UNIVERSITY OF GLASGOW (Institute of Chemistry)

Application of Irreversible Thermodynamics to Transport Processes in Binary Electrolyte Solutions

SATISH K. JALOTA (Ph.D. Thesis)

July, 1971.

GLASGOW SCOTLAND

ProQuest Number: 11011967

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011967

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

My Uncle

To

Mỹ UNCLE

a state of the second second

n na serie de la constant de la cons La constant de la cons La constant de la cons

and the second second second second second

Table of Contents

Acknowle	edgme	ent.	• •		•		• •	•	•••	• •	•	••	iv
Abstract		•	• •	• • •	· •	• • •	• • •	•	• • •	••	•	••	v
Nomenclature vij							vii						
Chapter	1.	Int	rodu	ctio	1	,	• • •	• •	•	• • •	••	••	l
Chapter	2.	The	ory	of I	rrev	rers	ible	The:	rmod	ynam	ics	83	
		App	lied	to !	lrar	າຂມ໐:	rt Pi	roce	sses	in	Bina	ry	
		Ele	ctro	lyte	Sol	uti	ons.	e •		•	n •	* *	5
Chapter	3.	A S	urve;	y of	Tra	msp	ort	Prop	erti	es o	f		
• •		Bin	ary	Elec	trol	yte	Solu	atio	ns a	nd S	elec	tic	n
		of	a Me	thod	for	• Ex	perir	ment	al S	tudy	• • •	•	26
Chapter	4.	Mea	sure	nent	of	Dif:	fusiv	vity.	• • •	••	•	••	33
Chapter	5.	Mea	sure	nent	of	Cond	lucta	ance	• • •	• •	•	• •	56
Chapter	6.	Res	ults	and	Dis	cus	sion	of [.]	the	Irre	vers	i-	
		ble	The:	rmody	ynan	nic .	Analy	ysis	• • •	• •	•	••	85
Conclusi	ons.		••	•	• • •	•	••	• • •	•	••	• • •		125
Appendix	: 1	••	• • •	•	••	• • •	•	• • •	••	•	• • •		127
Appendix	2.	• •	• • •	•	••	• • •	• •	• • •	••	•	• • •		173
Referenc	es í	for	Chap	ters	1-6		• •	••	• • •	•	••	•	189
Referenc	es 1	for	Арреі	ndix	l	•	• • •	• •	••	•.••	•	••	194

It gives me a great pleasure to thank my research supervisor, Dr. R. Paterson, for assigning me this work, his sincere guidance and useful timely discussions during the course of these investigations and helping me in the preparation of this thesis.

I am thankful to Dr. H. S. Dunsmore for taking interest in my practical work and writing some of the major computer programmes required for mathematical analysis of the experimental results.

I am also thankful to Professor J. M. Robertson for providing me the necessary laboratory facilities and financial assistance in the form of a student demonstratorship.

My thanks are also due to the head of the computing department for letting me attend a short course in Algol computing language; to J. Walker for preparing the computer data tapes and assisting me in the setting of the experimental equipment; to the glass blowers for constructing the conductance and diffusion cells; to the electronics work shop for lending me the Wayne Kerr Oscillator and to my colleagues, J. Anderson and R. Cameron, for correcting a part of the thesis.

Finally I must also thank my sister, Niss Neelam Jalota, for the laborious typing of this manuscript.

Theory of irreversible thermodynamics has been applied to isothermal transport processes in binary electrolyte solutions. Relations are presented which express the commonly measureable transport qualities in terms of Onsager transport L_{ik} and inverse frictional R_{ik} coefficients. Relations for L_{ik} and R_{ik} coefficients are presented in terms of the experimental quantities, t_i , Λ and D_{v} .

Equivalent conductances of rubidium and caesium chlorides and diffusion coefficients of rubidium chloride have been measured in the concentration range O-3H. These have been combined with the remaining transport, activity and density data which existed in the literature and the L_{ik} and R_{ik} coefficients obtained. Literature from 1930 to 1970 has been surveyed for transport numbers, equivalent conductances, diffusion and activity coefficients for 1:1, 1:2, 2:1 and 2:2 electrolyte solutions in aqueous media. Results, for twenty eight systems for which data was also complete, have been calculated as a basis of comparison.

The relative sizes of these coefficients have been discussed in terms of ion solvation and water structure. An interpretation of the physical significance of frictional coefficients is developed for completely dissociated as well as associated 1:1 electrolytes. Association in alkali metal chlorides, potassium and silver nitrate solutions has been studied by the conductance theories of Pitts and Fuoss. Abnormalities in rubidium-chloride and caesium-chloride interactions have been ascribed to ion association and the true interionic friction coefficientcalculated and compared with those for the completely dissociated alkali metal chlorides. The correction reduces the interionic friction from its apparent value calculated on/stoicheiometric basis and places the salts in a rational order. The significance of q_{12} , the degree of coupling between mobile species, has been developed as a suitable parameter for comparison of a variety of electrolytes of different valence types.

labernel production of single

Reference de la compañía e

eleteret.

Nomenclature

.

-

A.	Anion in chapter 2; a coefficient of empirical fit in $eqn(5.12)$ and (6.13) .					
A _i	Affinity of chemical reaction.					
a., a.	Coefficients of empirical fits.					
В	A coefficient of empirical fit in eqns (5.12) and (6.13).					
cma, cmb	Mean concentrations.					
C	Cation in chapter 2.					
°,	Capacitance.					
ci	Molar concentration of ion i.					
đ	Density.					
D(t)	Concentration average diffusion coefficient.					
\overline{D}	Integral diffusion coefficient.					
D,D _v	Volume fixed differential diffusion coefficient.					
DO	Diffusion coefficient at infinite dilution.					
D _O	Solvent fixed differential diffusion coefficient.					
dS	Total change of entropy.					
₫ _e S	Change of entropy due to interactions with the exterior.					
d _i S	Internal production of entropy.					
fa,fb	Vacuum correction factors for salt and solutions.					
F	Faraday of electricity.					
^F ik	Fraction of the force applied on i which opposed by friction with k.					

Degree of coupling between species 1 and 2. q₁₂ Degree of coupling between species i and solvent. 910 Coefficients of friction between species i and R_{ik}, R_{i0} k and, i and solvent. Apparent and true resistances of solutions. R_{p}, R_{T} Stoicheiometric coefficient of ion i. ri r Sum of stoicheiometric coefficients. Local entropy density per unit volume. s_v S Entropy in chapter 2 and ionic strength in chapter 6. Τ Absolute temperature. th i Hittorf transport number. t_i^c e.m.f. transport number. t_i Transport number. t,tr Time of a diffusion run. V Volume. Velocity of species i in liters /cm²sec. v_i v_i Velocity of species i in cm/sec. W Frequency of alternating current. Molecular weight of solute. ₩ъ Х Thermodynamic force. X, Thermodynamic force on species i.

x Distance in cm.

viii

f ₊	Stoicheiometric activity coefficients.
I	Current density.
i	Numbers.
Js	Flow of entropy.
div J _s	Divergence of entropy.
J(t)	Flux of solute at time t.
Ji	Flow of species i.
J_{i}^{O}	Flow of i relative to solvent.
j _i	Flow of free ions i.
^J ch	Flow of chemical reaction.
K _a	Association constant.
k	Numbers.
L	Thermodynamic diffusion coefficient.
1	Diffusion path.
L _{ii}	Intrinsic mobilities of species i.
L _{ik}	Coefficient of interaction of mobilities of i with k.
m	Molality.
N	Normality.
n	Numbers.
M	Molarity.
M _O	Molecular weight of solvent.
q	Transport of heat.

iz

-

xi	Thermodynamic force on free ions i.
x _{ik}	Coefficient of kinetic friction between species i and k.
у	Mean molar activity coefficient.
Zi	Valency of ion i.
0	Solvent.
1	Cations.
2	Anions.
S	Cell constant in conductance measurements.
×	Degree of dissociation.
ß	Cell constant in the diffusion experiment.
ଟ	Rate of entropy production.
$ ilde{\Phi}$	Dissipation function.
λ_{λ}^{0}	Limiting conductivity of ions i.
Δ	Equivalent conductance.
Д,	Electrochemical potential of species i.
M;	Chemical potential of species i.
<i>µ</i> _{ik}	Chemical potential of neutral electrolyte or ion pair.
ø	Electrical potential.
Y	Mean molal activity coefficient.
κ	Specific conductivity.
n	Coefficient of viscosity.
S+, S_	Surface density of water around an ion i.

X.

CHAPTER 1

Introduction

In electrolyte solutions transport of charge and mass takes place if an electrical potential is applied to the solution or if a concentration gradient exists in it. Considerable effort has been put on the elucidation of these processes from the original investigations of Kohlraych(1879)¹, Arrhenious (1887)² and Van't Hoff (1887)³ upto the notoable work of Debye and Hückel $(1923)^4$ and Onsager $(1931)^5$. The molecular theories of electrolytic conductance and diffusion are based on the laws of interionic attraction and the concept of ionic atmosphere. These theories successfully account for the observed transport quantities in dilute solutions where long range coulombic forces alone are of importance and where other influences such as intermolecular and short range repulsive forces between ions may be negligible. In concentrated solutions however specific effects become significant, flow of an ion is affected by the presence of similar and counter ions. As concentration increases the dielectric constant changes in the vicinity of an ion and there are specific and changing interactions between ions and solvent molecules. For these reasons theoretical equations for diffusion and conductance are limited to a very narrow range of concentration which for 1:1 electrolytes is upto 0.01M and still lower for higher valence type electrolytes. Fuoss and coworkers⁶ and Pitts⁷ have recently tried to extend the concentration limit of their theoretical conductance equations by taking into account short range interionic effects.

1

Their treatment is valid only up to $\simeq 0.05$ M in solutions of completely dissociated 1:1 electrolytes. This concentration limit is further reduced in the case of associated electrolytes and α solvent of low dielectric constant.

An alternative phenomenological approach to the problem has been developed over the last few decades. It is based on the phenomenon of coupling between two or more processes in a transport experiment. In electrolyte conductance, for example, the two processes taking place are the simultaneous flows of cations and anions in the opposite directions under a gradient of electrical potential. The force acting on a species affects the flow of the second and vice-verse. This, the phenomenon of coupling, was first rationalised by Lord Kelvin(1854)⁸ in a study of the thermoelectric effect. Rigorous treatment was given by Onseger(1931)⁵ who developed the theory of irreversible thermodynamics later to be expanded and generalised by Meixner⁹, Casimir¹⁰ and Prigogine¹¹. The complete formulation of the subject is most adequately treated in a number of treatises^{12,13,14,15}.

The theory of irreversible thermodynamics has been specifically applied to isothermal transport processes in electrolyte solutions by Hiller¹⁶ and in a slightly different but equivalent form by Newman¹⁷. The complete picture of the theory as presented by Miller can be applied directly to experimentally measureable transport properties and the application leads to a general description which is valid in any range of concentration. The transport processes are described by phenomenological coefficients which specifically measure the kinetic interactions between ion and ion, and ion

ି । ମୁ and solvent. The concentration dependence of the transport properties like conductance, transport numbers and diffusion coefficients are well described in terms of these phenomenological coefficients which are therefore more fundamental than the transport properties themselves and a knowledge of these coefficients gives better in-sight into the transport processes irrespective of the concentration range.

The interpretation of the transport processes in terms of the phenomenological coefficients is qualitative and therefore becomes more meaningful when a closely related series of electrolytes are considered. One such series is that of alkali metal chlorides. Miller 16a collected literature data for conductance, transport numbers and diffusion coefficients in aqueous solutions of lithium, sodium and potassium chlorides in the concentration range 0-3%, applied his relations and obtained the phenomenological coefficients. These transport data were not complete for rubidium and caesium chlorides. Equivalent conductances of both and diffusion coefficients of rubidium chloride alone were lacking. These have been measured and presented in this thesis to complete the irreversible thermodynamic analysis of the whole alkali metal chloride series and make a comparison of the changing trends of the magnitudes of phenomenological coefficients when atomic size of the cations in this closely graded series increases regularly from lithium to caesium while the anion remains the same and to find an explanation for the highest values of conductance, transport numbers and diffusion coefficients in solutions of rubidium chloride while this electrolyte lies below caesium chloride in the series.

C) C) C) The theory of irreversible thermodynamic analysis is presented in chapter 2 where it is shown that only three transport quantities, t_i , Δ and D_v , are required to explain the transport processes in binary electrolyte solutions. There are two formalisms in which the phenomenological equations are described. The first is that of direct transport L_{ik} coefficients and the second is that/inverse frictional R_{ik} coefficients.

A detailed literature survey from 1930 onwards was made to collect the transport quantities for 1:1, 1:2, 2:1 and 2:2 binary electrolyte solutions and obtain the phenomenological coefficients for these systems as a basis of comparison. with those of the alkali metal chlorides. This is described in chapter 3. The experimental procedures for the measurements of diffusion coefficients and conductances are described in chapters 4 and 5. In chapter 5 ion association in 1:1 electrolyte solutions has been studied using the conductance theories of Fuoss & Pitts and the results of calculations of the complete thermodynamic data for rubidium and caesium chlorides are presented in chapter 6 and the physical significance of the phenomenological coefficients, Lik and Rik, developed. The results of calculations for all other systems are presented in appendix 1. Seven computer progerammes were written in Algol language for miscellaneous and repetitive calculations. These are described in appendix 2.

Ą

CHAPTER 2

Theory of Irreversible Thermodynamics as Applied to Transport Processes in Binary Electrolyte Solutions.

2.1 Entropy Production in an Irreversible Process: Tystems undergoing irreversible processes may be divided into macroscopically small local subsystems. If each subsystem is considered to be at local equilibrium then the laws of classical thermodynamics are valid. If perturbations from equilibrium are not large, the change of entropy of the systems in the irreversible process is given by

$$dS = d_{\rho}S + d_{i}S \tag{2.1}$$

where $d_e S$ is the flow of entropy due to interactions with the exterior and $d_i S$ is the production of entropy inside the system. $d_i S$ is zero for a reversible process but is always positive if changes occur irreversibly.

For an isolated system in which neither energy nor matter can be exchanged,

$$d_{o}S = 0 \tag{2.2}$$

and the entropy production is given by

$$dS = d_{i}S \ge 0 \tag{2.3}$$

If two irreversible processes, 1 and 2, occur in an isolated system then

$$dS = d_{i}S^{1} + d_{i}S^{2} \ge 0$$
 (2.4)

Applying eqns(2.2) and (2.3), it is postulated that

(ð

$$a_i s^1 \ge 0$$
 and $a_i s^2 \ge 0$ (2.5)

77

A physical situation in which $d_i S^1 \lt 0$ and $d_i S^2 \lt 0$ is excluded That is, in every macroscopic region of the system the entropy production is positive.

In coupled chemical reactions, however, if two simultaneous reactions, 1 and 2, occur, then it is possible that the rate of entropy production in 1, d_1S^1/dt , is positive and in 2, d_1S^2/dt , is negative provided their sum is positive. The reactions are then coupled, reaction, 1, proceeding spontaneously and driving the second egainst its natural or spontaneous tendency. Such thermodynamic coupling is an essential feature of living systems involved in active transport¹⁸.

2.2 The rate of Entropy Production and the Dissipation Function: The rate of entropy production for a system, $d_i \beta/dt$, may be considered to be the sum of contributions from all volume elements so that

$$\frac{d_{i}S}{dt} = \int \sigma \, dV \qquad (2.6)$$

Where σ is the local rate of production of entropy per unit volume, V.

From eqn(2.1), the rate of change of entropy is

$$\frac{\mathrm{dS}}{\mathrm{dt}} = \frac{\mathrm{d_e}^{\mathrm{S}}}{\mathrm{dt}} + \frac{\mathrm{d_i}^{\mathrm{S}}}{\mathrm{dt}}$$
(2.7)

The total entropy of a system, S, may be defined in terms of the local entropy density (entropy per unit volume), S_v , bv^{20a}

$$S = \int_{V} S_{v} dV \qquad (2.8)$$

The change in total entropy with time becomes

$$\frac{\mathrm{dS}}{\mathrm{dt}} = \int \frac{\mathbf{J}S_{\mathrm{v}}}{\mathbf{J}t} \,\mathrm{dV}$$
(2.9)

 $\frac{d_e S}{dt}$ is related to the flow of entropy, J_s , by

$$\frac{d_e S}{dt} = -\int div J_s dV \qquad (2.10)$$

Substituting eqns(2.6), (2.9) and (2.10) in eqn(2.7), we obtain

$$\int_{V} \frac{\mathbf{J}S_{v}}{\mathbf{J}t} \, \mathrm{d}V = -\int_{V} \mathrm{d}\mathbf{i}v \, \mathbf{J}_{s} \, \mathrm{d}V + \int_{V} \mathbf{\sigma} \, \mathrm{d}V \tag{2.11}$$

Eqn(2.11) describes the total rate of change of entropy with time. For any local change it becomes

$$\frac{\partial f}{\partial s} = -\operatorname{div} J_{s} + \boldsymbol{c}$$
 (2.15)

The rate of change in local entropy is therefore equal to the entropy produced, σ , plus the entropy flow term, - div J_s.

The necessary conditions for a state of equilibrium are that

$$\frac{\mathbf{J}S_{\mathbf{v}}}{\mathbf{J}\mathbf{t}} = 0 \text{ and } \operatorname{div} \mathbf{J}_{\mathbf{s}} = 0$$
 (2.13)

and therefore from eqn(2.12),

$$\mathbf{G} = \mathbf{0} \tag{2.14}$$

For a system in steady state, however,

ි) ි)

$$\frac{\eta_{z}}{\eta_{z}} = \Phi$$

div $J_s = \sigma$ (2.15)

For a continuous system, the entropy production, σ , is given by the relationship 19,

$$\boldsymbol{\sigma} = \left(\frac{J_{s}}{T}\right) \text{ grad } (-T) + \sum_{i=1}^{n} \left(\frac{J_{i}}{T}\right) \text{ grad } \left(-\widetilde{\boldsymbol{\mu}}_{i}\right) + J_{ch} \cdot \left(\frac{\tilde{\boldsymbol{\lambda}}_{i}}{T}\right) (2.16)$$

where J_s , J_i and J_{ch} are the flow of heat, matter and chemical reaction (rate) multiplied by their conjugate driving forces, defined by the negative gradients of the temperature, T, electrochemical potential, $\widetilde{\mu}_i$, and the affinity of chemical reaction, A_i , respectively.

 σ may be replaced by the dissipation function, $\oint = T\sigma$. It has the dimensions of energy per unit time and is a measure of the rate of local dissipation of free energy. Relation (2.16) may be reformulated as

$$\oint = \operatorname{Te} = \operatorname{J}_{s} \operatorname{grad} (-T) + \sum_{i=1}^{n} \operatorname{J}_{i} \operatorname{grad} (-\widetilde{\boldsymbol{\mu}}_{i}) + \operatorname{J}_{ch} \cdot A_{i} > 0 \qquad (2.17)$$

For isothermal transport processes in electrolyte solutions in which no chemical reactions take place, the dissipation function, $\mathbf{\Phi}$, is given by the second term on the right hand side of eqn(2.17) and defined as the sum of products of conjugate flows and forces. For a system consisting of a neutral solvent, 0, and n solute species, the dissipation function is

$$\mathbf{f} = \mathbf{T}\mathbf{\sigma}' = \sum_{i=1}^{n} J_i \mathbf{X}_i$$
 (2.18)

and

 $\hat{\mathbb{C}}$

where J_i is the mass-fixed flow of species, i, in moles/cm² sec, and X_i is the thermodynamic force in joules/mole cm.

2.3 <u>Frames of Reference for Plows</u>: The definition of flows presented in eqn(2.18) is given in terms of an arbitrary frame of reference. It has been shown²⁰, however, that any frame of reference may be chosen. The choice depends on the purpose of study. The transport equations for binary electrolytes become intuitively more accessible if the solvent fixed rather than, for example, the volume fixed or molar average velocity frame of reference is used. Relations exist for the conversion from one frame of reference into another^{21,222,23,24}.

For a binary electrolyte solution consisting of \dot{c} tion, l, anion, 2, of valencies Z_1 and Z_2 respectively and solvent, O, eqn(2,18) becomes

$$\Phi = J_1 X_1 + J_2 X_2 + J_0 X_0$$
 (2.19)

where X_i are the gradients of electrochemical potentials so that

$$X_{i} = -\frac{\partial \tilde{\mathcal{U}}_{i}}{\partial x} = -\left(\frac{\partial \mathcal{U}_{i}}{\partial x} + Z_{i}F\frac{\partial \phi}{\partial x}\right) \qquad (2.20)$$

where x is the distance parameter, $\frac{JUi}{3x}$ and $\frac{J\phi}{3x}$ are the gradients of chemical and electrical potentials.

The Gibbs-Duhem equation states that

$$n_1 d\tilde{\boldsymbol{\mu}}_1 + n_2 d\tilde{\boldsymbol{\mu}}_2 + n_0 d\tilde{\boldsymbol{\mu}}_0 = 0 \qquad (2.21)$$

• •

Dividing eqn(2.21) by the volume, V, and differentiating with respect to x, we obtain

$$c_1 X_1 + c_2 X_2 + c_0 X_0 = 0$$
 (2.22)

Where $c_i = n_i/V$, are the concentrations per unit volume. Eqn(2.22) shows that the forces on 1, 2 and 0 are not independent. Eliminating X_0 from eqn(2.19) and (2.22), the dissipation function becomes

$$\oint = (J_1 - \frac{J_0 c_1}{c_0}) X_1 + (J_2 - \frac{J_0 c_2}{c_0}) X_2$$
(2.23)

The flow, J_i , is given by the product of concentration, c_i , and velocity, v_i , of the species, i, so that

$$J_{i} = c_{i}v_{i} \qquad (2.24)$$

In these terms, $(J_i - J_0 c_i / c_0)$ of eqn(2.23) is defined as $c_i \chi$ $(v_i - v_0)$. It is therefore the flow of species, i, relative to solvent, 0, and is given the symbol J_i^0 so that

$$J_{i}^{0} = c_{i}(v_{i} - v_{0})$$
 (2.25)

The dissipation function may therefore be represented in terms of two flows and two forces, J_1^0 , J_2^0 and X_1, X_2 respectively;

$$\oint = J_1^0 X_1 + J_2^0 X_2$$
 (2.26)

2.4 <u>The Phenomenological Equations and the Onsager Recipro-</u> cal Relations: In situations where a system deviates only slightly from equilibrium, linear phynomenological equations may be written relating the flow of a species, i, to all other forces so that for an n+l component system,

$$J_{i} = \sum_{k=0}^{n} L_{ik} X_{k}$$
 i=0,1,2,3...n (2.27)

The terms L_{ik} are the phnomenological coefficients and are independent of the forces.

For a one flow-one force system, the phenomenological equation is

$$J_{i} = L_{ii}X_{i}$$
(2.28)

In this simple situation, the flow of i is proportional to the force X_i . The magnitude of L_{ii} is a specific measure of the mobility of the species and from the general definition of a force equation, one may obtain, under solely electrical or activity gradients, expressions which corryspond to the simple laws of Ohm and Fick. In systems of two components, of which a binary electrolyte solution, on solvent fixed frame of reference, is an example,

$$J_{1} = L_{11}X_{1} + L_{12}X_{2}$$

$$J_{2} = L_{21}X_{1} + L_{22}X_{2}$$
(2.29)

The direct coefficients, L_{11} and L_{22} , remain but, in addition, the L_{12}^{*} measure the degree to which a flow of species, 1, is affected by a force on species, 2. The coefficients, L_{12} and L_{21} , are the cross or coupling coefficients. Using the principle of microscopic reversibility, Onseger⁵ has shown * and L_{21}

1 9 1 6 that close to equilibrium

$$L_{12} = L_{21}$$
 (2.30)

In the generalised form eqn(2.30) may be written as

$$L_{ik} = L_{ki}$$
 i,k=0,1,2,3,...n (2.31)

These are called Onsager Reciprocal Relations(ORR) and were shown to hold under statistical mechanical models⁵. To characterise a system of n forces and n flows, n² such coefficients would be required but under ORR they are reduced to $\frac{1}{2}n(n+1)$. Thus for a two component system, only three such coefficients, L_{11} , L_{12} (equal to L_{21}) and L_{22} , are required. In all cases the cross coefficients are constrained by the inequalities

$$L_{ii}L_{kk} \geq (L_{ik})^2$$
(2.32)

that is, the direct coefficients must be positive but the cross coefficients may either be positive or negative.

In binary electrolyte solutions, the direct coefficients, L_{ii} , are the transport or mobility coefficients and measure the mobility which an ion would have if there were no interactions with the oppositely charged ions. L_{ik} mean the mobility interaction coefficients and directly determine the cation-anion kinetic coupling. Both the direct, L_{ii} , and cross L_{ik} , coefficients are dependent on the frame of reference. Thus, on the solvent fixed frame of reference they have contributions from the solvent as well.

2.5:<u>Inverse form of Phenomenological Equations - The Prictional</u> <u>Coefficients</u>: An alternative representation of phenomenological coefficients has the form

$$X_{i} = \sum_{k=0}^{n} R_{ik} J_{k}$$
 i=0,1,2,3,...n (2.33)

in which the Onsager reciprocal relations hold, that is

$$R_{ik} = R_{ik}$$
(2.34)

Eqn(2.33) expresses the force, X_i , as a linear function of all the flows. The direct coefficients, R_{ii} , determine the extent of friction between similar ions while the cross coefficients, R_{ik} , determine the friction between counter ions. Both the R_{ii} and R_{ik} coefficients have the dimensions of force per unit flow.

For binary electrolyte solutions on solvent fixed frame of reference for flows, eqn(2.33) reduces to

$$X_{1} = R_{11}J_{1} + R_{12}J_{2}$$

$$X_{2} = R_{21}J_{1} + R_{22}J_{2}$$
(2.35)

in which $R_{12} = R_{21}$ by ORR. Eqn(2.35) is the analogue of eqn (2.29) which is in terms of L_{ik} (i,k = 1,2) coefficients.

Since neither the X_i nor the J_i are independent, the R_{ik} are not unique. However, under an arbitrary assumption

$$\sum_{k=0}^{n} c_k R_{ik} = 0 \qquad i=0,1,2,3,...n \quad (2.36)$$

the R_{ik} become uniquely defined²⁵. Moreover, with this

assumption, the R_{ik} become reference frame independent ^{22b} and additional frictional coefficients, R_{i0} , can be obtained, which specifically measure the friction between an ion and the solvent.

For a three component system eqn(2.36) becomes

$$c_0 R_{i0} \neq c_1 R_{i1} + c_2 R_{i2} = 0$$

or $c_0 R_{i0} = -(c_1 R_{i1} + c_2 R_{i2})$ i=0,1,2 (2.37)

The coefficients, R_{ii} and R_{ik} (i,k = 1,2), may be obtained by matrix inversion of the L_{ii} and L_{ik} coefficients, which on substitution in eqn(2.37) give $c_0 R_{i0}(i = 1,2)$. The $c_0 R_{i0}(i=1,2)$ may then be used to obtain $c_0 R_{i0}(i = 0)$.

2.6 <u>Experimentally Measureable Transport Properties of Binary</u> <u>Electrolytes in Terms of Phenomenological Coefficients^{15a}:</u> Consider a binary electrolyte, $C_{r_1}A_{r_2}$, in a neutral solvent, 0, which dissociates as

$$C_{r_1}A_{r_2} = r_1C^{Z_1} + r_2A^{Z_2}$$
 (2.38)

 r_1 and r_2 are the stoicheometric coefficients of dissociation of cations, C, and anions, A of valencies Z_1 and Z_2 respectively.

Chemical potential of the electrolyte, \mathcal{M}_{12} , is equal to the sum of the chemical potentials of ions i.e.,

$$\mathcal{U}_{12} = r_1 \mathcal{U}_1 + r_2 \mathcal{U}_2 \tag{2.39}$$

and from the condition of electroneutrality, we have

$$Z_1 r_1 + Z_2 r_2 = 0 (2.40)$$

The phenomenological equations on solvent fixed frame of reference are given by eqns(2.29) and the forces X_i by eqn(2.20).

To obtain numerical values of the four L_{jk} coefficients of eqns(2.29), four independent experimental quantities are needed and the four suitable ones are the conductance, h, volume fixed diffusion coefficient, Dv, Hittorf transport number, t^h and the e.m.f. transport number, t^c. Because of Onsager reciprocal relations, the cross coefficients are identical i.e. $L_{12} = L_{21}$. Therefore only three independent quantities are required. (It will be shown that the two transport numbers, t^h and t^c, become identical under the condition of ORR).

We, however, derive expressions for all the four quantities, Λ , t^h, t^c and Dv in terms of L_{ik} coefficients.

2.6.1 <u>Conductance</u>: By Ohm's law, current density, I, is given by

$$I = \mathcal{K}(-\mathcal{V}) \times (2.41)$$

where κ is the specific conductivity. By definition, equivalent conductivity, Λ , becomes

$$\Lambda = (10^{3}/N) \cdot I/(-J\phi/Jx)$$
 (2.42)

where N is the equivalent concentration.

10

In terms of flows, J_i, I becomes

$$I = (Z_1 J_1 + Z_2 J_2) \mathbb{P}$$
 (2.43)

and the forces X; are given by

$$X_{i} = -Z_{i} P \partial \phi / \partial x$$
 i=1,2 (2.44)

The gradients of chemical potentials, μ_i , of the ions are zero at uniform concentration.

An expression for equivalent conductivity, Λ , is obtained from equations (2.29), (2.42), (2.43) and (2.44);

$$\Lambda = (10^{3} \text{P}^{2}/\text{N})(\text{Z}_{1}^{2} \text{L}_{11} + \text{Z}_{1} \text{Z}_{2}(\text{L}_{12} + \text{L}_{21}) + \text{Z}_{2}^{2} \text{L}_{22}). \quad (2.45)$$

At infinite dilution, the cross coefficients $\mathbf{L}_{i\,\mathbf{k}}$ are zero and so

$$\Lambda^{0} = (10^{3} F^{2} / N) (Z_{1}^{2} L_{11}^{0} + Z_{2}^{2} L_{22}^{0}) = \lambda_{1}^{0} + \lambda_{2}^{0}$$
(2.46)

where λ_1^0 and λ_2^0 are equivalent conductivities of cations and anions at infinite dilution. At finite concentrations, L_{ik} are positive and increase rapidly as concentration increases.

A is measured on an apparatus-fixed frame of reference but it may be easily shown²⁶ that it is independent of the frame of reference.

2.6.2 <u>Hittorf Transport Numbers</u>: Hittorf transport number, t_i^h , is defined as the fraction of the current carried by the ith ion relative to solvent in a solution of uniform concentration. In terms of flow, J_i , t_i^h can be represented as

$$t_{i}^{h} = Z_{i}FJ_{i}/I = Z_{i}FJ_{i}/(Z_{1}J_{1} + Z_{2}J_{2})F$$
 (2.47)

Substitution of equations (2.29), (2.43) and (2.44) in (2.47) leads

where $\mathbf{A} = Z_1^2 \mathbf{L}_{11} + Z_1 Z_2 (\mathbf{L}_{12} + \mathbf{L}_{21}) + Z_2^2 \mathbf{L}_{22}$ (2.49) and \mathbf{t}_i^h is the cationic transport number.

2.6.3 <u>E.m.f. Transport Numbers</u>: An electrochemical cell, having identical electrodes but which has a varying composition, may be represented as

where $c_2 > c_1$. In this system diffusion would occur and owing to different ion mobilities a charge separation would take place. After a short time²⁷, powerful coulombic forces speed up the slow moving ions and slow down the fast moving ones so that no electric current flows through the solution. Thus

$$I = (Z_1J_1 + Z_2J_2)F = 0$$
 (2.50)

In this situation, gradient of chemical potentials, $\mathfrak{M}_i/\mathfrak{d}_x$, and the gradient of electrical potential, $\mathfrak{d}/\mathfrak{d}_x$, are non-zero.

Substituting equations (2.29) and (2.20) in eqn(2.50),

$$-F \mathbf{y} / \mathbf{y} = (t_1^c / \mathbf{z}_1) \cdot \mathbf{y}_1 / \mathbf{y}_1 + (t_2^c / \mathbf{z}_2) \cdot \mathbf{y}_2 / \mathbf{y}_2$$
(2.51)

where

and

 $t_1^{c}/Z_1 = (Z_1L_{11} + Z_2L_{21})/\ll$

$$t_2^c / Z_2 = (Z_2 L_{22} + Z_1 L_{12}) / \mathcal{A}$$
 (2.52)

where $\boldsymbol{\prec}$ is as defined in eqn(2.49) and t_i^c are the e.m.f. transport numbers of the ions i.

Comparision of Hittorf and e.m.f. transport numbers, defined in equations (2.48) and (2.52) shows that they are equal only if $L_{12} = L_{21}$ and so only if the ORR are obeyed. Experimental measurements of a number of systems^{28,29} show no difference in the Hittorf end e.m.f. transport numbers and so the ORR are justified.

2.6.4 <u>Isothermal Diffusion</u>: Diffusion occurs under a concentration gradient of salt and therefore JU_{12}/Jx is not zero and no electrical current flows so that from equations (2.40) and (2.50),

$$J_1/r_1 = J_2/r_2 = J$$
 (2.53)

Eqn(2.53) shows that the cationic and anionic motions are coupled and the two ions move together in the proportion present in the neutral salt molecule and so J is the solvent fixed flow of electrolyte as a whole. The diffusion coefficient for a binary system is described 16a by

$$J = \frac{J_1}{r_1} = -(D_0/1000) \delta c/\delta x = -L\delta M_{12}/\delta x \qquad (2.54)$$

where D_0 is the solvent fixed diffusion coefficient in cm^2/sec and L is the thermodynamic diffusion coefficient in moles²/joules cm sec. Eqn(2.54) may be rewritten as

$$-(D_0/1000) \delta c/\delta x = -L \delta u_{12}/\delta c \cdot \delta c/\delta x$$

so that
$$L = D_0 / (1000.J \mu_{12} / Jc)$$
 (2.55)

but
$$J \mu_{12}/Jc = (1 + cdlny/dc)RTr/c$$
 (2.56)

where $r = r_1 + r_2$

and y is the mean molar activity coefficient. Substituting equations (2.55) and (2.56) in eqn(2.54), we get

$$J = J_{1}/r_{1} = -(JM_{12}/Jx) \cdot D_{0} \cdot c/1000Rtr(1 + cdlny/dc)$$
 (2.57)

From eqn(2.29) for J_1 and the equations (2.20), (2.39), (2.50) and (2.51), we obtain

$$J = J_{1}/r_{1} = (J M_{12}/J x) (Z_{1}Z_{2}/r_{1}r_{2}) (L_{11}L_{22}-L_{12}L_{21})/\alpha$$
(2.58)

Comparing equations (2.57) and (2.58), we get

$$D_{0} = -1.000RTr(1 + cdlny/dc)/c)$$

$$\mathbf{X}(\mathbf{Z}_{1}\mathbf{Z}_{2}/\mathbf{r}_{1}\mathbf{r}_{2})((\mathbf{L}_{11}\mathbf{L}_{22}-\mathbf{L}_{12}\mathbf{L}_{21})/\boldsymbol{\mathbf{x}}$$
(2.59)

° ()

In the literature, volume fixed diffusion coefficient, D_v , and mean molal activity coefficient, \checkmark , are reported. Transformations from one frame of reference into another exist.^{22,232,24}It may be shown³⁰ that

$$D_{0}/(1 + cdlny/dc) = D_{y}/(1 + mdln\sqrt{/dm})$$
(2.60)

where m is the molality of the solution. Substituting eqn(2.60) in eqn(2.59), we get

 $D_{v} = -1000RTrZ_{1}Z_{2}(1+mdlnv/dm)(L_{11}L_{22}-L_{12}L_{21})/r_{1}r_{2}c \ll (2.61)$ where \ll is as defined in eqn(2.49).

Equations (2.45), (2.48), (2.52) and (2.61) are derived for the four measureable transport quantities. These four equations can be solved simultaneously to obtain L_{ik} in terms of these quantities. The resulting equation is

$$L_{ik}/N = t_{i}^{h} t_{k}^{c} / 10^{3} F^{2} Z_{i} Z_{k} + r_{i} r_{k} D_{v} / 10^{3} RTrr_{1} Z_{1} (1 + mdln / dm) (2.62)$$

Equation (2.62) holds for any neutral solvent and applies to both weak and strong electrolytes. If ORR are assumed then $t_i^c = t_i^h$ and eqn(2.62) becomes

$$L_{ik}/N = t_i t_k \wedge /10^{3} p^2 Z_i Z_k$$

+ $r_i r_k D_v /10^3 RTr Z_1 (1 + mdln //dm)$ (2.63)

From eqn(2.63), the three phenomenological coefficients, L_{11} , L_{12} (equal to L_{21}) and L_{22} may be obtained.

If F is the coulombs/equivalent, R in joules/mole deg., and D_v in cm²/sec., the units of L_{ik} are in mole²/joule cm sec.

ମ୍ ଜ : 4

2.7 Expressions for R_{ik} : The coefficients, R_{ik} , are obtained by the matrix inversion of the L_{ik} . For a binary system, the R_{ik} are given by

 $R_{11} = \frac{L_{22}}{L}$

$$R_{12} = -\frac{L_{21}}{L}$$

$$R_{21} = -\frac{L_{21}}{L}$$

$$R_{22} = \frac{L_{11}}{L}$$
(2.64)
$$L_{11} = L_{12}$$

and

where $L = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} = L_{11}L_{22} - L_{12}L_{21}$ (2.65)

Substituting L_{11}/N , L_{12}/N , L_{21}/N and L_{22}/N in the right hand side of expression(2.64), we directly obtain NR_{11} , NR_{12} , NR_{21} and NR_{22} respectively.

The coefficients, R_{i0} , are obtained from R_{ik} using the relations as defined in eqn(2.37);

 $R_{10} = -(r_1 R_{11} + r_2 R_{12})c/c_0$ $R_{20} = -(r_1 R_{12} + r_2 R_{22})c/c_0$ $R_{00} = -(r_1 R_{10} + r_2 R_{20})c/c_0$ (2.66)

in which c_0 is the solvent concentration given by

$$c_0 = 1000\% M_0$$
 (2.67)

where M_{Ω} is the molecular weight of the solvent.

The coefficients, R_{ik} , can also be derived directly in terms of the transport quantities using phenomenological equations (2.35). The procedure is the same as described for L_{ik} coefficients. The resulting expressions are

$$NR_{11} = (10^{3}F^{2}Z_{1}^{2}/\Lambda) - (Z_{1}Z_{2}/r_{1}r_{2})(t_{2}^{2}/Z_{2}^{2}).M^{1}$$

$$NR_{12} = (10^{3}F^{2}Z_{1}Z_{2}/\Lambda) + (Z_{1}Z_{2}/r_{1}r_{2})(t_{2}t_{1}/Z_{2}Z_{1}).M^{1}$$

$$NR_{22} = (10^{3}F^{2}Z_{2}^{2}/\Lambda) - (Z_{1}Z_{2}/r_{1}r_{2})(t_{1}^{2}/Z_{1}^{2}).M^{1} \qquad (2.68)$$
where $M^{1} = 10^{3}RTr r_{1}Z_{1}(1+mdln\sqrt{dm})/D_{v}$

$$c_{0}R_{10} = -10^{3}RTr t_{2}(1+mdln\sqrt{dm})/r_{1}D_{v}$$

$$c_{0}R_{20} = -10^{3}RTr t_{1}(1+mdln\sqrt{dm})/r_{2}D_{v}$$

$$R_{00}/N = (c/Nc_{0}^{2})10^{3}RTr(1+mdln\sqrt{dm})/D_{v} \qquad (2.69)$$

The units of R_{ik} coefficients are joule cm sec.mole⁻².

2.8 Influence of Ion Pairing on Phenomenological

<u>Coefficients</u>: The presence of ion pairs in binary electrolytes has been recognised over the last fifty years or so and it is of interest to examine the thermodynamic analysis where the neutral ion pair may be present. Eqn(2.35) is defined for a completely dissociated electrolyte. If a neutral species, 3, exists in addition to cations, 1, and anions 2, then on the solvent fixed frame of reference the phenomenological equantions are

 $x_{i} = r_{i1}j_{1} + r_{i2}j_{2} + r_{i3}j_{3}$ i=1,2,3 (2.70)

where x_i are the thermodynamic forces and j_i are the conjugate flows for the free species i. r_{ik} are the Onsager frictional coefficients. If the electrolyte is a symmetrical salt, the stoicheiometric coefficients of ionisation, r_1 and r_2 , are equal to unity and eqn(2.39) becomes

$$\mathcal{M}_1 + \mathcal{M}_2 = \mathcal{M}_3$$

where \mathcal{U}_3 is the chemical potential of the ion pair. In terms of forces

$$x_1 + x_2 = x_3$$
 (2.71)

Substituting eqn(2.70) in eqn(2.71) and comparing the coefficients of j_i , we get

$$r_{i1} + r_{i2} = r_{i3}$$
 (2.72)

By ORR,

$$r_{12} = r_{21}, r_{13} = r_{31}$$
 and $r_{23} = r_{32}$ (2.73)

From equations (2.70) and (2.72) for i = 1,2, we get

$$x_i = r_{i1}(j_1+j_3)+r_{i2}(j_2+j_3)$$
 i=1,2 (2.74)

Since J_i is the total flow of species i, therefore

$$J_{i} = j_{i} + j_{3}$$
 $i = 1,2$

6 A

9 C 6 S

Eqn(2.74) becomes

$$x_i = r_i J_1 + r_i J_2$$
 i=1,2 (2.75)

Using purely binary approach for the same system the phenomenological equations are

$$X_{i} = R_{i1}J_{1} + r_{i2}J_{2}$$
 i=1,2 (2.76)

The equations (2.75) and (2.76) are identical in all circumstances. The measured flows, J_i , would be (j_i+j_3) e.g., in electrical conductivity the current density, I, is given by

$$I = (Z_{1}j_{1} + Z_{2}j_{2})F = (Z_{1}J_{1} + Z_{2}J_{2})F$$
 (2.77)

This shows that either ionic or net flows may be used.

The transport number, t_i , however, equals $Z_i J_i F/I$ and the observed flow, e.g., in the Hittorf measurement, is the net flow, J_i . Thus the stoicheiometric coefficient, R_{ik} , equals the specific coefficient, r_{ik} .
CHAPTER 3

A Survey of Transport Properties of Binary Electrolyte Solutions and Selection of a System for Experimental Study:

The theory of irreversible thermodynamics developed in chapter 2 shows that at least three measureable transport properties and activity coefficients are required to characterise an electrolyte system completely in terms of Onsager transport, L_{ik} and inverse frictional, R_{ik} , coefficients. These properties are conductance, transport numbers and diffusion. In the alkali halide series literature data were complete for lithium, sodium and potassium chlorides in the concentration range 0-3M. Eiller^{16a} collected these and applied his theoretical analysis to obtain the L_{ik} and R_{ik} coefficients.

The remaining chlorides of the alkali metal series, those of rubidium and caesium, were therefore of considerable interest. It was therefore decided to survey the existing literature for their transport data and to obtain experimentally those which are required for a complete analysis.

It was found that in concentrated solutions conductance and diffusion data for rubidium chloride and conductance data alone for caesium chloride were lacking. In the dilute region, $c \lt 0.25M$, the conductance and transport numbers data for both and diffusion data for rubidium chloride were not available. It was therefore necessary to measure the electrical conductance of both (rubidium and caesium chlorides) and diffusion coefficients of rubidium chloride for the whole range of concentration, 0-3M. The experimental measurements are described in chapters 4 and 5.

9.9 0 0 In dilute solutions, c < 0.25, only transport numbers are left to be measured and with their availability, the whole transport data for the concentration range, 0-3N, would be complete.

For the literature survey we searched the chemical abstracts for references from 1930 onwards and consulted the data compiled in standard texts^{a,b,c} and reviews^{d,e,f,g}.

Our literature survey coincided with that of Chapman and Newman^h who collected from the literature all the available transport data for sixty one binary electrolytes. Out

a) H.S. Harned and B.B. Owen 'Physical Chemistry of Electrolyte Solutions', 3rd Ed., N.Y., Reinhold Publishing Corp., 1957.

- b) R.A. Robinson and R.H. Stokes, 'Electrolyte Solutions',
 2nd Ed., London, Butterworths Sci. Publications, 1959.
- c) R. Parsons 'Handbook of Electrochemical Constants', London, Butterworths Sci. Publications, 1959.
- d) A. Eucken, <u>Ed. Landolt Bornstein</u>. 'Zahlenwerte und <u>Funktionen aus Physik, Chimie, Astronomi</u>e', <u>Geophysik und</u> Technik, 6th ed., vol. 2, part 7. Berlin: Springer -Verlag, 1960.
- e) E.W. Washburn Ed. International Critical Tables of Numerical data, Physics, Chemistry and Technology. New York, McGraw - Hill Book Co., Inc., 1926.
- f) E.A. Kaimakov and N.L. Varshavskaya. 'Measurement of Transport numbers in Aqueous Solutions of Electrolytes'. Uspekhi Khimii, 1966, 35, 201-288.*
- g) J. Timmerman, 'The Physico Chemical Constants of Binary Systems in Concentrated Solutions', New York, Interscience Publishers Inc., 1960.
 - * Russ. Chem. Rev., Feb. 1966, P.89-101 (English).

of these, data were partially complete for twenty eight systems. Phenomenological coefficients for these systems were calculated. The results are given in appendix-1.

In table 3.1 we present a list of missing transport and activity data for equeous solutions of 1:1, 1:2, 2:1 and 2:2 electrolytes. <u>All means data is missing for the</u> whole range of concentration, 0-3M, and - denotes data is complete. The concentrations are in moles per litre and the temperature is 25° unless otherwise mentioned.

h. T.W. Chapman and J. Newman, 'A compilation of Selected Thermodynamic and Transport Properties of Binary Electrolytes in aqueous solutions', UCRL - 17767, AEC contract W - 7405eng - 48, University of California, Lawrence Radiation Laboratory, Berkeley, California.

Table 3.1

that Transport data has not been measured experimentally for 1:1, 1:2, 2:1 and 2:2 Electrolytes

•

Electrol	lyte	Δ	t ₊	D _v	4
Chlorides H ⁺ Li	hat Kt		Lanta		
·····	Rb ⁺	all	く 0.25	>0.01	
	Cs ⁺	>0.007	۲O.25 ک	_	
	NH ⁺		> 0.2	<0.1	
Bromides	H+-		all	all	
	Li ⁺	all	all	_	
	Na^+	-	all	-	
	K+	and a	>1.0	-	-
	Rb ⁺	-	all	all	-
	Cs ⁺	all	all	all	-
Iodides	н+	>0.1	>0.1	all	-
	Li ⁺	all	all	all	
,	Nat	-	all	-	-
	K+		71.0		-
Rt	o ⁺ ,Cs ⁺	all	all	all	- ,
Hydroxides	Li ⁺	-	all	all	
	Na^+	<u> </u>	>1.0	>2.0	-
· · ·	к+	_	>0.1	all	
	Rb ⁺	all	a11	all	all
	Cs ⁺	all	a11	all	>1.0

Electrolyte	Δ	t ₊	D _v	Ý	
Nitrates H ⁺			- 0.45		nanter aktivitation divite ≠ erte de devidationen Fant
	Li		a <u>11</u>		
	Na^+		all*		
	K+		>0.1	>0.1	-
	Rb^+	all	all	all	< 0.1
	Cs^+	all	all	>.014	
	^{NH} 4 ⁺	-	<0.1 &>0.	,2 -	-
Chlorates	H+	all	all	all	all
	Li ⁺		all		
	Na ⁺	-	all		
K ⁺ ,R	b ⁺ ,Cs ⁺	all	all	all	
Perchlorates	H+	>1.0		all	
	\mathtt{Li}^+	_	all	all	
	Na ⁺		all**		_
	K+	all	all	all	-
	Rb	all	all	all	
	Cs ⁺	all	all	all	-

Table 3.1 continued.

* Except at 1,2 and 4M.

** except at 1M.

Electro	olyte	Δ	t _.	D _v	Ý
Fluorides	H+	a11		all	9499 - 95 - 96 - 96 - 96 - 96 - 96 - 96 -
	Li ⁺	all	all	all	
	Na ⁺	all		all	
	K ⁺ ,Rb ⁺ ,Cs ⁺	e.11	all	a]]	
Chlorides	Zn ⁺⁺	all		all	Ber under - 1997 - Frank - Frank andere and antibilities and gales
	Mg ⁺⁺		all	all	
	Cd++	₹0. 05		>0.2	
Bromides	Zn ⁺⁺	all	anne. 1949 : Anne an Station (Stationard Stationard S	all	9444974999 L. Alaky
	⊮g++	all	all	all	
	Cd++	all		0.2	
Iodides	Zn ⁺⁺	all	nager & Mile Copy of regard our weight folger in a claim in staffer the particular of the staffer the particular the staffer the particular of the staffer the staffer the staffer the staffert the staf	all	
	Mg^{++}	all	all	all	
	Cd++	an a	all	くいほろ>1.2	
Sulfates	H ⁺	8			99999
	Li ⁺	≻0.7		>0.005	-
	Na ⁺	>0.1	>0.1	>1.0	-
	K+	>0.5	>0.5	>0.5	>0.5
	Rb⁺	all	all	all	<0.1
	Cs ⁺	all	all	≻0.005	<0.1

Table 3.1 continued.

Electrolytes		Δ	t +	D _v	Ŷ
Sulfates	Zn ⁺⁺ Mg ⁺⁺ Cd ⁺⁺ Cu ⁺⁺ Ni ⁺⁺ Mn ⁺⁺	all all >1.0 - >1.0 >1.0	- all >0.5 all all	>0.01 all >0.5 >0.1 all all	
K CI	0° 18 ⁰ 35° 50°	>1M >1M <1.OM <1.OM	<0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	<.05 <.05 <.05 <.05 <.05

Table 3.1 continued.

CHAPTER 4

Measurement of Diffusivity

4.1 Experimental methods applied to the study of diffusivity in electrolyte solutions: We report here briefly the various methods which have been applied to the study of diffusivity in electrolyte solutions. Technical details of these methods are not discussed since a through review on the subject is available.³¹

4.1.1 <u>Conductometric Method</u>: This method involves the measurement of conductances of solutions as diffusion proceeds with time. Its application is limited to dilute solutions only, up to 0.01M for 1:1 and 0.005M for 2:2, 2:1 and 1:2 electrolytes. The achieved accuracy is + 0.1 to 0.2%.

4.1.2 <u>Gouy Interferometric Method</u>: This is an absolute method and involves the necsurement of interference $\int vin S^{e^{A}}$ obtained on photographic plates when a beam of monochromatic light is passed through a cell in which a concentration gradient exists. It has been applied to 1:1 electrolytes only upto an accuracy of \pm 0.1 to 0.2%. The method gives integral diffusion coefficients.

4.1.3 <u>Rayleigh Interferometric Method</u>: The principle involved in this method is the same as that of the Gouy method except that the photographic system is incorporated with a cylinderical lens. It gives differential diffusion coefficients directly and therefore is preferable to the Gouy method. It has been applied to 1:1 electrolytes only.

9.9 2 9 4.1.4 <u>Stokes Diaphrage Cell Pethod</u>: This is a relative method. The cells need to be calibrated with a standard electrolyte diffusion coefficients for which are known from absolute measurements. Only those electrolytes which are similar in nature to the standard electrolyte can be studied by this method. The method has been successfully applied to 1:1 electrolytes to an accuracy of 0.1 to 0.2%. The only other systems studied by this method are sodium and copper sulfates ^{32,33} to an accuracy of 1 to 5%.

4.1.5 <u>Photometric Nethod</u>: This method works on the principle of absorption of light by a diffusing electrolyte coloured solutions. The only system studied is copper sulfate³⁴ to 2% accuracy.

4.1.6 <u>Diffraction Micro Method</u>: The principle involved is the diffraction of light when it passes through a solution each layer of which acts as a prism. It has been applied to the study of cadmium chloride ^{35a}, cadmium sulfate ^{35b} and lead nitrate ^{35b} solutions. The accuracy attained is 1 to 3%.

4.1.7 <u>Porous Frit Method</u>: A porous plate is soaked in an electrolyte solution and then it is dioped in a bath of solvent or a solution of lower concentration. The diffusion coefficients obtained are with respect to the cell fixed frame of reference. The method is useful in the study of weak and complexing electrolytes. It has been applied to the study of zinc sulfate(0.03-0.25M)³⁶ and cadmium iodide $(0.01-1.0M)^{37}$ to an accuracy of 1-2%. 4.1.8 <u>Selection of a method for the study of Difficientiation</u> in Rubidium Chloride Solutions: The above study of the various methods for the determination of diffusion coefficients shows that the high precision methods have been applied to 1:1 electrolytes only. In the light of this survey one of the absolute methods or the diaphragm cell method seemed to be the most appropriate for the diffusivity study of rubidium chloride solutions. For the present work the diaphragm cell method was chosen for the following reasons:

a) Rubidium chloride falls between potassium and caesium chlorides in the alkali chloride series and the nature of these salts is similar.

b) The cells could be calibrated with potassium chloride solutions, the diffusion date for which was available in the literature from absolute measurements.

c) Reproducibility of 0.1 to 0.2% could be easily approached. d) Diffusion data for Rubidium chloride was required in the concentrated solutions only and this method was applicable for concentrations above 0.05M.

e) The method was appropriate in cases where diffusion coefficients did not change rapidly with concentration and this condition was fulfilled by 1:1 electrolytes.
f) Large volumes of solutions were available for concentration analysis.

4.2 <u>The Diaphrage Cell Method</u>: The diaphrage cell technique was first introduced by Northrop and Anson³⁸ in 1929 and later modified by a number of workers^{39,40,41,42,43}. It has its present standing due to the work of the Stokes⁴⁴. The theoretical and experimental aspects of the method are reviewed by Robinson and Stokes⁴⁵. In this method diffusion of solute takes place through a porous diachragm separating two concentrations containing solutions of different concentrations which are maintained uniform by mechanical stirring. The concentration changes take place sufficiently slowly so that a pseudo steady state* may be assumed to prevail in the capilljary pores of the diaphragm. Barnes⁴⁶ has shown that this assumption does not lead to an appreciable error if the volumes of the solutions in the two compartments are sufficiently large compared with the scace in the diaphragm. In this situation diffusion coefficient may be obtained from the Fick's law

$$J(t) = D(-\frac{3C}{3x})$$
(4.1)

where J(t)**is the flux at time, t, D is the differential diffusion coefficient defined as the amount in moles of the solute diffusing through unit area of cross-section per unit time per unit concentration difference and $\frac{\partial c}{\partial x}$ is the concentration gradient. Negative sign shows decrease in concentration as diffusion proceeds.

Some inherent disadvantages from which this mothod suffered is its earlier stage of improvement have now been largely overcome. These disadvantages and their remedies are as follows:

* Theoretically a steady state of flux and concentration distribution are reached³¹ only if the concentrations at the ends of the capilliary pores of the diaphragm are maintained constant. These boundary conditions are not realised in diaphragm cell method because the concentrations at the ends of the capilliaries of the diaphragm change continuously. a) <u>Disturbance due to viberation and temperature fluctuations</u>: These are eliminated by careful design and further reduced by confining the diffusion process to the capilliary pores only.

b) Stagment layers on the disphragm: These are avoided by stirring the solutions in the two compartments continuously. c) Streaming effects: These are avoided by putting the denser solutions in the lower compartment and keeping the cell disphragment of within $\pm 1-2^{\circ}$ of the horizontal.

d) <u>Surface transport effects</u>: With dilute solutions the mobility of particles in the double layer on the capill ary pores is enhanced and adsoption also takes place giving rise to anomalously high diffusion coefficients. This has been overcome by limiting the lower concentration to 0.05M above which no surface transport effects are appreciable and make negligible contribution to the total transport.

4.2.1 <u>Theoretical Considerations</u>: Let V_1 , V_2 , and V_3 be the volumes of the lower compartment, 1, upper compartment, 2, and the diaphragm of the cell as shown in figure41; A and i be the effective area of cross-section and vertical length of the diaphragm pores respectively; c_1 and c_2 be the concentrations of the solutions in the compartments, 1 and 2, at time t equal to zero, and, c_3 and c_4 be the concentrations of the solutions in the compartments, 1 and 2, after a time t_r in seconds, of the diffusion experiment.

** flux J(t) is assumed to be constant over a short time interval so that eqn(4.1) holds. ព្វ អ ខ្លាំ ខ្

Initial, t=0

Final, t=tr

In the Steady State situation the amount of solute entering the diaphragm at any time, t, is the same as the amount leaving the diaphragm i.e., the flux J(t) is constant. Denoting the concentrations in the compartments, 1 and 2, to be c' and c'' at time, t, the rate of change of concentration is given by

$$\frac{dc'}{dt} = -\frac{A}{V_1} J(t)$$
(4.2)

$$\frac{\mathrm{d}c''}{\mathrm{d}t} = \frac{\mathrm{A}}{\mathrm{V}_2} J(t) \tag{4.3}$$

Subfracting eqn(4.3) from eqn(4.2), we obtain

$$\frac{d(c'-c'')}{dt} = -A(\frac{1}{V_1} + \frac{1}{V_2})J(t)$$
(4.4)

and

Let $\overline{D}(t)$ be the average diffusion coefficient over the concentration range c' to c'' prevailing at time, t, then it is defined as

$$\overline{D}(t) = \frac{1}{c'-c''} \int_{c''}^{c''} Ddc = \frac{1}{c'-c''} \int_{c''}^{c''} D(\frac{3c}{3x}) \Im x$$
(4.5)

Substitution of eqn(4.1) in eqn(4.5) and integration over the path x=0 to x=1 gives

$$J(t) = -(c'-c'')\overline{D}(t)/\mathcal{L}$$
(4.6)

Combining eqns(4.4) and (4.6) and re-arranging we get

$$-\frac{\mathrm{dln}(\mathbf{c'-c''})}{\mathrm{dt}} = \frac{A}{\mathcal{L}} \left(\frac{1}{V_1} + \frac{1}{V_2}\right) \overline{\mathbb{D}}(\mathbf{t}) \tag{4.7}$$

At the end of the experiment of duration t_r seconds, c' changes from c_1 to c_3 and c'' changes from c_2 to c_4 . On integration of eqn(4.7) between these limits we obtain

$$\ln \frac{c_{1} - c_{2}}{c_{3} - c_{4}} = \frac{A}{\ell} \left(\frac{1}{V_{1}} + \frac{1}{V_{2}} \right) \int_{t=0}^{t=t} \frac{T}{D} (t) dt$$
(4.8)

Now $\overline{D}(t)$ is already a concentration average diffusion coefficient, so, introducing \overline{D} as a concentration and time average diffusion coefficient, we have

$$\overline{D} = \frac{1}{t_r} \int_{t=0}^{t=t} \overline{D}(t) dt$$
(4.9)

Substitution of eqn(4.9) in eqn(4.8) gives

$$\overline{D}\beta = \frac{1}{t_r} \frac{c_1 - c_2}{c_3 - c_4}$$
(4.10)

where
$$\beta = \frac{\Lambda}{\ell} \left(\frac{1}{V_1} + \frac{1}{V_2} \right)$$
 (4.11)

The constant parameter, β , depends on the dimensions of the cell and therefore is known as cell constant. It is determined by calibration of the cell using an electrolyte for which D is precisely known from absolute measurements. Potassium chloride is used for this purpose. \overline{D} is obtained from a set of D values as follows:

It has been $shown^{42}$ that a negligible error is introduced if, instead of using the exact relationship (4.9), we treat the integrand as having a constant value equal to that when the concentrations c' and c'' are halfway between their initial and final values. \overline{D} is then related to D by

$$\overline{D} = \frac{1}{(\text{cma-cmb})} \int_{\text{cmb}}^{\text{cma}} \text{Ddc} \qquad (4.12)$$

where $cma = (c_1 + c_3)/2$ and $cmb = (c_2 + c_4)/2$ (4.13)

A quantity $\overline{D}^{O}(c)$ is defined as the average D over the concentration range O to c, therefore

$$\overline{D}^{O}(c) = \frac{1}{c} \int_{0}^{c} Ddc \qquad (4.14)$$

From eqn(4.12) and (4.14), it may be shown that

$$\overline{D} = \frac{1}{(\text{cma-cmb})}(\text{cma}, \overline{D}^{O}(\text{cma}) - \text{cmb}, \overline{D}^{O}(\text{cmb})) \qquad (4.15)$$

Using eqn(4.14); the quantity $\overline{D}^{\circ}(c)$ for potassium chloride solutions have been computed by Stokes⁴⁴ from absolute measurements of D. For a set of mean concentrations cma and cmb, of a diffusion run, $\overline{D}^{\circ}(cma)$ and $\overline{D}^{\circ}(cmb)$ are obtained using an empirical fit between c and $\overline{D}^{\circ}(c)$. These are then substituted in eqn(4.15). \overline{D} , thus obtained, is further used in eqn(4.10) which gives the numerical magnitude of β .

After calibrating the cell for a particular concentration combination, the diffusion experiment is repeated with the test electrolyte for approximately the same concentration combination and duration. Using the experimental values of the concentrations, c_1 , c_2 , c_3 and c_4 , time, t_r , and the cell constant, β , in eqn(4.10), the concentration and time average diffusion experiment (or the integral diffusion coefficient), \overline{D} , is obtained.

4.2.2 <u>Computation of D from \overline{D} </u>: An nth degree empirical relationship between D and \sqrt{c} is chosen;

$$D = D^{0} + \int_{i=1}^{i=n} a_{i}(\sqrt{2})^{i}$$
 (4.16)

where a_i are the constants of the empirical fit. D^0 is the Nernst limiting value of D at zero concentration and may be obtained from ionic conductances at infinite dilution.

Using the relationship(4.16), eqn(4.12) may be integrated between the limits cmb and cma and eqn(4.17) is obtained.

* Coefficients of this fit and all the subsequent fitted equations are given in table Al of the appendix 1.

$$\overline{D}(\text{cma-cmb}) = \left[D^{\circ} c + \sum_{i=0}^{i=n} \frac{a_i c^{(i/2+1)}}{(i/2+1)} \right]_{\text{cmb}}^{\text{ima.}}$$
(4.17)

For a diffusion run, cma, cmb and \overline{D} are known from the experiment, D^{O} is known theoretically; their substitution in eqn(4.17) reduces it to a numerical expression involving the constant, a_i . To obtain these n constants, n relationships(involving a_i) are required.

4.2.3 <u>The Diaphrage Cells</u>: Two sintered glass discs of diameters 40mm and 50mm, having porosity four and seeled in pyrex glass tubes, were obtained commercially for the construction of the cells. The open ends of the tubes were terminated in B-24(f) and B-14(f) joints and the volumes of the compartments were so adjusted that magnetic stirrers could be easily slipped into and taken out of the cells. The dimensions and schematic diagram of the cells are given in table 4.1 and figure 4.2a.

This cell design is that of Stokes⁴⁴ and has been used mostly for diffusivity experiments at a constant temperature. Yeh and Wills⁴⁷ and Sanni and Hutchison⁴⁸ have modified the cell so that it can be filled sutomatically and the design of the latter workers allows for the expansion of the experimental solutions so that the diffusion runs can be made at higher temperatures and it also allows for the volume changes on mixing.

4.2.4 The Stoppers: Stoppers for the cell ends, shown in figure 4.2b, were made of B-24(M) and B-14(M) joints

which had 2mm capill $\cancel{x}aries$ in them. The B-24(M) joint was joined to a B-7(f) joint while the B-14(M) was sealed to a B-7(f) through a high vacuum quality (Teflon) tap.

4.2.5 <u>The Magnetic Stirrers</u>: Two soft iron vires of lengths 35mm and 45mm were sealed in thin glass tubes. The thickness of the wires and the glass tubes were so adjusted that one stirrer of each set would just sink and the other would just float in the experimental solutions. These are shown in figure 4.2c.

4.2.6 <u>The Magnetic Stirring Device</u>: The stirring mechanism is shown in figure 4.3. Two horse-shoe magnets,), obtained commercially, were fixed at the ends of two brass screws, S, which passed through the vertical arms of the brass plate assembly, B. The screw fittings allowed a fine adjustments of the magnets. The motor and gear cystem were adjusted to give a constant stirring speed of 55 r.p.m. The north pole of one magnet faced the south pole of the other.

In the original device of Stokes⁴⁴ the stirrers just touched the two sides of the disphragm. We found that in our system the diaphragm started wearing* off with time. This difficulty was overcome by keeping the stirrers at a distance of 2-3mm from the diaphragm surface. This

* Janz and coworkers⁴⁹ encountered the same difficulty and avoided it by performing periodic calib@rations and used a graph of cell constant as a function of the working life of the disphragm.

たら

Parmare A.2

procedure was standardised for all experimental runs. Test measurements with caesium chloride solutions showed that the results were in perfect agreement with the literature values . This method of stirring was therefore deemed satisfactory.

4.2.7 Determination of Volumes, $V_1 V_2$ and V_3 : The volumes, V_1 , V_2 and V_3 of the cell compartments and the disphrage pores, figure 4.2a, were determined by weighing the cell a) completely filled with water b) with water removed from compartment, 1, c) with water also removed from compartment, 2, and d) when it was dry. All the fillings and weighings were made with the stirrers inserted in both the compartments of the cells.

4.2.8 Filling of the Cell and the Diffusion Run: The cell was cleaned vertically. Degassed concentrated solution was poured into the compartment, 2, figure 4.2a, allowed to flow through the diaphragm cap learies under vacuum. The cell was then inverted. The uppermost compartment (now 1) was filled with the concentrated solution and stoppered. The cell was then re-inverted. The compartment, 2, was half filled with the same solution and stoppered.

A thin film of high vacuum quality Apjzon grease was applied to all the joints and the stirrers were always in their respective compartments. The cell was then clamped between the magnets of the stirring device fitted in a water thermostat maintained at $25^{\circ} \pm 0.005^{\circ}$. The concentrated solution in the compartment, 2, was replaced by degassed dilute solution and stirring started.

After two and a half hours of preliminary diffusion the solution of compartment, 2, was carefully withdrawn in a 100ml pipette which already had in it \simeq 10ml of the dilute solution. The cell was rinsed twice and finally filled with the mixed solution and stoppered. The stirring and the timer were started immediately. This minimised the zero time error*

*<u>The Zero Time Error:</u> In Stokes original method, the building up of a steady state is achieved by preliminary diffusion of some hours and then the solution in compartment, 2, is replaced by the frash original solution and the diffusion is taken to begin from this time onwards.

If the actual concentration of the solution after preliminary run be c_2^1 and that of the freshly added solution be c_2 , then clearly, $c_2^1 > c_2$. The Steady State however corresponds to c_2^1 and not to c_2 which is usually considered. The error thus caused is suggested by Francesconi⁵¹ to be the zero time error.

It is proposed ⁵¹ that the zero time error can be removed if after preliminary diffusion of known duration, say t_p seconds, the contents of the upper compartment are analysed to determine concentration c_2^1 and then another

run is made with the same fresh solution and the zero time is taken exactly after t_p seconds without changing the solutions. The concentration, c_2^1 , would then be the zero time concentration.

Our approach to minimise the zero time error was different. Since the volume of solution, c_2^1 , was ground 60ml and that of c_2 was ≈ 10 ml, the concentration of the mixture was very near to c_2^1 .

When the diffusion had taken place for a known time, the stirring was stopped and the solution was withdrawn from the upper compartment. The cell was taken out of the thermostat, dried externally and solution then withdrawn from compartment, 1. All the solutions were then analysed as described below.

4.3 <u>Determination of Concentrations by Conductometric</u> <u>Method Involving Calculations by Successive Approximations</u>: Polynomials (4.18) and (4.19) were curve fitted^{*} between measured specific conductivities, μ , and known concentrations c, and between c and equivalent conductivities, Λ , respectively for c < 0.1N.

$$c = a_0 + \sum_{i=1}^{n} a_i (\kappa_{10}^3)^i$$
 (4.18)

$$\Lambda = a_0 + \sum_{i=1}^{n} a_i c^i$$
(4.19)

A weighed sample of each solution was diluted to c < 0.1N. Its specific conductance was measured and subs-

*Coefficients a and a are given in tableAl of appendix 1.

4 O 5 O tituted in eqn(4.18). The value of c thus obtained was used in eqn(4.19). The A given by eqn(4.19) was substituted in the relationship

$$c = \kappa \cdot 10^3 / \Lambda \tag{4.20}$$

and a better value of c was obtained. The eqn(4.19) and the relationship(4.20) were then used in turn till a value of c was approached, which was within \pm 0.02% of that given by any further cycle of approximations.

The concentrations of the concentrated solutions were calculated from that of the dilute solutions using the density equations

$$m/c^{*} = a_{0} + \sum_{i=1}^{n} e_{i}c^{i}$$
 (4.21)
 $c/m = a_{0} + \sum_{i=1}^{n} a_{i}m^{i}$ (4.22)

Vacuum corrections were applied for all weights.

Volumetric titerations were also made against standardised silver nitrate solutions and the concentrations obtained were within \pm 0.2% of the conductometric values, which are considered to be the more accurate.

4.3.1 <u>Determination of Concentration, c_1 </u>: Concentrations c_2 , c_3 and c_4 of a diffusion experiment were obtained by the method described above. The original concentration, c_1 , could not be measured because it changed during the

* Coefficients are given in table Al of appendix 1.

,

preliminary diffusion run. It could, however, be calculated from c_2 , c_3 and c_4 and the volumes of the compartments and the diaphragm pores, at the end of the experiment since the total amount of solute in the system remained constant. The small amount of solute in the diaphragm was assumed to be balf at the concentration of the compartment, 1, and half at the compartment, 2; c_1 was then given by

$$c_{1} = c_{3} + (c_{4} - c_{2})(V_{2} + V_{3}/2)/(V_{1} + V_{3}/2)$$
(4.23)

4.4. Results of Diffusion Measurements

4.4.1 <u>Cell Calibration with Potassium Chloride Solutions</u>: For cell calibrations seven diffusion runs were made using potassium chloride solutions over the concentration range 0.01-3.0M. A computer programme^{*} was written, which calculated concentrations from experimental conductances measured before and after each run. The results are presented in table 4.2. The cell constant obtained from various runs remained constant with in $\pm 0.1\%$ upto 1M but then it increased slightly with concentration. The increase was within the experimental error and the mean value was $0.4487\pm0.2\%$.

4.4.2 <u>Diffusion Measurements with Caesium Chloride</u> <u>Solutions</u>: The results of measurements with caesium chloride solutions are presented in table 4.3. To compare these results with the literature differential diffusion co-efficients, the latter were converted into integral form * given in appendix 2;

Table-4.2

Diffusion runs for Potassium Chloride Solutions.

D F C C C	стр Ч.	с 4 Ста		ဂ	Runs	.Cell
71.568 0.1666	0,00873	0.01745 0.08721	0.07722	0.09721	۲۰۰	Cell-1
1.733 0.1662	0.14174 1.8399	0.17658 0.43053	0.10690 0.3060	0.47045	N	Cell-l
1.692 .44786	0.08188 1.8396	0,16375 0.37245	0.0 0.27927	0.46563	ω	Cell-2
1.692 .44756	0.26422 1.8542	0.41041 0.78030	0.11802 0.61391	0.94668	Ļ	Cell-2
1.692 .44754	0.30388 1.85550	0.43851 0.77891	0.16925 0.62569	0.93214	ບາ	Cell-2
1.692 .44868	0.68165 1.90487	0.9440 1.58803	0.4193 1.2895	1.8866	6	Cell-2
1.692 0.44952	1.0543 1.9756	1.48325 2.5174	0.64528 2.04053	2.99423	7	Cell-2

Time, tz, is in seconds.

Run	8	ő	10
C J	• 0565	• 1109	• 5050
C V H	.0000	.0000	•0754
0 2	•0466	6980.	• 4098
C S	• 0088	.0210	•1585
cma	.0516	6860.	• 4574
cmb	•0042	•0105	.1169
c/	.1664	.1164	.1664
5-0 r3	1.242	1.640	1.737
$\overline{\mathbb{D}}_{1}(\overline{\mathbb{Obs}})$	1.926	1.903	1.858
D. (Calc.)	1.925	1.898	1.856
			•
		•	

•. -

Diffusion runs for Caesium chloride solutions

Table-4.3

្ត ខ្លួត

	5-01 ×	B	ດແນ່ວ	เสอ	⁴	، بر ا	0 0 1		Cell	Run	
1.9184	1.594	0.1664	600°0	0.0868	0,0181	0.0765	0.0000	0.0977	Ч	ώ	
1.8729	1.692	0.4475	0,255	0.7569	0,3981	0.5933	0.1116	6616°0	N	ರ	
1.9285	1.705	0.4487	0.441	1.343	0.7058	1.0416	0.1750	1.5446	N	ဂ	
4266•1	1.716	0.4487	0.957.	1.654	1.1677	1.4150	0.7471	1.8937	N	ಧ	
2.0882	1.620	0.4495	1.378	2.843	1.8169	2.3425	0.9382	3.3425	N	n	
2.0932	1.624	0.4495	1.294	2.958	1.7944	2:3878	0.7932	3-5273	N	⊢-),	
2.0967	1.728	0.4495	1.400	2.783	1.8348	2.2885	0.9655	3.2779	N	୯୨.	
2.1539	1.695	0.4495	1.870	2.869	2.1857	2.5098	1.5549	3.2277	N	Ч	

.

.

Pable-4.4

Rubidium Diffusion runs for/chloride solutions.

•

Toble-4.5

Experimental and calculated differential diffusion coefficients for Rubidium Chloride Solutions. .

.

,

3.0	2.87	2. 5	2.0	5.T	1 .0	• 51	N	4	50°	.01	•005	0:0	Q
2.245	2×550	2.173	2.100	500.5	1.945	1.869	1.856	1.879	TT6°T	1.973	1	1	D Experimental
2.245	い。 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	2.173	2.100	2.023	1.944	1.870	7-857	1.879	1.910	1.974	7.664 T	2.051	D Calculated
+.02	01	+•03	+.07	02	+• 06	05	02	+•02	+.06	07	÷.03	ł	% Deviation
	• •			•		•				1.973	1.995	2.051	D Literature
•				- 									

and then compared with the experimental integral diffusion coefficients. A third degree polynomial (4.16) was fitted between D and $\int c$ by a least squares treatment and the coefficients of the fit were substituted in the expression (4.17). The value of D corresponding to each set of cma and cmb were then calculated. The experimental values were within $\pm 0.1-0.2\%$ of those obtained from the theoretical fit.

4.4.3 <u>Diffusion Measurements With Rubidium Chloride</u> <u>Solutions</u>: Experimental results are given in table 4.4 inwhich the letters a to h denote the number of diffusion runs made. A fourth degree dependence of D on Je was used in eqn(4.16). Substitution of the literature value of $D^{0}(\text{equal to 2.051})$ and the values of cma, cmb and \overline{D} for each of the runs, a,b,c,d,e and h, in the expression(4.17) gave six relations among the constants \mathbf{a}_{1} , \mathbf{a}_{2} , \mathbf{a}_{3} and \mathbf{a}_{4} of the fit, eqn(4.16). These relations were solved simultaneously using a 4×4 determinant. The computer programme is described in the appendix 2. Three combinations of four out of six relations could be obtained to cover the whole range 0.01 to 3.0M. The values of D obtained were within a) \pm 0.1% upto 1.5M b) \pm 0.2% upto 2.7M and c) \pm 0.5% at 3.0M.

Finally the fourth degree polynomial(4.16) was fitted between \sqrt{c} and the mean experimental D for the experimental range of concentration 0.01-3.0M and the resulting equation extrapolated to obtain D for c <0.01M. The calculated results were better than 0.1% of the literature values.⁵² Table 4.5 summarises the results.

CHAPTER 5

Measurement of Conductance

5.1 Historic Developments: After the extensive study of the design of conductance cells by Jones and Pollinger in 1931, the theoretical and experimental aspects were reviewed by Shedlovsky in 1960. A few modifications have taken place in the measurement techniques for dilute as well as concentrated solutions. Kay and coworkers⁵⁵ devised a salt cup dispensing system without exposing the contents of the cell to the atmosphere and Eysels developed a doughnut cell for concentrated solutions, in which the same solution could be diluted a number of times. King57 has introduced a compact cell design for measurements at high temperatures and pressures. Guint⁵⁸ has reported work on conductivity of binary mixtures of electrolytes in aqueous solutions. The complete situation of conductance up to 1967 was reviewed, with 248 references, by Barthel⁵⁹ with particular reference to measurements in non-aqueous solvents. Since then a number of papers have been contributed by Fuoss and coworkers for the extension of the original Fuoss and Onsager⁶⁰ conductance equation which is now valid upto 0.1M concentrations.

For the measurement of conductances of rubidium and caesium chlorides in aqueous solutions for concentrations from 0.01 to 3.0M, we have used Jones and Bollinger⁵³ type cells incorporating the modifications suggested by later workers, which would be described in the subsequent sections which now follow.

5.2 Conductances of Rubidium and Caasium Chloride Solutions

5.2.1 <u>Conductivity Water</u>: Ordinary distilled water was redistilled thrice, first over acidic potassium dichromate, then over alkaline potassium permangenate and finally distilled as such into a 15-litre pyrex aspirator. Three 5 litre round-bottomed flasks, heated electrically, were used for distillation. Steam coming out of a flask was made to pass through 55"-high vertical glass columns packed with glass beads before it was condensed into the next appropriate flask. The aspirator was fitted with a Teflon tao at the bottom and Teflon bung with two boles, at the top. The holes in the bung carried glass tubes, one for distilled water and other for sucking in cleaned air passed through Sofnolite. The purified water thus obtained had a specific conductance of 1×10^{-6} and after degassing 0.1 to 0.2×10^{-6} .

5.2.2 <u>Purification of Nitrogen</u>: Unpurified cylinder nitrogen was passed through concentrated sulfuric acid and sodium hydroxide solutions, two tubes packed with sofnolite and glass wool and finally twice through conductivity water. The bottles used were of 200ml capacity and were fitted with B-24 gas heads which in turn were fitted at the bottom with sintered glass discs of porosity 4. The gas issuing out of these discs was in the form of bubbles so that it could come into maximum contact with the purifying solutions. The degassing apparatus is shown in figure 5.3. 5.2.3 <u>Crystallisation of Analar Petassium Chloride from</u> <u>Conductivity Nater</u>: B.D.H. AnalaR ootassium chloride was dissolved in conductivity water till the solution was saturated. The saturated solution was filtered hot under vacuum using a porous glass filtering funnel fitted into a 2-litre conical filtering flask with B-24 standard joint.

The conical flask containing the saturated solution was cooled by surrounding it with finely ground ice. The crystals appeared instantaneously. The mother liquor was poured off into another conical flask and preserved. The crystals were transferred to a 2-litre beaker and conductivity water was added in small amounts so that on heating again the solution could remain saturated at $\approx 100^{\circ}$. This solution was again cooled rapidly using ice as before.

The crystals thus obtained were dried in an oven at 130° C in Pyrex glass drying dishes for 24 hours. The drying crystals were cooled in a desigrator over silica gel for an hour or so and then ground in an agate mortar in small amounts. The ground salt was further dried in an oven at 130° for 3 days and then stored in a desigrator over silica gel.

5.2.4 <u>Alcoholic Precipitation of Potassiun Chloride</u>: To the mother liquor obtained from the second crystallisation from conductivity water, an equal amount of 98% absolute alcohol⁶¹ was added. The precipitated salt was filtered and washed with small amounts of 50% alcohol. The drying and grinding precess was the same as for crystallisation from conductivity water. The dried, ground salt was in the form of powder. It was also stored in a designator over silica gel.

5.2.5 <u>Purification of Rubidium Chloride</u>: 99.87 laboratory reagent grade rubidium chloride supplied by B.D.H. and Kochlight company was crystallised from conductivity water. The salt was recovered from the mother liquor by alcoholic precipitation using the same procedure as for potassium chloride.

5.2.6 <u>AnalaR and Spectro-scopic Caesium Chlorides</u>: About 200 grams of AnalaR and 20g of Spec-pure caesium chloride salts were ground in an agate mortar. The powdered salts were dried as such in platinum drying dishes and used without further purification. There was no difference in conductances of solutions made from AnalaR or Spec-pure salts. The measured conductivities were within the precision of measurement for solutions of the same concentration.

5.2.7 <u>The Glass Apparatus</u>: For preparing experimental solution, 100ml and 250ml Pyrex Quick-Fit flasks with B-24 stoppers were used. These flasks and other pyrex glass apparatus were first soaked in Pyroneg detergent solution for 3-4 days and then washed with chromic acid and nitric acid. Finally they were steamed (steam of conductivity water) for 10 to 15 minutes (for each flask and the uncalibrated glass apparatus).

After steaming, the glass apparatus was rinsed with conductivity water and AnalaR acetone, and then dried by compressed air issuing under pressure after passing through silica gel and glass wool to remove moisture and dust.

E G

The apparatus, flasks in particular, were not dried in an oven so that the air in them is kept at room temperature and humidity because otherwise if air in a flask is dry and a few ml of a concentrated solution are added to it a little evaporation is likely, which results in a change of true concentration of the solution⁶².

The flasks dried over air were found to have the same weights within 0.0002 grams after repeating the process of cleaning. All the flasks with stoppers were numbered using a diamond scratching knife so that using the same flask and stopper, their weights could be compared and reproduced.

5.2.8 <u>Constant Temperature Bath</u>: A temperature of $25^{\circ} \pm 0.002^{\circ}$ was obtained using a toluene mercury coiled glass thermo-regulator in a light-weight transformer oil tank. The oil was heated by a 40 watt electric bulb end cooled by circulating tap water in the tank using a coiled copper pipe immersed in the tank. Therough mixing of the oil was affected by an electric motor stirrer. The rates of heating cooling and stirring were regulated in such a way that temperature variation was within $\pm 0.002^{\circ}$.

An E-Mil TOT INM standard thermometer model K14047 calibrated to N.P.L. standards was used for temperature measurements. It was not considered necessary to calibrate this thermometer further because the solutions of electrolytes under study have the same temperature coefficient as those of potassium chloride, which is used for cell calibrations. A constant error of a few hundredths of a degree would largely be compensated⁶³ by a corresponding change in the conductivity of the standard.

5.2.9 <u>Conductivity Bridge</u>: A digital autobalance precision bridge B-331 manufactured by Wayne Kerr Co., Etd., was used for conductance measurements. This autobalance bridge displayed capacitance and conductance simultaneously on two meters. An accuracy of 0.01% was attained by operating six pushbutton decades, three for capacitance and three for conductance. The instrument incorporated a special circuit, called "lead elliminator", which completely eliminated error in resistance caused by the use of long connecting leads. The bridge operated at a frequency of 1591.55 H_c.

For conductance measurements at other frequencies ranging from 500 to 4000 cycles per second, external sources of frequency and detection were used. The signal generator was a Wayne Kerr oscillator, model AF 5121. The external detector model 96016 of Standard Telephone Company, was recommended by the Wayne Kerr Co, for use with their bridge. With this detector we found that it was difficult to make conductance measurements better than $\pm 1\%$. No reason could be found for the insensivity of the instrument. It might have been due to miscellaneous electrical circuits in the laboratory. We, however, managed to get a detector^{**} of the General Radio Company* and this was sensitive enough for measurements with the bridge accuracy of 0.05%(with the external source and detector).

* Kindly lent to us by Dr. T.R. Foord of the department of Electrical Engineering, University of Glasgow. ** type 1232 - H 5 1. 9 1.
5.2.10 <u>Conductivity Calls</u>: The design of conductance calls, shown in figure 5.1, is the work of Jones and Bollinger who made an extensive study of cell design to remove the shunt effect and polarisation errors. The shunt effect, which is due to high capacitances, is avoided by keeping contact tubes widely separated and the filling tubes apart. The polarisation is avoided by platinising the electrodes and using alternating current.

Four pyrex cells of cell constants 35.807, 87.140, 92.900 and 172.20, were used to cover the whole range of concentration. The diameter of each electrode was \simeq 1.6ma. Dimensions of the filling and the contact tubes were the same in all cases but the length of the narrow portion of each cell were varied to obtain different cell constants. The approximate dimensions of the cells are shown in table 5.1. To obtain a lower cell constant the length of the narrow portion between the electrodes was decreased and the diameter was increased.

The filling tubes were incorporated with bulbs in the centre. This facilitated rinsing of the cells. The contact tubes were filled with mercury but before filling, the glass platinum joint was further sealed inside the contact tube with the Araldite powder, which hardened on heating and subsequent cooling. Copper rods of two mm diameter were used to make contact with bridge leads for the cell of cell constant 35.807 while platinum rods were used for cells of high cell constants. Copper rods had to be cleaned with dilute hydrochloric acid from time to time to remove the oxide layer which built up slowly and reduced contact.

Ta	b]	_e	5.	.1
	the second second		and the second s	_

Approximate dimensions in centimeters of the conductance cells.

Dimensions		Cells		
	l	2	3	4
1	7	12	12	12
I.D.1.	0.6	0.4	0.4	0.2
h	10	15	16	15
D	1.6	1.6	1.4	1.4
m	3	3	3	3
n	14	14	14	14
I.D.n.	• 3	• 3	• 3	• 3
р	9	9	9	9
I.D.p.	0.5	0.5	0.5	0.5
q	1.5	1.5	1.5	1.5
I.D.q.	1	1	1	1

l= length of the narrow portion between the electrodes; I.D.l= diameter of the capill/ary tubes between the electrodes; h= distance between the electrodes; D= diameter of each electrode; m= horizontal length of the filling tube; n= vertical length of the filling tubes; I.D.n= internal dimeter of the filling tubes; p= vertical length of the filling tubes; I.D.p= internal diameter of the filling tubes; q= diameter of the bulb in the filling tube; I.D.q= internal diameter of the bulb.

Figure 5.

5.2.11 <u>Platinisation of Cell Electrodes</u>: For platinisation, again the instructions of Jones and Pollinger⁵³ were followed. The platinisation solution consisted of 0.025M hydrochloric acid, 0.3[±] platinic chloride and 0.025[±] lead acetate. Six coulombs of electricity per square centimeter of the electrode area were passed. The polarity was altered after every ten seconds and the platinising current required was 10mA per cm². The electrical circuit is shown in figure 5.2 in which K is the two way key and B is the Battery. Avometer, V, indicated current. After platinisation, cells were washed with distilled water and were always kept filled with it.

5.2.12 <u>Cell Calibration</u>: For cell calibration, 1.0, 0.1 and 0.01 demal solutions of potassium chloride were prepared as recommended by Jones and Bradshaw⁶⁴. 1D* solution was prepared by direct weighing and 0.1 and 0.01D solutions were prepared by dilutions of the 1D solutions. Demal solutions are independent of the atomic weight of the standard electrolyte. Amounts of K*t*l required for 1000g of the solutions are given in table 5.2 along with their corresponding specific conductances.

5.2.13 <u>Preparation of Demal Solutions</u>: For a 1D solution, approximately 7g of KCl were weighed to 4 places of decimels. This weight was converted into vacuum weight by applying the vacuum correction factor⁶⁵, f, which is obtained using

$$f = 1 + 0.0012(1/d - 1/8)$$
 (5.1)

* D stands for Demal.

Table 5.2

Preparation of Demal solutions.

Demal	g of KCl per 1000g of soln. in vac.	Vac.Correction for solution	Specific conductance
.01	0.745263	1.00105	.0.0014087
.1	7.41913	1.00105	0.012856
1.0	71.1352	1.0010	0.111342

Table 5.3

Vacuum correction factors for salt and solutions.

Electrolyte	Nol.wt.	Vacuum Salt.fa	Correction for Solution fb		
			¢ ∢. 1	c7.1	
KCl	74.56	1.000455	1.00105	1.001	
RbCl	120.92	1.000300	1.00105	1.001	
CsCl	168.36	1.0001500	1.00105	1.001	

1

for salt this where d is density of the salt or solution and/is equal to 1.000455. From this, the weight of the solution required in vacuum was calculated, which on division by vacuum correction factor for solution gave the weight of solution required in air. A little less than the required amount of conductivity water was added to the flask containing the salt and final weight was made by adding water drop by drop. Solutions of \pm 0.01% accuracy could be easily prepared by this method. \approx 10ml of 1D solution were weighed in another flask and diluted to obtain 0.1D solution. 0.01D solution was similarily obtained by dilution of 0.1D solution.

5.2.14 <u>Conductance Measurements</u>: Cell-1 (with lowest cell constant) was calibrated with 0.01 and 0.1D solutions while all other cells were calibrated with 0.1 and 1D solutions. The cells were rinsed four times with 10ml samples of the stock solutions. After filling the tube, the standard joint (of the filling tube) was dried with filter paper and stoppered. No air bubbles were left trapped in the solution in the cell.

The cells were then thermostated in the oil thermostat for 15 to 20 minutes before conductance measurements were made. The measured conductances remained stationary with time within the accuracy of measurements. The cells were removed from the thermostat, stoppers were removed and the solutions were stirred by tilting the cells slightly. The stoppers were replaced and the conductances were measured once more. No change was observed in the measured conductances showing that adsorption effects were absent. The specific conductance of water was added to the specific conductances of the demal solutions and the cell constants were then calculated using the relationship

$$\int \mathbf{v} = \mathbf{k} \tag{5.2}$$

where \int is the cell constant, v is the observed conductivity and \mathcal{K} is the total specific conductivity of the solution.

For confirmation of the cell constants, 0.01, 0.1, 1, 2 and 3 molar solutions of NaCl and KCl were prepared, their conductances were measured and the equivalent conductances calculated using the relationship

$$\Delta = \kappa \cdot 10^3 / c$$

The calculated values were in agreement within \pm 0.02% of the literature⁶⁶ results.

5.2.15 Preparation of RbCl and CsCl Solutions: The equations (5.3) and (5.4),

$$c/m = a_0 + \sum_{i=1}^{2} a_i m^i$$
 (5.3)

$$m/c = a_0 + \sum_{i=1}^{2} a_i c^i$$
 (5.4)

were used to calculate molar concentrations, c, from molalities m and vice versa. Coefficients, a_0 and a_1 of relationship (5.3) were obtained from Harned and Owen⁶⁷ and the coefficients of relationship (5.4) were obtained by a least squares, fit between m/c and c. These coefficients are given in table A1, appendix 1, along with the values for KCl solutions. The relationships (5.3) and (5.4) are applicable upto 4M concentrations. For CsCl solutions, the equation

$$d = 0.99707 + 0.12933c - 0.002166c^{3/2}$$
(5.5)

was available 68, and was used to calculate molalities, m, using the relationship

$$m = c/(d-0.001.c.W_{b})$$
 (5.6)

where W_b is the molecular weight of the salt and d is the density of the solution in gram per ml.

Solutions were prepared at approximate molalities as well as molalities corresponding to exact concentrations. For preparation of solutions at exact concentrations, if Wa is the apparent weight of the solution air then the apparent weight of the solution required in air, Wy, is given by relationship

$$Wy = Wa \times (1+1000/Wb.m) \times fa/fb$$
 (5.7)

where fa and fb are the vacuum corrections for the salt and the solution respectively. The numerical magnitudes of W_b , fa and fb are given in table 5.3. Relationship (5.7) may also be rewritten as

$$Wy = Wa.Y$$
(5.8)

where Y = (1+1000/Wb.m)fa/fb (5.9)

SO

An approximate amount of salt was weighed and multiplied by the factor, Y and the apparent weight of the solution required in air was thus calculated. A little less than the calculated amount of conductivity water was added and the final weight was made by adding water drop by drop as mentioned earlier for preparation of demal solutions.

Solutions were also prepared at approximate molalities and the exact concentrations calculated using relationship (5.3).

5.2.16 <u>Degassing of dilute solutions and filling of cells</u> for conductance measurements: Conductances of all solutions above 0.11" were measured without degassing while for all solutions below 0.11", conductances were measured before and after degassing with purified nitrogen. Specific conductances of undegassed and degassed conductance water were subtracted from the observed specific conductances of the solutions. For c > 0.01, no appreciable difference was found in calculated equivalent conductances by both the methods. The degassing and filling apparatus is shown in figure 5.3 in which A is a three way tap, B is a two way tap, and H is the gas head.

Firstly, outlet C of the gas head is closed, B is opened while A is closed from the side of the B-10 joint and open to the atmosphere. This way the gas after passing through the solution issued out to the atmosphere through the outlet in tap A.

After degessing of the solutions, the outlet C of the gas head was opendand fitted into the inlet C of the cell. Nitrogen gas, instead of passing through the solution escaped through the cell, thereby creating its own atmosphere in it. This was allowed to take place for 1-2 minutes. After that, tap B was closed and tap A was closed to the atmosphere and open to the solution side. The gas passed straight through A and created a pressure on the solution thereby making it rise up to the gas head tube dipping in it. The solution then started filling the cell through the inlet C. The stopper D was opened to let the gas escape while the solution was entering the cell. Bubbles left in cell were removed by shaking and tilting the cell slightly. When the level in the second filling tube rose nearly to the required mark, the tap A was closed and outlet of the gas head was taken out of the cell and stoppers were immediately placed in the filling tube C, as well as in D. The cell was then ready for conductance measurements.

5.2.17 <u>Frequency Dependence of Conductance</u>: Frequency dependence of conductance is given by Jones and Bollinger's⁵³ relationship

$$R_{p} = R_{t} - R_{t}^{2} \cdot R_{p} \cdot W^{2} \cdot C_{p}^{2}$$
 or $R_{p} = R_{t} - R$ (5.10)

where R_p is the apparent resistance, R_t is the true resistance, and W and C_p are the angular frequency and capacitance respectively. If R_t is taken to be roughly equal to R_p , eqn(5.10) becomes 网络

$$R_{p} = R_{t} - R_{t}^{3} \cdot W^{2} \cdot C_{p}^{2}$$
(5.11)

For all the cells and the whole range of concentration from 0 to $3^{\rm M}$, R_p was between 500 and 50,000 ohms and C_p was of the order of $\approx 10^{-12}$ farads. For frequencies, 1000 to 4000 H_z, substitution of W, R_p and C_p in eqn(5.11) shows that the error, R = R_t³ W².C_p², is negligibly small. Its magnitude is much less than 0.01% and the change cannot be observed on the instrument. In theory it is clear that the measured or apparent resistance is the true resistance. In practice, the measurements were first made at bridge frequency and then using an external frequency source and detector in the range 1000 to 4000 H_z for 0.01, 0.1, 1.0 and 3.0M solutions and no visible change was observed within \pm 0.05%, (which is the bridge accuracy for external source and detector). The most recent account of dependence of conductance on frequency has been given by Hoover⁶.

5.3 Results of Conductance Measurements

5.3.1 <u>Conductance Measurements in Dilute Solutions</u> Table 5.4 summarises the results both for rubidium chloride and caesium chloride for concentrations less than 0.1M.

Table 5.4

Results of conductance measurements in dilute solutions.

الم الله المراجع المالية المالية المراجع	RD	антанаанта на актор (14) от онтрички от 41 аконструк	Cscl.				
С	12	С	12	C	1.	С	: />
• 007	146.34	.04	138.11	• ()]]	144.52	•05000	134.63
.003	145.91	.05	136.75	.013888	143.09	.07000	133.51
.01	145.07	.055	136,19	.015133	142.71	.07837	132.66
.0103	144.98	.0633	135.28	.019998	141.32	.08	132.52
.013	143.96	.065	135.09	.028255	139.40	.08926	131.69
.015	3.43.30	.07.	:134.59	.03	139.01	.09	131.67
.017	142.77	.075	134.15	.04	1.37.32	.0929	131.38
.01.9	142.23	.0828	133.43	.04784	136.12	.098	131.04
.02	141.98	.09	132.87	.049997	135.81	.].00	130.84
•03	139.77	.10	132.14	.05	135.80	.100	130.85

.Results are summarised in table-5.5

<u>i'able-5.5</u>

Results	of	conductance	measurements	in	concentrated	solutions.
---------	----	-------------	--------------	----	--------------	------------

Rb C).			CcCl.				
e	Δ	.C	Δ	.C	/>	с	\checkmark
•10 •20 •25 •30 •50 •70	132.14 127.17 125.45 124.09 120.35 117.77	1.0 1.5 2.0 2.5 3.0	115.23 112.06 109.34 106.67 103.98	.10 .20 .35 .50 .70 .85	130.84 125.43 120.06 118.30 115.73 114.33	1.0 1.5 2.0 2.5 3.0	113.10 109.86 107.20 104.52 101.63

5.4 <u>Analysis of Conductance Measurements in Dilute</u> Solutions - A Study of Ion Association:

5.4.1 <u>Fuoss Analysis</u>: During the past three years Fuass and co-workers^{62-e} have published extensions of the original Fuoss-Onsager conductance equation⁶⁰ and applied the extended equation to data for sodium and potassium chlorides, caesium bromide and iodide, potassium nitrate and silver nitrate. The experimental data were first analysed using the implicit equation

$$\Lambda = \Lambda_{0} - S \sqrt{c} + Eclnc + Ac + Bc^{3/2}$$
 (5.12)

in which S and E are theoretical parameters and A and B constants of empirical fit. Equation (5.12) is valid upto 0.1M concentration and successfully reproduces the experimental data within the precision of measurements. A computer programme was devised which reproduced the Λ_0 , A and B values reported for sodium and potassium chlorides^{6b,c}. The experimental data for rubidium and caesium chlorides were then processed. The values of dielectric constant and viscosity of water were taken as 78.54 and 0.008903 (poise) at 25°C and the resulting equation for rubidium and caesium chlorides were were

$$\Lambda = 154 \cdot 01 - 96.000 \, \sqrt{c} + 26.60 \, \text{clnc} + 207.7c - 195.1c^{3/2}(5.13)$$

$$\Lambda = 153 \cdot 58 - 95.000 \, \sqrt{c} + 26.31 \, \text{clnc} + 190.4c - 171.6c^{3/2} \quad (5.14)$$

:::2

The equivalent conductances for caesium chloride in the range $c \lt 0.01$ k, calculated from equation (5.14) were

in agreement, to within 0.03%, with those obtained by Swan and Evans⁷⁰ who, using the original Fuoss-Onseger equation obtained a Λ_0 value for caesium chloride of 153.61 \pm 0.02, which is in agreement with equation (5.14). The A and B values obtained for caesium chloride, equation (5.14), are similar to those for caesium bromide and iodide⁶⁰ and the order is CsCl < CsBr < Csl.

Equations (5.13) and (5.14) for 1:1 salts in the concentration range 0.01 to 0.1M give satisfactory values of Λ_{0} when terms in $c^{3/2}$ are retained

Using this concentration range improves experimental accuracy and so is preferable to using concentrations < 0.01N.

For solutions where ion association is present Fuess and Hsia first used the explicit equation

 $\Lambda = \alpha (\Lambda_0 - \Delta \Lambda) (1 + \Delta X/X) / (1 + 3 \frac{\phi}{2}), \qquad (5.15)$

where \checkmark is the degree of dissociation, $\land \land$ and $\land X/X$ contributions from electrophoretic and relaxation effects respectively and \not is a function of the ion-size parameter a. Equation (5.15) may be solved as a three parameter equation to give self-consistent values of \land_{0} , a^{0} and K_{a} , the association constant. The latter is derived from values, using activity coefficients from the Debye-Hückel limiting law. Although the values for distance i^{c} closest approach are large, 5-6 \land^{0} , equation (5.15) adequately represented data for sodium and potassium chlorides and caesium bromide and iodide up to 0.1M. MacKenzie and Fuoss 6e , however, found that with potassium and silver nitrates in water and in aqueous dioxene, where the amount of association is comparatively large, the value of K_{a} obtained was relatively insensitive to the values of a chosen. Thev then treated equation (5.15) as a two parameter equation and calculated K_a from the best fit of a⁰.

A detailed computer programme (No.158) of this treatment was kindly supplied by Professor Fuoss 74 and was used to process experimental data for rubidium and caesium chlorides and to recalculate results for other alkali salts. The distance parameter a⁰ is obtained from the association constant, K_a, using the relationships

$$K_{a} = (4\pi N \beta^{3} / 6000) F(b)$$
 (5.16)

where $F(b) = E_p(b) - (e^b/b)(1 + \frac{1}{b}) + 2.435$ (5.17)

 $a^{0} = \beta/b$

 $\gamma = \beta \kappa / 2$

Activity coefficients, f_{\pm} , are calculated using the expression

$$-\ln f_{\pm} = \gamma / (1 + \gamma)$$
 (5.19)

Relations between N, β , a° , b, τ and κ are given in an earlier publication 75. A limit has also been set to the maximum concentration such that $c(max) < 10^{-7} \cdot D^3$ where D is the bulk

dielectric constant. For aqueous solutions $c(\max) \le 0.05$ and as association increases this limit decreases further.

where

and

(5.18)

0)

Table 5.6

Results for Rubidium Chloride data using the Fuoss analysis.

с	A _{cale}	A _{calc-} A _{obs}	۲	f ² +
.008	145.908	002	.9982	.8272
.010	145.066	004	•9978	.8109
.0103	144.945	035	•9977	.8085
.013	143.980	+.020	•99 72	.7901
.015	143.337	+.037	•9968	•7782
.017	142.757	013	.9964	.7674
.020	142.218	012	•9961	•7576
.020	141.964	016	•9959	.7528
.03	139.802	+.032	•9942	.7141
.04	138.131	+.021	•9926	.6847
.05	136.758	+.008	•9911	.6610
.055	13 6. 224	+.034	• 9904	.6507

Table 5.7

Results for Caesium Chloride data using the Fuoss analysis

C	∧ _{cale}	^A cald-Aob	3 X	f+2
.010000	144.500	020	.99671	.81093
.013888	143.093	+ .003	•99558	.78480
.015133	142.691	019	.99524	.77757
.019998	141.299	021	•99392	•75299
.028255	139.390	.010	.99182	.72026
.029991	139.041	+ .001	•99139	•71438
.030000	139.039	+ .029	•99139	•71435
.039991	137.320	+ .000	•98890	.68300
.047836	136.109	011	.98730	.66622
.049997	135.815	+.005	.98683	.66150
.050000	135.814	+ .004	•98683	.66149

The results for rubidium and caesium chlorides are given in table 5.6 and 5.7. Table 5.8 summarises calculations for other alkali halides and potassium and silver nitrates. Including in this table are the Λ_{0} values obtained from equation (5.12). These are larger by 0.08 and 0.05 conductance units for rubidium and caesium chlorides and similarly for sodium and potassium chlorides and caesium bromide. In the sequence of salts from sodium chloride to silver nitrate the ion size parameter a⁰, decreases as association constants, K_a , increase. The values for K_a for sodium and potassium chlorides are 0.17 with uncertainty of +0.12 so that, as expected, the association is barely significat. The association constants for rubidium and caesium halides are significant but smaller than for potassium and silver nitrates. The values of association constant, Ka, for rubidium and caesium chlorides are .275+ .083 and .409 + .061 respectively. For caesium chloride Ka is identical with that for caesium bromide and compares well with an early estimate by Davies 76 of $\simeq 0.4$, measured at 18°C.

5.4.2 <u>Corresponding Conductances</u>: In a recent paper Guggenheim⁷⁷ has used the conductance equations of Pitts to calculate the conductance with an electrolyte would have in the absence of ion association. The principle is one of corresponding conductances, in which the desired equivalent conductance, Λ , is calculated using data for two standard 1:1 salts which were considered to be completely dissociated. It is shown that for a given value of concentration,c,

$$\frac{\Lambda^{1} - \Lambda}{\Lambda^{1} - \Lambda^{2}} = \frac{\Lambda_{0}^{1} - \Lambda_{0}}{\Lambda_{0}^{1} - \Lambda_{0}^{2}} = r \quad (c, \text{ constant})$$
(5.21)

where r is the constant defined by the $oldsymbol{\Lambda}_{
m O}$ values and therefore independent of concentration. Superscripts 1 and 2 denote the standard salts. In the original paper these salts were potassium and lithium chlorides, but in this work sodium and lithium chlorides were used in order to include potassium chloride, as in the Fuoss treatment given above. (For self-consistency the degree of dissociation is again given the symbol \checkmark , where \$ was used in the original paper). The value of \prec is calculated as the ratio $\Lambda_{\rm obs}/\Lambda$, calculated from equation (2.21). The results are shown in table 5.9 and fig. 5.4. The degrees of dissociation present at specific concentrations are closely similar for both treatments and the agreement between them is never worste than 0.5%, although in all cases the Fuges estimate is the lower and extrapolates to a value which corresponds to Davies 78 estimate of 🖌 for Cscl at 0.1M. To compare association constants the Fuoss activity expression, equ. (5.19), has been used and the results given in table 5.8. Once more the agreement for the alkali helides is excellent and within the uncertainty of the K values obtained by each method. The corresponding conductance method does however give lower values for potassium and silver nitrates and each method shows that association in potassium chloride is negligible or zero.

The agreement between those two independent approaches is, therefore, excellent.

Table 5.8

Results for Ao, a⁰ and Ka using programme 158 of Fuose for literature data on other salts.

rolyte	Implicit Equation (1)	Fuoss Programme			Guggenheim Method
Elect	.^o	۸ _o	a ⁰	Ka	`K _a (g)
NaCł	126.61	126.58	5.233	.168 <u>+</u> 0.124	0
KCL PLL CSI	149.96 154.01 154.19	149.92 153.93 154.30	5.223 4.947 4.851	.172 ± .120 ·275 ± .083 .311 ± 0.042	0 •24 ± •13 •28 <u>+</u> •10
CsBr	155.35	155.31	4.597	.409 <u>+</u> 0.061	.40 <u>+</u> .13
CyCl	153.58	153.53	4.598	.409 <u>+</u> .051	.40 <u>+</u> .10
KNO3	844 <i>9</i>	145.00	3.726	•784 <u>+</u> •044	.66 <u>+</u> .05
AgNQ3		133.41	3.509	.875 <u>+</u> .101	.70 <u>+</u> .05

 $(K_{a'}(g)$ is the association constant calculated using Guggenheim's degree of dissociation, $a''_{,}$ and Fuoss's activity coefficient, f+, over the range .01 to .05 M). *using NaCl or LiCl as standards instead of LiCl and KCl as standards.

Table 5.9

Degree of dissociation, \prec , from Guggenheim's method of corresponding conductances($\propto g$) and from Fuess programme ($\propto F$).

	с	.01	.02	.05	.10
KCI	$oldsymbol{lpha}_{ m F}$	•9986 •9986	•9987 •9976	.9990 .9942	•9993
RbCl	≪g ≪F	.9970 .9978	•9958 •9959	.9946 .9911	•9935
CsCl	≪g ≪F	•9960 •9967	.9940 .99 39	.9900 .9868	•9960 -
^{KNO} 3	≪g ≪ _F	•9963 •9934	•9895 •9885	.9806 .9753	•9680 -
AgNO3	$lpha_{ m g}$ $lpha_{ m F}$	•9976 •9930	.9900 .9872	•9780 •9725	.9620 -

0

• 04

• 08

-12

CHAPTER 6

Results and Discussion of the Irreversible Thermodynamic Analysis

The experimental results obtained for the electrical conductances of rubidium and caesium chlorides together with the diffusion data for rubidium chloride complete the parameters required for an irreversible thermodynamic analysis of these salts in the concentration range 0.25-3.0M. Transport numbers for both salts were obtained from Tamas, Kaposi and Scheiber⁷⁹ in this concentration range. These authors found their data to fit the empirical equations of Jones and Dole⁸⁰,

$$t_{1}(RbCl) = 1.5060/(1 + 0.005461.c) - 1$$
(6.1)
$$t_{1}(CsCl) = 1.5084/(1 + 0.01059.c) - 1$$
(6.2)

to an accuracy of 0.1%. Literature values of the volume fixed diffusion coefficient, D_v , for caesium chloride were obtained from Lyons and Riley⁸¹. To convert these (and the experimental results for rubidium chloride obtained in this thesis) to the solvent fixed frame of reference it was necessary to evaluate the activity correction term, (1+mdln f/dm), eqn(2.60), over the full concentration range. For this purpose a fourth degree empirical fit was obtained between ln f and lnm;

$$\ln r = a_0 + \sum_{i=1}^{4} a_i (\ln m)^i.$$
 (6.3)

The coefficients a_0 to a_4 for both salts (and also for potassium chloride for check calculations), given in table 6.1, reproduced ln \checkmark values to an accuracy of $\pm 0.1\%$ over the range 0.1-4.0 molal. The values of the function (l+mdln \checkmark /dm) given in tables 6.2 and 6.3 were obtained from eqn(6.3) on differentiation.

Using the theory discussed in chapter 2 a computer programme was written (appendix 2) which feoroduced Miller's calculated data for the chlorides of lithium, sodium, potassium and hydrogen to +0.1%. The complete sets of transport data for concentrations in the range 0.25 to 3.0 molar for rubidium and caesium chlorides were processed for calculations of the phenomenological coefficients, L_{ik} and R_{ik} . The computer read c,m,t, Λ , D_v and (1 + $mdln \gamma/dm$) from the data tabe and first calculated the transport coefficients, L_{ik} from eqn(2.63). The inverse frictional coefficients, R_{ik}, were then calculated from L_{ik} by their matrix inversion using eqn(2.64). The ionsolvent frictional coefficients, R_{i0} , were calculated using eqn(2.66) which involved all the three transport properties and the activity correction term. These coefficients could also be obtained using eqn(2.69) which involved transport numbers, diffusion coefficients and the activity term and for $R_{\rm OO}$ diffusion coefficients and the activity correction term only. This does not mean that conductance and/or transport numbers are extranous parameters in eqn(2.66), for obtaining the coefficients R_{i0} and R_{00} . It can be seen on expansion the eqn(2.66) reduces to eqn(2.69). The results for rubidium and deesium chlorides are presented in tables 6.2 and 6.3. Calculations were also carried out for (continued)

all other binary systems, for which data were completely or partially available. These results are given in appendix 1.

The formalism of irreversible thermodynamics is justified on two counts. Firstly it allows a meaningful analysis of transport data in the concentration regions for in excess of the applicability of the existing microscopic theories and provides discrete coefficients which define specifically the mobility of ions, L_{ii} , and the coupling between species, L_{ik} . Since the flows are defined relative to a solvent fixed frame of reference all mobility coefficients contain contributions from the frame of reference interactions. It is however apparent that the mobility coefficients are/more fundamental importance than any directly measured parameters such as electrical conductivity or transport numbers, eqns(2.45) and (2.47).

Table 6.1

Coefficients of 4th degree fit, eqn(6.3), between lnm & lnY.

Coefficients	KCl	RbCl	CsCl
^а 0	-5.0506 ₁₀ -1	-5.3938 ₁₀ -1	-6.0912 ₁₀ -1
al	-9.7880 ₁₀ -2	-1.1367 ₁₀ -1	-1.5190_{10} -1
^a 2	$+2 \cdot 2020 10^{-2}$ +1 \cdot 4247 10^{-2}	+1.220610-2	$+1.3164_{10}-2$
а. 4	+2.6918 ₁₀ -3	+2.098910-3	+2.0116 ₁₀ -3

To obtain a deeper understanding of electrolyte transport in concentrated media an examination of the variations of these coefficients with concentration is necessary. The interpretation of such coefficients is qualitative and therefore most soundly based when a series of closely related salts are compared.

In the present series of investigations on rubidium and caesium chlorides the remaining alkali metal chlorides provided this background for comparison. The experimental salts contain the largest cations of the series with largest mobilities and are the only salts of this series for which ion association might be expected (chapter 5).

In this analysis, the mobility or L-coefficients and frictional or R-coefficients have been calculated. These two sets are mathematically equivalent but each has merits for interpretation. The mobility coefficients give relationships which are formally more similar to classical equations; for example equivalent conductivity, Λ , where the simple Onsager equation

$$\Delta = A_0 - (\alpha A_0 + \beta) \int c$$

may be compared with eqn(2.45);

$$\mathbf{A} = (\mathbf{Z}_{1}^{2} \frac{\mathbf{L}_{11}}{N} + \mathbf{Z}_{2}^{2} \frac{\mathbf{L}_{22}}{N}) \mathbf{10}^{3} \mathbf{F}^{2} + (\mathbf{Z}_{1} \mathbf{Z}_{2}^{2} \frac{\mathbf{2L}_{12}}{N}) \cdot \mathbf{10}^{3} \mathbf{F}^{2}.$$

The first term in each equation is a fulction solely of ion mobilities and the second term contains contributions from the cation-anion interaction.

The friction or R-coefficients are more akin to an electrical or mechanical musistance and have the adventage of being independent of the frame of reference. The coupling coefficient, R_{10} , between ion and water may be isolated and examined. This formalism is largely favoured by workers in the field of membrane transport and the friction analogy, discussed below, has been developed by Spiegler⁵³, Katchalsky and others.¹⁹, ⁹⁴

6.1 <u>The Mobility Coefficients</u>: The phenomenological equations for a binary electrolyte solution containing cation, 1, valency, Z_1 , anion, 2, valency Z_2 , and water, 0, are given by the expression(2.29) where J_1 is the flux of ion, i, relative to the solvent. A thermodynamic force on species, i, is defined by the gradient of electrochemical potential (-grad $\widetilde{\mu}_1$) and therefore is the force on one mode of species, i; the flow, however, is largely proportional to the concentration of species. This concentration difference is defined and the variation of these parameters with concentration reflects the changes due to the environmental variation. The analogy is that between the use of specific conductivity and equivalent conductivity, Λ , as a basis of comparison of electrolytes at varying concentrations.

6.1.1 The Coefficients, L_{11}/N and L_{22}/N : The L_{11}/N is an intrinsic mobility, that is, the mobility an ion would have if there were no interactions with the oppositely charged ions. It includes a large obstruction contribution due to lattice exchange, smaller effects such as coulombic interactions with the other i-type ion, solvation and the

frame of reference interactions with the solvent. The cationic and anionic mobility coefficients, L_{11}/N and L_{22}/N , are plotted in figures 6.1 and 6.2 against the square root of ionic strength, S, where S is given by

$$S = N(Z_1 - Z_2)/2$$
 (6.4)

The observed trend of the intrinsic mobilities, L_{ii}/N , may be tentatively explained on the basis of the accumulated evidence $^{$5,86,87}$ of water structure and the effects of electrolytes on that structure. The mobility coefficient, L_{11}/N , is largest for Rb⁺ ion showing that this ion has the highest mobility in the alkali metal chloride series. For Rb⁺, Cs⁺ and K⁺ ions the values lie parallel and very close to each other and are the least affected with change in concentration. In the case of more solvated Na⁺ and Li⁺ ions the coefficients, L_{11}/N , decrease with concentration showing that the most solvated Li⁺ ion has the least mobility.

The mobility coefficients, L_{22}/N , plotted in figure 6.2, provide a basis for the comparision of the Cl⁻ ion mobility in a variety of salt solutions of different concentrations. At finite concentrations it depends upon the nature of the salt. As the concentration gends towards zero, L_{22}/N values converge to a common point in accord with Kohlrausch's law of independent mobilities at infinite dilution. At a finite concentration the L_{22}/N coefficients are in the increasing order of the atomic numbers of the cations. That is,

LiCl & NaCl & Kel & RbCl & CsCl

RIESTDTHM CHLORIDE

:

mable-6.2

	RUBIDIUM CHLORIDE					0.45		
	C	m	Eqv Cond	ť.ŀ	$\mathcal{D}(\mathbf{v})$,	14mes2 InGams/655		
	0.0000 0.1000 0.2500 0.5000 0.7000 1.0000 1.5000 2.0000 3.0000	0.000000 0.100640 0.252370 0.510100 0.718950 1.038340 1.586400 2.156400 3.371300	154.16 132.11 125.45 120.36 117.77 115:23 112.05 109.34 103.97	0.5045 0.5032 * 0.5019 0.4992 0.4978 0.4978 0.4960 0.4945 0.4919	2:0510 1:8790 1:8540 1:8700 1:8980 1:9440 2:0240 2:1000 2:2450	1.0000 0.0923 0.0790 0.8754 0.8795 0.2885 0.2885 0.9104 0.9381 1.0050		
	Sqrt S ×10	111/1 10+12	112/N 10°F12	122/N 10+i 2	F12	ତ୍ୱା 2		
.*	0:0000 3:1623 5:0000 7:0711 8:3666 10:0000 12:2474 14:1421 17:3205	8.3511 7.8403 7.6485 7.5382 7.5045 7.4801 7.4453 7.3870 7.2077	0.0000 0.7005 0.8862 1.0722 1.1903 1.3194 1.4757 1.5799 1.7149	8.2021 7.5973 7.5330 7.5243 7.5345 7.5345 7.5161 7.3886	0.0000 0.1649 0.2083 0.2491 0.2735 0.2990 0.3291 0.3499 0.3806	0:0000 0.0899 0.1163 0.1423 0.1584 0.1758 0.1969 0.2120 0.2350		
	Sqrt S ×10	NR11 10-11	-NR1 2 10-11	NR22 10-11	Q1 ()	ନ୍ଦ୍ରଥେ		
	0.0000 3.1623 5.0000 7.0711 8.3666 10.0000 12.2474 14.1421 17.3205	1.1974 1.2858 1.3254 1.3540 1.3668 1.3795 1.3973 1.4175 1.4685	0.0000 0.1162 0.1546 0.2162 0.2162 0.2416 0.2734 0.2980 0.3408	1.2192 1.3009 1.3343 1.3549 1.3631 1.3695 1.3795 1.3931 1.4325	0.7039 0.6722 0.6533 0.6547 0.6493 0.6436 0.6367 0.6319 0.6246	0.7103 0.6769 0.6661 0.6550 0.6481 0.6403 0.6306 0.6306 0.6235 0.6123		
	Sqrt S ×10	-R10 10-9	-R20 10-9	-COR10 10-11	-COR20	ROO/N 10-7		
	0.0000 3.1623 5.0000 7.0711 8.3666 10.0000 12.2474 14.1421 17.3205 *Transpo	2.1638 2.1205 2.1333 2.1343 2.1289 2.1286 2.1286 2.1413 2.1745 2.2829 ert number	2.2031 2.1479 2.1496 2.1360 2.1221 2.1099 2.1073 2.1272 2.2101 at 0.11 is	1.1974 1.1696 1.1708 1.1613 1.1506 1.1379 1.1239 1.1239 1.1195 1.1276 interpole	1.2192 1.1847 1.1797 1.1622 1.1469 1.1230 1.1061 1.0951 1.0917 ted.	7.8909 7.7387 7.8044 7.8483 7.8656 7.9284 8.0948 3.3555 9.0959		

.

Table-6.3

CAESIUM CHLORIDE

• •

С	10	Eqv Cond	(;-}-	D(v)15	14m×dlmGama/dm
0.0000 0.1000 0.2500 0.5000 0.7000 1.0000 1.5000 2.0000 3.0000	0.000000 0.100700 0.253300 0.519900 0.722800 1.046100 1.604800 2.190500 3.452400	153.63 130.85 123.70 118.30 115.73 113.10 109.86 107.20 101.63	0.5030 0.5020* 0.5005 0.4972 0.4952 0.4926 0.4891 0.4851 0.4812	2.0/40 1.8710 1.8550 1.8600 1.8710 1.9020 1.9600 2.0290 2.1750	1.0000 0.8394 0.8587 0.8421 0.8414 0.8492 0.8725 0.9011 0.9648
Sqrt S X10	111/N 10+12	112/N 19+12	122/N 10+12	F12	Q12
0.0000 3.1623 5.0000 7.0711 8.3666 10.0000 12.2474 14.1421 17.3205	8.2976 7.7896 7.6854 7.5962 7.5334 7.4653 7.3538 7.2624 7.0747	0.0000 0.7348 1.0360 1.2790 1.3783 1.4817 1.5829 1.6657 1.8223	8.1986 7.7334 7.6721 7.6673 7.6527 7.6451 7.6110 7.5825 7.4851	0.0000 0.1730 0.2378 0.2371 0.3073 0.3280 0.3493 0.3668 0.4007	0.0000 0.0947 0.1349 0.1676 0.1815 0.1961 0.2116 0.2245 0.2504
Sqrt S ×10	NR1 1 19 -1 1	NR12 2011	NR22 10 -11 .	Q1 ()	Q20
0.0000 3.1623 5.0000 7.0711 8.3666 10.0000 12.2474 14.1421 17.3205	1:2052 1:2954 1:3253 1:3545 1:3727 1:3931 1:4236 1:4500 1:5081	0.0000 0.1231 0.1790 0.2259 0.2472 0.2700 0.2961 0.3185 0.3671	1.2197 1:3048 1.3276 1.3419 1.3513 1.3604 1.3755 1.3888 1.4254	0.7050 0.6713 0.6573 0.6472 0.6433 0.6396 0.6361 0.6332 0.6265	0.7092 0.6743 0.6581 0.6430 0.6361 0.6234 0.6195 0.6121 0.5977
Sqrt S X10	-R10 10-9	-R20 10-9	-COR10 10-11	-COR20 10-11	ROO/N 10-7
0.0000 3.1623 5.0000 7.0711 8.3666 10.0000 12.2474 14.1421 17.3205	2.1777 2.1267 2.0924 2.1140 2.0935 2.1166 2.1731 2.2325 2.3653	2.2040 2.1438 2.0966 2.0905 2.0537 2.0548 2.0804 2.1117 2.1939	1.2052 1.1723 1.1463 1.1286 1.1254 1.1254 1.1231 1.1275 1.1315 1.1409	1.2197 1.1817 1.1486 1.1160 1.1040 1.0904 1.0794 1.0703 1.0582	7.9179 7.7471 7.6459 7.8758 7.7146 7.8612 8.1981 8.5716 9.4519

* Transport number at 0.11 is interpolated.

Since the intrinsic mobility of an ion does not depend upon the effect of the counter ion, the above order may be explained in terms of the state of the solvent structure in the presence of different cations. The solvent order producing cations, Li^+ and Na^+ , increase the water structure and thereby decrease the mobility of the Cl⁻ ions. The solvent order destroying ions, K^+ , Rb^+ and Cs^+ , on the other hand, decrease the resistance of the solvent medium to ionic flow and cause an increase in the mobility of the chloride ion. On the basis of this hypothesis the sequence of the Cl⁻ ion mobility would be essentially in the same order as that of the cations as is observed in figure 6.1.

In the alkali metal chlorides, RbCl falls between Kcl and CsCl but its equivalent conductance, transport numbers and diffusion coefficients, lie above that of CsCl. That is, they are the highest in the whole series. The largest magnitudes of the intrimsic mobility of Rb^+ ion, L_{11}/N , provides an indication to the cause of this anomalous behaviour. Since the intrimsic mobility of an ion depends upon the state of the solvent, the latter is offering the least resistance to the flow of Rb^+ ion, and so explains the order of the transport properties.

6.1.2 The Cross Coefficient, L_{12}/N : The cross or interaction coefficient, L_{12}/N , plotted in figure 6.3, directly represents the cation and anion interaction. Because it is a solvent fixed coefficient there is some solvent contribution. It is zero at zero concentration as there are no interactions when the ions are infinitely separated

and increase rabidly with concentration. At higher concentrations, L_{12}/N goes through maxima for LiCl and NaCl but increases continuously for KCl, RbCl and CsCl, the values at a particular concentration being largest for CsCl and amallest for LiCl. The highest intrinsic mobility of Rb⁺, shown by L_{11}/N coefficients, does not alter the order of L_{12}/N .

The largest interaction of Cs⁺ and Cl⁻ compared to that of Li⁺ and Cl⁻ might well occur if the Li⁺ ion were properly screened by its largest solvation sheath which would increase the distance of closest approach and hence decrease the average coulombic force between them. On the other hand the effect of the larger solvation sheath around Li⁺ ion would be to orientate solvent more rigidly and subject it to partial dielectric constant around the ion and enhance the coulombic interaction between Li⁺ and Cl ions. If, however, this model is acceptable, the distance effect would have to be substantially larger in order to explain the sequence. The decrease in $L_{1,2}/N$ for NaCl and LiCl at higher concentration is again based on this model (of distance effect) which decreases the cation and anion interaction per unit concentration.

Stokes 83 has suggested that L_{12}/N might reflect incipient ion association because of increased coulombic interactions due to decrease in hydration as we go from Li⁺ to Cs⁺. If this were the case then incipient ion association would be maximum for CsCl and least for LiCl. This, however, is also the order of the intrinsic mobilities of the cations which, in turn, are determined by ion-solvent

is interactions. This more clearly brought out by the L₁₂/N values for HCl, HNO₃ and NaOH which are very high indeed. Stoke's model therefore does not provide a clear picture od ion-association. Kedem and Caplan⁸⁹ have defined a new parameter q_{12} as a better measure of the degree of coupling between species 1 and 2 in a two component system. q_{12} is explained in the section 6.3.

6.2 <u>The Frictional Coefficients</u>: The phenomenological eqns(2.33) represents relations between the forces, X_i , and their conjugate flows, J_i , in terms of the frictional coefficients, R_{ik} . This inverse description of transport by frictional coefficients provides an alternative and complementary representation. It is theoretically less well defined because of the assumption, $\sum_{k=0}^{r} c_k R_{ik} = 0$ i=0,1,2; eqn(2.26). The advantages are that the frictional coefficients become independent of the frame of reference⁹⁰ and additional frictional coefficients, R_{i0} , which measure friction between ion and solvent, are obtained. On solvent fixed frame of reference the phenomenological eqns(2.35) may be re-written as

$$X_{i} = R_{ii}J_{i} + R_{ik}J_{k}$$
(6.5)

From eqns(2.36) and (6.5), R_{ii} may be eliminated to yield

$$X_{i} = -R_{ik}(J_{i} - J_{k}) - (c_{0}/c_{i})R_{i0}J_{i}$$
(6.6)

Each term on the right hand side has the dimensions of a
thermodynamic force and represent the frictional interactions of species i and k, and i and solvent. This is essencially the mechanistic interpretation of Spiegler⁸³ who considered a force, X_i , to be balanced exactly by the sum of all the frictional forces, f_{ik} , figure 6.4, such that eqn(6.7) holds;

Figure 6.4

Equilibrium between a force X_i applied on an ion i, and the frictional forces, f_{ik} and f_{i0} .

$$X_{i} = \sum_{\substack{k=0\\k\neq j}}^{n} f_{ik} = \sum_{\substack{k=0\\k\neq j}}^{n} -x_{ik}(v_{i} - v_{k})$$
(6.7)

where x_{ik} is the coefficient of kinetic friction and $(v_i - v_k)$ is the velocity of i relative to k. Also relative flow $(J_i - J_k)$ is given by

$$(J_{i} - J_{k}) = c_{k}(v_{i} - v_{k})$$
 (6.8)

From eqns(6.6), (6.7) and (6.8) we obtain

For completely dissociated 1:1 salts, $c_1 = c_2 = N$, therefore ion-ion friction is represented by

$$-x_{12} = MR_{12} = -x_{21} = NR_{21}$$
(6.10)

That is, the coefficient, $-NR_{12}$, represents the coefficient of kinetic friction, x_{12} .

For a three component system eqn(2.37) may be rewritten as

$$c_{i}R_{ii} = -\sum_{k=0}^{n} c_{k}R_{ik}$$
(6.11)

From eqns(6.9) and (6.11) we get

$$c_{i}R_{ii} = \sum_{\substack{i=0 \neq k}}^{n} x_{ik}$$
(6.12)

The term $c_i R_{ii}$ is therefore the sum of the frictional coefficients between one mole of species i and all other species k in one litre of the solution. On this basis the R_{ij} coefficients assume lesser importance than the coefficients, R_{ik} , i \neq k. As for example the value of $NR_{11}^{-}(c_{i}=N)$ for RbCl, figure 6.5, is minimum because $c_{0}R_{10}$, figure 6.7, is minimum and the order of NR₁₁ coefficients is the same as that of $c_0^R_{10}$. The relative difference in magnitude depends upon the value of NR12 at that concentration. In the same way the behaviour of NR22 coefficients, figure 6.6, depends upon that of $c_0 R_{20}$ and NR_{12} . Further, the coefficient, R_{00}/N , figure 6.9, is simply a summation of the coefficients, R_{10} and R_{20} , eqn(2.66). Therefore the transport processes in electrolyte solutions are better understood if we study the nature of the coefficients, coRio and ckRik.

6.2.1 <u>The Coefficients, $-c_0R_{10}$ and $-c_0R_{20}$ </u>: The coefficients $-c_0R_{10}$ and $-c_0R_{20}$ are clotted in figures 6.7 and 6.8 respectively. They represent friction between one gram ion, i, and the surrounding solvent per litre of the solution.

The coefficient, $-c_0R_{10}$, is the least for RbCl and largest for LiCl. At infinite dilution it has distinct values for each cation. As concentration increases /continuously for NaCl and LiCl. This may be explained in terms of the tendency of the solvent, water, to solvate the ions. Li⁺ and Na⁺ ions are highly solvated and as concentration increaces more and more water molecules are removed from the solution in the process of hydration. This is why $-c_0 R_{10}$ increases continuously for these ions. K^+ , Cs^+ and Rb^+ ions are the least solvated and therefore $-c_0R_{10}$ for these ions is virtually constant. The lowest value of $-c_0 R_{10}$ for RbCl shows that the solvent is offering the least resistance to the motion of Rb⁺ ion and for this reason, the transport properties like equivalent conductance, transport numbers and diffusion coefficients, for RbCl, are the highest in the alkali metal chloride series.

The anion frictional coefficient, $-c_0R_{20}$, decreases continuously for RbCl and CsCl while for XCl, MaCl and LiCl it passes through minima and then increases. Since the anion is the same, $-c_0R_{20}$ converge to the same point at infinite dilution. At finite concentrations the magnitude of $-c_0R_{20}$ depends upon the structural interactions of the ions with the solvent. In dilute solutions the order is

LiCl \langle NaCl \langle Mcl \langle (RbCl?) \langle (CoCl?).

* -coR10 increases

•

There is an inversion at \approx 0.4M and the final order is

LiCl > NaCl > KCl > RbCl > CsCl

This behaviour may be explained if we examine the state of the solvent in the vicinity of an ion. According to Gurney's 85 concepts, Li + and Na+ ions are solvent order producing. They enhance the structure of the solvent and increase the ion-solvent friction. On the other hand. the ions, K⁺, Rb⁺, Cs⁺ and Cl⁻, are solvent order destroying. They loosen the structure of the solvent and decrease the ion-solvent friction. In dilute solutions of LiCl. the ions are far apart and the order destroying tendency of the Cl ion is dominant in controlling the behaviour of -coR20 and therefore the anion-solvent friction decreases initially. As concentration increases the order producing tendency of the Li⁺ ion becomes effective and the Cl⁻ ion moves through a more structured solvent. The motion of the anion is conditioned by the order producing or order destroying tendency of the cations. Therefore in concentrated solutions the order of $-c_0 R_{20}$ is the same as that of -coRlo.

The conditioning of the motion of the Cl⁻ ion by the solvent order producing and order destroying tendencies of the cations is supported by the behaviour of $-c_0^R_{10}$ and $-c_0^R_{20}$ coefficients in HCl, HNO₃ and NaOH solutions. The results for HNO₃ and NaOH are given in appendix 1. The coefficients, $-c_0^R_{10}$, for HCl and HNO₃, and $-c_0^R_{20}$ for NaOH, plotted in figures 6.7 and 6.8, are very small as compared to those of the alkali metal cations, fig.6.7,

and the Cl⁻ ion, fig.6.8. This reflects the unique transport mechanism of the H⁺ and OH⁻ ions. However, these ions are polarising and highly order producing in their effect upon the solvent. This is reflected in the increasing values of $-c_0R_{20}$ for HCl and HNO₃ and of $-c_0R_{10}$ for NaOH as concentration increases. The curves of $-c_0R_{20}$ for HCl and HNO₃ lie above that of LiCl, figure 6.8, and the curve of $-c_0R_{10}$ for NaOH lies above that of NaCl, figure 6.7. The anion plays the same role in figure 6.8 as the H⁺ ion does in figure 6.7. At infinite dilution $-c_0R_{10}$ for NaOH is the same as that of NaCl showing that the order producing mature of the OH⁻ ion and order destroying nature of Cl⁻ ion have little effect upon the structure of the solvent in the vicinity of the cation. Na⁺.

That the solvent is highly structured in solutions of Hel is supported by the work of Salovkin⁹¹ who has reported the surface densities of H_20 molecules in the first coordination layer of the cations and anions, \int_{+}^{1} and \int_{-}^{1} . The values, calculated from the stoicheiometric activity coefficients, are given in table 6.4. It may be seen that \int_{+}^{1} for H⁺ is closer to that of Li⁺ ion and \int_{-}^{1} in Hel is higher than that for the alkeli metal ions showing that the solvent around Cl⁻ ion in Hel is more structured than in the other halides.

Table 6.4

Surface denotities of water in the first coordination layer of cations and anions.

		H+	Li ⁺	Na ⁺	K+	Rb ⁺	Cs ⁺
Cations	51	0.060	0.065	0.053	0.043	0.040	0.036
Anions	\int_{-}^{1}	0.043	0.035	0.035	0.035	0.035	0.035

$-c_0 R_{10}$ and

The order of coefficients, $\int -c_0 R_{20}$, in dilute solutions may be confilted with B-coefficients of viscosity introduced by Jones and Dole⁹² through the eqn(6.13).

 $\mathcal{N} = \mathcal{N}_0(1 + AJ\overline{c} + Bc)$ (6.13)

Gurney⁸⁵ has assigned numerical values of B-coefficients to individual ions and to the electrolyte as a whole in dilute solutions of alkali metal chlorides. These are reproduced in table 6.5.

Table 6.5

B-coefficients +ve ion -ve ion electrolyte -0.007 LiC1 +0.147+0.139-0.007 NaCl +0.079 +0.086 KCl -0.007 -0.007 -0.014 --0.029 -0.007 RbC1 -0.037 -0.050 -0.042 -0.007 CsC1

B-coefficients of viscosity.

A -ve B-coefficient for an ion implies that the ion is order destroying and a +ve B-coefficient means that the ion_A order producing. In this sense Cl^- , K^+ , Rb^+ and Cs^+ ions are solvent order destroying and Li^+ and Na^+ are order producing.

1:0

The B-coefficients represent contributions from cospheres of individual ions and in dilute solutions they are independent and additive. Since in aqueous solutions water molecules make the co-spheres of ions and the coefficients, $-c_0R_{10}$ and $-c_0R_{20}$, add up to give the function, R_{00}/N , it is of interest to compare the overall B-coefficients of the electrolytes with the function, R_{00}/N , plotted in figure 6.9. In solutions of KCl, RbCl and CsCl the effect of -ve overall B-coefficient is that the solvent is loosening its structure and this leads to continuous decrease in the total friction between the ions and solvent. This is shown by the decreasing trends of the curves for these salts. In the solutions of LiCl and NaCl the overall B-coefficients are +ve. R_{00}/N for these salts increases continuously with concentration.

6.2.2 The Coefficient, $-NR_{12}$: In figure 6.10, $-NR_{12}$ is plotted vs. \sqrt{S} . It is a smoothly increasing curve with zero intercept at infinite dilution. The representation of the cation-anion friction by the frictional coefficient, $-NR_{12}$, is supported by its equality with the coefficient of kinetic friction, x_{12} eqn(6.10). The latter, as it is the frictional coefficient between one gram ion, 1, and all the ions, 2, in one litre of the solution, must tend to zero as $c_{\rm F}c_2$ tends to zero. Two features are apparent: a) lithium chloride has the gratest frictional coefficient in the series whereas its coupling of flows, as measured by L_{12}/N , is the least, b) unlike the direct frictional coefficients, $NR_{\rm ii}$, which are in the inverse order of their corresponding ion mobility coefficients,

 L_{ii}/N , the cross coefficients, $-NR_{12}$, do not invert. The curves for rubidium and caesium chlorides lie between those of sodium and potassium chlorides. According to the expected order, they should have been below that of potassium chloride. The magnitude of $-NR_{12}$ for these two salts appears to be enhanced and shows that there is an additional factor which increases the friction between the cations and anions. The cations of these salts, Rb^+ and Cs^+ , are the heaviest in the alkali metal series. They are therefore most likely to ion-pairing which may be of the type discussed by Gurney⁵⁵ between order destroying ions, Rb^+ and Cl^- , and Cs^+ Cl^- . From an early conductance work at $18^{\circ}C$ Davies³² obtained PK_value of 0.4 for CsCl, where Kais the association constant. Effect of ion association on the frictional coefficient, $-NR_{12}$, is therefore of great importance.

The influence of ion association on the phenomenological coefficients was studied in chapter 2, section(2.9) where it was shown that the phenomenological coefficients, R_{ik} , obtained from the formal analysis of transport data, apply to both strong and weak electrolytes. The mechanistic interpretation of Spiegler³³, discussed in section 6.2, showed that it is the function $c_k R_{ik}$ which determines the friction between cations and anions. The magnitude of this function depends upon the concentration of species, k, in the solution. For completely dissociated 1:1 salts, $c_i = c_k = N$, and therefore $-NR_{12}=x_{i2}$ representation of the cation-anion friction holds, but for systems in which association takes place $c_k \neq N$ and so $x_{ik} \neq NR_{ik}$. If \checkmark is the degree of dissociation then $c_k = \checkmark N$ and therefore

$$+\mathbf{x}_{ik} = -\boldsymbol{\chi}_{NR} = -\mathbf{c}_k \boldsymbol{v}_{ik} \tag{6.14}$$

It is the function, $- \ll NR_{ik}$, that determines the interionic frictional interaction. The degree of dissociation \ll may be obtained by studying ion association using currently available theories of conductance in electrolyte solutions.

Ion association for alkali metal chlorides was studied in chapter 5, using the experimental conductance data for RbCl and CsCl and the literature conductance data for the other salts. Association constant, Ka, table 5.8, was found to be negligible for lithium, sodium and potassium chlorides while for rubidium and cassium chlorides its numerical values were 0.275 ± 0.083 and 0.409 ± 0.061 respectively. Using these values of Ka and the relationship⁹³

where f_{\pm} is the stoicheiometric activity coefficient, an estimation of the degree of dissociation, \prec , was made. f_{\pm} was obtained from the mean molal activity coefficient, \checkmark , using the relationship⁹³

$$f_{\pm} = 0.997 \sqrt{m/c}$$
 (6.16)

The results of calculations are given in table 6.6 alongwith the calculated values of the function $-\alpha NR_{12}$.

In figure 6.10, dotted curves represent – αNR_{12} for rubidium and caesium chlorides.

For lithium, sodium and potassium chlorides, $\prec = 1$, and therefore

$$- \propto NR_{12} = -NR_{12}$$
 (6.17)

Table 6.6

و بعد م

and the second

Calculated values of degree of dissociation, \ll , and $-\alpha \mathrm{NR}$ using Ka=0.275 for RbCl and 0.409 for CsCl.²

Concontration		RbCl		CsCl		
c c	·{+	X	-~ ^{NR} 12	ν́±	×	
.25	.688	•967 [·]	.150	.672	•953	.170
•5	.633	•943	.182	.603	.920	.208
•7	.606	.926	.200	.572	.901	.223
1.0	.580	.901	.218	.540	.870	•235
1.5	.556	.858	.235	.508	.820	.243
2.0	•543	.813	.242	.491	.765	.244
2.5	•537	.761	.243	.480	.705	.241
3.0	.536	.703	.240	.476	.634	.233

RbCl < CsCl < KCl < NaCl < LiCl

Above two molar, $- \ll NR_{12}$ for RbCl and CsCl overlap and there is no difference in their magnitudes because of large uncertainties in Ka and hence in \prec .

Jer Kel Below IM concentration the curve/is virtually coincident with that of KCl and for CsCl it lies a little above. Unfortunately accurate transport number data below 0.25M does not exist, so no accurate estimate of -<NR₁₂ can be made in dilute solutions.

6.2.3 <u>Fraction of a force applied on ion, 1, which is</u> opposed by its friction with the ion, 2, F_{12} : For a solutions containing cations, 1, and anions, 2, eqn(6.6) may be re-written as:

$$X_{1} = -R_{10}(J_{1}-J_{2}) - (c_{0}/c_{1})R_{10}J_{1}$$
(6.18a)

$$X_{2} = -R_{21}(J_{2}-J_{1}) - (c_{0}/c_{2})R_{20}J_{2}$$
(6.18b)

From eqns(6.18a and b) it is obvious that the applied force, X_i , is exactly balanced by the sum of two opposing forces. Substituting an applied electric force, $X_i = Z_i F(\frac{-3 \not p}{3 x})$, in eqn(6.18), we get:

$$1 = F_{12} + F_{10} = \frac{-R_{12}N\Lambda}{10^3 F^2} + \frac{-c_0 R_{10} t_1 N\Lambda}{c_1 \cdot 10^3 F^2}$$
(6.19a)

$$1 = F_{21} + F_{20} = \frac{-R_{21}NA}{10^{3}F^{2}} + \frac{-c_{0}R_{20}t_{2}NA}{c_{2} \cdot 10^{3}F^{2}}$$
(6.19b)

Where $F_{12}(=F_{21})$ is the fraction of the force applied on ion, 1, which is opposed by its friction with the ion,2. F_{10} is the fraction of the force applied on ion, i=1,2 which is opposed by its friction with the solvent, 0. F_{10} equals F_{20} from the identity:

$$R_{20}t_2 = R_{10}t_1 \tag{6.20}$$

(This result is derived from the inverse description of the transport numbers as

$$t_1 = R_{20} / (R_{10} + R_{20})$$
 (6.21a)

$$t_2 = R_{10} / (R_{20} + R_{10})$$
 (6.21b))

Eqns(6.18) and (6.19) may be re-written as

$$F_{12} = \frac{-R_{12}NA}{10^{3}F^{2}} = -\frac{-R_{12}(J_{1}-J_{2})}{X_{1}}$$
(6.22a)

$$F_{i0} = \frac{-c_0 R_{i0} t_i N h}{c_i 10^3 F^2} = \frac{-c_0 R_{i0} J_i}{c_i X_i}$$
(6.22b)

The forces and flows may be replaced by the identities

$$X_i = Z_i F(-J \phi/Jx)$$
 and $J_i = c_i v_i$

where the velocity, v_i , is in litres/cm² sec. For an applied electric gradient of one volt, $(-3\not/)x=1$, in eqns(6.22), we obtain

$$\mathbf{\Lambda} = (\overline{\mathbf{v}}_1 - \overline{\mathbf{v}}_2) \mathbf{F} / \mathbf{Z}_1 \tag{6.23a}$$

and

$$t_i \Lambda = \overline{v}_i F/Z_i \qquad (6.23b)$$

where \overline{v}_i (cm/sec) is the mobility of the ion i under unit electric gradient and is defined as $10^3 v_i / (-3 \psi/3x)$. For cations $Z_1 = +1$ and anions $Z_2 = -1$, therefore,

$$\Lambda = (\overline{v}_1 - \overline{v}_2)F \tag{6.24a}$$

$$\overline{v}_{\perp} \Lambda = \overline{v}_{\perp} F \tag{6.24b}$$

$$t_2 \Lambda = \overline{v}_2 F \qquad (6.24c)$$

These expressions(6.24) define the relative mobilities and individual mobilities of ions in more classical terms.

In figure 6.11, values of F_{12} are plotted. As concentration tends to zero, F_{12} tends to zero and $F_{10}(=F_{20})$ to unity. An applied force on an ion at infinite dilution is totally balanced by its friction with the solvent. In dilute solutions the order of F_{12} is:

LiCl > NaCl > KCl > (RbCl?) > (CsCl?).

The ion-ion friction amounts to 10% of the total at ≈ 0.05 M. In the range of comparison, CsCl has the largest value of F_{12} which amounts to 40.15% of the applied force at 3M. In the range 0.25-3M there is a series of cross-overs until the final order is:

The coupling of flows as measured by the mobility coefficient, L_{12} , might be expected to be a function of F_{12} and a mobility term. By expansion eqn(6.22a) may be expressed in terms of L-coefficients;

$$F_{12}=L_{12}(L_{11}-2L_{12}+L_{22})/(L_{11}L_{22}-L_{12}^{2})=L_{12}/L$$
or
$$L_{12}=F_{12} \cdot L \quad (6.25)$$

Where L = $(L_{11}L_{22}-L_{12}^2)/(L_{11}-2L_{12}+L_{22})$ is the thermodynamic diffusion coefficient as defined in eqn(2.55). The sequence of the couoling of flows through the salt series may therefore be explained by variations of F_{12} and L. In dilute solutions where F_{12} values are in the reverse sequence, it is the value of L (conditioned mainly by L_{11}) which controls the sequence of L_{12} . The product $F_{12}.L_{11}/N$ vs.JS is closely similar in form to L_{12}/N and places the salts in their 'correct' order over the full concentration range. The magnitude of F_{12} is not in itself a guide to probable ion associations since it may be increased as much by disordering of water as by direct increase in ion-ion interaction. It does, together with $-NR_{12}$, provide a view of coupling phenomena complementary to the L_{12}/N coefficients.

6.3 The Degrees of Coupling, a_{12} , a_{10} and a_{20} : The coupling of flows as measured by the coefficient L_{12}/N depends upon the mobility of the ions. Therefore the mobility coefficients $L_{11}/N/N$ higher would be the magnitude of L_{12}/N and vice versa. This may easily be seen from a comparision of L_{11}/N and L_{12}/N values of CsCl and LiCl at the extreme ends of the alkali metal chloride series. For a large number of 1:2, 2:1 and 2:2 electrolytes, appendix 1, the mobility coefficients L_{11}/N are lower then those of the alkali metal chlorides. Consequently the coupling coefficients L_{12}/N are lower but in most of these systems the extent of cation-anion coupling is very high. Therefore the coefficient L_{12}/N is not a good measure of the coupling phenomena when a large number of systems are compared.

In chapter 2, it was shown that the mobility coefficients were constrained by the inequality, eqn(2.32), which for a two component system becomes:

$$L_{12}^2 \leq L_{11} \cdot L_{22}$$
 (6.27)

Kedem and Caplan⁸⁹ have introduced a dimension-less parameter, q, such that

$$q_{12} = L_{12} / L_{11} \cdot L_{22}$$
 (6.28)

 q_{12} is defined as the degree of coupling between species 1 and 2 and is a measure of the inequality, eqn(6.27). In terms of R-coefficients q_{12} may be written as

$$q_{12} = -R_{12} / \sqrt{R_{11} \cdot R_{22}}$$
 (6.29)

For binary electrolyte solutions where there are no coupled chemical reactions* q_{12} is restricted by the condition

$$0 \leq q_{12} \leq 1 \tag{6.30}$$

The nearer the absolute value of q is to unity slighter the dependence of j on x where j and x are given by

$$j = J_1/J_2$$
 and $x = X_1/X_2$ (6.31)

That is, a high value of q_{12} indicates tight coupling between the two processes. For $q_{12} = 0$, j is proportional to x; then the two processes are independent of each other and each flow is proportional to each force without any influence from the other force. q_{12} , is, thus, a basis of comparisgion of different processes.

Since the frictional coefficient formalism gives us additional parameters, R_{10} , R_{20} and R_{00} , we may define the degrees of coupling between ions and solvent, that is,

$$q_{10} = -R_{10} / \sqrt{R_{11} R_{00}}$$
 (6.32)

$$q_{20} = -R_{20} / \sqrt{R_{22} R_{00}}$$
 (6.33)

 q_{10} and q_{20} are also restricted by the conditions, eqns (6.34) and (6.35).

* q_{12} can be -ve (in coupled chemical reactions) if L_{12} becomes -ve. For example, the flow of a solute through a memb@rane may drag snother solute along the same direction $(L_{12} > 0)$ or tend to push it $back(L_{12} < 0)$.

0	≤	9 ₁₀	4	1	(6.34)	I

 $0 \leq q_{20} \leq 1$ (6.35)

 q_{12} for alkali metal chlorides is plotted in figure 6.12. Its concentration dependence is similar to that of F_{12} (figure 6.11). The degree of coupling between cations and solvent, q_{10} , plotted in figure 6.13, is the highest for LiCl showing that Li⁺ ion is the most coupled with the solvent in accord with its hydrated nature. The coupling between Cl⁻ ion and solvent, as measured by q_{20} , figure 6.14, is complementary to that of q_{10} . At infinite dilution q_{20} has different values for each salt because by definition, it has contributions from the cationic mobilities. This may easily be seen by expansion of eqns(6.32) and (6.33) which leads to eqns(6.36) and (6.37);

 $q_{10} = (L_{22} - L_{12}) / (L_{22}(L_{22} - 2L_{12} + L_{11}))^{\frac{1}{2}}$ (6.36) $q_{20} = (L_{11} - L_{21}) / (L_{11}(L_{11} - 2L_{21} + L_{22}))^{\frac{1}{2}}$ (6.37)

The importance q_{12} becomes more apparent when we compare the transport processes in a variety of salt solutions. Plotted in figure 6.15 are the q_{12} values for various other systems (results in appendix 1). From alkali metal chlorides we have plotted q_{12}^* d NaCl for comparision purposes. For 1:1 acids and bases coupling between cations and anions is the least and therefore q_{12} for HNO₃, HCl and NaOH are the lowest. On the other hand the sulfates of Cu⁺⁺, Zn⁺⁺ and Cd⁺⁺ are known to be the most coupled with these cations and hence q_{12} for these systems are the highest.

* q₁₂ of NaCl

49.0

6.4 Conclusions: Irreversible thermodynamics provides a general macroscopic frame work which can be applied to irreversible processes no matter how complex they may be. It describes the transport processes in terms of linear transport Lik and inverse frictional Rik coefficients. These coefficients are more fundamental than the commonly measured quantities, Λ , t_i and $D_{oldsymbol{v}}$ and give better insight into the interionic effects. The $L_{ik}(i \neq k)$ coefficients measure the degree to which a thermodynamic force applied on an ion i affects the flow of ions k and the coefficients L_{ii} represent the mobility an ion i would have if there were no interactions with the oppositely charged ion. In the inverse description, the coefficient $R_{ik}(i,k=0,1,2)$ measure the frictional interactions between ions and ions, and ions and solvent. The R_{ik} formalism for a transport process is in many ways better than the Lik formalism because the former is independent of the frame of reference and additional ion-solvent interaction coefficients are obtained as discrete terms.

The application of the theory to solutions is novel and, in consequence, the prediction of experimentally measureable transport quantities is unlikely to be achieved in the near future. The number of salts for which data now exists in a reasonable range of concentration is very limited. Never the less, the potentialities for practical applications of these results is becoming apparent. Miller¹⁶⁴ has shown by a semi-empirical method that the transport properties of any arbitrary mixture of electrolytes may be calculated with good accuracy from complete sets of binary data. Unpublished results of Paterson et al.⁹⁵ have shown that the conductances of ternary and quaternary mixtures in the concentration range 0-3N may be calculated within an accuracy of $\pm 0.2\%$. Extension of this to practical applications in industry is quite obvious but at this time an insufficient number of salt systems has been investigated. The experimental measurements, reported in this thesis, for conductances of RbCl and CsCl and diffusion coefficients for RbCl complete the transport data for the alkali metal chloride series for its own sake and for a study of the thermodynamic analysis.

Appendix 1

122

Reported here are the references of the transport, activity and density data collected from the literature for all those systems for which the data was complete and the phenomenological coefficients were calculated.

The coefficients, a_0 and a_1 , of the empirical fits used in chapters 4 and 5, are presented in table Al.

The coefficients of the empirical fits used for obtaining molalities from concentrations are given in table A2 and those for obtaining the activity term, $(1 + md \ln \gamma/dm)$, between γ and m, are given in tables A3 and A4. Those of table A3 are taken from reference 17 of this appendix.

Results of calculations of the thermodynamic analysis for all the systems are given in tables A5 to A 32. For rubidium and caesium chloride systems the results are given in chapter 6, tables 6.2 and 6.3 respectively.

Appendix 1 continued

Sources of Data

Potassium Chloride at 0°C degree

c-m: Obtained graphically from m/c vs c curve using density data of ICT(1929).

A: From'Landolt-Bornstein(1960)'. Data available only upto 1 molar concentration.

t₊: From .01 to .05 molar by m.b. method of Steel(1965)² and from .01 to 3.5 molar using e.m.f. data of Caramazza et al., $(1960)^3$.

 D_v : Also from Caramazza et al, (1960)³ for .1 to 2.7 molar concentration. Values at lower concentrations are extrapolated.

m-r: Again from Caramazza (1960)⁴ for .05 to 3.5 molel solutions.

Potassium Chloride at 18°C

c-m: Using density data compiled in Timmerman's Physicochemical Constants of Binary Systems ⁵ (1960).

 Λ , t_+ , D_v and $m-\gamma$: As for Potassium Chloride at zero degree from references 1,3 and 4.

Potassium Chloride at 35°C

c-m: Using density data of Firth and Tyrell (1962) for O.l to 4 molar and of Kaminsky (1957)⁸ for .001 to .5 molar.

A: For .0005 to 0.01 molar from Benson and Gordon (1945) and for 1 to 4.5 molar from Suryanarayana et al(1958)¹⁰. For range .05-1 molar data is not available and has been interpolated.

 t_+ , D_v and $m-\gamma$: As for Potassium Chloride at zero degree from references 3 and 4.

Potassium Chloride at 50°C

c-m: Using density data compiled in Timmerman's Phisicochemical Constants of Dinary Systems ⁵ (1960).

A: For .01 to 4.4 molar from Chambers(1958)".

 t_+ , D_v and m-f: As for Potassium Chloride at zero degree from references 3 and 4.

(Temperature for the following systems is $25^{\circ}C$)

Potassium Chloride Sodium Chloride Lithium Chloride Hydrochloric Acid Calcium Chloride Barium Chloride Lanthanum Chloride

For all these systems the valuable compilation of data by Miller(1966)⁶ for c-m, Λ , t₊, Dv and m- γ has been fully used without any alterations.

Capsium Chloride

c-m: From $c/m = d_0 - em + bm^2$, the coefficients a and b are reported in Harned and Owen(1958)³³ page 725.

A: From Paterson et al $(1969)^{31}$ for .1 to 3.0 molar.

t: Tamas et.al(1966) for .25 to 3.0 molar.

 D_v and m-f: From data compilations of Robinson and Stokes (1959)40.

No transference data is available for c <0.25.

Rubidium Chloride

 Λ and D_v : Reported in this thesis; chapters 5 and 4.

Sodium Hydroxide

c-m: From ICT(1929) density data using equation $m/c = a + b(c) + c(c)^2$. The coefficients are given in table A2. Values of m/c decrease continously from the value of 1.003 (for $H_20 m/c = 1.003$) for dilute solution to 1.00045 for 1 molar solution, showing that the volume of solution decreases on dissolution of the electrolyte.

 Δ : For .001 to .04 molar from Marsh and Stokes(1964)¹² and for .065 to 12.5 molar from Darken et al.(1942)¹³. t₊: For .01 to 1.0 molar compiled in a review by Kaimakov and Varshavskeya(1966)¹⁴ but actual measurements were made before 1929 by e.m.f. method.

 D_v : From Fary's thesis (1966)^{17A}. This reference is collected from reference 17.

m-Y: From activity data compiled in Parson's Hand Book of Electrochemical Constants (1959)¹⁵.

Nitrie Acid

c-m: As for Sodium Hydroxide.

 \wedge : For .01 to .2 molar from Landolt-Bornstein(1960) and for .2 to 3.5 molar from Haase et al.(1965)¹⁶. D_v: From Chapman's thesis(1967)¹⁷ for .4 to 3.0 molar by Rayleigh Interferometric technique. At lower concentrations values are extrapolated.

t: For .01 to .10 molar from Prue and Covington¹⁸ (1957) and for 0.1 to 3.5 molar from Hease et al(1964)¹⁹. $m-\gamma$: As for Sodium Hydroxide.

Ammonium Nitrate

c-m: Using density data of Campbell et al.(1959)²⁰ for .01 to .10 molar and (1950)²¹ for 1 to 6 molar. A: For .01 to 1.0 molar from Campbell et.al. $(1959)^{20}$ and above 1.0 molar from Wishaw and Stokes $(1954)^{22}$.

D.: From Wishaw and Stokes(1954)²².

t₊: At 0.1 molar from MacInnes and Cowperth-waite(1927) and at 0.2 molar from Milios and Newman(1968)²⁴. At all other concentrations values are assumed to be the same as for .1 and .2 molar.

 $m - \sqrt{:}$ From differentiation of the empirical equation $Ln \sqrt{=} \frac{a\sqrt{m}}{(1+\sqrt{m})} + bm + cm^{3/2} + dm^2 + cm^{5/2} + fm^3.$

The coefficients a,b,c,d,e and f were primarily obtained from Chapman's thesis(1967)¹⁷ and are reported in table A3.^{*} Actual activity coefficient values are compiled in Parsons (1959)¹⁵ and Robinsons Stokes (1959)⁴⁰.

Potassium Nitrate

c-m: Using density data of Jones and Tolley $(1933)^{25}$. A: From data of Shedlovsky $(1932)^{26}$.

t₁: For .Ol to .2 from Longsworth (1935)²⁷, for 1.0 from Sukhotin et al.(1969)²⁸ and for 0.1 molar from MacInnes and Cowperthwaite (1927)²³.

 D_v : From .001 to .01 molar from Harned and Hudson(1951)²⁹ by conductometric method and for .04 to 0.1 from *gokhshtein*³⁰ to an accuracy of 1-3%.

m-Y: From data compiled in Parsons(1959)¹⁵.

Potassium Bromide

c-m: From ICT(1929) density data and also from Harned and Owen ³³.

A: From Jones and Bickfckd(1934)³⁴ and also from Benson and Gordon(1945)³⁵.

* coefficients gi of table A3 are the same on the coefficients a, le, c, d, -e and f. t₊: Upto 0.2 molar from Longsworth(1935)³⁷ by m.b. method. At 1.0 molar from e.m.f. data of $ICT(1929)^{38}$. For 0.5 molar, the values are assumed to be 0.490. This assumption is made because t₊ for KBr lies in the vicinity of 0.500 for the whole range of concentration and for the calculations of L₁₂ and R₁₂, the product, (t+)x(t-), remains within 0.1% e.g., 0.50 × 0.50 = 0.2500 and 0.490 × 0.510 = 0.2499. D_v and m- \checkmark : From data compiled in Robinson and Stokes 40.

Potassium Iodide

c-m, D_r , and \checkmark : As for Potassium Bromide.

A: From Chambers $(1958)^{36}$.

t₊: Upto 0.2 molar from Longsworth(1935)³⁷ by m.b. method. For 0.5 to 3 molar, t₊ is assumed to be 0.490 as for Potassium Bromide. The product t₊t₋ does not alter significently when t₊ lies in the vicinity of 0.500.

Sodium Iodide

 $c-m, D_{v}$ and \checkmark : As for Potassium Bromide.

∧: From Aston et al. (1933)⁴¹.

t: At 0.2 and 1.0 molar from Ray et.al.(1958).⁴² At infinite dilution from limiting conductances and at .01,.05 and .50 from interpolation of the other data.

Density data for all, KCl, KBr, KI and NaI is also available in Lengyel et al.(1964)³⁹.

Silver Nitrate

c-m: As for Potassium Bromide and also from Campbell et al (1959)43.

A: From Shedlovsky(1932)²⁶ and Campbell et al.(1959)⁴⁴.

D_v: For .002 to .006 molar from Harned(1951)⁴⁵ and from Lakshminarayana(1966)⁴⁵⁶ for 0.1 to 3.5 molar. For .01 and .05 molar, the values are interpolated. Data is also reported by Firth(1962)⁴⁶ but it is not compareable with the above two sets of data and hence it is not used. t_{+}^{*} : From Haase et al.(1964)¹⁹ for 0.1 to 2.0. From Newman et al(1968)²⁴ for 0.1 molar and also from Campbell and Singh (1959)**44**.

m-V: As for Ammonium Nitrate.

Ammonium Chloride

c-m: Using density data of Jones and Tally (1953)²⁵.

A: At 0, 0.1 to 5.0 molar from Wishaw and Stokes $(1954)^{2^2}$. For c<0.1 from Longsworth $(1935)^{2^7}$.

t₊: From Longsworth(1935)²⁷ for .01 - .2 molar. No data is available for c > 0.2 molar.

D_v: From Stokes et al(1953)⁵² for .1 to 5.0 molar by Guy method. No diffusion data is available for c < 0.1 molar. m- \checkmark : As for Silver Nitrate.

Phosphoric Acid (1:1)

c-m: From density data of Moson and Culvern(1949)⁵³. A: From Mason and Culvern⁵³. t₊: Obtained graphically from the combined plot of the data of Kerker et.al.(1960)⁵⁵ for 0.008 to 0.044, of Sahey (1963)⁵⁴ for .1 to 3.8 molar and also of Kudra et.al(1964)⁵⁶. D_v: From Edward and Huffman(1959)⁵⁷ for .036 to 16.0 molar. 1+mdIns/dm: From Elmore et al.(1946)⁵⁸ for the whole range, the values given as such, $H_3PO_4 \rightarrow H^+ + H_2PO_4$ -is treated as 1:1 acid.

* t has been reported for .05 to 14M by N.J. Fikal and D.G.Miller, J.Phys. Chem., 74(6), 1377(1970).
184

Sodium Sulfate

c-m: Obtained from density equation, $d = .99707 + 0.13061c - 0.01212c^{3/2}$, of Harned and Blake(1951)⁵⁹.

A: Originally reported in Maclnnes and Longsworth ⁶⁰ and data compiled in Harned and Owen ³³.

t₊: For .005 to 0.1 molar from Longsworth(1935)⁶¹. For c < .005, the values are extrapolated graphically according to the recomfendations of Longsworth⁶¹ such that the limiting slope was +ve and the curve had a maximum near N = 0.001, where N is the normality.

D_v: For 0.001 to 0.005 molar from Harned and **B**lake(1951)⁵⁹ by conductometric method. For .1 to 0.1 molar data is available from Vinograd and McBain(1941)⁶² to an accuracy of 5% and it has not been used because of too much uncertainty. m-f: From compilations of R.Parsons(1959)¹⁵.

Potassium Sulfate

c-m: From density data of Jones and Colvin $(1940)^{63}$. A: From Fedoroff $(1941)^{64}$ for .0002 to 1.3N; Data is also available from Jenkins and Monk $(1950)^{65}$ for .0001 to .001N, from Indelli $(1953)^{66}$ for .004 to 0.8N, from Crews $(1934)^{67}$ for .001 to .1N and from Hartley and Donaldson $(1937)^{68}$ for .000025 to .0025N.

t: From Hartley and Donaldson(1937)68.

 D_v : From Mullin and Nienow(1964)⁶⁹ for .01 to .65 molar to an accuracy of $\pm 2\%$.

m-Y: As for Sodium Sulfate.

Sulfuric Acid

c-m: Using ICT(1929) density data.

A: For .05 to .10 molar from data of Hlasko and Salit(1935)⁷⁰
For .5 to 5.0 molar, calculated graphically using mass fraction vs conductivity data of Roughton(1951)⁷¹.

t₊: Obtained graphically from e.m.f. data of Hamer(1935)⁷². D_v: For .01 to 1.0 obtained graphically from data of Gordon et al.(1940)⁷³ and for c >1.0 from Savino et $21(1962)^{74}$. m-f: As for Sodium Sulfate from R.Parsons(1959)¹⁵.

Copper Sulfate

c-m: From ICT(1929) density data. m/c is found to decrease from 1.003 upto 0.1 molar concentration showing the decrease in apparent volume of sclution on dissolution of the electrolyte.

A: From Fedorff(1941)⁷⁵ for 0.0 to 1.0 molar and from Owen and Gurry(1938)⁷⁶ for 0.0 to 0.1 molar. t_{+} : For .125 to .513 molar from Fritz and Fuget(1958)⁷⁷ by e.m.f. method to an accuracy of \pm 0.001 transference units. Data at lower concentrations is extrapolated graphically from the regular trend of the curve obtained. D_v : For 0.003 to 0.35 molar from Eversole et al.(1942)⁷⁸ by photometric method to an accuracy of 1 to 3%. For .35 to 1.4 molar from Emanel et al(1963)⁷⁹ to an agreement of \pm 5% with the above data. m-Y: From R.Pasons(1959)¹⁵.

Zinc Sulfate

c-m: For ICT(1929) density data and also from Purser and Stokes(1951)^{%0}. Similar to the behaviours of Sodium Hydroxide and Copper Sulfate, the ratio m/c decreases continuously upto .25 molar concentration. A: Upto .005 molar from Owen and Gurry(1938)⁷⁶ and from .025 to .25 from Demassiense et al.(1941)⁸¹. t₊; For 0.0 to .05 from Dye et al.(1960)⁸² by m.b. method, data fitted the equation t₊ = .3892 - .0633 \sqrt{N} . At 0.25 molar from e.m.f. data of Nalton(1949)⁸³, Purser and Stokes (1951)⁸⁰ and Lang(1954)⁸⁴. At 0.1 molar, the value is interpolated from the e.m.f. data at .25 molar and m.b. method data for c < .05.

D_v: For .001 to .005 molar from conductometric method of Harned and Hudson(1951)⁸⁵. For .03 to .25 molar from Wall and Wendt(1958)⁸⁶ to an accuracy of <u>+</u> 1%.

 $m-\gamma$: From R. Parsons(1959)¹⁵.

Cadmiun Sulfate

c-m: As for Copper Sulfate.

∧: From Demassieux et.al.,(1941)⁸⁸.

t_: From Lang and King(1954)⁹⁹ by e.m.f. method. D_: For .05 to .50 molar from Longworth(1959)⁹⁰. This

data has extrapolated for values in dilute solutions. m-√: As for Copper Sulfate and Zinc Sulfate.

Cadmium Iodide

c-m: As for Cadmium Sulfate.

t₊: From m.b. data of Sahay⁹¹ (1959) for .005 to .05 molar concentration.

D_o and 1+cdLny^{*}/dc: From Poyus Frit method of *garland* and Tong (1965)⁹² w.r.t. solvent fixed frame of reference to an accuracy of 1-2⁴. Values of activity term have also been reported in this paper as such.

A: $\mathcal{K}_{+}^{\circ}(\mathrm{cd}^{++})$ has been taken to be that of $\mathcal{K}_{+}^{\circ}(\mathrm{rg}^{++}) = 53.05$.

For .5, 1 and 2 molar solutions conductances are reported by Rysselberghe et al.(1937)⁴³ but at these concentrations no transference data is available.

* y is the molar activity coefficient.

For .001 to .1 from equation, A = 77(1-2.02 fc+1.38c), reported in Parsons(1959)¹⁵ Original data were published in 1922.

Table-Al

Coefficients of the equations, $Y = a_0 + \sum_{i=1}^{n} a_i x^i$ (n = 1,2,3,4).

Slectroly	te c	У	Х	a _o	a <u>1</u>	8. <u>2</u>	a.z	e.4
KCl	.0110	10 ³ c	10 ³ K	-0.2504	+7.1566	+0.0655	-0.0014	9.467
	.0110	Λ	10 ² c	+144.47	-3.6404	+0.3537	-0.0145	.10-3
	0.0-4.0	m/c	с	+1.0031	+0.0280	+0.0018		-
	0.0-4.0	e/m	m	+0.9970	-0.0284	+0.0003	-	
Rb ⁴ l	.0130	lnc	lnK	-4.9861	+1.0227	+6.8655.	3-1.5673	ann
	.0130	ln 🎝	lnc	+4.7413	-7.0855	-3.3057 .10-3	+2.1576	-
	0.0-4.0	m/c	с	1.0031	+0.0324	+0.0026		-
	0.0-4.0	c/m	m	0.9970	-0.0331	+0.0004	· •	
	0.0-3.0	D	С	2.0511	* 87108	+1.1979	52778	9.4668 .10
CsCl	.0110	с	K • *	-2.5718 .10 ⁴	+6.9913	+6.9085	-1.3626 .10	- 444 - 445 - 25 - 27 - 27 - 27 - 27 - 27 - 27 - 2
	.0110	Λ	с	+148.00	-3.957 <u>7</u> .10	+3.7859 .10 ⁺³	-1.5522 .10 ²⁴	
	0.0-4.0	m/c	с	+1.0032	+0.0390	+0.0035		-
	0.0-4.0	c/m	m	+0.9970	-0.0400	+0.0008	 *	-
K C l	.00101	D ^o c	С	+1.983	-1.040 .10 ⁺¹	+9.786 .10 ⁺²	-3.922 .10 ⁺⁴	-
	.01-0.1	11	88	+1.959	-2.419 .10	+2.734 .10 ⁺ 1	-1.1872 .10 ⁷²	
	0.1-0.5	ŧŧ	11	+1.902	-0.364 .10	+0.825 .10	0.625 .10 ⁺⁰	
•	0.5-3.9	19	81	+1.843	+3.602	+1.869_2	-2.175 .10 ⁻³	-

* K' = 10^3 .K where K is the specific conductivity.

** $a_0 = D^0$ where D^0 is the diffusion coefficient at infinite dilution.

133

Coefficients of the equations, $y = a_0 + \sum_{i=1}^{n} a_i \cdot x^i$, where y=m/cand x=c. Density vs. weight percent data of the International Critical Tables were used to calculate concentrations, c, molalities, m, and m/c term. For all the other systems(not mentioned in this table) concentrations were obtained graphically or densities vs. concentrations were available as such.

Electrolyte	Coch.Range	ao	al	a.2	,
NaOH	.014-1.040	1.00290	-3.4955(-3)	1.0496(-3)	
KB r	.084-3.170	1.00290	3.4737(-2)	2.3763(-3)	
KI	.060-1.084	1.00294	4.5949(-2)	3.4143(-3)	
H ₂ SO ₄	.102-3.140	1.00256	3.4557(-2)	3.2080(-3)	
H ₂ SO ₄	3.400-6.300	1.02630.	2.0788(-2)	5.2239 (- 3)	
AgNO	.012-3.460	1.00284	2.9793(-2)	2.3081(-3)	
HNO ₃	.160-4.000	1.00315	2.9125(-2)	1.4400(-3)	
Cdl2	.056-2.230	0.99760	6.6650(-2)	2.8767(-3)	

Numbers in brackets show powers of ten, for example, $1.0493(-3) = 1.0493 \ 10^{-3}$.

Τa	lbl	e-	A3
	and the second rate of	and the second second	

For the electrolytes in this table the activity term, $(1 + md \ln \sqrt{/dm})$, was obtained by differentiation of the polynomial: $\ln \sqrt{=\frac{g_1\sqrt{m}}{1+\sqrt{m}}} + g_2m + g_3m^{3/2} + g_4m^2 + g_5m^{5/2} + g_6m^3$. Electrolyte g_2 g_3 g_4 g_5 g_6 KBr -1.140 .2145 -0.2412 .1533 -.04504 .005012 KI -1.145 .4003 -0.5188 .3637 -.12030 .014930 NaI -1.140 .3677 -0.0193 -.2085 .15530 -.032000 NH₄Cl -1.131 .1496 -0.1783 .1219 -.03860 .004476 AgNO₃ -1.153 -.3534 0.0858 -.0010 -.001776 .000148 NH₄NO₃ -1.226 -.0381 -0.0607 .0322 -.005961 .000390

Table-A4

Coefficients of the equation, $\ln \gamma = a_0 + \sum_{i=1}^{n} a_i (\ln m)^i$, where n is the degree of the constitute n is the degree of the equation, a_0 and a_i are the coefficients of the fit.

Coeffi-	m=.05-3.5		•05-4	
cients	KCl at O ^O	KCL at 18 ⁰	KCL at 35°	KCl at 50°
a	-5.28707(-1)	-5.0805(-1)	-5.0512(-1)	- 5.0948(- 1)
a	-1.22559(-1)	-1.0053(-1)	-9.1003(-2)	-8.8319(-2)
a ₂	1.54403(-2)	1.8990(-2)	2.1244(-2)	2.0255(-2)
a,	1.59028(-2)	1.3294(-2)	1.2372(-2)	1.1763(-2)
a	4.50708(-3)	3.5910(-3)	3.2582(-3)	3.6956(-3)
e.5	4.54551(-4)	4.1407(-4)	4.0918(-4)	5.6608(-4)
	m= 0.1-1.6	.0013	.0023	.00101
	NaOH	KNO,	CsCl	Naso
<i>a.</i>	-3.8651(-1)	-8.1786(-1)	-5.9679(-1)	-1.4808(0)
a	8.7567(-3)	-3.4923(-1)	-1.3813(-1)	-3.4714(-1)
a	3.2728(-2)	-7.3225(-2)	1.5374(-2)	-1.3835(-2)
az	-3.2106(-2)	-9.7083(-3)	8.7582(-3)	3.0145(-3)
a	-3.3073(-2)	-7.8148(-4)	9.1794(-4)	3.4586(-4)
a ₅	-7.7928(-3)	-2.8177(-5)	2.2209(-5)	1.0859(-5)
	m= .00105	.024	.0012	.1-1.0
	K ₂ SO ₄	K ₂ SO ₄	Hoso	HSQ
a	-2.4361(0)	-1.6664(0)	-1.6913(0)	-2.0257(0)
a	-1.1193(0)	-5.9577(-1)	3.2729(-1)	-1.5475(-1)
a	-2.4389(-1)	-2.2904(-1)	3.8058(-1)	1.8605(-1)
az	-2.5996(-2)	-9.8829(-2)	9.6416(-2)	1.0715(-1)
a	-7.7955(-4)	-2.3105(-2)	1.0986(-2)	3.2387(-2)
a ₅	3.6499(-5)	-2.0587(-3)	4.8493(-4)	3.8222(-3)

Table-A4

continued.

Coeffi-	m= 1.0-6.0	.0018	• 3-3.0	.0058
cients	H_SO	HNO,	HNO,	Na.OH
a	-2.0255(0)	-3.2000(-1)	-3.2272(-1)	-3.8274(-1)
a	-1.9356(-1)	7.0185(-2)	+5.4871(-2)	+5.1601(-2)
a	2.5073(-1)	1.0829(-1)	+7.7705(-2)	+1.8454(-1)
az	-1.8553(-1)	4.4450(-2)	+2.0173(-2)	+1.7821(-1)
a4	2.1543(-1)	1.0171(-2)	+2.3687(-2)	+9.5656(-2)
a ₅	-5.1169(-2)	1.2989(-3)	+2.6596(-2)	+2.6940(-2)
a ₆	-	8.1642(-5)	-5.8247(-3)	+3.7449(-3)
a ₇	-	1.7948(-6)	-1.0556(-2)	2.0335(-4)
	m <u>=.001-8</u>	.001-8	.001-8	
	CuSO _Â	CuSO,	Caso	
a	-3.1921(0)	-3.1519(0)	-3.2231(0)	
a	-7.5369(-1)	-5.2594(-1)	-6.8241(-1)	
a.2	-4.3260(-1)	+5.5390(-2)	-1.6584(-1)	
B. 7	-4.2101(-1)	+3.0313(-2)	-1.3154(-1)	
a.4	-1.9701(-1)	+3.4167(-3)	-5.7390(-2)	
^{a.} 5	-4.6107(-2)	-4.5125(-4)	-1.2589(-2)	
a.6	-5.2544(-3)	-1.3294(-4)	-1.3556(-3)	
8.7	-2.3158(-4)	-8.0988(-6)	-5.6888(-5)	

Potassium Chloride at zero degree

С	13	Eqv Cend	t+	D(v) 105	1+mxd ln (a ma	/d m
0,0000 0,0500 0,1000 0,5000 1,0000	0,000000 0,050065 0,100260 0,506600 1,026900	81.70 73.90 71.50 66.60 65.23	0.4980 0.4890 0.4880 0.4870 0.4870 0.4870	0.9960 0.9320 0.9240 0.9290 0.9620	1.0000 0.9114 0.9030 0.8733 0.8783	
Sqrt S X10	111/N 111/N	112/N 112/N	122/N 10+1 2	F12	Q12	
0.0000	4.3690	0.0000	4.4041	0.0000	0.0000	
2.2361	4.1494	0.2682	4.3240	0.1191	0.0633	
3.1623	4.0817	0.3342	4.2660	0.1483	0.0801	
7.0711	4.0386	0.5551	4.2246	0.2370	0.1344	
10.0000	4.0731	0.6613	4.2552	0.2742	0.1588	
Sqrt S X10	NR11 12-11	-NR12 10-11	NR 22 10-11	ର <mark>1</mark> ଓ	Q20	
0.0000	2.2888	0.0000	2.2706	0.7085	0.7057	
2.2361	2.4197	0.1501	2.3220	0.6923	0.6763	
3.1623	2.4658	0.1932	2.3593	0.6869	0.6694	
7.0711	2.5217	0.3314	2.4107	0.6675	0.6481	
10.0000	2.5187	0.3914	2.4109	0.6582	0.6387	
Sqrt S	-R10	-R20	-CCR10	-COR20	ROO/N	
X10	10-9	10-9	10-11	2 -11	v-7	
0.0000	4.1359	4.1030	2.2888	2.2706	14.8876	
2.2361	4.0941	3.9178	2.2696	2.1719	14.4521	
3.1623	4.1048	3.9124	2.2726	2.1661	14.4804	
7.0711	3.9979	3.7953	2.1903	2.0793	14.2249	
10.0000	3.9354	3.7359	2.1273	2.0195	14.1917	

Potassium Chloride at 18 degree

С	ra	Eqv Cond	t+	D (v) 195	1+mxdlnGara/dn	1
0.0000	0,000000	129.87	0,4919	1.6870	1.0000	
1.0000	1.030570	98.15	0,4860	1.6010	0.9006	
2.0009	2.128610	92.40	0,4850	1.6970	0.9578	
3.0000	3.304250	88.63	0,4850	1.8020	1.0306	
Sqrt S X10	111/N 111/N	112/N 10+12	122/N 121/N	F 1 2	Q12	
0.0000	6.8588	0.0000	7.0847	0.0000	0.0000	
10.0000	6.1610	1.0378	6.4561	0.2827	0.1646	
14.1421	5.9932	1.1801	6.2909	0.3225	0.1922	
17.3205	5.8499	1.2332	6.1355	0.3415	0.2058	
Sq rt S X1 Ü	NR11 10-11	-NR12 12-11	NR 22 10 -11	ର <mark>1</mark>	ର୍ 20	
0.0000	1.4580	0.0000	1.4115	0.7128	0.7014	
10.0000	1.6683	0.2682	1.5920	0.6568	0.6357	
14.1421	1.7326	0.3250	1.6506	0.6468	0.6241	
17.3205	1.7851	0.3588	1.7020	0.6415	0.6187	
Sqrt S	- R1 О	-R20	-CCR10	-CCR20	R OO/N	
X10	19-9	10-9	10-11	11-01	20 -7	
0.0000	2.6346	2.5506	1.4580	1.4115	9.3695	
10.0000	2.5994	2.4578	1.4001	1.3238	9.3891	
14.1421	2.6987	2.5415	1.4075	1.3255	10.0474	
17.3205	2.8300	2.6652	1.4263	1.3432	10.9036	

113

,

Potassium Chloride at 35 degree

C	m	Eqv Cond	七十	D (v) 105	1+extlnGara/	'd m
0.0000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000	0.000000 1.036440 1.579680 2.141600 2.723610 3.327340 3.954180	180.27 132.28 126.29 121.74 117.79 113.64 108.61	0.4889 0.4840 0.4830 0.4830 0.4830 0.4830 0.4830 0.4820	2.4780 2.3430 2.4020 2.4600 2.5160 2.5710 2.6250	1.0000 0.9106 0.9375 0.9693 1.0040 1.0406 1.0787	
Sqrt S X10	111/N 1112	112/N 112	122/N 12 11 2	F12	Q12	
0.0000	9.4639	0.0000	9.8937	0.0000	0.0000	
10.0000	8.3497	1.4735	8.8043	0.2934	0.1719	
12.2474	8.1646	1.6133	8.6258	0.3226	0.1922	
14.1421	8.0033	1.6881	8.4479	0.3408	0.2053	
15.8114	7.8420	1.7317	8.2722	0.3541	0.2150	
17.3205	7.6692	1.7741	8.0842	0.3679	0.2253	
18.7083	7.4593	1.8368	7.8792	0.3868	0.2396	
Sqrt S X10	NR 1 1 10- 1 1	-NR12 10-11	NR22 10 -11	ର୍ୀ	ର୍20	
0.0000	1.0566	0.0000	1.0107	0.7149	0.6992	
10.0000	1.2341	0.2065	1.1704	0.6555	0.6313	
12.2474	1.2718	0.2379	1.2038	0.6483	0.6225	
14.1421	1.3045	0.2607	1.2358	0.6432	0.6174	
15.8114	1.3370	0.2799	1.2675	0.6394	0.6135	
17.3205	1.3737	0.3015	1.3031	0.6352	0.6093	
18.7083	1.4223	0.3316	1.3465	0.6303	0.6028	
Sqrt S	-R10	-R20	-C CR10	-CCR20	ROO/N	
X10	10-9	10 -9	12-11	10-11	7-%	
0.0000	1.9094	1.8264	1.0566	1.0107	6.7505	
10.0000	1.9186	1.7996	1.0276	0.9638	6.9425	
12.2474	1.9616	1.8326	1.0339	0.9659	7.1982	
14.1421	2.0135	1.8811	1.0438	0.9752	7.5130	
15.8114	2.0747	1.9383	1.0571	0.9876	7.8760	
17.3205	2.1423	2.0014	1.0722	1.0017	8.2795	
18.7083	2.2199	2.0656	1.0907	1.0149	8.7221	

٠

Potassium Chloride at 50 degree

С	m	Eqv Cond	t+	D(v) 105	1 + mxd lnGa ma/dm
0.0000 0.0500 0.1000 0.5000 1.0000 2.0000 3.0000	0.000000 0.050212 0.100561 0.508756 1.033760 2.138560 3.323140	228.26 197.00 194.59 174.14 161.57 149.92 137.69	0.4860 0.4840 0.4840 0.4830 0.4830 0.4830 0.4830 0.4820	3.2890 3.1190 3.0750 3.0180 3.0720 3.2160 3.3360	1.0000 0.9372 0.9045 0.8965 0.9131 0.9703 1.0430
Sqrt S X10	111/N 111/2	112/N 1112	122/N 122/N	F12	Q12
0.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	11.9114 11.1499 11.2227 10.6282 10.3094 9.9246 9.3881	0.0000 0.9095 1.1075 1.5948 1.9280 2.1476 2.2603	12.5978 11.8270 11.8914 11.2641 10.8994 10.4721 9.9205	0.0000 0.1468 0.1750 0.2545 0.3079 0.3482 0.3797	0.0000 0.0792 0.0959 0.1458 0.1819 0.2107 0.2342
Sqrt S X10	NR11 10-11	-NR12 10-11	NR 22 10 -1 1	ର <mark>ୀ</mark>	Q20
0.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	0.8395 0.9025 0.8993 0.9613 1.0032 1.0544 1.1270	0.0000 0.0694 0.0838 0.1361 0.1775 0.2162 0.2568	0.7938 0.8509 0.8487 0.9070 0.9489 0.9993 1.0665	0.7169 0.6902 0.6841 0.6662 0.6523 0.6411 0.6324	0.6971 0.6667 0.6605 0.6407 0.6266 0.6152 0.6049
Sqrt S X10	- R1 0 10-9	-R20 10-9	-COR10 10-11	-COR20 8- 11	ROO/N 2-9-
0.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	1.5170 1.5072 1.4775 1.5127 1.5378 1.6145 1.7366	1,4344 1,4138 1,3859 1,4132 1,4366 1,5084 1,6159	0.8395 0.8331 0.8156 0.8252 0.8257 0.8382 0.8382 0.8702	0.7938 0.7815 0.7650 0.7709 0.7714 0.7830 0.8097	5.3332 5.2845 5.1872 5.3632 5.5392 6.0157 6.6900

Potassium Chloride at 25 degree

С	m	Eqv Cond	t +	D (v) 195	1+mxdlnGans./dm
0.0000 0.0010 0.0500 0.1000 0.5000 1.0000 2.0000 3.0000	0.000000 0.0010030 0.050200 0.100600 0.508800 1.033000 2.133000 3.310000	149.86 146.95 141.27 133.37 128.96 117.27 111.87 105.23 99.46	0.4905 0.4904 0.4902 0.4899 0.4897 0.4887 0.4880 0.4870 0.4862	1.9930 1.9640 1.9150 1.8640 1.8470 1.8500 1.8920 1.9990 2.1120	1.0000 0.9829 0.9540 0.9209 0.9066 0.8915 0.9051 0.9632 1.0370
Sqrt S X10	111/N 10+12	112/N 112/N	122/N 121/N	F12	Q12
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	7.8924 7.8261 7.6949 7.5206 7.4308 7.1938 7.0778 6.8667 6.6332	0.0000 0.0863 0.2573 0.5032 0.6482 1.0387 1.2145 1.3627 1.4396	8.1982 8.1291 7.9923 7.8100 7.7161 7.4784 7.3661 7.1605 6.9281	0.0000 0.0214 0.0635 0.1233 0.1577 0.2481 0.2880 0.3255 0.3504	0.0000 0.0108 0.0328 0.0657 0.0856 0.1416 0.1682 0.1943 0.2124
Sqrt S X10	NR11 10-11	-NR12 19-11	NR22 10 -11	ତ୍ 10	Q20
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	1.2670 1.2779 1.3010 1.3354 1.3557 1.4185 1.4540 1.5135 1.5788	0.0000 0.0136 0.0419 0.0861 0.1139 0.1970 0.2397 0.2880 0.3281	1.2198 1.2303 1.2526 1.2860 1.3056 1.3645 1.3971 1.4514 1.5116	0.7138 0.7101 0.7024 0.6908 0.6837 0.6635 0.6539 0.6539 0.6445 0.6380	0.7004 0.6964 0.6883 0.6761 0.6686 0.6466 0.6358 0.6248 0.6170
8q rt S ×1 0	-R10 10-9	-R20 v=9	-C (1R10 20-11	-C CR20 10- 1 1	ROO/N 2-7
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	2.2895 2.2846 2.2750 2.2598 2.2505 2.2393 2.2597 2.3545 2.4860	2.2041 2.1985 2.1876 2.1703 2.1597 2.1403 2.1538 2.2351 2.3524	1.2670 1.2644 1.2591 1.2494 1.2418 1.2215 1.2143 1.2255 1.2507	1.2198 1.2167 1.2107 1.1999 1.1917 1.1675 1.1574 1.1633 1.1835	8.1201 8.1005 8.0635 8.0127 7.9926 8.0287 8.2133 8.8180 9.6170

SCDIUM CHLCRIDE

с	m	Eqv Cond	t+	D(v)105 1	+mod lnGa ma	./d m
0.0000 0.0010 0.0500 0.1000 0.5000 1.0000 2.0000 3.0000	0.000000 0.001003 0.010030 0.050200 0.100500 0.506200 1.022200 2.085900 3.196600	126.45 123.70 118.51 111.06 106.74 93.62 85.76 74.71 65.57	0.3962 0.3947 0.3918 0.3873 0.3853 0.3853 0.3691 0.3615 0.3561	1.6110 1.5870 1.5470 1.5030 1.4850 1.4740 1.4840 1.5180 1.5640	1.0000 0.9830 0.9553 0.9265 0.9164 0.9297 0.9795 1.1080 1.2760	
Sqrt S X10	111/N 111/2	r+15 115/N	122/N 122/N	F12	Q12	
0.0000	5.3814	0.0000	8.2008	0.0000	0.0000	
0.3162	5.3262	0.0824	8.1241	0.0253	0.0125	
1.0000	5.2203	0.2334	7.9747	0.0715	0.0362	
2.2361	5.0660	0.4404	7.7427	0.1346	0.0703	
3.1623	4.9705	0.5535	7.6004	0.1693	0.0900	
7.0711	4.6142	0.8406	7.1219	0.2629	0.1466	
10.0000	4.3108	0.9112	6.7222	0.2982	0.1693	
14.1421	3.8121	0.9114	6.0347	0.3298	0.1900	
17.3205	3.3654	0.8576	5.3921	0.3469	0.2013	
Sqrt S X10	NR11 10-11	-NR12 10-11	NR 22 10-11	ର୍1	କ୍ଟ 2୦	
0.0000	1.8583	0.0000	1.2194	0.7770	0.6295	
0.3162	1.8778	0.0190	1.2311	0.7741	0.6234	
1.0000	1.9181	0.0561	1.2556	0.7684	0.6118	
2.2361	1.9837	0.1128	1.2980	0.7599	0.5951	
3.1623	2.0283	0.1477	1.3265	0.7549	0.5851	
7.0711	2.2148	0.2614	1.4350	0.7423	0.5540	
10.0000	2.3882	0.3237	1.5315	0.7385	0.5395	
14.1421	2.7215	0.4110	1.7192	0.7363	0.5245	
17.3205	3.0970	0.4926	1.9329	0.7359	0.5151	
Sqrt S	-R10	-R20	-COR10	-COR20	ROO/N	
x10	10-9	10-9	10-11	20- 11	7-%	
0.0000	3.3579	2.2035	1.8583	1.2194	10.0493	
0.3162	3.3586	2.1900	1.8588	1.2120	10.0259	
1.0000	3.3644	2.1673	1.8620	1.1995	9.9953	
2.2361	3.3839	2.1436	1.8709	1.1851	9.9976	
3.1623	3.4048	2.1342	1.8806	1.1788	10.0285	
7.0711	3.5627	2.1404	1.9534	1.1735	10.4014	
10.0000	3.8017	2.2241	2.0645	1.2078	11.0965	
14.1421	4.3411	2.4578	2.3105	1.3081	12.7743	
17.3205	4.9993	2.7648	2.6044	1.4403	14.9036	

Table-All

LITHIUM CHLORIDE

С	m	Eqv C and	t+	D (v) 105	$1 + m \times d \ln Ga ma / d m$
0.0000 0.0010 0.0500 0.1000 0.5000 1.0000 2.0000 3.0000	0.000000 0.001003 0.010030 0.050200 0.100500 0.506000 1.021500 2.084700 3.196900	115.03 112.37 107.28 100.13 95.86 81.40 72.90 61.80 52.80	0.3363 0.3288 0.3211 0.3168 0.2992 0.2864 0.2688 0.2563	1.3660 1.3440 1.3120 1.2800 1.2680 1.2680 1.2720 1.3020 1.3690 1.4260	1.0000 0.9832 0.9570 0.9350 0.9332 1.0128 1.1418 1.4332 1.8191
Sq rt S X1 ()	1 11 /N 112	112/N 112/N	122/N 122/N	F 1 2	Q12
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	4.1526 4.1028 4.0110 3.8702 3.7740 3.3159 2.9423 2.4063 1.9537	0.0000 0.0731 0.2225 0.4170 0.5124 0.7002 0.6999 0.6222 0.5003	8.1974 8.1120 7.9561 7.7180 7.5463 6.8269 6.2871 5.4754 4.7177	0.0000 0.0265 0.0805 0.1510 0.1870 0.2764 0.3043 0.3229 0.3164	0.0000 0.0127 0.0394 0.0763 0.0960 0.1472 0.1627 0.1714 0.1648
Sqrt S x10	NR11 10-11	-NR12 10-11	NR22 ม -11	ଟାଠ	କ୍ଟ 20
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	2.4081 2.4377 2.4970 2.5990 2.6743 3.0825 3.4911 4.2815 5.2613	0.0000 0.0220 0.0698 0.1404 0.1816 0.3162 0.3887 0.4865 0.5580	1.2199 1.2329 1.2589 1.3033 1.3375 1.4972 1.6338 1.8816 2.1789	0.8147 0.8125 0.8077 0.8014 0.7980 0.7980 0.7930 0.7963 0.8051 0.8154	0.5799 0.5727 0.5573 0.5353 0.5232 0.4858 0.4672 0.4464 0.4367
Sqrt S x10	-R10 20-9	-R20 10 - 9	-COR10 20-11	-COR20 10- 11	ROO/N ۳ -7
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	4.3515 4.3651 4.3857 4.4468 4.5131 5.0434 5.7093 7.1263 9.0293	2.2044 2.1881 2.1484 2.1032 2.0927 2.1532 2.2914 2.6197 3.1117	2.4081 2.4158 2.4272 2.4586 2.4927 2.7663 3.1025 3.7950 4.7034	1.2199 1.2110 1.1890 1.1628 1.1559 1.1811 1.2452 1.3951 1.6209	11.8464 11.8410 11.8066 11.8471 11.9600 13.1202 14.7231 18.3010 23.3075

1/18

HYDROCHLORIC ACID

с	m	Eqv Cond	ቲት	D(v) 105	1+mod lnGama/dm
0.0000	0.000000	426.50	0.8210	3.3360	1.0000
0.0010	0.001003	421.46	0.8224	3.2760	0.9833
0.0500	0.010030	412.02	0.8251	3.1820	0.9576
0.0500	0.050200	399.12	0.8292	3.0840	0.9375
0.1000	0.100500	391.34	0.8314	3.0560	0.9380
0.5000	0.506200	360.86	0.8376	3.1840	1.0337
1.0000	1.022400	332.31	0.8407	3.4530	1.1853
2.0000	2.086300	281.66	0.8429	4.0450	1.5218
3.0000	3.196000	237.74	0.8430	4.6430	1.8944
Sqrt S X10	111/N 1112	112/N ∞+12	122/N 1212	F 1 2	Q12
0.0000	37.6045	0.0000	8.1967	0.0000	0.0000
0.3162	37.3350	0.1089	8.1480	0.0162	0.0062
1.0000	36.8285	0.3167	8.0562	0.0472	0.0184
2.2361	36.1088	0.5644	7.8859	0.0851	0.0334
3.1623	35.6241	0.6801	7.7664	0.1035	0.0409
7.0711	33.4037	0.9411	7.2352	0.1515	0.0605
10.0000	31.1013	1.0964	6.7819	0.1866	0.0755
14.1421	26.8539	1.3557	6.1081	0.2529	0.1059
17.3205	23.0891	1.5643	5.5731	0.3164	0.1379
Sqrt S X10	NR11 10-11	-NR12 10-11	NR22 ม -11	ର୍ 10	Q20
0.0000 0.3162 1.0000 2.2361 3.1623 7.0711 10.0000 14.1421 17.3205	0.2659 0.2679 0.2716 0.2773 0.2812 0.3005 0.3234 0.3766 0.4415	0.0000 0.0036 0.0107 0.0198 0.0246 0.0391 0.0523 0.0523 0.0836 0.1239	1.2200 1.2273 1.2417 1.2695 1.2898 1.3872 1.4830 1.6557 1.8291	0.4230 0.4186 0.4099 0.3982 0.3922 0.3759 0.3654 0.3496 0.3361	0.9061 0.9055 0.9044 0.9035 0.9031 0.9022 0.9006 0.8946 0.8865
Sqrt S	-R10	-R20	-COR10	-COR20	r 00∕n
X10	9-0	10-9	10-11	10-11	∞ -7
0.0000	0.4805	2.2045	0.2659	1.2200	4.8519
0.3162	0.4775	2.2112	0.2643	1.2238	4.8583
1.0000	0.4715	2.2243	0.2609	1.2310	4.8711
2.2361	0.4656	2.2603	0.2574	1.2497	4.9302
3.1623	0.4645	2.2905	0.2566	1.2651	4.9880
7.0711	0.4645	2.4588	0.2614	1.3481	5.3539
10.0000	0.4993	2.6351	0.2711	1.4307	5.7732
14.1421	0.5506	2.9544	0.2930	1.5721	6.5868
17.3205	0.6095	3.2726	0.3176	1.7052	7.4505

-

CALCIUM CHLORIDE

с	m	Eqv Cond	t+	D (v) 105	1 +mod lnCama/dm
0.0000 0.0001 0.0005 0.0010 0.0050 0.0100 0.0500	0.000000 0.000100 0.000502 0.001003 0.005015 0.010035 0.050200	135.85 133.30 130.31 128.20 120.38 115.66 102.46	0.4380 0.4363 0.4342 0.4326 0.4264 0.4264 0.4220 0.4059	1.3350 1.3100 1.2840 1.2670 1.2120 1.1860 1.1380	1.0000 0.9808 0.9600 0.9463 0.9019 0.8798 0.8440
Sqrt S X10	111/N 1112	112/N 112/N	122/N p+12	F 1 2	Q 1 2
0.0000	1.5974	0.0000	8.1987	0.0000	0.0000
0.1732	1.5794	0.0356	8.1413	0.0396	0.0099
0.3873	1.5589	0.0794	8.0775	0.0883	0.0224
0.5477	1.5444	0.1106	8.0337	0.1229	0.0314
1.2247	1.4912	0.2260	7.8680	0.2501	0.0660
1.7321	1.4594	0.2978	7.7755	0.3285	0.0884
3.8730	1.3598	0.4863	7.5103	0.5364	0.1522
Sqrt S	NR 1 1	-NR12	NR 22	ର୍ 10	
x10	20-1 1	19-11	10 -1 1		Q20
0.0000	6.2603	0.0000	1.2197	0.7497	0.6618
0.1732	6.3323	0.0277	1.2284	0.7475	0.6568
0.3873	6.4179	0.0631	1.2386	0.7448	0.6505
0.5477	6.4814	0.0892	1.2460	0.7428	0.6458
1.2247	6.7353	0.1934	1.2765	0.7353	0.6278
1.7321	6.9061	0.2645	1.2962	0.7306	0.6156
3.8730	7.5282	0.4875	1.3631	0.7191	0.5773
Sqrt S	R10-9-0	-R20	-CCR10	-C (1220	R 00/N
X10		10-9	10-11	111	∞-7
0.0000	5.6561	2.2040	3.1301	1.2197	9.0930
0.1732	5.6710	2.1947	3.1385	1.2146	9.0890
0.3873	5.6842	2.1811	3.1458	1.2071	9.0764
0.5477	5.6943	2.1708	3.1514	1.2014	9.0669
1.2247	5.7354	2.1318	3.1742	1.1798	9.0336
1.7321	5.7643	2.1043	3.1885	1.1640	9.0144
3.8730	5.9264	2.0245	3.2766	1.1193	9.0214

BARIUM CHLORIDE

С	m	Eqv Cond	t+	D(v)105	+mod InGame	/d m
0.0000 0.0010 0.0050 0.0100 0.0500 0.1000 0.2000 0.5000 1.0000	0.000000 0.001003 0.005015 0.010035 0.050200 0.100600 0.201600 0.507600 1.027900	139.98 132.11 123.93 119.03 105.19 98.56 91.55 80.50 68.90	0,4546 0,4483 0,4419 0,4381 0,4249 0,4162 0,4036 0,3793 0,3527	1.3850 1.2670 1.2670 1.2390 1.1780 1.1600 1.1600 1.1610 1.1790	1.0000 0.9457 0.8998 0.8759 0.8295 0.8252 0.8415 0.9264 1.0980	
Sart S x10	111/N 10+12	112/N 10+12	122/N 127/N	F12	Q12	
0.0000 0.5477 1.2247 1.7321 3.8730 5.4772 7.7460 12.2474 17.3205	1.7080 1.6514 1.5965 1.5645 1.4648 1.4036 1.3193 1.1536 0.9521	0.0000 0.1223 0.2522 0.3287 0.5294 0.6043 0.6543 0.6543 0.6675 0.5992	8.1969 8.0726 7.9328 7.8406 7.5559 7.3884 7.1728 6.7015 5.9884	0,0000 0,1303 0,2664 0,3456 0,5544 0,6394 0,7121 0,7922 0,8300	0.0000 0.0335 0.0709 0.0938 0.1591 0.1877 0.2127 0.2401 0.2509	
Sqrt S x10	NR11 10~11	-NR12 10-11	NR22 10-11	ୟ 1 ଓ	କ୍ଷ 20	
0.0000 0.5477 1.2247 1.7321 3.8730 5.4772 7.7460 12.2474 17.3205	5.8549 6.0524 6.2952 6.4486 7.0044 7.3848 7.9392 9.1987 11.2090	0.0000 0.0919 0.2001 0.2703 0.4907 0.6040 0.7242 0.9163 1.1216	1.2200 1.2402 1.2670 1.2867 1.3578 1.4029 1.4602 1.5835 1.7821	0.7385 0.7314 0.7229 0.7175 0.7032 0.6988 0.6983 0.6983 0.7050 0.7196	0.6742 0.6570 0.6380 0.6262 0.5900 0.5715 0.5509 0.5192 0.4916	
Sqrt S ×10	-R10 10-9	-R20 v-9	-COR10 20-11	-C CR20 10 -11	R OO/N %-7	
0.0000 0.5477 1.2247 1.7321 3.8730 5.4772 7.7460 12.2474 17.3205	5.2899 5.3111 5.3258 5.3402 5.4469 5.5971 5.8932 6.7360 8.3013	2.2045 2.1578 2.1085 2.0818 2.0122 1.9951 1.9941 2.0581 2.2616	2.9275 2.9393 2.9475 2.9540 3.0115 3.0884 3.2453 3.6831 4.4829	1.2200 1.1942 1.1669 1.1516 1.1125 1.1009 1.0981 1.1253 1.2213	8.7630 8.6973 8.6214 8.5906 8.5653 8.6876 8.9718 9.9237 11.8739	

IANTHANUM CHLCRIDE

с	m	Eqv Cond	t,+	D (v) 105	1 +mod lnGana/dm
0.0000 0.0001 0.0005 0.0010 0.0050 0.0100 0.0250	0.000000 0.000100 0.000502 0.001003 0.005015 0.010035 0.025100	145.95 141.05 135.16 131.13 118.10 111.26 101.98	0.4769 0.4739 0.4705 0.4681 0.4598 0.4598 0.4541 0.4430	1.2920 1.2460 1.2020 1.1750 1.1010 1.0690 1.0230	1.0000 0.9609 0.9218 0.8980 0.8303 0.8007 0.7672
Sqrt S x10	111/N 1112	112/N 112/N	122/N 10+12	F 1 2	Q12
0.0000	0.8305	0.0000	8.1984	0.0000	0.0000
0.2449	0.8139	0.0488	8.1163	0.1120	0.01 90
0.5477	0.7954	0.1096	8.0153	0.2501	0.0434
0.7746	0.7828	0.1508	7.9434	0.3428	0.0605
1.7321	0.7437	0.2872	7.7135	0.6442	0.11 99
2.4495	0.7226	0.3591	7.6005	0.8001	0.1532
3.8730	0.6871	0.4439	7.4325	0.9904	0.1964
Sqrt S x10	NR 1 1 10-1 1	-NR12 10-11	NR22 11	ରୀ ଓ	Q20
0.0000	12.0415	0.0000	1.2198	0.7233	0.6906
0.2449	12.2903	0.0739	1.2325	0.7188	0.6815
0.5477	12.5956	0.1723	1.2500	0.7126	0.6700
0.7746	12.8221	0.2434	1.2635	0.7082	0.6618
1.7321	13.6416	0.5079	1.3153	0.6927	0.6329
2.4495	14.1714	0.6695	1.3473	0.6845	0.6155
3.8730	15.1381	0.9042	1.3994	0.6762	0.5896
Sqrt S	-R10	-R20	-CCR10	-C CR20	R 00/N
x10	10-9	2-0	2-11	10 -11	۳-7
0.0000	7.2530	2.2041	4.0138	1.2198	8.3515
0.2449	7.2689	2.1826	4.0228	1.2079	8.3217
0.5477	7.2751	2.1548	4.0263	1.1925	8.2753
0.7746	7.2830	2.1365	4.0306	1.1824	8.2469
1.7321	7.2986	2.0708	4.0393	1.1460	8.1377
2.4495	7.3293	2.0323	4.0542	1.1242	8.0906
3.8730	7.4914	1.9860	4.1418	1.0980	8.1087

.

Sodium Hydroxide

C	m	Eqv Cond	t+	D(v)105	1+m×dlnGama/dm
0.0000 0.0100 0.0500 0.1000 0.2000 0.5000 1.0000	0.000000 0.010029 0.050136 0.100256 0.200449 0.500702 1.000450	248.40 238.47 227.80 221.17 212.93 197.12 177.71	0,2020 0,2030 0,1890 0,1830 0,1830 0,1770 0,1690 0,1630	2.1270 2.0460 1.9660 1.9190 1.8660 1.7950 1.7440	1.0000 0.9423 0.9133 0.9095 0.9333 0.9529 1.0088
Sqrt S ×10	111/N 13+12	112/N 10+12	122/N 19+ 1 2	F 1 2	ୟ1 2
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	5.3789 5.4351 5.2160 5.0515 4.7493 4.4043 3.9942	0.0000 0.2359 0.5919 0.7045 0.7015 0.8264 0.8832	21.2793 20.6486 20.4338 20.1114 19.5227 18.4194 16.8583	0.0000 0.0539 0.1363 0.1655 0.1740 0.2175 0.2533	0.0000 0.0223 0.0573 0.0699 0.0729 0.0918 0.1076
Sqrt S X10	NR 1 1 10-11	-NR12 10-11	NR22 10 -11	ର୍1 ଠ	ର୍ ଥଠ
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	1.8591 1.8408 1.9235 1.9893 2.1168 2.2898 2.5330	0.0000 0.0210 0.0557 0.0697 0.0761 0.1027 0.1327	0.4699 0.4845 0.4910 0.4997 0.5150 0.5475 0.6001	0.8934 0.8876 0.8874 0.8879 0.8907 0.8909 0.8909 0.8906	0.4492 0.4407 0.4093 0.3968 0.3884 0.3705 0.3563
Sqrt S ×10	-R10 10-9	-R20 10-9	-COR10 20-11	-COR20	roo/n 10-7
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	3.3594 3.2878 3.3740 3.4671 3.6846 3.9455 4.3260	0.8492 0.8374 0.7863 0.7766 0.7924 0.8024 0.8425	1.8591 1.8198 1.8678 1.9197 2.0407 2.1871 2.4003	0.4699 0.4635 0.4353 0.4300 0.4389 0.4448 0.4674	7.6049 7.4532 7.5151 7.6646 8.0835 8.5653 9.3152

Nitric Acid

C	18	Eqv Cond	t +	D(v) 105	1 +mxd lnGa ma/dm
0.0000 0.0100 0.0500 0.1000 0.5000 1.0000 2.0000 2.5000 3.0000	0,000000 0.010033 0.050225 0.100607 0.509035 1.033720 2.134320 2.712400 3.310470	420.50 406.00 393.30 385.00 356.80 341.72 280.13 256.03 234.79	0,8300 0,8392 0,8393 0,8392 0,8368 0,8332 0,8332 0,8201 0,8139 0,8079	3.1580 3.0030 2.8810 2.8290 2.8500 2.9780 3.1620 3.2320 3.3060	1.0000 0.9534 0.9382 0.9345 0.9735 1.0601 1.2699 1.3887 1.4599
Sqrt S x10	111/N 10+12	112/N 112/N	122/N 10+1 2	F 12	Q12
0.0000	37.4822	0.0000	7.6752	0.0000	0.0000
1.0000	37.0624	0.4692	7.4809	0.0739	0.0282
2.2361	35.9495	0.4968	7.2849	0.0802	0.0307
3.1623	35.2269	0.5265	7.1755	0.0852	0.0331
7.0711	32.7386	0.6719	6.9258	0.1138	0.0446
10.0000	31.1450	0.5657	6.6875	0.0998	0.0392
14.1421	25.2574	0.5837	5.9352	0.1162	0.0474
15.8114	22.9100	0.5295	5.6468	0.1128	0.0466
17.3205	21.0268	0.6542	5.4983	0.1432	0.0608
Sqrt S x10	NR11 10-11	-NR12 10-11	NR 22 10-11	ର୍1 ଓ	Q20
0.0000	0.2668	0.0000	1.3029	0.4123	0.9111
1.0000	0.2700	0.0169	1.3378	0.3882	0.9103
2.2361	0.2784	0.0190	1.3740	0.3870	0.9098
3.1623	0.2842	0.0209	1.3952	0.3860	0.9092
7.0711	0.3061	0.0297	1.4467	0.3839	0.9053
10.0000	0.3216	0.0272	1.4976	0.3908	0.9045
14.1421	0.3968	0.0386	1.6715	0.4030	0.8951
15.8114	0.4374	0.0410	1.7748	0.4107	0.8917
17.3205	0.4774	0.0568	1.8255	0.4114	0.8847
Sqrt S	-R10	-R20	-ССR10	-COR20	ROO/N
x10	10-9	10-9	ю-11	111	\$~7
0.0000	0.4821	2.3544	0.2668	1.3029	5.1255
1.0000	0.4575	2.3874	0.2531	1.3209	5.1419
2.2361	0.4695	2.4520	0.2594	1.3550	5.2868
3.1623	0.4773	2.4909	0.2633	1.3743	5.3796
7.0711	0.5069	2.5990	0.2764	1.4171	5.6963
10.0000	0.5482	2.7383	0.2944	1.4704	6.1203
14.1421	0.6886	3.1392	0.3582	1.6329	7.3589
15.8114	0.7748	3.3887	0.3964	1.7337	8.1378
17.3205	0.8360	3.5161	0.4206	1.7687	8.6517

Ammonium Nitrate

с	顶	Eqv Cond	t+	D (v) 105	1 +mxd lnGa ma/di	14
0.0000 0.0100 0.0500 0.1000 0.2000 0.5000 1.0000 2.0000 3.0000	0.000000 0.010034 0.050266 0.100770 0.203180 0.514000 1.051400 2.223950 3.531700	145.00 136.20 128.00 122.70 117.00 108.60 101.43 91.76 84.07	0.5070 0.5130 0.5130 0.5130 0.5140 0.5140 0.5140 0.5140 0.5140	1.9280 1.8720 1.8170 1.7690 1.7490 1.7240 1.6900 1.6330 1.5780	1.0000 0.9488 0.9055 0.8817 0.8549 0.8115 0.7638 0.6869 0.6869	
Sqrt S X10	111/N 1112	112/N 112/N	122/N 10+1 2	F 1 2	ତୀ ଅ	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	7.8920 7.8294 7.6654 7.5151 7.4465 7.3667 7.3411 7.3990 7.4685	0.0000 0.3252 0.6130 0.7547 0.9877 1.3716 1.7418 2.3335 2.8275	7.6740 7.4491 7.3080 7.1724 7.0947 7.0402 7.0361 7.1231 7.2156	0.0000 0.0817 0.1515 0.1865 0.2393 0.3201 0.3201 0.3903 0.4866 0.5563	0.0000 0.0426 0.0819 0.1028 0.1359 0.1905 0.2424 0.3214 0.3852	
Sqrt S ×10	NR11 10-11	-NR12 10-11	NR22 10-11	ତ୍ୱୀ ପ	Q20	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	1.2671 1.2796 1.3134 1.3449 1.3682 1.4085 1.4085 1.4472 1.5073 1.5722	0.0000 0.0559 0.1102 0.1415 0.1905 0.2744 0.3582 0.4938 0.6161	1.3031 1.3449 1.3776 1.4091 1.4360 1.4739 1.5099 1.5656 1.6273	0.7021 0.6824 0.6679 0.6601 0.6468 0.6256 0.6047 0.5717 0.5437	0.7120 0.7012 0.6870 0.6793 0.6677 0.6468 0.6261 0.5932 0.5652	
Sqrt S X10	-R10 10-9	-R20 x-9	-COR10 ⊿-11	-COR20 20-11	ROO/N 7-0	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	2.2897 2.2120 2.1791 2.1846 2.1554 2.1003 2.0626 2.0302 2.0277	2.3547 2.3301 2.2954 2.3012 2.2795 2.2213 2.1814 2.1472 2.1446	1.2671 1.2237 1.2032 1.2034 1.1777 1.1341 1.0889 1.0135 0.9561	1.3031 1.2890 1.2674 1.2676 1.2456 1.1995 1.1517 1.0719 1.0112	8.3924 8.2103 8.1037 8.1433 8.1165 8.0035 8.0384 8.3684 8.8486	

Ammonium Nitrate ---- CONTINUED -----

行。会部的 合同的的资

С	13	Eqv Cond	t +	D(v) 105	1+101 lnGama/	'd n
4.0000	5,006260	76.97	0,5140	1.5240	0.5809	
5.0000	6,683150	70.09	0,5140	1.4720	0.5500	
6.0000	8,610800	63.36	0,5140	1.4210	0.5270	
Sqrt S X10	111/N 1112	112/N 112	122/N 15 +1 2	F12	ୟୀ 2	
20.0000	7.4759	3.2268	7.2444	0.6098	0.4385	
22.3607	7.3873	3.51 80	7.1765	0.6517	0.4832	
24.4949	7.2367	3.7390	7.0462	0.6875	0.5236	
Sqrt S X10	NR11 10-11	-NR12 10-11	NR 22 10-11	ର୍ ୀ	Q20	
20.0000	1.6560	0.7376	1.7089	0. 51 92	0.5405	
22.3607	1.7659	0.8657	1.8178	0.4978	0.5189	
24.4949	1.9038	1.0102	1.9553	0.4776	0.4984	
Sqrt S	-R10	-R20	-C (R1 ()	-COR20	ROO/N	
X10	10-9	w-9	10-11	10- 11	10-7	
20.0000	2.0707	2.1900	0.9184	0.9713	9.6065	
22.3607	2.1678	2.2927	0.9003	0.9521	10.7404	
24.4949	2.3102	2.4433	0.8936	0.9450	12.2898	

G

Potassium Nitrate

с	m	Eqv Cond	たト	D (v) 105	$1 + m \times d \ln Ga ma/dm$
0.0000 0.0010 0.0050 0.0100 0.0200 0.0500 0.1000	0.000000 0.001003 0.005016 0.010033 0.020074 0.050244 0.100683	144.92 141.80 138.44 135.78 132.37 126.27 120.36	0.5072 0.5076 0.5081 0.5084 0.5087 0.5093 0.5103	1.9280 1.8990 1.8660 1.8460 1.8240 1.7470 1.5030	1.0000 0.9822 0.9630 0.9494 0.9320 0.9006 0.8674
Sqrt S X10	1 11 /N 10+12	112/N 10+12	122/N 10 +1 2	F 1 2	Q12
0.0000 0.3162 0.7071 1.0000 1.4142 2.2361 3.1623	7.8930 7.8239 7.7471 7.6913 7.6265 7.4305 6.8614	0.0000 0.0934 0.1923 0.2773 0.3945 0.5236 0.2648	7.6688 7.5924 7.5062 7.4463 7.3792 7.1782 6.5951	0.0000 0.0239 0.0492 0.0707 0.0999 0.1338 0.0758	0.0000 0.0121 0.0252 0.0366 0.0526 0.0526 0.0717 0.0394
Sqrt S X10	1111 1 10 - 1 1	-NR12 1011	NR22 10 11	ର୍1 ୦ -	ୟ2୦
0.0000 0.3162 0.7071 1.0000 1.4142 2.2361 3.1623	1.2670 1.273 1.2916 1.3019 1.3148 1.3528 1.4597	0.0000 0.0157 0.0331 0.0485 0.0703 0.0987 0.0586	1.3040 1.3173 1.3331 1.3448 1.3589 1.4003 1.5186	0.7020 0.6974 0.6923 0.6880 0.6819 0.6819 0.6745 0.6856	0.7122 0.7082 0.7039 0.7001 0.6945 0.6881 0.7004
Sqrt S X10	R 1 0 109	- R20 1 0-9	-C (R1 () _0-11	-COR20 1011	R00∕N 10-7
0.0000 0.3162 0.7071 1.0000 1.4142 2.2361 3.1623	2.2894 2.2314 2.2743 2.2655 2.2504 2.2703 2.5414	2.3563 2.3518 2.3492 2.3429 2.3301 2.3563 2.6483	1.2670 1.2626 1.2535 1.2534 1.2446 1.2541 1.2541 1.4011	1.3040 1.3016 1.3000 1.2963 1.2836 1.3016 1.4600	8.3947 8.3718 3.3553 8.3296 8.2821 8.3755 9.4137

.

Potassium Bromide

С	m	Eqv Cond	t+	D(v)15	1+m×dlnGama/dm
0.0000 0.0500 0.1000 0.2000 0.5000 1.0000 2.0000 3.0000	0.000000 0.050233 0.100638 0.201988 0.510440 1.040030 2.163540 3.385510	151.80 135.44 131.19 126.59 120.35 115.44 109.37 103.55	0.4847 0.4831 0.4833 0.4841 0.4845 0.4845 0.4850 0.4900 0.4900	2.0160 1.8920 1.8740 1.8700 1.8850 1.9750 2.1230 2.2800	1.0000 0.9222 0.9086 0.8991 0.8999 0.9213 0.9213 0.9876 1.0654
Sqrt S x10	111/N 19+12	112/N 112/N	122/N 19 +1 2	F12	ର୍12
0.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	7.8967 7.5332 7.4514 7.3815 7.2593 7.2405 7.1564 6.9869	0.0000 0.5058 0.6417 0.7997 0.9968 1.2273 1.4006 1.5374	8.3956 8.0249 7.9220 7.8138 7.6600 7.6124 7.3913 7.2093	0.0000 0.1222 0.1542 0.1906 0.2359 0.2838 0.3230 0.3562	0.0000 0.0651 0.0835 0.1053 0.1337 0.1653 0.1926 0.2166
Sqrt S ×10	NR 11 10-11	-NR12 10-11	NR22	ର୍1 ଠ	ନ୍20
0.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	1.2664 1.3331 1.3515 1.3699 1.4026 1.4199 1.4512 1.5017	0.0000 0.0840 0.1095 0.1402 0.1825 0.2289 0.2750 0.3202	1.1911 1.2514 1.2712 1.2941 1.3292 1.3505 1.4051 1.4554	0.7179 0.6959 0.6891 0.6805 0.6696 0.6572 0.6429 0.6334	0.6962 0.6713 0.6646 0.6570 0.6465 0.6347 0.6278 0.6182
Sqrt S ×10	-R10 19-9	-R20 19-9	-COR10 19-11	-COR20 19-11	ROO/N 10 -7
0.0000 2.2361 3.1623 4.4721 7.0711 10.0000 14.1421 17.3205	2.2883 2.2607 2.2517 2.2374 2.2374 2.2439 2.2315 2.2922 2.4019	2.1523 2.1129 2.1062 2.0995 2.1089 2.1015 2.2023 2.3077	1.2664 1.2491 1.2420 1.2297 1.2201 1.1910 1.1762 1.1815	1.1911 1.1674 1.1617 1.1539 1.1467 1.1216 1.1301 1.1351	8.0242 7.9156 7.9008 7.8904 8.0053 8.1184 8.7588 9.5747

Potassium Icdide

С	m	Eqv Cond	t+	D (v) 15	1 +mxd lnGa na	/d m
0.0000 0.0100 0.0500 0.1000 0.2000 0.5000 1.0000 2.0000 3.0000	0.000000 0.010034 0.050262 0.100756 0.202456 0.513380 1.052310 2.216730 3.515720	150.38 142.18 134.97 131.11 126.89 121.58 117.61 112.30 106.47	0.4892 0.4884 0.4882 0.4883 0.4887 0.4900 0.4900 0.4900 0.4900	1.9990 1.9290 1.8910 1.8650 1.8590 1.9550 2.0650 2.2540 2.4400	1.0000 0.9559 0.9274 0.9172 0.9123 0.9210 0.9210 0.9541 1.0433 1.1146	
Sqrt S X10	111/N 10+12	112/N 112	122/N 10 +1 2	F12	ଢ଼ୀ 2	
0.0000	7.8974	0.0000	8.2462	0.0000	0.0000	
1.0000	7.7130	0.2550	8.0672	0.0626	0.0323	
2.2361	7.5679	0.4910	7.9100	0.1194	0.0635	
3.1623	7.4590	0.5831	7.7885	0.1422	0.0765	
4.4721	7.3650	0.7049	7.6730	0.1715	0.0938	
7.0711	7.4168	1.0185	7.6780	0.2379	0.1350	
10.0000	7.3985	1.2091	7.6511	0.2770	0.1607	
14.1421	7.2537	1.3437	7.4949	0.3084	0.1822	
17.3205	7.1612	1.5581	7.3899	0.3528	0.2142	
Sqrt S x10	NR 11 10-11	-NR 12 12-11	NR 22 10 -11	ର୍ 10	G50 .	
0.0000	1.2662	0.0000	1.2127	0.7147	0.6994	
1.0000	1.2979	0.0410	1.2409	0.7039	0.6872	
2.2361	1.3267	0.0823	1.2693	0.6928	0.6757	
3.1623	1.3486	0.1010	1.2915	0.6880	0.6709	
4.4721	1.3698	0.1259	1.3148	0.6814	0.6648	
7.0711	1.3733	0.1822	1.3266	0.6651	0.6502	
10.0000	1.3875	0.2193	1.3416	0.6553	0.6403	
14.1421	1.4260	0.2557	1.3801	0.6470	0.6318	
17.3205	1.4635	0.3086	1.4183	0.6344	0.6192	
Sqrt S	-R10	-R20	-COR10	-COR20	R00∕N	
x10	10-9	10-9	20-11	10 -11	∞-7	
0.0000	2.2881	2.1913	1.2662	1.2127	8.0943	
1.0000	2.271 9	2.1689	1.2569	1.1999	8.0273	
2.2361	2.2535	2.1496	1.2444	1.1870	7.9737	
3.1623	2.2645	2.1610	1.2476	1.1905	8.0329	
4.4721	2.2685	2.1683	1.2440	1.1890	8.0910	
7.0711	2.2032	2.1168	1.1911	1.1444	7.9909	
10.0000	2.2146	2.1278	1.1682	1.1224	8.2320	
14.1421	2.3368	2.2451	1.1703	1.1244	9.1488	
17.3205	2.4384	2.3428	1.1550	1.1297	10.0939	

Table-A22

Sodium Iodide

С	m	Eqv Cond	t+	1) (v) 105	1 +nKd lnGa ma	/a m
0,0000 0,0100 0,0500 0,1000 0,2000 0,5000 1,0000	0.000000 0.010033 0.050231 0.100633 0.201973 0.510501 1.041080	126.94 119.24 112.79 108.78 104.98 98.83 92.53	0,3947 0,3852 0,3850 0,3837 0,3827 0,3823 0,3823 0,3840	1.6160 1.5700 1.5270 1.5200 1.5320 1.5300 1.6620	1.0000 0.9565 0.9320 0.9288 0.9390 0.9890 1.0787	
Sqrt S X10	1 11 ∕N ∞+12	112/N 112/N	122/N 10+1 2	F 1 2	Q12	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	5.3836 5.2408 5.1004 5.0211 4.9423 4.7778 4.5732	0.0000 0.2693 0.4366 0.5383 0.6273 0.7146 0.7571	8.2548 8.1043 7.8866 7.7385 7.5874 7.2659 6.8783	0.0000 0.0813 0.1321 0.1631 0.1906 0.2218 0.2436	0.0000 0.0413 0.0688 0.0864 0.1024 0.1213 0.1350	
Sqrt S ×10	NR 1 1 10-1 1	-NR12 10-11	NR22 10-11	ରୀ ୦	Q20	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	1.8575 1.9114 1.9700 2.0066 2.0448 2.1242 2.2272	0.0000 0.0635 0.1091 0.1396 0.1691 0.2089 0.2451	1.2114 1.2360 1.2740 1.3019 1.3320 1.3968 1.4807	0.7780 0.7691 0.7622 0.7573 0.7525 0.7525 0.7460 0.7404	0.6283 0.6068 0.5933 0.5853 0.5780 0.5706 0.5661	
Sqrt S ×10	-R10 10-9	-R20 10-9	-COR10 10-11	-C⊞20 10-11	ROD/N 10 -7	
0.0000 1.0000 2.2361 3.1623 4.4721 7.0711 10.0000	3.3565 3.3399 3.3679 3.3 ⁸⁴ 7 3.4125 3.5229 3.7174	2.1890 2.1192 2.1084 2.1073 2.1156 2.1850 2.3174	1.8575 1.8479 1.8609 1.8670 1.8758 1.9153 1.9821	1.2114 1.1725 1.1650 1.1624 1.1629 1.1879 1.2356	10.0208 9.8671 9.9111 9.9564 10.0572 10.4987 11.3183	

្ឋ	T	ΤN	i d	ì	K	Ľ	11	١A.	<u>112</u>

:

3

С	m	Eqv Cond	ţ, +	D (v) 25 1	4roid InCara/dia
0,0000 0,0010 0,0500 0,1000 0,2000 0,5000 1,0000 1,5000	0.000000 0.010032 0.010032 0.050221 0.100582 0.201770 0.500079 1.034629 1.578291	133.32 130.49 124.23 115.16 105.05 101.73 89.48 77.92 70.05	0.4643 0.4644 0.4648 0.4673 0.4684 0.4684 0.4769 0.4769 0.4886 0.5092	1.7680 1.7380 1.6880 1.6230 1.5880 1.5730 1.5730 1.4230 1.2690 1.1320	1.0000 0.9917 0.5475 0.0995 0.8677 0.8223 0.7267 0.6160 0.5352
Sqrt S X10	111/N 1712	112/N BH2	122/N 122/N	F12	<u>ତ୍</u> ୟ ସ
0:0000 0:3162 1:0000 2:2361 3:1623 4:4721 7:0711 10:0000 12:2474	6:6530 6:5936 6:4999 6:3444 6:2611 6:2741 6:1355 6:1532 6:1171	0:0000 0.0351 0.2524 0.5647 0.7752 1.1368 1.5524 2:0643 2.3538	7.6753 7.5914 7.4338 7.1533 7.0013 6.9253 6.5795 6.3440 6.1140	0,0000 0,0238 0.0719 0,1550 0,2160 0,2946 0,3530 0,3530 0,4558 0,5558	0.0009 0.0120 0.0372 0.0838 0.1171 0.1725 0.2443 0.3849
Sart S X10	NR 1 1 19-1 1	-NR 12 12-11	NR22 10-71	ହୀ ଓ	Q20
0.0000 0:3162 1.0000 2.2361 3.1623 4:4721 7:0711 10.0000 12.2474	1.5031 1.5168 1.5430 1.5873 1.6194 1.6427 1.6427 1.6427 1.8243 1.8243 1.9191	0:0000 0:0536 0:1253 0:1793 0:2695 0:2695 0:4090 0:5936 0:7388	1,3029 1,3175 1,3471 1,4073 1,4481 1,4882 1,6164 1,7694 1,9200	0,7319 0,7277 0,7187 0,7005 0,6876 0,6655 0,6555 0,6322 0,5874 0,5544	0.6814 0.6771 0.6681 0.6525 0.6406 0.6205 0.5969 0.5698 0.5547
Sqrt S X10	-R10 19-9	-R20 P-a	-ССР10 19-11	-CCR20 p-11	R00/N 2 -7
0.0000 0.3162 1.0000 2.2361 3.1623 4.4721 7.0711 10:0000 12.2474	2.7157 2.7100 2.6917 2.6455 2.6455 2.6054 2.4955 2.4292 2.2939 2.2372	2.3540 2.3498 2.3376 2.3207 2.2991 2.2147 2.2146 2.1916 2.2390	1.5031 1.4998 1.4894 1.4620 1.4401 1.3731 1.3244 1.2307 1.1803	1.3029 1.3005 1.2934 1.2825 1.2689 1.2186 1.2186 1.2074 1.1758 1.1812	9.1595 9.1423 9.0894 8.9860 8.2941 8.5605 8.5177 8.3605 8.4847

:

С	m	Eqv Card	t; -1·	D (v) 15	i statid Incana/din
2.0000 2.5000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000	2.141649 2.726504 3.334111 4.626310 6.035367 7.560735 9.287352 11.185621 13.314200	64,07 55:20 48.57 43.22 38.72 34:26 31.25 28.07	0.5116 0.5223 0.5327 0.5563 0.5663 0.5032 0.5032 0.6059 0.6222	1.0130 0.5130 0.7100 0.6270 0.5540 0.5160 0.4870 0.4650	0.2754 0.2724 0.3724 0.3171 0.2070 0.2715 0.2655 0.2721 0.2895
Sgrt S XIO	11 î /N 11 î /N	115/N	155/N	1 15	Q12
14.1421 15.8114 17.3205 20.0000 22.3607 24.4949 26.4575 28.2843 30.0000	6:0901 6:1119 6:1780 6:1018 5:0953 5:5896 5:2150 4:8423 4:4070	2.5697 2.7871 3.0199 3.2260 3.2666 3.1772 3.0323 2.8087 2.5312	5:9305 5:0230 5:7903 5:5666 5:2798 4:9234 4:9234 4:5291 4:1314 3:6702	0.5991 0.6370 0.6717 0.7143 0.7413 0.7583 0.7735 0.7780 0.7613	0.4276 0.4670 0.5049 0.5535 0.5855 0.6057 0.6239 0.6280 0.6294
Sart S X10	10 []	-Nii 1 2 12-1 1	NH22 1011	030	Q20
14.1421 15.0114 17.3205 20.0000 22.3607 24.4549 26.4575 28.2843 30.0000	2.0094 2.0925 2.1725 2.3628 2.5811 2.8255 3.1399 3.4097 3.7576	0.8707 1.0007 1.1330 1.3693 1.5970 1.8234 2.1022 2.3181 2.5915	2.0635 2.1944 2.3180 2.5900 2.8821 3.2078 3.2078 3.6153 3.9954 4.5119	0.5261 0.4992 0.4728 0.4344 0.4067 0.3859 0.3667 0.3552 0.3424	0.5438 0.5330 0.5218 0.5097 0.5025 0.5004 0.4983 0.5044 0.5146
Sqrt S X10	-R10 10-9	-720 10-9	-C [] î 0 1 - î î	-C [] 20 10- 1 1	ROO/N 2 -7
14.1421 15.6114 17.3205 20.0000 22.3607 24.4949 26.4575 28.2843 30.0000	2.1967 2.1451 2.0811 2.0700 2.1402 2.2809 2.4803 2.7499 3.1077	2.3010 2.3453 2.3724 2.5434 2.7945 3.1511 3.6168 4.2278 5.1181	1.1387 1.0394 0.935 0.9842 1.0021 1.0377 1.0916 1.1661	1.1920 1.1937 1.1849 1.2207 1.2851 1.3844 1.5132 1.6783 1.9204	8.6765 8.2223 8.9165 9.6124 10.7306 12.3639 14.5730 17.5776 21.9222

Amnonium Chloride

.

с	m	Eqv Cond	t+	D(v) 105	1 +mxd lnGama/dm
0,0000	0,000000	149.90	0.4907	1,99/40	1,0000
0,1000	0,100660	128.80	0.4907	1,8380	0,9053
0,2000	0,200246	123.80	0.4911	1,8360	0,8934
Sqrt S X10	111/N 10+12	112/N 10+12	122/N 20+1 2	F 1 2	ର୍ 1 2
0.0000	7.8986	0.0000	8.1980	0.0000	0.0000
3.1623	7.4261	0.6381	7.6834	0.1558	0.0845
4.4721	7.3520	0.8223	7.5887	0.1984	0.1101
Sqrt S X10	NR 11 10 -11	-NR12 10-11	NR22 10 11	ରୀ	<mark>ର</mark> 20
0.0000	1.2660	0.0000	1.2198	0.7137	0.7005
3.1623	1.3563	0.1126	1.3109	0.6334	0.6697
4.4721	1.3769	0.1492	1.3339	0.6736	0.6604
Sqrt S	-R10	-R20	-C OR1 0	-C (R20	ROO/N
X10	10-9	10-9	10-11	10-11	10 ~7
0.0000	2.2877	2.2042	1.2660	1.2198	8.1169
3.1623	2.2552	2.1728	1.2436	1.1982	8.0298
4.4721	2.2144	2.1369	1.2277	1.1847	7.8485

+

Phosphoric Acid

С	m	Eqv Cond	セキ	D(v) 105	1 +mxd lnGama	/d m
0.0000 0.0100 0.1000 0.5000 1.0000 2.0000 3.0000 4.0000 5.0000	0.000000 0.009998 0.100725 0.513347 1.051857 2.213614 3.506721 4.957244 6.599789	383.86 223.00 104.05 64.71 60.15 58.31 54.07 48.95 43.52	0.8950 0.9010 0.9100 0.9100 0.9160 0.9240 0.9280 0.9300 0.9320	1.9200 1.1650 0.9440 0.8530 0.8300 0.8300 0.8130 0.8030 0.7970 0.7830	1.0000 0.8383 0.6823 0.4825 0.4831 0.6461 0.8174 0.9654 1.0916	
Sqrt S ×10	111/N 10+12	112/N 112/N	122/N 10+12	F 1 2	Q 1 2	
$\begin{array}{c} 0.0000\\ 1.0000\\ 3.1623\\ 7.0711\\ 10.0000\\ 14.1421\\ 17.3205\\ 20.0000\\ 22.3607 \end{array}$	36.8966 22.0869 12.0448 9.3212 8.8504 7.3850 6.9826 6.2123 5.5069	0.0000 0.5076 1.8755 2.9968 2.9329 2.0984 1.5935 1.3230 1.1506	4.3273 2.8787 2.8813 3.6223 3.4756 2.5743 2.0117 1.6910 1.4685	0.0000 0.1920 0.6720 0.8404 0.8551 0.8267 0.8042 0.7945 0.7953	0.0000 0.0637 0.3184 0.5157 0.5288 0.4657 0.4252 0.4082 0.4046	
Sart S X10	NR 1 1 10 - 1 1	-NR12 10-11	NR 22 10 -1 1	ର୍1	ର୍2୦	
0.0000 1.0000 3.1623 7.0711 10.0000 14.1421 17.3205 20.0000 22.3607	0.2710 0.4546 0.9239 1.4616 1.5685 1.6195 1.7482 1.9315 2.1714	0.0000 0.0802 0.6014 1.2092 1.3236 1.3201 1.3848 1.5112 1.7014	2.3109 3.4880 3.8621 3.7611 3.9942 4.9605 6.0630 7.0960 8.1430	0.3240 0.2856 0.1772 0.1247 0.1145 0.1185 0.1223 0.1234 0.1213	0.9461 0.9382 0.8765 0.7858 0.7826 0.8235 0.8463 0.8555 0.8586	
Sqrt S ×10	-R10 10-9	-R20 10-9	-COR10 10-11	-COR20 10-11	R OO/N 10 - 7	
0.0000 1.0000 3.1623 7.0711 10.0000 14.1421 17.3205 20.0000 22.3607	0.4897 0.6744 0.5852 0.4668 0.4641 0.5970 0.7651 0.9335 1.1176	4.1752 6.1379 5.9169 4.7200 5.0605 7.2553 9.3613 12.4637 15.3175	0.2710 0.3744 0.3225 0.2524 0.2449 0.2994 0.2994 0.3634 0.4204 0.4700	2.3109 3.4078 3.2608 2.5519 2.6706 3.6405 4.6832 5.5843 6.4416	8.4282 12.2696 11.7984 9.5934 10.4686 15.6638 22.3781 29.9332 39.0810	

Phosphoric Acid ---- continued -----

С	m	Eqv Cond	t+	D (v) 105	1 +nxd lnGama/dm
6,0000	8,479367	38.07	0,9360	0,7590	1.2048
7,0000	10,657479	32.79	0,9420	0,7250	1.3167
8,0000	13,240649	27.78	0,9500	0,6800	1.4437
10,0000	19,976029	18.89	0,9740	0,6260	1.8793
12,0000	30,310685	11.81	1,0140	0,3830	3.1599
Sqrt S X10	111/N 111/N	112/N w+12	122/N p+1 2	F12	Q12
24.4949	4.8529	1.0258	1.2875	0.8072	0.4104
26.4575	4.2357	0.9182	1.1225	0.8268	0.4211
28.2843	3.6428	0.8084	0.9575	0.8508	0.4328
31.6228	2.5966	0.6205	0.6733	0.9235	0.4693
34.6410	1.5487	0.2625	0.2447	1.0737	0.4264
Sqrt S X10	NR 1 1 6-1 1	-NR 1 2 19-1 1	NR 22 10- 1 1	ତୀ ଓ	Q20
24.4949	2.4780	1.9743	9.3402	0.1141	0.8592
26.4575	2.8698	2.3476	10.8292	0.1027	0.8589
28.2843	3.3780	2.8517	12.8509	0.0883	0.8598
31.6228	4.9391	4.5521	19.0484	0.0451	0.861 0
34.6410	7.8919	8.4646	49.9397	-0.0319	0.9177
Sqrt S	-R10	-R20	-C CR10	-CCR20	ROO/N
X10	10-9	10 - 9	10-11	10-11	7-0
24.4949	1.2823	18.7530	0.5036	7.3659	51.0083
26.4575	1.4337	23.2848	0.5222	8.4815	67.8609
28.2843	1.5692	29.8140	0.5263	9.9992	93.5729
31.6228	1.3926	52.1674	0.3870	14.4962	192.7451
34.6410	-2.6057	188.7279	-0.5726	41.4751	846.9288

~

Table-A26

Sodium Sulfate

С	m	Eqv Cond	七十	D(v)105	1+mxdlnGama/dm
0,0000	0,000000	129.90	0,3860	1.2300	1.0000
0,0030	0,003009	116.01	0,3856	1.1470	0.9093
0,0050	0,0050 1 5	112.44	0,3848	1.1230	0.8902
Sqrt S X 1 0	111/N 10+12	112/N 10+12	155/N 155/N	F12	ଭୀ 2
0.0000	5.3867	0.0000	2.1419	0.0000	0.0000
0.9487	5.2451	0.2203	2.0240	0.2598	0.0676
1.2247	5.1809	0.2670	1.9908	0.3148	0.0831
Sqrt S ×10	NR 1 1 10 1 1	-NR12 10-11	NR22 19 -11	ର 1 ୦	Q20 '
0.0000	1.8564	0.0000	4.6687	0.7836	0.62 1 3
0.9487	1.9153	0.2085	4.9635	0.7622	0.5943
1.2247	1.9436	0.2607	5.0580	0.7576	0.5875
Sqrt S	R 1 0	-R20	-COR10	-COR20	ROO∕N
X 1 0	10 - 9	10-9	10-11	10-11	10 -7
0.0000	3.3545	4.2182	1.8564	2•3344	9.8728
0.9487	3.2724	4.1075	1.8111	2•2732	9.6239
1.2247	3.2764	4.0987	1.8133	2•2683	9.6231

166

z

Potassium Sulfate

.

с	IU	Eqv Cond	t+	D(v)195	1+m×dlnGama/dm
0.0000	0.000000	153.53	0.4788	1.5290	1.0000
0.0100	0.010033	127.50	0.4848	1.3300	0.8596
0.0250	0.025100	117.75	0.4870	1.2820	0.8008
0.0500	0.050233	109.25	0.4890	1.2280	0.7711
0.1000	0.100653	101.15	0.4910	1.1840	0.7256
0.2500	0.253140	89.60	0.4909	1.0850	0.6769
Sqrt S ×10	111/N 13+12	112/N 19+12	122/N 19 +1 2	F 1 2	Q12
0.0000	7.8923	0.0000	2.1479	0.0000	0.0000
1.7321	7.3796	0.3705	1.9490	0.3561	0.0977
2.7386	7.3049	0.5730	1.9084	0.5324	0.1535
3.8730	7.0888	0.6755	1.8367	0.6309	0.1872
5.4772	7.0075	0.8367	1.8008	0.7627	0.2356
8.6603	6.6299	0.9530	1.7013	0.8842	0.2837
Sqrt S ×10	NR 1 1 20-11	-NR12 10-11	NR22 10-11	ର୍1 ୦	ର୍2୦
0.0000	1.2671	0.0000	4.6558	0.7219	0.6919
1.7321	1.3681	0.2601	5.1803	0.6828	0.6604
2.7386	1.4020	0.4210	5.3663	0.6603	0.6408
3.8730	1.4619	0.5377	5.6422	0.6458	0.6291
5.4772	1.5109	0.7020	5.8794	0.6251	0.6113
8.6603	1.6404	0.9189	6.3927	0.6054	0.5914
Sqrt S	-R10	-R20	-COR10	-COR20	ROO/N
×10	10-9	19=9	10-11	10-11	10 -7
0.0000 1.7321 2.7386 3.8730 5.4772 8.6603	2.2896 2.2378 2.1551 2.1593 2.1031 2.1031 2.1542	4.2065 4.2115 4.0917 4.1328 4.0575 4.1544	1.2671 1.2381 1.1915 1.1931 1.1598 1.1810	2.3279 2.3301 2.2622 2.2834 2.2377 2.2775	7•9378 7.8507 7.5982 7.6481 7.4921 7.7186

ı

Sulfuric Acid

С	m	Eqv Cond	t +	D (v) 105	1 +mxd lnGam	a/dm
0.0000 0.0500 0.1000 0.5000 1.0000 2.0000 3.0000 4.0000 5.0000	0.000000 0.050215 0.100605 0.510320 1.040330 2.169020 3.405330 4.772200 6.304220	429.80 290.00 255.00 214.00 199.80 166.00 132.80 102.80 78.40	0.8138 0.8190 0.8190 0.8170 0.8070 0.8070 0.7910 0.7700 0.7490 0.7220	2.6000 1.8540 1.8280 1.8180 1.9680 2.2640 2.5900 2.7980 2.8980	1.0000 0.6566 0.6400 0.7049 0.8254 1.1691 1.5930 1.9432 2.5168	
Sqrt S x10	111/N 111/2	112/N 1172	122/N 1212	F 1 2	Q12	
0.0000	37.5636	0.0000	2.1482	0.0000	0.0000	
3.8730	28.5267	1.5090	2.1638	0.7905	0.1921	
5.4772	26.0521	1.8109	2.1447	0.9430	0.2423	
12.2474	22.2778	1.7500	1.9265	1.0092	0.2671	
17.3205	20.3874	1.5351	1.8029	0.9576	0.2532	
24.4949	16.3632	1.1304	1.4957	0.8682	0.2284	
30.0000	12.8291	0.9234	1.2818	0.8447	0.2277	
34.6410	10.0664	0.8984	1.1420	0.9280	0.2650	
38.7298	7.4861	0.7034	0.9369	0.9085	0.2656	
Sqrt S X10	NR 1 1 10-1 1	-NR12 10-11	NR 22 ม -1 ใ	ର୍1 ଓ	ର୍ 20	
0.0000	0.2662	0.0000	4.6550	0.4315	0.9021	
3.8730	0.3640	0.2538	4.7984	0.3434	0.8558	
5.4772	0.4078	0.3443	4.9533	0.3234	0.8397	
12.2474	0.4834	0.4391	5.5896	0.3160	0.8298	
17.3205	0.5241	0.4462	5.9264	0.3329	0.8279	
24.4949	0.6448	0.4870	7.0489	0.3607	0.8257	
30.0000	0.8221	0.5922	8.2282	0.3836	0.8119	
34.641 0	1.0684	0.8405	9.4176	0.3902	0.7844	
38.7298	1.4372	1.0790	11.4836	0.4167	0.7657	
Sqrt S	-R10	-R20	-C CR1 0	-CCR20	R 00∕N	
×10	2-9	2-9	10-11	10-11	∞-7	
0.0000	0.4811	4.2058	0.2662	2.3275	4.6692	
3.8730	0.4289	3.8815	0.2371	2.1454	4.2873	
5.4772	0.4270	3.8646	0.2356	2.1323	4.2761	
12.2474	0.4851	4.3314	0.2638	2.3557	4.8740	
17.3205	0.5641	4.7172	0.3010	2.5170	5.4775	
24.4949	0.7840	5.9345	0.4013	3.0375	7.3290	
30.0000	1.0756	7.2019	0.5260	3.5219	9.5631	
34.6410	1.3931	8.3140	0.6482	3.8683	11.9287	
38.7298	2.0390	10.5913	0.8977	4.6629	16.6601	

Copper Sulfate

С	m	Eqv Cond	t+	D(v)15	1+m×dlnGama./dm
0.0000 0.0010 0.0500 0.1000 0.2000 0.3500 0.5000	0.000000 0.001003 0.010028 0.050138 0.100275 0.200566 0.351120 0.501925	133.60 108.30 72.25 50.58 43.60 38.20 32.20 29.00	0.4030 0.3990 0.3905 0.3740 0.3602 0.3390 0.3110 0.3040	0.8540 0.7860 0.6810 0.5920 0.5630 0.5340 0.5050 0.4820	1.0000 0.8060 0.6260 0.5150 0.4680 0.4420 0.4340 0.4340
Sqrt S X 1 0	111/N 19+12	112/N 19+12	122/N 19 +1 2	F12	Q12
0.0000 0.6325 2.0000 4.4721 6.3246 8.9443 11.8322 14.1421	1.4439 1.4465 1.3930 1.3493 1.3652 1.3363 1.2572 1.1920	0.0000 0.2862 0.6354 0.8414 0.9435 0.9886 0.9883 0.9553	2.1398 2.0338 1.8178 1.6915 1.6925 1.6666 1.5840 1.4973	0.0000 1.1640 2.3167 2.9030 3.1105 3.2455 3.3685 3.4116	0.0000 0.1669 0.3993 0.5569 0.6207 0.6625 0.7003 0.7151
Sqrt S ×10	NR 11 13-11	-NR12 10-11	NR22 1011	ର୍ 1 ୦	Q20
0.0000 0.6325 2.0000 4.4721 6.3246 8.9443 11.8322 14.1421	6.9257 7.1115 8.5408 10.7435 11.9160 13.3355 15.6115 17.1674	0.0000 1.0008 2.9855 5.3438 6.6426 7.9106 9.7404 10.9536	4.6733 5.0576 6.5447 8.5698 9.6115 10.6928 12.3905 13.6677	0.7727 0.7186 0.6296 0.5609 0.5321 0.5185 0.5090 0.5019	0.6347 0.5657 0.4608 0.3752 0.3336 0.2970 0.2579 0.2457
Sqrt S ×10	-R 1 0 10-9	-R20 10-9	-COR10	-COR20 19-11	ROO/N 10-7
0.0000 0.6325 2.0000 4.4721 6.3246 8.9443 11.8322	6.2574 5.5207 5.0179 4.8771 4.7630 4.9003 5.3054 5.6186	4.2223 3.6652 3.2149 2.9138 2.6815 2.5131 2.3947 2.4541	3.4629 3.0554 2.7776 2.6998 2.6367 2.7124 2.9356 3.1069	2.3367 2.0284 1.7796 1.6130 1.4844 1.3911 1.3251 1.3570	9.4685 8.2990 7.4365 7.0371 6.7241 6.6965 6.9580 7.2995
Zinc Sulfate

С	m	Eqv Cond	七十	D(v)105	1+mxdlnGama/dm
0.0000 0.0010 0.0020 0.0030 0.0050 0.0250 0.0500 0.1000 0.2500	0.000000 0.001003 0.002006 0.003009 0.005015 0.025070 0.050135 0.100260 0.250665	1 32.82 1 08.00 98.75 92.76 84.91 60.75 52.50 45.00 36.30	0.3892 0.3865 0.3853 0.3844 0.3830 0.3751 0.3692 0.3610 0.3500	0.8486 0.7480 0.7330 0.7240 0.7050 0.6870 0.6870 0.6640 0.6310 0.5740	1.0000 0.8236 0.7801 0.7487 0.7053 0.6009 0.5605 0.5138 0.4540
Sqrt S X 1 0	111/N 19+12	112/N 10+12	122/N 19 +1 2	F12	Q12
0.0000	1.3961	0.0000	2.1863	0.0000	0.0000
0.6325	1.3492	0.2284	2.0074	0.9973	0.1388
0.8944	1.3413	0.3197	1.9495	1.3493	0.1977
1.0954	1.3433	0.3859	1.9191	1.5827	0.2403
1.4142	1.3425	0.4694	1.8760	1.8623	0.2957
3.1623	1.3826	0.7707	1.7900	2.6736	0.4899
4.4721	1.3869	0.8665	1.7557	2.9009	0.5553
6.3246	1.3961	0.9599	1.7320	3.0999	0.6173
10.0000	1.3945	1.0534	1.6869	3.3044	0.6868
Sqrt S ×10	NR 1 1 10 1 1	-NR12 19-11	NR22 10 -11	ର୍ 1 ୦	Q 20
0.0000	7.1630	0.0000	4.5739	0.7812	0.6243
0.6325	7.5576	0.8598	5.0793	0.7374	0.5666
0.8944	7.7588	1.2722	5.3381	0.7169	0.5417
1.0954	7.9008	1.5887	5.5301	0.7013	0.5234
1.4142	8.1625	2.0422	5.8413	0.6802	0.4991
3.1623	9.5173	4.0978	7.3509	0.5965	0.4074
4.4721	10.4244	5.1448	8.2349	0.5652	0.3722
6.3246	11.5730	6.4139	9.3285	0.5337	0.3358
10.0000	13.5734	8.4758	11.2206	0.4941	0.2926
Sqrt S	-R10	-R20	-COR10	-COR20	ROO/N
×10	19-9	19-9	10-11	10-11	10 - 7
0.0000	6.4718	4.1325	3.5815	2.2869	9.5810
0.6325	6.0512	3.8122	3.3489	2.1098	8.9111
0.8944	5.8597	3.6729	3.2433	2.0329	8.6114
1.0954	5.7021	3.5606	3.1560	1.9707	8.3675
1.4142	5.5289	3.4320	3.0602	1.8996	8.0949
3.1623	4.8953	2.9384	2.7098	1.6265	7.0760
4.4721	4.7685	2.7909	2.6398	1.5451	6.8275
6.3246	4.6591	2.6321	2.5795	1.4573	6.5847
10.0000	4.6038	2.4790	2.5488	1.3724	6.3963

Cadmium Sulfate

С	m	Eqv Cond	t+	D(v)105	1+m×dlnGama/dm
0.0000 0.0010 0.0050 0.0100 0.0500 0.1000 0.2000 0.2500 0.5000	0.000000 0.001003 0.005015 0.010030 0.050164 0.100386 0.201025 0.251445 0.504750	118.01 105.50 81.90 70.30 48.75 41.70 34.62 33.70 27.00	0.3984 0.3840 0.3840 0.3840 0.3840 0.3840 0.3690 0.3280 0.3280 0.2950	0.8630 0.8080 0.7500 0.7140 0.6000 0.5600 0.5100 0.4920 0.4320	1.0000 0.7896 0.6880 0.6338 0.5461 0.4889 0.4445 0.4367 0.4207
Sqrt S ×10	111/N 10+12	112/N 10+12	122/N 10+12	F12	Q12
0.0000	1.3733	0.0000	2.0172	0.0000	0.0000
0.6325	1.4497	0.3620	2.1069	1.4030	0.2071
1.4142	1.4237	0.5793	1.9339	2.1075	0.3491
2.0000	1.4145	0.6897	1.8524	2.4281	0.4261
4.4721	1.3011	0.7985	1.6048	2.8823	0.5526
6.3246	1.3077	0.8945	1.6010	3.0973	0.6182
8.9443	1.2634	0.9492	1.5645	3.2810	0.6751
10.0000	1.2336	0.9368	1.5449	3.2979	0.6786
14.1421	1.0987	0.8849	1.3960	3.4177	0.7145
Sqrt S x10	NR 1 1 10 1 1	-NR12 10-11	NR22	Q10	ର୍2୦
0.0000	7.2817	0.0000	4.9575	0.7713	0.6364
0.6325	7.2069	1.2382	4.9590	0.7143	0.5368
1.4142	7.9988	2.3959	5.8887	0.6569	0.4772
2.0000	8.6376	3.2159	6.5956	0.6218	0.4436
4.4721	11.0641	5.5050	8.9704	0.5563	0.3852
6.3246	12.3780	6.9158	10.1100	0.5277	0.3414
8.9443	14.5451	8.8242	11.7451	0.5103	0.2899
10.0000	15.0258	9.1117	11.9983	0.5143	0.2809
14.1421	18.5932	11.7857	14.6342	0.5081	0.2396
Sqrt S	-R10	-R20	- COR 10	-COR20	ROO/N
X10	10-9	10-9	10-11	10-11	10-7
0.0000	6.5790	4.4791	3.6409	2.4787	9•9910
0.6325	5.3925	3.3615	2.9844	1.8604	7•9088
1.4142	5.0620	3.1555	2.3014	1.7464	7•4241
2.0000	4.8983	3.0535	2.7109	1.6899	7•1840
4.4721	5.0238	3.1317	2.7796	1.7327	7•3702
6.3246	4.9391	2.8883	2.7311	1.5971	7•0777
8.9443	5.1795	2.6445	2.8605	1.4605	7•0836
10.0000	5.3580	2.6152	2.9571	1.4433	7•2233
14.1421	6.1900	2.5902	3.40 <u>3</u> 7	1.4242	7•9839

.

CADMIUM IODIDE

С	m	Eqv Cond	たナ	D(v) 105	1 +mkd lnGama/dn	1
0.0000	0.000000	129.80	0,4083	0.9130	1.0000	
0.0050	0.005015	66.54	0,4504	0.8760	0.6500	
0.0100	0.010032	63.00	0,4477	0.8720	0.5800	
0.0250	0.025104	55.06	0,4148	0.8640	0.4950	
0.0500	0.050250	47.53	0,3208	0.8500	0.4350	
Sqrt S x10	1 11/ N 111/N	112/N 112/N	122/N 5412	F12	Q 1 2	
0.0000	1.1949	0.0000	7.3362	0.0000	0.0000	
1.2247	1.2686	0.9278	5.7832	1.0239	0.3425	
1.7321	1.3499	1.1852	6.1074	1.1725	0.4128	
2.7386	1.4279	1.6294	6.7194	1.3884	0.5260	
3.8730	1.4451	2.0715	7.6101	1.5767	0.6246	
Sqrt S X10	NR 1 1 10-1 1	-NR12 10-11	NR 22 10 -11	ଜୀ ଠ	Q20	
0.0000	8.3691	0.0000	1.3631	0.7781	0.6281	
1.2247	8.9307	1.4327	1.9590	0.6110	0.5345	
1.7321	8.9293	1.7328	1.9736	0.5813	0.5012	
2.7386	9.6823	2.3479	2.0576	0.5490	0.4221	
3.8730	11.3471	3.0887	2.1548	0.5563	0.3015	
Sqrt S	-R 1 0	-R20	-COR10	-COR20	ROO/N	
X10	9-מ	10-9	xo-11	11	۳ - ۵	
0.0000	7.5615	2.4631	4.1845	1.3631	11.2826	
1.2247	5.4797	2.2453	3.0326	1.2426	9.0077	
1.7321	4.9371	2.0010	2.7318	1.1072	8.0778	
2.7386	4.5102	1.5985	2.4932	0.8836	6.9711	
3.8730	4.6799	1.1052	2.5848	0.6104	6.2375	

.

Appendix 2

For analysis of the experimental data and where repeated calculations were involved we wrote a few computer programmes in Algol language and manipulated them on the computer KDF9. A brief description of these programmes is given below.

The programme 1 analysed the conductance data for the solution of the Fuces implicit equation in $c^{3/2}$ while the programme 2 solved the data for the dissociation constant, K_a , and the ion size parameter, a_0 , using the Fuces explicit equation. The programme 2 was kindly applied to us by Professor R.K.Fuces. Originally it was in Fortran language that we translated it into Algol.

The programme 3 was designed to analyse data obtained from salt diffusion experiments. It calculated concentrations of the solutions from measured specific conductances by the conductometric method of analysis and then the cell constant and the integral diffusion coefficient.

For the conversion of integral into differential diffusion coefficients we needed a programme for the solution of simultaneous equations. This was applied to us by Nr. $P \in$ Moran of the department of Astronomy of this university. In this programme the simultaneous equations were solved by the method of determinants.

The programme 5, used for curve fitting by the method of least squares, belonged to Dr. M. Gibson of the computing department of this university and was available in the computing library. It was particularily used for fitting 4th or 5th degree equations between molality and activity coefficients. The coefficients of the fits, thus obtained were

used in differentiations of the equations to obtain the activity term, $(1+mdln\sqrt{/dm})$. This is described in the programme 6.

The calculations of the L-coefficients from the experimental transport data and their subsequent matrix inversion for obtaining the R-coefficients are described in the programme 7.

Each of the programme starts with a <u>comment</u> heading which gives a brief discription of calculations and is followed by intructions for and a specimen of the data input. pp2552000MPU+10300S2JPSP+ content This program calculates function horita y-Alabaqie C UF 1112 Fuess impirical conductance equation in C to the power 3/2 and then fits straight line between y and sart C gama is the degree of dissociation in this program; real alfa, beta, ca, cb, sya, syb, 1, g, sx, sy, SXY, SX2, SY2, M, X, Z, MG, XA, ZA, dd, S, C; integer f, n, i; open(20); open(70); Copytext(20, 70, (;)); f:=format([-nddd.dddc]); alfa:=read(20); beta:=read(20); ea:=read(20); eb:=read(20); again: corytext (20, 70, [:]); i:=read(20); g:=read(20); n:=road(20); sya:=1.0; sr:=sr2:=0.0; begin array c, rc, fc, yc, gama, d, dc,y[i:n]; Ior i:= sten 1 vatil n do berin
c[1]:=read(20); c[1]:=read(20); gama[1]:= read(20); c[1]:=c[i]×gama[i]; a[1]:=d[1]/gama[1]; re[1]:=sgrt(c[1]); fc[1]:= c[1]X1n(c[1])X0.4342; sx:=sx + rc[i];sz2:= sz2 + rc[1]f2;end; m:= nXsz2~sx↑2; repeat: me:= sya; dd:=1; s:=alfaxdd+beta; e:=eaxdd- eb; sy:=sxy:=sy2:=0.0; for 1:=1 sten 1 uncll n do begin y[1]:=(d[1]-do+sxrc[1] -exrc[1])/c[1]; sy := sy + y[1]; $sxy := sxy + rc[i] \times y[i];$ sy2 := sy2 + y[1]t2 end; x:=(n×sxy-sxxsy)/m; z:=(sx2xsy-sxxsxy)/m; sy := 0.0; for i :=? step i until n do begin yc[1]:= xxrc[1]+z; de[i]:=dd-s×rc[i] +e×fc[i]+ yc[i]×c[i]; end; for i = 1step 1untiln do sy:=sy+(a[1]-de[1]/12; sya:= sqrt(sy/(n-2)); if sya<me then begin xa:=x; za:=z; l:=l+g; goto repeat end else begin writetext([0,[[c]LMBDAO[7s]=*]); write(70, f, 1-g); writetext(70,[SLOPE[8s]=*]); write(70,f,xa); writotext(70,[INTERCEPT[45]=*]); write(70, f, Za); writetext(70,[MEAN-ERROR-IN-LAMBDA[4s]=*]); write(70,f, me); writetext(70,[MEAN*ERROR*IN*INTERCEPT*=*]); for 1:=1step 1 until n do sy:= sy+(y[1]-xa>cc[1]-23) 12; syb:=sqrt(sy/(n-2)); write(70,f, syb); end; n:=read(20); if n=1 then goto again; end: close(20); close(70);lld-≯

Instructions for data input for progress DD25520 [ce] Name [cc]; alfa; beta; oa; eb; (theoretical parameters) [cc] Heading[cc]: (approximate equiv. conductivity) 1; (increment in equiv. conductivity) g; (no. of increments in g) k; (no. of sets of C and equiv. cond.) n; C; equiv. cond.; gama; (n actual sets of C -) equiv. cond. and gama) (where games is the degree of dissociation) 1; (1; for repeating calculations on 0:~> or another set; in this case goto [cc]Heading[c]: or $0; \rightarrow$ for finish)

Specimen input instructions

S*JALOTA[cc]; 0.2297; 60.62; 0.531; 20.525;

[2c]conductance*data*for*RbCl[cc] Impirical*fit*[cc]:

153.99; .01; 12; 20;

<pre>•00800; 1 •01000; •01000; •01000; •01500; •01500; •01700; 1 •01897; 1 •02000; 1 •02000; 1 •05000; 1 •05000; 1 •05500; 1 •05500; 1 •07000; 1 •07000; 1 •08280; 1 •09000; 1 •10000; 1 •000; 1</pre>	45.912; 44.977; 43.955; 43.300; 42.766; 42.766; 42.234; 41.975; 39.770; 38.108; 36.750; 36.750; 35.092; 34.592; 34.592; 34.592; 34.146; 32.872; 32.130; 32.140;	مية من
--	--	--

Programa 2

comment Fuces program for solving Fuces explicit equation and calculating dissociablen constant, Es, and the ich size parameter; ao, from the input data of concentration and equivalent conductivity:

Specimen data input

Instructions for data input

M

(means program is on magnetic tape) DD0101200KF4+1030662-PSU> (binary program and job number)

[5c]s * jalota[cc] rbc 1*datalcc J;

(name and heading)

12;

78.54; .008903; 298.16; 154.0:

6;

ø	;00800	145.912;	
	.01000	; 145.068;	
¢	01031;	144.977;	
ø	01300;	143.955;	
ø	01500;	143.300;	
0	01700;	142.766;	
0	01 897;	142.234;	
e	02000;	141.975;	
ø	030005	139 770;	
•	040005	138,108;	
•	05000	136.750;	
-	05500:	136.189:	0:-

(no. of sets of c and equiv. cond.) (dielectric constant for selvent) (coefficient of viscisity of solvent) (absolute temperature) (approximite value of limiting equiv. cond.) (approximate value of ionsise parameter)

(12 sets of c and equiv. cond.)

 $(0; \rightarrow for finish)$

S sectored to dt_{c}

DD255DF00MFU-FI 0300622FST->

berin communis program calculates communitiens for a diffusion run by the conductorstric withod of analysis. calibrates the cell for cell constant with a standard salt and then calculates integral diffusion cost licient for an unlingen selt: integer lon, 1, f, jor, 6; real V, k, t, C1, C2, C3, C4, C, d1, dra, dra, ora, ora, e1, wrx, wy, wb, wg, m; open(20); open(70); convtext (20,70, [j]); := formit ([-redd.dddcdde]); again: n := read(20); r := read(20);hegin array a, bli:n], p,q[1:3];for 1:=1 step 1 within do Lamia:= Lamua+ bli]xdoi(1-1); II red then UC := k-lamia Glac CC := k/lamia; if r=6 then hegin if abs ((exp(st) exp(CC))/(xp(CC)) >0.0003 then core rop end also besin $\underline{\text{if}}$ abs ((st-Cc)/CC) > 0.0003 then get o rep end; ends real presedure d(c); value c; real c; barin 11 c(.01 then $d := 1.9834 - 10.4035 \times c + 970.602 \times c + 2-39220.0 \times c + 3;$ If c>.01 and c<.1 then d:= 1.9590 - 2.4101xc + 27.3377xc +2 -118.482%613: If c > .1 and c < .5 then $d := 1.90175 - 0.36375 = + 0.825 \times c + 2$ - 0.625%c13; if c > .5 and c < 3.9 then $d := 1.84273 + 0.000360167 \times c + 0.0185942$ xc+2 -0.0021745 xc+3; ond d; $\underbrace{for i:= 1 \text{ stop } 1 \text{ until } n \text{ do}}_{for i:= 1 \text{ stop } 1 \text{ until } n \text{ do}} a[i] := read(20);$ s := read(20); if s=15 then bacinwb:=read(20); fcr j:= 1 step 1 until 3 do p[j]:=read(20);

for j = 1 step 1 until 3 do ql j] = read (20); end;

repart: convert(20, 70, [:]); v:=rcad(20); s:= read(20); 10 s=15 then herin wx:=read(20); wy :- read (20) end; kp read (20); if k=0.0 then C2:=0.0 else C2:=C(k); s = read (20); if s=15 then borin wx:=read (20); wy:=read (20) end; k:= read (20); 03:=0 (k); s: read(20); if soit then bogin wx:=read(20); wy:=read(20) end; k:= read(20); C4:= C(k); t:=read(20); 1:=read(20); C1:= C3+ (C4-C2):::; cna := (01403)/2; cmb = (02404)/2; Writetext(70, [cns *=]); Write(70, f, cns); Writetext(70, [cns *=]); Write(70, f, cns); Writetext(70, [c1 *=]); Write(70, f, cns); Writetext(70, [c2 *=]); Write(70, f, c2); Writetext(70, [c3 *=]); Write(70, f, c3); Writetext(70, [c4 *=]); Write(70, f, c3); Writetext(70, [c1 -c2 *= *]); Write(70, f, c1 -c2); Writetext(70, [c1 -c2 *= *]); Write(70, f, c1 -c2); Writetext(70, [c3 -c4 *= *]); Write(70, f, c1 -c2); Writetext(70, [c3 -c4 *= *]); Write(70, f, c1 -c2); ci:=(C1-C2)/(C3-C4); writetext(70, [c1-C2/C3-C4 *=*]); write (70, f, ci);writetext (70, lbstaxdo =]); write (70, f, $\ln(ci) \times n5/t$); if l=7 then berin c:= cma; dma:= d(c); writetext(70, [dma*=*]); write(70, f, dma); c:=cmb; dmb:= d(c); writetext(70, [dmb*=*]); write (70, f, dmb); di := $(c \operatorname{maxd} \operatorname{maxd} \operatorname{maxd} \operatorname{mb}) / (c \operatorname{maxd} \operatorname{mb}); \operatorname{writetext} (70, [doi *=*]);$ write (70, f, d1); writetext (70, [beta *=*]); write (70, f, $\ln(c1) \times \frac{105}{(t \times d1)}$); end; 1:= read (20); If 1-1 then got o repeat else if 1-2 then got o again end; close (20); close (70); end \rightarrow

Instructions for data input for programme 3.

Name[cc];

(number of the coefficients of the eqn fitted between a) concentration as a function of specific conductivity and b) equiv. conductivity as a function
(r=6 if natural logpithms are used in
the above equations) (n coefficients of equilativees conc-
(n cofficients of equiberround equiv.
conductivity and concentration) (s=0 if the solutions are not diluted otherwise s=15. If s=15 then also purch was v[i] and o[i])
(molecular weight of the sale) (coefficients of equ between m/c and c) (coefficients of equ between c/m and m)
(name of the salt)
volume parameter for the cell given by $(v2+v3/2)/(v1+v3/2)$) (s=15 if solution 2 is diluted otherwise s=0. If s=15 then also punch wx and wy) (weight of the concentrated solution) (weight of the dilute solution 2) (specific conductivity of solution 2)
(for solution 3) (specific conductivity of solution 3)
(for solution 4) (specific conductivity of solution 4)
<pre>(time in seconds for a diffusion run) (l=7 for cell calibration with KCl otherwise l=0) (l=1 if calculations are to be done for anothe diffusion run but with the same salt, in this case goto [c] Heading[c]: l= 2 if calculations are to be done for another electrolyte, in this case goto n;</pre>

Specimen data input for programme 3.

S*Jalota[2c]; 4: 6; -4.95916; -+1.02152; +0.0074681; -0.00024766; +4.71746; -0.0699613; -0.00301695; +0.00025442; 0; [cc]run21 *****.5/H2O****ke1**ce11**40kar[cc]: 1.1381; 0; 33.977; 0; 20.558; 0,0; 1.692 5; 7; 2; 4; 6; -4.9851; +1.0227; +6.8654 1.-3; -1.5673 1.-4; 4.7413; -7.085610-2; -3.305710-3; +2.157610-4; 15; 120.92; 1.0031; 0.0324; 0.00262; 0.9970; -0.0331; 0.0004; [cc]run*22****4/.65** **rubsdium*chloride[cc]: 1.1381; 15; 11,687; 107.521; 10.850; 15; 8.505; 106.798; 20.613; 15; 8.661; 107.777; 16.477; 1.623615; 0; 1; [cccc]run*23**4/1.0**rubedium*chloride*cel1*40*mm[c]: 1.1381; 15; 8.781; 108.444; 9.5054; 15; 12.493; 104.597; 29.931; 15; 10.144; 97.134; 21.390; 1.62 u5; 0; 0; →

Frogressae 4

compart This is a program for the solution of Linear equations by the method of determinants;

(program available from Dr. H.S. Dunsmore)

Instructions for data input

m; n; n; 1; 519-11;	(number of sets to be calculated) (numbers for n:n determinant) (punch as such) (punch as such)
n11; n22;; si;	(n): are the coefficients of the first row and si is the constant of the first row)
n21; n22;; s2;	(as above but for the 2nd row)
ng) 613 407	•
ಕಡಾ ೧೫೦ ಕಲ್	
ಯಾ ಕ್ರಿರಿ ಪರ್	
n(nn) - s(n)	(for the nth row) (punch arrow for ending the program otherwise gets n; n;)

Specimon input data

2; 4; 4; 1; 0.21191; 0.70356; 1.13930; 1.44511;	5»-11; 0.04795; 0.50586; 1.30589; 2.11003;	0.01138; 0.37097; 1.50563; 3.11139;	0,00280; 0,27690; 1,74582; 4,63104;	-0.1326; -0.1731; -0.0586; +0.0372;
4; 4; 1; 0.21191; 0.70356; 0.93384; 1.44511;	5m-11; 0.04795; 0.50585; 0.89200; 2.11003;	0.01138; 0.37097; 0.85985; 3.11139;	0.00280; 0.27690; 0.86347; 4.63104;	-0.1326; -0.1781; -0.1224; +0.0372;→

Programme 5

commant H. Cilsons program for curve fitting by the method of least squares;

Speciron input data М DD062L1 00KF4+1 030062JFSU> 39; 5; ficted) 2; 12; -1 ; (12 sets of x and y) 0.07071; 1.9950; 0.10000; 1.9730; 0.2236; 1.9107; 1. 87903 0.3162; 0.4472; 1.8563; 1.0000; 1.9450; 1.2247; 2.0230; 1.4142; 2.1000; 1.5811; 2.1730; 1.6432; 2,2010; 1.6941; 2.2260; 1.7321; 2,2450: ۋ آ (leave as rush) ۇ () (leave as such) 5; 5; 1;

1;0;

0; 0; 0;

[cc]S*JALOTA[cc]sqrt*CONCN* Vs * DIFFERENTIAL DIFF * CCEFFT*FCB*RbC1*5th*DECREE *FIT[cc];

19;-1; 0.1;.770; 0.2; .718; 0.3 : .688; 0.4; .666; Instructions for data input

(program is on ragnotic tape) (program and job number) (a no. mean or than double the no. of data sets of x and y) (degree of the equation to be (no. of equilibriums to be fitted) (no. of date sets of x and y) (reads x and y in pairs)

(two num ous as the degree of equation) (if I then ogn is fitted between x and y but if 4 then eqn is fitted between $\ln x$ and $\ln y$) (leave as $\varepsilon = h$)

(leave as such)

(name and coading, put \rightarrow after ; if no more eqn is to be fitted otherwise noto no. of data sets of x and y)

•

(data for litting second eqn)

Procrawane 6 DD25500001PD46650062EFSF De Cim This propar calculates 1 Hillin gama/dH e ontenti from 5th or later derres fit between In Mand In Jama; real DY, D, M, C,x, D.E. F: interer 1.9 129 2 or on (70); open(20); again: [corycont (20,70,[:]); B:mread (20); C:mead (20) (D:mread (20) : E:mread (20); F:=read (29); fred ernet (Lass -d.ddded o-ndd); writetent (70, Le4s] MALL LATT (Cs] DIFFLCCATC[e]]); n:=read (20); fcc 1:=1 step (until n do berdn mercoad (20); z:=In(h); BY == 1.0+83+2x0xx +3x0xx 12+4x3xx13+5x6xx14; write (70, f_{sn}); write (70, f_{sDX}); new line (70, f_{sn}); end; n=read (20); if n = 1 then not o atain; close (20); close (70); ond * Instructions for data input [cc] Narm and heading [cc]: D; C; D; E; F; (2nd, 3rd, 4th and 5th and 6th coefficients of the 5th degree equation. If the degree is lover then put zeros for the last coefficients) (no. of sets to be calculated) n; (n number of molalities, m, at which m; 1+Miln gara/dMI is to be calculated) 1; (1 for repeating the calculations, Œ 0;-> in this case goto [cc] Name and heading $[cc]: 0; \rightarrow is$ for finish) Specimen data input S-JALOTA[cc]hellec]: -1.01247 w-F; Y.05577 w-2; 4.64480 w-3; 3.64775 w-4; 0.0; 5; .0502; .1006; .2017; .5088; .7166; 1; [cc]rbcl[cc]: -1.17226 m-1; 9.30193 m-3; 4.80871 m-3; 3.77023 m-4; 0.0;

-1.1 [228 m-1; 9:301 90 m-3; 4:000 [1 m-3; 3:1[023 m-4; 0]]
6;
.10064; .20195; .25287; .30395; .5101; .71895;
0;→

135 0.5; .649; 0.6; .637; 0.7; .626; 0.8; .618; 0.9; .610; 1.0; .604; 1.2; .593; 1.6; .500; 1.8; .576; 2.0; .573; 2.5; .569; 3.0; .569; 3.0; .577; 1; 0; 5; 5; 4; 1; 0; 0; 0; 0; [cc]molality*vs*activity*coefficient*for*kpl[cc];*

DD2552A00NPU+1030062JPSP>

bergin comment This progress reads n sets of concn, Molally/density, equalont conductivity, transport numbers, diffusion coefficients and activity term and it then calculates Onsagor L and R coefficients and three degrees of coupling and outputs the results in tabular form: integer r, r, r, r, z, z, z, z, f, md, i, DV; real R. F. T. M. q; open(20);DV:=pead(20); open(DV); f:=format([-nddd.dddd]); copytext(20, DV, [;;]); repeat: R:mPead(20); P:mread(20); T:mread(20); copytext(20, DV, [:]); again: M:=read(20); r1:=read(20); r2:=read(20);z1:=read(20);z2:=read(20); r:=ri+r2; z := read(20); n := read(20); nd := read(20);begin array c. d. m. ti, lda, D. 111, 122, 112, R11, R22, R12, R10, R20, R00, F12, x, y, act [i:n]; for 1:= 1 step 1 until n do begin ti[i]:=read(20);D[i]:=read(20); act[i]:=read(20) end; a:=1018xToCIXrxr1xz1; $\frac{for i := 1 \text{ step 1 with n do begin}}{x[1]:=D[1]/(qkact[1]); y[1]:=1da[1]/(1000xFt2); }$ if md = 3 then m[i] := d[i] clse m[i]:=c[i]/(d[i]-0.001xc[i]xn); $111[1]:=y[1]\times c1[1]+2/z1+2+r1+2\times [1];$ if c[i]=0.0 then 112[i]:=0.0 else 112[1]:=y[1]Xtr[1]X(1-tr[1])/(21X22) + riXr2Xx[1]; $122[1]:=y[1]\times(1-ti[1])+2/z^2+r^2+r^2+x[1];$ x[i]:=111[1]x122[1]-112[1]+2; N1[1]:=122[1]/x[1]; $F[2[1]:=-R[2[1]\times [1];$ R12[i]:=-112[i]/x[i];R22[1]:=111[1]/x[1];R10[1]:=-(rTXaT1[1]+r2xa12[1])xx[1]; $R20[1] := (r1 \times R12[1] + r2 \times R22[1]) \times [1];$ $ROU[1]:=-(r1 \times R10[1]+r2 \times R20[1]) \times [1]$ test(0);end; writetext(DV, [[11s]c[8s]m[7s]Eqv*Cond[6s]t+[5s]D(v)15[s] 17mXa15Della/dm[2c]]); for i:=1 step 1 until n do begin space(DV, 5);
write(DV, f, c[1]); write(DV, format([ndd.ddddddd]), m[1]); write(DV, format([-ssnddd.dd]), ida[i]); write(DV, f, ti[1]);
write(DV, f, D[1]); write (DV, f, act[i]); newline (DV, 1); end;

writetext(DV, [[2e9s]Sart*S[4s]111/N[5s]112/N [5s]1227N[6a]212[7s]012[e10sT X10[7s]s+12[6s]s+12[6s]s+12[2c]]);

for 1 := 1 stop 1 untill n do begin space(DV, 5);
write(DV, f, 10%sqrt(z x c[1] x (z1 - z2)/2));
write(DV, f, 111[1] x z12); write(DV, f, 112[i]%512); write(DV, f, 122[i]%512); write(DV, f, 122[i]%512); write(DV, f, F12[i]); write(DV, f, 112[i]/ sqrt(111[i]%122[i])); newline(DV, 1); end; writetext(DV, [[2e9s]Sqrt*S[4s]NR11[6s]-NR12[5s] NR22[7s] Q10[7s]Q20[c10s]×10[63]p-11[7s]:-11 [5s]:-11[20]]; for 1 := 1 step 1 until n do begin space(DV,5); write(DV, f, 10× sqrt(z × c[i] × (z1-z2)/2));
write(DV, f, R11[i]×p-11);
write(DV, f, -R12[i]×p-11);
write(DV, f, R22[1]×p-11);
write(DV, f, -R10[i]/sqrt(R11[1]×R00[i]));
write(DV, f, -R10[1]/sqrt(R11[1]×R00[1])); write(DV, f, -R20[1]/sqrt(R22[1]xR00[1])); newline(DV, 1); end; writetext(DV, [[2c9s]Sqrt*S[4s]-R10[6s] $-R20[6_{3}]-COR10[4_{3}]-COR20[4_{3}]KO/N[c10_{3}]$ $\times 10[75]_{10}-9[75]_{10}-9[65]_{10}-11[65]_{10}-7[20]]$; for i = 1 step 1 until n do begin space(DV,5); write(DV, f, 10x sqrt($z \times c[1] \times (z_1 - z_2)/2$)); write(DV, f, -m-9xR10[1]); write(DV, f, -m-9xR20[1] write(DV, f, -m-11 xR10[1]/(zx x[1])); write(DV, f, -m-11 x R20[1]/(zxx[1])); write(DV, f, $ROO[1] \times 7$); newline(DV, 1); end end; n:=rcad(20);If n = i then goto again else if n=2 then goto repeat; n:=rcad(20);close(20); close(DV); end→

Specimen Data Input for Programme 7

70; S*Jalc 8.314; [p6c 53 T20.52	cto[4c]:; ; 53453;] Rubidiur 2; f; i;	298,15; n* Chlordd +1; -1;	lo[2c]: ; 1; 10;	u d	• ••••
0.00; 0.10; 0.25;	0,00000; 0,10064; 0,25287;	154.16; 132.11; 125.45;	0.5045; 0.5032; 0.5019;	2.051; 1.879; 1.854;	1_0000; 0.8923; 0.8790;
0.50; 0.70; 1.00; 1.50; 2:00; 2:50; 3.00;	0.51010; 0.71895; 1.03834; 1.53640; 2.15640; 2.75040; 3.37130;	120.36; 117.77; 115.23; 115:05; 109.34; 106:67; 103.97;	0.5002; 0.4992; 0.4978; 0.4950; 0.4955; 0.4915; 0.4919;	1.870; 1.898; 1.944; 2.024; 2.100; 2.173; 2.245;	0.8764; 0.8795; 0.3805; 0.9104; 0.9381; 0.9700; 1.0050;
[p62 % T20. 52 0.00; 0.10; 0.25;	<pre>lrubidium* j l; l; l; 4 0.0000; 0.10064; 0.25287;</pre>	ahloride[; -1; 1; 154.16; 132.11; 125.45;	2e]: 9; 3; 0.5045; 0.5032; 0.5019;	2.051; 1.879; 1.854;	1;0000; 0,8323; 0,8790;
0.50; 1.00; 1.50; 2.00; 3.00;	0.51010; 0.71895; 1.03834; 1.58640; 2.15640; 3.37130;	120.36; 117.77; 115.23; 112.06; 109.34; 103.97;	0,5002; 0.4992; 0.4978; 0.4960; 0.4945; 0.4919;	1.870; 1.898; 1.944; 2.024; 2.100; 2.245;	0.8764; 0.8796; 0.8885; 0.9104; 0.9381; 1.0050;
Uĵ→	۰ ۰	 			

References for Chapters 1-6

1. F.W.Kohlrausch, Ann. Phys., 1879, 6, 1. 2. S. Anheniøus, a) Z. Phys. Chem., 1887, <u>1</u>, 631; b) Phil. Mag., 1888, 26, 81. 3. J.H.Van't Hoff, Z. Physik, Chem., 1887, 1, 481. 4. P. Debye and E. Hückel, Physik Z., 1923, 24, 305. 5. L. Onsager, a) Phys. Rev., 1931, <u>37</u>, 405; b) Phys. Rev., 1931, <u>38</u>, 2265. 6a. R.M.Fuoss and K.L.Hsia, Proc. Nat. Acad. Sci., U.S., 1967, 57, 1550. b. Y.C.Chiu and R.M.Fuoss, J. Phys. Chem., 1968, 72, 4123. c. K.L.Hsia and R.M.Fuoss, J. Amer. Chem. Soc., (1968), 90, 3055. d. R.M.Fuoss, Rev. Pure and Appl.Chem., (1968), 18, 125. e. I.D.MeKenzie and R.M. Fuoss, J. Phys. Chem., (1969), 73, 1951. 7a. E. Pitts, Proc. Roy. Soc., A, 1953, 217, 43. b. E. Pitts, B.E. Tabor and J. Daly, Trans. Faraday Soc., 1969, 65, 849. 8. W. Thomson (Lord Kelvin), a) Proc. Roy. Soc. Edinburgh, 1854, 3, 225; b) Trans. Roy. Soc. Edinburgh, 1857, 21, 123. 9. J. Meixner, a) Ann. Physik, 1941, <u>39</u>, 333; b) 1942, <u>41</u>, 409; c) 1943, 43, 244. 10. H.B.G. Casimir, Rev. Mod. Phys., 1945, 17, 343. 11. I. Prigogine. Etude Thermodynamique des Phenomenes Irreversibles, Dunod, Paris and Desoer, Liege, 1947. 12. S. R. De-Groot and P. Mazur, Non-Equilibrium Thermodynamics, North Holland, Amasterdam, 1962. 13. D.D.Fitts, Non-Equilibrium Thermodynamics, McGraw-Hills, New York, 1962. 14. R. Haase, Thermodynamik dey Irreversiblem Prozesse, DietrichSteinkopff, Darmstadt, W.Germany, 1963.

- 15. I. Prigogine, Introduction to Irreversible Thermodynamics, 3rd Ed., Interscience, New York, 1967.
- 16. D.G. Miller, a) J. Phys. Chem., 1966, 70, 2639;

b) J. Phys. Chem., 1967, <u>71</u>, 616;

c) J. Phys. Chem., 1967, <u>71</u>, 3588.

- 17. J. Newman, 'Transport Processes in Electrolyte Solutions', in 'Advances in Electrochemistry and Electrochemical Engineering; Editor, C.W. Tobias, Interscience Publishers, London, 1967, 5, P. 87-135.
- 18. R. Paterson, 'Irreversible Thermodynamics as Applied to Biological Systems; chapter 5, in 'Memb@rane Metabolism and Ion Transport; Editor, E.E. Bitter, Johnwiley and Sons, N. Y., 1970, P. 128.
- 19. A. Katchalsky and P. Curran, 'Non Equilibrium Thermodynamics in Biophysics; Harvard Univ. Press, Cambridge, 1965, a) P.66; b) P.80.
- 20. Ref. 12, P.43-45.
- 21. G.J.Hooyman, Physica, 1956, 22, 751.
- 22. J.G.Kirkwood, R.L.Baldwin, P.J. Dunlop, L.J. Gosting and
 G. Kegeles, J.Chem. Phys., 1960, <u>33</u>, a)1505; b) 37.
- 23. L. A. Woolf, D. G. Miller and L. J. GMosting, J. Amer. Chem. Soc., 1962, <u>84</u>, 317.
- 24. K. Micka, Berichte der Bunsengesellschaft, 1968, 72, Nr 1, 60.
- 25. Ref. 16a, P.2652.
- 26. Appendix 1 of Ref. 16a.
- 27. D.R.Hafemann, J.Phys. Chem., 1965, 69, 4226.
- 28. D.G.Miller, Chem. Rev., 1960, 60, 15.

29. M.J. Pikal and D.G. Miller, J. Phys. Chem., 1970, 74, 1337.

30. Appendix 2 of reference 16a.

31. A. L. Geddes and R.B. Pontius, 'Determination of Diffusivity' in 'Techniques of Organic Chemistry', Ed. A. Weissberger, Physical Methods of Organic Analysis, Intescience Pub. Co., N. Y., 1960, 3rd Edition, <u>1</u>(2), P. 396-1004.

191

32. J.R.Vinograd and J.W McBain, J. Amer. Chem. Soc., 1941, 63, 2008. 33. Emanuel and Olander, J. Chem.Engg. Data, 1963,8, 31. 34.W.G Eversole et al., J. Phys. Chem., a) 1937, 41, 663; b) 1942, 46, 370. 35. Y.P. Gokhshtein, Zhur. Fiz. Khim., a) 1954, 28, 1417; ъ) 1952, 26, 224. 36. F.T. Wall and K. Wendt, J. Phys. Chem., 1958, 62, 1581. 37.C.W. Garland and S. Tong, J. Phys. Chem., 1965, 69, 1781. 38. J. H. Northrop and M. L. Anson, J. Gen. Physiol., 1929, 12, 543. 39. H.Mouquin and W.H.Cathcart, J.Amer.Chem. Soc., 1935, 57, 1791. 40. J.W.MacBain and C.R.Dawson, Proc. Roy.Soc., 1935,1484,32. 41. G.S.Hartley and D.F.Runnicles, Proc.Roy.Soc., 1938,168A,401. 42. A.R.Gordon, Ann.N.Y.Acad. Sci., 1945, 46, 285. 43. K.J.Mysels and J.W. McBain, J.Coll.Sci., 1948, 3, 45. 44. R.H.Stokes, J.Amer. Chem.Soc., a) 1950, 72, 763; b) 1951, 73, 3527. 45. R.A.Robinson and R.H.Stokes, 'Electrolyte Solutions', Butterworths Sci. Publications, London, 1959, P.253. 46. C.Barnes, Physics, 1934, 5, 4. 47. H.S. Yeh and G.B. Wills, J.Chem. Engg.Data, 1970, 15, 187. 48. S.A. Sanni and H.P. Hutchison, J.Sci.Inst.(J.Physics E), 1968, 1, Ser. 3, 1101. 49. G.J. Janz et al., J. Phys. Chem., 1966, 70, 536. 50. H.S. Harned et al., J.Amer. Chem. Soc., 1954, 76, 4219. 51. R. Francesconi, Ing. Chem. Ital., 1970, 6, 72. 52. H.S.Harned and H. Blander, J.Amer. Chem. Soc., 1953, 75, 2853. 53. G. Jones and G.M. Bollinger, J.Amer.Chem.Soc., 1931, 53(1), 411. 54. T. Shedlovsky, 'Conductivity' in Ref. 31, 1(4), P.3011. 55. R.L. Kay et al., J.Phys.Chem., 1965, <u>69</u>, 2420;1967,71,3925. 56. K.J. Mysels, J.Phys. Chem., 1961, 65, 1081. 57. E. King, J. Sci.Instrum., 1969, 2, 59. 58. J. Quint, C. R. Acad.Sci., 1969, C, 268, 2153.

- 59. J. Barthel, Angew Chem. Int. Ed. Engl., 1968, 7(4), 260.
 60. R.M. Fuoss and L. Onsager, J.Phys. Chem., 1957, <u>61</u>, 668.
 61. H.M. Daggett, J. Bair and C.A. Kraus, J.Amer.Chem.Soc., 1951, <u>73</u>, 799.
 62. R.H.Stokes, J. Phys. Chem., 1961, 65, 1242.
- 63. Ref. 45, P. 87.
- 64. G. Jones and D.M. Bradshaw, J.Amer.Chem.Soc., 1933, 55, 1780.
- 65. A. Vogel, 'A Text Book of Quantitative Analysis; Longman, 3rd Edition, 1961, P.154.
- 66. J.F.Chambers, J.M.Stokes and R.H.Stokes, J.Phys.Chem., 1956, 60, 985.
- 67. H. S. Harned and B. B. Owen, 'The Physical Chemistry of Electrolyte Solutions', 3rd Edn., Reinhold Publishing Corp., N. Y., 1958, P.725.
- 68. A. R. GordongJ. Chem. Phys., 1937, 5, 522.
- 69. T.B. Hoover, J. Phys. Chem., 1970, <u>74</u>(13), 2667.
- 70. C. G. Swan and D.F.Evans, J.Amer.Chem.Soc., 1966,88, 383.
- 71. J.C.Justice, J. Chim. Phys., 1968, <u>65</u>, 353.
- 72. J.C.Justice, J. Chim. Phys., 1969, 66, 1193.
- 73. R. Fernandez-Prini, Trans. Faraday Soc., 1969, 65, 3311.
- 74. Private Communication with Prof. R.M.Fuoss, 1969.
- 75. R.M. Fuoss and L. Onsager, Proc.Nat.Acad.Sci.,U.S., 1967; <u>57</u>, 1550.
- 76. C.W. Davies, Trans. Faraday Soc., 1927, 23, 351.
- 77. E.A. Guggenheim, Trans. Faraday Soc., 1969, <u>65</u>,2474.
- 78. C.W. Davies, 'Ion Association', Butterworths(London), 1962, P.40-41.
- 79. J. Tamas, O. Kaposi and P. Scheiber, Magyer Kem Folyoirat, 1966, <u>72</u>, 362.
- 80. G. Jones and M. Dole, J. Amer. Chem. Soc., 1929,<u>51</u>, 1073.

- 81. P.A.Lyons and J.F.Riley, J. Amer.Chem.Soc., 1954, 76, 5216. 82. Ref. 45, P.495.
- 83. K.S.Spiegler, Trans. Faraday Soc., 1958, 54, 1409.

84. O. Kedem and A. Katchalsky, J. Gen. Physiol., 1961, 45, 143.

- 85. R.W.Gurney, 'Ionic Processes in Solutions', McGrew-Hill, N.York, 1953.
- 86. O. Ya Samoilov, 'The Structure of Aqueous Solutions of Electrolytes and of Hydrated Ions. IZD-VO AN SSSR, MOSKOW, 1957.
- 87. J. Lee Kavanau, 'Water and Solute-Water Interactions', Holden-Day, Inc., London, 1964.

88. Ref. 16a, P.2650.

89a.O. Kedem and S.R.Kaplan, Trans.Faraday Soc., 1965,61,1997;

b.S.R. Caplan, J. Theoret. Biol., 1966, <u>10</u>, 209.

90. Ref. 16a, P.2652.

- 91. A.S.Sulovkin, Zhurnal Strukturnoi Khimii, 1968,9(2),305.
- 92. G.Jones and M.Dole, J.Amer.Chem.Soc., 1929, 51, 2950.
- 93. Ref. 78, P.36-37.

94. Ref. 16a, eqn(38).

95. R. Paterson, J. Anderson and I. Hamilton, B.Sc. Thesis, The University, Glasgow W.2., 1970.

References for Appendix 1

1. A. Eucken, Ed. Landolt-Bornstein, 'Zahlenwerte Und Funktionen aus Physik, Chimie, Astronomie', Geophysik Und Technik, 6th Ed., 2(7), Berlin: Springer-Verlag, 1960. 2. Steel, J. Phys. Chem., 1965, 69, 3208. 3. Vitagliano and Caramazza, Gaz. Chim. Ital., 1960, 90, 1730. 4. Caramazza, Gaz. Chim. Ital., 1960, 90, 1721. 5. Timmermans, 'The Physico-Chemical Constants of Binary Systems in Concentrated Solutions', N. Y., Int. Sci., Pub., Inc., 1960. 6. D.G. Miller, J.Phys. Chem., 1966, 70(8), 2639. 7. Firth and Tyrrell, J. Chem. Soc., A, 1962, 2042. 8. Kaminsky, Z. Physik. Chem., N.F., 1957, 12, 206. 9. Benson and Gordon, J. Phys. Chem., 1945, 13, 473. 10. Suryanarayana et al., Acta Chim.Acad.Sci.Hung.,1958,17,327. 11. Chambers, J. Phys. Chem., 1958, 62, 1136. 12. Marsh and Stokes, Aus. J. Chem., 1964, 17, 740. 13. Darken et al., J.Amer.Chem.Soc., 1942, 64, 621. 14. Kaimakov and Varshavskaya, Russ. J. Phys. Chem., 1966, 2, 89-105. 15. R. Parsons, 'Hand Book of Electrochemical Constants, Butterworths, London, 1959. 16. Haase et al., Z. Physik, Chem., N.F., 1965, 46, 129. 17. Chapman, Ph.D. Thesis, University of California, UCRL-17768, 1967. 17a.Fary, Ph.D Thesis, Institute of Paper Chemistry, 1966 (this reference is collected from ref. 17). 18. Prue and Covington, J.Chem. Soc., A, 1957, 1567. 19. Haase et al., Z. Phys. Chem., N.F., 1964, <u>42</u>, 32. 20. Campbell et al., Can. J.Chem., 1959, <u>37</u>, 1288. 21. Campbell et al., Can. J. Res., 1950, 28B, 161. 22. Wishaw and Stokes, J.Amer. Chem. Soc., 1954, 76, 2065.

References for Appendix 1 continued.....

23. MacInnes and Cowperthwaite, Trans. Faraday Soc., 1927, 23, 400. 24. Milios and Newman, University of California, UCRL-18105,1968. 25. Jones and Talley, J.Amer. Chem. Soc., 1933, 55, 624. 26. Shedlovsky, J.Amer. Chem. Soc., 1932, 54, 1411. 27. Longsworth, J.Amer. Chem. Soc., 1935, 57, 1185. 28. Sukhotin et al., Electrokhimiya, 1969, 5, 114. 29. Harned and Hudsen, J.Amer, Chem. Soc., 1951, 73, 652. 30. Gokhshtein, Z.Fiz. Khim, 1952, 26, 224. 31. Dunsmore, Jalota and Paterson, J.Chem.Soc., A, 1969, 1061. 32. Tamas, Kaposi and Scheiber, Hagyar Kem Folyoirat, 1966,72,362. 33. Harned and Owen, 'The Physical Chemistry of Electrolyte Solutions', 3rd Ed., Reinhold Pub. Corp., N.Y., 1958. 34. Jones and Bickford, J.Amer. Chem.Soc., 1934, 56, 602. 35. Benson and Gordon, J. Phys. Chem., 1945, 13,473. 36. Chamber, J. Phys. Chem., 1958, 62, 1136. 37. Longsworth, J.Amer. Chem. Soc., 1935, 57, 1185. 38. Internation Critical Tables, 1929, 6, P.310. 39. Lengyel, Tamas, Giber and Holderith, Mag. Kem Folyoirat, 1964, 70, 66. 40. Robinson and Stokes, 'Electrolyte Solutions', Butterworths, London, 1959. 41. Aston et al., J.Amer. Chem. Soc., 1933, 55, 3067. 42. Ray et al., J.Amer. Chem. Soc., 1958, 80, 1029. 43. Campbell and Friesen, Can. J. Chem., 1959, <u>37</u>, 1288. 44. Campbell and Singh, Can. J. Chem., 1959, 1959. 45. Harned, J.Amer Chem. Soc., 1951, 3292; 45a.Lakshminarayana, J.Phys. Chem., 1966, 536. 46. Firth et al., J. Chem. Soc., A, 1962, 2042. 47. Spiro et.al., Trans. Faraday Soc., 1952, 263. 48. Haase, Z. Phys. Chem., 1962, 375. 49. Longsworth, Chem. Rev., 1932, 171. 50. Haase et al., Z. Phys. Chem., 1964, 42, 32.

References for Appendix 1 continued.

51. Campbell and Singh, Can. J. Chem., 1959, 37, 1959. 52. Hall, Wishaw and Stokes, J.Amer. Chem. Soc., 1953, 75, 1556. 53. Mason and Culvern, J.Amer. Chem. Soc., 1949, 71, 2387. 54. Sahay, Ind. J. Chem., 1963, 1, 103. 55. Kerker et al., Trans. Faraday Soc., 1960, 56, 1039. 56. Kundra et al., Zh. Neorg. Khim., 1964, <u>9</u>, 2454. 57. Edward and Huffman, J. Phys. Chem., 1959, 63, 1830. 58. Elmore et al., J.Amer. Chem. Soc., 1946, 68, 2528. 59. Harned and Blake, J. Amer. Chem. Soc., 1951, 73, 2448. 60. MacInnes and Longsworth, 'Principles of Electrochemistry', Reinhold Publishing Corp., N.Y., 1939, P.339. 61. Longsworth, J.Amer. Chem. Soc., 1935, 57, 1185. 62. Vinograd and McBain, J. Amer. Chem. Soc., 1941, 63, 2008. 63. Jones and Colvin, J.Amer. Chem. Soc., 1940, <u>62</u>, 338. 64* Feddorff, Ann. Dechinie, Ser.11, 1941, 16, 154. 65. Jenkins and Honk, J.Amer. Chem. Soc., 1950, 72, 2695. 66. Indelli, Ricerca Sci., 1953, 23, 2258. 67. Crews, Proc. Phys. Soc. (London), 1934, 46, 764. 68. Hartley and Donaldson, Trans. Faraday Soc., 1937, 33, 457. 69. Mullin and Nienow, J.Chem. Engg. Data, 1964, 9, 526. 70. Hlasko and Salit, Bull. Int.Acad. Polonoise, A, 1935, 189. 71. Roughton, J. Applied Chem. (London), 1951, 1, Suppl. Issue No. 2, S 141. 72. Hamer, J. Amer. Chem. Soc., 1935, 57, 662. 73. Gordon et al., J.Chem. Phys., 1940, 423. 74. Savino and Vitagliano, Ric. Sci. Rend. Sez., A2, 1962, 341. 75* Fedoroff, Ann. Dechimie, 1941, Ser. 11, 16, 154. 76. Owen and Gurry, J.Amer.Chem.Soc., 1938, 60, 3074. 77. Fritz and Fuget, J. Phys. Chem., 1958, <u>62</u>, 303. 78. Eversole et al., J. Phys. Chem., 1942, <u>46</u>, 370. 79. Emannel et al., J. Chem. Engg. Data, 1963, 8, 31. 80. Purser and Stokes, J.Amer. Chem. Soc., 1951, 73, 5650. * These references are the same.

References for Aupendix 1 continued ...

81.* Demassieuse et al., Ann. De Chim., 1941, <u>16</u>, 215.
82. Dye et al., J.Amer, Chem. Soc., 1960, <u>82</u>, 315.
83. Walton, J.Amer. Chem. Soc., 1949, <u>71</u>, 576.
84. Lang et al., J.Amer. Chem. Soc., 1954, <u>76</u>, 4716.
85. Purser et al., J.Amer. Chem. Soc., 1951, <u>73</u>, 5650.
86. Wall and Wendt, J.Phys. Chem., 1958, <u>62</u>, 1581.
87. Bray, J.Amer. Chem. Soc., 1927, <u>49</u>, 2372.
88.* Demassieux et al., Ann. De Chim., 1941, Ser.11, <u>16</u>, 215.
89. Lang and King, J.Amer. Chem. Soc., 1954, <u>76</u>, 4716.
90. Longsworth, 'Structure of Electrolyte Solutions', Ed. Hamer, John Wiley and Sons, Inc., N.Y.? 1959, P. 183.
91. Sahay, J. Sci. Industr. Res., 1959, <u>18</u>B, 235.
92. Garland and Tong, J.Phys. Chem., 1965, <u>69</u>(5), 1718.
93. Rysselberghe et al., J.Amer. Chem. Soc., 1937, <u>59</u>, 336.

ويحاد وتصافيك المحجو الإصادي