UVIVERSTMT OP GLASGON
 (Institute of Chemistry)

Aoplication of Irreversible Thermodynamics to Transport Processes in Binary ilectrolyte Solutions

SATISH K. JATOTA
(Ph.D. Thesis)

$$
\text { July, } 1971 .
$$

GIASGOW SCOTLAND

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011967
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

To

My Uncle
H. C.

Table of Contents

Acknowled.gment. iv
Abstract v
Nomenclature vii
Chapter 1. Introduction. 1
Chapter 2. Theory of Irreversible Themodynamics as Applied to Transnort Processes in Binary Electrolyte Solutions... 5
Chapter 3. A Survey of Transport Properties of
Binary Electrolyte Solutions and Selectionof a Method for Experimental Study26
Chapter 4. Fieasurement of Diffusivity 33
Chapter 5. Measurement of Conductance. 56
Chapter 6. Results and Discussion of the Irreversi- ble Thermodynmic Anelysis. 85
Conclusions. 125
Appendix 1 127
Appendix 2 173
References for Chapters 1-6. 189
References for Appendix l... 194

ACKIOUIEDGPDRT

It gives me a great pleasure to thenk my research supervisor, Dr. R. Paterson, for assignjng me this mork, his sincere guidence and useful timely discussions during the course of thase investigetions and helping me in the preparation of this thesis.

I m thankful to Dr. H. 3. Dunsmore for taking interest in my practical work end viriting some of the major comouter progromes reauired for mothemeticel analysis of the experjmental results.

I 3 m also thenkful to Professor J. M. Robertson for providing me the necessary laboratory facilities and finsncial assistance in the form of a student demonstratorship.

Wy thanks are also due to the head of the computing department for letting me attend a short course in Alsol computing language; to J. Welker for preparing the computer data tepes and assisting me in the setting /pf the experimental equipment; to the glass blowers for constructing the conductance and diffusion cells; to the electronics work shop for lending me the Wane Kerr Oscillator and to my colleagues, J. Anderson end R. Cemeron, for correcting a part of the thesis.

Finslly I must also thenk my sister, Niss Neelan Jolota, for the laborious typing of this manuecript.

$A B E T B A C R$

Theory of imeversible thermodymics has been apolied to isothermal trensport processes in binary electrolyte solutions. Relations are presented which express the commonly measureable transport qua/tities in terms of Onsager transport $I_{i k}$ and inverse frictional R_{ik} coefficients. Relations for L_{ik} and R_{ik} coefficients are presented in terms of the experimental quantities, t_{i}, Λ and D_{V}.

Equivalent conductences of rubidium and caesium chlorides and diffusion coefficients of rubidium chloride have been measured in the concentration range 0-311. These heve been combined with the remaining transoort, activity and density data which existed in the literature and the $I_{i k}$ and $R_{i k}$ coefficients obtained. Literature from 1930 to 1970 has been surveyed for transport numbers, equivelent conductences, diffusion and activity coefficients for $1: 1,1: 2,2: 1$ and $2: 2$ electrolyte solutions in aqueous media. Results, for twenty eight systems for which data was also complete, have been calculated as a basis of comparison.

The relative sizes of these coefficients have been discussed in terms of ion solvetion and water structure. An interpretation of the physical significance of frictional coefficients is developed for completely dissociated as well as associated l:l electrolytes. Association in alkali metal chlorides, potassium and silver nitrate solutions has been studied by the conductance theories of Pitts and Fuoss. Abnormalities in rubidium-chloride and caesiun-chloride interactions heve been ascribed to ion association and the true interionic friction caf fin calculated and compared with those for the completely dissociated alkali metal chlorides. The correction reduces the inter-

a

ionic friction from ite aroment value calculated on stoicheiometric basis and places the salts in a rational order. The significence of q $_{12}$, the degree of coupling betreon mobile species, has been developed as a suitable paraneter for comparison of a variety of electrolytes of different valence types.

Nomenclature

A Anion in chaster 2; a coefficient of enpirical fit in ecn(5.12) and (6.13).
$A_{i} \quad$ Affinity of chemical reaction.
a.,a_{i} Coefficients of empiricel fits.

B
A coefficient of empirical fit in eqns (5.12) and (6.13).
cme,cmb Fean concentretions.
C Cation in chapter 2.
$C_{p} \quad$ Capacitance
$c_{i} \quad$ Molar concentration of ion i.
d Density.
$\bar{D}(t) \quad$ Concentration average diffusion coefficient.
$\bar{D} \quad$ Integral diffusion coefficient.
$D, D_{v} \quad$ Volume fixed differential diffusion coefficient.
D^{0} Diffusion coefficient at infinite dilution.
D_{0}
ds Total change of entropy.
$d_{e} s \quad$ Chenge of entropy due to interactions with the exterior.
$d_{i} S$ Internal production of entropy.
fa,fb Vacuum correction factors for salt and solutions. F Faraday of electricity.
$F_{i k} \quad$ Fraction of the force apolied on i which ${ }^{\text {Kopposed }}$ by friction with k.

a_{12}	Degree of coubling between species l and 2 .
9 io	Degree of couming between species i and solvent.
$\mathrm{R}_{\text {iK }}, \mathrm{R}_{\text {i }} 0$	Coefficients of friction between species i end k and, i end solvent.
$\mathrm{R}_{\mathrm{p}}, \mathrm{R}_{\mathrm{T}}$	Apparent and true resistences of solutions.
r_{i}	Stoicheionetric cofficjent of ion i.
r	Sum of stoicheionetric coefficients.
${ }^{5}$	Local entrody density per unit volume.
S	Entrony in chapter 2 and ionic strength in chapter 6.
\underline{T}	Absolute temperature.
t_{i}^{h}	Hittorf transport number.
t_{i}^{c}	e.m.f. transport number.
t_{i}	Transport number.
t, t_{r}	Time of a diffusion run.
V	Volume.
v_{i}	Velocity of species i in Iiters / $\mathrm{cm}^{2} \mathrm{sec}$.
\bar{v}_{i}	Velocity of species i in $\mathrm{cm} / \mathrm{sec}$.
W	Frequency of alternating current.
W_{b}	Nolecular weight of solute.
X	Thermodynamic force.
$\mathrm{X}_{\mathbf{i}}$	Thermodynamic force on species i.
X	Distance in cm.

${ }_{ \pm}{ }_{ \pm}$	Stoicheionetric ectivity coefficients.
I	Current density.
i	Wumbers.
J_{s}	Flow of entrony.
div J_{s}	Divergence of entrony.
$J(t)$	Plux of solute at time t.
$J_{\text {i }}$	Flow of species i.
J_{i}^{0}	Plovi of i relative to solvent.
j_{i}	Wlow of free ions i.
$J_{c h}$	How of chemicel reaction.
K_{g}	Association constant.
k	Numbers.
I	Themodynamic diffusion coefficient.
1	Diffusion peth.
$\mathrm{I}_{\text {ii }}$	Intrinsic mobilities of species i.
$L_{i k}$	Coefficient of interaction of mobilities of i with k.
m	Molality.
N	Normelity.
n	Numbers.
M	Nolarity.
MO_{0}	molecular weight of solvent.
q	Transport of heat.

x_{i}	Thermodynemic force on free ions i.
$\mathrm{x}_{\mathrm{i} k}$	Coefficjent of kinetic friction between seecies i and k.
Y	Tean molar activity coefficient.
Z_{i}	Valency of ion i.
0	Solvent.
1	Cations.
2	Anions.
S	Cell constent in conductance messurements.
α	Degree of dissociation.
β	Cell constant in the diffusion experiment.
σ	Rate of entrony production.
Φ	Dissipation function.
λ_{i}^{0}	Limiting conductivity of ions i.
Δ	Equivalent conductance.
$\widetilde{\mu_{j}}$	Electrochemical potential of species i.
μj	Chemical potentisl of suecies i.
$\mu_{i k}$	Chemical potential of neutral electrolyte or ion pair.
ϕ	Electricel potential.
γ	Mean molal activity coefficient.
k	Specific conductivity.
	Coefficient of viscosity. Surface density of nater around an ion i.

CHAPTTER 1

Introduction

In electrolyte solutions transport of cherce and mass takes place if an electricaj potential is applied to the solution or if a concentration gradient exists in it. Considerable effort has been put on the elucidation of these processes from the originel investigetions of Kohlray ${ }^{5} \mathrm{ch}(1879)^{7}$, Arrheni申us $(1887)^{2}$ and Van't Hoff (1887) ${ }^{3}$ upto the notpable work of Debye end Fückel(1023) ${ }^{4}$ end Onsager(1931) ${ }^{5}$. The moleculer theories of electrolytic conductance and diffusion are based on the laws of interionic attraction and the conceot of ionic atmosphore. These theories successfully account for the observed trensport ountities in dilute solutions where long range coulombic forces glone are of importence and where other influences such es intormoleculer and short range repulsive forces between ions may be negligible. In concentrated solutions however specific effects becone significant, flow of an ion is affected by the presence of similar and counter ions. As concentration increases the dielectric constant changes in the vicinity of an ion and there are specific and changing intercctions between ions and solvent molecules. For these reasons theoretical equetions for diffusion and conductance are limited to a very nerrow range of concentration which for $1: 1$ electrolytes is unto 0.01 f and still lower for higher valence type electrolytes. Fuoss and coworkers ${ }^{6}$ and Bitts ${ }^{7}$ have recently tried to extend the concentration limit of their theoretical conductance equations by taking into account short range interionic effects.

Thejr treatment is valid only ubto $\simeq 0.05 \%$ in solutions of completely dissociated $1: 1$ electrolytes. inis comentration limit is further reduced in the cese of essociated electrolytes and a solvent of low dielectric constent.

An alternative phenonenolomical aporoch to the problem hes been develoned over the lest fow decedes. It in besed on the phenomenon of coundine between two or more pocesses in a transport experiment. In electrolyte conductance, for exemple, the two processes taking olace are the simulteneous flows of cetions and anions in the opposite directions under a gradient of electrical notential. The force acting on a species affects the flow of the secmid and vicemverse. This, the phenomenon of counling, was first rationslised by Iord Kelvin (1954) ${ }^{8}$ in a study of the thermoelectric effect. Rigorous treatment wes given by Onseger (1931) 5 who developed the theory of irreversible themodynamics later to be eypanded and generalised by leixner ${ }^{9}$, Casimir ${ }^{70}$ and Prigoginell. The complete formulation of the subject is most adeouately treated in a number of trestises ${ }^{12,13,14,15 .}$

The theory of irreversible thermodynamics has been specifically apnlied to isothermel transnort procesees in electrolyte solutions by Iiller ${ }^{16}$ and in e slightly different but equivalent form by Newman ${ }^{17}$. The complete picture of the theory as oresented by liller can be anplied directly to experimentally neasureable transport properties and the application leads to a general description which is valid in any range of concentration. The transport processes are described by ohenomenolorical coefficients which specifically messure the kinetic interactions between ion and ion, and ion
and solvent. The concentration dependeace of the trensoont oroperties like conductance, trensnort numbers ene diefusion coefficients are well described in temm of these phemomenologicel coeffjcients which are therefore more fundanental than the trensport mroperties thenselves and a mowledge of these coefficients sives better in-sight into the transport mrocesces irrespective of the concentration innse.

The interoretation of the transport processes in terms of the phenomenological coefficients is quelitetive end therefore becomes more meeningful when a closely releted series of electrolytes are considered. One such series is that of alkali metel chlorides. Miller ${ }^{169}$ collecter literature data for conductance, trensport numbers and difiusion coefficients in aqueous solutions of lithium, sodium and potessim chlorides in the concentration range 0-3r, epnlied his relations end obtained the ohenomenological coefficjente. These transport date were not complete for rubidium ene ceesium chlorides. Equivalent conductances of both end diffusion coefficients of rubidium chloride alone were lacking. Ihese have been measured and presented in this thesis to complete the irreversible thermodynamic onelysis of the whole alkali metal chloride series and make a comborison of the changing trends of the megnitudes of phenomenological coeficients when atomic size of the cations in this closely greded series incresses regulorly from lithiun to ceesium while the enion remains the same and to find an explanation for the highest values of conductance, transport numbers and diffusion coefficients in solutions of rubidium chloride while this electrolyte lies below osesium chloride in the series.

The theory of imreversible themodynemic anelysis js presented in chapter 2 where it is chown thationly three trensport quentities, t_{i}, A and D_{V}, are required to explain the trensoort orocesces in binery electrolyte solutjons. There are two formelime in which the ohonomenologicel equetions are described. The first is thet of direct traneport $I_{i k}$ coefficients and the second is that/inverce frictione? $R_{i k}$ coefficients.

A detailed Iitereture survey from 1930 onwards wes mede to collect the transoort quentities for 1:1, 1:2, 2:I and 2:2 binery electrolyte solutions snd obtain the bhonomenological coefficicnts for these aystens as a basis of conparison with those of the olkali metal chlorides. This is rascribed in cheoter 3. The expemmental vrocedures for the mesmerements of diffusion coefficients end conductances ere descrjbed in chapters 4 and 5 . In chanter 5 ion asoociation in 1: I electrolyte solutjons has been studied usine the conductence theories of Puoss \& Pitts end the rosults of calculations of the complete thermadynamic data for rubidium and caesium chlorides are presented in chapter 6 and the physicel significence of the ohenonenolofical coefficjents, $L_{i k}$ and $R_{i k}$, develoned. The results of calculations for all other systems are presented in appendix l. Geven computer prog申rammes were written in Algol language for miscellaneous and repetitive celculations. these are described in appendix 2 .

GHAPTER 2

Theory of Trreversible Chermodynamics as Apolied to
Transoort Processes in Binary Qlectrolyte Solutions.
2.1 Entrony Froduction in an Trroverajble Process: Trotoms undergoinc imreversible mocesces mey be divided into nacro-. scopicelly small locel whaystems. If each subsystem is considered to be at locel equiljbrium then the laws of classical themodynenios are vaiid. If verturbstions from entilibrium are not large, the chonge of entrony of the syctens in the imreversible mrocess is siven by

$$
\begin{equation*}
d S=d_{e} S+d_{i} S \tag{2.7}
\end{equation*}
$$

where $d_{e} S$ is the flow of entrony due to interactions with the exterior and $d_{i} S$ is the production of entrony inside the syrtem. $d_{i} s$ is zero for a reversible process but is always nositive if chenges occur irreversihly.

For an inolated system in which neither energy nox motter can be exchanged,

$$
\begin{equation*}
d_{e} S=0 \tag{2.2}
\end{equation*}
$$

and the entropy production is given by

$$
\begin{equation*}
d S=d_{i} S \geq 0 \tag{2.3}
\end{equation*}
$$

If two irreversible processes, 1 and 2, occur in an isolated system then

$$
\begin{equation*}
d S=\alpha_{i} S^{l}+d_{i} S^{2} \geq 0 \tag{2.4}
\end{equation*}
$$

Apnlying eans (?.?) and (2.3), it is nostuleted that

$$
\begin{equation*}
d_{i} s^{7} \geq 0 \text { end } a_{i} s^{2} \geq 0 \tag{2.5}
\end{equation*}
$$

A physical situation in mich $a_{j} s^{7}<0$ and $d_{j} s^{2}<0$ is excluded That is, in every mecrosconic region of the system the entropy production is positive.

In counted chemical reactions, however, if two simulatenous reactions, I and ?, occur, then it is possible that the rete of entropy production in $I, d_{j}{ }^{1} / d t$, is positive and in 2, $d_{j} s^{2} / d t$, is negative provided their sum is positive. The reactions axe then counted, reaction, l, proceeding soonteneously and driving the second against its natural or anonteneous tendency. Such thermodymanic coupling is rn essen-tied feature of living systems involved in active tremanorte.
?.? The rete of Entropy Fpoouction and the Dissinetion buntion: The rote of entrony production for a system, $d_{j} / d t$, may be considered to be the sum of contributions from ell volume elements so that

$$
\begin{equation*}
\frac{d_{j}^{S}}{d t}=\int_{V} \sigma d V \tag{2.6}
\end{equation*}
$$

Where σ is the local rate of production of entrony ne unit volume, V.

From ean(2.1), the rete of change of entropy is

$$
\begin{equation*}
\frac{d S}{d t}=\frac{d e S}{d t}+\frac{d_{i}}{d t} \tag{2.7}
\end{equation*}
$$

The total entropy of a system, s, may be defined in terms of the local entropy density (entropy per unit volume), S_{v}, by $20=$

$$
\begin{equation*}
S=\int_{V} B_{V} d V \tag{2.3}
\end{equation*}
$$

The change in total eatrony with tine becones

$$
\begin{equation*}
\frac{d s}{d t}=\int_{V} \frac{d t}{d t} d v \tag{2.9}
\end{equation*}
$$

$\frac{d e^{5}}{d t}$ is releted to the flow of entrony, J_{s}, by

$$
\begin{equation*}
\frac{d_{e} S}{d t}=-\int_{V} \text { aiv } d_{s} d V \tag{2.10}
\end{equation*}
$$

Substituting eans (2.6), (2.9) and (2.10) in eqn(2.7), we ontrin

$$
\begin{equation*}
\int_{V} \frac{J V}{J t} d V=-\int_{V} d i v J_{s} d V+\int_{V} \sigma d V \tag{2.71}
\end{equation*}
$$

$\operatorname{Ban}(2.11)$ decoribes the total rete of chence of entrony with time. por eny loosl chence it becomes

$$
\begin{equation*}
\frac{\partial V_{v}}{\partial t}=-\operatorname{djv} J_{s}+\sigma \tag{?.12}
\end{equation*}
$$

The rete of change in locel entrony is therefore equal to the entrony nroduced, σ, plus the entropy flow term, - div J_{s}.

The necessary conditions for a state of equilibrium are thent

$$
\begin{equation*}
\frac{\partial J_{v}}{\partial t}=0 \text { and } \operatorname{div} J_{s}=0 \tag{2.13}
\end{equation*}
$$

and therefore from $\operatorname{egn}(2.12)$,

$$
\begin{equation*}
\sigma=0 \tag{2.14}
\end{equation*}
$$

For e sustem in steady stete, however,

$$
\frac{S_{v}}{\partial t}=\Phi
$$

and

$$
\begin{equation*}
\operatorname{div} J_{s}=\sigma \tag{2.15}
\end{equation*}
$$

Tor a continuous system, the entropy production, σ, is given by the relationship ${ }^{19}$,

$$
\sigma=\left(\frac{J_{S}}{T}\right) \operatorname{grad}(-T)+\sum_{i=1}^{n}\left(\frac{J_{i}}{T}\right) \operatorname{srad}\left(-\widetilde{\mu}_{i}\right)+J_{c h} \cdot\left(\frac{i_{i}}{T}\right)(2.16)
$$

where J_{s}, J_{i} and $J_{o n}$ are the flow of heat, matter and cherical reaction (rate) multiplied by their conjugate driving forces, defined by the negative gradients of the temperature, T, electrochemical notentiel, \tilde{u}_{i}, and the affinity of cherical reaction, A_{i}, respectively.
σ may be replaced by the dissipation function, $\Phi=$? σ. It hes the dimensions of energy der unit time and is a meansure of the rate of local dissipation of free energy. Relation (2.16) may be reformulated as
$\Phi=T \sigma=J_{s}$ grad $(-\mathbb{I})+\sum_{i=1}^{n} J_{i} \operatorname{grad}\left(-\tilde{H}_{i}\right)+J_{c h} \cdot A_{i}>0$
For isothermal transport processes in electrolyte solutions in which no chemical reactions take place, the dissipation function, Φ, is given by the second term on the right hand side of eqn(0.17) and defined as the sun of products of conjugate flows and forces. For a system consisting of a neuttrail solvent, 0 , and n solute species, the dissipation function is

$$
\begin{equation*}
\Phi=T \sigma=\sum_{i=1}^{M} J_{i} X_{i} \tag{2.18}
\end{equation*}
$$

Where J_{i} is the mass-fixed flow of species, i, in moles/ cm^{2} sec, and X_{i} is the themodynemjc force in joules/ mole cm .
2.3 Eremes of Reference for Rows: The definition of fows presented in ean (2.18) is given in temm of an arbitrary frame of reference. It hes been shom 20 , however, thet sny freme of refecence may be chosen. The choice depends on the purpose of study. The transport equations for binary electrolytes become intuitively more sccessible if the solvent fixed rather than, for exemple, the volume fixed or molar averege velocity frame of refcrence is uncd. Reletions exist for the conversion from one freme of reference into another $2,220,23, ? 4$.

For a binary electrolyte solution consisting of cotion, l, anion, 2, of valencies Z_{1} end l_{2} respectively and solvent, $0, \operatorname{eqn}(2,18)$ becomes

$$
\begin{equation*}
\Phi=J_{1} X_{1}+J_{2} X_{2}+J_{0}^{X_{0}} \tag{2.19}
\end{equation*}
$$

Where X_{i} are the gradients of electrochemical potentials so the.t

$$
\begin{equation*}
X_{i}=-\frac{\partial \tilde{l}_{i}}{\partial x}=-\left(\frac{\partial u_{i}}{\partial x}+z_{i} \mathrm{~F} \frac{\partial \phi}{\partial x}\right) \tag{2.20}
\end{equation*}
$$

where x is the distance parameter, $\frac{\mu l j}{\partial x}$ and $\frac{\partial \phi}{\partial x}$ ere the gradients of chemical and electrical potentials.

The Gibbs-Duhem equation states that

$$
\begin{equation*}
n_{1} d \tilde{\mu}_{1}+n_{2} d \widetilde{\mu}_{2}+n_{0} d \tilde{\mu}_{0}=0 \tag{2.21}
\end{equation*}
$$

Dividing eqn(2.21) by the volume, V, ond differentiating with respect to x, we obtain

$$
\begin{equation*}
c_{1} X_{1}+c_{2} X_{2}+c_{0} X_{0}=0 \tag{2.22}
\end{equation*}
$$

Where $c_{i}=n_{i} / V$, are the concentrations per unit volume. Bon(2.22) shows that the forces on 1,2 and 0 are not independent. Qliminating X_{0} from en(2.19) and (2.22), the dissjpation function becomes

$$
\begin{equation*}
\Phi=\left(J_{1}-\frac{J_{0} c_{1}}{c_{0}}\right) X_{1}+\left(J_{2}-\frac{J_{0}{ }^{c} ?}{c_{0}}\right) X_{2} \tag{2.23}
\end{equation*}
$$

The flow, J_{i}, is given by the product of concentration, c_{i}, and velocity, v_{i}, of the species, i, so that

$$
\begin{equation*}
J_{i}=c_{i} v_{i} \tag{2.24}
\end{equation*}
$$

In these terms, ($J_{i}-J_{0} c_{i} / c_{0}$) of eqn(2.23) is defined as $c_{i} X$ $\left(v_{i}-v_{0}\right)$. It is therefore the flow of species, i, relative to solvent, 0 , and is given the symbol $J_{i}{ }^{0}$ so that

$$
\begin{equation*}
J_{i}^{0}=c_{i}\left(v_{i}-v_{0}\right) \tag{2.25}
\end{equation*}
$$

The dissipation function may therefore be represented in terms of two flows and two forces, $J_{1}{ }^{0}, J_{2}{ }^{0}$ and X_{1}, X_{2} respectively;

$$
\begin{equation*}
\Phi=J_{1}{ }^{0} X_{1}+J_{2}{ }^{0} X_{2} \tag{2.26}
\end{equation*}
$$

2.4 The Phenomenolosicsl Equations ent the Onscger Reciorocal Relations: In situations where a system deviates only slightly from equilibriun, linear phemenolorgical equations may be written ralating the flow of a species, i, to all other forces so that for an $n+1$ component system,

$$
\begin{equation*}
J_{i}=\sum_{k=0}^{n} I_{i k} k \quad i=0,1,2,3 \ldots n \tag{2.27}
\end{equation*}
$$

The terms $I_{i k}$ are the phomenological coefficients and are independent of the forces.

For a one flow-one force system, the phenomenological equation is

$$
\begin{equation*}
J_{i}=I_{i i} X_{i} \tag{2.28}
\end{equation*}
$$

In this simple situation, the flow of i is proportionsl to the force X_{i}. The ma.gnitude of $L_{i i}$ is a specific measure of the mobility of the species and from the general definition of a force equation, one may obtain, under solely electrical or activity gradients, expressions which coryspond to the simple laws of Ohin end Pick. In systems of two components, of which a binary electrolyte solution, on solvent fixed frame of reference, is an example,

$$
\begin{align*}
& J_{1}=L_{11} X_{1}+I_{12} X_{2} \\
& J_{2}=I_{21} X_{1}+I_{22} X_{2} \tag{2.29}
\end{align*}
$$

The direct coefficients, I_{11} and J_{22}, remain but, in eddition, the $\mathrm{L}_{12}{ }^{*}$ measure the degree to which a flow of species, l, is affected by a force on snecies, 2. The coefficients, TH2 end $L_{\text {OI }}$, are the cross or coubling coefficients. Using the princiole of microscopic reversibility, onseger ${ }^{5}$ has shown * and L_{21}
thet close to equilibriun

$$
\begin{equation*}
I_{12}=I_{21} \tag{2.30}
\end{equation*}
$$

In the generalised fom eon (2.30) may be maitten 3,3

$$
\begin{equation*}
I_{i k}=J_{k j} \quad i, k=0,1,2,3, \ldots n \tag{2.31}
\end{equation*}
$$

These are called Onsager Reciprocal Relations(ORR) and were show to hold under statistical mechanical models ${ }^{5}$. To charecterise a system of n forces and n flows, n ? such coefficients would be required but under $O R R$ they are reduced to $\frac{1}{2} n(n+1)$. Thus for a two component system, only three such coefficients, $I_{I I}, I_{I 2}$ (equel to I_{21}) and I_{22}, are required. In all ceses the cross coefficients are constrained by the inequelities

$$
\begin{equation*}
I_{i i} I_{k k} \geq\left(I_{i k}\right)^{2} \tag{2.32}
\end{equation*}
$$

that is, the direct coefficients must be positive but the cross coefficients may either be positive or negative.

In binery electrolyte solutions, the direct coefficients, $I_{i i}$, are the trensport or mobility coefficients and meesure the mobility which an ion would have if there were no interactions with the oppositely cherged ions. $I_{i k}$ mean the mobility interection coefficients and directly determine the cation-anion kinetic coupling. Both the direct, $I_{i i}$, and cross $L_{i k}$, coefficients are dependent on the frame of reference. Thus, on the solvent fixed frame of reference they have contributions from the solvent as well.
2.5 Thverse form of Phemomenolorical Bquetions - The eriotional Coefficients: An alternative representation of phenomenological coefficients has the form

$$
\begin{equation*}
X_{i}=\sum_{k=0}^{n} R_{i k} J_{k} \quad i=0,1,2,3, \ldots n \tag{2.33}
\end{equation*}
$$

in which the Onsager reciprocal relations hold, that is

$$
\begin{equation*}
R_{i k}=R_{i k} \tag{2.34}
\end{equation*}
$$

Eqn(2.33) expresses the force, X_{i}, as a linear function of ell the flows. The direct coefficients, $P_{i i}$, deternine the extent of friction between similar ions while the cross coefficients, $R_{i k}$, determine the friction between counter ions. Both the $\mathrm{R}_{\mathrm{i} i}$ and R_{ik} coefficients heve the dimentions of force ner unit flow.

For binary elactrolyte solutions on solvent fixed freme of reference for flows, eqn(2.33) reduces to

$$
\begin{align*}
& X_{1}=R_{I I} J_{1}+R_{I 2} J_{2} \\
& X_{2}=R_{21} J_{1}+R_{22} J_{2} \tag{2.35}
\end{align*}
$$

in which $R_{12}=R_{21}$ by ORR. Eqn(2.35) is the analogue of eqn (2.29) which is in terms of $I_{i k}(i, k=1,2)$ coefficients.

Since neither the X_{i} nor the J_{i} are independent, the $R_{i k}$ are not unique. However, under an arbitrary assumption

$$
\begin{equation*}
\sum_{k=0}^{n} c_{1 k} R_{i k}=0 \quad i=0,1,2,3, \ldots n \tag{2.36}
\end{equation*}
$$

the $R_{i k}$ become uniquely defined ${ }^{25}$. Foreover, with this
assumption, the $R_{i k}$ becone reference frene independent ab and adaitionel frictional coefficients, $R_{i O}$, can be obteinec, wich specifically measure the friction between en ion end tho solvent. For e three component system egn(?.36) becomes

$$
\begin{align*}
& c_{0} R_{i 0}+c_{1} R_{i 1}+c_{2} R_{i 2}=0 \\
& \text { or } c_{0} R_{i 0}=-\left(c_{1} R_{i 1}+c_{2} R_{i 2}\right) \quad i=0,1,2 \tag{2.37}
\end{align*}
$$

The coefficients, $R_{i i}$ and $R_{i k}(i, k=1,2)$, may be obtained by matrix inversion of the $I_{i i}$ and $I_{i k}$ coefficients, which on substitution in eqn(2.37) give $c_{0} R_{i O}(i=1,2)$. The $c_{0} \mathrm{R}_{i 0}(i=1,2)$ may then be used to obtain $c_{0}{ }_{i 0}(i=0)$.
2. 6 Bxperimentelly feesureeble Pransport Propertjes of Binery
Electrolytes in rems of Phenonenologicel Coefficients Consider a binery electrolyte, $C_{r_{1}} A_{r_{2}}$, in a neutral solvent, O, which dissociates as

$$
\begin{equation*}
c_{r_{1}} A_{r_{2}}=r_{1} C^{Z_{1}}+r_{2} A^{Z_{2}} \tag{2.33}
\end{equation*}
$$

r_{1} and r_{2} are the stoicheiometric coefficients of dissociation oi cations, C, and onions, A of valencies Z_{1} and Z_{2} respectively.

Chemical potential of the electrolyte, μ_{12}, is equal to the sum of the cheraicel potentials of ions i.e.,

$$
\begin{equation*}
\mu_{12}=r_{1} \mu_{1}+r_{2} \mu_{2} \tag{2.39}
\end{equation*}
$$

and from the condition of electroneutrelity, we have

$$
\begin{equation*}
Z_{1} r_{1}+Z_{2} r_{2}=0 \tag{2.40}
\end{equation*}
$$

The phenomenological equations on solvent fixed freme of reference ere given by eons(2.29) and the forces X_{i} by eun (2.20).

To obtain numericel values of the four lik coefficienta of eqns (2.29), four indenendent experimentel quentities ore needed and the four suitable ones are the conductence, A, volume fixed diffusion coefficient, Dv, Fittorf trencoort number, t^{h} and tre e.r.r. ironeport number, t^{c}. Because of Onseger reciorocal relations, the cross coefficienta are identical i.e. $\mathrm{I}_{12}=\mathrm{I}_{21}$. Therefore only three independent quantities are required. (It will be shown that the two trensport numbers, t^{h} and t^{c}, secome identical under the condition OI ORR).

We, however, derive expressions for all the four quantities, Δ, t^{h}, t^{c} and Dv in terms of J ik coefficients.
2.6.1 Conductance: By Ohm's law, current density, I, is given by

$$
\begin{equation*}
I=K(-\partial \phi / \partial x) \tag{?.4I}
\end{equation*}
$$

where K is the soecific conductivity. Py definition, equivelent conductivity, Λ, becomes

$$
\begin{equation*}
\Delta=\left(10^{3} / \mathbb{N}\right) \cdot I /(-J \phi / J x) \tag{2.42}
\end{equation*}
$$

where N is the equivalent concentration.

In terms of flows, J_{i}, I becones

$$
\begin{equation*}
I=\left(Z_{1} J_{1}+Z_{2} J_{2}\right) R \tag{2.43}
\end{equation*}
$$

and the forces X_{i} are given by

$$
\begin{equation*}
X_{i}=-z_{i} p d \phi / \partial x \quad i=1,2 \tag{2.44}
\end{equation*}
$$

The gradients of chonicel potentials, A_{i}, of the ions are zero at uniform concentretion.

An expression for equivelent conductivity, $A, i s$ obteined from equations (2.29), (2.42), (2.43) and (2.44);
$\Lambda=\left(10^{3} \mathrm{P}^{2} / N\right)\left(Z_{1}^{2} I_{11}+Z_{1} Z_{2}\left(I_{12}+I_{21}\right)+Z_{2}^{2} I_{22}\right)$.

At infinite dilution, the cross coefficients $L_{i k}$ are zero and so
$\Lambda^{0}=\left(10^{3} F^{2} / N\right)\left(Z_{1}^{2} L_{11}^{0}+Z_{2}^{2} L_{22}^{0}\right)=\mu_{1}^{0}+\lambda_{2}^{0}$
where λ_{1}^{0} and \mathcal{L}_{2}^{0} are equivelent conductivities of cetions and anions at infinite dilution. At finite concentrations, $L_{i k}$ are positive and increase rapidly as concentration increases.
Δ is mesaured on an apparstus-fixed freme of reference but it may be eesily shown ${ }^{26}$ that it is independent of the frame of reference.
2.6.2 Hittorf Pransnort Mumbers: Hittorf transpont numbes, t_{i}^{h}, is defined as the frection of the current carried by the ith ion relgtive to solvent in a solution or mingom concentration. In tems of flow, J_{i}, t_{i}^{h} cen be rerreserted as

$$
\begin{equation*}
t_{i}^{h}=Z_{i} F J_{i} / I=Z_{i} F J_{i} /\left(Z_{I} J_{I}+Z_{2} J_{2}\right) T \tag{2.47}
\end{equation*}
$$

Substitution of equations (2.29), (2.43) and (2.44) in (2.47) leads

$$
\begin{equation*}
t_{1}^{h}=\left(Z_{1}^{2} L_{11}+Z_{1} Z_{2} I_{12}\right) / \alpha \tag{?.48}
\end{equation*}
$$

where $x=Z_{1}^{2} I_{11}+Z_{1} Z_{2}\left(I_{12}+I_{21}\right)+Z_{2}^{2} I_{22}$
and t_{i}^{h} is the cationic trensport number.
2.6.3 E.m.f. Transport Numbers: An electrochemicel cell, having identicel eloctrodes but which hes a varying composition, may be represented as

$$
\mathrm{Ag} / \mathrm{Ag}_{5} \mathrm{NO}_{3}\left(\mathrm{c}_{2}\right): \mathrm{AgNO}_{3}\left(\mathrm{c}_{2}\right) / \mathrm{Ag}
$$

where $c_{2}>c_{1}$. In this system diffusion would occur and owing to differention mobilities a charge separation would take place. After a short time ${ }^{27}$, powerful coulombic forces speed up the slow moving ions and slow down the fast moving ones so that no electric current flows through the solution. Thus

$$
\begin{equation*}
I=\left(Z_{1} J_{1}+Z_{2} J_{2}\right) F=0 \tag{2.50}
\end{equation*}
$$

In this situation, gradient of chenical potentials, $J \mu_{i} / J$, and the gradient of electrical potential, $\partial \phi / \partial x$, are non-zerc.

Substituting equetions (2.29) and (2.20) in eqin(2.50),

$$
\begin{equation*}
-F \boldsymbol{J} \phi / \partial x=\left(t_{1}^{c} / Z_{1}\right) \cdot d \mu_{1} / j x_{1}+\left(t_{2}^{c} / z_{2}\right) \cdot \jmath \mu_{2} / \jmath x \tag{2.51}
\end{equation*}
$$

where

$$
\begin{align*}
& t_{1}^{c} / Z_{1}=\left(Z_{1} I_{11}+Z_{2} I_{21}\right) / \alpha \\
& t_{2}^{c} / Z_{2}=\left(Z_{2} I_{22}+z_{1} I_{12}\right) / \alpha \tag{2.52}
\end{align*}
$$

where of is as defined in oqn(2.49) and t_{i}^{c} are the e.n.f. transport numbers of the ions i.

Comparisjon of Hittorf and e.n.f. transport numbers, defined in equations (2.48) and (2.5?) shows that they are equal only if $J_{12}=I_{21}$ and so only if the ORR are obeyed. Experimental messurements of a number of systens ${ }^{28,29}$ show no difference in the Hittorf end e.m.f. transport numbers and so the OpR are justified.
2.6.4 Isothermal Diffusion: Diffusion occurs under a concentration gradient of salt and therefore $J \mu_{12} / J x$ is not zero and no electrical current flows so that from equations (2.40) and (?.50),

$$
\begin{equation*}
J_{1} / r_{1}=J_{2} / r_{2}=J \tag{2.53}
\end{equation*}
$$

Eqn(2.53) shows that the cationic and anionic motions are coupled and the two ions move together in the proportion present in the neutrol salt molecule and so J is the solvent fixed flow of electrolyte as a whole.

The diffusion coefficient for 3 binery system is described ${ }^{16 a}$ by

$$
\begin{equation*}
J=\frac{J_{1}}{r_{1}}=-\left(D_{0} / 1000\right) \partial c / d X=-I \partial \mu_{12} / d X \tag{2.54}
\end{equation*}
$$

where D_{0} is the solvent fixed diffusion coefficient in $\mathrm{cm}^{2} /$ sec and L is the themodynomic diffusion coefficient

$$
-\left(D_{0} / 1000\right) j c / j x=-L_{1} H_{12} / 3 c \cdot 30 / 3 x
$$

so that

$$
\begin{equation*}
L=D_{0} /\left(1000 \cdot 2 \mu_{12} / 00\right) \tag{2.55}
\end{equation*}
$$

but

$$
\begin{equation*}
\partial \mu_{12} / d c=(1+c d \ln y / d c) \operatorname{RTr} / c \tag{2.56}
\end{equation*}
$$

where

$$
r=r_{1}+r_{2}
$$

and y is the mean molar activity coefficient. Substituting equations (2.55) and (2.56) in eqn(2.54), we get
$J=J_{1} / r_{1}=-\left(\partial \mu_{12} / J x\right) \cdot D_{0} \cdot c / 1000 R \operatorname{tr}(1+c d \ln y / d c)$

From eqn(2.20) for J_{1} and the equations (2.20), (2.39), (2.50) and (2.51), we obtain
$J=J_{1} / r_{1}=\left(\partial \mu_{12} / J x_{1}\right)\left(Z_{1} Z_{2} / r_{1} r_{2}\right)\left(I_{11} I_{22}-I_{12} I_{21}\right) / \alpha$

Comparing equations (2.57) and (2.58), we get
$\left.D_{0}=\quad-1.000 \operatorname{RTr}(1+c d \ln y / d c) / c\right)$

$$
\begin{equation*}
X\left(Z_{1} Z_{2} / r_{1} r_{2}\right)\left(\left(I_{11} L_{22^{-I_{12}}}^{I_{21}}\right) / \alpha\right. \tag{2.59}
\end{equation*}
$$

In the literature, volume fired diffusion coefficient, D_{v}, and mean mole activity coefficient, γ, ere moportea. Transformations from one frame of reference into mother existo $22,230,24$ It may be show. ${ }^{30}$ that

$$
\begin{equation*}
D_{0} /(1+\operatorname{cdln} y / d c)=D_{V} /(I+m d \ln \gamma / d m) \tag{2.60}
\end{equation*}
$$

Where m is the molality of the solution. Substituting agn(2.60) in eqn(2.59), we pet
$D_{V}=-1000 R \operatorname{Tr}_{1} Z_{1} Z_{2}(I+m d \ln r / d m)\left(I_{11} I_{22}-I_{12} I_{21}\right) / r_{1} r_{2} c \alpha(2.61)$
where α is as defined in egn(2.49).
Equations $(2.45),(2.48),(2.52)$ and (2.61) are derived for the four messureable transport quantities. These four equations can be solved simultaneously to obtain If in terms of these quantities. the resulting equation is
$I_{i k} / \mathbb{N}=t_{i}^{h} t_{k}^{c} \Lambda / 10^{3} P^{2} Z_{i} \eta_{k}+r_{i} r_{k} D_{V} / 10^{3} \operatorname{RTrr}_{I} Z_{I}(1+m \alpha \ln \gamma / d m)(2.62)$

Equation (2.62) holds for any neutral solvent and eoplies to both weak and strong electrolytes. If ORR are assumed then $t_{i}^{c}=t_{i}^{h}$ and eqn(2.62) becomes

$$
\begin{align*}
& I_{i k} / N=t_{i} t_{k} \Delta / 10^{3} T_{Z_{i}}^{2} Z_{k} \\
+ & r_{i} r_{k} D_{V} / 10^{3} \operatorname{PTr}_{I}(1+m d \ln r / d m) \tag{2.63}
\end{align*}
$$

From egn(2.63), the three phenomenological coefficients, I_{11}, I_{12} (equal to I_{21}) end I_{22} may be obtained.

If F is the coulcmas/ecuivalent, R in jouler/mole der. and D_{v} in $\mathrm{cm}^{2} / \mathrm{sec}$., the units of $L_{i k}$ are in mole\% jube com sec.
2.7 Expressions for $R_{i k}$: The coefficients, $R_{i k}$, are obtained by the matrix aversion of the $I_{i k}$. For a binary system, the $R_{i k}$ are given by
and

$$
\mathrm{R}_{11}=\frac{\mathrm{I}_{22}}{\mathrm{~L}}
$$

$$
R_{12}=-\frac{I_{21}}{I_{1}}
$$

$$
\begin{equation*}
R_{21}=-\frac{I_{21}}{I_{1}} \tag{2.64}
\end{equation*}
$$

$-{ }^{-22}=\frac{11}{L}$
where $I=\left|\begin{array}{ll}I_{11} & I_{12} \\ I_{21} & I_{22}\end{array}\right|=I_{11} I_{22}-I_{12} I_{21}$
Substituting $I_{11} / \mathbb{N}, I_{12} / \mathbb{N}, I_{21} / \mathbb{N}$ and I_{22} / \mathbb{N} in the right hand side of expression (2.64), we directly obtain NR_{11}, $\mathrm{NR}_{12}, \mathrm{NR}_{21}$ and NR_{22} respectively.

The coefficients, $R_{i O}$, are obtained from $R_{i k}$ using the relations as defined in eqn(2.37);

$$
\begin{align*}
& R_{10}=-\left(r_{1} R_{11}+r_{2} R_{12}\right) c / c_{0} \\
& R_{20}=-\left(r_{1} R_{12}+r_{2} R_{22}\right) c / c_{0} \\
& R_{00}=-\left(r_{1} R_{10}+r_{2} R_{20}\right) c / c_{0} \tag{2.66}
\end{align*}
$$

in which c_{0} is the solvent concentration given by

$$
\begin{equation*}
c_{0}=1000 c / \mathrm{m} / 0 \tag{2.67}
\end{equation*}
$$

where r_{0} is the molecular weight of the solvent.

The coefficients, $R_{i k}$, can also be deriven direotly in tems of the tranoport uuantities usting phenomenolosion equations (2.35). The procedure is the same as descrined For $J_{i k}$ coefficjents. The resulting expressions ere

$$
\begin{align*}
& N_{I I}=\left(10^{3} F_{1}^{2} r_{1}^{2} / \Delta\right)-\left(Z_{1} Z_{2} / r_{1} r_{2}\right)\left(t_{2}^{2} / Z_{2}^{2}\right) . M^{1} \\
& N R_{12}=\left(10^{3} F^{2} Z_{1} Z_{2} / \Delta\right)+\left(Z_{1} Z_{2} / r_{1} r_{2}\right)\left(t_{2} t_{1} / Z_{2} Z_{1}\right) \cdot I^{1} \\
& M_{22}=\left(10^{3} H^{2} Z_{2}^{2} / A\right)-\left(Z_{1}^{2} Z_{2} / r_{1} r_{2}\right)\left(t_{1}^{2} / r_{1}^{2}\right) \cdot M^{1} \tag{2.68}
\end{align*}
$$

where $n^{1}=10^{3} \operatorname{RTr} r_{1} Z_{1}(1+\operatorname{man} \gamma / \mathrm{dm}) / D_{V}$

$$
\begin{align*}
& c_{0} R_{10}=-10^{3} \operatorname{RTr}_{2}(1+\operatorname{rdln} \gamma / \mathrm{dm}) / r_{1} D_{V} \\
& c_{0} R_{20}=-10^{3} \operatorname{RTrt}_{1}(1+\operatorname{dan} r / d m) / r_{2} D_{v} \\
& \mathrm{R}_{00} / \mathrm{N}=\left(\mathrm{c} / \mathrm{Nc}_{0}^{2}\right) 10^{3} \operatorname{RTr}(1+\operatorname{Ha} \ln \gamma / \mathrm{dm}) / \mathrm{D}_{\mathrm{V}} \tag{2.69}
\end{align*}
$$

The units of $R_{i k}$ coefficients are joule cm sec.mole ${ }^{-2}$.

2. 8 Influence of Ion Pairing on henonenolosicel

Coefficjents: The presence of ion pairs in bintary electroIytes has been recognised over the lest fifty years or so and it is of interest to excmine the themodynamic anolysis where the neutral ion pair may be presert. Egn(2.35) is defined for a completely dissociated electrolyte. If ε neutral species, 3 , exists in addition to cations, 1 , and anions 2 , then on the solvent fixed frame of reference the phenomenolorical equantions are

$$
\begin{equation*}
x_{i}=r_{i 1} j_{1}+r_{i 2} j_{2}+r_{i 3} j_{3} \quad i=1,2,3 \tag{2.70}
\end{equation*}
$$

where x_{i} are the thermodynamic forces end j_{i} are the conjugate flows for the free species i. rim are the Onsager frictional coefficients. If the electrolyte is a symmetrical salt, the stoicheiometric coefficionts of ionisation, r_{1} and r_{2}, are equal to unity and ecan(2.39) becomes

$$
\mu_{1}+\mu_{2}=\mu_{3}
$$

where μ_{3} is the chemical potential of the ion pair. In terms of forces

$$
\begin{equation*}
x_{1}+x_{2}=x_{3} \tag{2.71}
\end{equation*}
$$

Substituting ean(2.70) in eqn(2.71) and comparing the coefficients of j_{i}, we get

$$
\begin{equation*}
r_{i 1}+r_{i 2}=r_{i 3} \tag{2.72}
\end{equation*}
$$

By ORR,

$$
\begin{equation*}
r_{12}=r_{21}, r_{13}=r_{31} \text { and } r_{23}=r_{32} \tag{2.73}
\end{equation*}
$$

Prom equations (?.70) and (2.72) for $i=1,2$, we get

$$
x_{i}=r_{i 1}\left(j_{1}+j_{3}\right)+r_{i 2}\left(j_{2}+j_{3}\right) \quad i=1,2 \quad(? .74)
$$

Since J_{i} is the total flow of species i, therefore

$$
J_{i}=j_{i}+j_{3} \quad i=1,2
$$

$\operatorname{Bam}(2.74)$ becomes

$$
\begin{equation*}
r_{i}=r_{i} / J_{1}+r_{i, 2} J_{2} \quad i=1,2 \tag{2.75}
\end{equation*}
$$

Using ourely binary aooroach for the seme system the phenomenological equations are

$$
\begin{equation*}
x_{i}=R_{i 1} J_{1}+r_{i 2} J_{2} \quad i=1,2 \tag{2.76}
\end{equation*}
$$

The equations (2.75) and (2.76) are identicel in all circunstances. The messured flows, J_{i}, would be $\left(j_{j}+j_{3}\right)$ e.g., in electrical concuctivity the current density, I, is given by

$$
\begin{equation*}
I=\left(z_{1} j_{1}+Z_{2} j_{2}\right) P=\left(Z_{1} J_{1}+Z_{2} J_{2}\right) F \tag{2.77}
\end{equation*}
$$

This shows thet either ionic or net flows may be used.
The transport number, t_{i}, however, equals $Z_{i} J_{i}{ }^{\mathrm{F}} / \mathrm{I}$ and the observed flow, e.g., in the Hittorf measurement, is the net flow, J_{i}. Thus the stoicheiometric coefficient, $R_{i k}$, equals the specific coefficient, $r_{i k}$.

A Survey of Transport Pronextios of Bincey 3 lectrolyte Solations and selection of a system for bonerimental buay:

The theory of irreversible themodynanics developed in chepter 2 shows that at lesst three neasureable transport pronerties and activity cosficionts are required to characterise an electrolyte system completely in terms of oneager transport, $L_{i k}$ and inverso frictionel, $R_{i k}$, coefficients. These properties are conductence, tronsport numbers and riffusion. In the alkeli halide serios literature data were conolete for lithiun, sodiun and potassium chlorias in the concentration range 0 m 3 . Niller ${ }^{16 a}$ collecton these and applied his theoretical enalysis to obtain the ${ }_{i k}$ and $R_{i k}$ coefficients.

The remaining chlorides of the alkali netal series, those of rubidiun and caesiun, were therefore of considerable interest. It was therefore decided to survey the existing literature for their transport deta and to obtain experimentally those which arerequired for a corplete analysis.

It was found that in concentrated solutions conductance and diffusion deta for midiam chloride and conductence date alone for caesim chloride wer lacking. In the dilute region, c<0.25r, the conductance and trensport numbers data for both and diffusion data for rubidium chloride were not available. It was therefore necessary to measure the electricel conductance of both (rubidium and caesium chlorides) and diffusion coefficients of rubidiur chloride for the whole range of concentrotion, $0-3 \mathrm{~m}$. The experimental neasurement:s are described in chapters 4 and 5.

In dilute solutions, $c<0.25$, only transport manbers are left to be neasured and with their availability, the whole transport data for the concentration range, 0-3T, would be complete.

For the literature survey we saarched the chemical abstracts for references from 1930 onwards and conculted the data compiled in stonderd terts $, b, c$ and reviews, e, r,

Our Iiterature survey coincided with that of Chepmen and Newnen ${ }^{h}$ who collected from the literature all the evailable trensport date for sixty one binery eleotrolytes. Ont
a) H.S. Hamed and B.B. Owen Pbysicsl Chemistry of Blec-trolyte Solutions', 3rd Ed., N.Y., Reinhold Publishing Corp., 1957.
b) R.A. Robinson and R.H. Stokes, 'Blectrolyte Solutions', 2nd Bd., London, Buttewworths Sci. Eublicetions, 1959.
c) R. Parsons 'fandrook of Blectrochemical Constants', London, Butterworths sci. Publications, 1959.
a) A. Bucken, Ba. lendolt - Bornstein. 'Zahlenwerte ucd Tunktionen aus Physik, Chimie, Astronomie', Geophysik und Technir, 6th od., vol. 2, pert 7. Berlin: Springor Verleg, 1960.
e) E.W. Washburn Rd. International Critical Tables of Mumerical deta, Physics, Cheristry and Technology. New York, McGrew - Hill Book Co., Inc., 1926.
f) E.A. Kaimakov and N.L. Varshavskeya. 'reasurement of Transport numbers in Aqueous Solutions of Blectrolytes'. Uspekhi Thimii, 1966 , 35, 201-288.
g) J. Timneman, 'The hysico-Chemicsl Constents of inemy Systems in Concentrated Solutions', Now York, Interscjence Eublishers Inc., 1960.

* Russ. Chem. Rev., Reb. 1966, P.Ro-101(mminh).
of these, data werc patiolly comolete for twonty aiont, syotcha. Pinemomenological coefficients for these aysems were calculated. The results are given in appendix-l.

In table 3.1 we present aist of missine trensrort ond activity data for equeous solutions of $1: 1,1: 2,2: 1$ and 2:2 electrolytes. All means data is missing for the whole range of concentration, $0-3 M$, and - denotes data is complete. The concentrebions are in moles per litre and the temperature is $25^{\circ} \mathrm{C}$ unless otberwise mentioned.
h. T.T. Chamen and J. Newman, 'A compilation of Selected Thermodynamic and Transport Properties of Binary Electrolytes in aqueous solutions', UCRI - 17767, ABC contract W - 7405eng - 48, University of California, Lawrence Radiation Laboratory, Berkeley, California.

Table 3.1

Transoort data that not been measured exnerimentally for 1:1, 1:2, 2:1 and 2:2 Blectrolytes

Blectrolyte		\triangle	t_{+}	D_{V}	γ
Chlorides $\mathrm{H}^{+} \mathrm{Ii}$, ${ }^{+} \mathrm{Na}^{+} \mathrm{K}^{+}$		-	-	-	-
	Rb^{+}	a]. 1	<0.25	>0.01	-
	CS^{+}	>0.007	<0.25	-	-
	NH_{4}^{+}	-	>0.2	<0.1	-
Brornides	H^{+}	-	all	$a 11$	-
	$\mathrm{Li}{ }^{+}$	a. 11	all	-	-
	Na^{+}	-	all	-	-
	K^{+}	-	>1.0	-	-
	Rb^{+}	-	all	all	-
	Cs^{+}	2.11	all	0.11	-
Iodides	H^{+}	>0.1	>0.1	9.11	-
	$\mathrm{Li}{ }^{+}$	all	all	911	-
	Na^{+}	-	0.11	-	-
	K^{+}	-	71.0	-	-
	$\mathrm{Rb}^{+}, \mathrm{Cs}^{+}$	2.11	a.11	a.11	-
Hydroxides	Li^{+}	-	a. 11	. 211	-
	Na^{+}	-	>1.0	>2.0	-
	K^{+}	-	>0.1	all	-
	Rb^{+}	2.11	2.11	a.11	all
	Cs^{+}	2.11	2.11	$a 11$	>1.0

Table 3.1 continued.

* Except at 1,2 and 4π.
** except at Ir.

Table 3.1 continued.

Electrolyte		\triangle	t_{+}	D_{V}	γ
Pluarides	H^{+}	211	-	211	-
	$\mathrm{T} \mathrm{i}^{+}$	911	011	all	-
	Na^{+}	211	-	211	-
	$\mathrm{K}^{-+}, \mathrm{Rb}^{+}, \mathrm{CE}^{+}$	2.11	a] 1	0.11	-
Chlorides	$\mathrm{Zn}^{+}+$	8.11	--	311	-
	$\mathrm{Mg}{ }^{++}$	-	211	all	-
	Ca^{++}	<0.05	-	>0.2	-
Bromides	Zn^{++}	2.11	-	all	-
	$\mathrm{F}^{7} \mathrm{~g}^{++}$	2.11	9.11	a. 11	-
	Cd^{++}	2.11	--	0.2	-
Iodides	Zn^{++}	211	-	a. 11	-
	Mg^{++}	Q11	0.11	all	-
	Ca^{++}	-	all	<018>1.2	-
Sulfates	H^{+}	-	-	-	-
	$\mathrm{Li}{ }^{+}$	>0.7	-	>0.005	-
	Na^{+}	>0.1	>0.1	>1.0	-
	K^{+}	>0.5	>0.5	>0.5	>0.5
	Rb^{+}	2. 11	all	2.11	<0.1
	Cs^{+}	all	all	>0.005	<0.1

Table 3.]. continued.

Plectrolytes		A	t_{+}	D_{V}	\checkmark
Sulfates	Zn^{++}	9.11		>0.01	-
	$\mathrm{Tg} \mathrm{g}^{++}$	all	0.1	2.11	-
	Ca^{++}	>1.0	-	>0.5	-
	Cu^{++}	-	>0.5	>0.1	-
	Ni^{++}	>1.0	all	a. 1.1	-
	Mn^{++}	>2.0	all	all	-
KCI	0°	>1䦎	<0.01	<0.1	$<.05$
	18°	> In	<0.01	<0.1	$<.05$
	35°	<1.010	<0.01	<0.1	$<.05$
	50°	$<1.08 \mathrm{l}$	<0.01	<0.1	<.05

CHAPTRI 4

Moesurement of Diffusivity

4.1 Bxperimental mothods anolied to the stady of diffugivity in electrolyte solutions: we renort here briefly the verious methods which have bean applied to the stady of offurivity in electrolyte solutions. Technical detrils of thece methons are not discussed since a throngh review on the subjoct is available. ${ }^{31}$
4.1.1 Sonductometric Method: Mhis method involves the measurement of conductances of solutions as diffurion proceens with time. Its spolicstion is limited to dilute solutions only, up to 0.017 for l:1 and 0.005p for 2:?, 2:1 ano l:? electrolytes. The achieved acorecy is ± 0.1 to 0.2%. 4.1.2 Gouy Interferonetric Pethod: This is an absolute method and involves the me shrenent of interference fringes obtained on photographic plates when a beam of monochronatic light is passed throvigh a cell in which a concentration gradient exists. Tt has been applied to l:l electrolytes only upto en sccuracy of ± 0.1 to 0.2%. The method gives integral diffusion coefficients.
4.1.3 Rayleigh Interferometric fethod: The principle involved in this method is the same as that of the Gouy method excent that the photographic system is incoroorsted with a cylindericel lens. It gives differential diffusion coefficients directly and therefore is preferable to the Gouy method. It has been applied to l:l electrolytes only.
4.1.4 Stokes Disphraem Cell Wethod: This is erelative method. The cells need to be celibrated with a standera electrolyte diffucion coefficients for which ere lmown from absolute measurements. Only those electrolytes wich sre sinilar in nature to the stenderd electrolyte con be studied by this method. The method hos been auccessfully applied to l:l electrolytes to an sccuracy of 0.1 to 0.2\%. The only other systems stadied by this method one sodiun and copoer sulfates 32,33 to sin accuracy of 1 to 5%.
4.1.5 Shotometric lethod: Whis method works on the principle of absorption of light by a diffusing electrolyte coloured solutions. The only system studied is copper sulfate ${ }^{34}$ to 2% accuracy.
4.1.6 Diffraction Ticropethod: The principle involved. is the diffraction of light when it passes throurh a solution each leyer of hich acts as a prism. It has been applied to the study of cadoium chloride ${ }^{35 a}$, cadmian sulfate ${ }^{35 b}$ and lead nitrate ${ }^{35 b}$ solutions. The accuracy attained is 1 to 3%.
4.1.7 Borous Prit !rethod: A porous plate is sorked in an electrolyte solution and then it is diboed in e beth of solvent or a solution of lower concentration. The diffusion coefficients obtained are with respect to the cell fixed frame of reference. The nethod is ueeful in the study of weak end complexing electrolytes. It hos been applied to the study of zinc sulfate (0.03-0.25y) ${ }^{36}$ and cadmiun iodide ($0.01-1.01)^{37}$ to an accuracy of $1-2 \%$.
4.1.8 selection of a nothon for the etmat of Diterivity in Pubidium Chiociae Solations: The above study of the verious methode for the determinetion of diffusion coeffjcjents shows thet the high precision methods have been apolied to l:l electrolytes only. In the lisght of this survey one of the absolute methods or the diabregra cell method semed to be the most goonopriate for the diffusivity study of rubjium chloride solutions. for the prasent work the diannerg cell method wes chosen for the following reasons:
a) Rubidium chloriae falls between potessium and caesium chlorides in the alksli chloride aeries and the nature of these salts is similer.
b) The cells could be celibreted with potassiun chloride solutions, the diffusion date for which wss avsileble in the literature fron absolute messurements.
c) Reproaucibility of 0.1 to 0.2% could be eesily approsched. d) Diffusion data for rubidiun chloride was required in the concentrated solutions only and this method wes applicable for concentrations above 0.05r.
e) The method was appropriate in cases where diffusion coefficients did not chence rapidly with concentration and this condition was fulfilled by l:l electrolytos. f) Large volumes of solutions were available for concentration analysis.
4.2 The Dienhrem Cell rethod: The diaphragm cell technique was first introduced by Northrop and Anson 38 in 1929 and later modified by a number of workers $39,40,41,42,43$. It has its present stending due to the work of the stokes ${ }^{44}$. The theoreticol and experimental espects of the nethod are reviewed by Robinson and Stokes ${ }^{45}$.

In this method diffesion of solute teres nleoe
through e porous dienhragh separeting two combetmente containins solutions of different concentretions micb are mainteined miforn by mechenicel stirring. The con... contratio: chonges tele plece sufficiently slowly so the t a pseudo steady stote* mey be assumed to prevail in the capilláary pores of the dianhrogn. Bernes 46 hes asown that this sesumption does not leed to an arorecieble error if the voluncs of the solutions in the tro compertmenta are sufficiently lerge compered with the socee in the diephragm. In this situotion diffusion coefficient may be obteined from the tick's lew

$$
\begin{equation*}
J(t)=D\left(-\frac{d C}{d x}\right) \tag{4.1}
\end{equation*}
$$

where $J(t) *$ wis the flux at time, t, D is the differentirl diffusion coefficient defined as the emount in moles of the solute diffusing throurg unit area of crossmestion per unit time per unit concentretion difference and $\frac{d c}{\partial x}$ is the concentration gradient. Negstive sign howa decrease in concentretion as diffusion proceeds.
 is its earlier stase of imorovenent heve now beon lergely overcome. These disadventages and their remedies are as follows:

* Theoreticallye steady state of flux and concentration distribution are reached ${ }^{31}$ only if the concentrations at the onde of the eqríi土主am dores of the diephragm are maintained constant. These boundary conditions are not realised in diephregn cell method beceuse the concentrotions at the ends of the cenillinries of the diaphremp chonce continuously.
a) Disturbace due to viberction and temerature fluctnotions: These are eliminated by eareful desim and further reducod by confining the diffusion orocess to the capilliary oracs $027 y$ 。
b) Btegent Ieyers on the diemoram: These are avoided by stiming the solutions in the two comporments continuonay. c) Streening efrects: These are avojded by putting the lonear solutions in the lower compartment suc keering the cell hiephrage to withia $+1-2^{\circ}$ of the horisontel.
a) Surface tronsport effects: With ailute solutions the mobility of particles in the double layer on the capjlliery pores is ennanced and adsoption also tekes plece giving rise to anomelously hirch diffusion coefficients. Mhis hes been overcome br limiting the lower concentration to 0.05 F gove which no surfece trensport effocts are anoreciable and make nesligible contribution to the totel transport.
4.2.1 Theoreticel Conciderations: Let V_{1}, V_{2}, and V_{3} be the volumes of the lower compartment, 1 , unner compertment, 2 , and the diaphragm of the cell as shown in figurely; A and be the effective erea of cross-section and verticall length of the disphregm pores respectively; c_{1} sind c_{2} be the concentrations of the solutions in the compartments, 1 and 2 , et time t eouel to zero, and, c_{3} and c_{4} be the concentrations of the solutions in the comortments, I and 2 , efter a time t_{r} in seconds, of the diffusjon experiment.
* * flux $J(t)$ is assumed to be constant over e short time interval so that eon (4.1) holds.

Eigure It 1

Initial, $t=0$

Final, $t=t_{r}$

In the Steady Stete situetion the emount of colute enterjng the diaphragm at any time, t, is the samo as the amount leaving the diaphragm i.e., the flux $J(t)$ is constant. Denoting the concentrations in the conpartments, 1 and 2 , to be c^{\prime} and $c^{\prime \prime}$ at time, t, the rate of chenge of concentretion is given by

$$
\begin{equation*}
\frac{d c^{\prime}}{d t}=-\frac{A}{V_{1}} J(t) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d c^{\prime \prime}}{d t}=\frac{A}{V_{2}} J(t) \tag{4.3}
\end{equation*}
$$

Subracting ean(4.3) from eqn(4.2), we obtain

$$
\begin{equation*}
\frac{d\left(c^{\prime}-c \cdot \cdot\right)}{d t}=-A\left(\frac{I}{V_{1}}+\frac{I}{V_{2}}\right) J(t) \tag{4.4}
\end{equation*}
$$

Let $\bar{D}(t)$ be the average diffusion coefficient over the concentration range c ' to c '' prevailing at tine, t, then it is defined as

$$
\begin{equation*}
\bar{D}(t)=\frac{1}{c^{\prime}-c T} \int_{c}^{c} D d c=\frac{1}{c^{\prime}-c} \int_{c}^{c} \int_{1}^{\prime} D\left(\frac{J c}{\partial x}\right) d x \tag{4.5}
\end{equation*}
$$

Substitution of egn(4.1) in egr(4.5) end integration over the path $x=0$ to $x=1$ gives

$$
\begin{equation*}
J(t)=-\left(c^{\prime}-c^{\prime}\right) \bar{D}(t) / \ell \tag{4.6}
\end{equation*}
$$

Combining eqns(4.4) and (4.6) and re-pranging we get

$$
\begin{equation*}
-\frac{Q \ln \left(c^{\prime}-c^{\prime} \cdot\right)}{d t}=\frac{A}{l^{\prime}}\left(\frac{1}{V_{1}}+\frac{1}{V_{2}}\right) D(t) \tag{4.7}
\end{equation*}
$$

At the end of the experiment of duration / t_{r} seconds, c^{\prime} changes from c_{1} to c_{3} and $c^{\prime \prime}$ changes from c_{2} to c_{4}. On integration of eqn(4.7) between these limits we obtain

$$
\begin{equation*}
\ln \frac{c_{1}-c_{2}}{c_{3}-c_{4}}=\frac{A}{l}\left(\frac{1}{V_{1}}+\frac{1}{V_{2}}\right) \int_{t=0}^{t=t} \frac{t_{c}}{D}(t) d t \tag{4.8}
\end{equation*}
$$

Now $\overline{\mathrm{D}}(\mathrm{t})$ is already a concentration average diffusion coefficient, so, introducing $\overline{\mathrm{D}}$ as a concentration and time average diffusion coefficient, we have

$$
\begin{equation*}
\bar{D}=\frac{1}{t_{r}} \int_{t=0}^{t=t} \bar{D}(t) d t \tag{4.9}
\end{equation*}
$$

Substitution of eqn(4.9) in eqn(4.8) gives

$$
\begin{equation*}
\bar{D} \beta=\frac{1}{t_{r}} \ln \frac{c_{1}-c_{2}}{c_{3}-c_{4}} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{A}{\ell}\left(\frac{1}{V_{1}}+\frac{1}{V_{2}}\right) \tag{4.11}
\end{equation*}
$$

The constant poroneter, β, depends on the dinenstions of the cell. and therefore is known as cell constant. It is determined by calibration of the cell using on electrolyte for which D is precisely known from absolute messuronents. Potassium chloride is used for this purpose. Dis obtained from a set of D values as follows:

It has been show 42 that a negligible error is intro... duce if, instead of using the exact relationship (4.9), we treat the integrand as having a constant value equal to that when the concentrations c ' and c'' are halfway between their injtiel and final values. \bar{D} is then related to D by

$$
\begin{equation*}
\bar{D}=\frac{1}{(\operatorname{cma}-\operatorname{cnb})} \int_{0}^{c m a} D d c \tag{1.12}
\end{equation*}
$$

where $\mathrm{cma}=\left(c_{1}+c_{3}\right) / 2$ and $\mathrm{cmb}=\left(c_{2}+c_{4}\right) / 2$
A quantity $\bar{D}^{\circ}(c)$ is defined as the average D over the concentration range 0 to c, therefore

$$
\begin{equation*}
\overline{\mathrm{D}}^{\mathrm{O}}(\mathrm{c})=\frac{I}{\mathrm{c}} \int_{0}^{c} D d \mathrm{c} \tag{4.14}
\end{equation*}
$$

From eqn(4.12) and (4.14), it may be shown that

$$
\begin{equation*}
\overline{\mathrm{D}}=\frac{1}{(\mathrm{cma}-\mathrm{cmb})}\left(\mathrm{cma} \cdot \overline{\mathrm{D}}^{\mathrm{O}}(\mathrm{cma})-\mathrm{cmb} \cdot \overline{\mathrm{D}}^{\mathrm{o}}(\mathrm{cmb})\right) \tag{4.15}
\end{equation*}
$$

Using eqn (4.14); the © antity $\overline{\mathrm{D}}^{\circ}(\mathrm{c})$ for dotassiun oloride solutions have been conputed by stokes 44 rom sbsolute measurements of D. ara a set of mean comcentrations ome and cmb, of a dirfusion run, $\bar{D}(\mathrm{cme})$ and $\bar{D}^{\circ}(\mathrm{cnb})$ sre obteined using en emoirion fit betweon c and $T^{\circ}(c)$. those are then substituted in can(4.15). T, thas obtoined, is further used in ean(4.10) which gives the mmericol monitude of β.

After celibrating the cell for a psiticuler concenm tretion combinetion, the diffusion experiment is repeated with the test electrolyte for apmoximately the sone concentretion combinction and duration. Using the exrerimentel values of the concentrations, c_{1}, c_{2}, c_{3} and c_{4}, time, t_{r}, and the cell constent, β, in ean(4.10), the concentrstion and time averege diffusion exneriment (or the interrat diffusion coefficient), \bar{D}, is obteined.
4.2.2 Computation of D from $\bar{D}:$ An nth degree emvirical relationship between D and \sqrt{C} is chosen;

$$
\begin{equation*}
D=D^{0}+\int_{i=1}^{i=n} a_{i}(\sqrt{c})^{i} \tag{4.16}
\end{equation*}
$$

where a_{i} are the constents of the empirical fit. D° is the Nernst limiting value of D at zero concentration and mey be obtrined from ionic conductances et infinite dilution.

Using the relationship(4.16), eqn(4.12) may be integrated between the limits cmb and cmo snd eqn(4.17) is obteined.

WConticienta of this fit and an the dubsecuent ritted equations are given in table Al of the apoendix 1.

$$
\begin{equation*}
\bar{D}(\mathrm{cma-cmb})=\left[0^{0} \mathrm{c}+\sum_{i=0}^{i=n} \frac{a_{j} c^{(i / 2+1)}}{(\mathrm{i} / 2+1)}\right]_{\mathrm{cmb}}^{\mathrm{mab}} \tag{4.17}
\end{equation*}
$$

Bor a diffusion run, cha, cmb and \bar{D} ure known from the experiment, D° is knom theoretically; their aubotitution in eqn(4.17) reduces it to a numerjesl expression involving the constent, a_{i}. To obtain these n constanta, n relationships(involving a_{j}) are requirel.
4.2.3 The Dieohram Cells: Two sintered glass aises of diemeters 40 mm and 50 mm , hoving porosity four ma seeled in pyrex glass tuhes, were obtained comercially for the construction of the cells. The open ents of the taves were terminated in $\mathrm{B}-24(\mathrm{f})$ and $3-14(\mathrm{f})$ joints and the volues of the comarments were so adusted that megnetic stimers could be easily slipped into and token out of the cells. The dimensions and schonatic diagran of the cells spegiven in table 4.1 and figure 4.2a.

This cell design is thet of Stokes ${ }^{44}$ and has been used mostly for diffusivity experiments at a constent temperature. Yeh end wills 47 and Sami and Hutchison 48 have modified the cell so that it can be fillea sutometically and the design of the later workers allons for the expension of the experimental solutions so thet the difpusion runs can be made at higher temperatures and it also allows for the volume changes on mixing.
4.2.4 The Stoppers: Stoppers for the cell ends, shown in figure 4.2 h , were made of $\mathrm{B}-24(\mathrm{n})$ and $\mathrm{B}-14$ (r) joints
which had $2 m$ conillaries in them. The B-24(p) joint wes joined to 3 B-7(e) joint while the B-l4 (M) wes mealed to a B-7(f) broush a hich vecuum quality (Teflon) tap.
4.2.5 The Femetio Stirrera: Two soft iron ures of lengthe 35 mm and 45 mm were sealed in thin glass tubes. Wo thickness of the wines end the ejass traes were so edjusted that one stirrer of each set would just sink and the other would just float in the experimental solutions. Phese are shovin in figure 4.?c.
4.2.6 The Pegnetic Stimping Device: The stirring mechonism is shown in figure 4.3. Two horse-shoe mognets, l, obtained comercially, were fired at the ends of two bress screws, S, which passed through the vertical emms of the brass plete assembly, B. The screw fittings sllowed a fine adjustments of the magnets. The motor end gear nysten were adjusted to give a constant stirring speed of 55 r.o.m. The north pole of one magnet faced the south pole of the other.

In the original device of stores ${ }^{44}$ the stirrers just touched the two sides of the diephregm. We found thet in our system the diaphrefin started wearing* off with time. This difficulty was overcome by keeping the stirrers at a distence of $2-3 \mathrm{~mm}$ from the diaphrerm surfece. Thjs

[^0]| 4.20 | 0.0 | |
| :---: | :---: | :---: |
| The リell | | |
| Cell Dimensjonc. Table-4.1 Cell-1 Cell-2 | | |
| Volune of coperntinent $]$ | $\begin{array}{ll}V_{1} & 95.36\end{array}$ | 53.13 |
| | $\mathrm{V}_{2} \quad 109.33$ | 60.50 |
| Volune of Dianbragm | $\mathrm{V}_{3} \quad 3.57$ | 1.76 |
| $\left(V_{2}+V_{3} / 2\right) /\left(v_{1}+V_{3} / 2\right)$ | $\mathrm{V} \quad 1.14$ | $6 \quad 1.138$ |
| Diameter of Diaphrarm | D. 50 mm | 40 mm |
| Thickness of Djephragm | x 5 mm | 2.5 mm |
| Length of Stirrers | 1.47 mm | 37 mra |

procedure was standardised fon all anperimentel mun. Test measurenents with caesium chloride solutions showed thot the results were in perfect agreement with the litorature volues - This method of stimring was therefona domed satisfactory.
4.2.7 Determinetion of Volumes, V I- V, nd V : The volunor, V_{1}, V_{2} and V_{3} of the cell compertments and the disphregr pores, figure $4.2 a$, were detemined by weightar the cell e) completely filled with whter b) with water ronoved from compartment, $I, c)$ with wator $a l s o$ renoved from connartment, 2, and d) when it was dry. All the fillings ond weighings were made with the stirrers inserted in both the comparbants of the cells.
4.2.8 Pilling of the Cell and the Difrusion Pun: The cell was cleaned vertically. Degassea concentrated solution was poured into the compartment, 2, figure 4.2a, $2 l l o w e d$ to flow through the diapinagm capilearies under vacuum. The cell was then inverted. The uppemost compartment (now 1) wes filled with the concentrated solution and stoppered. The cell was then re-inverted. The compartment, 2, was half filled with the same solution and stoppered.

A thin film of high vacuur quality Apizon gresse was applied to all the joints and the stirrers vere always in their respective compartments.

Whe cell was then clamped betwoen the mameto of the stirring device fitted in weter themostet reintrined at $25^{\circ} \pm 0.005^{\circ}$. The concentreted solution in the conpartment, 2, wes repleced by degessed dilute solution and stirring atorted.

After two and a helf hows of preljuinemy difinaton the solution of compartment, 2 , was carefully withoram in a looml pioette which alreedy hod in it - loml of the dilute solution. The cell wes rinsct mice snd fincluy rilled with the mixed solution and stoppered. The stimming and the timer were stertod immedietely. This mirimised the zero time error*
*The Zero Bime Prror: In Stokes orjginal method, the builaing up of a steady atate is echieved by melininary diffusion of some hours and then the solution in compartment, ?, is replaced by the frosh orisinal solution and the diffusion is taken to begin from this time onvards.

If the actual concentration of the solution after preliminary run be c_{2}^{l} and that of the freshly added solution be c_{2}, then clearly, $c_{2}>c_{2}$. The Gterdy stete however corresponds to c_{2}^{l} end not to c_{2} which is usuelly considered. The error thus coused is suggested by Francesconi 51 to be the zero time error.

It is oroposed 51 that the zero time error con be removed if after preliminary diffusion of known duration, say t_{p} seconds, the contents of the upoer compertment are analysed to determine concentration c_{2}^{1} and then another.
run io made with the seme fresb solution and the mero tine is taken exactly ofter t_{p} seconds without chonçing the solutions. The concentretion, e_{2}, would then be the rero time concentretion.

Our appro ch to minimise the rero time error was dieferent. Since the volome of solution, ci, wes cround 60 ml sad that of c_{2} wes \sim loml, the concentration of the mixture was very near to c_{2}^{1}.

When the diffusion had taken plece for e kown time, the stirring wes stopyed and the solution wes withdrawn from the upper compartmert. The cell was taken out of the themostat, dried enternelly ma solution then withdrewn from conpertment, I. All the solutions were thee anglysed as described below.
4.3. Determination of Concentrations by Conductometrio Sethod Involving Calculations by Successive Aporoxinetions: Polynomials (4.18) and (4.19) were curve fitted* between measured specific conductivities, \mathcal{K}, and known concentrations c, and between c and eguivalent conductivities, Λ, respectively for c<o.1h.

$$
\begin{array}{r}
\left.c=a_{0}+\sum_{i=1}^{n} a_{i}(k] 0^{3}\right)^{i} \\
\Delta=a_{0}+\sum_{i=1}^{n} a_{i} c^{i} \tag{4.19}
\end{array}
$$

A weighed sample of each solution was diluted to $c<0.1$. Its specific conductance was messured and subs-
*Coefficients a_{o} and a_{i} are given in tableAl of apmendix 1 .
tituted in egn(4.3). The velue of o thus obtajner wos used in egn(4.19). The A siven bregn(4.19) was gubstibutod in the relationchip

$$
\begin{equation*}
c=k \cdot 10^{3} / \mathrm{A} \tag{4.20}
\end{equation*}
$$

and a better velue of c vac obtained. The equ(4.19) ond the relationshio(4.20) were then used jn turn tjll a volue of c was sompoched, wich was within ± 0.0 of of that given by any further cycle of approximations.

The concentretions of the concentrated solutions wore calculated from that of the dilute solutions raing the density equetions

$$
\begin{align*}
& m / c^{*}=a_{0}+\sum_{i=1}^{n} a_{i} c^{i} \tag{4.21}\\
& c / m=a_{0}+\sum_{i=1}^{n} a_{i} m^{i} \tag{4.22}
\end{align*}
$$

Vacuum corrections were apolied for all weights.
Volumetric titeretions were also mede ggeinst stenderdised silver nitrate solutions and the concentretions obtained were within ± 0.2 of the conductonetric velues, which are considered to be the more accurate.
4.3.1 Determinetion of Concentration, c_{1} : Concentrations c_{2}, c_{3} and c_{4} of a diffusion experiment were obtained by the method described above. The original concentretion, c_{1}, could not be measured beceuse it chenged during the

* Coefficients ere fiven in table Al of anoendix 1.
preliminery diefusion run. It could, however, be celculated from $c_{2},{ }^{C_{3}}$ and c_{4} and the volumes of the compertments and the diaphregm pores, st the end of the experiment since the totel mount of solute in the system remained constent. The mall amount of solute jn the diaphragm was assumed to be helf at the concentration of the compartment, 1 , and hale at the compertment, $2 ; c_{1}$ was then given by

$$
\begin{equation*}
c_{1}=c_{3}+\left(c_{4}-c_{2}\right)\left(v_{2}+v_{3} / 2\right) /\left(v_{1}+v_{3} / 2\right) \tag{4.23}
\end{equation*}
$$

4.4. Resulta of Diffusion Peasuremente

4.4.1 Cell Calibretion ith Potassiun Chloride Solutions: For cell calibrations seven aiffusion runs were made usin\% potassium chloride solutions over the concentretion rance 0.01-3.0li. A comouter progranne was written, which celculesec. concentrations from experimentsl conductances messured before and after each run. The resul.ts are presented in table 4.2. The cell constant obtained from various runs remained constant with in $\pm 0.1 \%$ mpto lim but then it increasea slightly with concentration. The incresse wes within the experimental error and the mean value was $0.4487 \pm 0.2 \%$.

4.4.2 Diffusion Measurements with Ceesium Chloride

Solutions: The results of measurements with caesium chloriae solutions are presented in table 4.3. To compsre these results with the literature differential diffusion coefficients, the letter were converted into integrel form * given in appendix 2;

2G6すが0	898永＊	からくtも＊	9¢と站。	98L＊＊＊	2997：0	999：0
269° T	269 ${ }^{\text {T }}$	c69．T	$269^{\circ} \mathrm{I}$	269 ${ }^{\circ} \mathrm{I}$	$\varepsilon \varepsilon L^{\circ} \mathrm{T}$	$895{ }^{\circ} \mathrm{T} R \mathrm{E}^{2}{ }^{\prime}$
9SL6．	L8806．${ }^{\text {L }}$	05GS8 ${ }^{\circ}$	20¢9 ${ }^{\circ}$	$9688^{\circ} \mathrm{T}$	$6688^{\circ} \mathrm{T}$	OZTL6．${ }^{\text {C }}$
EヵO 0° L	G9t89＊0	8380E 0	てでけで0	88780°	記ざで0	EL800\％¢ ¢
ャレモら・て	ع0885 ${ }^{\circ}$ T	T68LL．0	08083 ${ }^{\circ}$	SṫLLE「0		TCLL $0^{\circ} 0$ eut
くこをぶ・「	Otv6•0	TGuEt 0		SLEgT＊O	8S9LT0	StLTO＊Do
ESObo＇て	S6y己 ${ }^{\circ}$	69509＊0	L6ET9＊0	LESLE＊ 0	0908．0	2ठLLOO E0
8こらち9＊0	ESTi•O	S269T＊	208IT＊0	$0 \cdot 0$	05901．0	$0.0{ }_{0}$
とこヤ66・て	9983 ${ }^{\circ}$ T	歀を5＊0	89906＊0	coser 0	StoLto	TCLEOCO

L	9	5	\dagger	ε	2	T	ふultay
$2-T<2)$	己－I［ \square_{0}	ご【Tこの	こーエTシ』	2－LTe0	T－ITOS	L－Le9	T00

Diffusion runs for Fotassium Chloride Solutions．
$\overline{6} \cdot \sqrt{-2 B U}$

$9 ¢^{\circ} \tau$	$868{ }^{\circ}$ T	¢ $26 \cdot \tau$	$(\cdot 0 \text { Ten })^{\text {T }}$
$858^{\circ} \mathrm{T}$	ع06．${ }^{\circ}$	936．${ }^{\circ}$	$(\cdot s a 0){ }^{T}$（II
$L E L \cdot T$	0ヶ9＊	ごで「	$\mathrm{S}_{5} \mathrm{OL}_{4}$
ャ99「．	ャ9IT．	－99\％	d
6917．	SOT0＊	2700°	quo
カLSも＊	6860°	9550°	ษญอ
¢85T＊	OTて0＊	8800°	$\square 0$
$860{ }^{\circ}$	$6980{ }^{\circ}$	$9970{ }^{\circ}$	ε_{0}
¢SLO＊	0000 ${ }^{\text {－}}$	0000	z_{0}
OSOS ${ }^{\text {－}}$	60 ［ ${ }^{\text {• }}$	$9950{ }^{\circ}$	τ_{0}
OT	6	8	unci

－suotqutos optaotyo untsaso xof sund uotsnitta c．

[^1]and then conored with the eanerimontal jntegnal difension coefficjents. A thind desree polynomiel (4.lS) mon fituct betwean D and $\sqrt{C} b y$ a least souares treatment and the coefficients of the fit were substituted in the exoression (4.17). The value of \bar{D} corresponding to each set of cmo sud cub wore then calculated. The experimentrl values were within $\pm 0.1-0.2 \%$ of those obteined from the theoreticos fit.
4.4.3 Diffusion feesuremente rith Pubidim Gionide

Solutions: Pxperimental results ore riven in table 4.4 in which the letters a to h denote the number of diffumion runs made. A fourth desree denendence of D on \sqrt{c} viss used in egn(4.16). Substitution of the literature value of D° (equal to 2.051) End the values of cma, cntb and for each of the runs, e,b,e,d,e and h, in the exnression(4.17) gave six relations mone the constrnts a_{1}, a_{2}, a_{3} and a_{4} of the fit, eqn(4.16). Theae relations were golved simulteneously using a 4×4 deteminont. The comouter progrome js described in the eopendix. 2 . Three conbinotions of four out of six relstions could be obtained to cover the whole range O.OI to 3.OT. The values of D obteined were
 at 3.ON.

Pinclly the fourth degree nolmomial(4.16) wes fitted between \sqrt{c} and the mean experimental 1 for the experimental range of concentration $0.01-3$. On and the resulting equation extrepolated to obtain D for $c<0.01)^{r}$. The celculated results ware better than 0.1% of the literature values. 52 Table 4.5 summarises the results.

Measurement or conductance

5.1 Historic Devolonements: After the extensive study of the deaign of conductence cells by Jones and ollinger 53 in 1931, the theoretical and experimental aspects were reviewed by Shedloveky 54 in 1950. A few nodifications heve taken place in the measurement technicjues for dilute as well as concentreted solutions. Fay and coworicers ${ }^{55}$ devised a salt cup dispensing system without exposing the contents of the cell to the atmosphere and ysejs ${ }^{56}$ developed a dough... nut cell for concentreted solutions, in which the seme solution could be diluted a number of times. King ${ }^{57}$ has introduced a compact cell design for measurements at high temperatures and pressures. Guint ${ }^{58}$ has renorted work on conductivity of binery mixtraces of electrolytes in acueous solutions. The complete situation of conductence up to 1967 was reviewed, with 248 references, by Barthel 59 with proticular reference to measurements in non-aqueous solvents. Since then a number of pepers heve been contributed by Fuoss and coworkers ${ }^{\text {ba-e }}$ for the extension of the original Puoss and Onseger ${ }^{60}$ conductence ecurtion wich is now valid upto 0.1 n concentretions.

For the measurement of conductances of rubidium and caesium chlorides in equeous solutions for concentrations from 0.01 to 3.01 , we heve used Jones and Bollinger ${ }^{53}$ type cells incorporating the modifications suggested by later workers, which would be described in the subsequent sections which now follow.

5.2 Conductonces of Rubjeium end ceesium Chzorias boutions

5.2.1 Conductivity Weter: Orainary distilled wetor wes redistilled thrice, first over acidic potassium dichromste, then over alkaline dotessium nermenganete ond finaliy distilled as such into a ly--1itre nyrex aspirator. Three 5 litre round-bottomed fleske, heated electrically, were usod for distillation. Stem coning out of a Pleck wes mede to pass through 55"-hich vertical glass colums pocked with glass beads before it wes condensed into the next eporopriato flask. The aspirator was fitted with a Teflon tao wt the bottom and Toflon bung with two boles, at the top. The holes in the bung carxied gless tubes, one for aistilled water snd other for sucking in clesned air passed through Sofnolite. The purified water thus obtained hed a specific conductance of 1×10^{-6} and after degassing 0.1 to 0.2×10^{-6}.
5.2.2 Purificetion of Nitrosen: Unpurified cylinese nitrogen was passed through concentrated sulfuric acid and sodium hydroxide solutions, two tubes packed with sofnolite and glass wool and finally twice through conductivity water. The bottles used were of 200 ml capacity and were fittec with B-24 ges heads which in turn were fitted at the bottom with sintered glass discs of porosity 4. The ges issuing out of these discs was in the form of bubbles so that it could come into naximun contect with the purifying solutions. The degassing apparatus is shown in figure 5.3.
5.2.3 Crystallisation of Analer Ootossium Chloride from Conductivity Peter: B.D.B. Analor ootassiun chloride vas dissolved in conductivity water till the solution was saturated. The saturoted solution was filtered hot under vacuurn using a porous glsss filtoring funnel fitted into a 2-litre conical filtering flesk with B--24 stenderd joint.

The conical flask containing the saturated alution was cooled by surrounding it with finely ground ice. The crystals appared instantaneously. The nothec liouor was poured off into enother conicel flask and peserved. the crystals were trensferred to a 2--litre beaker and conductivj. water was saded in small anounts so that on heating egain the solution could remein seturated et $\approx 100^{\circ}$. This solution was again cooled rapidly using ice as before.

The crystals thus obtained wexe dried in an oven at $130^{\circ} \mathrm{C}$ in Pyrex glass drying dishes for 24 hours. The drying crystals were cooled in a desjicator over silica gel for en hour or so and then ground in en agate mortar in small anounte. The ground salt was further dried in an oven at 130° for 3 days and then stored in a desijcator over silica gel.

5.2.4 Alcoholic Precioitation of Potassiun Chloride:

To the mother liquor obtained from the second crystallisation from conductivity weter, sn equal mount of 08% absolute alcohol ${ }^{61}$ was added. The precipitated salt was filtered and washed with small amounts of 50% alcohol. The drying and grindine precess was the same as for crystallisation from conductivity water. The dried, ground salt was in the form of powder. It was also stored in e desijestor over silice. gel.
5.2.5 Gurificstion of Zubidiun Chloride: 99. Ir boretom reegent grode rubidian chloride supplied by R.D.I. and Zoc:light company was crystallised from conductivity weter. The salt was recovered from the mother liquor by slocholic precinitation using the ame nrocedure as for potassiun chloride.
5.2.6 Anals and Sneotro-scooic Coesiun Chloride日: About 200 grems of Anslap and 20 g of Spec-pure ceesium chloride salts wore ground in en gete mortar. The powdered solts were dried as such in platimun drying dishes and used without further purificetion. Thera was no difference in conductances of solutions mode from Analar or Svec-pure salts. The measured conductivities were within the orecision of measurement for solutione of the seme concentration.
5.2.7 The Gless Anperatus: Tox prepering experineatol solution, looml and 750 ml Pyrex Quick-Pit flaske with B-24 stoppers were used. These flasks and other pyrex flass apparatus were first soaked in yroneg detergent solution for 3-4 deys and then washed with chromic acid end nitric acid. Rinelly they were steamed (stem of conductivity water) for 10 to 15 minutes (for each flask and the uncelibrated glass epparatus).

After steaming, the glass apperatus wes rimsed with conductivity water and AnalaR acetone, and then driad by compressed air issuing under pressure after passing through silica gel and gless wool to remove moisture and dust.

The aporatus, flask in particular, were not driod in en oven so that the air in then is kept at room temperature and humidity because otherwise if aix in a flask iss dry and a few ml of a concentreted solution are sdded to it a littie eveporetion is lizely, which results in a chenge of true conceatration of the solution ${ }^{62}$.

The flasks dried over air were found to have the sane weights within 0.0002 grans after reneating the process of cleaning. All the flesks with stoppers were mumbered using a diamond scratching knife so that using the some flask and stopper, their wejeghts could be conyered and reproduced.
5.2.8 Constant Temperature Beth: A tempreture of $25^{\circ} \pm$ 0.002° was obtained using a tolvene mercury coiled gless thermo-regulstor in a light-weight trensformer oil tenk. The oil was heated by a 40 watt electric bulb and cooled by circulating tap water in te tank using a coiled copper pipe imnersed in the tenk. thorough mixing of the oil wes affected by en electric motor stirrer. The rates of heating cooling and stiming were regulated in such a way that temperature variation was within $\pm 0.002^{\circ}$.

An E-Mil for IMM standard thermometer model K14047 calibrated to N.P.I. standards was used for temperature messurenents. It was not considered necessary to celibrate this thermometer further because the solutions of electrolytes under study have the same temperature coefficient as those of cotessiun chloride, which is used for cell calibrations. A constent error of a few hundredthe of \bar{y} degree would largely be conoenseted ${ }^{63}$ ky a correspondiag change in the conductivity of the stendard.
5.2.9 Conductivity Bridee: A disital autobelence macision hridge B-331 menufectured by Tevne Kerr Co. Eta., wes unen for conductance meanurements. This autobalance bridge dis... played capecitance ond conductence simultaneously on two meters. An accuracy of 0.01% was attained by comating six pushbutton decedes, three for coracitance and three for conductmee. The instrument incorvoreted a sodeial circujt, celled "leed elliminator", which completely climinated error in resistemce ceused by the uee of long connecting leads. The bridge opereted at frequenoy of $1591.55 \mathrm{H}_{\mathrm{E}}$ 。

Por conductance messurenents at other frecuencjes rengine from 500 to 4000 oyeles per cecond, externel sources of freouency and detection were used. The signel EEneraton was a Mayne Kerr osojlletor, model ATSL21. Tho external detector model 96016 of Stendend Telephone Compan, was recomended by the Tayne Kerr Co, for use with their bridge. With this detector we found that it wes diffjcult to make conductande meesurements better then $\pm 1 \%$. No reason could be found for the insensivity of the instrumant. It might have been due to miscellaneous electrical circuita in the laboratory. We, however, meneged to get a detector** of the general Redio Compmy* and this was sensitive enough for measurements with the bridge accuracy of 0.05% (with the external source and detector).

* Kindly lent to us by Dr. T.R. Foord of the depertment of mectricel mgineering, University of Glessow. **typr $\quad 232-H$
5.2.70 Conductivity Selle: The deain of concuotrnce coltn, shown in figure 5.1, is the work of dones and wolinger who made an extencive study of cell design to remove the shunt effect and polarisation errors. The shunt effect, which is due to high capacitances, is evoided by keeping contact tubes widely separated end the filling tubes epert. The polarisation js avoided by platinising the electrodes and using alternating current.

Four pyrex cells of cell constents $35.807,87.140$, 92.900 and 172.20 , were used to cover the whole range of concentration . The diameter of each electrode wes $\simeq 1.6 \mathrm{~mm}$ Dimensions of the filling and the contect tuber were the some in all cases but the length of the narrow nortion of each cell were varied to obtain different cell constents. The approximate dimensions of the cells are shom jn teble 5.1. To obtain a lower cell constant the length of the nerrow nortion between the electrodes was decreased and the dianeter was increased.

The filling tubes were incorporated ${ }^{62}$ with bulbs jur the centre. This facilitated rinsing of the cells. The cont-act tubes were filled with mercury but before filling, the glass platinum joint was further sealed inside the contact tube with the Araldite powder, which hardened on heating and subsequent coolins. Copper rods of two milameter were used to make contact with bridge leads for the cell of cell constant 35.807 while platinum rods were used for cells of high cell constents. Copper rods had to be '. cleaned with dilute hydrochloric acid from time to time to remove the oxide layer which built up slowly and reduced contact.

Table 5.1

Approximete dimensions in centimeters of the conductance cells.

Dimensions
Cells

	1	2	3	4
l	7	12	12	12
I.D.I.	0.6	0.4	0.4	0.2
h	10	15	16	15
D	1.6	1.6	1.4	1.4
m	3	3	3	3
n	14	14	14	14
I.D.n.	.3	.3	.3	.3
p	9	9	9	9
I.D.p.	0.5	0.5	0.5	0.5
q	1.5	1.5	1.5	1.5
I.D.q.	1	1	1	1

l= length of the nerrow portion between the electrodes; I.D.l= diameter of the capillfary tubes between the electrodes; $h=$ distance between the electrodes;
$D=$ diameter of each electrode; m=horizontal length of the filling tube; $n=$ vertical length of the filling tubes; I.D. $n=$ internal dimeter of the filling tubes; $\mathrm{p}=$ vertical length of the filling tubes; I.D.p= internel diameter of the filling tubes; $q=$ diameter of the bulb in the filling tube; I.D. $q=$ internel diameter of the bulb.

Pigure 5.2

5.2.11 Platinisstion of Cell RIectrodes: Por platinisction, again the instructions of Jones and rollinger 53 were foliowed. The platinisation solution consisted of 0.025 hydrochloric acid, 0.3\% nlatinic chloride and 0.025 lead acetate. Gix coulombs of electricity per equare centimeter of the electrode area were pessed. The polarity was altered after every ten seconds and the platinising current required was lomA per cm^{2}. The electrical circuit is shom in figure 5.2 in which K is the two way key and B is the Bettery. Avoneter, V, indicated current. After platinisation, cells were washed with distilled woter and were always kept filled with it.
5.2.12 Cell Calibration: For cell celibration, 1.0, 0.1 and 0.01 demal solutions of notassium chloride were prepered as recommended by Jones and Bradshew. ${ }^{64}$. $1 D^{*}$ solution was prepared by direct weighing and 0.1 and $0.01 D$ solutions were prepared by dilutions of the ID solutions. Demal solutions are inderendent of the atrmic weight of the standard electrolyte. Anounts of $\mathrm{k} C \mathrm{l}$ required for 1000 g of the solutions are given in table 3.2 along with their corresponding specific conductances.
5.2.13 Preparation of Demal Solutions: For a 1 solution, epproximately 7 g of YCl were weighed to 4 Dlaces of decinols. This weight was converted into vacuun weight by apolying the vacuum correction factor ${ }^{65}$, f, which is obtained using

$$
\begin{equation*}
f=1+0.0012(1 / \alpha-1 / 8) \tag{5.1}
\end{equation*}
$$

* D stends for Demel.

Table 5.2

Preparation of Demal solutions.

Demal	of KCI ner 1000g of soln. in vac.	Vac. Sorrection for solution	Specific conductence
.01	0.745263	1.00105	.0 .0014087
.1	7.41913	1.00105	0.012856
1.0	71.1352	1.0010	0.111342

Table 5.3

Vacuum correction fectors for selt and solutions.

Ilectrolyte	Pol.wt.	Vecuum Correction for		
		Selt, fe.	Solution fb	
			cく.I	c>.1
KCl	74.56	1.000455	1.00105	1.001
RbCl	120.92	1.000300	2.00105	1.001
CsCl	168.36	1. 1.0001500	1.00105	1.001

for salt this where d is density of the salt or solution andis equal to 1.000455 . From this, the weight of the solution required in vacuum was calculeted, which on division by vecuum correction factor for solution gave the weight of solution required in air. A littze less then the required amount of conductivity water wes added to the flesk containing the salt and finel wejght was made by edaing water drop by drop. Solutions of $\pm 0.01 \%$ accurscy could be easily prepared by this method. $\approx 10 \mathrm{ml}$ of 1 D solution were weiched in another flssk and diluted to obtain O.ID solution. U.OID solution was similarżly obteined by dilution of O.lD solution.
5.2.14 Conductence reesurements: Cell-1 (with lowest cell constant) was calibrated with 0.01 and O.ID solutions while 0.11 other cells were calibtrated with 0.1 and IT solutions. The cells were rinsed four times with lonl samples of the stock solutions. After filling the tube, the standard joint (of the filling tube) was dried with filter paper and stoppered. No air bubbles were left trepped in the solution in the cell.

The cells were then themostated in the oil thermostet for 15 to 20 minutes before conductence measurements were made. The measured conductances remeined stationery with time within the accuracy of measurements. The cells were removed from the thermostet, atoppers were removed and the solutions were stirred by tilting the cells slightly. The stoppers were repleced and the conductances were measured once more. No change was observed in the measured conductances showing that adsorption effects were absent.

The specific conductance of water was added to the specific conductances of the domal solutions and the cell constants were then calculated using the relationship

$$
\begin{equation*}
\rho v=k \tag{5.2}
\end{equation*}
$$

where \int is the cell constant, v is the observed conductivity and k is the total soecific conductivity of the solution.

For confimation of the cell constants, $0.01,0.1$, 1,2 and 3 moler solutions of NaCl and KCl were prepared, their conductences were measured and the equivalent conductances calculated using the relationship

$$
\Delta=k \cdot 10^{3} / \mathrm{c}
$$

The calculated values were in agreement within $\pm 0.02 \%$ of the literature ${ }^{66}$ results.
5.2.15 Prenaration of RbCl and CsCl Solutions: The equations (5.3) and (5.4),

$$
\begin{align*}
& c / m=a_{0}+\sum_{i=1}^{2} a_{i} m^{i} \tag{5.3}\\
& m / c=a_{0}+\sum_{i=1}^{2} a_{i} c^{i} \tag{5.4}
\end{align*}
$$

were used to calculate molar concentrations, c, from molalities m and vice verse. Coefficients, a_{0} and a_{i} of relationship (5.3) were obtained from Harned and Owen ${ }^{67}$ and the conficients of reiationship (5.4) were obtained by a least squares, fit between m / c and c. These coefficients are given in
table Al, appendix 1 , along with the values for Kl solutions. The relationships (5.3) and (5.4) are applicable unto 4 in concentrations. For CsCl solutions, the equation

$$
\begin{equation*}
d=0.99707+0.12933 c-0.002166 c^{3 / 2} \tag{5.5}
\end{equation*}
$$

was available ${ }^{68}$, and was used to calculate molelities, m, using the relationship

$$
\begin{equation*}
m=c /\left(d-0.001 \cdot c \cdot m_{b}\right) \tag{5.6}
\end{equation*}
$$

where W_{b} is the molecular weight of the salt and a is the density of the solution in gram per ml.

Solutions were prepared at approximate molalities as well as molarities corresponding to exact concentrations. For preparation of solutions at exact concentrations, if Wa, is the apparent weight of the salt in air then the apparent weight of the solution required in air, $\%$, is given by relationship

$$
\begin{equation*}
W y=W a \times(1+1000 / \mathrm{Wb} \cdot \mathrm{~m}) \times \mathrm{fa} / \mathrm{fb} \tag{5.7}
\end{equation*}
$$

where fa and fore the vacuum corrections for the salt and the solution respectively. The numerical magnitudes oi H_{b}, fa and fb are given in table 5.3. Relationship (5.7) may also be rewritten as

$$
\begin{equation*}
\mathrm{Wy}=\mathrm{Wa} \cdot \mathrm{Y} \tag{5.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{Y}=(\mathrm{I}+1000 / \mathrm{Wb} \cdot \mathrm{~m}) \mathrm{fa} / \mathrm{fb} \tag{5.9}
\end{equation*}
$$

An approximate amount of salt was weighed and multiplied by the factor, Y and the apparent weight of the solution required in air was thus calculsted. A little less than the calculated amount of conductivity water was added and the final weight was made by adding water drop by drop as mentioned earlier for preparation of demal solutions.

Solutions were also prepered at approximate nolalities and the exact concentrations calculated using relationship (5.3).
5.2.16 Deassing of dilute solutions and filling of celle for conductence neasurements: Conductences of all solutions above 0.1n were messured without degessing while for all solutions below 0.1 , conductences were measured before and after degsssing with purified nitrogen. Specific conductances of undegassed and degassed conductance water were subtrected from the observed specific conductences of the solutions. For $c>0.01$, no apreciable difference wes found in calculated equivelent conductances by both the methods. The degassing and filling aparatus is shown in figure 5.3 in which A is a three way tap, B is a two way tap, and H is the gas head.

Firstly, outlet C of the gas head is closed, B is opened while A is closed from the side of the $B-10$ joint and open to the atmosphere. This way the gas after passing through the solution issued out to the atmosphere through the outlet in tap A.

After degessing of the solutions, the outlet C of the ges head was opendend fitted into the inlet C of the cell. Nitrogen gas, instead of passing through the solution escened through the cell, thereby creating its own atmosphere in it. This was ellowed to take place for $1-2$ minutes. After that, ten B was closed and tan A wes closed to the atmosphere and open to the solution aide. The ges pessed straight through A and created a pressure on the solution thereby making it rise up to the gas head tube dipping in it. The solution then sterted filling the cell through the inlet C. The stopper D was ooened to let the gas escape while the solution wes entering the cell. Bubbles left in cell were removed by shaking end tilting the cell slightly. When the level in the second filling tube rose nearly to the required mark, the tep A was closed and outlet of the gas head was taken out of the cell and stoppers were immediately blaced in the filling tube C, as well as in D. The cell was then ready for conductance measurements.
5.2.17 Frequency Dependence of Conductonce: Freqiency denendence of conductance is given by Jones and Bollinger's 53 relationship

$$
\begin{equation*}
R_{p}=R_{t}-R_{t}^{2} \cdot R_{p} \cdot W^{2} \cdot C_{p}^{2} \text { or } R_{p}=R_{t}-R \tag{5.10}
\end{equation*}
$$

where R_{p} is the apparent resistance, R_{t} is the true resistance, and W and C_{p} are the angular frequency and capacitance respectively. If R_{t} is taken to be roughly equal to R_{p}, eqn(5.10) becomes

$$
\begin{equation*}
R_{p}=R_{t}-R_{t}^{3} \cdot w^{2} \cdot C_{p}^{2} \tag{5.11}
\end{equation*}
$$

For all the cells and the whole range of concentration from 0 to $3^{\pi \pi}, R_{p}$ was between 500 and 50,000 ohms and C_{p} was of the order of $\approx 10^{-12}$ ferads. For frequencies, 1000 to $4000 \mathrm{H}_{Z}$, substitution of $\mathrm{F}_{\mathrm{g}} \mathrm{R}_{0}$ and C_{p} in eqn(5.11) shows that the exror, $R=R_{t}^{3} \cdot W^{2} \cdot C_{D}^{2}$, iss negligibly smell. Its magnitude is much less than 0.01% and the change cannot be observed on the instrument. In theory it is clear thet the measured or apparent resistance is the true resistance. In practice, the measuroments were first mede at bridge frequency and then using en externcl frequency source and detector in the range 1000 to $4000 \mathrm{H}_{\mathrm{Z}}$ for $0.01,0.1,1.0$ and $3.0 H$ solutions and no visible change was observed within $\pm 0.05 \%$, (which is the bridge accuracy for external source and detector). The most recent account of denendence of conductance on frequency has been given by Hoover ${ }^{69}$.

5.3 Results of Conductance Measurements

5.3.1 Conductance feasurements in Dilute Solutions

Toble 5.4 summarises the results both for rubidium chloride and caesium chloride for concentrations less than 0.1N.
mable 5. 4
Results of conductance monmonenta io dilute solutions.

HDCI				Ciscl.			
$\begin{gathered} c \\ .007 \end{gathered}$	$1.66 .34$	$\begin{array}{r} c \\ .04 \end{array}$	138.11	$\begin{array}{r} c \\ .01 \end{array}$	$14 \% .52$	$\frac{\mathrm{c}}{.06000}$	$\begin{gathered} 134.63 \\ \hline 1 \end{gathered}$
.003	145.91	. 05	136.75	.013888	143.09	. 07000	133.51
. O1.	145.07	. 055	1.36 .19	. 015133	142.7.7	. 0783%	132.66
.0103	144.98	.0633	135.28	. 019908	J.41. 32	. 03	1.32.52
.013	14.3 .96	.065	135.09	.028255	139.40	. 08926	131.69
. 015].43.30	. 07	.134.59	.03	139.0]	. 09	13].67
. 017	1.42 .77	.075	134.15	. 04	137.32	. 0929	132.38
. 01.9	142.23	. 0828	133.43	.04784	136.12	. 090	131.04
. 02	141.98	. 09	132.87	.049997	135.81	. 7.00	130.84
. 03	139.77	. 10	132. 24	. 05	135.80	. 100$)$	130.85

Jonductance messuremonts in concentrated solutions
. hesults are sumnerised in teble-5.5
420]s-5.5
Results of conductence measurements in concentreted solutions,

5.4 Analysis of Comactance les surements in Dilute Solutions - A Study of Ion Association:

5.4.1 Fuoss Anelysis: During the post three yeers puoss and co-wormers 6 - e hsve published extensions of the original Fuoss-Onseger conductance equation ${ }^{60}$ end applied the extended equation to data for sodium ond notassium chlorides, caesium bromide and iodide, potaszium nitrate and silvor nitrate. The experimental date werefirst anelysed using the implicit equation

$$
\begin{equation*}
\Delta=A_{0}-S \sqrt{c}+\operatorname{BCln} c+A c+B c^{3 / 2} \tag{5.12}
\end{equation*}
$$

in which S and E are theoretical paremeters and A and B constants of empirical fit. Rouation (5.12) is valid upto O.IM concentration and successfully reproduces the experimental data within the precision of measurements. A computer programe wes devised which reproduced the Λ_{0}, A end B values reported for sodium and potassium chlorides 6 b, c . The experimental deta for rubidium und caesium chlorides vere then processed. The velues of dielectric comstent and viscosity of weter were taken as 73.54 and 0.008903 (poise) ot $25^{\circ} \mathrm{C}$ and the resulting equation for rubidium and casium chlorides were
$\Delta=154.01-96.000 \sqrt{c}+26.60 \mathrm{clnc}+207.7 c-195.1 c^{3 / 2}(5.13)$
$A=153.58-95.000 \sqrt{c}+26.31 \mathrm{clnc}+190.4 c-171.6 c^{3 / 2}$

The equivalent conductences for caesium chloride in the range $c<0.01 p^{\pi}$, calculated from equation (5.14) were
in agreement, to within 0.03%, with those obtained by Swan and Bvans who, using the originsl poss-Onseger equation obtained a A_{0} velue for caesium chloride of 153.61 ± 0.02, which is in agreement with equation (5.14). The A and B values obtained for caesium chloride, equation (5.14), are similar to those for caesium bromide and iodide ${ }^{6 c}$ and the order is CsCl<CsBr<Csl.

Equations (5.13) and (5.14) for 1:1 salts in the concentration range 0.01 to 0.1 m give satisfactory values of A_{0} when terms in $c^{3 / 2}$ are retained ${ }^{6 a-c, 71-73}$.

Using this concentretion range inproves experimental accuracy and so is prefereble to using concentrations<0.01F.

For solutions where ion association is present Fuoss and Hsia ${ }^{\text {6e. }}$ first used the explicit equation

$$
\begin{equation*}
\Delta=\alpha\left(\Delta_{0}-\Delta \Delta\right)(1+\Delta X / X) /(1+3 \phi / 2) \tag{5.15}
\end{equation*}
$$

where α is the desree of dissociation, $\Delta \Delta$ and $\Delta X / X$ contributions from electrophoretic and relaxation effects respectively end ϕ is a function of the ion-size parameter 8. Bquation (5.15) may be solved as a three praneter equation to give self-consistent velues of Δ_{0}, a^{0} and K_{a}, the association constant. The latter is derived from values, using activity coefficients from the Debye-Húckel limiting lew. Although the values for distencef ${ }^{6 f}$ ciosest approach are lerge, $5-6 A^{\circ}$, equation (5.15) adequately represented data for sodium and potessiur chlorides and caesium bromide and iodide up to 0.1M. rackenzie and Fuoss ${ }^{6 e}$, however, found thet with potessium end silver nitretes in water and in aqueous dioxsne, where the amount of association
is comparatively lerge, the value of E ebtained was relatively insensitive to the velues of a° chosen. They then treated equation (5.15) as a two perameter equation and calculated K_{e} from the best fit of a^{0}.

A detailed computer programme (1 No.158) of this treatment was kindly sunolied by Yrofessor puoss ${ }^{74}$ and was used to process experimentel data for rubidiun and caesium chlorides and to recalculate cesults for other alkali salta. The distance paraneter a^{0} is obtained from the association constant, K_{a}, using the relationships

$$
\begin{equation*}
K_{a}=\left(4 \pi N \beta^{3} / 6000\right) P(b) \tag{5.16}
\end{equation*}
$$

where $F(b)=e_{p}(b)-\left(e^{b} / b\right)\left(1+\frac{1}{b}\right)+2.435$
and

$$
a^{0}=\beta / b
$$

Activity coefficients, $f_{ \pm}$, are calculated using the expression

$$
\begin{equation*}
-\ln f \pm=\tau /(1+\gamma) \tag{5.19}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } \quad \tau=\beta K / 2 \tag{5.20}
\end{equation*}
$$

Relations between $N, \beta, a^{\circ}, b, \tau$ and K are given in an earlier publication 75 . A limit has also been set to the maximum concentration such that $c(\max)<10^{-7}$. D^{3} where D is the bulk dielectric constant. For aqueous solutions $c($ max $) \leq 0.05$? and as association increases this limit decreeses further.

Table 5.6

Results for Rubidiun Chloride date using the Fuoss analysis.

c	$\Lambda_{C a 1 c}$	$\Lambda_{C a l c-} A_{0 b s}$	α	$f_{ \pm}^{2}$
.008	145.908	-.002	.9982	.8272
.010	145.066	-.004	.9978	.8109
.0103	144.945	-.035	.9977	.8085
.013	143.980	+.020	.9972	.7901
.015	143.337	+.037	.9968	.7782
.017	142.757	-.013	.9964	.7674
.020	142.218	-.012	.9961	.7576
.020	141.964	-.016	.9959	.7528
.03	139.802	+.032	.9942	.7141
.04	138.131	+.021	.9926	.6847
.05	136.758	+.008	.9911	.6610
.055	136.224	+.034	.9904	.6507

Table 5.7

Results for Caesium Chlonide data using the Puoss anolysis

C	$\Lambda_{\text {calc }}$	$\Lambda_{\text {cenc- }}^{\text {colobs }}$	∞	$\pm \pm^{2}$
. 07.0000	144.500	-. 020	. 99671	. 81.093
. 013888	143.093	+.003	. 99558	. 78480
. 015133	142.691	-. 019	. 99524	. 777757
. 019998	141.299	-. 021	. 99392	. 7529
. 028255	139.390	-- . 010	. 99182	. 72026
. 029991	139.041	$+.001$. 99139	. 71438
. 030000	339.039	+.029	. 99139	. 71435
. 039991	137.320	$+.000$. 98890	. 68300
. 047836	136.109	-. 011	. 98730	. 66622
. 049997	135.815	$+.005$. 98683	. 66150
. 050000 .	135.814	$+.004$. 98683	. 66149

α is the degree of dissociation and ft^{2} is the square of the mean activity coefficient.

The results for rubidium and ceesiun chlorides are given in table 5.6 and 5.7. Table 5.8 summarisce calculations for other alkali halides and potessium and silver nitrates. Including in this table are the Δ_{0} vilues obteined from equation (j.12). These are lerger by o. 08 and 0.05 conductance unjts for rubidiun and caesium chlorides and similarly for sodiva and potassium chlorides and ceesium bromide. In the sequence of salts from sodium chioride to silver nitrate the ion size paraneter a^{0}, decreases as association constants, K_{a}, increase. The velues for K_{a} for sodium and potessium chlorides are 0.17 with uncertainty of ± 0.12 so that, as expected, the association is berely signific? ${ }^{n}$. The association constents for rubidiun and caesium halides are significant but smaller then for potassium and silver nitrates. The values of association constant, Ka, for rubidiua and ceesiun chlorides ere. $275 \pm$.083 and $.409 \pm .061$ resoectively. For caesium chloride Ka is identical with that for caesium bromide and compares well with an early estimate by Devies ${ }^{76}$ of $\simeq 0.4$, measured at $18^{\circ} \mathrm{C}$.
5.4.2 Corresponding Conductances: In a recent paper Guggenheir 77 has used the conductonce equations of pitts ${ }^{7}$ to calculate the conductance with an electrolyte would have in the absence of ion association. The principle is one of corresponding conductences, in wich the desired equivalent conductance, Λ, is calculated using data for two standerd l:l selts which were considered to be completely dissociated. It is shown that for a given value of concentration, c,

$$
\begin{equation*}
\frac{\Delta^{1}-\Delta}{\Delta^{1}-\Lambda^{2}}=\frac{\Delta_{0}^{1}-\Delta_{0}}{\Delta_{0}^{1}-\Delta_{0}^{2}}=r \quad(c, \text { constant }) \tag{5.21}
\end{equation*}
$$

where r is the constant defined by the A_{0} values and therefore independent of concentration. Superscripts 1 end 2 denote the standerd salts. In the original paper these salts were ootassium snd lithium chlorides, but in this work sodium end lithim chlorides were used in order to include potassium chloride, 3 in the mos treatment given above. (Por self-consistency the degree of dissociation is again given the aymbol α, where δ was used in the original paper). The value of α is calculeted as the ratio $\Delta_{o b s} / A$, calculated from equation (2.2l). The results ore shown in table 5.9 and $\mathbf{x} i \mathrm{~s}$. 5.4. The degress of dissocietion preseat at specifje concentretions are closely similer for both treatments and the arreement between them is never worste than 0.5 , elthourgh in sill ceses the Fuoss estimete is the lower and extrepoletes to a value which corresponds to Davies 78 estimate of α for CsCl at O.IN. To compare association constants the Fuoss activity exneession, egu. (5.19), hes been used and the results given in table 5.8. Once more the egreowent for the alkali helides is excellent and within the uncertainty of the $K_{\text {e }}$ values obtained by each rethod. Whe corresponding conductance method does however give lower values for potassiun and silver nitrates and each method shows thet essociation in potassium chloride is nesligible or zero.

The agreement between those two independent approaches is, therefore, excellent.

Mable 5.8

Results for $10, a^{\circ}$ and $k a$ using procrame 158 of Fuoss for literature dato on other salts.

$\begin{gathered} 0 \\ 1 \\ 10 \\ 10 \\ 0 \\ 10 \\ 10 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	Implicit Equation (1)	Fuoss Programme			Gurgembeim Mothod
	Λ_{0}	,	a^{0}	$\mathrm{K}_{\text {a }}$	$\mathrm{K}_{a}^{\prime}(\mathrm{G})$
NaCl	126.61	326.58	5.233	$.1 .63 \pm 0.124$	0
KCl	149.96	149.92	5.223	$.172 \pm .120$	0
Tucl	154.01	153.93	4.947	. $275 \pm .083$	$\cdot 24 \pm .13$
CSI	154.19	154.30	4.851	. 311 ± 0.012	$.28 \pm .10$
CsBr	755.35	155.31	4.597	$.409 \pm 0.061$	$.40 \pm .1 .3$
Crat	153.58	153.53	4.598	$.409 \pm .051$.	$.40 \pm .10$
KNO_{3}	\cdots	145.00	3.726	$.784 \pm .044$	$.66 \pm .05$
$\mathrm{A}_{6} \mathrm{NO}_{3}$	-	133.41	3.509	$.875 \pm .101$	$.70 \pm .05$

(K_{a}. (g) is the asisociation constant calculated using Guggenhein's degree of dissociation, α^{*}, and Puoss's activity coefficient, f'土, over the range .01 to .05 M). *using NaCl or LiCl as standards instead of LiCl and KCl as standards.

Tente 5.9

Degree of dissociation, α, from Guggenheim's method of correstonding conductences (α) from Fuoss orograme ($\alpha_{\text {il }}$).

c	. 01	. 02	. 05	. 10
KCl ${ }^{\circ}$. 9986	. 9987	. 9990	. 9993
	. 9986	. 9976	. 9942	-
Hbacl 0	. 9970	. 9958	. 9946	. 9935
	. 0078	. 9959	. 9911	-
$\operatorname{CsCl}{ }^{\alpha}$. 9960	. 9940	. 9900	. 9960
	. 9967	. 9939	. 9868	-
$\mathrm{KNO}_{3} \stackrel{\alpha}{\alpha}$. 9963	. 9895	.3806	. 9680
	. 9934	. 9885	. 9753	-
$\mathrm{AgNO}_{3} \stackrel{\alpha}{\alpha_{\mathrm{F}}}$. 9976	. 9900	. 9780	. 9620
	. 9930	. 9872	. 9725	-

CHAPTER 6

Results and Discussion of the Irceversible Thermodynamic Anglysis

The erperimental results obtained for the ejectrieal conductances of rubidium ond cassiun chlorides torether with the diffusion data for rubidium chloride conplete the perameters required for an irreversible themodynmic analysis of these selts in the concentration range 0.253. On. Trensport numbers for both salts were obtained fron Tamas, Kanosi end Scheiber ${ }^{79}$ in this concentration range. These authors found their date to fit the empirical equations of Jones and Dole ${ }^{80}$,

$$
\begin{align*}
& t_{1}(\mathrm{RbCl})=1.5060 /(1+0.005461, \overline{\mathrm{c}})-1 \tag{6.1}\\
& \mathrm{t}_{1}(\mathrm{CsCl})=1.5084 /(1+0.01059 \sqrt{\mathrm{c}})-1 \tag{6.2}
\end{align*}
$$

to en accurecy of 0.1%. Literature values of the volune fixed diffusion coefficient, D_{V}, for ceesium chloride were obtained from Lyons and Riley 81 . To convert these (and the experimental results for rubidium chloride obteined in this thesis) to the solvent inxed frame of reference it was necessary to evaluate the activity correction term, $(1+m a l n f / d m)$, eqn(2.60), over the full concentration rance. For this purpose a fourth degree empirical fit was obteined between $\ln \gamma$ and $\ln n$;

$$
\begin{equation*}
\ln r=a_{0}+\sum_{i=1}^{4} a_{i}(\ln n)^{i} \tag{5.3}
\end{equation*}
$$

The coefficients a_{0} to a_{4} for both asits (and also for potessium chloride for check ealculations), given in teble 6.1, reproduced In γ values to an eccurecy of $\pm 0.1 \%$ over the range $0.1-4.0 \mathrm{molal}$. The values of the function (l+ndln γ / dm) given in tebles 6.2 and 6.3 were obteined from eqn(6.3) on differentiation.

Using the theory discussed in chanter 2 a computer programe wss written (appendix 2) which feoroduced yiller's calculated date for the chlorides of lithium, sodium, potassium ond hydrogen to $\pm 0.1 \%$. The complete sets of transport date for concentrationa in the range $0 . ? 5$ to 3.0 molar for rubidium and ceesium chlorides wete processed for calculations of the phenomenolorical coefficients, $I_{i k}$ and $R_{i k}$. We computer read $c, m, t_{+}, \Delta, D_{v}$ and ($1+$ mdln (/da) fron the dote tooe and first calculated the transport coefficients, Jik from eqn(2.63). The inverse frictional coefficients, ${ }_{i k}$, were then celculated from $I_{i k}$ by their matrix inversion using eqn(2.64). The ionsolvent frictional coefficionts, F_{i}, were calculated using eqn(2.66) which involved all the three transnort properties and the activity correction term. These coefficients could also be obtained using ean(2.60) which involved transport numbers, diffusion coerficients and the sctivity term and for R_{00} diffusion coefficients and the activity correction term only. Whis does not neen that conductance and/or transport numbers are extranous parameters in ean(2.66), for obtaining the coefficients $R_{i O}$ and R_{00}. It can be seen on expansion/the eqn (2.66) reduces to egn(?.69). The results for rubidium end ceesiun chlorides ere presented in tebles 6.2 and 6.3. Celculations were also corried out for (conlirued)
all other binary systems, for which data were completely or partially avajleble. These resulte are given in appendix 1.

The formelism of irreversible thermodymemics is justi-fied on two counts. Pirstly jt allows e meaningrul enalysie of transnort data in the concentration regjons far in excess of the apolicebility of the existing microscopic theories and provides discrete coefficients which define specificelly the mobility of jons, $I_{i i}$, and the soupling between species, $I_{i k}$. Since the flows are defined relative to e solvent fixed ename of reference all mobility coefficients contain contributions from the freme of reference interactions. It is bowever apparent that the mobility coefficienta aredifore fundamental importance then any directly measured perameters such as electrical conductivity or transport numbers, eqns (2.45) and (2.47).

Table 6.1

Coefficients of 4 th degree fit, eqn(6.3), between $\operatorname{lnm} \& \ln \gamma$.

Coefficients	KCl	RbCl	CsCl^{2}
a_{0}	$-5.0506_{10^{-1}}$	$-5.3938_{10^{-1}}$	$-6.0912_{10^{-1}}$
a_{1}	$-9.7880_{10^{-2}}$	$-1.1367_{10^{-1}}$	$-1.5190_{10^{-1}}$
a_{2}	$+2.2020_{10^{-2}}$	$+1.3618_{10^{-2}}$	$+1.5806_{10^{-2}}$
a_{3}	$+1.42 .47_{10^{-2}}$	$+1.2206_{10^{-2}}$	$+1.3164_{10^{-2}}$
a_{4}	$+2.6918_{10^{-3}}$	$+2.0989_{10^{-3}}$	$+2.0116_{10^{-3}}$

To obtain a deeper understanding of electrolyte transport in concentrated media an examination of the variations of these coefficients with concentration is necessary. The interpretation of such coefficients is qualitative and therefore most soundly besed when a series of closely related salts are compared.

In the present series of investigations on rubidium and caesium chlorides the reneining alkali metal chlorides provided this background for comparison. The experimenter salts contain the largest cations of the series with largest mobilities and ares the inly sal ts of this series for which ion association might be expected (chapter 5).

In this analysis, the mobility or L-coeffioients and frictional or R-coefficients hove been calculated. These two sets are mathematically equivalent but each hos merits for interpretation. The mobility coefficients give relationships which are formally more similar to classical equations; for example equivalent conductivity, A, where the simple Onsager equation

$$
\Delta=\Delta_{0}-\left(\alpha \Delta_{0}+\beta\right) \sqrt{c}
$$

may be compared with eqn(2.45);

$$
A=\left(z_{1}^{2} \frac{I_{11}}{N}+z_{2}^{2} \frac{I_{22}}{N}\right) 10^{3} F^{2}+\left(Z_{1} z_{2} \frac{2 L_{12}}{N}\right) \cdot 10^{3} F^{2} .
$$

The first term in each equation is a function solely of ion mobilities and the second term contains contributions from the cetion-anion interaction.

The friction or R-conficients are more akin to en electrical or mechanioel hesistance and have the adventage of being independent of the frame of reference. The coupling_{g} coefficient, $R_{i o}$, between ion and water may be isolated and examined. This formalism js lergely fevoured by workero in the field of membrane transoort snd the friction anslogy, discussed below, hes been developed by Spiegler 8 , Wetchelciey and others. ${ }^{19,84}$
6.1 The Tobility Coefficients: The phenomenological euvations for a binary electrolyte solution contamins cetion, I, valency, Z_{1}, anion, 2 , valency ${ }_{2}{ }_{2}$, end water, 0 , are given by the expression(2.29) where J_{i} is the flux of ion, i, relative to the solvent. A themodynamic force on srecies, i, is defined by the gredient of electrochemical notential (-gred \tilde{u}_{i}) and therefore is the force on one nole of species, i; the flow, however, is largely oroportional to the concentration of species. this concentration difference is defined and the variation of these parameters with concentration reflects the changes due to the environmental variation. The analosy is that between the use of specific conductivity and equivelent conductivjty, A, as a basis of comperison of electrolytes at verying concentrations.
6.1.1 The Coefficients, I_{11} / N and $I_{22} / \mathrm{N}:$ The $I_{i i} / \mathrm{N}$ is an intrinsic mobility, that is, the mobility an ion would have if there were no interactions with the oppositely charged ions. It includes a large obstruction contribution due to lattice exchange, smaller effects such as coulombic interections with the other i-tyoe ion, solvation end the

frame of reference interactions with the solvent. The cationic end anionic mobility coefficients, H_{11} / A and $\mathrm{I}_{22} / \mathbb{N}$, are plotted in figures 6.1 and 6.2 g.geinst the square root of ionic strength, s, where s is given by

$$
\begin{equation*}
s=N\left(Z_{1}-Z_{2}\right) / 2 \tag{6.4}
\end{equation*}
$$

The observed trend of the intrinsic mobilities, $I_{i j} / T$, may be tentetively explained on the besis of the accumulated evidence $85,86,87$ of water structure and the effects of electrolytes on thst structure. The mobility coefficient, $\mathrm{I}_{11} / \mathrm{N}$, is lergest for Rb^{+}ion showine that this ion has the highest mobility in the alkali metel chloride series. For $\mathrm{Rb}^{+}, \mathrm{Cs}^{+}$and K^{+}ions the values lie perellel and very close to each other and are the least affected with change in concentretion. In the cese of more solvated Na ${ }^{+}$ent Li^{+} ions the coefficients, $\mathrm{I}_{I 1} / \mathbb{N}$, decrease with concentration showing that the most solveted Li^{+}ion has the least mobility.

The mobility coefficients, $\mathrm{L}_{22} / \mathrm{N}$, plotted in figure 6.2, provide a basis for the compariston of the CI- ion mobility in a variety of alt solutions of different concentrations. At finite concentretions it desends upon the nature of the selt. As the concentration tends towards zero, L_{22} / N values convèrge to a common point in accord with Kohlrausch's law of independent mobilities at infinite dilution. At a finite concentration the L_{22} / N coefficients are in the increasing order of the atomic numbers of the cations. That is,

Since the intrinsic mobility of an ion does not depend upon the effect of the counter ion, the above order may be explained in terns of the state of the solvent structure in the presence of different cations. The solvent order producing cetions, Ij^{+}and Na^{+}, increase the weter structure and thereby decrege the mobility of the Cl^{-}ions. The solvent order deatroying ions, $\mathrm{K}^{+}, \mathrm{Rb}^{+}$and Cs^{+}, on the other hand, decrease the resistance of the solvent medium to ionic flow and cause on increase in the mobility of the chloride ion. On the basis of this hypothesis the sequence of the $C l^{--}$ion mobility would be essentielly in the some order as that of the cations as is observed in figure 6.I.

In the alkoli metal chloridas, Rocl falle bebween KCl and CsCl but its equivalent conductance, transport numbers and diffusion coefficients, lie above that of CsCl. That is, they are the highest in the whole series. The largest magnitudes of the intrinsic mobility of Rb^{+} ion, I_{11} / \mathbb{N}, provides an indication to the cause of this anomolous beheviour. Since the intrinsic mobility of an ion depends upon the state of the solvent, the latter is offering the least resistence to the flow of Rb^{+}ion, end so explains the order of the trensport properties.
6.1.2 The Cross Coefficient, I 12 : The cross or interaction coefficient, I_{12} / N, plotted in figure 6. 3 , directly represents the cation and anion interaction. Because it is a solvent fixed coefficient there is some solvent contribution. It is zero at zero concentration as there are no intersctions when the ions ere infinitely severated

and increase ravidly with concentration. At higher concentrations, I_{12} / \mathbb{N} goes through maxime for LiCl and NeCl but increases continuously for $\mathrm{KCl}, \mathrm{RbCl}$ and CsCl , the values at a particular concentration being largest for CsCl ava amallest for licl. The highest intrinsic mobility of Rb^{+}, show by $\mathrm{I}_{11} / \mathbb{N}$ coefficients, does not alter the order of $\mathrm{I}_{12} / \mathrm{N}$ 。

The largest interaction of Cs^{+}and $\mathrm{Cl}^{-\quad}$ compared to that of Li^{+}and Cl^{-}might well occur if the Li^{+}ion were properly screened by its largest solvation sheath wich would increase the distance of closest anproach and hence decrease the sverafe coulombic force between then. On the other hand the effect of the larger solvation chesth around Li^{+}, ion would be to orientate solvent more rigidy and subject it to pertial dielectric constant around the ion and enhence the coulombic interaction between Li^{+}and Cl- ions. If, however, this model is acceptable, the distance effect would have to be substantially larger in order to explain the sequence. The decrease in $\mathrm{L}_{12} / \mathbb{N}$ for NaOl and LiCl at higher concentration is again besed on this model (of distance effect) which decreases the cation and anion interaction per unit concentration.

Stokes ${ }^{88}$ has suggester that $\mathrm{I}_{12} / \mathrm{N}$ might reflect. incipient ion association because of increased coulombic interections due to decrease in hydrstion as we fo from Li^{+}to Cs^{+}. If this were the case then incipient ion association would be maximum for CsCl and least for Jicl. This, however, is elso the order of the intrinsic mobilities of the cations which, in turn, are determined by ion-solvent
interactions. This/more clesrly brousht out by the I_{12} / N velues for $\mathrm{HCl}, \mathrm{HFO}_{3}$ and NeOH which are very high indeed. Stoke: m model therefore doss not provide a claer picture od ion-association. Kedem and Caron 89 have defined a new parameter G_{12} es a better measure of the degree of coupling between species 1 and 2 in a two component system. a_{12} is expleined in the section 6.3.
6.2 The prictionel Coefficisnts: The phenomenological egns (2.33) reoresents relations between the forces, X_{i}, and their conjugate flovs, J_{i}, in terms of the frictional coefficients, Rike This inverse aescriotion of transport by frictionsl conficients mrovidos an alternotive and complementary remesentetion. It is theoretjoclly less well defined because of the assumption, $\sum_{k=0}^{n} c_{k}{ }^{R} k=0 \quad i=0,1,2$; eqn(2.26). The edventeges are that the frictionel cosfficients become indevendent of the frame of reference ${ }^{\circ 0}$ and additional frictionsi coetiicients, ${ }_{i}$ io, which measure friction between ion and solvent, are obtained. On solvent fixed frame of reference the ohenomenological eqns(2.35) may be re-written as

$$
\begin{equation*}
X_{i}=R_{i i} J_{i}+R_{i k} J_{k} \tag{6.5}
\end{equation*}
$$

Prom eqns(2.36) and (6.5), $R_{i i}$ may be eliminated to yield

$$
\begin{equation*}
X_{i}=-R_{i k}\left(J_{i}-J_{k}\right)-\left(c_{0} / c_{i}\right) R_{i O} J_{i} \tag{6.6}
\end{equation*}
$$

Each term on the right hand side has the dimensions of a
thermodynamic force end represent the frictions l interactions of species i and k, and i and solvent. This is essentially the mechanistic interpretation of spiegler 83 who considered e force, X_{i}, to be balanced exactly by the sum of all the frictional forces, $f_{i k}$, figure 6.4, such that egn (6.7) holds;

$$
\text { Figure } 6.4
$$

Equilibrium between a force X_{i} applied on an ion i, and the frictional forces, $f_{i k}$ and $f_{i 0}$.

$$
\begin{equation*}
X_{i}=\sum_{\substack{k=0 \\ k \neq j}}^{n} f_{i k}=\sum_{\substack{k=c \\ k \neq i}}^{n}-x_{i k}\left(v_{i}-v_{k}\right) \tag{6.7}
\end{equation*}
$$

where $x_{i k}$ is the coefficient of kinetic friction and $\left(v_{i}-v_{k}\right)$ is the velocity of i relative to k. Also f relative flow ($J_{i}-J_{k}$) is given by

$$
\begin{equation*}
\left(J_{i}-J_{k}\right)=c_{k}\left(v_{i}-v_{k}\right) \tag{6.8}
\end{equation*}
$$

From eqns (6.6), (6.7) and (6.8) we obtain

$$
\begin{equation*}
-x_{i k}=c_{k} R_{i k} \quad i, k=0,1,2 ; i \neq k ; \tag{6.9}
\end{equation*}
$$

For completely dissociated $1: 1$ selts, $c_{1}=c_{2}=N$, therefore ion-ion friction is represented by

$$
\begin{equation*}
-x_{12}=\operatorname{NR}_{\mathrm{I}_{2}}=-x_{21}=N R_{21} \tag{6.10}
\end{equation*}
$$

That is, the coefficient, $-\mathrm{MR}_{12}$, renresents the coefficient of kinetic friction, x_{12} •

For a three component systen ean(2.37) may be rewritten as

$$
\begin{equation*}
c_{i} R_{i i}=-\sum_{i=0 \neq k}^{n} c_{k}^{R} k_{i k} \tag{6.11}
\end{equation*}
$$

From eqns (6.0) and (6.11) we get

$$
\begin{equation*}
c_{i} R_{i i}=\sum_{i=0 \pm k}^{n} x_{i k} \tag{6.12}
\end{equation*}
$$

The term $c_{i} R_{i j}$ is therefore the sum of the frictionel coefficients between one mole of species i and all other species k in one litre of the solution. On this basis the $R_{i i}$ coefficients assume lesser importence than the coefficients, $\mathrm{R}_{i k}, i \neq k$. As for exmple the value of $\mathrm{NR}_{11}\left(\mathrm{c}_{\mathrm{i}}=\mathrm{M}\right)$ for PbCl , figure 5.5 , is minimum because $c_{0} \mathrm{R}_{10}$, figure 6.7 , is minimum and the order of NR_{11} coefficients is the same es that of $c_{0}{ }^{\mathrm{R}} 10^{\circ}$. The relative difference in magitude deoends upon the volue of HR_{12} at thet concentration. In the same way the behaviour of $\mathbb{N R}_{22}$ coefficients, figure 6.6, depends upon that of $c_{0} R_{20}$ and $N R_{12}$. Further, the coefficient, R_{0} / \mathbb{N}, figure 6.9 , is simply a summation of the coefficients, R_{10} end R_{20}, ean(?.66). Therefore the transport processes in electrolite solutions قre better understood if we study the nature or the coefficients, $c_{0}{ }^{R} i o$ end $c_{k}{ }^{R} k^{\prime}$

 ${ }^{-C_{0} R_{10}}$ and $-{ }^{-c} \mathrm{R}_{2}$ are atoted in tigures 6.7 and 6.8 resdectively. They represent friction between one grom ion, i, and the sumpouding solvent per iitre of the solution.

The coefticient, $-0_{0} \mathrm{R}_{\mathrm{J}}$, is the lesst for Rocl and largest for LiCl. At infinite dilution it hes dirtinct values for each cation. 4s concentretion incresses/continuously for FaCl and Hicl. This mey be expleincd in terms of the tendency of the solvont, weter, to solvete the ions. Lit and Net ions are highly solvated and ss concentration increscea more snd more vater molecules are removed fron the solution in the procese of bydretion. This is why $-\mathrm{c}_{0} \mathrm{P}_{1}$ increases contimously for these ione. $\mathrm{K}^{+}, \mathrm{Cs}^{+}$and Rb^{+}ions se the least solvated and therefore ${ }^{-c} 0^{R} 10$ for these ions is virtually constant. The lorest
 the least resistance to the motion of Rb^{+}ion and for this reason, the transport proverties like ecuivslent conductence, trensport numbers and diffusion coefficients, for Rbll, are the highest in the alkeli metal chloride series.

The enion frictionel coefficiont, ${ }^{-c} 0_{0}{ }^{P_{2}}$, docesases continuovsly for Bb and Cscl while for Kel, ltol and LiCl it passes through minima and then increases. Since the anion is the same, $T_{0} 0_{20}$ converge to the sams noint at infiaite dilution. At finite concentrations tre mogitude of $-\mathrm{c}_{0} \mathrm{R}_{20}$ depends upon the structurel interections of the ions with the solvent. In dilute solutions the order is
102

There is an inversion at ≈ 0.4 and the final order is

$$
\mathrm{IiCl}>\mathrm{NaCl}>\mathrm{KC} \mathrm{C}>\mathrm{RbCl}>\mathrm{CsCl}
$$

This behaviour mav be explained if we examine the state of the solvent in the vicinity of on ion. According to Gurney's 85 concents, Li^{+}and Ne^{+}ions are solvent order producing. They enhence the structure of the solvent and increase the ion-solvent friction. On the other hand, the ions, $\mathrm{K}^{+}, \mathrm{Pb}^{+}, \mathrm{Cs}^{+}$and Cl^{-}, are solvent order destroying. They loosen the structure of the solvent and decrease the ion-solvent friction. In dilute solutions of ficl, the ions are far apert ond the order destroying tendency of the Cl^{-}ion is dominent in controlfing the beheviour of ${ }^{-c} 0_{0}{ }^{R} 20$ and therefore the enion-solvent friction decresses initially. As concentration increeses the order producing tendency of the Li^{+}ion becones effective and the GI - ion moves through a more structured solvent. The motion of the anion is conditioned by the order producing or order destroying teadency of the cations. Therefore in concentrated solutions the order of $-c_{0} R_{20}$ is the sene as thet of $-{ }^{-c} 0^{R} 10^{\circ}$

The conditioning of the motion of the Ol^{-}ion by the solvent order producing and order destroying tendencies of the cations is supported y the beheviour of $-c_{0}{ }^{2} 10$ and ${ }^{-c} 0_{0} R_{20}$ coefficients in $\mathrm{HCl}, \mathrm{HMO}_{3}$ and NaOH solutions. The results for HNO_{3} and NaOH are given in appendix 1 . The coefficients, $-{ }^{-}{ }_{0} \mathrm{R}_{10}$, for HCl and HNO_{3}, and $-\mathrm{c}_{0} \mathrm{R}_{20}$ for NaOH , Dlotted in figures 6.7 and 6.8 , are very small as combred to those of the alxali metal cetions, fig.6.7,
and the $\frac{0}{a}$ ion, fig. 6.3 . This reflects the unicue trensport mechenism of the H^{+}and OH^{-}ions. However, these ions are polarising and highly order producing in their effect ipon the solvent. This is reflected in the increasing values of $-c_{0} R_{20}$ for $H C^{2}$ and $H N O_{3}$ and of $-c_{0} R_{1}$ for $\begin{aligned} \\ \text { NaOH }\end{aligned}$ as concentration incresses. The curves of $-0_{0} P_{20}$ for HCl and HHO_{3} lie above thet of lich, figme 6.8 , and the curve of ${ }^{-c} 0^{31}$ IO for NEOH lies dbove that of NaCl, figure 6.7. The anion plays the same role in figure 6.8 as the H^{+}ion does in figure 6.7. At infinite dilution ${ }^{-8} 0$. 10 for haOH is the same as that of NaCl showing that the order producing nature of the OH^{-}ion end order destroying nature of Cl^{-} ion have little effect anon the structure of the solvent in the vicinity of the cation, Na.

That the solvent is birhly stractured in solutions of HCl is suported by the work of Sulovkin ${ }^{\prime \prime}$ who hes reported the surfece densities of $\mathrm{H}_{2} \mathrm{O}$ molecules in the first coordination layer of the cations and anions, \int_{+}^{l} and S_{-}^{l}. The values, calculated from the stoicheiometric activity coefficients, are given in table 6.4. It may be scen that \int_{+}^{1} for H^{+}is closer to that of Ti^{+}ion and $\mathrm{S}_{\text {- }}^{1}$ in HCl is higher than that for the alkeli metel ions showing that the solvent around Ol^{-}ion in HCL is more structured then in the other halides.

$$
\text { Table } 6.4
$$

Surface dencities of water in the first coordination layer of cations and anions.

		H^{+}	Ti^{+}	Na^{+}	K^{+}	Rb^{+}	Os^{+}
Cations	S_{+}^{1}	0.060	0.065	0.053	0.043	0.040	0.036
Anions	S^{1}	0.043	0.035	0.035	0.035	0.035	0.035

$$
{ }^{-c} 0^{p} 10^{\text {and }}
$$

The order of coefficients, $N^{-C_{0} R_{20}}$, in dilute solutions may be correlated with B-coefficients of viscosity introduce by Jones and Dole ${ }^{\text {gi }}$ through the eqn(6.13).

$$
\begin{equation*}
\eta=\eta_{0}(I+A \sqrt{C}+B c) \tag{6.13}
\end{equation*}
$$

Gurney ${ }^{85}$ has assigned numerical values of B-coeflicients to individual ions and to the electrolyte as a whole in dilute solutions of alkali metal chlorides. These ere reproduced in table 6.5.

$$
\text { Table } 6.5
$$

B-cosfficienta of viscosity.

B-coerficients			
	electrolyte	+we ion	-we ion
LiCl	+0.139	+0.147	-0.007
NaCl	+0.079	+0.086	-0.007
KCl	-0.014	-0.007	-0.007
RbCl	-0.037	-0.029	-0.007
CsCl	-0.050	-0.042	-0.007

A -we B-coefficient for an ion implies that the ion is order destroying and a we B-coefficient means, that the ion ${ }_{\wedge}$ order producing. In this sense $\mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Rb}^{+}$and Cs^{+}ions are solvent order destroying and Li^{+}and Ne^{+}are order producing.

The 3-coefficiente reoresent contributions from cospheres of individunl ions end in djlute solutions they are independent and adaitive. Since in aqueous solutions woter moleciles moke the co-spheres of ions end the coefficionts, $-C_{0}{ }^{R} 10$ and $-C_{0}{ }^{R} 20$, add up to give the function, $R_{O O} / N$, it is of interest to comnare the overall B-coefficients of the electrolytos with the function, poo $/$, nottod in figure 6.9. In solutions of $K O 1, ~ R b O l$ end KeCl the effect of -ve overall B-cosfficient is thet the solvent is loosening its structure and this leeds to contimuous decrease in the total iriction between the ions and solvent. This is shown oy the decreasing trends of the cucves for these solts. In tie solutions of TiCl and Nacl the oversil B-coefeicients are +ve. Roo/N for these salts increases continuously with concentration.
6.2.2 The Coefficient, $-\mathrm{MR}{ }_{12}$: In fisure 6.10, $-\operatorname{TR} 12$ is plotted vs. $\sqrt{S .}$ It is a smoothiy increasing curve with zero intercept at infinite dilution. The reoresentation of the cation-anion friction by the frictional coefficient, $-N_{12}$, is suprorted by its ecuelity with the coefficient of kinetic friction, x_{12} a@n(6.10). The latter, as it is the frictionel coefficient between one grem ion, 1 , and all the ions, 2 , in one litre of the solution, must tend to zero $\exists \Leftrightarrow c_{1}=c_{2}$ tends to zero. Two featires ere apparent: a) lithium chloride has the greqest irictional coefficient in the series whereas its counling of flows, as measured by L_{12} / N, is the least, b) unlike the direct frictionel coefficients, $N R_{i i}$, which are in the inverse order of their corresponding ion mobility coefficiente,

I_{i-1} / \mathbb{N}, the cross coefficients, $-\mathrm{NR}_{12}$, do not invert. The curves for rubidium and caesium chlorides lie between those of sodiun end notassium chlorides. According to the expected order, they should have been below that of potassium chloride. The magnitude of $-\mathrm{MR}_{12}$ for these two selts anoears to be enhenced and shows that there is on sditionsl factor which increases the friction between the cetions and onions. The cations of these salts, Rb^{+}and Cs^{+}, are the heaviest in the alkali metal saries. They are therefore most likely to ion-paring which may be of the type discussed by Gurneys between order destroying ions, Rb^{+}and Cl^{-}, and $\mathrm{Cs}^{+} \mathrm{C} \mathrm{Cl}^{-}$. From an early conductance work at $18^{\circ} \mathrm{C}$ Devies ${ }^{42}$ obteined EKavalue of 0.4 for CsCl, where Kais the associstion constant. Pfect of ion association on the frictionel coefficient, $-\mathbb{N R}_{12}$, is therefore of great importance.

The influence of ion association on the phomenologicsl coefficients was studied in chaoter 2 , section(2.9) where it was shown that the phenomenological coefficients, R_{ik}, obtained from the formal enalysis of transport data, apply to both strong and weak electrolytes. The mechinistic interpretation of Soiegler ${ }^{33}$, discusced in section 6.2 , shoned thet it is the function $c_{k^{R}}$ which dotemines the friction between cations and onions. The magnitude of this function depends upon the concentration of species, k, in the solution. For connletely dissociated $1: l$ salts, $c_{i}=c_{k}=H$, and therefore $-N R_{12}=x_{12}$ representation of the cetion-anion friction holds, but for systems in which association tekes plece $c_{k} \neq N$ and so $x_{i k} \neq \mathbb{N R}_{i k}$. If α is the degree of dissociation then $c_{1-1}=\alpha$ and therefore

$$
\begin{equation*}
+x_{i k}=-\alpha \mathbb{N} R_{i k}=-c_{k} r_{i k} \tag{6.14}
\end{equation*}
$$

It is the fuction, $-\alpha W_{\text {fle }}$, thet determines the interionic frictional interection. Mo dagree of disaocietion α mey be obtained by studying ion association using currently avajlable theories ${ }^{67}$ of conductance in electrolyte solutions.

Ion association for alkali metal chlorides was studied in cheoter 5, usins the exnerimentel conductance date for RbCl and CaCl and the literatare conductarce data for the other salts. Association constant, Ka, teble 5.8, wes found to be nerligible for lithium, sodium and potessinm chlorides while for rubidium and caesium chlorides its numericel values were 0.275 ± 0.083 end $0.409+0.061$ cesnectivel.y. Using these values of Ke and the relationship ${ }^{93}$

$$
\begin{equation*}
\alpha=1-\mathbb{N}\left(f_{ \pm}\right)^{2} K a . \tag{6.15}
\end{equation*}
$$

where $f \pm$ is the stoichoiometric activity coofficient, sn estimation of the degree of dissociation, α, wes mede. $f \pm$ was obtained from the mean molel activity coefficient, γ, using the relationshin 93

$$
\begin{equation*}
\mathrm{f}_{ \pm}=0.997 \gamma \mathrm{~m} / \mathrm{c} \tag{6.16}
\end{equation*}
$$

The results of calculations are given in table 6.6 alongwith the celculated values of the function $-\alpha N R_{12}$.

In figure 6.10, dotted curves represent $-\alpha N R_{12}$ for rubidium and caesium chlorides.

For lithium, sodium and potessium chlorides, $\alpha=1$, end therefore

$$
\begin{equation*}
-\alpha \mathbb{N R}_{12}=-\mathbb{N R}_{12} \tag{6.17}
\end{equation*}
$$

Table 6.6
Calculated velues of degree of dissociation, α, and - WNR u using $\mathrm{Ka}=0.275$ for PbCl and 0.409
for CsCll 2

Concentration c	PbOCl			CsCl		
	$\underline{4}$	α	$-\alpha \mathrm{NR}_{12}$	$\underline{1} \pm$	\times	NR_{12}
. 25	. 688	. 967	. 150	. 672	. 953	. 170
. 5	. 633	. 943	. 182	. 603	. 920	. 208
. 7	. 606	. 926	. 200	. 572	. 901	. 223
1.0	. 580	. 901	. 218	. 540	. 870	. 235
1.5	. 556	. 858	. 235	. 508	. 820	. 24.3
2.0	. 543	. 813	. 242	. 491	. 765	. 244
2.5	. 537	. 761	. 243	. 480	. 705	. 241
3.0	. 536	. 703	. 240	. 476	. 634	. 233

Between one and two molar concentrations the sequence of $-\alpha N R 12$ is
$\mathrm{RbCl}<\mathrm{CsCl}<\mathrm{KCl}<\mathrm{NaCl}<\mathrm{LiCl}$

Above two molar, $-\alpha N R 12$ for RbCl and CsCl overlan end there is no difference in their mognitudes because of larse uncertainties in $K a$ and bence in α.
forked
Below liv concentration the curve/is virtually coincident with thet of rCl end for CsCl it lies a little above. Unfortunetely accurate transport number date below 0.255° does not exist, so no accurate estimate of $-\alpha \operatorname{lin}_{12}$ csin be made in diluto solutions.
6.2.3 Praction of a force annlied on ion, I, which is opposed by its friction with the ion, 2, Fle: For a solutions containing cations, 1 , and enions, 2 , ecn(6.6) mey be re-written as:

$$
\begin{align*}
& X_{1}=-R_{10}\left(J_{1}-J_{2}\right)-\left(c_{0} / c_{1}\right) R_{10} J_{1} \tag{6.18a}\\
& X_{2}=-R_{21}\left(J_{2}-J_{1}\right)-\left(c_{0} / c_{2}\right) R_{20} J_{2} \tag{6.18b}
\end{align*}
$$

From eqns(6.18a and b) it is obvious that the applied force, X_{i}, is exactly belenced by the sum of two oprosines forces. Substituting an applied electric force, $X_{i}=Z_{i} F\left(\frac{-\partial}{\partial X}\right)$, in eqn(6.18), we get:

$$
\begin{equation*}
I=F_{12}+F_{10}=\frac{-R_{12^{N A}}}{10^{3} r^{2}}+\frac{{ }^{-c_{0} R_{10} t_{1} N A}}{\dot{c}_{1} \cdot 10^{3} B^{2}} \tag{6.19a}
\end{equation*}
$$

$$
\begin{equation*}
I=F_{21}+F_{20}=\frac{-R_{21} N A}{10^{3} T^{2}}+\frac{-c_{0} R_{20} t_{2} N A}{c_{2} \cdot 10^{3} T^{2}} \tag{6.140}
\end{equation*}
$$

Where $F_{12}\left(=F_{21}\right)$ is the fraction of the force applied on ion, l, which is opposed by its friction with the ion, 2 . $F_{i O}$ is the fraction of the force applied on ion, $i=1,2$ which is opposed by its friction with the solvent, 0 . F_{10} equals F_{20} from the identity:

$$
\begin{equation*}
\mathrm{R}_{20} \mathrm{t}_{2}=\mathrm{R}_{10} \mathrm{t}_{1} \tag{6.20}
\end{equation*}
$$

(This result is derived from the inverse description of the transport numbers as

$$
\begin{align*}
& t_{1}=R_{20} /\left(R_{10}+R_{20}\right) \tag{6.21a}\\
& t_{2}=R_{10} /\left(R_{20}+R_{10}\right) \tag{6.21~b}
\end{align*}
$$

Eqns(6.18) and (6.19) may be rewritten as

$$
\begin{align*}
& F_{12}=\frac{-R_{12} N /}{10^{3} F^{2}}=-\frac{-R_{12}\left(J_{1}-J_{2}\right)}{X_{1}} \tag{6.22a.}\\
& F_{i 0}=\frac{-c_{0} R_{i 0} t_{i} N A}{c_{i} 10^{3} F^{2}}=\frac{-c_{0} R_{i 0} J_{i}}{c_{i} X_{i}} \tag{6.22b}
\end{align*}
$$

The forces and flows may be replaced by the identities

$$
X_{i}=Z_{i} F(-J \psi / \partial x) \text { and } J_{i}=c_{i} v_{i}
$$

where the velocity, v_{i}, is in litres $/ \mathrm{cm}^{2} \mathrm{sec}$. For an applied electric gradient of one volt, ($-\partial \psi / \partial x=1$), in eqns(6.22), we obtain

$$
\begin{equation*}
\Delta=\left(\bar{v}_{1}-\bar{v}_{2}\right) \mathrm{F} / \mathrm{z}_{1} \tag{6.23a}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{i} \Delta=\bar{v}_{i} \mathbb{F} / Z_{i} \tag{6.23b}
\end{equation*}
$$

where $\overline{\mathrm{v}}_{\mathrm{i}}(\mathrm{cm} / \mathrm{sec})$ is the mobility of the ion i under unit electric gradient and is defined as $\left.10^{3} v_{i} /(-) \phi / \partial x\right)$. For cations $Z_{1}=+1$ and anions $Z_{2}=-1$, therefore,

$$
\begin{align*}
& A=\left(\bar{v}_{1}-\bar{v}_{2}\right) F \tag{6.24a.}\\
& t_{1} \Lambda=\bar{v}_{1} F \tag{6.24b}\\
& t_{2} \Lambda=\bar{v}_{2} F \tag{6.24c}
\end{align*}
$$

These expressions(6.24) define the relative mobilities and individucl mobilities of ions in more classical terms.

In figure 6.11, values of F_{12} are plotted. As concentration tends to zero, $F_{I 2}$ tends to zero and $F_{10}\left(=F_{20}\right)$ to unity. An applied force on an ior at infinite dilution is totally balenced by its friction with the solvent. In dilute solutions the order of T_{12} is:
$\mathrm{LiCl}>\mathrm{NaCl}>\mathrm{KCl}>(\mathrm{RbCl} ?)>(\mathrm{CsCl} ?)$.

The ion-ion friction amounts to 10% of the total at ≈ 0.05. In the range of comparison, CsCl has the largest value of F_{12} which amounts to 40.15% of the applied force at 3 M . In the range $0.25-37$ there is a series of cross-overs until the final order is:

$$
\mathrm{CsCl}>\mathrm{RbCl}>\mathrm{KCl}>\mathrm{NaCl}>\mathrm{TiCl}
$$

The coupling of flows as measured by the mobility coefficient, I_{12}, might be expected to be a. function of F_{12} and a mobility term. By expansion eqn(6.22a) may be expressed in terms of I-coefficients;
$\mathbb{F}_{12}=\mathrm{I}_{12}\left(\mathrm{I}_{11}-2 \mathrm{I}_{12}+\mathrm{I}_{122}\right) /\left(\mathrm{I}_{11} \mathrm{I}_{22}-\mathrm{I}_{12}^{2}\right)=\mathrm{I}_{12} / \mathrm{L}$
or

$$
\begin{equation*}
I_{12}=F_{12} \cdot I_{1} \tag{6.25}
\end{equation*}
$$

Where $I_{1}=\left(I_{11} I_{22}-I_{1}{ }_{12}\right) /\left(L_{11}-2 I_{12}+I_{22}\right)$ is the thermodynemic diffusion coefficient as defined in eon(2.55). The sequence of the counling of flows through the salt series may therefore be explained by variations of P_{12} and . In dilute solutions where \mathbb{F}_{12} values are in the reverse sequence, it is the velue of I (conditioned mainly by I_{11}) which controls the sequence of I_{12}. The product $\mathrm{I}_{12} \cdot \mathrm{I}_{11} / \mathbb{N}$ vs. $\sqrt{6}$ is closely similar in form to I_{12} / \mathbb{N} and places the salts in their :correct' order over the full concentration range. The magnitude of F_{12} is not in itself a guide to probable ion associations since it may be increased as much by disordering of water as by direct increase in ion-ion interaction. It does, together with $-\mathbb{N R}_{12}$, provide a view of coupling phenomena complenentary to the $\mathrm{L}_{12} / \mathbb{N}$ coefficients.
6.3 The Degres of Coupling, a_{12}, a_{10} and a_{20} : The coupling of flows as measured by the coefficient $I_{12} /$ IN denends upon the mobility of the ions. The greater the mobility coefficients $I_{i i} / N_{\alpha}^{\text {the }}$ higher would be the magnitude of I_{12} NT end vice versa. This may easily be seen from a compristion of $L_{i i} / 1 \%$ and I_{12} / T values of CsCl and LiCl ot the extreme ends of the alkali metal chloride series. For a large number of 1:2, 2:1 and 2:2 electrolytes, aovendix 1 , the mobility coefficients $\mathrm{I}_{\mathrm{ij}} /$ IV are lower then those of the alkali metal chlorides. Consequently the counling coefficients $\mathrm{J}_{12} / \mathbb{N}$ are lower but in most of these systems the extent of cotion-anion coupling is very high. Therefore the coefficient $\mathrm{I}_{12} / \mathrm{N}$ is not a good measure of the coupling phenomena when a large number of systems are compared.

In chapter 2, it was shown thet the mobility coafficiente were constrained by the inequality, ean(2.32), which for a two component system becomes:

$$
\begin{equation*}
\mathrm{L}_{12}^{2} \leq \mathrm{I}_{11} \cdot \mathrm{I}_{22} \tag{6.27}
\end{equation*}
$$

Kedem and Canlan ${ }^{89}$ have introduced a dimension-less parameter, q, such that

$$
\begin{equation*}
q_{12}=I_{12} / \sqrt{I_{11} \cdot I_{22}} \tag{6.28}
\end{equation*}
$$

q_{12} is defined as the degree of coupling between species 1 and 2 and is a messure of the inequality, eon(6.27). In terms of R-coefficients a_{12} may be written as

$$
\begin{equation*}
\mathrm{q}_{12}=-\mathrm{R}_{12} / \sqrt{\mathrm{I}_{11} \cdot 1_{22}} \tag{6.29}
\end{equation*}
$$

For binary electrolyte solutions where there are no coupled chemical reactions* q_{12} is restricted by the condition

$$
\begin{equation*}
0 \leqslant q_{12} \leqslant 1 \tag{6.30}
\end{equation*}
$$

The nearer the absolute value of q is to unity slighter the dependence of j on x where j and x are given by

$$
\begin{equation*}
j=J_{1} / J_{2} \text { and } x=X_{1} / X_{2} \tag{6.31}
\end{equation*}
$$

That is, a high value of a_{12} indicates tight coupling between the two processes. for $a_{12}=0, j$ is proportional to x; then the two processes are indenendent of each other and each flow is proportions to each force without any influxence from the other force. G_{12}, is, thus, a basis of comparisxion of different processes.

Since the frictional coefficient formalism gives us additional parameters, R_{10}, R_{20} and R_{00}, we may define the degrees of coupling between ions and solvent, that is,

$$
\begin{align*}
& \mathrm{q}_{10}=-\mathrm{R}_{10} / \sqrt{\mathrm{R}_{11} \mathrm{R}_{00}} \tag{6.32}\\
& \mathrm{q}_{20}=-\mathrm{R}_{20} / \sqrt{\mathrm{R}_{22^{R}} R_{00}} \tag{6.33}
\end{align*}
$$

a_{10} and a_{20} are also restricted by the conditions, ans (6.34) and (6.35).

* a_{12} can be -ven (in coupled chemical reactions) if L_{12} becomes -va. For example, the flow of a solute through a membrane may drag another solute along the sene direction ($I_{12}>0$) or tend to push it beck $\left(I_{12}<0\right)$.

$$
\begin{align*}
& 0 \leqslant q_{10} \leqslant 1 \tag{6.34}\\
& 0 \leqslant g_{20} \leqslant 1 \tag{6.35}
\end{align*}
$$

q_{12} for alkali metal chlorides is plotted in figure 6.12. Its concentration debendence is sirailar to that of F_{12} (figure 6.11). The degree of coupling between cations and solvent, a_{10}, plotted in figuxe 6.13, is the highest for LiCl showing that Li^{+}ion is the most coupled with the solvent in accord with its hydrated nature. The coupling between Cl^{-}ion and solvent, as measured by a_{20}, figure 6.14, is complementery to that of G_{10}. At infinite dilution G_{20} has different values for each selt because by definition, it has contributions fron the cationic mobilitics. This may easily be seen by expansion of ecns(6.32) enc (6.33) which leeds to eqns (6.36) and (6.37);

$$
\begin{align*}
& q_{10}=\left(I_{22}-L_{12}\right) /\left(I_{22}\left(I_{22}-2 I_{12}+I_{11}\right)\right)^{\frac{1}{2}} \tag{6.36}\\
& q 20=\left(L_{11}-L_{21}\right) /\left(I_{11}\left(I_{11}-2 I_{21}+L_{22}\right)\right)^{\frac{1}{2}} \tag{6.37}
\end{align*}
$$

The importance of ${ }^{\circ}$, 1 ? becones more enoment when we compare the transport mrocesses in a variety of salt solutions. Plotted in figure 6.15 are the q_{12} velues for various other systems (results in apondix l). From alkali metal chlorides we have blotted r_{1}^{*} divatl for comprision purboses. For l:1 acids and bases coupling between cations and anions is the least and therefore a_{12} for $\mathrm{HNO}_{3}, \mathrm{HCl}$ and NaOH are the lowest. On the other hand the sulfates of $\mathrm{Cu}^{++}, \mathrm{Zn}^{++}$and Cd^{++}are know to be the nost counled with these cations and hence ${ }_{-12}$ for these systems are the hichest.

* q_{12} of NaCl

6.4 Conclusions: Irreversible themodynanics mrovides a. general macroscobic frene wori which can be apolied to irreversible processes no matter how complex they may be. It describes the transport processes in terms of linear transport $I_{i k}$ and inverse frictionsl $R_{i k}$ coefficients. These coefficients are ore fundemental than the comonly measured quentities, A, t_{i} end D_{v} and give better insight into the interionic effects. The $I_{i v}(i \neq k)$ coofficients measure the degree to which a themodmanic force anplied on $\begin{gathered}\text { ion } \\ i\end{gathered}$ affects the flow of ions r and the coefficients $L_{i j}$ remresent the mobility en ion i mould have if there were no interactions with the opoositely cherged ion. In the inverse aescription, the coefficient $R_{i k}(i, k=0,1,2)$ measure the frictional interactions between ions and ions, and ions and solvent. The $p_{i k}$ formolism for a trensport process is in meny ways better then the $I_{i k}$ formelism becsuse the forner is independent of the frame of reference and additional ion-solvent jnteraction coefficients ane obtained as discrete terms.

The apolication of the theory to solutions is novel and, in consequence, the prediction of experimentallyeasureable trensport quencities is unlikely to be achieved in the near future. The number of salts for which deta now exists in a reasonable range of concentration is very limited. Never the less, the potentialities for practical aplications of these results is becoming apoarent. Miller lole has shown by a semi-empirical method that the transport properties
of any arbitrery mixture of electrolytes may be celculated with good accuracy from complete sets of binery data. Unpublished results of Paterson et al.95 have shown that the conductances of ternary and quaternary mixtures in the concentration range $0-3$ may be calculated within an accuracy of $\pm 0.2 \%$. Bxtension of this to practical aprlications in industry is quite obvious but at this time an insufficient number of selt systems has been investigsted. The experimental measurements, reported in this thesis, for conductences of RbCl and Cscl end diffusion coefficients for pbol complete the transport data for the alkali metal chloride series for its own sake and for a study of the themodynamic anslysis.

Apperidix 1

Reported here are the refexences of the transport, activity and density data collected from the literature for all those systems for which the dete was complete and the phenomenological coefficients were calculated.

The coefficients, a_{0} and a_{i}, of the empirical fits used in chapters 4 and 5, are presented in table Al.

The coefficients of the empirical fits used for obtaining molalities from concentrations are given in table A2 and those for obtaining the activity term, ($1+m d \ln \gamma / d m$), between γ and m, are given in tables:A3 and A4. Those of table 43 are taken from reference 17 of this appendix.

Results of calculations of the thermodynamic analysis for all the systems are given in tables A5 to A 32. For rubidium and caesium chloride systems the results are given in chapter 6, tables 6.2 and 6.3 respectively.

Appendix I continued

Sources of Date

Potassium Chloride at $0^{\circ} \mathrm{C}$ degree

$\mathrm{c}-\mathrm{m}$: Obtained maphically from m / c vs c curve using density deta of IOT(1929).
A: From'Landolt-Bornstein(1960)'. Data available only upto 1 moler concentration.
t_{+}: Prom . 01 to .05 moler by m.b. method of Steel $(1965)^{2}$ and from . 01 to 3.5 molar using a.m.f. data of Caramezza et.al., (1960) ${ }^{3}$.
D_{V} : Also from Caramazza et $21,(1960)^{3}$ for . 1 to 2.7 moler concentration. Values at lower concentrations are extrapolated.
m-r: Again from Caramezza (1960) ${ }^{4}$ for .05 to 3.5 molel solutions.

Potessium Chloride at $18^{\circ} \mathrm{C}$
c-m: Using density data compiled in Tinmerman's Physicochemical Constants of Binery Systens ${ }^{5}$ (1960).
A, t_{+}, D_{v} and $m-Y$: As for Potassium Chloride at zero degree fron references 1,3 and 4.

Potassium Chloride at $35^{\circ} \mathrm{C}$
$\mathrm{c}-\mathrm{m}$: Using density data of Pirth and Tyrell (1962) for 0.1 to 4 moler and of Keminsky (1957) 8 for . 001 to .5 moler.

A: For .0005 to 0.01 molar from Benson and Gordon (1945) and for 1 to 4.5 molar fron Suryenarayane et al (1953) ${ }^{10}$. For range .05-1 molar dete is not aveileble and hes been internoleted.
t_{+}, D_{v} and m- γ : As for Potassium Chlonide at zero degree from references 3 and 4.

Potassium Chloride at $50^{\circ} \mathrm{C}$
c-m: Using density date compiled in Timmerman's Phisicochemical Constants of Binary Systems 5 (1960).

A: For . 01 to 4.4 molar from Chambers (1958) 11 .
t_{+}, D_{v} amd $m-\gamma: A s$ for Potassium Chloride at zero degree from references 3 and 4 .
(Temperature for the following systems is $25^{\circ} \mathrm{C}$)
Potassium Chloride
Sodium Chloride
Lithium Chloride
Hydrochloric Acid
Celcium Chloride
Barium Chloride
Lanthanum Chloride
For all these systems the valuable compilation of
 fully used without any alterations.

Caesium Chloride
$\overline{c-m}$: From $c / m=d_{0}-\varepsilon m+m^{2}$, the coefficients a sur b are reported in Harmed and Owen $(1558)^{33}$ page 725 .
A: From Paterson et al (1969) ${ }^{31}$ for . 1 to 3.0 molar. t_{+}: Tames et.al(1966) for . 25 to 3.0 molar.
D_{v} and $m-\sqrt{\text { a }}$ From data compilations of Robinson and stokes (1959)40.

No transference data is available for $c<0.25$.

Rubidium Chloride
$c-m, m-\gamma$ and t_{+}as for $C s e l$.
\triangle and D_{v} : Reported in this thesis, chanters 5 and 4.

Sodium Hydroxide

c-n: From ICT(1920) density data using equetion $m / c=$ $a+b(c)+c(c)^{2}$. The coefficients are given in teble $A 2$. Values of m / c decrease continously from the value of 1.003 (for $\mathrm{H}_{2} \mathrm{O} \mathrm{m} / \mathrm{c}=1.003$) for dilutesolition to 1.00045 for I molar solution, shoving that the volume of solution decreases on dissolution oi the electrolyte.
A: For . 001 to .04 molar from Mersh and Stokes (1964) ${ }^{12}$ and for . 065 to 12.5 molar from Darken et al. (1942) ${ }^{13}$. t_{+}: For . Ol to 2.0 molar compiled in a review by feimakov and Varshavskoye $(1956)^{14}$ but actual measurements were made before 1929 by e.m.f. method.
D_{v} : Prom Fary's thesis $(1966)^{17 h}$. This reference is collected from reference 17 .
$m-\gamma:$ Prom activity date compiled in Eerson's Hend Book of Blectrochemical. Constants (1959)15.

Nitric Acid
c-m: As for Sodium Hydroxide.
今: For . 01 to .2 molar from Landolt-Bornstein(1950)' and for . 2 to 3.5 molar from Haase et al. (1965) ${ }^{16}$.
D_{v} : From Chamen's thesis(1967)17 for .4 to 3.0 moler by Reyleigh Interforometric technique. At lower concentrations values are extrapolated.
t_{+}: For . O1 to . 10 molar from Prue and Covinrton ${ }^{18}$ (1957)
and for 0.1 to 3.5 moler from Haase et 91 (1964) 19 .
$m-\sqrt{ }$: As for Sodium Hydroxide.

Armonium Nitrate
c-m: Using density dete of Campbell et al. (1959) ${ }^{20}$ for .01 to .10 nolar and (1950) 21 for 1 to 6 molar.

A: For .OI to 1.0 molar from Campbell et. al. (1950) 20 and above 1.0 molar from wishaw and stokes (1954) ${ }^{22}$.
D_{v} : From Wishaw and Stokes (1954) ${ }^{22}$.
t_{+}: At O.1 molar from PeeImes end Cowoerth-waite(1927)
and at 0. ? moles from Nilios and Newnen(1968)24. At all
other concentrations values are assumed to be the same as for .l and .2 molar.
$m-\gamma$: From differentiation of the empirical equation $\ln \gamma=$ $\frac{a \sqrt{m}}{(1+\sqrt{m})}+b m+\mathrm{cm}^{3 / 2}+\mathrm{dm}^{2}+\mathrm{em}^{5 / 2}+\mathrm{fm}^{3}$.
The coefficients a, b, c, d, e and f were primarily obtained from Chepran's thesis (1967) and are reported in table A3.* Actual activity coefficient values are compiled in parsons (1959) ${ }^{15}$ and Robinsons Stokes (1959)40.

Potassium Nitrate
$\mathrm{c}-\mathrm{m}$: Using density date of Jones and Coley $(1933)^{25}$.
A: From data of Shedlovelry $(1932)^{2 t}$.
t_{+}: For . 01 to .2 from Longsworth (1935) ${ }^{27}$, for 1.0 from Sukhotin et al. (1969) 28 and for 0.1 molar from faclnnes and Cowperthwaite $(1927)^{23}$.
D_{v} : From . 001 to .01 molar from Harmed and Hudson (1951) ${ }^{29}$ by conductometric method and for .04 to 0.1 from द्वokhshtein ${ }^{30}$ to in accuracy of $1-3 \%$.
$\mathrm{m}-\sqrt{\text { : }}$: From data compiled in Parsons (1959) ${ }^{15}$.

Potassium Bromide

c-m: From ICT(1929) density data and also from Harmed and Owen ${ }^{33}$.
A: From Jones and Bickfckd(1934) ${ }^{34}$ and also from Benson and Gordon (1945) ${ }^{35}$.

* Coefficients g_{i} of table A3 are the same an the cirfficionts a, b, c, d, e and f.
t_{+}: Upto 0.2 molar from Longsworth (1935) 37 by m.b. method. At 1.0 molar from e.m.f. data of $\operatorname{ICP}(1929)^{38}$. For 0.5 molar , the values are assumed to be 0.490 . This assumption is made because t for $K B r$ lies in the vicinity of 0.500 for the whole range of concentration and for the calculations of L_{12} and R_{12}, the product, $(t) r(t)$, remains within 0.2% e.g., $0.50 \times 0.50=0.2500$ and $0.490 \times 0.510=0.2499$.
D_{V} andm-r: From data compiled in Robinson and Stokes 40 .

Potassium Iodide

$c-m, D_{V}$ and γ : As for Potessium Bromide.
A: From Chsmbers(1958)36.
t_{+}: Upto 0.2 moler from Longsworth $(1935)^{37}$ by m.b. method. For 0.5 to 3 molar, t_{+}is assumed to be 0.490 as for
Potassium Bromide. The product $t_{+} t_{-}$does not alter significently when t_{+}lies in the vicinity of 0.500 .

Sodium Iodide

$\overline{c-m, D_{v}}$ and r : As for Potassium Bromide.
A: From Aston et al. $(1933)^{41}$.
t_{+}: At 0.2 and 1.0 molar from Rey et. $3 .(1958)^{42}$ At infinite dilution from limiting conductances and at $.01,0.05$ and .50 from inteapolation of the other data.

Density data for all, KCl, KBr , KI and NaI is also available in Jengyel et al. (1964) ${ }^{39}$.

Silver Nitrete
c-m: As for Potassiur Bromide and also fron Campbell et 2.1 (1959)43.

A: From Shedlovsky (1932) ${ }^{26}$ and Cernobell et.al.(1959) ${ }^{44}$.
D_{v} : For .002 to .006 moler from Harned (1951) ${ }^{45}$ and from Jakshminerayena(1966) ${ }^{45 \alpha}$ for 0.1 to 3.5 moler. For .01 and .05 moler, the values are intervolated. Data is also reported by Firth(1062) ${ }^{46}$ but it is not compareable with the sbove two sets of deta and hence it is not used. t_{+}^{*} : From Haase ct.0.. (1964) ${ }^{19}$ for 0.1 to 2.0. From Newnen et al (1968) ${ }^{24}$ for 0.1 molar and also from Campbell and Singh $(1059) 44$.
m- \boldsymbol{x} : As for Amminm IVitrate.

Ammonium Chloride

c-m: Using density data of Jones and Tallef (1953) ${ }^{25}$. A: At $0,0.1$ to 5.0 moler from Wishaw end Stokes $(1954)^{22}$. For c<0.J from Iongaworth (1935) ${ }^{27}$.
t_{+}: Trom Jongsworth (1935) 27 for $.01-.2$ moler. No data is available for $c>0.2$ nolar.
D_{V} : Fron Stokes et $31(1953)^{52}$ for . 1 to 5.0 molar by cuy method. No diffusion data is available for c < 0.1 molar. m-

Phosphoric Acid (1:1)

C-m: From density data of Noson and Culvem(1949) ${ }^{53}$. t_{+}: obrem Mancon andinculvenss graphically frou the combined plot of the data of Kerker et al. (1960) ${ }^{55}$ for 0.008 to 0.044 , of Sahey (1963) 54 for . 1 to 3.8 molar and also of Kudra et.al (1964) ${ }^{56}$. D_{V} : From \#dward end Fuffmen(1959)57 for .035 to 16.0 moler. $1+m d \ln y^{\prime} / \mathrm{dm}$: From Elmore et al. (1946) ${ }^{58}$ for the whole range, the values given as such, $\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{P} 0_{4}$-is treated as l:l acid.

```
* t+ has been reported for . O5 to l4N b.v i.J. Firsi and
D.G.Miller, J.Phys. Chem., 74(6), 1377(1970).
```


Sodium Sulfate

c-m: Obteinod from density equation, $d=.09707+0.13061 c-$ $0.01212 c^{3 / 2}$, of Hamed and Blake(1951)59.
A: Originally reported in precinnes and Jongeworth 60 and data compiled in Herned end Owen ${ }^{33}$. t_{+}: For . 005 to 0.1 molar from Longsyorth (1935) ${ }^{61}$. For $c<.005$, the values are extranolated grephically encording to the recomendetions of Iongeworth such thet the limiting slode was +ve and the curve had a maximum near $N=0.001$, where IN is the normality.
D_{V} : For 0.001 to 0.005 molar fron Harned and Blake (1951) 59 by conductometric method. For . 1 to 0.1 molar data is available from Vinogred and Mçain(I9A1) ${ }^{6}$ to an eccuracy of 5% and it has not been used necause of too much uncertainty. $m-\gamma$: From compilations of R.Earsons (1959) ${ }^{15}$.

Potassium Sulfate

c-m: Frow density date of Jones and Colvin(1940)63.
A : From Fedoroff(1041)64 for . 0002 to $2.3 N$; Data is also available from Jenkins and Monk(1950)65 for . 0001 to . 001 N , from Indelli $(1053)^{66}$ for .004 to 0.3 N , from Crews (1934)67 for. 001 to . IN and from Hartley and Donaldson(1937) ${ }^{68}$ for .000025 to .0025m.
t_{+}: From Hertley and Donaldson(1937)68.
D_{v} : From mullin and Nienow (1964) for . 01 to .65 moler to on accuracy of $\pm 2 \%$.
$\mathrm{m}-\sqrt{\text { Y }}$: for Sodium Sulfate.

Sulfuric Acid
c-m: Using ICT(1929) density deta.

A: For .05 to .10 molar from data of Hlasko and Salit(1935) 70 For .5 to 5.0 molar, calculated graphically using mass fraction vs conductivity data of rouphton(1951)71.
t_{+}: Obtained graphically from e.m.f. date of Hamer(1935) ${ }^{72}$. D_{V} : For . Ot to 1.0 obtained gramicelly from date of Gordon et al. (1940) ${ }^{73}$ and for $c>1.0$ from Saving et al (1962) ${ }^{74}$. mf: As for sodium Sulfate from R.Parsons(1959) ${ }^{15}$.

Conner Sulfate
com: Prom IGT(1929) density data. m / c is found to decrease from 1.003 unto 0.1 molar concentration showing the decrease in apparent volume of solution on dissolution of the alectrolyte.
A: From Pedorff(1941) for 0.0 to 1.0 molar and from Owen and Curry (1938) ${ }^{76}$ for 0.0 to 0.1 molar. t_{+}: For . 125 to .513 mover from Fritz and Puget (1958) ${ }^{77}$ by e.m.f. method to an accuracy of ± 0.001 transference units. Date at lower concentrations is extrapolated granphically from the regular trend of the curve obtained. D_{V} : For 0.003 to 0.35 molar from Bversole et. al. (1942) ${ }^{78}$ by photometric method to an accuracy of 1 to 3%. For . 35 to 1.4 molar from panel et al $(1063)^{79}$ to en agreement of $\pm 5 \%$ with the above data.
m- From R. Masons (1959) ${ }^{15}$.

Zinc sulfate

c-m: For ICT(1929) density data and also from Purser and Stokes (1951)80. Similar to the behaviours of Sodium Hydroxide and Copper Sulfate, the ratio m / c decreases continuously unto . 25 molar concentration.

A: Upto . 005 molar from Owen and Gurry (1938) ${ }^{76}$ and from .025 to .25 from Demassiense et. $81 .(1941) 81$. $t_{+} ;$Fon 0.0 to .05 from Dye et al. (1960) 8% by ri.b. method, date fitted the equation $t_{+}=.3832-.0633 \sqrt{N}$ At 0.25 moler from e.m.f. data of Valton(1949) ${ }^{83}$, Purser end stokes (1951) 80 and Ieng (1954) ${ }^{84}$. At 0.1 moler, the velue is interpolated from the e.m.f. date at . 25 molar and m.b. method date for c $<.05$.
D_{V} : Por . 001 to .005 moler fror conductometric nethod of Herned and Hudson(1951) 85 . Por . 03 to .25 moler from 1611 and Fondt (1958) 86 to an eccurecy of $\pm 1 \%$.
$m-\sqrt{\text { : From R. Parsons (1959) }}$ 15.

Cadmium Sulfate

c-m: As for Copper Bulfate.
A: From Demassieux et.01.; (1941) 88.
t_{+}: From Lans and King(1954) 89 by e.m.f. method.
D_{V} : For .05 to. 50 molar from Joneworth (1959) ${ }^{90}$. This data has extrapolated for values in dilute solutions.
$m-\sqrt{\text { : As for Copper Sulfate and Zinc Sulfate. }}$

Cedmium Iodide

c-m: As for Cadmium Sulfate.
t_{+}: Prom m.b. date of Sehay 91 (1959) for . 005 to .05 moler concentration.
 $(1965)^{42}$ w.r.t. solvent fixed freme of reference to an accuracy of $1-2 \%$. Velues of activity term have Elso been reported in this pener es such.
$\Delta: K_{+}^{0}\left(c d^{++}\right)$hes been teken to be thet of $\mathrm{l}_{+}^{0}\left(\mathrm{I}^{++}\right)=53.05$. For . 5, 1 end 2 moler solutions conductinces ere renorted by Rysselberghe et $\equiv 1 .(1037)^{43}$ but at these concentrations no transference date is evsileble.

For . OO1 to . 1 from equation, $A=77(1-2.02 \sqrt{c}+1.38 c)$, reported in Parsons(1959) ${ }_{6}^{15}$ Original data were published in 1922.

Table Al

Coefficients of the equations, $Y=a_{0}+\sum_{i=1}^{n} a_{i} x^{i}(n=1,2,3,4)$.

${ }^{*} K^{\prime}=20^{3} . K$ where K is the specific conductivi.ty.
** $a_{0}=D^{0}$ where D^{0} is the diffusion coefficient at infinite dilution.

Coefficients of the equations, $y=a_{0}+\sum_{i=1}^{n} a_{i} \cdot x^{i}$, where $V=m / c$
and $x=c$. Density vs. weight percent the Interna and $x=c$. Density vs. weight percent ${ }^{i=1}$ data of the International Critical Tables wexeused to calculate concentrations, c, molalities, m , and m / c term. For all the other systems (not mentioned in this table) concentrations were obtained granhically or densities vs. concentrations were available as such.

Electrolyte Cogn. Range	a_{0}	a_{1}	a_{2}	
Na OH	$.014-1.040$	1.00290	$-3.4955(-3)$	$1.0496(-3)$
KBr	$.084-3.170$	1.00290	$3.4737(-2)$	$2.3763(-3)$
KI	$.060-1.084$	1.00294	$4.5949(-2)$	$3.4143(-3)$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$.102-3.140$	1.00256	$3.4557(-2)$	$3.2080(-3)$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	$3.400-6.300$	1.02630	$2.0788(-2)$	$5.2239(-3)$
AgNO_{3}	$.012-3.460$	1.00284	$2.9793(-2)$	$2.3081(-3)$
HNO_{3}	$.160-4.000$	1.00315	$2.9125(-2)$	$1.4400(-3)$
CaI_{2}	$.056-2.230$	0.09760	$6.6650(-2)$	$2.8767(-3)$

Numbers in brackets show powers of ten, for example, $1.0493(-3)=1.049310^{-3}$.

Table-A3

For the electrolytes in this table the activity term, ($1+\mathrm{md} \ln \mathcal{C}(d m)$, was obtained by differentiation of the polynomial: $\ln \gamma=\frac{g_{1} \sqrt{m}}{1+\sqrt{m}}+g_{2} m+g_{3} m^{3 / 2}+g_{4} m^{2}+g_{5} m^{5 / 2}+g_{6} m^{3}$.

Electrolyte		g_{2}	g3	84	\% 5	86
KBr	-1.150	. 2145	-0.2412	. 1533	-. 04504	05012
KI	-1.145	. 4003	-0.5138	. 3637	-. 12030	30
$\mathrm{Na} . \mathrm{I}$	-1.140	. 3677	-0.0193	-. 2085	. 15530	.032000
$\mathrm{NH}_{4} \mathrm{Cl}$	-1.131	. 1496	-0.1783	. 1219	-. 03860	. 004476
AgNO_{3}	-1.153	-. 3534	0.0858	-. 0010	-. 001776	. 000148
$\mathrm{NH}_{4} \mathrm{INO}_{3}$	-1.226	-. 0381	-0.0607	. 0322	-. 005961	. 000390

Tablomas
Coefficients of the equation, $\ln \bar{Y}=a_{0}+\sum_{i=1}^{n} a_{i}(\ln m)^{i}$, where n is the degree of the equation, a. and a_{i} are the coefficients of the fit.

Coefficients	$m=.05-3.5 \quad .05-4$.05-4	. 05-4
	KCl at 0° KCl at 18°	KCl at 35°	KCl at 50°
a_{0}	$-5.28707(-1)-5.0805(-1)$	$-5.0512(-1)$	-5.0948(-1)
a_{1}	-1.22559 (-1) -1.0053(-1)	$-9.1003(-2)$	-8.8319(-2)
a_{2}	$1.54403(-2) \quad 1.8990(-2)$	$2.1244(-2)$	$2.0255(-2)$
a_{3}	1.59028(-2) 1.3294(-2)	1.2372(-2)	$1.1763(-2)$
a_{4}	4.50708(-3) 3.5910 (-3)	$3.2582(-3)$	$3.6956(-3)$
E_{5}	$4.54551(-4) \quad 4.1407(-4)$	$4.0918(-4)$	$5.6608(-4)$
	$m=0.1-1.6 \quad .001-.3$. $002-.3$. 007.01
	$\mathrm{Na.OH}$	CsCli	$\mathrm{Na}_{2} \mathrm{SO}_{4}$
a_{0}	-3.8651 (-1) -8.1786 (-1)	-5.9679(-1)	$-1.4308(0)$
a_{1}	8.7567(-3) -3.4923(-1)	-1.3813 (-1)	-3.4714 (-1)
a_{2}	3.2728(-2) -7.3225(-2)	1. $5.374(-2)$	-1.3835 (-2)
a. 3	$-3.2106(-2)-9.7083(-3)$	$8.7582(-3)$	$3.0145(-3)$
a_{4}	$-3.3073(-2)-7.8148(-4)$	9.1794 (-4)	$3.4586(-4)$
a_{5}	$-7.7928(-3)-2.8177(-5)$	2.22.09(-5)	$1.0859(-5)$
	$\mathrm{m}=.001-.05 \quad .02-.4$.001-. 2	. 1.1 .0
	$\mathrm{K}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{H}_{2} \mathrm{SO}_{4}$
a_{0}	-2.4361 (0) -1.6664 (0)	$-1.6913(0)$	-2.0257(0)
a_{1}	-1.1193(0) -5.9577(-1)	$3.2729(-1)$	-1.5475 (-1)
a_{2}	-2.4389(-1) -2.2904(-1)	$3.8058(-1)$	$1.8605(-1)$
a_{3}	-2.5996 (-2) -9.8829(-2)	$9.6416(-2)$	$1.0715(-1)$
a_{4}	-7.7955 (-4)-2.3105 (-2)	$1.0986(-2)$	3.2387(-2)
a_{5}	$3.6499(-5)-2.0587(-3)$	4.8493(-4)	$3.8222(-3)$

Table-A4 continued.

Coefficients	$\mathrm{m}=1.0-6.0$. 001 -. 8	. $3-3.0$. $005-.8$
	$\mathrm{H}_{2} \mathrm{SO}$	HNO_{3}	HMO_{3}	Na OH
a_{0}	-2.0255 (0)	-3.2000 (-1)	-3.2272 (-1)	-3.8274 (-1)
a_{1}	-1.9356(-1)	7.0185(-2)	+5.4871(-2)	$+5.1601(-2)$
a_{2}	2.5073(-1)	$1.0829(-1)$	+7.7705(-2)	+1.8454(-1)
a_{3}	-1.8553(-1)	4.4450(-2)	+2.0173(-2)	+1.7821 (-1)
a_{4}	$2.1543(-1)$	$1.0171(-2)$	+2.3687(-2)	+9.5656(-2)
a_{5}	-5.1169 (-2)	1.2989(-3)	+2.6596(-2)	+2.6940(-2)
a_{6}	-	8.1642(-5)	-5.8247(-3)	+3.7449 (-3)
a_{7}	-	$1.7948(-6)$	-1.0556(-2)	$2.0335(-4)$
	$\mathrm{m}=.001-8$. 001-8	. $001-8$	
	CuSO_{4}	CuSO	caso	
a_{0}	-3.1921 (0)	-3.1519 (0)	-3.2231 (0)	
a_{1}	-7.5369(-1)	-5.2594(-1)	-6.8241 (-1)	
a. 2	-4.3260 (-1)	+5.5390(-2)	-1.6584(-1)	
8.3	-4.2101 (-1)	+3.0313(-2)	-1.3154(-1)	
a_{4}	-1.9701 (-1)	+3.4167(-3)	-5.7390(-2)	
2.5	-4.6107(-2)	-4.5125 (-4)	-1.2589(-2)	
3.6	-5.2544(-3)	-1.3294(-4)	-1.3556(-3)	
a. 7	-2.3158(-4)	-8.0988(-6)	-5.6888(-5)	

Potassiua Chlaride at zero degree

c	*	Eqv Cona	$t+$	D (v) ${ }_{20} 5$	+rixd lnc caxa $/ \mathrm{dm}$
0.0000	0.000000	81.70	0.4080	0.9960	1.0000
0.0500	0.050065	73.90	0.4890	0.9320	0.9184
0.9000	0.100260	71.50	0.4880	0.9240	0.9030
0.5000	0.506600	66.60	0.4870	0.9290	0.873
1.0000	1.026900	65.23	0.4870	0.9620	0.8783
Sqrt S $\times 10$	$\begin{array}{r} 119 / \mathrm{N} \\ 10+9 \end{array}$	$\begin{array}{r} 112 / \mathrm{N} \\ \mathrm{n}+9 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+92 \end{array}$	F12	Q12
0.0000	4.3690	0.0000	4.4041	0.0000	0.0000
2.2361	4.1494	0.2682	4.3240	0.1191	0.0633
3.1623	4.0817	0.3342	4.2660	0.1483	0.0801
7.0717	4.0386	0.5559	4.2246	0.2370	0.1344
10.0000	4.0739	0.6613	4.2552	0.2742	0.1588
Sqrt S $\times 10$	$\begin{gathered} \text { NR11 } \\ \text { m-11 } \end{gathered}$	$\underset{\cos -912}{-N R 12}$	$\begin{gathered} \text { NR22 } \\ 10-19 \end{gathered}$	Q10	Q20
0.0000	2.2888	0.0000	2.2706	0.7085	0.7057
2.2361	2.4197	0.9501	2.3220	0.6923	0.6763
3.1623	2.4658	0.1932	2.3593	0.6859	0.6694
7.071	2.5217	0.3394	2.4107	0.6675	0.6481
10.0000	2.5187	0.3914	2.4109	0.6582	0.6387
$\text { Sqre } \mathrm{S}$ $\times 10$	$\begin{array}{r} -190 \\ x-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ 10-9 \end{array}$	$\operatorname{cop}_{x-11}$	$\cos _{x-11}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{x}-7 \end{array}$
0.0000	4.1359	4.1030	2.2388	2.2706	14.8876
2.2361	4.0949	3.9178	2.2696	2.1719	14.4521
3.1623	4.1048	3.9124	2.2726	2.1669	14.4804
7.071	3.9979	3.7953	2.1903	2.0793	14.2249
10.0000	3.9354	3.7359	2.1273	2.0195	14.1917

Potassiura Chloride at 18 degree

c	rn	Eqv C and	$t+$	$\mathrm{D}(\mathrm{v}) 005$	
0.0000	0.000000	129.87	0.4999	1.6870	1.0000
1.0000	$1.0305^{\circ} 70$	98.15	0.4860	1. 6090	0.9006
2.0000	2.128610	92.40	0.4850	1.6970	0.9578
3.0000	3.304250	88.63	0.4850	$1.80 \mathrm{c}^{\circ}$	1.0306
$\begin{aligned} & \text { Sqret } S \\ & \times 10 \end{aligned}$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / N \\ 0+12 \end{array}$	$\begin{gathered} 122 / N \\ w+12 \end{gathered}$	F12	Q12
0.0000	6.8588	0.0000	7.084 .7	0.0000	0.0000
10.0000	6.1610	1.0378	6.4561	0.2827	0.1646
14.1421	5.9932	1.1801	6.2909	0.3225	0.1922
17.3205	5.8499	1.2332	6.9355	0.3415	0.2058
$\underset{\times 10}{\text { Sqret }^{1}} S$	$\begin{gathered} \text { NR11 } \\ \text { 10-11 } \end{gathered}$	$\begin{array}{r} -N R 12 \\ 12-11 \end{array}$	$\begin{gathered} \text { NR22 } \\ 10-11 \end{gathered}$	Q10	Q20
0.0000	1.4580	0.0000	1.4115	0.7128	0.7014
10.0000	1.6683	0.2682	1.5920	0.6568	0.6357
14.1421	1.7326	0.3250	1.6506	0.6468	0.6241
17.3205	1.7851	0.3588	1.7020	0.6415	0.6187
$\operatorname{Sqret}_{\times 10} S$	$\begin{array}{r} -110 \\ 10-9 \end{array}$	-1200 $10-9$	$\operatorname{cosin}_{10-19}$		$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ x-7 \end{array}$
0.0000	2.6346	2.5506	1.4580	1.4115	9.3695
10.0000	2.5994	2.4578	1.4001	1.3238	9.3891
14.1421	2.6987	2.5415	1.4075	1.3255	10.0474
17.3205	2.8300	2.6652	1.4263	1.3432	10.9036

Potassiura Chlaride at 35 degree

c	m	Pav Cond	$t+$	D (v) 105	qtrad $\operatorname{lncara} / \mathrm{da}$
0.0000	0.000000	180.27	0.4889	2.4780	8.0000
1.0000	1.036440	132.28	0.4840	2.3430	0.9106
1.5000	1.579680	126.29	0.4830	2.4020	0.9375
2.0000	2.841600	121.74	0.4830	2.4600	0.9693
2.5000	2.723610	117.79	0.4830	2.5160	1.0040
3.0000	3.327340	113.64	0.4830	2.5710	1.0406
3.5000	3.954780	108.69	0.4820	2.6250	1.0787
$\begin{gathered} \mathrm{Sqnet}^{\mathrm{S}} \mathrm{~S} \\ \times 10 \end{gathered}$	$\begin{gathered} 111 / N \\ 16+92 \end{gathered}$	$\begin{array}{r} 112 / N \\ 10+72 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ \mathrm{k}+12 \end{array}$	Fl2	Q12
0.0000	9.4639	0.0000	9.8937	0.0000	0.0000
10.0000	8.3497	1.4735	\%.8043	0.2934	0.179
12.2474	8.1646	1.6133	8.6258	0.3226	0.9922
14.1421	8.0033	1.6881	8.4479	0.3408	0.2053
15.8194	7.8420	1.7317	8.2722	0.3549	0.2150
17.3205	7.6692	1.7741	8.0842	0.3679	0.2253
18.7083	7.4593	1.8368	7.8792	0.3868	0.2396
$\begin{gathered} \text { Sqrit } S \\ \times 10 \end{gathered}$	$\begin{gathered} \text { NR11 } \\ 10-19 \end{gathered}$	$\begin{array}{r} -\mathrm{NR1} 12 \\ 10-19 \end{array}$	$\begin{gathered} \mathrm{NR} 22 \\ 10-11 \end{gathered}$	Q90	Q2O
0.0000	1.0566	0.0000	1.0107	0.7149	0.6992
10.0000	1.2341	0.2065	1.8704	0.6555	0.6313
12.2474	1.2718	0.2379	8.2038	0.6483	0.6225
14.1421	1.3045	0.2607	1.2358	0.6432	0.6174
15.8114	1.3370	0.2799	1.2675	0.6394	0.6135
17.3205	1.3737	0.3015	1.3031	0.6352	0.6093
18.7083	1.4223	0.3316	1.3465	0.6303	0.6028
$\begin{aligned} & \text { Sqrot } \mathrm{S} \\ & \times 10 \end{aligned}$	$\begin{array}{r} -210 \\ 30-9 \end{array}$	$\begin{array}{r} -1220 \\ 10-9 \end{array}$	$\begin{aligned} & \operatorname{CRR} 10 \\ & b \sim 11 \end{aligned}$	${ }_{20-11}^{-C \operatorname{R2O}}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{p}-7 \end{array}$
0.0000	1.9094	1.8264	1.0566	1.0107	6.7505
10.0000	1.9186	1.7996	1.0276	0.9638	6.9425
12.2474	1.9616	1.8326	1.0339	0.9659	7.1982
14.1421	2.0135	1.8811	1.0438	0.9752	7.5130
15.8114	2.0747	1.9383	1.057	0.9876	7.8760
17.3205	2.1423	2.0014	1.0722	1.0017	8.2795
18.7083	2.2199	2.0656	1.0907	1.0149	8.7221

Potassiua Chloride at 50 degree

c	兂	Eqv Cond	t+		
0.0000	0.000000	228.26	0.4860	3.2890	1.0000
0.0500	0.050212	197.00	0.4840	3.1890	0.9372
0.1000	0.100568	194.59	0.4840	3.0750	0.9045
0.5000	0.508756	174.94	0.4830	3.0180	0.8965
1.0000	1.033760	161.57	0.4830	3.0720	0.9131
2.0000	2.133560	149.92	0.4830	3.2160	0.9703
3.0000	3.323140	137.69	0.4820	3.3360	1.0430
Sqre S $\times 10$	$\begin{array}{r} 191 / \mathrm{N} \\ \mathrm{~b}+72 \end{array}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+92 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ \mathrm{x}+12 \end{array}$	Fi2	Q12
0.0000	11.9114	0.0000	12.5978	0.0000	0.0000
2.2361	11.1499	0.9095	11.8270	0.14 .68	0.0792
3.1623	11.2227	1.1075	11.8914	0.1750	0.0959
7.071	10.6282	1.5948	19.2649	0.2545	0.1458
10.0000	10.30 gh	1.9280	10.8994	0.3079	0.1819
14.1421	9.9246	2.1476	10.4721	0.3482	0.2107
17.3205	9.3881	2.2603	9.9205	0.3797	0.2342
Sqrt S $\times 10$	$\begin{gathered} \text { NRI } 1 \\ \text { woil } \end{gathered}$	$\begin{gathered} -N R 12 \\ x_{0}-19 \end{gathered}$	$\begin{aligned} & \text { NR22 } \\ & 10-17 \end{aligned}$	Q10	Q20
0.0000	0.8395	0.0000	0.7938	0.7169	0.6971
2.2361	0.9025	0.0694	0.8509	0.6902	0.6667
3.1623	0.8993	0.0838	0.8487	0.6841	0.6605
7.0711	0.9613	0.1361	0.9070	0.6662	0.6407
10.0000	1.0032	0.1775	0.9489	0.6523	0.6266
14.1421	1.0544	0.2162	0.9993	0.6419	0.6152
17.3205	1.1270	0.2568	1.0665	0.6324	0.6049
Sqrt S $\times 10$	$\begin{array}{r} -810 \\ 80 \end{array}$	$\begin{array}{r} -R 20 \\ 10 \sim 9 \end{array}$	$\begin{gathered} -\operatorname{CRR1O} \\ b-11 \end{gathered}$	${ }_{D-11}^{-C \text { CR2O }}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{x}-7 \end{array}$
0.0000	1.5170	1.4344	0.8395	0.7938	5.3332
2.2361	1.5072	1.4138	0.8331	0.7815	5.2845
3.1623	1.4775	1.3859	0.8156	0.7650	5.1872
7.071	1.5127	1.4132	0.8252	0.7709	5.3632
10.0000	1.5378	1.4366	0.8257	0.7714	5.5392
14.1421	1.6145	1.5084	0.8382	0.7830	6.0157
17.3205	1.7366	1.6159	0.8702	0.8097	6.6900

c	m	Eqv Cond	$t+$	$D(v) 105$	$1+\mathrm{mod} 1 \mathrm{ncaras} / \mathrm{dra}$
0.0000	0.000000	149.85	0.4905	1.9030	1.0000
0.0010	0.001003	\$46.95	0.4904	1.9640	0.9829
0.0900	0.080030	141.27	0.4902	1.9150	0.9540
0.0500	0.050200	133.37	0.4899	1.8640	0.9209
0.1000	0.100600	128.96	0.4897	1.8470	0.9066
0.5000	0.508800	117.27	0.4887	1.8500	0.8915
1.0000	1.033000	111.87	0.4880	1.8920	0.9051
2.0000	2.133000	105.23	0.4870	1.9990	0.9632
3.0000	3.310000	99.46	0.4862	2.1920	1.0370
$\begin{gathered} \text { Sqret } \\ \times 10 \end{gathered}$	$\begin{array}{r} 119 / N \\ 10+92 \end{array}$	$\begin{array}{r} 112 / N \\ 1+12 \end{array}$	$\begin{array}{r} 122 / N \\ x+12 \end{array}$	F12	Q12
0.0000	7.8924	0.0000	8.1982	0.0000	0.0000
0.3162	7.8261	0.0863	8.1291	0.0214	0.0108
1.0000	7.6949	0.2573	7.9923	0.0635	0.0328
2.2361	7.5206	0.5032	7. 8100	0.1233	0.0657
3.1623	7.4308	0.6482	7.7161	0.1577	0.0856
7.0719	7.1938	1.0367	7.4784	0.2489	0.1416
10.0000	7.01778	1.2145	7.3667	0.2880	0.1682
14.1421	6.8667	1.3627	7.1605	0.3255	0.1943
17.3205	6.6332	1.4396	6.9281	0.3504	0.2124
$\underset{\times 10}{\text { Sqrt }} \mathrm{S}$	$\begin{aligned} & \text { NR } 19 \\ & 10-11 \end{aligned}$	$\begin{gathered} -\mathrm{NRI} 12 \\ n-11 \end{gathered}$	$\begin{gathered} \text { NR22 } \\ \text { b-1 } \end{gathered}$	Q10	Q20
0.0000	1.2670	0.0000	1.2198	0.7138	0.7004
0.3162	1.2779	0.0136	i. 2303	0.7101	0.6964
1.0000	1.3010	0.0419	1.2526	0.7024	0.6883
2.2361	1.3354	0.0869	1.2860	0.6908	0.6769
3.1623	1.3557	0.1139	1.3056	0.6837	0.6686
7.0711	1.4185	0.1970	1.3645	0.6635	0.6466
10.0000	1.4540	0.2397	1.3971	0.6539	0.6358
14.1421	1.5135	0.2880	1.4594	0.6445	0.6248
17.3205	1.5788	0.3281	1.5116	0.6380	0.6170
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{array}{r} -10 \\ 10-9 \end{array}$	$\begin{array}{r} \text { R20 } \\ 10-9 \end{array}$	$\begin{aligned} & -C \text { RR1 } 0 \\ & D=11 \end{aligned}$	$\frac{-\mathrm{COR} 20}{\operatorname{lo}^{-11}}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	2.2895	2.2041	1.2670	1.2198	8.1201
0.3162	2.2846	2.1985	1.2644	1.2167	8.1005
1.0000	2.2750	2.1876	1.2591	1.2107	8.0635
2.2361	2.2593	2.1703	1.2494	1.1999	8.0127
3.1623	2.2505	2.1597	1.2418	1.1917	7.9926
7.0711	2.2393	2.1403	1.2215	1.1675	8.0287
10.0000	2.2597	2.1538	1.2143	1.1574	8.2133
14.1421	2.3545	2.2351	1.2255	1.1633	8.8180
17.3205	2.4860	2.3524	1.2507	1.1835	9.6170

SODIUM CHLCRIDE

c	m	Eqv Cond	t+	$\mathrm{D}(\mathrm{v}) \mathrm{m}^{5}$	trod $\operatorname{lncara} / \mathrm{dm}$
0.0000	0.000000	126.45	0.3962	8. 6190	1.0000
0.0010	0.008003	123.70	0.3947	1.5870	0.9830
0.0100	0.070030	118.51	0.3918	9.5470	0.9593
0.0500	0.050200	111.05	0.3873	9.5030	0.9265
0.1000	0.100500	106.74	0.3853	9.4850	0.9164
0.5000	0.505200	93.62	0.3753	1.4740	0.9297
1.0000	1.022200	85.76	0.3691	9.4840	0.9795
2.0000	2.085900	74.71	0.3615	1.5180	1.9080
3.0000	3.196600	65.57	0.3559	1.5640	1.2760
Sqre S $\times 10$	$\begin{array}{r} 191 / \mathrm{N} \\ \mathrm{x}+1 \end{array}$	$\begin{array}{r} 182 / \mathrm{N} \\ \mathrm{~B}+12 \end{array}$	$\begin{array}{r} 122 / 15 \\ 10+9 \end{array}$	F12	Q12
0.0000	5.3814	0.0000	8.2008	0.0000	0.0000
0.3162	5.3262	0.0824	8.1241	0.0253	0.0125
1.0000	5.2203	0.2334	7.9747	0.0775	0.0362
2.2361	5.0660	0.4404	7.7427	0.1346	0.0703
3.1623	4.9705	0.5535	7.6004	0.1693	0.0900
7.0711	4.6142	0.8405	7.1219	0.2629	0.1466
10.0000	4.3108	0.9112	6.7222	0.2982	0.1693
14.1421	3.8121	0.9194	6.0347	0.3293	0.1900
17.3205	3.3654	0.8576	5.3921	0.3469	0.2013
Sqrt S $\times 90$	$\begin{gathered} \text { NRI1 } \\ 20-91 \end{gathered}$	$\begin{gathered} -\mathrm{NR} 12 \\ \mathrm{bow} \\ \hline 11 \end{gathered}$	$\begin{gathered} \text { NR22 } \\ p-11 \end{gathered}$	Q10	Q20
0.0000	9.8583	0.0000	1.2194	0.7770	0.6295
0.3162	1.8778	0.0190	1.2319	0.7741	0.6234
1.0000	1.9181	0.0561	1.2556	0.7084	0.6118
2.2361	1.9837	0.1128	1.2980	0.7599	0.5951
3.1623	2.0283	0.1477	1.3265	0.7549	0.5851
7.0719	2.2148	0.2614	1.4350	0.7423	0.5540
10.0000	2.3882	0.3237	1.5315	0.7385	0.5395
14.1421	2.7215	0.4110	1.7192	0.7363	0.5245
17.3205	3.0970	0.4926	1.9329	0.7359	0.5151
Sqrt S $\times 10$	$\begin{array}{r} -R 10 \\ 10-9 \end{array}$	$\begin{array}{r} \mathrm{R} 20 \\ 10-9 \end{array}$	$\begin{aligned} & -\cos 10 \\ & x-11 \end{aligned}$	$\operatorname{cor}_{x-11}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 0-7 \end{array}$
0.0000	3.3579	2.2035	1.8583	1.2194	10.0493
0.3162	3.3585	2.1900	1.8588	1.2120	10.0259
1.0000	3.3644	2.1673	1.8520	1.1995	9.9953
2.2361	3.3839	2.1436	1.8709	1.1851	, 9.9976
3.1623	3.4048	2.1342	1.8806	1.1788	10.0285
7.0711	3.5527	2.1404	1.9334	1.1735	10.4014
10.0000	3.8097	2.2241	2.0645	1.2078	11.0965
14.1421	4.3411	2.4578	2.3105 2.6044	1.3081 1.4403	12.7743 14.9036
17.3205	4.9993	2.7548	2.6044	1.4403	14.9036

c	m	Eqv Cond	$t+$	D (v) 105	$+m \times d \ln$ Cam $/ \mathrm{dm}$
0.0000	0.000000	115.03	0.3363	1.3660	1.0000
0.0010	0.001003	112.37	0.3339	1.3440	0.9832
0.0100	0.090030	107.28	0.3288	1.3120	0.9570
0.0500	0.050200	100.13	0.3211	1.2800	0.9350
0.1000	0.800500	95.86	0.3168	1.2680	0.9332
0.5000	0.506000	87.40	0.2992	1.2720	1.0128
1.0000	1.021500	72.90	0.2864	1.3020	1.1418
2.0000	2.084700	61.80	0.2688	1.3690	1.4332
3.0000	3.196900	52.80	0.2563	1.4260	1.8191
$\underset{\times 10}{\operatorname{Sqrot}_{0} S}$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / N \\ 10+92 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 1+12 \end{array}$	F12	Q12
0.0000	4.1526	0.0000	8.1974	0.0000	0.0000
0.3162	4.8028	0.0731	8.1120	0.0265	0.0127
1.0000	4.0190	0.2225	7.9561	0.0805	0.0394
2.2361	3.8702	0.4170	7.7180	0.1510	0.0763
3.1623	3.7740	0.5124	7.5463	0.1870	0.0960
7.0711	3.3159	0.7002	6.8269	0.2764	0.1472
10.0000	2.9423	0.6999	6.2871	0.3043	0.1627
14.1421	2.4063	0.6222	5.4754	0.3229	0.1714
17.3205	1.9537	0.5003	4.7177	0.3164	0.1648
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{gathered} N R 11 \\ x-11 \end{gathered}$	$\begin{array}{r} -N R 12 \\ w-11 \end{array}$	$\underset{10-19}{\text { NR22 }}$	Q10	Q20
0.0000	2.4081	0.0000	1.2199	0.8147	0.5799
0.3162	2.4377	0.0220	1.2329	0.8125	0.5727
1.0000	2.4970	0.0698	1.2589	0.8077	0.5573
2.2361	2.5990	0.1404	1.3033	0.8014	0.5353
3.1623	2.6743	0.1816	1.3375	0.7980	0.5232
7.0711	3.0825	0.3162	1.4972	0.7930	0.4858
10.0000	3.4911	0.3887	1.6338	0.7563	0.4672
14.9421	4.2815	0.4865	1.8816	0.8051	0.4464
17.3205	5.2613	0.5580	2.1789	0.8154	0.4367
$\begin{aligned} & \text { Sqrt } S \\ & \times 10 \end{aligned}$	$\begin{array}{r} \text { R10 } \\ 20-9 \end{array}$	$\begin{array}{r} \text {-R20 } \\ 8-9 \end{array}$	$\begin{aligned} & -\operatorname{CoR1O} \\ & \infty-11 \end{aligned}$	$\begin{aligned} & -\mathrm{COR} 20 \\ & x-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ m-7 \end{array}$
0.0000	4.3515	2.2044	2.4081	1.2199	11.8464
0.3162	4.3651	2.1881	2.4158	1.2110	11.8410
1.0000	4.3857	2.1484	2.4272	1.1890	11.8066
2.2361	4.4468	2.1032	2.4586	9.1628	11.8471
3.1623	4.5131	2.0927	2.4927	1.1559	11.9600
7.0711	5.0434	2.1532	2.7663	1.1811	13.1202
10.0000	5.7093	2.2914	3.1025	1.2452	14.7231
14.1421	7.1263	2.6197	3.7950	1.3951	18.3010
17.3205	9.0293	3.1117	4.7034	1.6209	23.3075

c	m	Eqv Cond	七+	$D(v)_{105}$	$1+\mathrm{md}$ Incama/dm
0.0000	0.000000	426.50	0.8290	3.3360	1.0000
0.0010	0.009003	421.46	0.8224	3.2760	0.3833
$0.070{ }^{\circ}$	0.070030	412.02	0.8251	3.1820	0.9576
0.0500	0.050200	399.12	0.8292	3.0840	0.9375
0.1000	0.100500	391.34	0.8314	3.0560	0.9380
0.5000	0.506200	360.86	0.8376	3.9840	1.0337
1.0000	1.022400	332.31	0.8407	3.4530	1.1853
2.0000	2.086300	288.66	0.8429	4.0450	i. 5298
3.0000	3.195000	$23 \% .74$	0.8430	4.6430	1.8944
$\begin{aligned} & \text { Sqrot } \mathrm{S} \\ & \times 10 \end{aligned}$	$\begin{array}{r} 191 / \mathrm{N} \\ 10+92 \end{array}$	$\begin{array}{r} 112 / \mathrm{N} \\ 0+12 \end{array}$	$\begin{gathered} 122 / N \\ 10+12 \end{gathered}$	Fl 2	Qi2
0.0000	37.6045	0.0000	8.9967	0.0000	0.0000
0.3162	37.3350	0.1089	8.1480	0.0162	0.0062
1.0000	36.8285	0.3167	8.0562	0.0472	0.0184
2.2361	36.8088	0.5644	7.8859	0.0851	0.0334
3.1623	35.6241	0.6801	7.7654	0.1035	0.0409
7.0711	33.4037	0.9419	7.2352	0.1515	0.0605
10.0000	39.1013	1.0964	6.7819	0.1866	0.0755
14.1421	26.8539	1.3557	6.9081	0.2529	0.1059
17.3205	23.0891	1.5643	5.5731	0.3164	0.1379
$\underset{\times 10}{\text { Sqrt }} \mathrm{S}$	$\begin{gathered} \text { NR } 91 \\ 10-19 \end{gathered}$	$\begin{array}{r} -N R 1 ? \\ 10=19 \end{array}$	$\begin{gathered} \text { NR22 } \\ 10-11 \end{gathered}$	Q10	Q20
0.0000	0.2659	0.0000	1.2200	0.4230	0.9061
0.3162	0.2679	0.0036	1.2273	0.4186	0.9055
1.0000	0.2716	0.0907	1.2417	0.4099	0.9044
2.2361	0.2773	0.0198	1.2695	0.3982	0.9035
3.1623	0.2812	0.0246	1.2898	0.3922	0.9038
7.0711	0.3005	0.0391	1.3872	0.3759	0.9022
10.0000	0.3234	0.0523	1.4830	0.3654	0.9006
14.1421	0.3766	0.0836	1.6557	0.3496	0.8946
17.3205	0.4415	0.1239	1.8291	0.3361	0.8865
$\begin{gathered} \text { Sqrt } \mathrm{S} \\ \times 10 \end{gathered}$	$\begin{array}{r} \text { - } 110 \\ \text { 10-9 } \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ 10-9 \end{array}$	$\underset{n-19}{-\operatorname{cop} 10}$	${ }_{10-19}^{\text {COR2O }}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 20-7 \end{array}$
0.0000	0.4805	2.2045	0.2659	1.2200	4.8519
0.3162	0.4775	2.2112	0.2643	1.2238	4.8583
1.0000	0.4715	2.2243	0.2609	1.2310	4.8711
2.2361	0.4656	2.2603	0.2574	1.2497	4.9302
3.1623	0.4645	2.2905	0.2566	1.2651	4.9880
7.0719	0.4767	2.4588	0.2614	1.3481	5.3539
10.0000	0.4993	2.6351	0.2711	1.4307	5.7732
14.1421	0.5506	2.9544	0.2930	1.5721	6.5868
17.3205	0.6095	3.2726	0.3176	1.7052	7.4505

c	m	Eav Cond	$t+$	$\mathrm{D}(\mathrm{v})_{105}$	$1+m \mathrm{mancam} / \mathrm{mm}$
0.0000	0.000000	135.85	0.4380	9.3350	1.0000
0.0001	0.000900	133.30	0.4363	1.3100	0.9808
0.0005	0.000502	130.3%	0.4342	1.2840	0.9600
0.0010	0.009003	128.20	0.4326	1.2670	0.9463
0.0050	0.005015	120.38	0.4264	1.2120	0.9019
0.0100	0.010035	115.66	0.4220	1.1860	0.8798
0.0500	0.050200	102.46	0.4059	1.1380	0.8440
$\underset{\times 10}{\operatorname{Sqrt}} s$	$\begin{array}{r} 119 / \mathrm{N} \\ x+12 \end{array}$	$\begin{array}{r} 112 / N \\ 10+92 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+i 2 \end{array}$	Fl 2	Q, 12
0.0000	1. 5974	0.0000	8.9987	0.0000	0.0000
0.1732	1.5794	0.0356	8.1493	0.0396	0.0099
0.3873	1.5589	0.0794	8.0775	0.0883	0.0224
0.5477	1.5444	0.1106	8.0337	0.1229	0.0314
1.2247	1.4912	0.2260	7.8680	0.2501	0.0650
1.7321	1.4594	0.2978	7.7755	0.3285	0.0884
3.8730	1.3598	0.4863	7.5103	0.5364	0.1522
$\begin{gathered} \text { Sqre } S \\ \times 10 \end{gathered}$	$\begin{gathered} \text { NR } 11 \\ 20-91 \end{gathered}$	$\begin{gathered} -\operatorname{NRI} 2 \\ n=11 \end{gathered}$	$\begin{aligned} & \text { NRE2 } \\ & 10-11 \end{aligned}$	Q10	Q20
0.0000	6.2603	0.0000	1.2197	0.7497	0.6618
0.1732	6.3323	0.0277	1.2284	0.7475	0.6568
0.3873	6.4179	0.0631	1.2386	0.7448	0.6505
0.5477	6.4814	0.0892	1.2460	0.7428	0.6458
1.2247	6.7353	0.1934	1.2765	0.7353	0.6278
1.7321	6.9061	0.2645	1.2962	0.7306	0.6156
3.8730	7.5282	0.4875	1.3631	0.7191	0.5773
$\operatorname{Sqr}_{\times 10} \mathrm{~S}$	$\begin{array}{r} -190 \\ 10-9 \end{array}$	$\begin{array}{r} \text { H20 } \\ 10-9 \end{array}$	$\begin{aligned} & -\operatorname{CRR} 10 \\ & 10-11 \end{aligned}$	${ }_{10-19}^{C \text { CR2O }}$	$\begin{array}{r} \mathrm{RCO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	5.6561	2.2040	3.1301	1.2197	9.0930
0.1732	5.6710	2.1547	3.1385	1.2146	9.089
0.3873	5.6842	2.1819	3.9458	1.2071	9.0764
0.5477	5.6943	2.1708	3.1514	1.2014	9.0669
1.2247	5.7354	2.1318	3.1742	1.1798	9.0336
1.7321	5.7643	2.1043	3.1885	1.1640	9.0144
3.8730	5.9264	2.0245	3.2766	1.1193	9.0214

c	m	Eav Cond	$t+$	$D(v) \times 5$	+modinchame $/ \mathrm{dm}$
0.0000	0.000000	139.98	0.4546	1.3850	1.0000
0.0010	0.009003	132.11	0.4483	1.3200	0.9457
0.0050	0.005015	123.93	0.4419	1.2670	0.8998
0.0900	0.090035	119.03	0.4381	1.2390	0.8759
0.0500	0.050200	105.19	0.4249	1.1780	0.8295
0.9000	0.90600	98.56	0.4162	1.1800	0.8252
0.2000	0.208600	91.55	0.4036	8.1500	0.8415
0.5000	0.507600	80.50	0.3793	1.9610	0.9264
1.0000	1.027900	68.90	0.3527	1.1790	1.0980
$\begin{gathered} \text { Sqre } S \\ \times 10 \end{gathered}$	$\begin{array}{r} 118 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / N \\ 10+12 \end{array}$	$\begin{array}{r} 122 / N \\ w+12 \end{array}$	Fl2	Q12
0.0000	1.7080	0.0000	8.9969	0.0000	0.0000
0.5477	1.6514	0.1223	8.0726	0.1303	0.0335
1. 2247	1.5965	0.2522	7.9328	0.2664	0.0709
1.7321	1. 5645	0.3287	7.8406	0.3456	0.0938
3.8730	1.4648	0.5294	7.5559	0.5544	0.1591
5.4772	1.4036	0.6043	7.3884	0.6394	0.1877
7.7460	1.3193	0.6543	7.1728	0.721	0.2127
12.2474	1.9536	0.6675	6.7015	0.7922	0.2401
17.3205	0.9521	0.5992	5.9884	0.8300	0.2509
$\begin{aligned} & \text { Sqrt } S \\ & \times 10 \end{aligned}$	$\begin{gathered} \text { NR91 } \\ 20-19 \end{gathered}$	$\begin{array}{r} \mathrm{NR} 12 \\ -11 \end{array}$	$\begin{gathered} \text { NR22 } \\ \operatorname{lo}=11 \end{gathered}$	Q10	Q20
0.0000	5.8549	0.0000	1.2200	0.7385	0.6742
0.5477	6.0524	0.0919	1.2402	0.7314	0.6570
1.2247	$6.295 ?$	0.2001	1.2670	0.7229	0.6380
1.7321	6.4486	0.2703	1.2857	0.7175	0.6262
3.8730	7.0044	0.4907	1.3578	0.7032	0.5900
5.4772	7.3848	0.6040	1.4029	0.6988	0.5715
7.7460	7.9392	0.7242	1.4602	0.6983	0.5509
12.2474	9.1987	0.9163	1.5835	0.7050	0.5192
17.3205	11.2090	1.1216	1.7821	0.7196	0.4916
$\begin{gathered} \text { Sqret } S \\ \times 10 \end{gathered}$	$\begin{array}{r} -R 10 \\ 20-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ x-9 \end{array}$	$\operatorname{cogrlo}_{0=11}$	$\begin{gathered} \operatorname{CoR} 20 \\ x-11 \end{gathered}$	$\begin{array}{r} \mathrm{ROD} / \mathrm{N} \\ \mathrm{x}-7 \end{array}$
0.0000	5.2899	2.2045	2. 9275	1.2200	8.7630
0.5477	5.3111	2.1578	2.9393	1.1942	8.6973
1.2247	5.3258	2.1085	2.9475	1.1659	8.6214
1.7321	5.3402	2.0818	2.9540	9.9516	8.5906
3.8730	5.4469	2.0122	3.0115	1.1125	8.5653
5.4772	5.5971	1.9951	3.0884	1.1009	8.6876
7.7460	5.8932	1.9941	3.2453	1.0981	8.9718
12.2474	6.7360	2.0581	3.6839	1.1253	9.9237
17.3205	8.3013	2.2616	4.4829	1.2213	11.8739

c	m	Eqv Cond	$t+$	$D(v) 105$	cod $1 r i c a$
0.0000	0.000000	145.95	0.4769	1.2920	1.0000
0.0009	0.000900	141.05	0.4739	1.2460	0.9609
0.0005	0.000502	135.16	0.4705	1.2020	0.9218
0.0090	0.009003	131.13	0.4687	1.8750	0.8980
0.0050	0.005045	198.10	0.4598	9.1010	0.8303
0.0100	0.040035	119.26	0.4541	1.0690	0.8007
0.0250	0.025100	901.98	0.4430	1.0230	0.7672
$\underset{\times 10}{\operatorname{Sqr}^{4}} \mathrm{~S}$	$\begin{array}{r} 119 / \mathrm{N} \\ 15+12 \end{array}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 122 / 15 \\ 10+12 \end{array}$	F92	Q12
0.0000	0.8305	0.0000	8.1984	0.0000	0.0000
0.2449	0.8739	0.0488	8.1963	0.9120	0.0190
0.5477	0.7954	0.1055	8.0153	0.2509	0.0434
0.7746	0.7828	0.1508	7.9434	0.3428	0.0605
1.7321	0.7437	0.2872	7.7135	0.6442	0.1199
2.4495	0.7226	0.3591	7.6005	0.8001	$0.153 ?$
3.8730	0.687	0.4439	7.4325	0.9904	0.1964
$\underset{\times 10}{\operatorname{Sqr}_{0}} \mathrm{~S}$	$\begin{gathered} \text { NR11 } \\ \text { omi } \end{gathered}$	$\begin{gathered} -\operatorname{N1} 12 \\ 10-11 \end{gathered}$	$\begin{gathered} \text { NR22 } \\ \mathrm{m}=11 \end{gathered}$	Q10	Q20
0.0000	12.0495	0.0000	9.2198	0.7233	0.6906
0.2449	12.2903	0.0739	1.2325	0.7188	0.6815
0.5477	12.5956	0.1723	1.2500	0.7126	0.6700
0.7746	12.8221	0.2434	1.2635	0.7082	0.6618
1.7321	13.6416	0.5079	1.3153	0.6927	0.6329
2.4495	14.1714	0.6695	1.3473	0.6845	0.6155
3.8730	15.1381	0.9042	1.3994	0.6762	0.5896
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	-110 $10-9$	820 $80-9$	${ }_{x-11}^{\operatorname{CLR} 10}$	${ }_{10-11}^{-C \text { CR2O }}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 20-7 \end{array}$
0.0000	7.2530	2.2041	4.0138	1.2198	8.3515
0.2449	7.2689	2.1826	4.0228	1.2079	8.3217
0.5477	7.2751	2.1548	4.0263	1.1925	8.2753
0.7746	7.2830	2.1365	4.0306	1.1824	8.2469
1.7321	7.2986	2.0708	4.0393	1.1460	8.1377
2.4495	7.3293	2.0323	4.0542	1.1242	8.0906
3.8730	7.4914	1.9860	4.1418	1.0980	8.1087

Sodium Hydroxide

C	m	EqV Cond	$t+$	$D(v)_{105}$	$1+m \times 3 \operatorname{lnCan} /{ }^{\text {a }}$ (in
0.0000	0.000000	243.40	0.2020	2.1270	1.0000
0.0100	0.010029	233.47	0.2030	2.0460	0.9423
0.0500	0.050136	227.80	0.1890	1.9660	0.9133
0.1000	0.100256	221.17	0.1830	1.9190	0.9095
0.2000	0.200449	212.93	0.1770	1.8660	0.9333
0.5000	0.500702	197.12	0.1690	1.7950	0.9529
1.0000	1.000450	177.71	0.1630	1.7440	1.0088
$\underset{\times 10}{\operatorname{Sqrt}} \mathrm{~S}$	$\begin{gathered} 111 / \mathrm{N} \\ 10+12 \end{gathered}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{gathered} 122 / \mathrm{N} \\ 10+12 \end{gathered}$	T12	Q12
0.0000	5.3789	0.0000	21.2793	0.0000	0.0000
1.0000	5.4351	0.2359	20.6486	0.0539	0.0223
2.2361	5.2160	0.5919	20.4338	0.1363	0.0573
3.1623	5.0515	0.7045	20.1114	0.1655	0.0699
4.4721	4.7493	0.7015	19.5227	0.1740	0.0729
7.0711	4.4043	0.8264	18.4194	0.2175	0.0918
10.0000	3.9942	0.8832	16.8583	0.2533	0.1076
$\underset{\times 10}{\operatorname{Sqrt}} S$	$\begin{aligned} & \text { NR } 11 \\ & 10-11 \end{aligned}$	$\begin{gathered} - \text { NR } 12 \\ 10-11 \end{gathered}$	NR22 $10-11$	Q10	Q20
0.0000	1.8591	0.0000	0.4699	0.8934	0.4492
1.0000	1.8403	0.0210	0.4845	0.8876	0.4407
2.2361	1.9235	0.0557	0.4910	0.8874	0.4093
3.1623	1.9893	0.0697	0.4997	0.8879	0.3968
4.4721	2.1168	0.0761	0.5150	0.8907	0.3884
7.0711	2.2898	0.1027	0.5475	0.8909	0.3705
10.0000	2.5330	0.1327	0.6001	0.8906	0.3563
$\begin{gathered} \text { Sqrt } \\ \times 10 \end{gathered}$	-1210 $10-9$	$-R 20$ $10-9$	$-\operatorname{COR~} 10$ $10-11$	$-\operatorname{COR2O}$ $10-11$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	3.3594	0.8492	1.8591	0.4699	7.6049
1.0000	3.2878	0.3374	1.8198	0.4635	7.4532
2.2361	3.3740	0.7863	1.8678	0.4353	7.5151
3.1623	3.4671	0.7766	1.9197	0.4300	7.6646
4.4721	3.6846	0.7924	2.0407	0.4389	8.0835
7.0711	3.9455	0.8024	2.1871	0.4448	8.5653
10.0000	4.3260	0.8425	2.4003	0.4674	9.3152

c	r	Bqv Cond	t+	D (v) 205	$9+\mathrm{mod} \ln$ Cas ma/dm
0.0000	0.000000	420.50	0.8300	3.8580	1.0000
0.0900	0.010033	406.00	0.8392	3.0030	0.9534
0.0500	0.050225	393.30	0.8393	2.8810	0.9382
0.1000	0.900607	385.00	0.8392	2.8290	0.99345
0.5000	0.509035	355.80	0.8368	2.8500	0.9735
1.0000	1.033720	341.72	0.8332	2.9780	1.0601
2.0000	2.134320	280.13	0.8201	3.1620	1.2699
2.5000	2.712400	256.03	0.8139	3.2320	1.3887
3.0000	3.310470	234.79	0.8079	3.3060	1.4599
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 192 / \mathrm{N} \\ 10+92 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+12 \end{array}$	F12	Q12
0.0000	37.4822	0.0000	7.6752	0.0000	0.0000
1.0000	37.0624	0.4692	7.4809	0.0739	0.0282
2.2361	35.9495	0.4968	7.2849	0.0802	0.0307
3.1623	35.2269	0.5265	7.1755	0.0852	0.0331
7.0711	32.7386	0.6719	6.9258	0.1138	0.0446
10.0000	31.8450	0.5657	6.6875	0.0993	0.0392
14.1421	25.2574	0.5837	5.9392	0.1162	0.0474
15.8114	22.9100	0.5295	5.6468	0.1128	0.0466
17.3205	21.0268	0.6542	5.4983	0.1432	0.0608
$\underset{\times 10}{\text { Sqrt } S}$	$\begin{gathered} \text { NR11 } \\ \text { nol } \end{gathered}$	-NR1? $10-19$	$\begin{gathered} \text { NR22 } \\ 20-11 \end{gathered}$	Q10	Q20
0.0000	0.2668	0.0000	1.3029	0.4123	0.9111
1.0000	0.2700	0.0169	1.3378	0.3882	0.9103
2.2361	0.2784	0.0190	1.3740	0.3870	0.9098
3.1623	0.2842	0.0209	1.3952	0.3860	0.9092
7.0711	0.3061	0.0297	1. 44467	0.3839	0.9053
10.0000	0.3216	0.0272	1.4976	0.3908	0.9045
14.1421	0.3968	0.0386	1.6715	0.4030	0.8951
15.8114	0.4374	0.0410	1.7748	0.4107	0.8917
17.3205	0.4774	0.0568	1.8255	0.4114	0.8847
$\begin{gathered} \text { Sqrt } \\ \times 10 \end{gathered}$	$\begin{array}{r} -100 \\ 30-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ 10-9 \end{array}$	$\cos _{0-11}$	$\begin{aligned} & \text {-CUR2O } \\ & \text { D-11 } \end{aligned}$	$\begin{array}{r} \mathrm{ROD} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	0.4821	2.3544	0.2668	1.3029	5.1255
1.0000	0.4575	2.3874	0.2531	1.3209	5.1419
2.2361	0.4695	2.4520	0.2594	1.3550	5.2868
3.1623	0.4773	2.4909	0.2633	1.3743	5.3795
7.0711	0.5069	2.5990	0.2764	1.417	5.6963
10.0000	0.5482	2.7383	0.2944	1.4704	6.1203
14.1421	0.6885	3.1392	0.3582	1.6329	7.3589
15.8114	0.7748	3.3887	0.3954	1.7337	8.1378
17.3205	0.8360	3.5161	0.4206	1.7687	8.6517

c	r	Eqv Cand	t+	$\mathrm{D}(\mathrm{v}){ }_{105}$	1+med $\operatorname{lncasa/dm~}$
0.0000	0.000000	145.00	0.5070	1.9200	1.0000
0.0100	0.080034	136.20	0.5130	1.8720	0.9488
0.0500	0.050266	128.00	0.5130	1.8870	0.9055
0.1000	0.100770	122.70	0.5930	1.7690	0.8577
0.2000	0.203180	117.00	0.5140	1.7490	0.8549
0.5000	0.514000	108.60	0.5140	1.7240	0.8115
1.0000	1.051400	101.43	0.5140	1.6000	0.7638
2.0000	2.223950	91.76	0.5940	1.6330	0.6869
3.0000	3.531700	84.07	0.5140	1.5780	0.6262
Sqrt S $\times 10$	$\begin{array}{r} 111 / \mathrm{N} \\ \mathrm{p}+9 \end{array}$	$\begin{array}{r} 112 / N \\ y+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ \mathrm{w}+12 \end{array}$	F12	Q12
0.0000	7.8920	0.0000	7.6740	0.0000	0.0000
1.0000	7.8294	0.3252	7.4491	0.0817	0.0426
2.2361	7.6654	0.6130	7.3080	0.1595	0.0819
3.1623	7.5159	0.7547	7.1724	0.1865	0.1028
4.4721	7.4465	0.9877	7.0947	0.2393	0.1359
7.071	7.3667	1.376	7.0402	0.3208	0.1005
10.0000	7.3419	1.7498	7.0361	0.3903	0.2424
14.1421	7.3990	2.3335	7.1231	0.4866	0.3214
17.3205	7.4685	2.8275	7.2156	0.5563	0.3852
Sqre S $\times 10$	$\begin{aligned} & \text { NR11 } \\ & x-11 \end{aligned}$	$\begin{gathered} -N R 12 \\ 0-19 \end{gathered}$	$\begin{aligned} & \text { NR22 } \\ & \operatorname{nopl} 19 \end{aligned}$	Q10	Q20
0.0000	1.267	0.0000	1.3031	0.7021	0.7120
1.0000	1.2796	0.0559	1.3449	0.6824	0.7012
2.2361	1.3134	0.1902	1.3776	0.6679	0.6870
3.1623	1.3449	0.1415	1.4098	0.6601	0.6793
4.4721	1.3682	0.1905	1.4360	0.6468	0.6677
7.0711	1.4085	0.2744	1.4739	0.6256	0.6468
90.0000	1.4472	0.3582	1.5099	0.6047	0.6269
14.1421	1.5073	0.4938	1.5656	0.5717	0.5932
17.3205	1.5722	0.6161	1.6273	0.5437	0.5652
Sqrt S $\times 10$	$\begin{array}{r} +210 \\ 80 \rightarrow 9 \end{array}$	$\begin{array}{r} \text {-R20 } \\ 80-9 \end{array}$	$\begin{aligned} & -\operatorname{COR1O} \\ & b-11 \end{aligned}$	$\operatorname{cor}_{0-19}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{x}-7 \end{array}$
0.0000	2.2897	2.3547	1.2671	1.3031	8.3924
1.0000	2.2120	2.3301	1.2237	1.2890	8.2103
2.2361	2.1791	2.2954	1.2032	1.2674	8.1037
3.1623	2.1846	2.3012	1.2034	1.2676	8.1433
4.4721	2.1554	2.2795	1.1777	1.2456	8.1165
7.0711	2.1003	2.2213	1.1341	1.1995	8.0035
10.0000	2.0626	2.1814	1.0889	1.1517	8.0384
14.1421	2.0302	2.1472	1.0135	1.079	8.3684
17.3205	2.0277	2.1446	0.9561	1.0112	8.8486

c	18	Eqv Cond	$t+$	$D(v): 05$	
4.0000	5.006260	76.97	0.5140	1.5240	0.5809
5.0000	6.683150	70.09	0.5940	9.4720	0.5500
6.0000	8.610800	63.36	0.5140	1.4210	0.5270
$\begin{gathered} \text { Sqret } \\ \times 10 \end{gathered}$	$\begin{array}{r} 111 / \mathrm{N} \\ 13+12 \end{array}$	$\begin{array}{r} 11 \mathrm{Z} / \mathrm{N} \\ 1+92 \end{array}$	$\begin{array}{r} 122 / N \\ 10+12 \end{array}$	Fl 2	Q12
20.0000	7.4759	3.2268	7.2444	0.6098	0.4385
22.3607	7.3873	3.5180	7.9765	0.6517	0.4832
24.4949	7.2367	3.7390	7.0462	0.6875	0.5236
$\begin{gathered} \text { Sqrt } \\ \times 10 \end{gathered}$	$\begin{gathered} \text { NRI } 19 \\ 10-91 \end{gathered}$	$\begin{gathered} -N R 12 \\ 0 \rightarrow 11 \end{gathered}$	$\underset{y \rightarrow 11}{N R 22}$	Q10	Q20
20.0000	1.6560	0.7376	1.7089	0.5192	0.5405
22.3607	1.7659	0.8657	9.8178	0.4978	0.5189
24.4349	1.9038	1.0102	8. 9553	0.4776	0.4984
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{array}{r} -810 \\ m=9 \end{array}$	$\begin{array}{r} -120 \\ -10-9 \end{array}$	$\cos _{10-11}$	$\operatorname{cor}_{x-11}^{\text {COR }}$	$\begin{array}{r} \mathrm{ROD} / \mathrm{N} \\ \mathrm{D}-7 \end{array}$
20.0000	2.0707	2.1900	0.9184	0.9713	9.6065
22.3607	2.1678	2.2927	0.9003	0.9521	10.7404
24.4949	2.3102	2.4433	0.8936	0.9450	12.2898

c	m	Eqv Cond	¢+	$D(v) 1051+m \in a t n c a m e / d m$	
0.0000	0.000000	144.92	0.5072	1.9230	1.0000
0.0010	0.001003	141.80	0.5076	1.8990	0.9822
0.0050	0.005016	138.44	0.5081	1.8560	0.3630
0.0100	0.010033	135.78	0.5084	1.8450	0.9494
0.0200	0.020074	132.37	0.5087	1.8240	0.932()
0.0500	0.050244	126.27	0.5093	1.74'70	0.9006
0.1000	0.100633	120.36	0.5103	1.5030	0.8674
Sqrt S $\times 10$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+7 \end{array}$	$\begin{array}{r} 11 \Omega / \text { N } \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+1 ? \end{array}$	1712	Q12
0.0000	7.8300	0.0000	7.6688	0.0000	0.0000^{\prime}
0.3162	7.8239	0.0334	7.5024	0.0239	0.0121
0.7071	7.747	0.1923	7.5062	0.0492	0.0252
1.0000	7.6913	0.2773	7.4463	0.0707	0.0366
1.4142	7.6265	0.3945	7.3792	0.0999	0.0526
2.2361	7.4305	0.5236	7.1792	0.1338	0.0717
3.1623	6.8614	0.2643	6.5951	0.0758	0.0394
Sqre S $\times 10$	$\begin{gathered} \operatorname{TNP} 11 \\ 0-11 \end{gathered}$	$\begin{array}{r} -\operatorname{RR} 12 \\ 10-11 \end{array}$	$\begin{aligned} & \text { Ine? } \\ & 0.11 \end{aligned}$	Q10	Q20
0.0000	1.2670	0.0000	1.3040	0.7020	0.7122
0.3162	1.2763	0.0157	1.3173	0.6974	0.7082
0.7071	1.2916	0.0331	1.3331	0.6923	0.7039
1.0000	1.3019	0.0485	1.3448	0.6880	0.7001
1.4142	1.3148	0.0703	1.3589	0.6819	0.6945
2.2361	1.3528	0.0987	1.4003	0.6745	0.6881
3.1623	1.4597	0.0586	1.5136	0.6856	0.7004
Sqri S $\times 10$	$\begin{array}{r} -\mathrm{F} 10 \\ 10-9 \end{array}$	$\begin{array}{r} -120 \\ -10-9 \end{array}$	$-\operatorname{cop} 10$	$\begin{aligned} & -\operatorname{cop} 20 \\ & i 0-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	2.2304	2.3563	1.2670	1.3040	8.3947
0.3162	2.2314	2.3518	1.2626	1.3016	8.3718
0.7071	2.2743	2.3492	1.2585	1.3000	3.3553
1.0000	2.2655	2.3429	1.2534	1.2963	3.3296
1.4142	2.2504	2.3301	1.2446	1.2886	8.2821
2.2361	2.2703	2.3553	1.2541	1.3016	8.3755
3.1623	2.514	2.6433	1.4011	1.4600	9.4137

Potassium Bronide

c	m	Eqv Cond	t+	$D(v) 105$	1+mxdingame/dm
0.0000	0.000000	151.80	0.4847	2.0160	1.0000
0.0500	0.050233	135.44	0.4831	1.8920	0.9222
0.1000	0.100633	131.19	0.4333	1.8740	0.9086
0.2000	0.201933	126.59	0.4841	1.8700	0.8991
0.5000	0.510440	120.35	0.4845	1.8850	0.8999
1.0000	1.040030	115.44	0.4850	1.9750	0.9213
2.0000	2.163540	109.37	0.4900	2.1230	0.9876
3.0000	3.335510	103.55	0.4900	2.2300	1.0654
$\operatorname{Sgrt}_{\times 10} S$	$\begin{gathered} 111 / N \\ 10+12 \end{gathered}$	$\begin{array}{r} 212 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+12 \end{array}$	F12	Q12
0.0000	7.8967	0.0000	8.3956	0.0000	0.0000
2.2361	7.5332	0.5053	8.0249	0.1222	0.0651
3.1623	7.4514	0.6417	7.9220	0.1542	0.0835
4.4721	7.3815	0.7997	7.8138	0.1906	0.1053
7.0711	7.2593	0.9968	7.6600	0.2359	0.1337
10.0000	7.2405	1.2273	7.6924	0.2838	0.1653
14.1421	7.1564	1.4006	7.3913	0.3230	0.1926
17.3205	6.9869	1.5374	7.2093	0.3562	0.2166
$\underset{\times 10}{\operatorname{sqr}^{2} t} S$	$\begin{aligned} & \mathrm{NR} 11 \\ & 10-11 \end{aligned}$	$\begin{array}{r} -N R 12 \\ n-11 \end{array}$	$\begin{aligned} & \text { NR22 } \\ & i=-11 \end{aligned}$	Q10	Q20
0.0000	1.2664	0.0000	1.1911	0.7179	0.6962
2.2361	1.3331	0.0840	1.2514	0.6959	0.6713
3.1623	1.3515	0.1095	1.2712	0.6891	0.6646
4.4721	1.3699	0.1402	1.2941	0.6805	0.6570
7.0711	1.4026	0.1825	1.3292	0.6696	0.6465
10.0000	1.4199	0.2289	1.3505	0.6572	0.6347
14.1421	1.4512	0.2750	1.4051	0.6429	0.6278
17.3205	1.5017	0.3202	1.4554	0.6334	0.6182
$\underset{\times 10}{\operatorname{Sqr} t} S$	-1210 309	-R 20 $10-9$	$-\operatorname{COR10}$ $\mathrm{jo-11}$	$\begin{aligned} & -\operatorname{CoR} 20 \\ & 10-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	2.2883	2.1523	1.2664	1.1911	8.0242
2.2361	2.2607	2.1129	1.2491	1.1674	7.9156
3.1623	2.2517	2.1062	1.2420	1.1617	7.9008
4.4721	2.2374	2.0995	1.2297	1.1539	7.8904
7.0711	2.2439	2.1089	1.2201	1.1467	8.0053
10.0000	2.2315	2.1015	1.1910	1.1216	8.1134
14.1421	2.2922	2.2023	1.1762	1.1301	8.7588
17.3205	2.4019	2.3077	1.1815	1.1351	9.5747

c	m	Eqv Cond	と+	$\mathrm{D}(\mathrm{v}) \mathrm{m}_{5}$	trod $\operatorname{lngama/dm}$
0.0000	0.000000	150.38	0.4892	1.9990	1.0000
0.0800	0.070034	142.18	0.4884	1.9290	0.9559
0.0500	0.050262	134.97	0.4882	1.8910	0.9274
0.1000	0.100756	131.19	0.4883	1.8650	0.9172
0.2000	0.202456	126.89	0.4887	1.8590	0.9123
0.5000	0.513380	121.53	0.4900	1.9550	0.9210
1.0000	1.052310	117.61	0.4900	2.0650	0.9541
2.0000	2.216730	112.30	0.4900	2.2540	1.0433
3.0000	3.59570^{0}	106.47	0.4900	2.4400	1.1146
Sart S $\times 10$	$\begin{gathered} 119 / N \\ 0+72 \end{gathered}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 122 / N \\ 10+12 \end{array}$	F12	Q12
0.0000	7.8974	0.0000	8.2462	0.0000	0.0000
1.0000	7.7130	0.2550	8.0672	0.0626	0.0323
2.2361	7.5679	0.4910	7.9100	0.1194	0.0635
3.1623	7.4590	0.5831	7.7885	0.1422	0.0765
4.4721	7.3650	0.7049	7.6730	0.175	0.0938
7.0711	7.4868	1.0185	7.6780	0.2379	0.1350
10.0000	7.3985	1.2091	7.6511	0.2770	0.1607
14.1421	7.2537	1.3437	7.4949	0.3084	0.1822
17.3205	7.1612	1. 5581	7.3899	0.3528	0.2142
$\operatorname{Sqr}_{\times 1}{ }_{0} S$	$\begin{gathered} \text { NR19 } \\ \text { 10019 } \end{gathered}$	$\begin{gathered} \text { NR12 } \\ \underset{p-11}{ } \end{gathered}$	$\begin{gathered} \text { NR22 } 21 \end{gathered}$	Q10	Q20
0.0000	1.2662	0.0000	1.2127	0.7147	0.6994
1.0000	1.2979	0.0410	1.2409	0.7039	0.6872
2.2361	1.3267	0.0823	1.2693	0.6928	0.6757
3.1623	1.3486	0.1010	1. 2915	0.6880	0.6709
4.4721	1.3698	0.9259	1.3148	0.6814	0.6648
7.071	9.3733	0.1822	1.3266	0.6651	0.6502
10.0000	1.3875	0.2193	1.3416	0.6553	0.6403
14.1421	1.4260	0.2557	1.3801	0.6470	0.6318
17.3205	1.4635	0.3086	1.4183	0.6344	0.6192
Sqre S $\times 10$	$\begin{array}{r} -810 \\ x-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ \mathrm{x}-9 \end{array}$	$\cos _{n-11}$	${\underset{x-11}{\operatorname{CoR} 20}}^{2}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 80-7 \end{array}$
0.0000	2.2881	2.1913	1.2662	1.2127	8.0943
1.0000	2.279	2.1689	1.2569	1.1999	8.0273
2.2361	2.2535	2.1496	1.2444	1.1870	7.9737
3.1623	2.2645	2.1610	1.2476	1.1905	8.0329
4.4721	2.2685	2.1683	1.2440	1.1890	8.0910
7.0711	2.2032	2.1168	1.1911	1.1444	7.9909
10.0000	2.2146	2.1278	1.1682	1.1224	8.2320
14.1421	2.3368	2.2451	1.1703	1.1244	9.1488
17.3205	2.4384	2.3428	1.1550	1.1097	10.0939

c	m	Bqv Cond.	t+	1) $(\mathrm{V})_{105}$	+mod Ingame/am
0.0000	0.000000	126.94	0.3047	1.6160	1.0000
0.0100	0.010033	119.24	0.3832	1.5700	0.9565
0.0500	0.050231	112.79	0.3850	1.5270	$0.932)$
0.1000	0.100633	108.73	0.3337	1.5200	0.9283
0.2000	0.201973	104.93	0.3327	1.5320	0.9390
0.5000	0.510507	03.33	0.3803	1.5300	0.9890
1.0000	1.041080	92.53	0.3840	1.6620	1.0787
$\underset{\times 10}{\operatorname{Sart}^{(10} S}$	$\begin{array}{r} 111 / N \\ 10+12 \end{array}$	$\begin{array}{r} 11 巳 / N \\ 0+12 \end{array}$	$\begin{array}{r} 122 / i j \\ 10+1 ? \end{array}$	P12	Q12
0.0000	5.3836	0.0000	8.2543	0.0000	0.0000
1.0000	5.2403	0.2693	8.1043	0.0313	0.0413
2.2361	5.1004	0.4366	7.8866	0.1321	0.0638
3.1623	5.0211	0.5333	7.7385	0.1631	0.0064
4.4721	4.9423	0.6273	7.5874	0.1906	0.1024
7.0711	4.7773	0.7146	7.2659	0.2218	0.1213
10.0000	4.5732	0.7571	6.8733	0.2436	0.1350
$\underset{\times 10}{\operatorname{Sq}_{1} \mathrm{r} t} \mathrm{~S}$	$\begin{gathered} \text { NR11 } \\ 10-11 \end{gathered}$	$\begin{gathered} -\operatorname{NRI} 12 \\ 10-11 \end{gathered}$	$\begin{gathered} \text { NR2? } \\ 10-11 \end{gathered}$	Q10	Q20
0.0000	1.8575	0.0000	1.2114	0.7780	0.6233
1.0000	1.9114	0.0635	1.2360	0.7691	0.6063
2.2361	1.9700	0.1091	1.2740	0.7622	0.5933
3.1623	2.0065	0.1396	1.3019	0.7573	0.5853
4.4721	2.10443	0.1691	1.3320	0.7525	0.5780
7.0711	2.1242	0.2089	1.3063	0.7460	0.5706
10.0000	2.2272	0.2451	1.4307	. 0.7404	0.5661
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{array}{r} P 10 \\ 20-9 \end{array}$	$\begin{array}{r} -120 \\ 20-9 \end{array}$	$\begin{aligned} & -\cos 10 \\ & 10-11 \end{aligned}$	$-\operatorname{citen}$	$\begin{array}{r} \mathrm{ROJ} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	3.3565	2.1890	1.8575	1.2114	10.0208
1.0000	3.3399	2.1192	1.8479	1.1725	9.8671
2.2361	3.3679	2.1084	1.8609	1.1650	9.9111
3.1623	3.3847	2.1073	1.8570	1.1624	9.9564
4.4721	3.4125	2.1156	1.8758	1.1629	10.0572
7.0711	3.5229	2.1850	1.9153	1.1879	10.4987
10.0000	3.7174	2.3174	1.9821	1.2356	11.3183

$\operatorname{Sqx}_{\times 10} \mathrm{~S}$	-210 3009	a 8 80	$\cos 9$ $0-11$	$\cos _{50}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{~g}-7 \end{array}$
0.0000	2.7157	2.3540	1. 5031	1.3029	9.9595
0.3962	2.710	2.3498	1.4998	1.3005	9.1423
1.0000	2.6917	2.3376	1.4884	1.2934	9.0804
2.2361	2.6455	2.3207	1.4620	1.2625	8.9860
3.1623	2.6081	2.2991	9.4409	1.2689	8.254
4. 472 i	2.4955	2.2147	1.3731	1.2186	Q.5605
7.0713	2.4292	2.2146	1.32^{144}	8.2074	8.5177
10.0000	2.2939	2.1916	1.2307	1.1756	8.3605
$12.24{ }^{4}$	2.2372	2.2390	1.1803	1.9812	8.4847

0

2.0000	2.14649
2.5000	2.96mb
3.0000	3.334 T ?
4.0000	in.60640
5.0000	6.039367
6.0000	7e50\%3
7.0000	9.2439
8.0000	18.8060
9.0000	13.314200

my coce
6.07
59.27
4.20
4.26
38.62
34.26
38.25
28.07
0.516
0.593
0.522
0.56
0.568
0.566
0.562
0.659
0.622
$19 / 05$
$3 \tan$
2.5697
2.767
3.0 .99
3.2960
3.2669
3.176
3.0367
2.606
5.9305
5.680
5.793
5.5666
5.2793
4.534
4.5286
4.1314
3.6702
0.5997
0.6570
0.6747
0.7463
0.7583
0.765
0.7680
0.763

Q30
1202
$20 \cdots i 1$
2.0635
2.194
2.360
2.5800
2.8028
3.2078
3.6153
3.596
4.5119
0.5261
0.4992
0.4726
0.4344
0.4067
0.3859
0.3667
0.3552
0.3424
0.5436
0.5330
0.5218
0.5097
0.5025
0.5004
0.4983
0.5044
0.5946

Sqrit S $\times 10$	$\begin{array}{r} \$ 10 \\ 609 \end{array}$	$\begin{array}{r} 1720 \\ 1009 \end{array}$	$\begin{aligned} & \text { Caiso } \\ & 2-91 \end{aligned}$	$\underset{x \rightarrow 0]}{\operatorname{ccic} 20}$	$\begin{array}{r} 100 / \mathrm{N} \\ 2-7 \end{array}$
94.1427	2.1967	2.30 ט	1.1307	1.1020	8.6765
15.0114	2.145	2.34 .53	1.093%	1.1937	8. 8223
17.3205	2.0891	2.372^{4}	1.0394	1.1849	8.9665
20.0040	2.0700	2.5434	0.935	?.2207	9.6124
22.3607	2.1402	2.7545	0.9042	1.2851	10.6306
24.4949	2.2809	3.1511	9.0021	1.381.4	12.3639
26.4575	2.1803	3.6163	1.0377	1. 5132	14.5730
28.2843	2.7499	4.2278	1.096	1.6783	17.5776
30.0000	3.1077	5.1181	1.1661	1.9204	21.9222

c	m	Eqv Cond	t+	D (v):05	人d $\operatorname{lncama/dm~}$
0.0000	0.000000	149.90	0.4907	1.9040	1.0000
0.1000	0.100660	123.30	0.4307	1.3380	0.9053
0.2000	0.200246	123.80	0.4911	1.8360	0.8934
$\begin{gathered} \text { Sqre } S \\ \times 10 \end{gathered}$	$\begin{array}{r} 111 / 19 \\ 10+92 \end{array}$	$\begin{array}{r} 112 / N \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 0+12 \end{array}$	W12	Q12
0.0000	7.8986	0.0000	8.1980	0.0000	0.0000
3.1623	7.4261	0.6381	7.6834	0.1558	0.0845
4.4721	7.3520	0.8223	7.5887	0.1984	0.1101
$\underset{\times 10}{\text { Sqret }_{0}} \mathrm{~S}$	$\begin{gathered} \operatorname{NP} 11 \\ \operatorname{lo}_{10-11} \end{gathered}$	$\begin{gathered} -N P 12 \\ 10-11 \end{gathered}$	$\begin{gathered} \text { Ine? } \\ 10-11 \end{gathered}$	Q10	Q20
0.0000	1.2560	0.0000	1.2198	0.7137	0.7005
3.1623	1.3563	0.1126	1.3109	0.6334	0.6697
4.4721	1.3769	0.1492	1.3339	0.6736	0.6604
$\begin{aligned} & \text { Sqre } S \\ & \times 10 \end{aligned}$	$\begin{array}{r} -110 \\ 10-9 \end{array}$	$\begin{array}{r} +20 \\ 10-9 \end{array}$	$\begin{aligned} & -\operatorname{cor} 10 \\ & 10-11 \end{aligned}$	$\begin{aligned} & -C R 2 O \\ & 10-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	2.2877	2.2042	1.2660	1.2198	8.1169
3.1623	2.2552	2.1723	1.2436	1.1982	3.0293
4.4721	2.2144	2.1369	1.2277	1.1347	7.8435

c	m	Eqv Cond	$t+$	$D(\mathrm{v}): 05$	1 trixalncaime/dm
0.0000	0.000000	383.86	0.8950	1.9200	1.0000
0.0100	0.009993	223.00	0.9010	1.1650	0.8383
0.1000	0.100725	104.05	0.9100	0.9440	0.6823
0.5000	0.513347	64.71	0.9100	0.8530	0.4825
1.0000	1.051657	50.15	0.9160	0.8300	0.4831
2.0000	2.213614	53.31	0.9240	0.3130	0.6461
3.0000	3.506721	54.07	0.9280	0.8030	0.8174
4.0000	4.357244	48.95	0.9300	0.7970	0.9654
5.0000	6.599739	43.52	0.9320	0.7830	1.0916
Sqre S $\times 10$	$\begin{array}{r} 111 / N \\ 20+12 \end{array}$	$\begin{array}{r} 112 / 15 \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+12 \end{array}$	F12	Q12
0.0000	36.3966	0.0000	4.3273	0.0000	0.0000
1.0000	22.0869	0.5076	2.8787	0.1920	0.0637
3.1623	12.0448	1. 3755	2.8813	0.6720	0.3134
7.0711	9.3212	2.9963	3.6223	0.2404	0.5157
10.0000	8.3504	2.9329	3.4756	0.3551	0.5288
14.1421	7.3850	2.0984	2.5743	0.3267	0.4657
17.3205	6.9826	1.5935	2.0117	0.3042	0.4252
20.0000	6.2123	1.3230	1.6910	0.7945	0.4082
22.3607	5.5069	1.1506	1.4685	0.7953	0.4046
Sqre S $\times 10$	$\begin{aligned} & \text { NR11 } \\ & \text { 10-11 } \end{aligned}$	$\begin{gathered} -\mathbb{N R} 12 \\ -10-11 \end{gathered}$	$\frac{\text { NRT2 }}{10-11}$	Q10	Q20
0.0000	0.2710	0.0000	2.3109	0.3240	0.9461
1.0000	0.4546	0.0802	3.4880	0.2856	0.9382
3.1623	0.9239	0.6014	3.8621	0.1772	0.8765
7.0711	1.4516	1.2092	3.7611	0.1247	0.7858
10.0000	1.5635	1.3235	3.9942	0.1145	0.7826
14.1421	1.6195	1.3201	4.9605	0.1185	0.8235
17.3205	1.7482	1.3848	6.0630	0.1223	0.8453
20.0000	1.9315	1.5112	7.0960	0.1234	0.8555
22.3607	2.1714	1.7014	8.1430	0.1213	0.8586
$\underset{\times 10}{\operatorname{Sqrt}} \mathrm{~S}$	$\begin{array}{r} -110 \\ 10-9 \end{array}$	$\begin{array}{r} -R 20 \\ 10-9 \end{array}$	$\begin{gathered} -\operatorname{CoR1O} \\ { }_{10}-11 \end{gathered}$	$\frac{\operatorname{cor} 20}{10-11}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	0.4897	4.1752	0.2710	2.3109	8.4283
1.0000	0.6744	6.1379	0.3744	3.4073	12.2696
3.1523	0.5852	5.9169	0.3225	3.2603	11.793 t
7.0711	0.4563	4.7200	0.2524	2.5519	9.5334
10.0000	0.4541	5.0505	0.2449	2.6700	10.4686
14.1421	0.5970	7.2553	0.2994	3.6405	15.663
17.3205	0.7651	9.3513	0.3634	4.6832	22.3731
20.0000	0.33 .35	12.4537	0.42004	5.5843	29.933 ?
22.3507	1.1175	15.3175	0.4700	5.4416	39.0310

c	m	Eqv Cand	¢+	$\mathrm{D}(\mathrm{v}){ }_{105}$	1 trsed $\operatorname{lngazm} / \mathrm{dm}$
6.0000	8.479367	38.07	0.9360	0.7590	9.2048
7.0000	10.667479	32.79	0.9420	0.7250	1.3167
8.0000	13.240649	27.78	0.9500	0.6800	1.4437
10.0000	19.976099	18.89	0.9740	0.6260	1.8793
12.0000	30.310685	11.81	1.0740	0.3830	3.8599
Saro S $\times 10$	$\begin{array}{r} 11 / N \\ m+12 \end{array}$	$\begin{array}{r} 112 / N \\ w+9 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+12 \end{array}$	F12	Q12
24.4949	4.8529	1.0258	1. 2875	0.8072	0.4104
26.4575	4.2357	0.9182	1.1225	0.8268	0.4211
28.2843	3.6428	0.8084	0.9575	0.8508	0.4328
31.6228	$2.5 \% 6$	0.6205	0.6733	0.9235	0.4693
34.6410	1.5487	0.2625	0.2447	1.0737	0.4264
Squt S $\times 10$	$\begin{aligned} & \text { NR11 } \\ & \text { p-il } \end{aligned}$	$\begin{gathered} \operatorname{NRI2} \\ \sin 9 \end{gathered}$	$\begin{aligned} & \text { NR22 } \\ & \text { noll } \end{aligned}$	Q10	Q20
24.4949	2.4780	1. 9743	9.3402	0.1941	0.8592
26.4575	2.8698	2.3476	10.8292	0.1027	0.8589
28.2843	3.3700	2.8517	12.8509	0.0383	0.8598
31.6228	4.9391	4.5521	19.0484	0.0451	0.8510
34.6410	7.8919	8.4646	49.9397	-0.0319	0.9177
Squr S $\times 10$	$\begin{array}{r} 810 \\ x-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ \mathrm{~m}-9 \end{array}$	$-\cos 10$	$\underset{10-11}{\operatorname{CRR} 20}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ x-7 \end{array}$
24.4949	1.2823	18.7530	0.5036	7.3659	51.0083
26.4575	1.4337	23.2848	0.5222	8.4815	67.8609
28.2843	1.5592	29.8140	0.5263	9.9992	93.5729
31.6228	1.3926	52.1674	0.3870	14.4962	192.7451
34.6410	-2.6057	188.7279	-0.5726	41.4751	846.9288

c	m	Eqv Cond	も+	$\mathrm{D}(\mathrm{V}) \mathrm{O}_{0} 5$	$1+m \times d \operatorname{lng}$ ama/dm
0.0000	0.000000	120.90	0.3860	1.2300	1.0000
0.0030	0.003009	176.01	0.3856	1.1470	0.9093
0.0050	0.1005015	112.44	0.3848	1.1230	0.8902
$\underset{\times 10}{\operatorname{Sqr} t} S$	$\begin{gathered} 111 / 11 \\ 10+12 \end{gathered}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{aligned} & 122 / \mathrm{N} \\ & 10+12 \end{aligned}$	F12	012
0.0000	5.3857	0.0000	2.1419	0.0000	0.0000
0.9487	5.2451	0.2203	2.0240	0.2598	0.0676
1.2247	5.1309	0.2670	1.9908	0.3143	0.0831
$\underset{\times 10}{S q r t} S$	$\begin{aligned} & \operatorname{INR} 11 \\ & 10-11 \end{aligned}$	$\begin{gathered} -\mathrm{NR} 12 \\ 10-11 \end{gathered}$	$\begin{aligned} & \text { NR2Z } \\ & 10-11 \end{aligned}$	Q10	Q20
0.0000	1.8564	0.0000	4.6687	0.7836	0.6213
0.9487	1.9153	0.2085	4.9635	0.7622	0.5943
1.2247	1.9435	0.2607	5.0530	0.7576	0.5875
$\underset{\times 10}{\text { Sqre } S}$	$\begin{array}{r} -\mathrm{R} 10 \\ 10-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 2 \mathrm{O} \\ 10-9 \end{array}$	$\begin{aligned} & - \text { Cor } 10 \\ & 10-11 \end{aligned}$	$\begin{aligned} & \text {-COR2O } \\ & 10-11 \end{aligned}$	$\begin{gathered} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{gathered}$
0.0000	3.3545	4.2182	1.8564	2.3344	9.8728
0.9487	3.2724	4.1075	1.8111	2.2732	9.6239
1.2247	3.2764	4.0987	1.8133	2.2683	9.6231

Potassiun Sulfate

c	n	EgV Cond	t+	$D(\mathrm{~V}){ }_{10} 5$	$1+m \times d \operatorname{lngama} / \mathrm{dm}$
0.0000	0.000000	153.53	0.4788	1.5290	1.0000
0.0100	0.010033	127.50	0.4848	1.3300	0.8596
0.0250	0.025100	117.75	0.4870	1.2820	0.8008
0.0500	0.050233	109.25	0.4800	1.2280	0.7711
0.1000	0.100653	101.15	0.4 .910	1.1840	0.7256
0.2500	0.253140	89.60	0.4909	1.0350	0.6769
$\underset{\times 10}{S q r i} S$	$\begin{gathered} 111 / \mathrm{N} \\ 10+12 \end{gathered}$	$\begin{gathered} 112 / \mathrm{N} \\ 10+12 \end{gathered}$	$\begin{gathered} 122 / \mathrm{N} \\ 10+12 \end{gathered}$	F12	Q12
0.0000	7.3923	0.0000	2.1479	0.0000	0.0000
1.7321	7.3796	0.3705	1.9490	0.3561	0.0977
2.7386	7.3049	0.5730	1.9084	0.5324	0.1535
3.8730	7.0383	0.6755	1.3367	0.6309	0.1872
5.4772	7.0075	0.8367	1.8008	0.7627	0.2356
8.6603	6.6299	0.9530	1.7013	0.8842	0.2837
$\begin{gathered} \text { Sqrt } S \\ \times 10 \end{gathered}$	$\begin{aligned} & \text { NR11 } \\ & 10-11 \end{aligned}$	$\begin{array}{r} -\operatorname{NR} 12 \\ 10-11 \end{array}$	$\begin{aligned} & \mathrm{NR} 22 \\ & 10-11 \end{aligned}$	Q10	Q20
0.0000	1.2671	0.0000	4.6558	0.7219	0.6919
1.7321	1.3681	0.2601	5.1803	0.6828	0.6604
2.7386	1.4020	0.4210	5.3663	0.6603	0.6408
3.8730	1.4619	0.5377	5.6422	0.6458	0.6291
5.4772	1.5109	0.7020	5.8794	0.6251	0.6113
8.6603	1.6404	0.9189	6.3927	0.6054	0.5914
$\underset{\times 10}{\text { Sqrt } S}$	$-R 10$ $10-9$	-R 20 $19-9$	$-\operatorname{CoR} 10$ $10-11$	$\begin{aligned} & -\mathrm{COR} 2() \\ & 10-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	2.2396	4.2065	1.2671	2.3279	7.9378
1.7321	2.2378	4.2115	1.2381	2.3301	7.8507
2.7386	2.1551	4.0917	1.1915	2.2622	7.5982
3.8730	2.1593	4.1328	1.1931	2.2834	7.6481
5.4772	2.1031	4.0575	1.1598	2.2377	7.4921
8.6603	2.1542	4.1544	1.1810	2.2775	7.7186

Sulfuric Acid

c	m	Eqv Cond	$t+$	D (v) 105	+med nc Cam/dm
0.0000	0.000000	429.80	0.8138	2.6000	1.0000
0.0500	0.050295	290.00	0.8190	1. 8640	0.6566
0.8000	0.100605	255.00	0.8190	1.8280	0.6400
0.5000	0.510320	214.00	0.8170	1.8880	0.7049
1.0000	1.040330	199.80	0.8070	1.9680	0.8254
2.0000	2.169020	166.00	0.7910	2.2640	1.1691
3.0000	3.405330	132.80	0.7700	2.5900	1.5930
4.0000	4.772200	102.80	0.7490	2.7980	1.9432
5.0000	6.304220	78.40	0.7220	2.8980	2.5168
$\underset{\times 10}{\operatorname{Sqrt}} \mathrm{~S}$	$\begin{array}{r} 119 / \mathrm{N} \\ 10+92 \end{array}$	$\begin{array}{r} 112 / N \\ 1+92 \end{array}$	$\begin{array}{r} 122 / N \\ 10+12 \end{array}$	Fl 2	Q12
0.0000	37.5636	0.0000	2.1482	0.0000	0.0000
3.8730	28.5267	1. 5090	2.1638	0.7905	0.1921
5.4772	26.0527	1.8909	2.8447	0.9430	0.2423
12.2474	22.2778	1.7500	1. 9265	1.0092	0.267
17.3205	20.3874	1.5351	1.8029	0.9576	0.2532
24.4049	96.3632	1.1304	1.4967	0.8682	0.2284
30.0000	12.8291	0.9234	1.2818	0.8447	0.2277
34.6410	10.0664	0.8984	1.1420	0.9280	0.2650
38.7298	7.4861	0.7034	0.9369	0.9085	0.2656
$\begin{gathered} \text { Sqrot } \\ \times 10 \end{gathered}$	$\begin{gathered} \text { NR } 11 \\ 10-11 \end{gathered}$	$-\operatorname{NR1} 12$ b-1	$\begin{gathered} \text { NR22 } \\ 10-11 \end{gathered}$	Q10	Q20
0.0000	0.2662	0.0000	4.6550	0.4315	0.9021
3.8730	0.3640	0.2538	4.7984	0.3434	0.8558
5.4772	0.4078	0.3443	4.9533	0.3234	0.8397
12.2474	0.4834	0.4391	5.5896	0.3160	0.8298
17.3205	0.5248	0.4462	5.9264	0.3329	0.8279
24.4949	0.6448	0.4870	7.0489	0.3607	0.8257
30.0000	0.8221	0.5922	8.2282	0.3836	0.8119
34.6410	1.0684	0.8405	9.4176	0.3902	0.7844
38.7298	1.4372	1.0790	11.4836	0.4167	0.7657
$\begin{aligned} & \text { Sqrt } \mathrm{S} \\ & \times 10 \end{aligned}$	-810 009	-820 $10-9$	$\underset{x-11}{-\cos 10}$	$\underset{10-11}{-C \operatorname{RR} 20}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ \mathrm{n}-7 \end{array}$
0.0000	0.4891	4.2058	0.2662	2.3275	4.6692
3.8730	0.4289	3.8815	0.2371	2.1454	4.2873
5.4772	0.4270	3.8546	0.2356	2.1323	4.2761
12.2474	0.4851	4.3314	0.2638	2.3557	4.8740
17.3205	0.5641	4.7172	0.3010	2.5170	5.4775
24.4949	0.7840	5.9345	0.4013	3.0375	7.3290
30.0000	1.0756	7.2019	0.5260	3.5219	9.5631
34.6410	1.3931	8.3140	0.6482	3.8683	11.9287
38.7298	2.0390	10.5913	0.8977	4.6629	16.6601

c	m	Eqv Cond	$t+$	$\mathrm{D}(\mathrm{V}): 35$	$1+\mathrm{m} \times \mathrm{d} \operatorname{lngama} / \mathrm{dm}$
0.0000	0.000000	133.50	0.4030	0.8540	1.0000
0.0010	0.001003	108.30	0.3990	0.7860	0.8060
0.0100	0.010023	72.25	0.3905	0.6810	0.6260
0.0500	0.050133	50.58	0.3740	0.5920	0.5150
0.1000	0.100275	43.60	0.3602	0.5630	0.4680
0.2000	0.200566	38.20	0.3390	0.5340	0.4420
0.3500	0.351120	32.20	0.3110	0.5050	0.4340
0.5000	0.501925	29.00	0.3040	0.4820	0.4340
$\underset{\times 10}{\operatorname{Sqn} t} S$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / N \\ 19+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ m+12 \end{array}$	F12	Q12
0.0000	1.4439	0.0000	2. 1398	0.0000	0.0000
0.6325	1.4465	0.2362	2.0338	1.1640	0.1669
2.0000	1.3930	0.6354	1.8178	2.3167	0.3993
4.4721	1.3493	0.3414	1.6915	2.9030	0.5569
6.3246	1.3652	0.9435	1.6325	3.1105	0.6207
8.9443	1.3363	0.9386	1.6666	3.24 .55	0.6625
11.8322	1.2572	0.9883	1.5840	3.3685	0.7003
14.1421	1.1920	0.9553	1.4973	3.4116	0.7151
$\underset{\times 10}{\operatorname{Sqr} t} S$	$\begin{aligned} & \text { INR } 11 \\ & 13-11 \end{aligned}$	$\begin{gathered} -\operatorname{NR} 12 \\ 10-11 \end{gathered}$	$\begin{aligned} & \text { WR22 } \\ & 10-11 \end{aligned}$	Q10	Q20
0.0000	6.9257	0.0000	4.6733	0.7727	0.6347
0.6325	7.1115	1.0008	5.0576	0.7186	0.5657
2.0000	8.5408	2.9855	6.5447	0.6296	0.4608
4.4721	10.7435	5.3433	8.5698	0.5609	0.3752
6.3246	11.9160	6.6426	9.6115	0.5321	0.3336
8.9443	13.3355	7.9106	10.6928	0.5185	0.2970
11.8322	15.6115	9.7404	12.3905	0.5090	0.2579
14.1421	17.1674	10.9536	13.6677	0.5019	0.2457
$\begin{gathered} \text { Sqrit } \\ \times 10 \end{gathered}$	$\begin{array}{r} -R 10 \\ 10-9 \end{array}$	-R 20 $10-9$	$\begin{aligned} & - \text { COR10 } \\ & 20-11 \end{aligned}$	$\begin{aligned} & -\mathrm{COR2O} \\ & 10-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	6.2574	4.2223	3.4629	2.3367	9.4685
0.6325	5.5207	3.6652	3.0554	2.0284	8.2990
2.0000	5.0179	3.2149	2.7776	1.7796	7.4365
4.4721	4.3771	2.9138	2.6998	1.6130	7.0371
6.3246	4.7630	2.6815	2.6367	1.4844	6.7241
8.9443	4.9003	2.5131	2.7124	1.3911	6.6965
11.8322	5.3054	2.3947	2.9356	1.3251	6.9580
14.1421	5.6186	2.4541	3.1069	1.3570	7.2995

c	m	Eqv Cond	t+	$D(v) \div 5$	$1+\mathrm{m} \times \mathrm{d} \operatorname{lnGama} / \mathrm{dm}$
0.0000	0.000000	132.82	0.3892	0.8486	1.0000
0.0010	0.001003	108.00	0.3865	0.7480	0.8236
0.0020	0.002006	98.75	0.3853	0.7330	0.7801
0.0030	0.003009	92.76	0.3844	0.7240	0.7487
0.0050	0.0025015	$\{34.91$	0.3830	0.7050	0.7053
0.0250	0.025070	60.75	0.3751	0.6870	0.6009
0.0500	0.050135	52.50	0.3692	0.6640	0.5605
0.1000	0.100260	45.00	0.3610	0.6310	0.5138
0.2500	0.250665	36.30	0.3500	0.5740	0.4540
$\underset{\times 10}{S q r t} S$	$\begin{gathered} 111 / \mathrm{N} \\ 10+12 \end{gathered}$	$\begin{gathered} 112 / \mathrm{N} \\ 10+12 \end{gathered}$	$\begin{gathered} 122 / N \\ 10+12 \end{gathered}$	F12	Q12
0.0000	1.3961	0.0000	2.1863	0.0000	0.0000
0.6325	1.34 .92	0.2284	2.0074	0.9973	0.1388
0.8344	1.3413	0.3197	1.9495	1.3493	0.1977
1.0954	1.3433	0.3859	1.9191	1.5827	0.2403
1.4142	1.3425	0.4694	1.8760	1.8623	0.2957
3.1623	1.3826	0.7707	1.7900	2.6736	0.4899
4.4721	1.3869	0.3665	1.7557	2.9009	0.5553
6.3246	1.3961	0.9599	1.7320	3.0999	0.6173
10.0000	1.3945	1.0534	1.6869	3.3044	0.6868
$\underset{\times 10}{\operatorname{Sqrt}^{2}}$	$\begin{aligned} & \text { NR } 11 \\ & 10-11 \end{aligned}$	$\begin{gathered} -N R 12 \\ 19-11 \end{gathered}$	$\begin{aligned} & \text { NR22 } \\ & 10-11 \end{aligned}$	Q10	Q20
0.0000	7.1630	0.0000	4.5739	0.7812	0.6243
0.6325	7.5570	0.3598	5.0793	0.7374	0.5666
0.8944	7.7588	1.2722	5.3381	0.7169	0.5417
1.0954	7.9008	1.5887	5.5301	0.7013	0.5234
1.4142	8.1625	2.042 c	5.8413	0.6802	0.4991
3.1623	9.5173	4.0978	7.3509	0.5965	0.4074
4.4721	10.4244	5.1448	8.2349	0.5652	0.3722
6.3246	11.5730	6.4139	9.3285	0.5337	0.3358
10.0000	13.5734	8.4758	. 11.2206	0.4941	0.2926
$\begin{gathered} \text { Sqrt } \\ \times 10 \end{gathered}$	$\begin{array}{r} -\mathrm{F} 10 \\ 19-9 \end{array}$	$\begin{array}{r} -\mathrm{R} 20 \\ 10-9 \end{array}$	$\begin{aligned} & - \text { COR } 10 \\ & 10-11 \end{aligned}$	$\begin{aligned} & -\operatorname{COR} 20 \\ & 10-11 \end{aligned}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 10-7 \end{array}$
0.0000	6.4718	4.1325	3.5815	2.2869	9.5810
0.6325	6.0512	3.8122	3.3489	2.1098	8.9111
0.89844	5.8597	3.6729	3.2433	2.0329	8.6114
1.0954	5.7021	3.5606	3.1560	1.9707	8.3675
1.4142	5.5289	3.4320	3.0602	1.83996	8.0949
3.1623	4.3953	2.9334	2.7098	1.6265	7.0760
4.4721	4.7685	2.7909	2.6398	1.5451	6.0275
6.3246	4.6591	2.6321	2.5795	1.4573	6.5847
10.0000	4.6033	2.4790	2.5483	1.3724	6.3963

Cadnium Sulfate

c	m	Eqv Cond.	t+	$D(\mathrm{v})_{105}$	$1+m \times d$ ngarna/dm
0.0000	0.000000	118.01	0.3934	0.3630	1.0000
0.0010	0.001003	105.50	0.3840	0.13030	0.7896
0.0050	0.005015	81.90	0.3340	0.7500	0.6880
0.0100	0.010030	70.30	0.3840	0.7140	0.6338
0.0500	0.050164	48.75	0.3840	0.6000	0.5461
0.1000	0.100386	41.70	0.3690	0.5000	0.4839
0.2000	0.201025	34.62	0.3330	0.5100	0.4445
0.2500	0.251445	33.70	0.3230	0.4920	0.4367
0.5000	0.504750	27.00	0.2950	0.4320	0.4207
Sqre S $\times 10$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \mathrm{~N} \\ 10+12 \end{array}$	F12	Q12
0.0000	1.3733	0.0000	2.0172	0.0000	0.0000
0.6325	1. 4497	0.3620	2.1069	1.4030	0.2071
1.4142	1.4237	0.5793	1.9339	2.1075	0.3491
2.0000	1.4145	0.6897	1.8524	2.4231	0.4261
4.4721	1.3011	0.7985	1.6048	2.8823	0.5526
6.3246	1.3077	0.8945	1.6010	3.0973	0.6182
8.9443	1.2634	0.9492	1.5645	3.2810	0.6751
10.0000	1.2336	0.9368	1.5449	3.2979	0.6786
14.1421	1.0987	0.3349	1.3960	3.4177	0.7145
Sqrt S $\times 10$	$\begin{aligned} & \text { NR11 } \\ & 10-11 \end{aligned}$	$\begin{gathered} \text {-NR } 12 \\ 10-11 \end{gathered}$	$\begin{aligned} & \text { NR22 } \\ & 10-11 \end{aligned}$	Q10	820
0.0000	7.2817	0.0000	4.9575	0.7713	0.6364
0.6325	7.2069	1.2382	4.9590	0.7143	0.5368
1.4142	7.9988	2.3959	5.8887	0.6569	0.4772
2.0000	8.6376	3.2159	6.5956	0.6218	0.4436
4.4721	11.0641	5.5050	8.9704	0.5563	0.3852
6.3246	12.3780	6.9158	10.1100	0.5277	0.3414
8.9443	14.5451	8.8242	11.7451	0.5103	0.2399
10.0000	15.0258	9.1117	11.9983	0.5143	0.2809
14.1421	18.5932	11.7857	14.6342	0.5081	0.2396

Sqrt S	-R10	-R20	-COR10	-COR20	ROO/N
$\times 10$	$10-9$	$10-9$	$10-11$	$10-11$	$10-7$
0.0000	6.5790	4.4791	3.6409	2.4787	9.9910
0.6325	5.3925	3.3615	2.0844	1.8604	7.9088
1.4142	5.0620	3.1555	2.3014	1.7464	7.4241
2.0000	4.0983	3.0535	2.7109	1.6899	7.1840
4.0421	5.0238	3.1317	2.7796	1.7327	7.3702
6.3246	4.9391	2.3883	2.7311	1.5971	7.0777
8.9443	5.1795	2.6445	2.8605	1.4605	7.0836
10.00000	5.3580	2.6152	2.9571	1.4433	7.2233
14.1421	6.1900	2.5902	3.4037	1.4242	7.9839

CADMIUM IODTDE

c	m	Eqv Cond	t+	$D(v) 105$	+mod $\mathrm{lnCama} / \mathrm{dm}$
0.0000	0.000000	929.80	0.4083	0.9130	1.0000
0.0050	0.005085	66.54	0.4504	0.8760	0.6500
0.0900	0.070032	63.00	0.4477	0.8720	0.5800
0.0250	0.025104	55.06	0.1448	0.8640	0.4950
0.0500	0.050250	47.53	0.3208	0.8500	0.4350
$\underset{x^{\top}}{\operatorname{Squ}} S$	$\begin{array}{r} 111 / \mathrm{N} \\ 10+12 \end{array}$	$\begin{array}{r} 112 / N \\ 10+12 \end{array}$	$\begin{array}{r} 122 / \mathrm{N} \\ 10+12 \end{array}$	Fl 2	Q12
0.0000	1.1949	0.0000	7.3362	0.0000	0.0000
1.2247	1.2686	0.9278	5.7832	1.0239	0.3425
1.7321	1.3499	1.1852	6.1074	1.1725	0.4128
2.7386	1.4279	1.6294	6.7194	1.3884	0.5260
3.8730	1.4458	2.0775	7.6101	1.5767	0.6246
$\underset{\times 10}{\text { Sqrt }} \mathrm{S}$	$\begin{gathered} \text { NR } 19 \\ 10-11 \end{gathered}$	$\begin{array}{r} -N R 12 \\ 10 \times 18 \end{array}$	$\begin{gathered} \text { NR22 } \\ 10-19 \end{gathered}$	Q10	Q20
0.0000	8.3691	0.0000	1.3631	0.7781	0.6281
1.2247	8.9307	1.4327	1.9590	0.6170	0.5345
1.7321	8.9293	1.7328	1.9736	0.5813	0.5012
2.7385	9.6823	2.3479	2.0576	0.5490	0.4221
3.8730	11.3479	3.0887	2.1548	0.5563	0.3015
$\begin{gathered} \text { Sqret } S \\ \times 10 \end{gathered}$	$\begin{array}{r} \text { R10 } \\ 10-9 \end{array}$	+R20 $10-9$	$\operatorname{cop}_{x=-11}$	$\operatorname{cosen}_{0-11}$	$\begin{array}{r} \mathrm{ROO} / \mathrm{N} \\ 20-7 \end{array}$
0.0000	7.5615	2.4631	4.1845	1.3631	11.2826
1.2247	5.4797	2.2453	3.0326	1.2426	9.0077
1.7321	4.937	2.0010	2.7318	1.1072	8.0778
2.7386	4.5902	1.5985	2.4932	0.8835	6.9711
3.8730	4.6799	1.1052	2.5848	0.6104	6.2375

Appendix 2

For analysis of the experimentel data and where repeated calculations were involved we wrote a lew computer programmes in Algol language and maninulated them on the computer KDFg. A brief description of these programmes is given below.

The programe 1 onslysed the conductance data for the solution of the fuoss implicit equation in $c^{3 / 2}$ while the programme 2 solved the date for the dissociation constant, K_{a}, and the ion size parameter, a_{0}, using the Puoss explicit equetion. The programe 2 was kindly applied to us by Professor R.f. Puoss. Originally it wes in Fortran language that we translated it into Algol.

The programe 3 was designed to malyse data obtained fron salt diffusion experiments. It calculated concentrations of the solutions from measured specifjc conductences by the conductometric method of anelysis and then the cell constent and the integral diffusion coefficient.

For the conversion of integral into differential diffusion coefficients we needed a programme for the solution of simultaneous equations. This wes apolied to us by Fr.P.E Foran of the department of Astronomy of this unjversity. In this programe the simultaneous equations were solved by the method of determinants.

The programme 5, used for curve fitting by the method of least squares, belonged to Dr. M. Gibson of the computing department of this university and was available in the conputing library. It was particulerily used for fitting 4th or 5 th degree squations between molality and activity coefficients. The coefficients of the fits, thus obtained were
used in differentiations of the equations to obtain the activity term, ($1+\mathrm{md} \ln \mathrm{h} / \mathrm{dm}$). This is described in the programme 6.

The calculations of the Li-coefficients from the experimental transport data and their subsequent matrix inversion for obtaining the R-coefficients are described in the progranme 7.

Each of the programme starts with a comment heading which gives a brief discriotion of cslculations and is followed by intructions for and a specimen of the data input.

 quation in t to tho pores $3 / 2$ and then fites straw

 rear (20)s c[1]sme[j]xeme[i];

 sx: m: mosxamextz;
repeat: no:m sya; de:m: s:mblaxdttota; ermexddm ob;

 sy $:=5 y+y[i] ;$ sxy := sxy + re[i] $\times y[1] ;$ Syc : $: 5 y^{2}+5[\pm] 1 \uparrow 2$ gd: $x:=(n \times s \times \pi-s x \operatorname{sy}) / m ; \quad z=(5 x 2 \times s y=s x \times s y) / m ;$
 $\mathrm{Yc}[1]:=\mathrm{Xec}[1]+z_{3}$
de[i]: =adoskre[i] +6ktc[a]+yc[1]×e[1]: end;

Xa:wx; za:=z; 1:wher poto repeat eno use

Write (70, rsza);
writetcxt (70s[MEANGETRDR-INaLAPGDA[4s]a*]); write (70.f. me);

end;
$n:$ merest(20); 19 nei then foto acain;
close(20); ciove(70);

 [co] Headine[co]:
$1 ;$
g;
k;
n;

(n actual sots of C.
cauiv. ennc. दun Eana)
(uncre gama is the ayper of dasociation)

1; $\mathrm{OI}^{2} \mathrm{O} ; \rightarrow$
(1 ; for repeating caloulations on another set in this case goto [colreading[c]: on 0; for finish)

Speolmen input instructicns

S*JAJOTA[cc];
$0.2297 ;{ }^{-60.62 ;} 0.531 ; 20.525 ;$

\$53.99; . $01 ; 12$; 20;


``` ard caumajund onduoutity
```

Speciran data input
Tustmoticma ion data mput,

If (rans poosara is on nagetio tapo)

[50]s *alaca[cc]

Thotwata[ocT:
12;
78. $54:$
$.008003 ;$
293.16;
154.0 ;

6;
$.00800 ; 845.922$
.070009 94.063;
.0103 ; int.977;
$.01300 ; 143.955$
$.01500 ; 143.300 ;$
$.01700 ; 142.766$ \%
.01 997; 142.234;
$.02000 ; 141.575 \%$
.030009 i39 7rog
.04000 138.908:
$.05000 \% 136.750 \%$
$.05500 ; 136.189 ; 0 ; \rightarrow$
(nams and headine)
(no. cis sets cin and equiv. cond.)
(aloleotaio combent ravoluon)
(coselcion of visetisity of solvent)
(arsolve termarabo)
(appentmo valu of limbing equiv. coid.)
(appersmate valus of ionsse parawton)
(12 sets of e ard equiv. com.)

 Whacm sert;

 oben(20): onm(T0):

If xat

 If $c>0 . \operatorname{and} e \leq 1$ then $d:=9.9500-2.4101 \times 0+27.3377 \times 12$ - $118.402 \pi 13 ;$

If $c>.9$ ath $0<5$ then $d:=1.9017500 .3637510+0.825 \% 12$

- $0.625613 ;$

for $1:=1$ soop 1 ntit] n do $a[1]:=\operatorname{read}(20) ;$

wb: =read (20); ich j:=Tsten unt11 3 do p[j]:=read (20);
for $\mathrm{f}:=1 \mathrm{step} 1$ thtil 3 docij]: $=\operatorname{read}(20)$ g end;

Wy: metd (20) 口Sa

whitetext (\% 10 ,

writc (70. Is dro)

clase (20); clase(70);

Thetratuon to data inmo fon pogmome 3.
Tham[co]:
12; (munta a the contronents on the oan situod betweon a) choontadion 2 a fwotion os spodito ondzotydty and b) oquivo ochwotivity as a runction of comenbation

$a[1] ;$	Ge abore cumbions)
	(n cofrtetmen a ean robuen conc-
	cntratton ard spentic oomuetivitio
b[1];	
	condedivtty and ocrombatisn)
ธ;	($8=0$ in the solubime are not diluted chentise $5=15$. In $5=15$ then also
	puwar wo. $[1]$ and o[i])
wa;	(molectian bexme of tho waj\%)
$\mathrm{p}[\mathrm{i}]$;	(contuctents of cha betresm m/e and c)
q[i];	(cosfinionts of con betroen c/maru m)

[c]Headingle]: (name of the salt)
v; volum garamoon feo the cot given by
 (0 on durad obhervise
s; s=0. If swif thon also pmot wx and wy)
WX;
Wy;
k;

s; Wx; WY; $k ;$

(for solution 3)
(specific conduetivity of solution 3)
s; wx; wy;
k;
t;
1;
$\left(\begin{array}{l}\text { sonsolution 4 } \\ \text { specific condutivity cin eolution 4) }\end{array}\right.$
(tim in seconds foc a dfreusion run)
($1 m 7 \mathrm{fon}$ cell calibration With KCl
othermloe 1m0)
($1: 3$ if calculations are to be done
for anothe diffusion pum but with
the sare salt, in this case goto
[c] Headine[c]:
$1=2$ if calculations are to be done for anothor electrolyte, in this case goto n; $1=0$ for finish)

S*Ja lotalec];
4: 68

+4.7146; -0.069963; -0.00301695; +0.00025ithe;
O;

1.138%;
$0 ; 0.0$; 0; 33.577; 0; 20.558;
1.692.5\% 79 2;

4; 6:
4.0869 th.0227: t6.86540-3:-9.5673n-4;
4.7413; -7.0856n-2;-3.305710-3; tre.9576m-4;

15; 120.92;
1.003i: 0.0324; 0.00262;
$0.9970 ; \cdots .0331 ; 0.0004 ;$

1.1381;

15; 11. 687; 107.521; 10.850;
15\% 8.505: $1050793: 20.613 ;$
15\% 8.66t $107.777 ; 16.477 \%$ T. $623645031 ;$

1.1381 ;

15; 8.781; 108.444; 9.5054;
15; 12.493; 104.597; 29. 931 ;
15: 10.144; 97.134: 21.300;
$1.62105 ; 0 ; 0 \%$
equme The in a pomento the abtudo o

Instrubtons Ea data ingud
m;
n; $n ;$
i;
$5 n-19 ;$

n11; nea; o.o.g si; (nit oo. amo the orvitutents
of the tinst ar and is is the
ocmstart (e the sitest rov)

$\underset{\rightarrow}{\infty} \underset{\rightarrow}{\infty}$
\cdots

(pronch aricn ace eratras the progem othemise getongng)

Speenren input data

Whe mince a Jeast maveres

Speciran trax data
M
 395

5;
2:
12;
-1 ;
$0.07071 \% 1.9950 \%$
0.10000 1. 9700
0.22369 i.9707\%
$0.376 \% \quad 1.8790 \%$
$0.4472 ; \quad 7.853 \%$
?.0000: $\quad .9450 \%$
1.2247\% 2.0230\%
$1.4142 \% \quad 2.8000 ;$
9.5017 2.5730%
F. $6432 \% \quad 2.20 \mathrm{O}$
?.694i: 2.2060:
1.7321; 2.2450;

1;
0 ;
5; 5;
1;

1; 0;
0; 0; 0;
[cc]S *JAlctra[cc]serc *concn* Vs ${ }^{\text {* }}$ DIFWERETTITL*)TFIF *
劳IT[cc];

Thotanotion ice data hapu
(roceam is a manete bapo)

nog of dats acts of x and y)
(donee of ta equablo to be (1tuod)
(20. of equatons to be ficted)
(no. of dats actas of x and y)
(recds x aid it th pises)
(i2 setsof and y)

```
(leave as the as (hem)
    (two nur as as the decree
        of equation )
(ir ithen en is fitted
    between 2 and \(y\) but if 4
    then eqns 3 fitted between
    In \(x\) and \(n y\) )
(leave as is ha)
(leave as freh)
```

(nare and wadins, put \rightarrow after ;
if no more van is to be fitted
otherwise oto no. of data sets
of x and y
(data rai atting second eqn)

Spacinen data input

S-JALOPA[cc] ar I[co]:
$-1.0124720 \% ; \%$. $0557710-2 ; 4.64480 \mathrm{n}-3 ; 3.6477510-4 ; 0.0 ;$
5;
.0502; . $1006 ; .2017 ; .5088 ; .7669$
1 ;
[cc]rbe I[cc]:
$-1.172262-1 ; 9.3099820-3 ; 4.80877: 3 ; 3.77023204 ; 0.0 ;$
6;
$.10064 ; .20195 ; .25237 ; .30396 ; .5101 ; .71895 ;$
$0 ; 1$

```
0.6
0.75
\(\mathrm{O}_{6} \mathrm{~S}_{5}\) - \(\mathrm{O}_{8}\)
\(0.99 .610 \%\)
i.0; .604;
T-2 \(\% \cdot 56 ;\)
7.48
9.63 . 50 :
\(1.89 .576:\)
2.0; 0575
2.5\%.559\%
3.05 -56\%
3.5: -5\%
\(4.0 \%-577\)
1 :
\(\begin{array}{lll}0 ; & 5: & 5 ; \\ 4 & 5: & 0 \\ 4 & 0 & 0\end{array}\)
\(0_{;}^{:} 0_{8}^{\circ} 0_{i}^{\circ}\)
```


 50s\%;
open(20); DV:mag(20); open(LV):

again: copyeoritco: DH, [:]

 $z:=1 \mathrm{ead}(20) ; \mathrm{n}:-\mathrm{med}(20)$; rad:mead(20);

 ti[i]:mead(20); D[t]:uread(20); act[1]:=adea(20)
end:

fom i :z 1 steo p wati n do bertn

ff $c[i]=0.0$ then $112[i]:=00.0$ elne

$x[i]:=111[1) \times 122(1]-12[1] \uparrow 2 ;$
Mif[1]:ml22[1]/x[i];

$\operatorname{R22}[1]:=19[1] / x[1] ;$
If ma $=3$ then borfn $1 \mathrm{f} c[i]=0.0$ thon $x[i]:=0.01807 / z$ Olse x[1]:

$$
\text { cise } x[1]: 10.015 /(2 \times(1000 \times 0[1], k[1])) ;
$$

and; test(0);

for 1: $\sin \operatorname{stg} 1$ until n do bectn
write (DVs, f [1]):

writc (M, fs ci[I]);
writco(DV, $f, D i j) ;$
write(DV, f, act[j]); nomine(DV, 1); eng;

for 1 : 1 gtor 1 watg a do recth
apace (DV. 5);

writc (DV, fis In [1] 天的分);

wrtte(DVs fealtl×6);

nerline (DV a 1): cro;

for $i:=1$ stop 1 untti n do begin
space $(D V, 5)$;
watco(pis $\left.\hat{r}_{g} 10 \times \operatorname{scnt}(z \times c[1] \times(z 1-z 2) / 2)\right) ;$
wreto(Dvof mililxomit);
write (DV, form(i)<omit);

newline(DV, 1); end;

for $1:=1$ step 1 until n do begin
space (DV,5);
write (DV, fs $10 \times \operatorname{sqn} t(z \times d[i] \times(z 1 \cdots z 2) / 2))$;
write (DV, $f,-10-9 \times \operatorname{inc} 0[1])$; write (DV, f, $-10=9 \times \pi 20[1])$;

writc (DV, $f:-10-11 \times \operatorname{RO}[1] /(z \times[1])$);

end mat ntarad (20);
If withon roto again else ir $n=2$, then roto repeat;
close(20); closc(DV);
$\xrightarrow{\text { end }}$

70%					
S*3atomathes					¢5
[posil mindymm Chlogdolso					
0.00;	0.00000	15月,163	0.5045:	2.057	$\because .0000$
0.10%	0.10064	192.79:	0.50325	1.870;	0. $\mathrm{sen}^{\text {a }}$
0.25%	0.252e7;	125.458	0.50198	1.85t:	0.679\%
0.50 ;	0.57090	120.365	0.5002;	1.870;	0.8764;
0.70%	0.71895	8970	0.4992:	$1.893 ;$	0.8965
1.009	1.9835	[15.2)	0.193	i, \%h:	0.33 .5
$1.50{ }^{3}$	1.59\%0:	11806	0.450	2.02k;	S.atis
2.00;	2.15640\%	109.34;	0.4845	2.100%	0.968 ;
2.50	chertos	106.675	0.459	2.773	0.9700
$3.00 ;$	3.31130%	703.97%	0.4998	2.245?	\% 0050;
[r6os]rumitummiondmo[20]					
0.00%	0.00000	154.16;	O.5045:	2.059	8.0000
0.10 \%	0.10064	132.11:	0.5032\%	i. 879	0.8923;
0.25;	0.25869	125.45%	0.5019	1.854;	0.9790;
0.50;	0.57010;	120.36;	0.5002;	1.870%	0.8764;
0.70;	0.77895;	117.77\%	0.4992;	i.898;	$0.8795 ;$
1.03:	1:03834;	115.23;	0.4978;	1. ci44;	0.8835%
1.50%	1.58640;	112.06;	0.4960;	$2.024 ;$	O.9i04;
2.00;	2.95640;	109.34;	0.4045;	2.700 ;	0. 9381 ;
3.00%	$3.37130 ;$	103.97\%	0.4919;	2.245;	1.0050;
g \rightarrow					

References for Chaoters 1-6

1. F.W.Kohlrausch, Ann. Ploys., 1879, 6, 1.
2. S. Arfheni申us, a) Z. Phys. Chem., 1887, I, 631;
b) Phil. Mag., J.888, 26, 81.
3. J.H.Van't Hoff, Z. Fhysik. Cher., 1887, I, 481.
4. P. Debye and E. Hứckel, Physikı Z., 1923, 24, 305.
5. L. Onsager, a.) Phys. Rev., 1931, 37, 405;
b) Phys. Rev., 1931, 38, 2265.

6a. R.M.Fuoss and K.I.Hsia, Proc. Nat. Acad. Sci., U.S., 1967, 57, 1550.
b. Y.C.Chiu and R.M.Fuoss, J. Phys. Chem., 1968, 72, 4123.
c. K.I.Hsia and R.M.Fuoss, J. Amer. Chem. Soc., 1968: 90, 3055.
d. R. M. Puoss, Rev. Pure and Appl. Chem., 1968, 18, 125.
e. I.D.FeKenzie and R.M. Fuoss, J. Phys. Chem., 1969: 73, 1951.

7a. E. Pitts, Proc. Roy. Soc., A, 1953, 217, 43.
b. E. Pitts, B.E. Pabor and J. Daly, Trans. Faraday Soc., 1969, 65, 849.
8. W. Thomson (Lord Kelvin), a) Proc. Roy. Soc. Edinburgh, 1854, 3; 225; b) Trens. Roy. Soc. Edinourgh, 1857, 21, 123.
9. J. lieixner, a) Ann. Physik, 1941, 39, 333;
b) 1942, 41, 409;
c) $1943,43,244$.
10. H.B.G. Casimir, Rev. Fod. Ehys., 1945, 17, 343.
11. I. Prigogine. Etude Thermodynamique des Phenomenes Irreversibles, Dunod, Peris and Desoer, Liege, 1947.
12. S. R. De-Groot and P. Pazur, Non-Equilibrium Thermodynamics, North Holland, Amqsterdam, 1962.
13. D.D.Fitts, Non- Zauilibrium Thermodynemics, RcGraw-Hills, New York, 1962.
14. R. Haase, Thernodynemik dex Irreversiblen Prozesse, DietrichStainkopff, Damstadt, \quad Hermany, 1963.
15. I. Prigogine, Introduction to Irreversible Thermodynemics, 3rd Ed., Interscience, Hew York, 1967.
16. D.G. Miller, a) J. Phys. Chem., 1966, 70, 2639;
b) J. Phys. Chem., 1967, 71, 616;
c) J. Phys. Chem., 1967, 71, 3588.
17. J. Newman, 'Trensport Processes in Blectrolyte Solutions', in 'Advances in Blectrochemistry and Blectrochemical Engineering; Editor, C.W. Tobias, Interscience Publishers, London, 1967, 5, P. 87-135.
18. R. Daterson, 'Trreversible Themodynanics as Applied to Biological Systems; chapter 5, in Ifembrane Neteboliem and Ion Trensport; Editor, E.E. Bitter, Johnwiley and :ons, $\mathbb{N} . \mathrm{Y} ., 1970$, P. 128.
19. A. Katchalsky and P. Curran, 'Non Equilibrium Thermodynamics in Biophysics; Harvard Univ. Press, Cambridge, I965, a) P. 66; b) P. 80 .
20. Ref. 12, P.43-45.
21. G.J.Hooyman, Physica, 1956, 22, 751.
22. J.G.Kirkwood, R.L.Baldwin, P.J. Dunlop, I.J. Gosting and G. Kegeles, J.Chem. Fhys., 1960, 33, a)1505; b) 37.
23. L. A. Woolf, D. G. Miller and L. J. Ghosting, J. Amer. Chem. Soc., 1962, 84, 317.
24. K. Ficka, Berichte der Bunsengesellschaft, 1968, 72 , Nr 1, 60.
25. Ref. 162, P. 2652.
26. Appendix 1 of Ref. 16a.
27. D.R.Hafemenn, J.Phys. Chem., 1965, 69, 4226.
28. D.G.Miller, Chem. Rev., 1960, 60, 15.
29. M.J. Pikal and D.G. Miller, J. Phys.Chem.,1970,74, 1337.
30. Apendix 2 of reference 16 a.
31. A. L. Geddes and R.B. Pontius, Determination of Diffusivity; in Techniques of Organic Chemistry: Ed. A. Weissberger, Fhysicel Rethods of Organic Analysis, Interscience Fub. Co., N. Y., 1960, 3rd Bdition, I(2), P. 396-1004.
32. J.R.Vinograd and J.W WcBain, J. Amer. Chem.Soc., 1941, 63, 2008. 33. Emanuel and Olander, J. Chem. Engg. Data, 1963, 8, 31. 34.W.G Eversole et al., J. Phys. Chem., a) 1937, 41, 663;
b) $1942,46,370$.
35. Y.P. Gokhshtein, Zhur. Fiz. Khim., a) 1954, 28, 1417;
b) $1952,26,224$.
36. F.T. Wall andR.Wendt, J. Fhys.Chen., 1958, 62, 1581.
37.C.W. Gerlend and S. Tong, J. Phys. Cher., 1965, 69, 1781. 38: J. H. Northrop and in. L. Anson, J. Gen. Physiol., 1929, 12,543. 39. H.Mouquin and W.H.Cathcart, J.Amer.Chem. Soc., 1935,57,1791. 40. J.W.MAcBain and C.R.Dawson, Proc. Roy.Soc., 1935,148A, 32. 41. G.S.Hartjey and D.F.Runnicles, Proc.Roy.Soc., 1938,168A, 401. 42. A.R.Gordon, Ann.i.Y.Acad. Sci., 1945, 46, 285.
43. K.J.Mysels and J. T. McBain, J.Coll.Sci., 1948, 3, 45.
44. R.H.Stokes, J.Amer. Chem.Soc., a) 1950, 72, 763;
b) 1951, 73, 3527.
45. R.A.Robinson and R.H.Stokes, 'Electrolyte Solutions', Butterworths Sci. Publications, London, 1959, P. 253.
46. C.Barnes, Physics, 1934, 5, 4.
47. H.S. Yeh and G.B. Wills, J.Chem. Engg.Date, 1970, 15, 187. 48. S.A. Sanni and H.P. Hutchison, J.Sci.Inst.(J. Physics E), 1968, ́, Ser. 3, 1101.
49. G.J. Janz et.al., J.Fhys. Chem., 1966, 70, 536.
50. H.S. Harned et al., J.Amer. Chem. Soc., 1954, 76, 4219.
51. R. Francesconi, Ing. Chem. Ital., 1970, 6, 72.
52. H.S.Harned and H. Blander, J. Maer. Chen. Soc.,1953,75,2853.
53. G. Jones and G.M. Bollinger, J.Amer.Chem. Soc.,1931,53(1),411.
54. T. Shedlovsky, 'Conductivity' in Ref. 31, $\underset{(4)}{(4)}$, P. 3011.
55. R.I. Kay et al., J.Phys.Chem., 1965, 69, 2420;1967,71, 3925.
56. K.J. Vysels, J.Phys. Chem., 1961, 65, 1081.
57. E. King, J. Sci.Instrum., 1969, 2, 59.
58. J. Guint, C. R. Acad.Sci., 1969, C, 268, 2153.
59. J. Barthel, Angew Chem. Int. Ed. Bngl., I968, 7(4), 260. 60. R.M. Tuoss and I. Onseger, J. Phys. Chem., 1957, 61, 668. 61. H.M. Darget, E.J. Bair and C.A. Kraus, J.Aner.Chem.Soc., 1951, 73, 799.
62. R.H.Stokes, J. Phys. Chem., 1961, 65, 1242.
63. Ref. 45, ㄹ. 87.
64. G. Jones and D.M. Bradshaw, J.Amer.Chem.Soc., 1933,55, 1780.
65. A. Vogel, 'A Text Book of Quantitative Analysis; Longmans, 3rd Edition, 1961, P.154.
66. J.F.Chanbers, J.M.Stokes and R.H.Stokes, J.Phys.Chem., 1956, 60, 985.
67. H. S. Harmed and B. B. Owen, 'The Physical Chemistry of Electrolyte Solutions', 3rd Edn., Reinhold Publishing Corp., N. Y., 1958, 2.725.

6B. A. R. GordongJ. Chem. Phys., 1937, 5, 522.
69. T.B. Hoover, J. Phys.Chem., 1970, 74(13), 2667.
70. C. G. Swan and D.F. Bvans, J.Amer.Chem.Soc., 1966,88, 383.
71. J.C.Justice, J. Chim. Phys., 1968, 65, 353.
72. J.C.Justice, J. Chim. Fhys., 1969, 66, 1193.
73. R. Fernandez-Prini, Trans. Faradey Soc.,1969,65, 3311.
74. Private Communication with Vrof. R.M.Fuoss, 1969.
75. R.f. Fuoss and L. Onsager, Proc.Nat.Acad.Sci.,U.S., 1967; 57, 1550.
76. C.W. Devies, Trans. Faraday Soc., 1927, 23, 351.
77. E.A. Gusgenheim, Trans. Faraday Soc., 1969, 65,2474.
78. C.W. Davies, 'Ion Association', Butterworths(London), 1962, P.40-41.
79. J. Tames, O. Kaposi and E. Scheiber, Magyer Kem Polyoirat, 1966, 72, 362.
80. G. Jones and I. Doleg J. Amer. Chem. Soc., 1920,51, 1073.
81. P.A.Lyons and J.F.Riley, J. Amer.Chem.Soc.,1954,76, 5216. 82. Ref. 45, P. 495.
83. K.S.Spiegler, Trans. Paraday Soc., 1958, 54, 1409.
84. O. Kedem and A. Katchalsky, J. Gen. Physiol., 1961,45,143.
85. R.W.Gurney, 'Ionic Processes in Solutions', WcGrew-Hill, N.York, 1953.
86. O. Ya Semoilov, 'The Structure of Aqueous Solutions of Electrolytes and of Hydrated Ions. IZD-VO Ais SSSR, FOSKON,1957.
87. J. Lee Kavanau, 'Water and Solute-Water Interactions', Holden-Day, Inc., London, 1964.
88. Ref. 163, P. 2650.

89a.0. Kedem and S.R.Kalan, Trans.Faraday Soc., 1965,61,1997;
b.S.R. Caplan, J. Theoret. Biol., 1966, 10, 209.
90. Ref. 16e, P. 2652.
91. A.S.Sulovkin, Zhurnal Strukturnoi Mhimii, 1968,9(2),305.
92. G.Jones and M.Dole, J.Amer.Chem.Soc., 1929, 51, 2950.
93. Ref. 78, P. 36-37.
94. Ref. l6a, egn(38).
95. R. Paterson, J. Anderson and I. Hamilton, B.Sc. Thesis, The University, Glasgow W.2., 1970.

References for Anvendix I

1. A. Bucken, Ed. Landolt-Bornstein, 'Zehlenwerte Und Funktionen aus Physik, Chimie, Astronomie', Geophysik Und Technik, 6th Ed., 2(7), Berlin: Springer-Verlag,1960.
2. Steel, J. Fhys. Chem., 1965, 69, 3208.
3. Vitagliano and Caramazza, Gaz. Chim.Ital.,1960,90,1730.
4. Caramazza, Gaz. Chim. Ital., I960, 90, 1721.
5. Timmermans, 'The Physico-Chemical Constants of Binary Systems in Concentreted Solutions', $\mathbb{N} . Y_{\text {. }}$ Int. Sci., Fub., Inc., 1960.
6. D.G. Filler, J.Phys. Chem., 1966, 70(8), 2639.
7. Firth and Tyrrell, J. Chem. Soc.,A, 1962, 2042.
8. Kaminsky, Z. Physik. Chem., N.T., 1957, 12, 206.
9. Benson and Gordon, J. Fhys. Shem., 1945, 13, 473.
10. Suryenerayona et al., Acta Chim.Aced.Sci.Hung.,1958,17,327.
ll. Chembers, J. Chys. Chem., 1958, 62, 1136.
11. Narsh and Stokes, Aus. J. Chem., 1964, 17, 740.
12. Darken et.al., J.Amer.Chem.Soc., 1942, 64, 621.
13. Kaimakov and Varshavskaya, Russ. J. Phys.Chem.,1966,2,89-105.
14. R. Parsons, 'Hand Book of Electrochemical Constants, Butterworths, London, 1959.
15. Haase et al., Z. Physik, Chem., N. F., 1965, 46, 129.
16. Chapman, Ph.D. Thesis, University of California, UCRI17768, 1967.
17a.Fary, Ph.D Thesis, Institute of Paper Chemistry, 1966
(this reference is collected from ref. 17).
17. Prue and Covington, J.Chem. Soc., A, 1957, 1567.
18. Haase et.al., Z. Phys. Chem., N.F., 1964, 42, 32.
19. Campbell et al., Cen. J.Chem., 1959, 37, 1288.
20. Cambell et.al., Can. J. Res., 1950, 28B, 161.
21. Wishaw and Stokes, J.Amer. Chen. Soc., 1954, 76, 2065.

References for Anpendix 1 continued.....

23. MacInnes and Cownerthwaite, Prens. Faraday Soc., 1927,23,400. 24. Milios and Nevman, University of California, UCRI-18105,1968. 25. Jones and Talley, J.Amer. Chem. Soc., 1933, 55, 624.
24. Shedlovsky, J.Amer. Chem. Soc., 1932, 54, 1411.
25. Longsworth, J.Amer. Chem. Soc., 1935, 57, 1185.
26. Sukhotin et al., Electrokhimiya, 1969, 5, 114.
27. Harned and Hudsen, J.Amer, Chem. Soc., 1951, 73, 652.
28. Gokhshtein, Z.Fiz. Whim, 1952, 26, 224.
29. Dunsmore, Jolota and Daterson, J.Chem.Soc.,A, 1969, 1061.
30. Tamas, Kaposi and Scheiber, Ragyar Kem Folyoirat, 1966,72,362.
31. Harned and Owen, 'The Physical Chemistry of 价ectrolyte Solutions', 3rd Ed., Meintiold Pub. Corp., N.Y., 1958.
32. Jones and Bickford, J.Amer. Chen.Soc., 1934, 56, 602.
33. Benson and Gordon, J. Mhy. Chem., 1945, 13, 473.
34. Chamber, J. Phys. Chern., 1958, 62, 1136.
35. Longsworth, J.Amer. Chem. Soc., 1935, 57, 1185.
36. Internation Critical Tables, 1929, 6, P. 310 .
37. Lengyel, Temas, Giber and Holderith, Fag. Ker Folyoirat, 1964, 70, 66.
38. Robinson and Stokes, 'Electrolyte Solutions', Butterworths, London, 1959.
39. Aston et al., J.Amer. Chem. Soc., 1933, 55, 3067.
40. Ray et.al., J.Amer, Chem. Soc., 1958, 80, 1029.
41. Campbell and Friesen, Can. J. Chem., 1959, 37, 1288.
42. Campbell and Singh, Cen. J. Chem., 1959, 1959.
43. Harned, J.Amer Chen. Soc., 1951, 3292;

45a. Lakshminarayana, J. Phys. Chem., 1966, 536.
46. Firth et.el., J.Chem.Soc., A, 1962, 2042.
47. Spiro et.el., Trans. Feraday Soc., 1952, 263.
48. Hase, Z.Phys. Chen., 1962, 375.
49. Longsworth, Chem. Rev., 1932, 171.
50. Haase et al., Z. Phys. Chem., 1964, 42, 32.
51. Campbell and Singh, Can. J. Chem., 1959, 37, 1959.
52. Hall, Wishaw and Stokes, J.Amer. Cher. Soc., 1953, 75, 1556.
53. Fason and Culvern, J.Amer. Chem. Soc., 1949, 71, 2387.
54. Sahay, Ind. J. Chen., 1963, 1, 103.
55. Kerker et al., Trans. Faradey Soc., 1960, 56, 1039.
56. Kundra et al., Zh. Neorg. Mhim., 1964, 9, 2454.
57. Daward and Huffnen, J. Phys. Chem., 1959, 63, 1830.
58. Elmore et al., J.Amer. Chem. Soc., 1946, 68, 2528.
59. Harned and Blake, J. Amer. Chem. Soc., 1951, 73, 2448.
60. NacInnes and Longeworth, 'Princinles of Blectrochemistry', Rejnhold Fublishing Corp., N.Y. , 1939, P. 339 .
61. Longsworth, J.Amer. Chen. Soc., 1935, 57, 1185.
62. Vinograd and IFBain, J. Amer. Chem. Soc., 1941, 63, 2008.
63. Jones and Colvin, J.Aner, Chem. Soc., 1940, 62, 338.

64* Feddorff, Ann. Dechinie, Ser. 11, 1941, 16, 154.
65. Jenkins and Tonk, J.Aner. Cher. Soc., 1950, 72, 2695.
66. Indelli, Ricerca Sci., 1953, 23, 2258.
67. Crews, Proc. Phys. Soc.(London), 1934, 46, 764.
68. Hartley and Doneldson, Trans. Faraday Soc., 1937, 33, 457.
69. Mullin and Nienow, J.Chem. Engg. Da.ta, 1964, 9, 526.
70. Hlasko and Salit, Bull. Int.Acad. Polonoise, A, 1935, 189.
71. Roughton, J. Anolied Chem.(Iondon), 1951, 1, Suopl. Issue No. 2, S I4I.
72. Hamer, J. Amer. Chem. उoc., 1935, 57, 662.
73. Gordon et. a.1., J.Chem. Fhys., 1940, 423.
74. Sevino and Vitagliano, Ric. Sci. Rend.sez., A2, 1962, 341.
75. Fedoroff, Ann. Dechimie, 1941, Ser. 11, 16, 154.
76. Owen and Gurry; J.Amer.Chem.Soc., 1938, 60, 3074.
77. Fritz and Fuget, J. Whys. Chern., 1958, 62, 303.
78. Bversole et al., J. Phys. Chem., 1942, 46, 370.
79. Bmannel et el., J.Chem. Bnef. Data, 1963, 8 , 31.
80. Furser and stoles, J.Aner. Onen. Soc., 1951, 73, 5550. * These references are the same.

References for Avnendix I contimued...

81.* Demessieuse et al., Ann. De Chim., 1941, 16, 215.
82. Dye et 91., J.Amer, Chem. Soc., 1960, 82, 315.
83. Walton, J.Amer. Chem. Soc., 1949, 71, 576. 84. Lang et. al., J.Amer. Chern. Soc., J.954, 76, 4716.
85. Purser et al., J.Amer. Chen. Soc., 1951, 73, 5650.
86. Wall and Wendt, J. Plys. Chem., 1958, 62, 1581.
87. Bray, J.Amer. Chem. Soc., 1927, 49, 2372.

88* Demassieux et al., Ann. De Chim., 1941, Ser.11, 16, 215.
89. Lang and King, J.Amer. Chem. Soc., 1954, 76, 4716.
90. Longsworth, 'structure of Blectrolyte Solutions', Ed.

Hemer, John wiley and Sons, Inc., N.Y.? 1959, P. 183.
91. Sahay, J. Sci. Industr. Res., 1959, 18B, 235.
92. Garland and Tong, J.Mys. Chem., 1965, 69(5), 1718.
93. Rysselberghe etal., J.Aner. Chem. Soc., 1937, 59, 336. * These references are the same.

[^0]: * Janz end coworlers ${ }^{49}$ encountered the same difficulty and avoided it by perforrins periodic caliblrations and used a sraph of cell constent as a function of the working life of the djephragm.

[^1]: $\overline{9 \cdot 4-26}$

