5 2.5 4.2 5.8 27.8 12,2 8.9

See FRACTIONATION DIAGRAM in FIG.

COEFFT,

2(¢c)

SPECTRUM




MIXTURE II
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TAELE 8

124 SPECTRA, 37 MASSE

« oM BT ERROR AT: %y ERROR AT: )
QTEP LARGEOT EL..:IJ‘JNT 375 5% 7% 3% 5% 7%‘
0 428,5 12.8 -21.4 30,0 100.0 100.0 1C0.0
1 283.1 8.7 14.5 20.3 93.0 88.3 83.6
2 ~-224.9 11.8 19.7 27.6 86.4 T8.2 T1.5
3 147.8 5.6 9.4 13.2 6%3.6 48,9 38.6
4 24,6 1.5 2.5 3.5 53.6 36,7 26.3
5 =22.6 5.7 9.5 13.3 46.4 32,3 22.8
6 17.9 6.8 11.4 15.9 40.8 25.5 17.C
7 -10.5 2.9 4.8 6.7 32.2 18.8 12,2
8 -10.6 2.5 4.2 5.8 31.5 17.9 11.3
9 «9.1 1.6 2.7 3.7 27.5 13.9 8.5
10 -9.0 2.0 3.3 4.6 27.3 13.6 7.5
1 -8.2 3.4 5.7 8.0 29.0 14.3 7.6
MIXTURE III 16 SPECTRA, 27 MASSES, 1 COMPONENT
o T ERROR AT: % 1ERROR AT:
STEP LARGEST ELEMENT v 3% 5% 7% 3% 5% 7%
0 2900,3 87.0 145.0 203.0 100,0 100.0 100.0
1 -65.1 60,7 101.1 141.6 33.6 24.4 18.5
2 29.8 27.3 45.4 63.6 23.7 14.3 T.T
3 18.6 34.9 58'2 : 81-5 1308 504 1.9
4 -1901 31 o8 5300 - 807 3-3 -
5 1608 51 04 8507 - 107 0.0 Ld
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- TABLE 9
MIXTURE IV
A. 8 SPECTRA, 88 HASSES ( NCLUDING AIR PEAXS )
X el .\ ERROR AT: % 3ERROR AT:
! EMEY y
STEP LARGEST ELEMENT 5% 7% 9% 5% 70; 9%
0 13234.7 661.7 926.4 1191.1 100.0 100.0 100,0
1 8090.8 406.5 569.1 1T731.7 98.0 96.9 96.4
2 6193.7 354.5 496.3 638.2 90.1 85.9 81.4
3 3016.6 236.9 331.8 426.6 86.4 80.5 76.2
4 ~1098.8 176.5 247.2 317.8 ° 60.7 50.0 42.3
5 =534.4 156.,2 218.7 281.1 37.8 26.9 20.9
6 275.9 216.9 303.7 390.5 19.5 8.5 4.9
7 “5303 210.2 29403 37804 409 1.2 Ooo
B, -~ 8 SPECTRA, 60 MASSES (EXCLUDING AIR PEAKS )
R ERROR AT: % YERROR AT:
STEP LARGEST ELEMENT 5% 7% 970 5% 7% 9%
0 8127.4 406.4 568.9 T31.5 100,0 100.0 100.0
1 6898,6 348.5 487.9 627.3 89.3 86.4 82.8
2 3160.1 236.9 3%1.8 426.6 84.8 80.7 T4d.4
3 2243.2 112.5 157.5 202.5 49,5 38,2 29.5
4 "406.6 14606 20502 263'9 4308 3300 24.1
5 273.6 210.4 294.5 378.7 29.1 18.8 13.3
6 84.4 105.2 147.2 189.3 18.5 14.8 13.0
7 -58.6 226.9 317.7 408.1 0.0 0.0 0.0
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TABLE 10

MIYTURE V

A. 12 SPECTRA, 142 MASSES
- e ERROR AT: ¢ YFRROR AT:

,‘! i IE B . ok : ! 137

STEP LARGEST PEAK 52 56, 7 4 565 79
0 6762.7 202.8 338.1 473.4 100,0 100,0 100.C
1 1717.8 54,9 91.4 127.9 97.5 95.3 93.4
2 995.3 64.3 107.1 149.9 91,1 84.4 T7.9
3 -107.6 102.7 171.2 239.6 47.8  25.3 14,2
4 -104.4 123.7 206.,1 288.5 22.3% 7.1 2.2
5 -76.0 95.7 159.5 223%.3 10.2 2.3 0.2
7 50.% 235.2 391.9 - 0.9 0.0 -

B. 12 SPECTRA, 60 HIGHEST MASSES

I ERROR AT: % 7 ERROR AT:

STEP LARGEST PEAK 34 554 7 254 5t 754
0 6762.7 202.9 338.1 473.4 100.0 100.0 100.0
1 1627.6 52.4 87.3 122.3 98,2 96.3 94,3
2 334 ,1 131.4 219,0 306.6. 572 37.9 23.6
3 -84.8 . 85.4 142.3 199.2 37.0  12.3 3.1
5 "44.6 69'9 11604 162.9 206 0.5 003
7 -52.3 173.8 - 5 0.4 - -
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II - Principal Comnonents ‘nalvesis
This is a long establiched technique having been extensively employed

(76)

in the snalysis of psychological data . Recent years have seen its

(78) (79)

application to a number of spectroscopic and chromatographic prob-
lens. A short explanation of the method and its terminology is included
in APPENDIX C, The number of factors needed to account for the

(76)

VARIANCE in the mixfures data is estimated. This is done by forming
a correlation matrix and computing its EIGENVALUES(78). The method
requires fewer operations than Gaussian elimination and so error build-up
is much reduced. As with Gaussian elimination no gross errors can be
tolerated as they would introduce more variance to be accounted for i.e.
extra components would be found,

The criterion problem still exists because it is necessary to decide
on the number of significant eigenvalues i.e. above some pre-set tolerance
value,

A certain amount of the variance in each array is accouﬁted for by
the inherent errors in the data. As the levels of these vary between
experiments so will the eigenvalue threshold of significant components.

Eigenvalues are computed by sub-routine PCA which is explained in
‘APPENDIX B.

Results obtained for each mixture are given in TABLES 11 and 12,

If values of logarithms are calculated as indicated it would seem that

the number of components is given by the positive values in each case (see

(78))°

MIXTURE I (TABLE 11)

The fourth factor accounting for the variance has a negative loga-
rithm. The rank is then probably three i.e. in agreement with the rank

analysis (see MIXTURE IV).



MIXTURS IT  (TABLE 11)

Four major components are indicated by the logarithms,. The sixth
cemponent gives a negative value, The eifect of processing a large array

is similar to that in rank analysis,

MIXTURE III (TABLE 11) ONE COMPONENT

The rank is clearly one. The eigenvalue 0,002 gives an indication
of the significance of the inherent fluctuaztions in the spectra. This
second factor and subsequent factors {0,001 account for the "error vari-

" ance".

MIXTURE IV (TABLE 12)

The effect of including air peaks is as before i.e, the rank increases
by one., Results for eight spectra (averaged groups) indicate that a first
negative logarithm of the value shown could represent a significant factor;
otherwise the rank could be four. Where all 35 spectra are considered

the rank is five.

MIXTURE V (TABLE 12)

The rank is three where 142 masses are used. Consideration of the
60 highest masses reduces the apparent rank i.e. one of the components

,appears to have less significance in this range.

MIXTURE VI (TABLE 12)

The number of components is two.

No serious differences are observed in results obtained from both
Principal Components Analysis and Rank Analysis in each case (where

constant criteria are used).

It appears, from the few examples tested and the criteria used, that

the method bf Principal Components tends to produce a minimum rank whereas



the method of rank analysis tends to be more generouso A combination of

both might prove useful«



TABLE 11
BIGENVALUES -

MIXTURE I 16 SPECTRA, 28 MASSES

KUHBER A 1n §A.1022
1 16.258 7.394
2 0.604 4,101
3 0.119 2,471
4 0.007 -0.357
5 0.002 -1.609
6 0,002 -1.609
MIXTURE II
124 SPECTRA, 37 MASSES 23 SPECTRA, 37 MASSES
NUMBER A 1n (A.10°) NUMBER A 1a (A.10°)
1 20.797 7.640 1 16.062 7.382
2 9.783 6.886 2 5.496 6.309
3 4.600 6.131 3 0.804 4.388
4 0.819 4.406 4 0.606 4,105
5 0.307 3.425 5 0.162 0.482
6 0.188 2,934 6 0.005 -0.635
8 0.070 1 0947 8 00003 "'1 0347
MIXTURE III 16 SPECTRA, 27 MASSES —— ONE COMPONENT
NUMBER A 1n (A.10%)
1 15.997 7.378
2 0.002 -1.609
3 <0.001 -
[




TABLE 12

MIXTURE IV

8 SPECTRA, 88 MASSES

(INCLUDING AIR PEAKS)

NUMBER A 1n (A.10°)
1 5,137 6.242
2 1.771 5.177
3 0.824 4.416
4 0.195 2.970
5 0.068 1.917
6 0.004 -0.916

35 SPECTRA, 85 MASSES

HUMBER A 1n (.10%)
1 21,379 7.668
2 8.597 6.757
3 3.716 5.918
4 0.984 4.589
5 0.285 3,350
6 0.018 0.588
T 0,005 ~0.617

MIXTURE V

12 SPECTRA, 142 MASSES |

NUMBER A in (A.10%)
1 11.292 7.029
2 0.664 4.196
3 0.036 1.273
5 0.002 ~1.609
7 ¢0.001

MIXTURE VI

6 SPECTRA, 71 MASSES

NUMBER A 1n (A.10%)

1 12,031 7.093
2 0.958 4.563

3 0.008 -0.198
4 ¢0.001

. 66,

8 SPECTRA, 60 HIGHEST KASSES

(EXCLUDING AIR PEAKS)

NUMBER A 1n (A ,10%)

1 5,436 6.298
2 1.473 4,968
3 0.750 4,317
4 0.335 3.513
5 0.0C4 -0.821
6 |. 0.001 -2.056
7 €0.001 -

35 SPECTRA, 60 HIGHEST PEAXS

NUMBER 2y in (A ,10%)
1 21,921 7.693
2 7.883 6.670
3 3.617 5.891
4 1,543 5.039
5 0.018 0.621
6 0.006 -0.462
7 0.004 -0.821

12 SPECTRA, 60 HIGHEST PEAKS

NUMBER A 1n (A .10°)
1 11,252 7.026
2 0.736 4.298
3 0.0088 -0.131

0.0016
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IIT - GERERAL CONCLISIONS

Results indicate that a statistical package has been produced which
allows the determination of the number of significant components in a
suitable array of mixtures spectra. The package is shown in the diag-

ram;

ARRAY
GRUSS EI\GEN
[ rRank ) —p—T—4—] fankG)
v
FINAL
ESTiMAaTE

It may be that once a uniform experimental method is established,
such analyses may be carried out more simply by employing a fixed and
reliable criterion giving the most likely rank. Such a system would

facilitate the operation of a fully automatic mixtures analysis programme.

The next Chapter considers some methods of detecting the components

contributing to each column of the mixtures array,.



CHAPTER FIVE

Pattern Separation Techniques

I - Determination of the Components present

in Mixtures Peaks

IT - Mass Profile Correlation Analysis

IIT - Region Peak Analysis

IV - Spectrum Derivation and Refinement
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PATTERN SEPARATION TECHNTOUES

I - Determination of the Components present in Mixtures Peaks

(49) 4

The next stage in the analysis according to Monteiro and Reed s
a determination of the components contributing to each peak i.e. each

column in the mixtures array as previously defined. This process will be

referred to as peak analysis . At this point the determination takes

little account of the relative amounts of the components but endeavours
to say whether they are present or absent in any column. The maximum
number of possibilities for any mixture may be illustrated by a Venn

Diagram e.g. for a three-component mixture :

1.6, seven distinct mixtures peaks are possible., For a more com-

plex mixture the maximum number increases dramatically,being
M=N

M=1

for an N-component mixture. This equation is simply a summation per=-

formed on the well-known equation giving the number of combinations of

(), ,

items taken M at a time

The method of peak analysis proposed by Monteiro and Reed(49) requ-

ires the existence of
(a) at least two uni-component peaks for each component i.e. at
least two columns of the mixtures array should be unique to

each component.

or (b) one uni-component peak per component where an effusiometric
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method(sl) is applicable (see Chapter 6-I).

Once a uni-component peak (column of the array) has been identified
for each component further peak analysis is possible

The reason for (a), above, is to allow the detection of the unique
peaks as the relevant columns aré proportional. The method of analysing
other peaks involves the formation of suitable sub-matrices of the array

(49)

and evaluation of their determinants Before discussing how this is
done it is convenient to discuss the reasons for determining which col-
vmiis  are uni-component and carrying out further peak analysis.

A simple illustration of the equations which may be set up to solve

g five-component mixture are shown below. The meanings of the arrays are

given in (49) and also on page 17 of this thesis

- -~ r . - - -
°<1 o<2 0‘3 °<4 °<5 Myy Ty Tyg eeee 8] 8y &z eeee
pl ‘32 ﬁ} ﬂ4 ﬂs m21 m22 m23 ceee = bl b2 b3 XXE)
1‘1 XZ X3 34 XS m31 m32 m33 ceee c; ©, 03 ceese
bl 82 83 84 85 m41 m42 m43 eve e dl d2 d3 eocee
L¢1 ¢2 ¢3 ¢4 ¢5~ i m51 m52 m,53 seee ] -el e, e3 .....-

or

‘4
QM = A

Q is a matrix of unknowns which will give the required normalised
component spectra on multiplying into M’. The latter is a data matrix
(the only known quantity) whose rows are five distinct mixtures spectra.

A’ is a matrix containing the five normalised component spectra.

The important consequence of analysing the columns of M (M) is
fha.t the positions of zeros in A' are immediately known. Every zero
found in the first row of A’ may be used to form an equation given by the

relevantb sum of products in Q and M . At least four such equations are



T0.

necessary to determine dl,<K2, d}, “2 andt><5 (since these are equated to

zero). Once the constants have been determined the first row of Iy (first

¢
component spectrum) is known. The minimum conditions (properties of A

and M) required for the determination are :

(a) at least four (or one less than the rank) of the elements in
the first row of K are zero, and

(b) all other components contribute to this set of peaks i.e. not
necessarily to each and every member. This is to ensure that
the system of simultaneous equations has maximum rank, there
being four unknowns in this case.

(82)

These requirements are described in a similar form by Thurstone

n(73)-

and by Ainswort

Part of A might have the form :

N - g + g + g é ot e e e ] A
.« e e e 4 4+ 4+ 0 F 4 0 v e e e e . B
: : . : e o o« 0 O O O 4+ 4+ o o o o o o C
R o N T S S o N o N D
¢ e e s s s o« 0 0 + F O F ¢ 4 e e e E

"
+; any number greater than zero.
0, zero.

"y any number.

The components are A, B, C, D and E. The conditions necessary to
determine the first row are -satisfied (at indicated masses).

Four equations can now be set up in ., "‘2, 43, °<4, and °<5 may be
set to -1 since the equations are set to zero. In this way the spectrum

of A may be derived.
The simplest way in which both conditions (a) and (b) may be satis-

»

fied for all components is to have identified one uni-component peak per °
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/
component. This may again be illustrated by part of & :

.
O O O O +
O O O 4+ ©
o O 4+ O ©
O 4+ O O ©
+ O O O ©
.

where four equations satisfying (a) and (b) are possible for each
of the five components.

It is easily seen that the important consideration is not nécess—
arily the fact that a peak is uni-component but that both conditions can
be shown to_be satisfied.

The afore-mentioned Algol programme(48) relies on the detection of
proportional columns to locate unique peaks so at least two for each com-
ponent are necessary. In this present case five such groups would have to
be detected or the programme would fall . A short account of the numeric-
al method used will now be given in or&eruto eompare it with other
possibilities.

The largest mixtures spectrum is placed first and all other spectra
divided by it. Where the divisor is too small by comparison with some
tolerance the peak is not considered i.e. cannot be analysed. The first
column of quotients is then subtracted from all other columns. When a col-
umn of zeros is obtained then another mass of the same type has been loc-
ated i.e. the original columns were proportional., Such detected masses
are then eliminated from further consideration as they have been identified
as uni-component. The process is begun again by comparing the next avail-
éble mass (column) with every other remaining mass. Such subtractions

are continued until all possibilities have been exhausted and N groups

of uni-é%mponent peaks found where N is the number of components.
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The method was found to work well with calculated data but was un-

suitable for use with real data. Some disadvantages of the method are

(1) The use of division to compare the profiles may make analysis of
éome masses difficult or impossible. Since fractionation is taking
place the biggest number at a certain mass may not be in the big-
gest spectrum, which is placed first as divisor. This difficulty is
illustrated by :

Largest Spectrum
(Divisor)

1 2 3
Later Mixture
| Spectrun

The divisor at masé 3 is very sméll and would lead tb large differ-
ences being obtained on subtraction of quotients. This mass may be
unique to some component but might not te detected as unique ,
although ¢
fl) other peaks unique to the same component exist |

and 2) there might be significant contributions at this mass number

as fractionation proceeds e.g. this component might be

relatively involatile taking longer to appear significantly

in M.

(2) When a peak is located as a member of a uni-component group it is
eliﬁinated from further consideration i.e. it is not possible to
compare the uni-component mass profiles within a group. The partic-

ular masses being eliminated are regulated by means of a 'single
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arbitrary tolerance value which may be difficult to define experimentally,
particularly in view of (1) , above. Considerable difficulty was exper-

ienced in detecting the groups of Mixture II by this method.

(3) Only the information from the first mass in each group of uni-compon-
ent masses is retained and utilized in the subéequent analysis. The
programme appears to use the first uni-component peak heights them-
selves and the corresponding columns of the data matrix to form a
matrix like X as described on page 16 (Chapter II) i.e. the
nunerical method used differs from that method described Yy Monteiro
and Reed but is really equivalent to it. The present observation is
then the limited amount of information used to determine A and the
fact that it is the first unique mass in each group which is taken.
In many cases the latter will be the smaller isotope peak in a parent
ion group. The use of such relatively small nmumbers could lead to num-
erical problems as discussed by Barnard and Fox(s) particularly in

view of the experimental fluctuations present.

(4) No other peaks are analysed. This would provide more zeros in each
row of A leading to a larger number of equations. Solution of the
latter by a suitable least-squares method(84) would produce a more

reliable result.

A more practical and flexible approach was then sought in order to
remove or reduce some of the above disadvantages. Methods of tackling
each of these problems will be discussed and illustrated by experimental
results.

The division method of proportional column detection was replaced by
a methodlinvolving the subtraction of mass profiles normalised to the same

sum. In‘this way all masses could be tested i.e.

the first column was subtracted from all others and the differ-
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-ences subjected to some analysis :

1. each was compared with some tolerance value related to the size
of the data fluctuations and the differences in sizes of the
original profiles.

2. a facility was provided to allow a certain number of differ-
ences to be greater than this tolerance.

3., the average absolute deviation for each difference was obtained.

In the case of calculated data all differences would be zero where
proportionality exists. In experimental cases éoth experimental errors
and errors produced during the normalisation are introduced. The disad-
vantage of the method is then where proportional mass profiles have very
different sizes j.e. a small peak and a large peak due to the same compon-
ent.

Columns which were particularly small before normalisation will
produce larger deviations from zero on subtraction and so should require
larger tolerance values. This allowance was not made in view of the fact
that less significance should be given to numbers which wefe originally
quite small and relatively inaccurate.

Difference values obtained for masses 103 and 102 (both unique to
n-propyl ether) in Mixture II are given in Table 13 + The second set of
values given are for masses 92 and 91 (unique to toluene). Differences
for masses 102 and 92 are provided for comparison.

The values were calculated using the sub-routine FILTER. Once a
peak is found to be potentially uni-component it is not eliminated from
further comparisons. An overall picture of the detection is then obtained.
In this way the apalyst is able to exercise his judgement in deciding
Qhether a peak is really uni-component or not, perhaps by comparing values
with those for peaks which are obviously unique. Thus (2) is satisfied.

On{y peaks satisfying certain criteria are stored for printing out

and subsequent use. The difficulty of defining these criteria was obvious
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during examination of peaks in Mixture II. However, employment of generous
criteria gave large numbers of possible uni-component peaks i;é; peaks
obviously not unique were excluded from consideration. Examination of the
set of possible unique peaks allowed the most likely to be chosen.

On a statistical basis the greater the degree of fractionation
and the larger the number of distinct spectra the more efficient will
be the detection of groups of unique peaks. If these conditions are not
well satisfied then many more columns might appear to be proportional
considering the fluctuations preseht in the data.

In attempting to overcome such difficulties (i;g; of defining a
tolerance valﬁe and comparing it with a number of differences) a new and

more direct approach to unique peak detection was successfully investig=-

ated. This is discussed in the next Section.
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TLBLE 13
DIFFERENCES
MASSES ¢ 103% with 102 92 with 91 102 with 92
-9.7 0.5 42.5
3.6 - 2.0 - 131.4
2.1 1.0 - 62.8
21.8 - 0.0 ~113.7
26.5 0.6 - 117.8
- 3.7 0.7 - 67.3
6.8 - 1.4 - 6442
7.6 1.2 - 47.6
9.6 -1.0 - 46.0
4.8 4.1 = 75
21.7 - T3 64.4
- 1.7 1.0 82.9
- T.7 - 0.0 65.5
0.8 0.8 85.1
=7.1 - 0.0 57.2
- 11.9 - 0.1 56.6
-11.8 - 0.4 27.6
- 3.0 1.6 38.8
- 9.5 - 0.9 32.4
- 6.0 - 2.1 31.2
- 11.7 0.5 2549
- 13.1 2.7 25.1
- 8.4 0.6 23.0
abgolute ‘
average 9.15 1.32 57.24
%%{-?%‘-‘S’-‘?—S ggiogﬁe UNIQUE NOT UNIOUE
spectra in m
each case oTiginally
much bigger
than other
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IT - Mass Profile Correlation Analysis

The previous section described methods used to detect prop-
ortional columns in the mixtures array. Whereas in Chapter 3 the rows
of the mixtures array vere correlated this new method of detecting uni-
component peaks involves correlating the columns. At least two uni-
component peaks per component are still required but the method will be
shown to be of greatef potential than was first thought.

It is obvious that the correlation coeffi¢ients (sce Appendix C) of

mass profiles unique to the same component will be very high, 1.00000 in
numerically exact cases. In experimental situations this could be
0.99 depending upon the size of the particular fluctuations present.
Thus, by forming a correlation matrix of the masses and searching for
very high values all clusters of uni-component peaks may be identified in
one single operation. The degreé to which a profile may be considered as
having one major component is given simply by the correlation coefficient.

Part of the Mass Profile Correlation Matrix for Mixture II is given
in Table 14

Such an analysis is best accomplished where there are more spectra
than masses. Thus the method would be particularly valuable where a fast
and accurate data acquisition system is available. Large numbers of
distinct spectra are, of course, to be preferred for any method of analysis
where large experimental errors are involved. By means of a simple tech-
| nique the mefhod will be shown to be practicable in cases where there are
" more masses than spectra so this need not necessarily be a serious limit-
ation.

The sub-routine which performs the analysis is called MC . Tﬁe
afore-meniioned sub-routine FILTER may be used initially to exclude all
péaks which are obviously multi-component (or uni-component where only one

.»exiéts). This is done by providing a tolerance large enough to allow
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some multi-component peaks to be included. Mass correlation analysis

| may then be applied to the set obtained. Thus FILTER provides a con-
venient filtering mechanism to avoid peaks being considered by MC
which are clearly not proportional to any of the others. The mechanism

may be represented diagrammatically thus :

ARRAY

FILTER

TovAL
UNI- CeMp
L_PossigLe

CLUSTERS

It is reasonable to suppose that any method of pattern separation
using all available information will gjve better results. If equations
are formed using all the zeroé found in the uni-component peak detection
better solutions should be obtained. Least-squares methods of dealing
with such systeus of equations would be particularly useful. If this is
not done the system will tend to be more ill-conditioned i.e. a small
amount of numerical information is being used to derive a large amount
(the component spectra). This will be discussed in Section IV where
spectrum derivation is considered.

Further peak analysis was considered desirable, if not essential,
when processing experimental data in order to provide positions of
further zero elements in the unknown spectra and hence more simultaneous
equations . More zero elements will also help to overeoeme the ill-

conditioning by providing more absolutely determined spectral features.

»
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Such peak analysis, if extensive, could be extremely valuable for
identification purposes in its own right. This has been shown by recent

work(22’23) involving Binany-coded spectra and has to some extent shifted
the emphasis of the present study away from a numerical calculation of
relative peak heights.

Methods of peak analysis involving determinants are suggested by
Monteiro and Reed(49) and by Ainsworth(73), the latter for use with
equivalent absorbtion spectral data. They both involve forming suitable
sumeatriceé of the unique columns of the‘mixtuQes array in various
combinations with unknown multi-component columns, taken one at a time.
If the determinant of such a sub-matrix is found to be zero then the rank
of the sub-matrix is less than its smallest dimension. This method is
not readily programmable in a general sense and would require the calc-
ulation of prohibitively large numbers of determinants. The latter
could be readily found by means of the error compensating sub-routines
GAUSAV or GAUSP developed in the previous Chapter. The real problem is
then the formation of suitable sub-matrices where large numbers of pcus-
ible combinations presenf themselves.

A simpler solution to the problem presented itself in utilisation
of the large quantity of hitherto unused information present in the mass
correlation matrix. A mass profile containing a large contribution from
e.g. component B will correlate highly with a mass profile which is
known to be unique to B. If the correlation coefficients of a mass prof-
ile under test with each unique mass profile be listed (they are all
present in the matrix) it is possible to accomplish much valuable peak
analysis with very little effort. So far only large correlations have
been mentioned. It is obvious that a small correlation means that the
m;ss under test is less likely to contain that particular component as one

4

or two with which it correlates highly. _ S



The listing for a five-component calculated mixture is shown in
Table 15 with the corresponding pure-component spectra in Table 16. The
listing was produced by sub-routine CDG.

The particular coefficient obtained will depend on the relative
amounts of the components present and the particular correlation
coefficients of their unique mass profiles. In this case the latter are
shown at the foot of Table 15

It appears that in any mixed mass profile a small or negative
correlation with a uni-component profile need not necessarily mean an
absence of that component. It could mean a relatively small contribution
compared with the contribution from another component; or a smaller
contribution frem the latter where it correlates badly with the uni-
component profile. This consideration may be illustrated by reference to
mass 19 (Table 15) which has a relatively small contribution from com-
ponent A compared with component B; its correlation with a profile unique
to A is -0.13 (yet it contains A) and with B it is 0.97.

In Chapter 6-IILthe use of such correlation coefficients in peak
analysis is illustrated by a mumerical example.

Part of the COMPONENT DIAGRAM for experimental Mixture II is given

in Table 17 . The corresponding spectra are shown in FIGS., 4 and 5. It

was clear from the first four columns that ions having m/e 87, 15, 66, 64,
58.and 57 have large contributions from other components, probably
impufities i.e. their mass profiles correlate well with each other but
badly with the four pure component profiles. The impurity "uni-component
peak" was taken as m/e 58 and all correlations included in the fifth
column (see note on weighting at end of Appendix C). This result was
borne out by the rank analyses described in Chapter 4.

The construction of such a table, taken from the correlation ma¥rix

assumes that there are more spectra than masses for best results. By
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means of a simple device this condition can always be satisfied:

Fewer Spectra than Masses

A mass profile known to be unique to the first component, A, may be
correlated with all other masses in groups containing fewer masses than
the number of spectra available e.g. if there are three times more masses

than the number of spectra, "n", then the correlations may be:

first unique peak with masses 1 to n
first unique peak with masses =n+1 +t6 2n
first unique peak with masses 2n+ 1 te 3n
In this way the first column of the COMPONENT DIAGRAM may be
produced.
The second column is formed by correlating a mass profile, unique
to the second component, with all others in  similarly sized groups i.e.
less than "n" . The first mass to be considered this time will be that
where the significant contribution from the second component appears.
This mass may be determined b& a more sophisticated application of matrix
rank analysis as described in the next section.
The remaiuder of the COMPONENT DIAGRAM is obtained in the same way.
Once the diagram is complete all small coefficients will indicate
small or zero contributions from the relevant components. This is not
unfortunate because interest really lies in the identification of zero
contributions. Doubts may be cast on a small coefficient by the other
coefficients in that row of the diagram yhich ﬁight show & large correl-
-ation with another component. Further qualification is obtained by the
correlations between the unique mass profiles themselves. Experience
gained by forming diagrams for numbers of known mixtures will improve an
understanding of the limitations of the method enabling spectral features

to be guessed reliably.
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TABL

89
88
87
79
78
77
76

74
73

« Mixture II1

Mass Profile Correlation Matrix

103 102 93 92 91 0 89 88 87 79 78 11 76 15 74 73 71
1,00 0.99 0.44 0.42 0.42 0.46 0.71 0.87 0.20 0.82 0.82 0.82 0.81 <0.30 0.87 0.99 0.91
1.00 0.42 0.44 0.42 0.44 0.70 0.87 0.25 0.82 0.83 0.83 0.81 0.3 0.87 0.99 0.91
1.00 0.99 0.99 0.99 0.91 0.08 0.21 0.12 0.10 0.17 0.27 0.15 0.49 0.40 0.%

1.00 0.99 0.99 0.91 0.08 0.2 0.16 0.10 0.16 0.27 0.14 0.49 0.41 0.3

1.00 0.99 0.% 0.07 0.20 0.10 0.10 0.16 0.26 0.14 0.48 0.41 0.29

1.00 0.92 0.11 0.21 0.13 0.12 0.18 0.29 0.15 0.51 0.43 0.34

1.00 0.46 0.13 0.44 0.43 0.48 0.57 0.06 0.75 0.69 0.62

1.00 0,10 0.9 0.91 0.89 0.9 -0.18 0.86 0.89 0.92

1.00 <0.35 <0.36 -0.32 0.06 0.99 0.07 -0.20 -0.18

1.00 0.99 0.99 0.93 -0.,40 0.82 0.83 0.87

1.00 0.99 0.93 <0.40 0.82 0.85 0.87

1.00 0.95 0.37 0.84 0.84 0.87

1.00 <0.01 0.91 0.83 0.88

1.00 0.01 -0.30 -0.25

1.00 0.89 0.88

1.00 0.92
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CORRELATION COEFFICIENTS

MASS RELATIVE CONTRIBUTIGQNS OF THE 5 COMPONENTS
IN CALCULATED MIXTURES SPECTRA
A 8 C D E

{ 1,00 1,00000 | 0,00064 | ©,53909 | »B,76015 | =B,31722

2 2,00 1,00000 | 8,60064 | 8,53929 | =~0,76015 | »3,31722

3 3,00 1,00000 | 0,00064 | §,53909 | =p,78815 | ~0,31722

4 4,00 1,00000 | 0,02064 | 0,539089 | =0,708215 | =2,31722

8 5,00 1,00000 | @,00064 | 9,53909 | =p,708315 | =0,31722

6 6,00 {,00000 | 0,02064 | 0,53909| »0,700815 | »@,31722 -

7 7,00 B,00064 | 1,0000D | =0.62670 | ©,482608 | B8,84552

8 8,00 6,53948 | 0,84235 | «0,23715| ©,02981 | ©,54697

9 9,00 ?,04953 | 0,99880 | »3,59958 | ©,44777 | 0,82897
10 19,09 0,00064 | 1,80000 | -0,62670| ©,48260 | ©,84552
11 11,00 2,68973 | 0,72451 | »3,08220 | =0,13316 | P,39356
12 12,00 £,53909 |=0,62670 | 1,80000 | »0,90611 | =0,82860
13 13,00 P,57024 |=0,56631 | 8,99717 | =0,91177 | =0,79476
14 14,00 0,79147 | =(,42732 | ©,94040 | =0,93607 | ~0,71170
15 15,00 e0,70015 | ©,48260 | ~0,90611 | 1{,00000 | ©,84104
16 16,20 ~E,70015 | 9,48260 |~0,92611 | 11,0000 | ©,84104
17 17,00 2,50242 |»0,63937 | 2,99754 | ~2,87398 | -0,81148
18 18,00 1,00000 | §,00d64 | P,53909 | =2,70015 | ~0,31722
119 19,00 w0,01366 | ©6,97239 | r,@,71712 | ©,60175 | ©0,91993
20 20,00 B,53909 |wi,62672 | 1,00000 | »3,92611 |=0,82860
21 21,00 0,08512 | 0,99253 | »0,52693 | ©,.,38446 | ©,79243
22 | 22,00 v3,56315 | £,65944 | »2,90972 | ©,97221 | ©,94431
23 23,00 »3,31722 | ©,84552 | =0,82860 | £,84104 | 1,00000
24 24,00 v?,31722 | 9,84552 | ~0,82860 | @,84104 | 1,88%00
25 25,60 ¢,00064 | 1,00000 |~0,62670 | P,48260 | ©,84552
26 26,00 w,29966 | ©,85259 |~0,80247 | ©,82385 | 8,99892
27 27,00 -3,47896 | 2,74186 | =3,89336 | ©,93523 | 2,97804
28 28,00 ~0,62885 | B#,61721 |=1,92918 | ©,98698 | »,91284
29 29,00 0,56447 | =0,61418 | ©,99954 | «(,91333 | ~0,82354
30 30,00 0,91352 | ©,25302 | ©,36038 | ~2,43038 | 0,02743
31 31,00 0,65554 | ~0,56179 | 0,98943 | »2,932908 |=0,79755
32 32,00 0,89220 | ©,45577 | 8,18901 | »0,39437 | 0,11048
33 33,00 ~0,30811 | 2,65948 |~0,87127 | ©,89477 | ©,93144
34 34,00 (3,700215 0,48260 [»~0,906114 1,00090 2,84104
35 35,00 v2,67693 | #,51890 |~0,859817 | ©,99818 | 8,.86797
36 36,00 w8,31722 | ©,84552 |~0,82860 | ©,84104 | 1,00000
-

SELF CORRELATIONS = INTERwUNIQUE
|2 2,00 1,00000 | 0,00064 | #,53909 | =P,70015 [~@,31722

| 2= 7,00 -|— ©,00064 |-1,00000 |~0,62678 0,48260 | 0,84552
12 12,00 0,53949 |~0.62670 | 1,00000 | -0,90611 |=0,82860
15 15,00 -0,70015 | 0,48260 |[~0,90611 1,00000 | 2,84104
24 24,00 ~0,31722 | 8,84552 |»0,82868 | ©,84104 | 1,00000
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TABLE 16
MASS COHMPONENT SPECTRA
. A 2 [ D =
1 13.00 #,0 0,0 B, 2,0
2 111,00 2,0 0,0 2.0 . 8,p
-3 2,30 0,0 .0 0,9 6,0
4 1,00 a,0 0,0 8,0 2,0
5 19,00 n,0 8.9 A.,0 B,
6 83,00 8,0 0,0 2,0 2,0
7 0.9 44,00 D0 0,0 Be0
8 14,00 53,10 8,0 2,0 0,0
9 2,00 99,20 0,0 2.9 B.0
10 8.0 32,00 0,2 2,0 0,0
11 7770 196,00 0,0 0,9 0,0
{2 0,0 0,0 88,0 0,9 8,0
{3 B,0 14,979 77 .00 A0 - 0.0
14 47,00 18,00 | 119,70 B,0 8,0
15 B0 0,0 B,0 457,00 B0
16 0,0 2,0 0,0 106,00 8,0
17 9,0 2,0 14p,¢0 27,00 2.0
18 26,20 B,o 0.0 0,0 8,0
19 24,00 149,00 69 58,00 0,P
29 0,0 2,0 16,00 2,0 B0
21 0,0 333,00 24,00 0,0 3,0
22 8,0 ‘0,0 2,0 199,80 | 114,00
23 DB 240 0.0 2,0 28,00
24 D0 B,0 €42 2.0 94,63
25 2,0 65,30 4,0 N 3,0
26 B,0 6,00 7.00 5,00 69,06
27 . 0,0 6,00 2,0 60,008 73,00
28 8,0 27,00 0,9 88,00 B,0
29 2,00 2,0 66,00 | 0,0 8,0
30 33,00 0,0 22,20 21,00 20,00
31 9.90 g.g 57,@@ 8.@ g.g
32 81,00 91,09 D0 9.0 5,00
33 39,002 0,0 8,0 99,50 | 4,00
34 2,0 0,0 8,0 41,20 0,0
35 0.9 2,00 4,00 59,00 4,20
36 B0 0,0 0.0 . 2,0 4,00




TABLE 17

CORRELATION COEFFICIENTS

MASS RELATIVE CONTRIBUTIONS OF THE 5 COMPONENTS
IN FIRST 90 GOOD SPECTRA )
- PRoeYL ETE]  TOLUENE . BENZENE |GTHYL ACETATE] jMPuRITIES
{1 193,00 0,98870 | B,47179| 0,76264| ©,86640 | =0,09460
2 102,00 1,u32968 | 9,46593 | 2.,76277 | 0,87319| =2,10592
3 93,00 2,48387 | p,99450 | 9,V6577 | n.B7181 | ©0,12499
4 92,08 0,46593 | 1.,00028 ! 0,24513| ©0,05335| 0,14496
5 91,00 P.45159 | P.99857 | B,03066| B,23678| 0,14430
6 90,02 0,650271 | ©,98848 | 2,06654| £,89715| @,158%9
7 89,00 ,78524 | ©.85137 | ©8,44193| ©0,49824| ©8,12149
8 88,02 P,B5414 | ©.02805| ©,93138| ©,99391 | =8,02796
9 87,00 “2,07521 | 2,18511 | =B,19989 | =0,04511 | ©€,99464
10 79,20 #,75155 | ©.P3140 | 2.98636 | ©,90448 | =0,290856
11 78,00 ,76277 | »,24513 | 1,00¢20 | 0.91280 | =2,20405
12 77.08 @,75782 | ©,08493 | ©,99239| @,89853 | =9,18439
13 76,00 P.77717 | 2.13047 | 9,98187 | ©,91168°| =0,04842
14 75,08 ~0,21487 | 0,11890 | =8.28254 | =0,16497 | 0©,99695
15 74,080 P,0"363 | 0,39598 | 0.86174 | ©,88687 | 0,08460
16 73,00 ¥8,99743 | ©,426089 | ©,78729 | B.,89711 | =92,19109
17 71,00 9,89251 | ©,14815 | D,B4853 | ©,94435 | =2,08924
18 70,00 0,83967 | =0p,020440 | @.916089 | 0,99682 | =0,06212
19 66,00 ~3,12552 | 0,41804 | =p,33427 | =0,22657 | 0,92695
29 65,00 0,42745 | 0,99268 | =~g,008381 | €,01233 | ©,19738
21 64,00 «(,22661 | €,20810 | ~2,35505 | =0,23286 | @,97672
22 63,00 0,69693 | P,78525 | ©9,41377 | 0,42831 | 2,1275%
23 62,00 0,78737 | 9,77432 | ©,48023 | 8,54439 | 0,16741
24 61,00 p,87319 | p,85335| @,91282 | 1,00829 | ~3,05838
25 60,00 p,81764 | 9,13237 | ©8.,79852 | ©,93204 | @,28444
26 59,00 ,91933 | 0,47261 P.65175 | 8,82185| @,26891
27 58,00 -3,17592 | @,14496 | =a,20405 | =0,05838 | 1,00400
128 57,00 “P,23793 | 0,11534 | =0,330224 | ~0,19954 | 2,98594
29 56,00 0.34173 | ©,32733 | p,17488 | @,34745| (,88162
30 55,00 0,99383 | £.44553 | ©,77040 | ©,88415| =0,07675
31 53,00 G,76607 | #,58878 | ©,67348 | 2,67254 | ©,29132
32 52,00 0,77693 | 8,11835 | ©,98934 | d,89575 | =0,19552
33 51,00 0,83928 | ©.33334 | p.91515 | 9.84241 | -0,12841
34 592,00 0,80935 | 0,24678 | 0,91615 | #,84491 | =@,13972
35 49,00 8,33772 | ©,21578 | ©,35485 | 0,41941 | ©,75469
36 46,00 ©,88551 | 0,62427 | ©,66723 | B,76172 | ©,24338
37 45,08 2,88352 | 0,07604 | ©,89832 | 0,99363 | =#,01343
SELF CORRELATIONS = INTER=UNIGUE
2 102,00 1,00007 | 8,46593 | ©,76277 | ©,87319 | =0.,10592
4 92,00 §,46593 | 1,00002 | ©,04513 | 0,n5335 | ©,14496
1 78,00 0,76277 | 0,04513 1,20000 | ©,91280 | ~0,20405
24 61,00 2,87319 | 2,05335 | ©,91280 1,00000 | -9,05838
27 58,00 -0,18592 | 0,14496 | =2,20405 | =0,05838 | 1,00000
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IIT - Region Peak Analysis

The chances are in any mixture most components will have different
molecular ion m/e values or different m/e values of first significant
appearance. If a rank analysis is performed on sub-matrices, of a
mixtures array M, formed by including increasing numbers of mass profiles
down the_mass range it is possible to detect the masses gt which signif-
icant contributions of successive components first occur. This is
illustrated in Table 18 by a three-component example,

It is thus possible to det~rmine large numbers of zeros in the un-
known component spectra as a direct result of such an analysis. As the
GAUSP or GAUSAV sub-routines are ideally suited for use with such variable
sizes of sub-matrices they were incorporated into a region peak analysis
sub-routine called RPA. This gives a statistical table for each sub-
matrix and can give the mass positions where the rank has increased.

The use of this technique also reduces the number of masses to be
analysed but the reduction need not be a significant one. .Tﬁis depends
on the positions of first significant ions for each component.

If the difference in numbers of mass profiles between the first
component and the last is at least one less than the number of components

an interesting result obtains i.e.

the spectrum of the lowest molecular weight component may be

derived directly without any knowledge of unigue peaks or gzeros.

e.z. in Table 18 there are six zeros between the highest mass and the
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first appearance of the third component. Thus the third component
“spectrum may be derived directly because the necessary conditions are
satisfied i.e. known zeros in the first six masses and all other com-
ponents contributing to them. An illustration of such a determination
will be given in Chapter 6-III.

The zeros found by this simple technique may also be used to check

and refine spectra derived by other methods.
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TABLE 18

UNKEOWN _COMPONENT SPECTRA

A + 4+ + +

L] .

B 0 0 O + + + + .

.

¢c JO 0O 0O 0 0 0 + + .

CORRESPONDING MIXTURES SPECTRA

—

2 o

sub- {"—————' |
s

matrice

- 1
W
U'IP
&
~

+
0

- positive element
- zero
- any element

RESULTS OF RANK DETERMINATIONS

submatrix rank
1 1
2 1
3 1
4 2
5 2
6 2
7 3
8 3
. 3
. 3
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IV ~ Spectrum Derivation and Refinement

Derivation
The Algol programme(48) method will not be described in detail,
suffice to say that |

(a) the peak analysis and spectrum derivation sections are
tied together.

(v) only a little information, the first unique peak in each
component group, is used.

(e) N mixtures spectra are chosen during the rank determining
step a3 being the first N spectra which are distinct and
not necessarily the most distinct spectra in the array.
The more different are the spectra used to form the
equations the more significant will be the results. It

is clear that the N most distinct spectra (patterns)

should be chosen.

The derivation method adopted here incorporates the following :

(1) choice of the most distinct spectra.

(2) utilization of all known zero elements to form equations.

A sub-routine called UNIQS is provided with all clusters of unique

peaks and uses a least-squares method to solve all the equations it

constructs.

A similar sub-routine called ZEROS is provided with the positions
of all zeros in the unknown spectrum where these are known from uni-

component peaks or other sources.

Both sub-routines use a method which calculates the matrix Q@ ,
as previously described, and produce normalised component spectra. An

example “of the use of ZEROS is given in Chapter 6-III. Full details of

both sub-routines are to be found in Appendix B.



Any spectra derived as a result of either method should roughly
- agree with the pattern of correlation coefficients in the corresponding
column of the COMPONENT DIAGRAM (Section II). This can therefore serve
as a semi-quantitative check on any spectra produced.

The most distinct mixtures spectra are recognised as having the

most diverse correlation coefficients given by the sub-routine FRACT (sce

Chapter 3).

Refinement

Refining methods are based on subjecting the derived spectra to
some check. The spectra may be mixed together in proportions dictated
by their‘unique peak sizes to form an array M”. The difference between

this and the original matrix, M’, gives a residue matrix R.
R=M-u"

An examination of R at each mass number gives an indication of
the errors present. These may be considerable, anyway, if only one
unique peak is used to re-combine each derived spectrumj several should
be tried, if possible. The sub-routine RESIDU will produce R for any
set of spectra derived and also gives the sum of the deviations at each
mass number., Any method of refinement will involve minimisation of the
regidues. Some refining was carried out by a sub-routine REFINU which
is given the masses present in each cluster of unique peaks and alters
the spectra accordingly i.e. where spurious numbers appeér in positions
which should contain zeros.

The particular mixtures spectra used (M’) are shown in Table 19

énd the component spectra derived using the following unique peaks :
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from . masses no. of equations
n-propyl ether 102,73% 4
toluene 55,92 4
ethyl acetate 61 5
benzene 78 5

Only these mass profiles were judged to be suitable for inclusieon
in the simultaneous equations by virtue of thei; sizes.

The matrix Q derived from the equations is shown in Table 20
together with the derived spectra. Table 21 shows the spectra after
application of REFINU j.e. introduction of zeros given by unique peak
positions (including unique peaks having profiles considered numerically
too small for inclusion in UNIQS).

The matrix R given by RESIDU for the refined spectra, using
masses 102; 92, 78 and 61, are given in Table 22. The differences
betﬁeen this case and the residues obtained using the original derived
spectra are slight except at the unique mass positions. (original
residues are not shown). The right hand column lists the absolute sums
of the deviations for each mass. The fact that most of the deviations
are negative illustrates- the defiency in using only one unique peak per

component in RESIDU. Perhaps the deviations could be reduced by:

(a) trying a variety of unique peaks in RESIDU.
(b) altering the unique peak heights relative to all

others.
(¢) a different choice of N mixtures spectra originally,

where N is the rank of the array.
Pure component spectra were obtained for the four major compon-

ents under almost identical conditions and are shown beside the calcul-

ated spectra in FIGS. 4 and 5.

It was found that the best results were obtained where only the
larger unique mass profiles were used i.e. where the inherent fluctuat-

ions have less significance. This will also be considered to some
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extent in the next Chapter where methods of analysing more difficult

" mixtures arrays are considered.



TABLE 19
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" mass

mixtures spectra

183,09
162,90
93.0
92,0
91,0
99,0
89,8
87,0
79,0
78,2
77,9
76,0
75,8
74,0
73,0
71.0
70,0
66,0
65,2
64.0
63,0

62,0

61,0
60,0
59,0
58,0
57,@
56,0
55, 0
53,0
52,0
51,0
5@, 0
49,0
46,0

1,63
14,25
2,78
30,82
50,80
1,87
3.02
5,90
2,99
9,63
136,62
29,60
7,72
3.55
9,23
49,83
1,83
17,67
1,595
7,82
1,73
10,27
4,13
38,32
2,60
8,77
2.27
3,@7
1,50
11,48
2,57
31,72
32,10

27,50

4,75
2.43

35,00

4,87
59,53
2,37
26,07
43,03
1,83
4,00
17,27
2,30
12,87
150,86
28,50
8,60

4,37

12,07
191,7¢@
4,80
51,60
1,402
6,77
1,67
11.29
77,33
89,00
7,10
34,17
5,60
8,10
3,03
41,50
2,73
34,43
35,17
31,57
5,40
3,83
186,87

7,67
87 .60
9,47

121,63
194,13

6,50
16,77
13,70
12,97

9,10

129,39
28,33

7,93

5.60
18,17

262,43

4,67
37,47

3,80
28,03

4,93
26,00
11,27
73.1¢@

6,10
46,87

6.60
16,33

3,93
57.20

4.10
31,77
42,83
34,67

5,97

6,07
87.30

2,36
24,32
4,57
56,19
52,62
3,23
4,53
3,62
1,53
2,58
31,01
7.74
2,58
2,81
5,76
72,62
1,54
8,77
2,21
13,74,
2,74
10,94
5,17
17,32
1,99
14,12
2,70
7,39
1,59
16,29
1,89
9,68
14,92
11,82
2,28
2,56
23,41




TABLE 20
MATRIX _Q

"9,81  =0,23 0,53  ~1,00

m@q@@ "9.08 0'34 “1’@@

0,14 =0,37 2,52 =1,00

Gubi "@.32 9.41 ui,@@

mass component, speotra'

103,40 2,61 0,57 2,43 2,29
102,90 38,28 2,99 9,11 t,21
93,0 2,76 5,11 1,17 0,22
92,0 6,16 | 57,13 9,94 2,22
91,0 3.86 | 190,00 6,59 1,36
90,0 1,24 3,88 2.28 0,43
89,0 0,87 4,02 @,34 2,37
88,0 2,54 1,35 16,66 8,99
87,0 2,54 2.33 5,85 1,32
79,0 2,23 1,34 3.94 5,99
78,0 ¢,05 8,02 2,32 | 109,00
77480 0,62 1,88 5,57 | 22,63
76,0 2,51 2,00 4,31 4,31
75,0 4,54 4,15 8,26 0,17
74,0 4,34 2.08 4,38 5,89
73,9 . 100,00 0,02 2.39 0,09
71,0 1,13 1,18 5,17 0,47
70,0 6,50 1,16 | 47.60 1,49
66,0 2,71 3,39 4,40 8,68
65,0 3,64 | 15,78 5,08 0,87
64,0 2,70 3,95 4,56 n,el
63,0 A,14 19,11 1.20 3,24
62,0 4,85 6,38 11,00 1,69
61,0 2,03 @,08 64,48 0,13
60,0 2,29 1.66 8,79 n,99
59,0 10,22 4,56 13,17 3,47
58,0 2,73 3,62 | 8,34 1,36
57,0 3,42 8,26 | 12,11 3,79
56,0 1,19 1,66 "3.72 0,38
55,0 19,82 1,42 2,79 0,14
53,0 1,96 2,38 3,31 8,55
52,80 6,94 5,94 | 11,85 | 19,65
51,0 4,83 | 11,07 | 8,92 | 17,98
50,0 6,34 8,94 | 12,67 | 14,67
49,0 2,24 2,31 | "4,05 2,02
46,0 1,38 2.68 3,91 2,08
45,0 13,94 8,62 (102,00 7,23




TABLE 2,
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mass

refined component spectra

103,
102,09
93,0
92,0
91,0
90,0
89,0
86,0
87.0
79,0
78,0
77,0
76.0
75,0
74,0
73,0
71,2
70,0
66,8
65,0
64,0
63,0
62,8
60,0
59,0
58,2
57,0
56,0
55 , @
53,0
52,0
51.9
52.8
49,0
46,0
45,0

2,61
38.28
3,0
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4,31
0,17
5,89
@,a
8,47
1,49
0,68
0.0
.81
3,24
1,69
0,0
0,90
3,47
1,36
3,79
9,38
e,0
7,55
19,65
17,98
14,67
2,22
.08
7.23
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TABLE 22

4

mass deviations sum

193,08 0,66 6,81 1,70 0,70 3,87
{e2,a 2.00 2,00 @,00 0,00 0,00
93,4 0,03 g,04 ~1,36 =0,46 1,88
92,9 .00 g,09 0,00 ¢,00 a,00
91,9 ~3,14 =2.,59 | -17,73 =35.73 29,24
98,9 =2,35 ~5.66 ~-7.69 “2.11 17,82
89,9 8,00 0,20 | ~0.26 |° =0,10 - a,57
88.0 '1093 '5072 "5018 '0085 13'69
8742 ~5,85 | =12.76 | =16,11 ~&,35 39.07
79,0 1,46 | 1.84 1,36 8,72 5,37
78,0 0,09 2,00 .00 p,02 0,409
77 .9 ~5,17 | »15,13 [ =12,64 | =3,01 35,95
76,0 ~2,21| =8,66 |-12,50 | =3.48 26,86
75,0 n4,50 | =16,24 | ~23.16 | =6,43 50,33
74¢ﬂ "3!57 ‘10.45 “'8.67 ) .2g03 24‘.72
73,8 12,61 36,17 33.58 9.08 91.43
71,& '2035 '5.34 -6989 -1.87 16.4@
79,3 ~9,79 | =26,98 | ~35,.75 =9,75 82.27
66,0 4,28 | ~11,45 | =15,44 -4,23 35,41
65, ¢ nB,69 | =8.43 | =5,39 | ~1,77 8,29
64,0 4,66 | =11,86 | »15,84 4,33 36,69
63,@ '@,23 "0.17 "1:29 -2042 291”
62.9 -8,97 | ~21,95 | ~28.91 =7.89 67.72
61,0 0,00 p.pe2 0.00 2.00 0,80
60,0 4,50 | ~10,67 | =13,76 -3.73 32,65
59,4 “8.43 | =7.22 | ~6.41 | =1,47 23,53
58'0 -'6.16 ‘13.59 -17.27 -4'067 41.69
57,¢ «13,54 | »23,43 [ =2/,62 ~7 .34 71,92
56, @ n2.10 | =5.27 | =7,08 | ~1,91 16,28
55,0 - 4,10 10,67 11.83 3,69 30,29
53,0 «1,75| ~6.78 | ~9,87 | =2,75 21.15
52, 6,11 | ~23.95 | ~34.63 | =9.,64 74,33
51,2 4,42 | =16.82 | =25,02 -7,00 53.26
50,0 5,68 | ~21,98 | ~32,12 | =8,96 68,74
49.@ "1999 "7u78 "'11,27 "3,14 24.17
46,0 “1.47 | =5.,05 | ~7,31 | -2,03 15,87
45,0 31,39 | =67,E7 | ~83,51 | =22.45 204,42




n -~ PROPYL ETHER

n- PROPYL ETHER
CALCULATED

TOLUENRE

TOLUENE

CALCULATED

FIGURE 4.

14 400 |]']l.' I '. A
t ¥ v v t

e,

5—

'~

50 5§ ¢ 10 15 %0

85

9 95 100 105

/
!. |!||1 !11['! lgl?l !n |!l . - } , i,
A .!!l. . ‘tllll‘l . Lped . .“_ ! i i .
45 S0 s5 o 6 D 15 %0 25 90 95 1000 10§
Ly l]hx .'lh lllll A R & [KRAN|
[ 1} [} 1Y l. 1) L} [ [ 1] 1) 3



ETHYL ACETATE

——

ETHYL ACETATE

FIGURES.

SALCULA'TE.'D

BENZENE
CALTULATED

“
1 NI T 1s 1. N |
45 % B & W ¥ B B o 95
Lt Wil '.“h I TR Y \
. !!l' . sl l':l' l' . . .
45 S50 155 6 & 10 715 % 8 g0 95 Ko

l -'!l J Y | 2t . ' l'




CCHAPTWR SIX

I -« FExt2nsion of Mixtiures Analysis Theory

II - Notes on Quantitative Aanlysis

ion of the

III -~ Example of the Applica

UNRAVL Procedure



97.

I - Extension of Mixtures Analysis Theory.

(49) effusiometry(sl) could provide

As discuszsed by HMonteiro and Reed
a method, albeit a difficult one, of detecting a peak unique to a component
where only one such peak exists. A logarithmic plot of its abundance with
time will yield a straight line where a leak has been used in the inlet -
system. The method is therefore only applicable where the componesnts are
sufficiently volatile to allow their entry into the ion-source via a leak.
It is also apparent that if there is only omne peak’unique to a particular
component there might just as easily be none (apart, perhaps, from the high-
est mass peak).

A more complex example of this type of approach has been given by
Grigsby and Cole(85) where graphs of peak height vs. time were plotted
and fitted to a polynomial by the involved least-squares technique of
Sillén(eé). This was done for materials distilled from the direct insert-
ion probe and its application to the problem, where a leak could not be
used, was considered. It was claimed that the components présent,in scme
peaks could be identified but this was not their aim. However, such a
method would still be experimentally exacting and the necessary computer
programming difficult and time consuming.

Both of the above methods would still require at least one unique peak

(49)

for each component. The simplest method at present requires at least

two unique peaks per component for a direct analysis.

It was thoughf by Reed(87) that the problem should be capable of a
unique solution where there are two peaks unique to one component and one

peak unique to each of the others.

One can imagine situations in which one component has several unique

peaks, another component has one unique peak and some other component none
»
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at all. A method is then required which is not experimentally exacting ,
uses all the information it has derived and yields a complete or partial
solution when it can proceed no further.

The following is a simple illustration of the development of such a
method. A generally applicable system is devised which greatly rcduces the
current restrictions. For statistical reasons the method functions more
religbly where there are large numbers of spectra. This is true of any
method of mixtures analysis where the data contains inherent fluctuations.

As discussed in Chapters 2 and 5 , unique peék detection may be con-
sidered as a convenient method of detecting zeros in the unknown spectra
and ensuring that condition (b) of Chapter 2 is satisfied. Any method of
reducing the present restrictions must necessarily involve an alternative
method of doing this. One possible solution to fhis problem presented it-
self in Chapter 5-I1 where mass profile correlations were introduced.

The first column of a COMPONENT DIAGRAM can be obtained without
reference to groups of unique péaks if it is assumed that the highest mass
peak in the mixture is uniqﬁe to the first component. This ié done by
calculating correlation coefficients of the first mass profile (highest mass
or unigue peak where known) with all others. Similarly any other column of
the COMPONENT DIAGRAM is found by correlating another unique profile with
a1l other profiles. The tendency of a component to be absent from a partic-
ular mass is given by a small coefficient, subject to certain qualifications
(see Chapter 5-IT).

In order to simplify the description and development it will be ass-
umed that the highest mass in the mixture is unique to one of the compon-
ents, A, the others being B, C, and D, all in an array, M, of rank four.
No peaks have been detectéd as unique to any of these components i.e. there

could be one peak unique to any of them but these cannot be detected since

»
at leagt two are required.
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In order to calculate the spectrum of A it is necessary to:

(a) detect as many mass numbers as possible to which A does not
contribute (at least one less than the number of components),
and

(v) be sure that all other components contribute to this set of

masses.

If sufficienf numbérs of zeros are detected then the chances are that
§ondition (b) is satisfied. This latter condition is necessary to ensure
that the system of simultaneous equations has maximum rank, as previously
discussed.

The positions of zeros in the spectrum of A may be found in two ways:

(1) As before, utilizing peaks found unique to other components
(does not apply in this particular case).
(2) Using information derived from the COMPONENT DIAGRAM. In this

particular case the first column is known.

As discussed in Chapter 5-IV the zeros detected in this way may be
used by sub-routine ZEROS to derive the spectrum of A. Since the positions
of many of the zeros may have been guesses it is best that several combin-
ations be used in order to check the accuracy of the result i.e. if the
'derived spectrum changes significantly on leaving out a zero or several
zeros then a wrong choice has been made. The process may be repeated until
a reliable spectrum is obtained i.e. one formed using several different
sets. Further details are given in Section ITI. The sub-routine TRIAL
produces spectra for any number of combinations of such zeros.
Once the spectrum of the first component is derived it may be sub-
tracted from each mixtures spectrum in the array M by taking account of
its uniquelpeak sizes, in this case the first peak. This may lead to error
' ’ (10)

build-up as in the subtraction technique of Kiser in conventional
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mixtures analysis. Where several unique peaks are available the accuracy of
the subtraction procedure may be improved.
If Ua is a matrix whose rows are the spectra of 4 as they appear in

¢
M then a matrix M is obtained on subtraction:

/
M=M-T
-a

The rows of Ua are obtained by considering the size of the unique
peak in each row of M. The matrix M' has rank one 1eés than M and it
is apparent that all peaks previously containing A contain it no longer.
This important result means that mixtures peaks which originally contained
A in combination with one other 6omponent now contain only the latter i.e.
are now uni-component.

The minimum condition necessary to derive the secoﬁd component, B, is
that at least two of the columns of M originally contained contributions
from both A and B only. On subtraction two peaks unique to B would be

fn ]
left and detected by the perfect correlation of their mass profiles (see

Chapter 5-TI and sub-routine MC).

Once a peak unique to B is found the absence of this component in all
other peaks may be indicated, as before, by correlating the mass profiles.
Zeros thus found may be used to derive a consistent spectrum of B. Form-
ation of a matrix Ub by considering the unique peaks in M’, and its

[

. . . ”
subtraction would yield a new mixtures array M ¢

WM -v
. = - b

Mh'has rank two less than M. Peaks which previously contained
Band C or. A,B and C would now be unique to component C and could be

fob LA

readily identified by mass profile correlation provided there were at least :
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two of them.
The spectrum of C may now be derived - -4 subtraction from M”

should yield the spectrum of D, the remaining component:

won
M=M -0
c

i.e. M”;ontains-the spectra of D as they appear in M.

The above developmént represents the worst possible case and in
practice many more unique peaks would probably come to light very early in
the process, before error build-up could szriously affect the results. As
soon as unique peaks are detected more zeros become known and also the rel-
evant columns of the COMPONENT DIAGRAM may be constructed. As discussed
in Chapter 5-II the more columnsg of this which dre available the more
accurate will be the initial guesses as 1o the positions of zeros. Further

zeros may be detected by the Region Peak Analysis as described in Chapter

5-II1.

The method is then capable of application in any situation between the

following limits:

(a) several unique peaks per component, and

(b) (one peak unique to the first component if this of highest mass.

OR

two peaks unique to the first component

(" two peaks containing a first component and second component.

‘_ ‘ two peaks containing a first, second and third component.

two peaks containing a first, second, third and fourth component.

\etc.

. The é&curacy of a determination would decrease betwecen (a) and (b) but
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can always be checked in some way:

(1) using sub-routine RESIDU_‘to recombine spectra utilizing several
unique peaks, perhaps.

‘(2) using various combinations of zeros to examine the stability of
the derived spectrum (see Section III, sub-routine TRIAL).

(3) observing the values calculated in a spectrum which should be
ZEeTO0.

(4) comparing the spectral pattern with the corresponding column of

the COMPONENT DIACRAM (see Section III).

The method described above has been partially programmed and an ex-
ample using a calculated five-component mixture containing only one single
unique peak will be described in Section III. The system of sub-routines

has been named UNRAVL .

The next section contains a few notes on quantitative analysis

illustrated by the above example.
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IT - Notes on Quantitative Analysis

An approximate quantitative distribution of the spectra in M may be
"
obtained by considering the matrices Ua ’ Ub ’ Uc and UdE M. If
ZU& is the sum of* all the peaks in Ua and Jm is the sum of all peaks

in M then the percentage contribution of the spectrum of A to M, by

total ion current, is given by

YU . 100

The percentage of component N is similarly given by

L% . 100
Lm
Results may be checked by summation as the sum of the ion currents
of all the components as they appear in M should equal the sum of the

ion currents in M, i.e.

Yom= Y0, +)0, + 1, + 10,

The method does not, of course, apply only to UNRAVL but may be
used where the component spectra and unique peaks are known.
A proper quantitative analysis of the mixture may be made by knowing

the sensitivities of the components.
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ITTI - ‘foplication of the UNRAVL procedvre to sclve a five-comnonent

system of mixtures in which there is one single peak vnigue to

<+

only one of the component spectra.

The method is applicable to any case between the limits discussed in
Section I of this Chapter.

Five pure-component spectra, A - E, as illustrated by the columns in
Table 23A were mixed t&gether in different proportions to give fdrty
distinct mixtures spectra, five of which are shown in Table 22B. All forty
mixtures spectra wefe stored on a disk-file and were numerically exact i.e.
no errors were associated with them.

A mass profile correlation matrix was formed using sub-routine MC and
no groups of at least two proportional profiles.detected (such profiles
-would have correlation coefficients of exactly 1.00000 since the mixtures
were calculated). The first mass profile was then assumed to be unique to
the first component (highest 6ass), A , and ites correlations with all other
masses examined (Table 2§§). The most negative and smallest values were
taken to represent those masses least likely to contain any contribution
from A i.e. detection of ihe most likely positions of zero elements in the

spectrum of A. These mass numbers were re-arranged in order of likelihood

of containing no 4, i.e.

MASS COEFFT.
9.0 - 00,1793
4.0 - 0.13083
6.0 - 0.12714 |

18.0 -0.11924
5.0 - 0.08600

10.0 - 0.05407

15.0 0.01660

-21,0 0.03%069

14.0 0.07436

23,0 0.1267T1

etc.
]




105.

Tvo of the masses listed above i.e. "5.0" and "14.0" have contrib-
utions from A but this is not known from the coefficients, If all the
masses contained no A and all such zero positions (7 4) were used in var-
iou; combinatiens to form equations and hence spectra of A, all such spectra
would be identical - provided that tﬁe rank of each system of equations is
four, as discussed in Chapter 5-I, condition (b).

If a peak containing some contribution from A is used to form an
equation in such a combination a deviant, erroneous spectrum wili be
produced. ’

A sub-routine called TRIAL was written to produce spectra for any
desired number of combinations of gzercs guessed from the correlation
coéfficients. Five representative mixtures spectra were chosen (in the case
of experimental data FRACT nduld be employed £o pick the best spectra as
previously discussed). Some of the spectra derived for the above example
are listed in Table 24 together with the particular masses used in each
case., From the whole set tried it was épparent that masses "5.0" and
"14.0" were 'bad" i.e. combinations containing them produced spectra
devisting greatly from the majority. The sub-routine ZEROS, similar to
the afore-mentioned UNIQS, is called by TRIAI and uses the zeros to
derive a spectrum. A warning is given when the system of equations has
rank less than the number of unknowns e.g. combination of "4.0", "6.0" ,
"18.0" and "23.,0" had rank three since no contributioﬁ from E is
present ( Table 24). In later work employment of GAUSAV or GAUSP is
recommended.

A spectrum produced by TRIAL can be easily checked because the patt-

ern of peaks should be roughly similar to the pattern of correlation

coefficients (in this case Table 23C). It is seen that the deviant spectra

are very different.

Ld

Once a consistent spectrum is found the corresponding zero positions

in this case at masses '"9.,0" "4.0" s "6.0" and "18.,0", are fed to a sub-
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routine called UNRAVL. 1In dealing vith experimental data any number
vgreater than four could be used to.give a least-squares solution. TRIAL
and UNRAVL can accept any number.

UNRAVL usec a peak unique to this component to subtract the der-
ived spectrﬁm from all forty mixtures spectra. A matrix U is formed as
described in Section I and subtracted from the original mixtures array, M,
forming Mf The existence of large negative peaks at various masses in a
real situation would indicate errors énd allow adjustment of relevant peak
heights in the derived spectrum. Estimates of e;rors may also be made by |
performing UNRAVL using various unique peaks where these are known,

The first five mixtures spectra in M’ are shown in Table 25A. The
first mass profile is, as expected, reduced to zero and the rank of the
mixtures array is now four. UNRAVL also writes M’ on to the same disk-
file, replacing M, and a new mass profile correlation analysis is carried
out.

Examination of the correlation matrix revealed two clusters of unique
peaks .1;3; unique to two compénents designated B and C. Peaks present

in each cluster were:

B - "2.0", "3,0", "20.0"
C = "14.0" , "17.0"

The relevant correlation coefficients for these masses are given in

Tables 25B and 25C .

The masses in these Tables were re-arranged in order of least likeli-

hood of containing their respective components: |

B C
MASS COEFFT. MASS COEFFT.
10.0 - 0.06539 # 2.0 - 0.04804
16 .0 . - 0.06122 £ 3.0 - 0.04804
9.0 - 0.05311 + 0.0 - 0.04804
#17.0 - 0.04804 12.0 0.01771
%14.0 ' - 0.04804 7.0 0.02040
» 5.0 - 0.01626 13.0 0.02882
etc. _e_;t_g_o
ra— 1

The starred masses indicate that the information was also available
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from the cluster of peaks found unique to the other component. This
illustrates the fact that as the analysis proceeds any new information can
be used to improve its accuracy.

Since the rank of M, is four only three suitable equations are nec-

essary to derive the spectrum of B or C.

Derivation of B and C Spectra

Positions of zeros indicated by the above Tables were used by TRIAL
to find consistent spectra, as Before.

The most consistent spectrum of B is given in Table 26A and com-
pares well with the coefficients in Table 2B , as a check. Once again,
suitable Spectra (four, this time) were chosen at random although this
would be best done by FRACT. Note was taken of the masses giving this
derived spectrum in TRIAL.

The spectrum of C can be obtained in two ways:

.1/ derived immediately from M in the same way as the spectrum
of B, or

2/ the spectrum of B may be taken from M giving w (using

UNRAVL). New clusters of peaks unique to C would be found
on application of MC. In the present case clusters would
also be found for components D and E ji.e. enough inform-
ation would be available to derive spectra of C, D and E
directly from M in the usual way.

In the present case of numerically exact mixtures the results of 1/

and 2/ would be almost identical so 1/~ will be described as an

illustration of the procedure in a less favoured example.
The whole procedure is illustrated by the block diagram in FIG. 6 and can
be accomplished by the sub-routines listed at the end of APPENDIX B.
Both 1/ and 2/', above, would be carried out i.e. a mass correlation

matrix is listed after subtraction of each component. The system is then :
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quite flexible allowing decisions to be made at each step.

The spectrum of C derived is given in Table 268 and compares
rell with the coefficients in Table 25C. Note was made of the masses
used to derive this specitrum.

Sub-routine UNRAVL was given this mass information for compon-
ents B and C, derived each spectrum in turn and subtracted them from
M’ giving an array M? of rank tro. In this case UNRAVL is activated
twice by the parameter "NREDS" being set equal to two. During the
earlier subtraction of A this parameter was ;et to one.

Part of Mm is shown in Table 26C . Mass correlation analysis
revealed two clusters of uni-component profiles. One was due to compon-

ent D and the other to E. The masses were :

D B
6.0 ©10.0
7.0 11.0
8.0 13.0
12.0 1640
©19.0 24.0
23,0 :

These masses are equivalent to those which would be found as the
highest and lowest ratios in Meyerson's methsd of solving binary mix-

tures43), Aotual coefficients are listed in Tables 27A and 278. M

*

then contains forty binary mixtures.spectra. They may be separated by
Meyerson's method or by an equivalent UNRAVL method using two spectra.
The latter has the advantage that all the uni-component peaks are used at
the same time to give an averaged solution. Two spectra were chosen from
MM'. The zeros in the spectrum of D are at masses "10,0", "11.0",

"13.,0", "16.0" and 524.0" . Similarly the zeros in the spectrum of E

are those at masses unique to D. Submission of both sets of masses to

UNRAVL (NREDS = 2) produced the spectra of D and E shown in Tables 27C

-

and 27D , respectively.
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TRIAL and UNRAVL as described in APPENDIX B and FIG. 6 can
be applied to any situation where fewer than N clustere of uni-component
peaks are detected, the rank of the array being N. The limitations are
discussed in Section I,

The unravelling process at each stage in the above example is

illustrated by the peak compositions in Table 28.

Determination of the spectrum'of E immediately from M

If the first eight masses are introduced into TRIAL asg having zeros
in the'spectrum of E the latter is immediately derived and may be used
to check the spectrum of E as derived during the last stage of UNRAVL.
The zeros in this case may be obtained by employment of sub-routine RPA
as discussed in Chapter 5-III; A spectrum of E derived from M! by
chance, is the ninth column in Table 24 . It is identical to the spec-
trum given by the first eight zeros and may be compared with the spectrum

in Table 27D i.e. the spectrum given by UNRAVL. The slight differences

may be accounted for by :

(1) round-off (see Chapter 4-I)

(é) errors introduced by the subtractior process.

(3) perturbations in the derived spectra caused by the rank of the
.gystem of simultaneous equations being affected by the chance
presence of a relatively minor component i.e. at the particular
masses considered one of the components may be present to a
lesser extent than the others. This reinforces the desirability
of using as many masses as possib}e when forming the equationms.

Such perturbations are noticeable on comparison of spectra from

TRIAL.

Application of UNRAVL may prove useful in separating the super-
imposed spectra of pyrolysis products, where the existence of two unique

-

peaks per component is less likely. This would also apply to species being

formed thermally in the ion-source.
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TARTE 23
ﬁ\o A B c D _E MASTES
411,000 0+009 0,000 0,000 0,000 L.0¢
14,000 [253+000 0,000 0000 0,000 2.%0
65,000 224000 0,000 0,000 0,000 3.0
0,000 14000 77,000 0,000 0,c00 4,00
50,000 18000 560,000 0.000 0,000 5.7
0,000 02000 |140,000 | 27,000 6,000 6.07
0,000 [1134000 0,000 | 840,000 0,000 7.92
140,000 |333.000 0,000 | B40,000 0,000 8.0
0,000 000D |666,000 | 7,000 | 99,000 9.02
0,000 0000 | 90,000 0,000 | 860,000 10,20
0,000 |560:000 65,000 0,000 25,000 11.27
100,000 [ 22.0%0 0,000 50,000 0,000 12.¢9
0,000 19009 0,000 0,000 16,000 13.02
20,000 0+000 77.000 0.000 0,000 14.22
0,000 | 45.000 [190.,000 | 99.000. 20,000 15,7¢
70,000 0020 0,000 04000 | ]6%5,000 16,72
90,000 0e0N0 200,900 0,000 0,000 17,00
0,000 | 20000 | 90.000 06000 0,000 18.00
120,000 02000 0,000 | 55,000 0,000 19,09
580,000 | 100¢0C0 0.000 0,000 0,000 20.00
0,000 0+000 0,000 25,000 | 100,000 21,909
0,000 |155¢000 23.000 99.000 50,000 22.02
0,000 04000 | 80,000 | 110,000 0,000 | 23.22
77,000 | 23.000 0,000 | ""0+000 {111,000 24,00
190,000 (460,000 | 80,000 0,000 0,000 |25.¢2
250.710 | 423,330 41,1080 | 295.920 | 427,440 1,0000¢
71.798 67,550 | 16,580 63,792 | 115,735 @,32376
45,150 71,670 7.820 51,471 76.398 2.95771
806.777 3,371 9,848 34,542 8,399 | |-0,13083
597.P16 58,416 6.136 | 269,421 76,916 | |~@,p8600
143,204 6,454 3,049 74,140 24.368 | |~3,12714
111.750 199,710 101.076 | 544,365 | 649,189 0.37499
252.6508 | 390.5306 | 128,396 | 692.296 } 883,567 9.51974
749.515 | 26,435 41,909 | 357,590 60,163 | |=9.17903
788,902 184,974 356,651 733,500 278,368 -2 .05407
225,542 123,327 43,974 165,768 234.232 @¢,25137
71,50¢ 118,129 16,940 187,671 148.798 0.93198
17.747 7.422 7.775 16.994 12.718 ¢.19129
89,477 21,831 2.008 45,979 23,510 @.07436
228,080 35,594 22.141 165,034 | 192,363 2.,01660
176,729 | 107,492 75,425 184,258 | 125,600 @,35485
255,620 93.820 9,028 146,8¢0 100,640 6.25535
95,324 | . 4,704 1.2¢9 41,146 11.166 | |~¢.11924
78.788 135,159 18,182 120.5920 164, 400 g.95925|
378.8080 | 618,400 64.000 | 438,838 | 643,190 %,98748
83,730 26,700 44,280 96,508 50¢.000 0.03069
112,348 64,194 41,165 144,217 156.074 ,31856
91,288 23.548 12.372 | 191,009 82.016 0,12671
142,885 107,949 55,112 | 159,233 124.798 0,56999
311,188 | 292,748 46,608 | 267,258 | 384,370 2.55467
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TABLE 24
1 2 3 '8 5 6 7 3
7%.86| 50.68 76.86| 70.86| 706.86| 23,33| 76.86| 76.86
2.400 204.33] 2.42| 2.41] 2.42] 21.49| 2.42| 2.41
11,21 9.,63] 11.21] 11.21] 11.21 5,521 11,21 11.21
@.90 gcﬁg @oea @.”g @.Gﬁ ﬂ.ﬂa Q-QQ g Qa
8,63 @.608] 8,62 B8.62] 8.62| 3.99 8.62| 8.62
g.onl G.o6| @0.060| ¢.00{ O.96| .06 G.06| 0.9
g.04f 66,41 9,068| @.e0| L.o¢g| 73.83| £.860| &.00
24,09(160.00| 24,14 24,14| 24.14]160,08| 24,14 24,13
g.0 p.0¢| ¢.06| 0.06| O.p2| pB.¢S| F.¢¢| .00
g,05] 71.95 3.00 g.9¢| O.0¢| 88.¢¢| 0,09 g.01
@.020 42.44| B.01| 0©.96| £.91] 47.19| @.pd | ©.00
17.24] 17.42| 17,24 17.24| 17,24| 11.38| 17.24| 17.24
g.00f 2.76| @.,08| g.00| L,69| 3.07| £.,00| £.00
3.45( 1.44) 3,45 3.45) 3.45| @G.¢8| 3.45| 3.45
.01 9.33| ¢.00| 0.4 &.06¢| 16.38| @¢.00 | €.09
12.06| 22,67 12.067| 12.07 ) 12.97] 19.61 | 12,07 | 12.07
15.52| 8.42| 15,52 15,52| 15,52| 2.1¢| 15,52 15.52
g.00| .27 w.00| 0¢.00] died| ¢.3| 0.69 | H.00
26,69 18.61] 2¢.69 29.69| 26.69} 11.11 | 206.69 | 26.69
166,00 78.87|10¢¢.90|1606.C0|1606.060| 41,38 (166,00 108,09
g.01| 18.24| ©,00| p.008| g.60| 11.38| 6.00 | £.00
g.01| 22.21| @.08] d.08| £,00] 24.69| .96 g, 00
#. 00| 6,56 3,00 ©£.00 g.88) 7.29 g.09 | 8.00
13.27! 20.63| 13,20 13.28| 13.29%| 16.79| 13.28 | 13.27
32.74| 56,19 32,76 32,76 32.76| 47.30 | 32.76 | 32,76
9 10 1 12
G.01] 42,49 76.86| 7¢£.86
.01 1.45] 2,40 2.4t
g:gg S:gé 1%:5% 1;:5% Spectrum Hasaes used
8,00 5.i7| 8.63) 8,62
6.0 6,00 ¢.00| 0,00 1 9 4 6 18
.03 ¢.¢3| ¢.04| &.00 . 2 9 4 6 5
0.03| 14.48| 24,99 24.14 3 g 4 6 10
11.51] 11.51 g.01 .00 & 9 4 6 15
104,00 {168,060 ©.04| 0£.00 5 9 4 6 21
2.92 2.91 g.62| ¢.00 6 9 4 6 14
0.06) 16.34| 17.24| 17.24
1.86| 1.e6| ¥.¢0| @.00 7 9 4 6 23
6.00|. 2.07| 3.45| 3.45 8 9 4 6 13
2.33| 2.33| ¢.99| .00 9 4 6 18 14
19.19! 26.42| 12.08]| 12,07 10 4 6 18 23
g.00| 9.31] 15.62| 15.52 " 4 6 18 13
2.9 £.00 g.,00 g.060 12 {? 4 618 10 15 21 23
.00 12.41 | 280.69 | 20,69 and 13
.01 59,97 [105.090 |16¢.060
11.63] 11.63]| #.00| ¢.00
5.82| 5.81| d.01| ¢.09
g.00| pg.00| .00 £.09
12.91 | 26.87 | 13.28 | 13.28
g.01 32,74 32,76

19,064
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TARLE 25
1,0 0.d¢ 0.0¢6 0,68 g.20  £.69
2.2 63,29 91.12 306,19 86.03  2.55
3.0 5.50  7.92 26.63  7.48  £.22
4.0 86,78 12.76  17.89 5,04 43,68
5.0 666.50 62.63 28.64  8.13 316,79
6.0 143,26 14,58 29.53 4,28  §6.72
7.0 111.6¢0 56.59 999.25 155,30 236,21
8.0 167.44 136.89 1268.44 238.87 238,66
9.0 749.51  67.93  19.36  84.98 378.63
16,9 788,73 17,43  35.21 708.49 51,89
11,0 225,46 208,27 679.26 211.20 42,32
12,9 10,51  8.93 78,14 14,48 14,23
13.0 17.74 6,99 23,62 19,63 .21
14.0 77,27 7.72  ©,94  @,28 43,53
15,0 228,66 37,41 159.62 46.31 135.61
16.0 134.06 1,69 6,66 135,89  0.22
17.0 200,71 28.05 2,45  @¢.72 113.08
18.0 95,32 16,23 25,31 7.12 51.09
19,2 5,51  1.11 56,67  7.78 15,41
20.0 25,01 36,02 121,82 34,00 1,01
22.0 112,30  66.53 291,72 167.8% 42,30
23,0 91,27 106.21 114,26 15.68 76.02
24,8 95.94 9,42 32,32 99.24  £.,38
25.8 195,35 173,70 557.69 156,78 49,88
B. [mass 2,00 | MAss 14,88 | C-
520628 1,0 -8,21717
{,00000 2,0 ~@, 104804
1! 29009 3.0 -0, 84805
B.13082 4,0 @,96398
0, 01626 5,0 ¢.99949
0 00072 6,0 6,98967
0.473p8 7.9 o, 83985
0.67021 8.1 0, 02040
»? 05311 9,0 ?,98956
0. 06539 10,0 0.20075
899156 11,8 g.07388
0.6938a 12,0 0.01771
6.74420 13,0 P ez882
-3,04804 14,0 {00000
0,27155 15,0 0.88867
g 06122 16,0 @,29923
004804 17,9 100000
9.16948 18,0 897625
0,33377 19,0 0.05077
1,80000 28,0 804804
B,00173 21,9 0,16791
0.68593 22,0 0,12432
0,20237 23,0 0.71137
B,14238 24,0 9.08865
0,98467 . 25,0 9,12689
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TABLE 26
D,0
45,21 B. oo
3,93 ’@'gg
2,50 11706
3,22 84,08
8,06 24102
17.97 9,00
57,76 0,20
6,00 100,00
6,00 13,52
100,00 9,76
3,83 B0
3,39 2,00
¢,00 11,56
7,82 28,53
0,03 8,00
2,00 30,03
3,57 13,51
Ba11 2’00
17,87 0,00
8,06 o,
27146 3’25
6,24 xz’as
4,13 2ot
82,19 | ‘o
12,0]
1,0 0
2,0 »a:ge o000 o'
340 "800 0l00 e0i00 000
110 500 olom oion 2" 0d
. =) "ot
718 soa1 20136 8r7.51 121110
8.0 86,58 20,47 57754 120199
9,0 81,13 1'15 11'24 A
10,0 698,40 8,41 '3 700’16
1,0 20,24 0,19 , .
12,0 S35 1.2 soiz2 7420
2.0 Sis 1,22 2,22 7,20
10 | lae -alon .0lon  sat00
15,0 20'43  olgn 10421  30i74
i;s,g 134,02 1:64 5:351’ lgg'gz
' 8,00 :
7.0 i 0,00 0,00 a.00
19,0 210 Gl5 slgy  7.4a
. nQ,00 ” :
2(:0 83,63 0136 2033 iy
2210 35:75 2106 105,44 5546
gi.g 30.65 1:70 lli:gg ?2‘32
, 0,16 1,10 4,36 91,38
250 w000 0,00 0,00  @,00




TABLE 27

MASS

6,00

TI%)
@ 14591
uq’n6Q44
0,22161
0,24512
1, GQQUG
0,99957
g 09959
@, 1268
=0, @4109
nl), @4636
g, 999¢9
90 D103
e@ 19052
2, 96581
90,04113
£0,02129
69208@5
1,00962
-ﬁ 04419
g, 14569

0 82652'

¢

1,00009
=0, 54114
a@ Q7]73

0.0
0,00
7,00
@.0
D.00
2.98
99,21
100,90
0,94
0.03
g.42
5,95
8,01
0.0
11,70
0.17
0.9
0,0
@,0
2,71
11,58
11,99
g1l
7,00

114.

1,00
3.640
4,00
5,00
6,00
7 .80
8,99
9,09
10.99
11 0y
12,080
13,@0
14,00
15,09
16,00
17 .9¢
19,00
28,00
21,99
22,09
23,00
24,00
25,00

1,00

2,00
3,00
4,90
5,00

6,09

7,00
800
9: 00
10,00

11,00

§2,00
13,00
14,00
15,909
16,00

17,00

18,00
19,00

120,00

21,00
22,09
23,00
24,00
25,00

fMASS 10,09

0,0
] 07637
) ?ﬂ879
o, 9/730
=0 29631
wQ,W}iQQ
uﬁ‘ﬂdq
n®.®4251
0,99855
1,002290
9 99989
=0 0198?
1, 90390
v@A;SOSQ
0.21774
1, 00308
o 3811?
PO 15989
e@,04108
=0, 99314
60,9825}
9, 5"789
wd, 204193
1, Qﬂﬂﬂﬁ
[7] 29197

7.0
6,00
7,00
©0.090
g.15
a,22
0,34
11,43
- 109%,08
3.21‘
7,02
1.87
2.9
2.35
19,06
0.0
0.0
0,31

11, \79
5,92
ﬁ.71

12,82
¢.00




TABLE 26

11%5.

Peak Compositions at Fach Stage 2f the Unravelling Procedure

Mass

M

/

Mﬂv

M 74

O @O 9 O U B W N -

1¢
11
12
13
14
15
16
17
18
19

21
22
23
24
25

CDE
CE
BCE
ABD
BE
AC
BCDE

AC
BC
AD

DE
BCDE
CD
ABE
ABC

BC
BC
CD
BD
BD
CDE
CE
BCE
BD
BE

BCDE

BCDE
cD
BE
BC

Q
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APPENDIX A - Spectrum Measurement Details

APPENDIX B - Computer Programmes

APPENDIX C ~ Statistical Notes
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APPEEDIX A

The method of preparing tapes from the d-msc "pencil-follower!" wil? be
1llustrated by an example in which three simple spectra of six masses
each are measured. The third mass in case has been measured on the second
galvanometer scale (x10) on ultra-violet sensitive paper and the fifth
mass on the third scale (x30).

A print-out of the tape (with explanations) is given below together
with thelcorresponding computer programme,

The programmue ignores all "x" co~ordinates though use could be made of
these to fix mass nmumbers. Repetition of base-line digitisations is made
each time to allow termination of the process when desired (removal of the
perspex rectangle).

In practice charts were prepared beforehand by ringing those groups of
peaks to be digitiséa. During digitisation severel carriagé returns were
“introduced (via the ke&~board)"after each group. The patterns produced on
printing out tapes (flexowriter) were used to check for missing numbers
and extra digitisations.,

The programme listed below is written in Egdon Algol for use with the

English Electric KDF9 computer which has a tape~reading facility. Base-
- line "y" co-ordinates are subtracted from relevant peak co-ordinates to'
Yield peak heights which are scaled uﬁ as necessary. A FORTRAN IV “‘sub-
routine called CARD is then cglled up to print out the spectra and punch
them on to cards in any‘desired format.

A diagrammatic plan of the '"pencil-follower" is given in FIG. A.

-



_&DATA
10003

10;

303

1
1600310003
160038003
160032003
200031543 ;
1800312503
-1 3160039303
1400320003
-10312003;3603;
1000311003
3?993

3

16003999;
16003799;
16003199;
2000320003
1800312603
-1 3160033703
1400311003
-1031200;270;
1000312753
99993

33
1600310003
1600;800;
160032003
2000317603
1800312903
-1316003950;
1400320103
-10312003360;
100031143 ;
9999993

SCARD 9>
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NEANING D = BIGITISATON

CONTROL CHRAARCTERS

EXPERIMENT NUuMRER

FIRST SCALE FRCTOR

SECOND SCALE FACTOR

SPECTRUM  NUMBER -

D oN FAST BASE-LINE X375
ON SECOND EBASE- LINE
ON  TwiRY GASE - LINE
- XoP ©F FWRST PEAK

3 SIGNAFIES > oN SEcoNd 8aSeELINE

D

D

)]
. D - . “« SEOND »
s\

P
- 10

3 SIGMNIFIES D 6N  TwiRD BASE-LINE
D

SIGNIFIES END OF A SPECTRUM
SPECTRUM NUMBER

eYC,

SPECTRUM NUMBER
ETC.

SIGNIFIES END ( ®inAL S(’ec‘rRuM)
CONTROW- CHPARACTERS
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WBEGIN

PREAL?

Fo

YrY3s

YBa»

FlsF2,Y10Y2,0180%}

¢ INTEGER?

F ity

LABEL,

17 Js Ko NEXPFIT

S INTEGER? JARRAYY
SLAB(174%20;

¢ ARRAY?
BAGS(1%¢2150),

PEAK(12+72001%4%150)

FHI L AYQUT(?7(”DND, DRy 21}

FHT=LAYOUT(2C¢? 45 DDDDDDD2Y? )}

WRITET(702?(?READ TEST TAPE 3 SpECTRA AND BASELINES#)se)l

LABEL=REAND(20)}

OUTPUT(702,LABEL S

FlasREAD(20)}

QUIPUT(70sF ]}

F2=READ(20)

QUTPUT(70,F2)¢
WR;TET(70a’("('cc’)")')3 ,

= l:

L1%, ’
SLAE<I)=READ(20):

QUTRUT(70,5LAB(1) )3

DISzREAD(20)}

YI=READ(20);

OUTPUT(7Cr Y} )3

DISzREAN(20}3 ' '

Y2:READ(20);

oUTPUT(700Y2);

DISzREAD(20)3 :

Y3zREAD(201}] | -

OUTPUT(T70sYD) 2

HRITET(7002¢?2(2CCC? 12823

RRITET(TO0s2¢?7(¢7CCCT 2223

WRITE(70,LAYOUT(2(#NDDD2)2),SLARC]) )} -
VRITET(70s2(22(20C?)02)2);

PFOR? Js=l PSTEP# 1 2unNTIL? 10 202

IBEGIN?

XEREAD(20)} . .

QUTPUT(T02 %) 3 C

PIFt ABS(X=999999) ?_y? 0,0} 4THEN’

6079 U513

PIFs ABS(X=9999) 2| T? 0,0f ?THEN?

SBEGIN/ '

[elel

*GOTO? L3

*END?}

VIF? X ’LT? 040 2AND? X 26T aa 0 ?THEN?

'REGIN?

YBay2) . :

FeF)é 2GOT0? L4

PEND?} .

SIF? X PLT? =5,Q 2AND? X 2672 wj240 ?7HEN?

FREGIN? QQEIEE

OVERLEAF
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YB=sy3)
FeF2i 'GoTO? |4y
'END‘}
YSREAD(20) !

QUTPUT(70,vy}
PEAK( T U5 (v=v])}

QUTPUTITO,PEAKI T, U2}
160710 L33
L4242
DIS=READ(20,:
YRREAD(201):
' QUTPUT(7?0,Y)3
PEAK(TI»J)aFwlvaya)y
QUTPUT( 70 PEAK(],u) )}

L3,
1END' )
L3,
NEXPg]i
QUTPUT(TOsNgXP)}
KeJml}

OUTPUT(70,K 3 ‘
WRITET(70,7(*2(7Cce)?a)y*)¢

CARD(PEAK» HEXP X))} Y
PEND? ' '
>EGTRAN COMPILER HARK NQe 302 - DATE 23/07/73

SUBRQUTIHE CARD(X, )
DIMEISToN X(20,159)
10 FORHAT(J0F74})
11 FORMAT(13F1342)
DO 100 I=®],N
JO0 PUNCH Qs (X(Tad)rdrlnil)
D0 209 ysit
‘200 PRINT 1je(X(Clod)olsloy)
RETUYRY
END
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APPENDIX B.

Although considerable time was spent writing and developing the
programmes it cannot be claimed that the methods used are the best with
regard to saving of time and storage space.

It has not been the purpose of this work to producé a single computer
programme but rather a number of useful sub-routines which can be conven-~
iently joined by the user depending on his particular needs. The present
system alléws the analyst to interact with the data and bring his judge-
ment to bear on the problem. Several examples of calling programmes are
given.

In one case use was made of COMMON statements to reduce storage
requirements (rank analysis on Mixture IT). It is obvious that greater use
could be made of such statements in future.

The programmes were not written by a specialist and the particular style
used is very simple. Anyone with a knowlédge of FORTRAN IV should éxperience
little difficulty in following them. It cannot be claimed that the best poss-
ible numerical methods have been used but the system is now'a very flexible

one.

Array Dimensions. In each case the array dimensions as written at the begin-

ning of each programme should be equal to or greater than the actual dimensions
uged. It is important to ensure that corresponding arrays in a series of sub-
routines called by one programme have identical dimensions.
In the sub-routines FRACT, MC, CDG, and PCA each of which call up an
I.B.M. Library sub-routine, CORRE, the dimensiSn statements must contain
exact dimensioi-3 unless the sub-routine ARRAY is also used. An example of the
use of ARRAY in variable dimensioning is given in sub-routines UNIQS and ZEROS.
‘Details of the storage methods used are given in the I.B.M. manua1(71) .

CORRE computes means, standard deviations and product-moment correlation

coefficients.



List of Sub-routines

PRA general 123
PRAG general 123
SELM general 124
SELECT (MASSES) general 125
example: Use of SCREEN Chapter 3 126
SCREEN " 127,128
FRACT general 129,130
DATA general 130
DIFF Chapter 3 131,132
MAV " 133
MSTATS " 134,135
example: Use of GAUSP Chapter 4-1 136
GAUSP " 137
GAUSS " 158,139
ELTM " 140
PIVOT " 141
GAUSAV " 142
PCA Chapter 4-1II 143
FILTER Chapter 5-I 144,145
MC Chapter 5-I11 146
CDG " 147,148
RPA Chapter 5-ITI 149
example: Use of UNIQS Chapter 5-IV 1%0
data listing: Mixture II " 151
UNIQS " 152,153
ARRAY (double precision) " 154
RESIDU " 155
REFINU " 156
example: Use of TRIAL Chapter 6-III 157
TRIAL " 158
ZEROS " 159,160
SEL general 160
example: Use of UNRAVL Chapter 6-III 161
UNRAVL " 162




123.

V1V G LEVEL 20 PRA ) DATE = 73209

SUBROUTINE PRA(A,NEXP,NOM) -
DIMENSION A(28,142)
¢

B R - e A
CMLM.LJ—L-L.LA—L.LJ—ML.L&“&MLMM-L-LJ-LJ..L.L-L“-&&-&J-LM-&W-L-L-&M

c INPUT = MATRIX A, NEXP ROWS, NOM COLUMNS
c SUBROUTINE PRINTS A

c e dncdondonde cbende o ks ook ks dhacks cdodonde e s haadechs cde e oo cde il sk mde e cdocde docdeds wrdneds chocdodende ot b vk b ok b oo dode o B ody

FORMAT(12F10,3,/7/)
FORMAT(12F10,3)
FORMAT(///7/7)
FORMAT(//)
JL=0
JT=0
JH=0
100 JT=JT+{
JLsJH+}
JH=JTx12
JH=MINB(JH, NOMJ
PRINT 4
DO 200 I=1,NEXP
PRINT'2,(A§I,J),J=JL’JH)
200 CONTINUE
IF (JH, LT NUH)GO T0 190
PRINT 3 ° -7
RETURN .
END

H W N -

, SUBROUTINE PRAG(A,NEXP,NOM,M,N)
) DIMENSION A(28;142)
INPUT=
MATRIX A HAVING NEXP ROWS AND NOM COLUMNS
OUTPUT=
ROWS M TO N ARE PRINTED OUT

OO0

FORMAT(12F10,3,/7/)
FORMAT(12F10,3) .
FORMAT(//7/7)
FORMAT(//)
JL=0
JT=0
JH=9
100 JT=JT+{
JL=JH+{
JH=JT*12
JH=MING (JH, NOM)
PRINT 4
DO 2208 I=H,N
PRINT 2,(A(I,J),J=JL,JH)
200 CONTINUE
IF(JH, LT ,NOM)EO TO 100
PRINT 3
RETURN
END

DN
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Wwiv 6 LEVEL 28 SELM ) - DATE = 732¢7 ' a9/
SUBROUTINE SELM(A,HNOS,NOM,K) |

B g T e O S O S T I Y v Uye Gy Wy S W ow Vo S W U W Tt T O B B S e B T N N Bttt 2t ettt

PROGRAM ELIMINATES CERTAIN SPECTRA FROM DATA MATRIX -
GIVING CONTRACTED ARRAY, '

INPUT =~ A, OF NOS ROWS AND NOM COLUMNS,

READS IN FCRM(Y4) INTEGERS WHICH ARE ROW NUMBERS oF
UNRESIRED SPECTRA,

FINAL CARD CONTAINS &,

OUTPUT = CONTRACTED ARRAY A WITH K RONS,

b e ordode e o idis s nbs bt s il o sl e o b ol o sdv als e whe shonde ide cde e s dheaoctads s vdouls oo cbrdocdo ke dde o sde sl bt afies bonte oede - e bondactve b do

OO0 OO

DIMENSION A(133,37)
DOUBLE PRECISION A
1 FORMAT(I4) ) .
K=1 , -
L=0 :
READ 1,1L
DO 100 I=1,NOS
K=I~L
IF(1,EQ,IL)GOTO 120
DO 118 J=1,NOM
118 A(K,J)=ACI,J) _
60TO 1@¢ ' o
128 CONTINUE
L=+l
READ 1, TL
1880 CONTINUE
RETURN
END

%
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AN IV G LEVEL 20 SELECT DATE = 73227

SUBROUTINE SELECT(A,NOM,NOC) .

c | |

C.A.J»A.-A-.L-l..&-.&.-;--‘--L.L.L..A.A--L..A..L [¥ WU TN YO VU S WO T O TS WY WO ST VS VT YOS VUM D VU U VA WO YO T I KO U VO U YO TR S T TN T W SO T DRY B W TR S Y

C THIS PROGRAM FORMS A CONTRACTED ARRAY 'A' BY

C CHOICE OF CERTAIN ROWS (SPECTRA) FRQM 'A',

c - A

c INPUT

c A, INITIAL DATA MATRIX,

o NOM, NO, OF COLUMNS OF A

c NOC, NO, OF ROWS SELECTED,

c READS IN =

c KVS, VECTOR CONTAINING NOC INTEGERS GIVING ROW

C NUMBERS SELECTED, FORMAT(1214)

c : :

c SUBROUTINE '"MASSES' IS SIMILAR BUT COLUMNS ARE

C SELECTED,

EA—M.&A.A.J—A.J.M ¥ VT VO WO VO WU N X O WO S W VO T W VO T Y YW VOV W W S U T RO UV S O WY TV T YOI BEV WU R SOU R R ROV RV U S A S Py

DIMENSION A(23,37),KVS(10)
POUELE PRECISION A '
3 FORMAT(1214)
READ 3, (KVS(I),1=1,N0C)
DO 109 I=1,NOC
DO 100 J=1,NOM
K=KVS(I)
100 A(I,J)=A(K,J)
\ RETURN '
END
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Iv 6 LEVEL 227 MAIN : DATE = 732¢7

DIMENSION A(28,142),AT(142,28),KVG(28)

[ SO SN DU SV DN DO WU ST W BT PVRE TF YOV SIV U YOO WY WL SN WU S N SR P W T ROV AU YO eV W WU T W Tt TO WL S B S I B I N I S R R R B ]

EXAMPLE OF USE OF 'SCREEN',
REF, MIXTURE V, '

PROGRAM READS IN =
NOS, NUMBER OF ROWS IN A(SPEGCTRA),
- NOM, NUMBER OF PEAKS (COLUMNS OF A),
NOG, NUMBER OF GROUPS OF "IDENTICAL " SPECTRA,
KVG, VECTOR CONTAINING ROW NUMBERS OF FINAL
SPECTRA IN EACH GROUP, ’ ‘
A, MIXTURES SPECTRA, \
A 1S PRINTED OUT, TRANSPOSED AND PASSED
TO 'SCREEN',

Ardects ado oo sl ods sbacborchr wdhdwatrrobaadode odeob bl ods doode cbdoede ode adoed dords ok cddirode ade e whtods admatends adn ale wde e rwhoeds ¢ derlh e duedg oo wbaale

b
o

OO0 OOCOOO0O0OO 0000 nN

{ FORMAT(I4)
2 FORMAT(10F7,1)
3 FOR”AT(lZI&)
READ 1,N0S
REAND 1,NOM
READ 1,NODG _
READ 3, (KVG(I),I=1,NOG)
D0 100 1=1,NOS
' READ 2,(A(I;J)IJ=1'N0M2
182 CONTINUE
CALL PRAGCA,NOS,NOM,1,NQS)

TRANSPOSE MIXTURES ARRAY,

aXeEe!

DO 150 I=1,NOS

poO 150 J=1,NOM

CALL SCREENCA,AT,NOS,NOM,KVG,1)
CALL EXIT

END
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AN IV G LEVEL 24 SCREEN . DATE = 73207

SUBROUTINE SCREEN(A,AT,NOS,NOM,KYG,1ITI)
DIMENSIOM A(28,142),AM(28, 142),AT(142/28)rFC(28)
DIMENSION KVG(28),TIC(28)

B el ot =LY SRV B T TYS PRI FEVVRN B W ST SN WY I S0 PV AUV VW VU UOY VOV VIV U0V S SHU VW BN DU TRV SUF DI W W B T PR TP ST WOV TN NN YO VO VI W A T TRV T WY T eV )

PURPOSE -
THIS PROGRAM PROCESSES HMIXTURES SPECTRA FROM
A MASS SPECTROMETER, THE SPECTRA ARE IN
THE FORM OF GROUPS OF "IDENTICAL" SPECTRA
WHICH ARE EXAMINED TO REVEAL
POSSIBLE GROSS ERROQRS,
INPUT=
A IS MIXTURES ARRAY.
AT IS TRANSPOSE OF MIXTURES ARRAY,
NOM IS NUMBER OF PEAKS I,E, COLUMNS OF A,
KVG IS A VECTOR CONTAINING ROW MNUMBERS GF ENDS
OF EACH EXPTL, GROUP,
IF 1TI=1 A FULL P/0 OF EACH EXPTL, GROUP
IS GI1VEN,
IF ITI=8 A FULL P/0 IS GIVEN ONLY WHERE GROSS
ERRORS ARE DETECTED,
OUTPUTw
CORRELATION COEFFICIENTS OF ALL SPECTRA,
LOCATIONS OF GROSS ERRORS IN SPECTRAL GROUPS,
SPECTRA IN EACH GROUP ARE NORMALISED TO
THE SUM OF THE LARGEST 10N CURRENT,
MATRIX AN THUS FORMED 1S PASSED T0 !DIFF’,
OTHER SUBROUTINES REGUIRED= '
PRAG)FRACT,DIFF,DATA

e sdebesdaotacdnde vn e docde dede de b dunbe whe adonins chnrdn oo ade o i ode nloodrale b ode ode o e dhrde e shenly dotoate cbe afe s don et ol ade oy ode oo odn

COCODDOODOOO0On

OO0 OO0 0ONOOOO

FORMAT(I4) .
“FORMAT(1X, 'FULL P/0 EVERY GROUP',///)
FORMATCLX, 'P/0 SUSPECT GROUPS ONLY':///)
CALL FRACT(AT,NOM,NOS,KVG,FC)
FORMAT(1X, ' SUBMATRIX IN ORIGINAL FORM',//)
IFC(ITILEQ.@)G0TO 51
. PRINT 5
GOTO 55
51 PRINT 6
55 CONTINVE
K=1{
M=
50 N=KVG(K)
NUMGP=N=M+1

FINDS LARGEST SPECTRUM IN GROUP BY SUM,

~ O Ui

oao0n

BI16=0,.08

DO 13D I=1,NUMGP

LM+ I~} .

TIC(I1)=0,9

PO 140 J-l NOM

TIC(I)’TIC(1)+A(L:J)
140 CONT;NUE



AN IV G LEVEL 20 SCREEN cONT'D DATE = 732¢7

IF(YIC(I),GT,BIGIBIG=TIC(I)
1320 CONTINUE ' o

c
C NORMALISATION OF QOTHER MEMBERS TO THIS SUn,
C T -
DO 15@ I=1,NUMGP
LeM+I=i
DO 1568 J=i,NOHM
150 ANCI,J)=A(L,3)%xBIG/TIC(I)
CALL DIFF(AN,NUMGP, NOM,FC,M,1T1,170)
IF(C(ITO0,EQ.Q) (AND, (IT1,EQ,®))CGOTO 170
PRINT 7 .
CALL PRAGCA,NUMGP,NOM,H,N)
170 1IF(N,EQ,NOS)GOTO 500
M=N+1
K=K+
GOTO S92
50@ RETURN
END
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-

SUBROUTINE FRACT(X,N,M,KVG,FC)

DIMENSION X(142,28)

DIMENSION B(20@),FC(283),5(202),7(2008), XBAR(ZWU):KVG(Z@@J
DIMENSION V(BG@G) R(B@ﬁ@) '

b bbb dio ke B St b ol e o bl sy o e Sl ot o s b s e ode e s by ooy o bl o b ndecd ook dimdid ook b st

INPUT=

X IS THE TRANSPOSE OF THE CONVENTIONAL
DATA MATRIX, THERE MUST BE MORE MASSES
THAN SPECTRA 1,.E, N>=M, DIMENSIONS OF X
IN STATEMENT MUST BE (N,M) UNLhSS PARRAY!
IS USED,

N IS THE NUMBER OF HASSES,

M IS THE NUMBER OF SPECTRA,

KVG CONTAINS ROW NUMBERS OF FINAL

SPECTRA IN EACH GROUP,

QUTPUT=

FC CONTAINS CORRELATION COEFFICIENTS OF
FIRST SPECTRUM WITH ALL QTHERS IN ORIGIMAL
ARRAY, GRQUPED ACCORDING TO EXPYL, GROUPS,

SUBROUTINES DATA AND PRAG ARE REGUIRED,
CORRE IS AN I,B8,M, SCIEMTIFIC SUBROUTINE
IT CALCULATES THE PRODUCT MOMENT CORRELATION

102

104
110

COEFFICIENTS,
ALLJ L.LL‘J“_‘;“A‘:‘.‘;_LI.L‘J..IA;IL:_.;‘KL‘ '4“.“‘LL.§L*“HWJ‘*H*.&*
1 FORMAT(14)
2 FORMAT(1X,14,2X,'SPECTRAY)
3 FORHAT(1X,I14,2X,"'MASSES',//)
4 FORMATL(///)
5 FORMAT(1X,14,3X,F12,5)
6 FORHAT(erYSPEC',3X"FRACTN-COEFFICIENT"//’
PRINT 2,M
PRINT 3'N
J0=1
CALL CORRE(N,M, I0, XIXBAR S)VyR,FC/B,T)
1=}
DO 118 J=1,M

IF(I-J)102,104,104
Lel+(JxJmd)/2

GOTO 119
Led+(IxI=1)/2
FCCJ)=RCL)

PRINT 6

Kei

KV=KVG (K)

DO 120 I=1,M

WRITE (6, b) I,FC(T)
IF(I.NE, KV)GOTO 190
IF (KV,EQ,M)GOTO 108
PRINT 4

K=K+

KV=KYG(K)
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100 CONTINUE
RETURN
END
\ h .
AN IV G LEVEL 20 DATA - DATE = 73200

SUBROUTINE DATA

THIS DUMMY SUBROUTINE 1S USED
WITH FRACT,MC AND PCA (cp©®)

OO

RETURN
END
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SUBROUTINE PIFF (AN, NUMGP,NCOH,FC,M,ITI,ITO)
DINENSION AN(28,142),P(28,142),FC(28),DEV(28)

&MM&&*&LY%;&?M Aoy ade Boods che sdo s doadecd b sdo sds wde chondecde o by sdeorvttands Jhocdands do obecbo dhuids dv olo che absodewdorde
NPUT=
AN, NORMALISED SPECTRA IN GROUP BEGINNING
WITH SPECTRUM M,
NUMGP,NO, OF SPECTRA IN GROUP,
NGM, ND, OF MASSES (COLUMNS)
FC, VECTOR CONTAINING SPEC. CCRRLN, COEFFTS,
M, FIRST ROW IN GROUP 1S SPEC. MIOF ORIGINAL
DATA HATRIX,

OO0

DUTPUT»

POSITIONS OF SUSPECT DEVIATIONS ON SUB~
TRACTION OF NORMALISED SPECTRA (AND O/P

OF DIFFERENCES IF [70 OR 1TI=1),

IT0 BECOMES | IF SUSPECT DEVIATIONS ARE FOUND,

OTHER SUBROUTINES NECESSARY=~ PRAG,

ADJUSTMENT OF ERROR TOLERANCES = SEE COMMENTS, BELOM

¥ SYV SR T WSO SV WU S WY DU DRV S T VT PN I S e S0 T SO W B S R e O e B O B I T e A O Ll o 2

OO0 0CON

1 FORMAT(1X,'GROUP BEGINNING SPECTRUM ',14,///)

2 FORMAT(1X,'SUSPECT DEVIATION,,,SPEC NO, ',14,3X,'MASS ',I4)
3 FORMAT(1X,///+,'NO SUSPECT SPECTRA'Y»///)

4 FORMAT(1X,///741%,'GROUP PIFFERENCE HMATRIX',///)
FORMAT(LXy'SUM DEVIATIONS FRACTN, COEFFT,',//)
FORMAT(1X,F12,5, 4X,F12 5) -
FORMAT(I4)

FORMAT(//77)

FORMAT('1L')

PRINT 9

PRINT 1,M .

CALL PRAGC/N,NUMGP,NOM, 1, NUKGP)

170=0

SUBTRACTION OF FIRST SPECTRUM IN EACH NORMALISED
GROUP TO GIVE DIFFERENCE ARRAY 'D',

VoONG,M

CALCULATION OF % DEVIATION FROM HMEAN,

IF % > 20 AND SPECTRAL ELEMENTS > 12@.8 THEN ERROR ,
* "TMESE VALUES WILL DEPEND ON THE PARTICULAR UNITS

USED TO MEASURE SFECTRA

OO0 OO0OOO0OO00

DO 128 I=1,NUMGP

. DEV(1)=@,0

| DO 10& J=1,NOM

! D(I,Jd)=ANCL,J)=AN(I¢J)
P1=D(I,J)

D2=ABS (D)
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DEV(I)=DEV(1)+D2
D(I,J)=(D2/AN(L,J))}*100,0
PER=D(I,J) ' '
IF(PER,LT,28,8)G0T0 100
Kt=AN(1,J) ‘
K2=AN(I,J)
3 IF((K1,L7,109,08),0R, (K2,LT,100,0))GOT0 100
’ 1T0=1 ' B
PRINT 2,1,J
100 CONTINUE
120 CONTINVE
PRINT 8
PRINT 5 _
DO 150 X=1,NUMGP
NO=I+M=1 o
PRINT 6,DEV(I),FC(NO) ‘
158 CONTINUE
IF(ITO.EQ.1)GOTO 140
PRINT 3
140 CONTINUE
IF((ITI,EQ.2),AND,(IT0.£Q,0))6G0T0 130
PRINT 4 :
CALL PRAG(D, NUHGP,NOM, 1,NUMGP)
13@ RETURN o
' END )
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SUBROUTINE MAV(A,AV,NOS,NOM,NOG)
DIMENSION A(28,142),AV(12,142),KV(30)

O

[ e ! 0 ST AR AT ROV IS WA R T WOV RS SoT S T TOK WU IR WU SOV W 10 SO S (O W B S W WY SV S SOV W SRV SO S WV WU SOV B B T WV T BV T BT BT Y

THIS PROGRAM AVERAGES SPECTRA PRESENT IN GROUPS,

A IS THE FULL MIXTURES ARRAY HAVING NOS ROWS,
NOM COLUMNS AND NOG SPECTRAL GROUPS

THE VECTOR KV IS READ IN CONTAINING ROW NUMBERS
OF THE FINAL SPECTRA IN EACH GROUP, I,E, NOG
INTEGERS IN ALL,

AV 1S THE AVERAGED DATA MATRIX FORMED,
VALUES IN FIRST AND FINAL COLQMNS OF AV ARE
PRINTED AS A CHECK,

&M“MMML&-&MMM-&“&MM M&“LMMMMJ—MM&“

2 FORMAT(2F18,2)

4 FORMAT(1214)

- READ 4,(KV(I),I=
PRINT 4, (KV(I),I
M=y
K=1 -

50 N=KV(K) -
\ NUMGP=N=M+1
DO 138 J=1,NOM
SUM=0,8
DO 140 I=M,N
SUM=SUH+ACI, )
149 CONTINUE
AV (K, J)=SUM/NUMGP
{30 CONTINUE
IF(KV(K) EQ, NOS)GOTO 500
M= KV(K)+1 ’
K=K+
GOTO 50
568 CONTINUE
DO 158 Ki1=1,K
PRINT 2,AV(K1,1),AV(K1,NOM)
150 CONTINUE
RETURN
END

1 ,NOG)
=1,NOG)

P
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O

OO0 DO0O0

LUNON DL

50

{40

130

150

170

1%4.

20 MSTATS DATE = 73206

SUBROUTINE MSTATS(AfAV,AVDEV,NOS,NOH,NOG)

B O ST  WUVR SV SNV TV O Wr IV SO WV I U T T W D O O W WO WY DO WO T 135 VRN SO SO BP0 SO Ry RN 'K T WO o SO WY T B W BV TV YOV SOV SN SOV SO W W Py

THIS PROGRAM AVERAGES GROUPS OF 'IDENTICAL!
SPECTRA IN MATRIX A GIVING AV,

INPUT A,

NOM = NUMBER OF SPECTRA ROWS) IN A,

NOM = NUMBER OF MASSES (COLS) IN A AND AV,

NOG = NUMBER DF GROUPS (ROWS OF AV),

KVG, A VECTOR CONTAINING ROW NUMBERS DF FINAL
SPECTRA IN EACH GRouP OF A, TS READ IN FORM(1214)
IF THERE ARE < E.G, 4 SPECTRA/GROUP MAV SHOULD
BE USED,

ouTPUT

AVOEV 1S THE AVERAGED PEVIATION FROM THE MEAN
VALUE OF EACH PEAK,

% ERRORS ARE PRINTED AND AVERAGE % ERROR,

o ek cbo ol de o b b b de e dade o ddov b e cboks checde b dn e chn e nbe dhoote b whiode sbs dedordiod cdmdad s dcdedrids L dodhecdocl B b ode chde A e e b

DIMENSION A(18,8),AV(10,8),AVDEV(10,8),AN(18,8)
DIMENSION PER(18, 8) T1C(10) PEV(i@), Kvecxo)
K=1

M=1

L=1
FORMAT(I4)
FORMAT(1214)
FORMAT(1X, "AVERAGED ARRAY',//J :
FORMAT (11X, 'AVERAGE DEVIATIONS FROM MEAN',//)
FORMAT (1X, 'NORMALISED GROUPS',//)
FORMAT(1X,'% ERROR IN EACH PEAK!',//)
FORMAT(1X, 'AVERAGE % DEVIATION = ',F6,2)
READ 3,(KVG(1),1=1,NOG)

PRINT 3;(KVG(I) 1= 1¢NOGJ

PRINT 6

N=KVG(K)

NUMGP=N=M+]

BIG=0,0

DO 13 I=M,N

Tic(1)=0,0

DO 148 J=1,NOM

TICCI)=TICCIItACI,J)

CONTINUE

IF(TIC(1),G6T,B16)BIG=TIC(I)

CONTINUE

DO 158 1=M,N

DO 150 J=1,NOM

AN(CI,J)=A(1,J)*BIG/TIC(I)

CONTINUE

CALL PRAGCAN,NUMGP,NOM,M,N)

DO 168 J=1,NOM

sUM=¢,0

PO 170 I=M,N

SUM=SUM+AN(I,J)

CONTINUE

AVJ=SUM/NUNGP

SUMDEV=@,0
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180

160

509

200

29 MSTATS

DO 189 I=M,N
DIFFSAVI=AN(I,J)
DEV(I)=ABS(DIFF)
SUMDEV=SUMDEV+DEV (1)

CONTINUE
AVDEV(K(J)=SUMDEV/NUMGP
AV(K,J)=AVJ i
PER(K,J)=(10C,0%AVDEV(K,J))/ZAV(K,J)
CONTINUE '
IF(N,EQ,NOS)GOTO 500

L=l

M=N+1

K=K+1

GOTO 5¢

CONTINUE

PRINT 4

CAlLL PRAG(AV,NOG,NOM, 1,NOG)
PRINT 5§ ' )
CALL PRAGCAVDEV,NOG,NOM,1,NOG)
PRINT 7 :
CALL PRAG(PER,NOG,NOM,1,NOG)

DO 206 I=1,NOG "

DO 2¢8 J=1,NOH -
SUN=SUM$PER(I,J) =
AVPER=SUM/ (NOGXNOM) -
PRINT 13,AVPER‘

RETURN

END

DATE

73296
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DIMENSION A(28,142),AV(12,142)

C LLOYT I S BV TV SAV R RIS R TV SV Y N T TV PRV TV P RS SR A VT DOV BN B S SO R B B R SO e T R A T T S

OO0 0O00

)
2

109

EXAMPLE OF USE OF GAUSP WITH MIXTURE V,

INPUT=

A, ARRAY OF MIXTURES SPECTRA HAVINGw
NEXP ROWS (SPECTRA)

NOM COLUMNS (MASSES)

NOG GROUPS OF "IDENTICAL" SPFCTRA,

SPECTRAL GROUPS ARE AVERAGED BY MAY GIVING AV,
RANK ANALYSIS IS PERFORMED ON AV,

ol nbntie Loadndodruincde L&&“*MMM&MMM-&.&-&““J’M aboadork o alncdsdoodead Lo ode olocce ihoads bo sbunle

FORMAT(14)

FORMAT(19F7,1)

READ 1,NEXP

READ {,NOM’

READ 1,NOG .
DO 108 I=1,NEXP - ,
READ 2, CACI,J),J=1,NOM) -
CALL PRACA,NEXP,NOH)

CALL MAV(A,AV,NEXP,NOM,NOG)

CALL GAu&PgAv,Nos NOH 0,2 Rrle@y19,0)
CALL EXIT

END
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SUBROUTINE GAUSP(AV,NOG,NOM, IPER,PEROR,STEP,FPEROR)
DIMENSION AV(12,142),AG(12,142),8(12,142)

Bl e T I o R O o T3 JOX UiV WU B IO SO WO WU WO OV QN T WOt WA ST EAV ST S0 VR I SV W SO0 1OV WO WY 1 YW 2 " T 1O VO 4 )

THIS PROGRAM DETERMINES THE NUMBEK OF SIGNIFICANT
COMPONENT§ PRESENT IN AN ARRAY OF MIXTURES MASS
SPECTRA,

GAUSP IS THE RANK DETERMINING SUBROUTINE WHICH
TAKES THE ERRORS IN THE DATA MATRIX TO BE
A PERCENTAGE ,

AV IS THE ARRAY OF MIXTURES SPECTRA HAVING

NOG ROWS AND NOM COLUMNS,

IPER IS THE NUMBER QF TRANSFORMED ELEMEMTS

ALLOWED GREATER THAN THEIR ERRORSeFOR EXACT RANK
DETERMINATION, FOR OQUTPUT OF FULL RANK STATISTICS
IPER SHOULD BE ZERQ,

IPER IS AN INTEGER,

PERGR IS THE INITIAL PERCENTAGE ERRQOR TAKEN,

STEP IS THE INCREASE IN % EACH TIME,

FPEROR IS THE FINAL PERCENT hRROR TO BE TRIED,

e e s b s s v ke el o e nbe -&M.ﬁ-&-&-&&-‘.-&d—-&-&-&»‘-.L.LJ.JVM-I--LA»&M“-LMM-L'L.L-LMJ--LJ’

8 FORMAT({X,'PERCENTAGE ERROR USED =1,F6,2,1%',//)

48 FORMAT(//7//7)

50 DO 148 I=1,NOG |
DO 147 J=1,NaM . \
AGCI,J)=AV(I,d) -
SCI,J)=AG(L,J) APERORXD 01

148 CONTINUE
PRINT 4@
PRINT 8&,FPEROR
CALL GAUSS(AG,S, IPER,NOG, NOM)
PEROR=PEROR+STEP
IF (PEROR,GT,FPERORIGOTO 34
GOTO 50

34 RETURN
END

OoOOCOOOOOCO OO0

OO0 00
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SUBROUTINE GAUSS(AG,S, IPER, IFNOG,NOM)
DIMENSION AG(12,142),8(12, 142)

c
c&M&&&MA“&M&M**&&.&.&MMJ—,A..A..A.-L-A--&J—-A--J..&A—A».l. B T T B A = = )
c THIS PROGRAM IS PART QF THE RANK DETERMINING
C SUBROUTINE, SUCCESSIVE GAUSSIAN ELIMINATIONS
¢ ARE PERFORMED ON MATRIX AG AND RANK STATISTICS
¢ PRINTED OUT,
c
c INPUT= .
c AG, DATA MATRIX OF IFNOG ROWS AND NOM COLUMNS,
C S, ERROR MATRIX OF AG,
¢ IPER, SEE GAUSP OR GAUSAV
c L DETERMINES THE NUMBER OF ELIMINATIONS,
C
c OTHER SUBROUTINES REQUIRED=
c PIVOT,ELIM .
g-&w“&v&MLJ—.&LM.uM*-LMMMMMM heekoab rbedind, ddodohnde abe oo 1. -.L-LMM.A—J.-LM
{ FORMAT(I4)
2 FORMAT(F9,3) ~ -
3 FORMAT(2F9,3) y

108
109
{10
143

30

303

326

307

it

FORMAT (1 X, IRANK=1,14)

FORMAT(5X ) 14, 8X,F5,1,8X,F9,3,2X,F%,3) ’
FORMAT(1X, '"PERCENT ALLOWED IN RESIDUE = ',14,///)
FORMAT (1%, 'NO, ELINS',4X, 'PERCENT',8X, 1PIVOT EL!,6X,

{ TCORRES, ERROR',//)

PRINT 110, IPER’ .
FIPER= FLOAT(IPFR) : \
L=1 )

IX=0 T

PRINT 113

IF((L,GT, IFNOG) OR, (L GT NOW))GOTO 306
IY ﬁ

b0 303 J=L,NOM

DO 303 I=L,IFNOG

A=AG(I,J)

AB=ABS(A)

IF(AB,GT,S(I,Jd))IY=IY+1

NOE= (IFNOG-IX)*(NOM'IX)

PERG= (FLOAT(IY)/FLOAT(NOt))*190 %

GOTO 347

CONTINUE

PERG=0,0

S(L,l)=0,0

AG(L,L)=0,9

IF(PERG,GT,FIPER)GO TO 111}

IRANK=IX

PRINT 109,IX,PERG,AGCL,L),S(L,L)

PRINT 108, IRANK

GOTO 3¢

PRINT 109,IX,PERG,AG(L,L),S(L,L)
IF((L,GT, IFNOG) OR, (L .GT, NOM))GOTU 31
CALL ELIH(AG S, IFNOG NOH,L)

IXsIX+}
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L=t.+1

GO TO 3o
31 RETURN

END
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SUBROUTINE ELIM(A,S,NEXP,NOM,L)
DIMENSION A(12,142),5(12,142),AA(12,142),55(12,142)

LD TV R ST TRT SO S W S AT TPY AR B TR IRT NN WU TR N TN OV V0% eV AU BOU VY S WU PR SO YOS VU U P LY IRV T O O I T T O T SO T B O 1 WY S S )

THIS PROGRAM 1S PART OF THE RANK DETERMINING
SUBROUTINE,

GAUSSIAN ELIMINATION IS PERFORMED ON-A AND ITS
ERROR MATRIX S IS TRANSFORMED AT THE SAME TIME,

ON QUTPUT A IS THE REDUCED ARRAY AND § CONTAINS
ITS ERRORS,

oho dwids daatn ods b daede &LAM&J—*&MM-&MMMMJ—L AAMJ—J—L&M&-&M-«L.&.&-&J— o e s dahy

C=sACL,L)
DO 40 1=l )NEXP
DO 48 J=L,NOM
AACT,J)=ACT,J)=ACT,L)*ACL,J)/C
§5=8(1,J)*S(1,J)
Sis (A(I L)/CI*(ACT,L)/C)
52= (A(L,J)/C)*(A(L J)/C) -
$3=S(I,L)*SC(I,L) - .
S458(L,J)*S(L,J)
8S(I,J)=SART(S5+S4xS{+S3%x52+55%x51%52)
40 CONTINUE ‘
DO 5@ IzlL,NEXP
DO 58 J=L,NOM
ACIL,J)=AACI,J)
50 S(I1,J)=8S5(1,J) : .
RETURN !
END -

nnnnnnnnnnnn
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SUBROUTINE PIVOT(A,S,NEXP,NOM,L)
DIMENSION A(42,142),5(12,142)

e et PR LN R U T VP S VN WY RIS RIS SO T T YO SON WU U VOO VO S SOU SO N OV YT T Ue SOV VO TV YR W A WY TOY WOV VAN T I 10 YR SO T VY S Y

THIS PROGRAM 1S PART OF THE RANK DETERMINING
SUBROUTINE

A IS INPUT AND ITS LARGEST ELEMENT PIVOTED TO

THE LEADING POSITION BY INTERCHANGE OF ROWS AND
COLUMNS, THE CORRESPONDING ROWS AND COLUMNS OF §,
THE ERROR MATRIX OF A, ARE INTERCHANGED AT

THE SAME TIME,

3 ON QUTPUT A AND S ARE THE PIVQTED MATRICES,

-‘--L--Auh-&--b-l- h&MA—J—b*M-&-Lu‘-M e cdiovde dorndocdnsde whods obonds dats drduat i shods b doad o wlovle didnrd cby o e mbe e oy ke ho—dhe

TOO0OO0OOON

OO0O000

AMAX=0,0
JMAX=sY
IMAX=Y
DO 19 I=L,NEXP
DO 10 J=L,NOM :
AC=A(I,J) L
AB=ABS(AC) : .
AM=ABS (AMAX) . .
IF(AB,LE,AM)GO TO {0 7
AMAX=A(T,J)
IMAX=]
JMAX=J
10 CONTINUE ’ .
DO 19 I= L;NEXP .
B=A(I,L,) -
ACI)L)=ACT,JMAX) -
ACL,JMAX)=B
T=S(I,L)
SCI,LI=S(I,JMAX)
19 S(I,JMAX)=T
DO 38 J=L,,NOM
B=A(L,J)
ACLeJd)=ACIMAXJ)
ACIMAX,J)=B
T=S(L,J)
S(LyJI=SCIMAX,YJ)
30 S(IMAX,J)= I
RETURN
"END
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SUBROUTIMNE GAUSAV(AV,AVDEV,NOG,NOM, IPER,CRIT,STEP,FCRITY
DIMENS]ION AV(23;37J:AG(23,37),8(23,37),AVDEV(23;37)
C et R ST VRV BET T S DA VIR S0V PUN SOV VR0 FP¥ ROV DU Ve ROV SPY BV VST TN PRV I UOW SN R WV WV SOK WOT TS WV PV DAV A SNt 106 VR YO SOV NNV e D0 O ROV TR IS TR N EON NV XUV AN W W N
C SAME AS GAUSP EXCEPT THAT ERROR IN § 1§ OBTAINED
C FROM - 'MSTATS' AND MULTIPLIED BY CRIT

C LD U1 S BV AP U VT ARV R SIS S ERE Y OU S UET R ROV OU WY S WU T SN PV Y U WO ST SO UV S T U DU G T DD SO WU WS W TV ST I NI 0 S DRV B S WA SOL WY S Y U Y 1)

8 FORMAT(1X, '"ERROR TIMES !',F6,2,//)

4% FORMAT(//7/7/7/7)

50 DD 148 I=1,NOG
DO 140 J=1,NOM
AG(T,J)=AV (1, )
$(I,J)=AVYDEV(3,J)*CRIT

148 CONTINUE ' '
PRINT 46
PRINT 8,CRIT
CALL GAUSS(AG, S, IPER,NOG,NOM)
CRIT=CRIT+STEP )
IF(CRIT,GT.FCRIT)GOTO 34
GOTO 59 ' )

34 RETURN
END
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SUBROUTINE PCA(X,M,N,CON)

DIMENSION X(25,12) .
DIMENSLION B(282),0(200),5(228),7(200),XBAR(222) -
DIMENSION V(802@)

DIMENSION R(8070)

DIMENSION TV(8062)

Bt o SV Y IS WOV Y N ROW TV N B NN SOV W Y S WO S VR WO VOV T U SO VUL DU VO T UL WO T S 1O YO0 T YW N I JOU YU O W 1 I O Y W WO Y D S

THIS PROGRAM PERFORMS A PRINCIPAL CUMPONENTS
ANALYSIS ON MATRIX X,

aoaan

INPUT = X IS ARRAY TO BE ANALYZED, DIMENSION IS N BY M
WHERE N>=M, DIM IN STATEMENT MUST BE (nN,M) UNLESS
TARRAY! 1S5 USED (StE IBM S5SP MANUAL FOR ALL

DIMENSION DETAILS), MEANS ,STANCARD DLEVIATIONS

AND ALL EIGENVALUES > CON ARE PRINTED OQUT,

DUMMY SUBROUTINE 'DATA' ALSO REQUIRED,

e 0 1" RV SN U T WO POV U TR N SO WA U T PO VO ROV SYV TN N TOU P VU T AU O J O SOV T NPV T WO TR DRV WOV N DO T S N T WU S W R T N O T W R S S R Y Y

OO0 OOOOO0O0

FORMAT(IX, 'PRINCIPAL COMPONENTS ANALYSIS',//)
FORMAT (6HAMEANS/ (BF15,5))
FORMAT(22HNSTANDARD DEVIATIONS/(8F15,.5))
FORMAT(25HUCORRELATION COEFFICIENTS)
FORMAT (4HEROWIS/CIBF12,5))
FORMAT(IHO/12H EIGENVALUES/(1BF12,5))
FORMAT(37HACUMULATIVE PERCENTAGE OF EIGENVALUES/(12F12,.5))
FORMAT(IX, 14, 'VAKIABLES!)
FORMAT(1X,14,'OBSERVATIONS?!)
PRINT
PRINT 8,M
PRINT 9,N .
0=} ‘
CALL CORRE(N,M, IO; X, XBAR,S,V, R,Dlt3’T>
WRITE (6,2) (XBAR(J),J=1,M)
WRITE (6,3) (S(J),d=1,H)
WRITE (6,4)
DO 120 I={,M
DO 11y Jdsi,M
IF(I=J)182,194,104
102 L=I+(J*xJd=J)/2

GOTO 1192
194 L=Jd+(1r1I=1)/2
119 DCJ)=R{L)
122 WRITE (6,8) 1,(D(J),Jd=1,M)

Mv=@

CALL EIGENC(R,V,sM,MV)

CALL TRACE(M,R,CON,K,D)

PO 130 I=,K .

LI+ (IxIm])/2
132 S(I)=r(L)
WRITE(6,6) (8(J),Jd=1{,K)
WRITE (6,7) (D(Jd),Jd=1,K)
RETURN
END

BN O AN >
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20 FILTER DATE = 73235

SUBROUTINE FILTERCAV,IFNOG,MNOM, AMASS, TOLL,NGT)
DIMENSINN AV(23,37),AM(23,37),0000414) ,SIGMA(37)

DIMENSION DD(2§,49@),AHl(49%),AH2(§@9),AMASS§37)pSUMgde)

B A T T T O B R e 1Y ] 3 LT It/ WOw BN PRV WO VU VY AT SO N B S TN I U SV P SO0 SV YV S K D0 S YOO 00" JORF Y B SO Y N0 o0 S W B Y 8

THIS PROGRAM DETECTS AND STORES THE COLUMNS OF A

MASS SPECTRAL MIXTURES ARRAY WHICH ARE PROPORTIONAL,

MASS PROFILES (COLUMNS OF AV) ARE HORMALLISED
TO THE SAHE 3SuUM AND EACH SUBTRACTED FRODM EVERY
OTHER, ALL PAIRS OF MASSES HAVING ONLY (NGT)

DIFFEREMCES > (TOLL) ARE STORED IN VECTORS aMi AND

AMP, DIFFERENCES AND THE AVERAGES OF ABS, DIFFS,
ARE PRINTED QUT FOR THESE PRUFILES OHLY,

IFNDG TI& THE NUMBER OF SPECTRA IM AV (RQ«S§),
NoM IS THE NUMBLR OF MASSES IN AV (COLUNNS),
AMAGS TS A VECTUR CONTAINING THE MASS NUMBERS,

oo e dhade e o b b cbe i e oo i ok sho e sbe cbnde sl shonde alo o bche cheoduitale o choobe deabe derbovkecde dnodesdi dasd- du Sumbe sk devbochod Boule Suakeoho dody

INTEGER XY,FNOD - ‘ ,
FORMAT(T4) '
FORMAT(F18,2)

FORMAT(3F13,2)

FORMAT (1X/F5,1,1X,F5,1)

FORMAT(///7/77) _ ~

FORMAT(12F8B,1) \
FORMAT(IX FS5.1,1%X,F5.1,6X,F10,2)

FORMAT(1X, "MASS | YyR2X, 'MASS 2 'y OXp ' DIFFERENCES 1 /7/)

FPRMAY(lX:FQ J3,2X)F9.3,2X%, 12F8 3)
SIGMAX=TS,

DO 1a@ J 1 NOM

SIGMA(J) =0, 0

PO 119 1=1,IFNOG
SIGHMA(JISSIGNA(JI+AV(I,J)

CONTINUE
IF(SIGHA(JJ.GT.SIGHAX)SIGMAX:SIGHAgJ)
CONTINUE

DO 120 J=1,NCM

DO 129 Iz=1,IFNOG

ANCI,J)= AV(I JIASIGMAX/SIGMA(J)
CONTINUE

PRINT 6 . 5
PRINT (8@ "
PRINT 6

Xy=1

JOF=ND'w 1

DO 138 Jo=1,J0F

JIN-JO"‘I -

DO 140 JI=JIN,NOM

SUA(XY)=n,.0

Ic=0

DO 229 I= 1, IFNDG

DD (I)=AN(I, JI)=AN(I,J0)

DS=DDN(I) )

e g A oy A £ SO e . S 0 sy e
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2 FILTER

D6=ABS(DS)
IF(D&.GT,TOLL) IC= IL+1
CONTINUE
IFCIC~NGT)157,150,148
AM{(XY)=AMASS(JO)

AMR2 (XY)=AMASS(JI)

DO 168 I=1,IFNOG
DD(I, XY)= DLD;I)
A=DD(I,XY)

AB= ABS(A)

SUn(XY)= SUF(XY)+AB
CONTINUE
SUM(XY)=SUM(XY)/IFNOG
PRINT 5,AML(XY),AM2(XY)
PRIMT 7,(DDCI,XY), 151, IFNOG)
PRINT 2,SUN(XY)
XY=XY+]

CONTINUE

PRINT 6

CONTINIE

PRINT 6

PRINT 1,KOPR

NOPRzXYmy ~

PRINT 180

DO 19¢ Xy= I,NOPR

PRINT 9, AMLCXY) s AM2(XY),SUM(XY)
CONTINUE | _
RETURN \
END -

DATE

73205
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SUBROQUTINE MC(X,M,N,BHASS)
DIMENSION X(90,37) .

DIMENSION BHASS(37) )

DIMENSION B(1en),D(104),5(183),T(108),XBAR(140)
DIMENSION V(8098)

DIMENSION R(810R)

OO0 OO000

J./.j.b .

MC DATE = 73244

. - . .
Ji TN CNF WV W S I W VOU U S T WK VU VY UK YO JO IO U W SPC JY WPV SO YU TR WY SO SO NN Vv KbV SOV Sy O WOV BOU WO UON U DOV [N 1N WA NN YO [ WC SOV NS TRY VO DN S WY NS WY B TV SN PPV

THIS PROGRAM INTER=CURRELATES THE MAS3S PROFILES
IN MIXTURES ARRAY X,

INPUT = X IS THE CONVENTIONAL MIXTURES ARRAY,

N = NUMBER OF ROwS (SPECTRA),

M = MNUMBER OF COLUMNS (MASSES),

N >zM

DIM STATEMENT (N,M) UNLESS SSP VTARRAY! USED

BMASS = A VECTOR CONTAINING THE MASS NUMBERS USED,
DUMMY SUBROUTINE 'DATA! ALSO REQUIRED,

THE CORRELATION MATRIX OF MASS PROFILES IS PRINTED,

[ TS T T SO SO U N N VY T O R VO W O J T O VO B WO T TN TR WO 1O WV N W YO U S A WU O WO WA DOV SRR RS Sy WY TN BN VPN TR YT D YO JUA RSP RO SRV WV PP SR RS A Y

4 FORHAT(25HPCORRELATION COEFFICIENTS)
5 FORMAT(iX, 'MASS',F‘8.2/, (1@!‘12.5)) )

{2

164
110
129

CALL CORRE(MN,M,I0,X)XBAR,S,V,R,D,8,T)
WRITE (6,4)

DO $120 I=y,M

DO 1168 J=1,M

IF(I~J)102,104,1024

LI+ (JxJ=J)/2

GOTO 110 \
LesJ+(I*xI~1)/2

DCJYsRCL)Y . - '

WRITE (6,5) BMASS(I) ,(D(J),J=1,M )
RETURN 4 :
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20 o5 DATE = 73205 ¢

SUBROUTINE CDG(X,M,N,NOC,BMASS)

LS R BT B S0 VY B R LJ«J--L.LJ.--I--L-.L-.L-LJ-A.J.J.M-LJ-J-J—.L-L-L—!-J&J-J-J--LJ-“&-J-**m-h&“.&“—k choude drohosds ideodode

THIS PROGRAH PRDD!CES A COMPONENT D;AGRAH FBUH
MIXTURES ARRAY, X,

INPUT = X OF DIMENMSION (N,M) WHERE M IS THE

NUMBER OF COLUMNS (MASSES) AND N THE NUMBER OF
MIXTURES SPECTRA (ROWS),

NOC = NUMBER QF COvPONENTS, |

BMASS = VECTOR CONTAINING MASSES,

CDG READS IN NOC INTEGERS IN FORMAT(1214) GIVING
COLUMN NUNBERS OF ONE MASS UNIGQUE TO EACH COMPOKENT,
DUMMY SUBROUTINE 'DATA' REQUIRED,

ehacdo e dade o de sbe b o vde s sl e o shonde sdn cdohe wdo e sl whde o odn e oo ad e s vl cbidis wdb s A thiondy o dhondde el L obredn ndes ol ke s hoe b choe s ide b b e

3
4

DIMENSION X(92,37),BMASS(37)
DIMENSION XAR(59,50),TU(18)

DIMENSION B(14@),D(1233,S(108),T(100),XBAR(1GA)
DIMENSION V(8240) ' - ~
DIMENSION R(800M) P

FORMAT (1214) |

FORMAT (17X, "MASS',7X, 'RELATIVE CONTRIBUTIOHS OF THE!',

C112,1%, 'COMPONENTS!)

T ToOINDTO

12¢
150

FORMAT (1Xs "MASS',F8,2/, (10F12,5))
FORMAT(9X,14,F12,2,2X,5F108,5)
FORMAT(//77)

FORMAT (28X, 'GELF CORRELATIONS =« INTER-UNIQUEY,//)
FORMAT (28X, 'CORRELATION COKFFICILENTS'y//)
FORMAT (28X, "IN FIRST Q0 GOOD SPECTRA';//)
READ 3, (IU(1),1=1,10C)

10=1

CALL CORRE(N,M,10,X,XBAR,S,V,R,D,B,T)
PRINT 9 ’

PRINT 4,NOC

PRINT @

K=1

It=}

Kv=IU(K)

DO 129 I:llM

1F (I NE,KV)GOTO 120

DO $119 J=1,M

IF(I=J)1n2,104,104

LI+ (JxI=J) /2

GOTO 110

Lxd+(Ix]=1)/2

1 XAB(J,I1)=R(L)

It=l1+4

KsK+ ]

IF(K,GT,nOC)GQTOD 150

KVsTU(R)

CONTIHNUE

CONTINUE

DO 16” lelM

PRINT.O,JrBMASS(J), (XAB(J,I11),11=1,NOC)
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160 CONTINUE
PRINT 7
PRINT 8
DO 178 K=1,NOC
JzIU(K)
PRINT 6,J,8MASS(J), (XAB(JI,T3),T1=1,N0OC)
170 CONTINUE ) '
RE TURN
END
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RPA | DATE = 73215 93/,

SUBROUTINE RPA(AV,NEXP,NOH, IPER)

Ll X1 NS SO DRV URY US Vo SOV Y VO BV WA W PON VN TR TN RV EUN XU TV O VP WO W VR 'O PN VPN S e W VO SO WO T S R YK T VS VO VR SO POt NP VG WO VO PN N A SV AN A BN W S T TE° 1

THIS PROGRAM FORMS MIXTURES ARRAY SUBHMATRICES
CONTAINING INCREASING NOS, OF COLUMNS (MASSES)
STARTING AT THE HIGH #ASS END,  RANK ANALYSES ARE
CARRIED OUT ON EACH,

INPUT ~ AV, MIXTURES ARRAY,
NEXP , NO, OF SPECTRA,

NOM, NO, OF NASSES TO 8E CONSIDERED,
IPER, 7% OF VALUES ALLOWED > ERRORS,

MASSES AT WHICH COMPONENTS BEGIN TO CUNTRIBUTE.
SIGNIFICARTLY ARE INDICATED,

Y YWY Y VOISO W SR S VOV VO WAV S SR U NI VAOY Y YU OV ON WS VO WO VPN VN VOl YON WOV W WU AN N T VR WO TP YU U VR S VOF VN OV PN R V0N B VSRR 1 WHE SO ST RO PN BOF O S A I BV B

DINENSION AV(12,142)
FORMAT('1') ~
FORHAT(1X,T4,1X, 'MASSES!)

Ji=2

PRINT 1 L
PRINT 1¢,J1
PEROR=4, @ :

CALL

GAUSP (AV, MEXP,J1,IPER, PERORliqg;G,Q)

IF (J1,EQ,NOM)GOTO 34
J1=3144

GOTO

91

RETURN o '

END .
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DIMENSION A(133,37),AV(23,37),AMASS(50)
B R i bt ol S STC VI = o N TN BYCPYN W PRSI W W STV VO T WS S R ol WU A Y P e POV NV Dou B WO SO JN O WO IO R WOUT DO S T WO SO S X WU B o S0 4
EXANPLE OF PATTERN SEPARATION
DERIYATION OF MAJOR COMPONENT SPECTRA ~ MIXTURE II,

INPUT -
NEXP, NO, ROWS (SPECTRA) IN INITIAL ARRAY,
NOM, NG, OF COLUMNS (MASSES) IN INITIAL MATRIX.
NOG,NO, OF GROUPS OF '"IDENTICAL!' SPECTRA FOR AVERAGING,
NOC, NO, OF COMPONENTS, N
MASSES IN AMASS AND THE PEAKS IN 'A' ARE READ FROH
DISK=FILE ,UNIT 14
SELM READS IN ROWS TQ BE ELIMINATED, K IS FINAL NO,
MAV AVERAGES REMAINING SPECTRA,
'SELECT' CHDOSES NOC OF THESE FORMING ARRAY AV
WHICH IS OUTPUT,
FINALLY UNIQS PRODUCES COMPONENT SPECTRA,

DOoOOOoOOOONDO0ONnNOCcCOCo

C-&-.A..l..l B e L B T LT % S S POV EpF S W KOT Jg Nou SN DI MU T T 2 A0 RO O WG Y BT JAp0 Dy W Y Y B W WA b SO Y WO VO N o e e )

DOUBLE PRECISION A, AY
FORMAT(14)
FORMAT(18F7,1) .
FORMAT (F642)
FORMAT(FS5a1)
FORMAT('1') .
FORMAT(///7/7/77)
FORMAT(12X1F7.1,6X,6F8,2)
READ 1, NEXP
PRINT | ,NEXP .
READ 1,NOM - .
PRINT 1,NOM : :
READ I(NOG P
PRINT 1,NOG :
READ 1,NQC
PRINT {,NOC
DO 20@ J=1,NOM
READ (1D,4) AMASS(J)
READ (18,2) (A(I,J),1=1,NEXP)
209 CONTINUE ,
' CALL SELM(A,NEXP,NOM,K)
PRINT 7
CALL MAV(A,AV,K,NOH,NOG)
CALL SELECT(AV NOM, NGC)
PRINT 5
PRINT 7
pO 187 J=1,NOH
189 PRINT 8,AMASS(JI), (AV(I,J),I=1,NOC)
CALL UNIGS(AV,NOM,NOC,AMASS)
CALL EXIT
END

ONGH W -
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LISTING OF DATA CARDS

Pattern Separation Example (previous page)

133

N\
W ~3

19 23 26 29 46 0 64 72 75 84
99 104 106 108 110 112 117 119 124
11 12 . ,

e
O
8003283338
-
A2 ]
\

\O
Ut~

0 4 5 24 11
6 7
24 11

'—J
N R RDW NI =

10 12
24 11

=
~2ON AU

(each row is a card)

16 0 3 4 5 20 8 24 10 11
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SUBROUTINE UNIGS(AMIX,NOM,HOC,AMASS)

IS PRV VN Dy VSN T DI SR BN BV B NOUWH U SPU RV VO NPV VR VU VA SUUOU DRI SO S SO UV I O GRU TN WO TRV PO WU RN WO W SN S TR S SV VT R U DI WK WOl WY S K VIR A DU SO SO SV B Y T V)

THIS PROGRAM USES INFORMATIONM ABUUT POSITIONS OF UNIGUE
PEAKS (ANY NUMBER PER COMPONENT) TO DERIVE PURE COMP,
SPECTRA BY A LEAST SQUARES METHOD,

INPUT =~ NOC IS NUMBER OF COMPS,.,,NOM IS MUMBER OF MASSES,
AMIX CONTAINS NOC SPECTRA CHOSEN FROM ALL SPECTRA AS
HAVING THE MOST DIFFEREMT PATTERNS, (FROM 'FRACT'"),

AMIX IS PROBABLY FORMED BY SUBROUTINE 'SELECT!

AMASS CONTAINS MASSES USED, )

READS IN = NM, TOTAL NUMBER UNIQUE PEAKS ,

K¥YM = VECTOR HAVING N4 INTEGERS WHICH ARE COLUMN NUMBERS
OF UNIQU& PEAKS GROUPED ACCORDING TO COMPONENTS,

'IN' = VECTOR CONTAINING NOC INTEGERS WHICH ARE POSITIONS
OF FINAL MASSES OF GROUPS IN KVM (NOT IN AMIX), FINAL
INTEGER IN VECTOR '"IN' IS NM,

OCOODOOOCcoOO0

UUTPUT - Q I3 DERIVED O MATRIX,

"AN' CONTAINS PDERIVED SPECTRA BEFORE REFINING

'AN' AFTER APPLICATION QF 'REFIND! CONTAINS REF INED SPECTRA,
RESIDUES ARE GIVEN BY 'RESIDUT, '

L T B T B B O 2 % VA U O AR SV RSt BN VIV W S N T RO PO DR SO WU SO SO T 0 AW S W% .L.J-J-.L-A-.L.L-LJ«-L [RCUON SN T Y B O R T WO SOU DR SO WO TV T

OO0 COOO0n

DIMENSTON AMIX(23,37),A(5%,58),5(58,50),KVM(50),IN(52)
DIMENSION AMASS(50),Q(1d,19), DERV(23 37),0(58),Y(59)
DIMENSTION AN(23,37),1PIV(50),AUX(50Q) :

DOUBLE PRECISION AMIX,A,D,Y,Q,DERY,AN,S,AUX

FORMAT (I4) . '

FORMAT(F6,1) \ \
FORMAT(8F9,3) o '

FORMAT (/7772777

FORMAT(1214)

FORMAT(12%X,F7.1,6X,6F8,2)

FORMAT(12X,4F8,2)

FORMAT (12X, 'PLLSQ ERROR PARAMETER =',14,/7/)
FORMAT('1') '

PRINT 1,NOC

READ 1,NM

PRINT 1,NM

READ S, (KVM(I),I=1,NH)

PRINT 5,(KVH(I),I=1 HH)

READ S, (IMN(1),I=1,N0OC)

PRINT 5, (IH(I),1=1,N0C)

NNOONUI S LN -

oy

PRINT (2

L=1-

M1=1

N2=IN(L)
NVZNOC»1{

D0 209 IY=1{,NOC
JX=2

NE=NM~N24N1=1
DO 110 J=1,NH
IF((J.GE,N1)  AND, (J,LE,N2))GOTO 110

IX=JX+1
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22 ~UNIa@s DATE = 73208
DO 199 I=1,NY
KzKVM(J)
ACIX, [)=AMIX(1,K)
CONTINUE '
D(JX)=AMIX(NOC,K)
CONTINUE
CALL ARRAY(2,NE,NV,5@0,59,S,A)
CALL DLLSQ(S, DrNErNV 1,Y, IPIVrl E~5,I1ER, AUX)
PRINT 9,1ER
DO 122 J=1,NV
Q(IY/J)=Y(J)
Q(IY,NOC)=~1,0
Ni=N2+1
L=L+}
N2=IN(L)
PRINT 2
DO 250 IY=1,NOC
PRINT 8,(QCIY,Jd),J=1, NOC)
DO 1690 1Y=1, NOC
DO 168 J=1,NOM

,DERV(IY,J)=0,G

DO 160 1=!,NOC :
DERV(IY,J)=DERV(IY, J)+Q(IY,I)*AHIX(1 J)
DO 170 1Y=1, NOC .
ABl1G=6,d

PO 188 J=1,NOH

DE=DERY(1Y,J)

ABDE=ABS (DE)
IF(ABDE.GT,ABIG)ABIG=ABDE

DO 170 J=1,NOM

DE=DERY(IY,J)

ABDE=ABS(DE) .
AN(L1Y,J)=ABDE*1¥d/ABIG

PRINT 4

PRINT 4

DO 238 J=1,NOM

PRINT 7,AMASS(J), (AN(Y,Jd),1=1,NOC)
CALL RESEDUW(AMIX,AN,NOC,NOM, AMASSJ
CALL REFINU(AN,NOC)

DO 247 J=1,NOM

PRINT 7'AMASS(J>r(AN(IfJ)IlzllNOC)
CALL RESIDUCAMIX,AN;NOC,NOM, AMASS)
RETURN

END
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SUBROUTINE ARRAY(MODE,X,J,N,M,S,D)

ARRAY

154.

DATE = 73297

e 1R SOV 0% DRV U6V PN PRVIYV SI I VU PR SOV Y SO SR SN SOV SO BN N AN N 100 DRV RN B YRS SR T S DAY O WO TP WP U I T S U WO K BV UPR VO O TS TR SR RO N WP RN DO DR WO W B W

100

110
129

125

139
140

DOUBLE PRECISION YERSIOMN OF IBn,

YARIABLE

DIMENSIONING SUBRUUTINE (SEE IBM ~SSP MANUAL)

e o dorbendade dunde e o o cdo ool v Aoonde sl abaale shoads e s b nds e shonde oy e e el s donlad o bk e abimde ods oo A alondende e oo by oo b cdo et o e obe

DOUBLE PRECISION §5,D
DIMENSTION SC(1),D(1)

NI=sN~T

1F (MODE~1)100,100,120

IJ=I+J+1
NMz=MrJ+]

PO 110 ¥=1,J
MMZNM=~NI

PO 119 L=t,I
IJ=TJd=}
NMoNM~1
D(NM)=S5(1J)
GOTO 148
1J=9

NM=9

DO 130 K=1,J

DO 125 L=1,I

IJ=1Jd+!
NM=NM+
S5(1J)=D(NM)
NM=NM+NT
CONTINUE
RETURN

END

rel-(71)
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LEVEL 29 RESIDU DATE = 73208 B7/4%
SUBROUTINE RESIDU(AV,AN,NOC,NOM, AMASS)

U Y0 ST SN DOVION WA WOV NN DAV S¥ S SN B PYY W TN IOV DY NN TR SO SOV VNV WS WU SOV DU WP TR SR SO SO RN DY VP AL SV B TR DT WO SOV KON TR N S VO G R SN N O U T BT DI SR WV )

THIS PROGRAM CALCULATES RESIDVES FOR DERIVED
SPECTRA USIHNG ONE PEAK WNIQUE TO EACH,

INPUT = AV = ORIGINAL MIXTURES SPECTRA USED TO
DERIVE AN WHERE AN CONTAINS DERIVED SPECTRA,

NOC- 1S5S NUMBER OF COﬂPDNENTS. ANASS CONTAINS MASSES,

- READS IN NOC INTEGERS 1IN 'IU'WHICH ARE COLUMN
NUMBERS OF ONE PEAK UNIGUE TO EACH COMPONENT,

PRINTED QUT = RESIDUE MATR1IX AND SUM OF DEVIATIONS.
FOR EACH MASS,

B S T O B O O T T O S T O O S B B O B b e O B T e N T g I

DIMENSION AV(23,37),AN(23,37),PEV(50),Ql(l®2,19), CALCHX(23,37J
DIMENSION TU(L1Q), AHASS(5@) ,
DIMENSION DIFF(&3;37J '
DOUBLE PRECISION AV,AN,DEV,QI,CALCHMX, DIFF
FORMAT(1214)
FORMAT('1"') .’
FORHMAT(//777777) “
FORMAT(12X,F7,1,3X,4F8, 2 3X,F8,2) ‘
PRINT 2
READ 1, (1U(CI1),I=1,NOC)
PRINT |, (1UCL),I=1,NOC)
PO 360 IMX=1,NOC
DO 308 I=L,NOC
K=IUu(l) ’ \
300 QLCIMX,1)SAVIIMX,K)/AN(I,K)
DO 319 IMXsi,NOC '
DO 31¢ J=z=1,NOM
CALCMX(IMX,J)=0,08
DO 318 I=1,NOC
312 CALCMX(IMX,J)=CALCHX(IMX,J)+QI(IMX, L)*AN(I,J)
DO 328 J=1,NOM '
DEY(J)=¢,0
pO 329 I=1,NOC
DIFFCL,J)=AY(I,J)~ CALCMX(I,J)
AB=DIFF(I+J)
ABC=ABS(AB)
320 DEV(J)=DEV(J)tABC
PRINT 6 '
PRINT 6
PO 334 J=1,NOM
338 PRINT 12,AMASS(J),(DIFF(1,Jd),I=1,M0C),DEV(J)
RETURN
END

OOCOOOOOOOC OO0 n

N O N e
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SUBROUTINE REFINUCAN,NQOC)

B O T oL N U N VRV SV R SN Y S EOU TR D WO A D A VRN B T WE O VO WY KO DO YU 1 P D S U O YO P W IR0 Yt VOOV W IO TS I o WO W) 3N BT JROF WO B8 IS

THIS PROGRAN REFINES THE DERIVED SPECTRA [N ARRAY 'AN',

INPUT = AN MATRIX HAVING NOC ROWS DERIVED BY
'UNIGS' OR 'ZEROS!, )
READS IN =
NU, TOTAL NG, OF UNIQUE PEAKS KNOWN,
VECTOR KVU « NU INTEGERS CONTAINING COLUMN NOS,
OF UNIGUE PEAKS IM MATRIX AN.THESE ARE IN GROUPS
ACCORDING TO THE COMPONENTS, =
VECTOR IG GCONTAINS NOG INTEGERS GIVING POSITIONb IN
KVU OF FINAL NUMBERS IN THE NOC GROUPS, (THE
FINAL INTEGER IN IG WILL BE NU), '

OUTPUT = AN CONTAIMS REFINED SPECTRA, NOC ROWS,

[ SV BS% S N P VR A% DT VR S DOW G IR WP BV TR JU VO O B3 DU TR NpU WA DO TN VoW PO YU DR T TS Y PV DRV DOV N SR NPT N M SR SRS O WA T DN Y WU PN P DI T PRV T VRS SOV DAY PRV S TP Y

Pﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬂ

DIMENSION AN(23, 37) KVU(BEJ IG(30)
DOUBLE PRECISION AN

FORMAT(I4) ) L
FORMAT(1214) . .
FORMAT ('L ")

PRINT 3 )

READ | ,NU

PRINT 1 ,NU

READ 2, (KYO(I),I=1,N1)

PRINT 2 (KVU(l)p:[:l'NU)

N DD

READ 2,(I6(1),1=1,NOC) \
PRINT 2,(16(I), 1= L NOC)

L=t -

M=1

N=I1G(L)

DO 410 1x=1,NQC
DO 420 I10=1,NOC
IF(I0.EQ.IXGOTO 428
D0 420 J=t,N
K=KVU(J)
ANCID,K)=0,0

420 CONTINUE
IF(L.EQ,NCC)GOTO 419
L=L+1
M=N+1
N=16(L)

410 CONTINUE
RETURN
END



157.

W IV G LEVEL 29 MAIN DATE = 73213

-
C [t ST O T VI DIV SN PSS T VR ST W AR JO VU T VOV 00 W T VN DOV DU T VAT YO VN VR VO W VUM IV U T T I I TOU S YO 1O WK T VY JO TR T WY W S0 W T WY WU S Y

PART OF 'UNRAVL' PROCEDURE,
EXAMPLE OF 'TRIAL' AS IN CHAPTER 6-111,

READS IN =

A, FULL MIXTURES ARRAY FROM DISK t1t!,
MOS, ROW NUMBER,

<NQM, COLUMN NUHJER,

NOC, RANK OF A,

SMIX CONTAINS NOC SPECTRA SELECTED FROM A,

-LJ..-&J-J--O-J-—I.J-J-J. B N e YL T e SN PSSO PO SR PRV AR o ¥ 2 SOU SU E SOV M R0 WU 0 216 W JUN S YOS JU WY YOOR WO TOW RO WUV TV WO NIV B B B )

DIMENSION A(44,25),SMIX(5, ?SJoAMASS(ZJ)
DOUBLE PRECISION A,SHIX

{ FORMAT(14)
READ 1,NOS
FRINT l,NOS
READ 1,NOM
PRINT 1,MOM
READ 1,NOC
PRINT 3,NOC

3 FORMATLF7,.2)
READ 3, (AHASS(1), 1= 1 NOM) ~

2 FO}HAT(BFO 3)
READ (11,2) ((A(I,0),1=1,N0S),J=1,NCH)
CALL PRA(A,;NOS, NOM)
Cal.l SEL(A,SHIX,NOM,NOC)

4 FORMAT(IX,F10,2,8X%X,5F10,3)
DO 160 J=1,NOM

100 PRINT 4, AHAQSCJ) (SMIX(1,3),1I%1,NOC)

CALL TRIAL(SHIX,NOC,NOM)
CALL EXIT
END

CTOOOOOOOOQOOOOO0
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SUBROUTINE TRIAL(AMIX,NOC,NQOH) T

Bl O T O aRLStL WV PRt SOV SV T TR WOW Y% WY U VO Wik N DO W K Ny VU WV W VU 'GIV JY JOW SRy YO VN 20 U VY K T VO O SO W00 N TR O JONY O VR DU WY WO SRS

THIS PROGRAM PRODUGCES TRIAL SPECTRA FROM GUESSED
POSITIONS OF ZEROS,

AMIX IS A '"HOC' BY 'NOM' MIXTURES ARRAY
NOGC AND NOM HAVE USUAL MEANINGS'

READS IN = NZTOT, TOTAL NO, OF ZEROS IN ALL
COMBINATIONS TO BE TRIED, B

NTRLS = NO, OF CROUPS OF GUESSED ZEROS,

KYZ = KEY YECTOR CONTAIMING COLUMM MNOS, (HASSES)
WHICH HAVE ZFRO CONTRIGUTIONS FROM THE DESI{RED
SPECTRUM (GIVEN BY 'MC'), THERE ARE NZTOT INTEGERS
ORDERED ACCORDING TO THE GROUPS TO BE TRIED,
NTR = KEY YECTOR CONTAINING ¥PQSITIONS IN KVZ OF
FINAL ZERO IN EACH GROUP (NTRLS INTEGERS),

'ZEROS' IS CALLED FOR EACH GRQUP OF ZEROS AND ONE
SPECTRUM DERIVED FOR EACH,
FIMALLY UP TO 18 SPECTRA ARE PRINTED 0OUT,

3 SRV DYS VI VUK SN SPY SN DRX PN DY VIR WY WK VY SIS TYU U0 U VU VRN TN VO S NOU P VIS PR SV BV WO W St W L SV SOU T WD EYS DL NN U SN, S VO VY Y I NN T Nl SO SN T Y BO AN Y

DIMENSION AMIX(5,25),ATR(5¢,25),D$(25)
DIMENSION KVZ(98),NTR(25)
DOUBLE PRECISION AMIX,ATR,DS
FORMAT(F106,2)

FORMAT(I4)

FORMAT(1214) : L
FORHAT(18F7,2) '
READ 1,MNZTOT

PRINT |,NZTOT

READ 1,NTRLS ,

PRINT 1,NTRLS

READ 2, (KVZ(I),I=1,NZTOT)
PRINT 2, (KVZ(X),1=1,NZTOT)
READ 2, (NTRCI),I=1,NTRLS)
PRINT 2, (NTR(1),I=1,NTRLS)
M= -

K=l

Nz=NTR(K)

PRINT 2, (KVYZ(1),I=M,N)

CALL ZEROS(AMIX,NOC,NOM,M,N,DS,KVZ)
ATR(IK, J)=DS(I)

IF(X.EQ,NTRLS)GOTO 5040

M=N+1

K=K+1

GOTO 5¢

CONTINUE

DO 109 J=1,NOM

PRINT 3, (ATR(I,J),I=1,NTRLS)

RETURN

END
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SUBROUTINE ZERUS(AMIX,NOC,NOM,M,N,DS,KVZ)
c » ’ '
C Bl T T it 3% VI IO V27 POTESY BRV ALY SRR SO TR YN VAL I AN VAN SO W S O O VO DAL W S 7 U8 1 DU WY SO YA WY I GO 0 S0 0 VO SO S0 YO WO W SO0 O VO
o THIS PROGRAM FORMS STHULTANLOUS EQUATIONS FROM
C A MIXTURES ARRAY ACCORDING TO POSITIONS OF ZERD
c CONTRIBUTIONS FROM THE SPECTRUM TO BE DERIVED, THESE
¢ POSITIONS ARE CONTAINED IN KYZ BETWEEN ELEMENTS M
c AND N, M AND N ARE GIVEN BY !'TRIAL', ’
c SOLUTIONS OF THE EGUATIONS GIVE THE UNKNOKN SPECTRUM
c OM MULTIPLYING INTO THE MIXTURES ARRAY,
c b ! 2
c DS FINALLY CONTAINS THE DERIVED SPECTRUM,
g-.LJ..L.I.-LA...L.LJ..A.J..L.“ b dond onde ohe ohe chead e oo o e ndn b ol s e o bl ke o d o dacd dbe by oo e donh oho oy Lo ke wle e uey o daode
DIMENSION AMIX(5,25),08(25)
DIMENSION AA(15,15),0(10),Y(1a)
DIMENSTION AUX(12),S5(15,15),KVZ(90)
DIMENSION IPIV(15) ‘
DOUBLE PRECTSION AMIX,AA,D,Y,DS
DOUBLE PRECISION AUX,S
1 FORMAT(I4)
NV=NOC -1
MZ=N=aMt |
C
C NY IS THE NO, OF VARIABLES,
c NZ IS5 THE NO, OF ZFROS IN THE GROUP (=NO, OF EQUNS,)
¢ . 2 . v
c .
C AA IS FORMFD FROM COLUMNS OF MIXTURES ARRAY HAVING
C ZEROD CONTRIBUTIONS FROM THE SPECTRUM TO BE DERIVED,
c Ah CONTAINS COEFFTS, N
C D CONTAINS R,H,S,
o
pOo 119 J=M,N
K=KVZ(J)
JisJ=M+1t

DO 109 Izl,NV _

AACIL, T)=ANIX(I,K)
100 CONTINUE

D(J1)ZAMIX(NOC,K)
110 CONTINUE

c
C 'ARRAY! ALTERS STORAGE MODE OF AA GIVING §,
C DLLSQ GIVES A LEAST SQUARES SULUTION,
c
CALL ARRAY(2,NZ,NV,15,15,5,AA)
CALL DLLSQ(S,D/NZ,NV,1,Y, IPIV,1,E~9, IER, AUX)
c .
C 1,6,M, ERROR PARAMETER, IER, IS PRINTED
C |

PRINT 1, IER
Y(NOC)=r1,0

DO 168 J=1,NOM

DS(J)=2,0 |

DO 17¢0 I=1,NOC
DS(J)=DS(J)+Y (1IXAHIX(I,J)
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178 CONTINUE
168 COMTINMNUE
ABIG=0,0
DO 1994 J=1,NOM
DFE=DS(J)
ADE=ABS(DE)
IF(ADE.GT,ABIG)ARIG=ADE
190 COMTINUE

NORMALTSATION OF SPECTRA,

aoO

DO 2900 J=1,NOM
DE=0S(J)
ADE=ABS(DFE)
ADE=ADEx121,0/ABIG
DS(J)=ADE

T 200 CONTINUE
RETURN
END

AN IV G LEVEL 20 SEL, DATE = 73243

SUBROUTINE SEL(A,SMIX,NOM,NOC) |
c -
C T e teats e S T o TO. ¥ Vo WU W VN VOU TN WY N SO0 I PR W P DRIV Y VY S SO VO YU WIS DO WO WO VOIS YK T VY T WO YU YOOr WO W Y 8§

AS SELECT BUT REW ARRAY FORMED

c e L e P s e TTU I LAURE S AU S U T VON W R WP WY WOV P S O SO0 O YO T U5 T VAU YOO W W W T D W W T WY 8

DIMENSION A(C40,25),SHIX(5,25)
DIMENSION KVS(10)
DOUBLE PRECISION A,SMIX

3 FORMAT(1214)

1 FORMAT(I4)
READ 3,(KYS(I),I=1,NOC)
DO 129 1=1,NOC :
DO 1@4 J=1,NOH
K=KVS3S(I) _

180 SMIX(I,J)SA(K, )

RETURN : ‘
END ' ~ .
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PART OF 'UNRAVL' PROCEDURE,
EXAMPLE OF 'UNRAVL' AS DESCRIBED IMN CHAPTER 6-111,

READS IN = .
NOS, N0, OF SPECTRA IN FULL MIXTURES ARRKRAY,

NOM, NO, OF MASSES (COLUHNS) IN ARRAY,

NGC, RAMNK OF ARRAY,’

NREDS, MO, OF SPECTRA TO BE FORMED AND SUBTRACTED

BY UNRAVL., UNRAVL WILL BE ACTIVATED THIS NO, OF TIMES,
AMASS, ARRAY CONTAINING MASS NUMBERS,

A, FULL MIXTURES ARRAY FReM DISK 117,

SHIX CONTAINS NOC SPECTRA SELECTED FRoM A, THIS NO,
GOES DAUWN AS THE MIXTURES ARRAY IS SIHPLIFIED,

MASS PROFILE CORRELATION ANALYS1S IS PERFORIIED ON
EVERY MNEW MIXTURES ARRAY , '

DIMENSTON A(A40,25),5M1X(5,25),AMASS(25)
DOUBLE PRECISION A,SHIX '
FORNAT(I4) '

2 FERMAT(BF9.3) ' B

FORNAT(F7.2)

READ 1,NGS

PRINT 1,NOS

READ 1,NGM’

PRINT 1.NOM

READ 1,NOC

PRINT 1,HOC

READ 1,NREDS

PRINT 1,NREDS

READ 3, (AMASS (1), I1=1,NOM)

READ (11,2) ((ACI,3),1I=1,N08),0=1,NOM)
CALL PRACALNOS, NOM)

CALL SELECT(A,SHIX,NGM,NOC)
FORMATCLX,F10.2,6X,5F10,3)

DO 1089 J=1,H0M

PRINT 4,AMASS(J), (SMIX(I,T),TI=1,NOC)
p0 200 IX=1,NREDS

CALL UNRAVL (A, SHLX,NOS,NOM,NOC,AHASS)
CALL PRACA,NOS,NOM) .

CALL MC(A,NOH,NOS,AMASS)

CALL EXIT

END
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SUBROUTINE UNRAVL (A,AM1IX,NOS,NQM,NAC,AMASS)

[ UK U BN DUS R N S VA DO UK OO Y W DI SN WY SN T St Oy W W RN N S S S WP SO WU N T DO DR D WP DR DU SN W TION Y S NN SO DR TR N U Y YN R SN T R W SO Y O T % DI

THIS PROGRAM PRODUCES A S7ECTRUM FROM POSIT]ONS OF
ZERQOS, AS FOUNG BY 'TRLIAL', THIS SPECTRUM IS THEN
SUBTRACTED OUT OFf THE MLXTURES ARRAY GIVING AN ARRAY
OF LOWER RANK, :

A IS THE WHOLE MIXTURES ARRAY,
AMIX 1S THE SAME AS DESCRIBED IQ 'TRIALTY,

READS IN =~

NZ , NUMBER OF ZEROS USED. .

K¥Z , KEY VECTOR CONTAINING COLUMN NOS, (MASSES)

WHICH HAVE ZEREG CONTRIBUTIONS FROM THE DESIRED
SPECTRUM, L,E, NZ INTEGERS,

Ju, COLUMN NO, OF PEAK UNIQUE TQ THE DERIVED SPECTRUM,

A MASS PROFILE CORRELATION ANALYSIS 1S CARRIED OUT
OM THE NEW HIXTURES ARRAY,

L VAU VO V950 Wt VON YO VO Uk AN U VU WO SO SO0 SN TN WO VUK PIU TN WO SO SA0 WO VAP0 VAR VO it UIU T SN U WG SO S0 Y DRPPVSS P UON SAOE VAR O N YO DR R U AW PN W O VO PO TSt BO¥ O VO YO VR 73

OO0 C OO0 CO0O0n

> L -

230

DIHENSION A(AG 25 ),AHIX(Q,ZS) D3 (25),U(25)
DIMENSION AMASS(25),KVZ(58),B(25,25)
POUBLE PRECISION A,AMIX,DS,U,B
FORMATC(I4)

FORMAT(1214)

FORMAT('1!")
FORMAT(12X,F7,1,3X,6F8,2)

READ L,NZ ‘

READ 2, (KVZ(I),I=1,N2)

CALL ZtRoS(AHLX NOL NOM,1,NZ,D5,KVZ)
READ 1,JU

BB=DS(J4)

PO 220 I=1,NQS

AX=A (I, JU)

XK=AX/88

DO 229 J=1,NOM

U(JI)=DSLJI)AXK

AT, 3)=A(L,3)~U(1)

PRINT 3

CALL PRACA,NOS,NOM)

PRINT 3

DO 23¢ J=1,NOM

PRINT 4,AMASS(I), (A(1,3),1=1,5)

CALL HC (AsNOH,NOS, AMASS)

RETURN °

END
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APPENDIX C.

Mean and Variance

In order to summarise a number of measurements (e.g. successively
scanned mass spéctra) it is convenient to calculate their mean (or average)
and their veriance. The latter is calculated by expressing each measure-
ment as a deviation from the mean.

The mean is given by 2:5.’ where X is each measurement and '"n" the

n
nunber of measurements.
. . . 2 R s s
The variance is given byzz X, where "x" is the deviation of each
n
measurement from the mean.
The mean is a measure of central tendency. The variance is a measure

of scatter. These two values are useful in summarising the nature of a

distribution of measurements e.g. mass spectral peaks.

Correlation gives a measure of the tendency of two things to vary to-
gether i.ec. to be associated or correlated. This is sometimes given by

calculation of the Product-Moment Correlation Coefficient , "r"
Lxy
n

~/Qvarian¢e)x.~/?variancezy

r

where "x" and "y" are the deviations of each.

The product-moment correlation coefficient is by far the most widely
used estimator of the degree of association or correlation. It varies in
value from “-1“(perfect inverse relation) through zero (no relation) to

|l+1“ (perfect positive relati;n). Some interpretations and limitations of
the coefficieﬁt are given by Guilford(se).

The analysis of variance like most statistical procedures assumes that



164.

sampling is random hence the necessity to acquire large numbers of spectra

for analysis.

Correlation matrix is a symmetric matrix containing the correlation

coefficients of each series of measurements with every other. It there-~
fore has dimensions equal to the number of series being correlated. The
n "

elements in the main diagonal are all 1.0 since these are gelf correl-

ation coefficients.

Principal Components Analysis allows, by examination of the correlation

matrix, an estimation of the minimum number of factors accounting for the
variance in the data. There is only one possible set of factors for any
correlation matrix § the method therefore gives a unique solution. The
factors found in an array of mixtures spectra bear no relation to the pure
component spectra apart from their number. This rnumber may be estimated by
calculating the eigenvalues of the correlation matrix and deciding how many
are significant.' An I.B.M. Scieﬁtific Sub-routine called EIGEN may be
used(71) as described in APPENDIX B (sub-routine PCA). The particular
technique used is the diagonalization method originated by Jacobi and

(89)

adapted by Von Neumann for large computers.

Weighting

When the correlation matrix is calcﬁlated equal weighting is given to
all fhe variables no matter how relatively small some of them may be i.e.
some of the smaller variables are given too much weight. Perhaps this expl-

ains the sensitivity of the mass profile correlation matrix for Mixture II to

the impurity peaks (see Table 17). According to the rank analysis these form-
(0) .

ed a relatively minor component. This effect is discussed by Hope n

future work it would be better to work with correlations related to the relat-

ive amounts as well as the patterns.
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