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SUMMARY.

This thesis contains an account of molecular electronic 
structure calculations performed on the linear nitrile molecules 
CN , HCN and FCN. The effect on the CN residue of varying X in 
the XCN system was observed by analysing the migration of electro­
nic charge with the aid of population analyses and pictorial 
representations of the electron density distribution*

The calculations were performed as accurately as was feasible 
using the linear combination of atomic orbitals, molecular orbital, 
self-consistent field procedure# The only approximation made to 
this scheme was that the three-centre integrals were evaluated 
according to approximate formulae. All other integrals were 
evaluated accurately either by numerical integration or by 
analytical methods#

A minimal basis set was employed, each atomic orbital being 
a linear combination of Slater type orbitals of the 'double zeta' 
type, the orbital exponents of which had been optimally chosen 
in atomic calculations# These natural atomic orbitals were 
transformed to an orthogonalised basis set to simplify the 
mathematical analysis of the iterative procedure by which the 
energy minimisation was effected. In this work the iteration 
scheme, to provide a self-consistent wave function, was elaborated 
in terms of density matrix theory.



In chapter one, a brief account of the various quantum 
chemical techniques which have been used to study chemical systems, 
is given, together with an appraisal of the problems involved in 
such calculations. The standard and aims of the present work 
are also presented here.

Chapter two contains a fuller account of the theory upon which 
the present calculations are based. Particular attention is paid 
to the approximate methods by which the multicentre integrals are 
calculated. Two of these methods, based on an asymmetric 
partitioning of the overlap charge densities, have not been 
evaluated to any extent before#

Experimental information such as the internuclear separations, 
the double zeta functions and the various units and conversion 
factors employed in this work, is detailed in chapter three#

The results of the molecular electronic structure calculations 
performed are presented in chapter four. Population analyses, 
pictorial representations of the electron density distribution, 
together with a few molecular properties are presented for each 
of five internuclear separations of C-N in CN , of HKJ in HCN and 
of F-C in FCN. Where possible comparisons are made with 
calculations of other workers.

The predicted minimum energies for CN , HCN and FCN are 
respectively, -92#l8lif9 a.u. at an internuclear separation of 
2.31f8 a.u.; -92.7M*9*f a.u. at a C-H separation of 2.086 a.u.;
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and -191»6l8o a.u. at a C-F separation of 2.1f8 a.u. The 
calculated dipole moments, in Debye*s, for HCN and FCN are 
respectively 2.59 and 1*5^ and are to be compared with the 
experimental values of 3*00 and 2.1?.

An evaluation is made of the Mulliken and two variants of 
the I£wdin multicentre integral approximations with special 
reference to the validity of ab initio calculations performed 
with their aid in integral evaluation. It is shown that both 
LOwdin approximations give markedly improved results as compared 
with the Mulliken approximation, and even in the case of the 
twenty-two electron system of FCN the results are encouragingly 
close to those of the most accurate calculations. A comparison 
of some accurate three-centre one-electron integrals for HCN and 
FCN with the values resulting from the multicentre integral 
approximations, shows that the full LOwdin method is the best 
approximation in most cases and often yields values accurate to 
about three decimal places.

Contour diagrams of the probability charge density and its 
profile along the internuclear axis are presented for each of the 
five calculations on CN , HCN and FCN. The trends shown are 
compared with those arising from the population analyses of 
Mulliken, LOwdin and Doggett. The gross atom charge densities 
resulting from two of the population analyses, reproduce the 
molecular dipole moment when account is taken of any atomic



dipoles present. The results of these two different methods of 
analysing the electronic charge distribution are often at variance, 
but in general the overall trends are similar. Various contour 
diagrams of the charge density difference, for example, between 
the molecular and atomic densities or between two molecular 
species, are presented, and they clearly show the resultant 
migration of electronic charge.

The system of computer programs which was written to perform 
the various stages of the SCF calculations, is described in 
chapter five. Flow diagrams are presented for each program.

Finally, proposals as to future work using the information 
and experience obtained in the present calculations, are put 
forward in chapter six.

There are two appendices. The first describes the method of 
Gaussian quadrature which was used as the basis of the numerical 
integration technique by which most of the molecular integrals 
were evaluated. Appendix two contains the values of all the 
integrals required to perform the calculation on HCN at its 
equilibrium configuration, the multicentre integrals being 
evaluated by the full LOwdin approximation.
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NOMENCLATURE.
In order to simplify the text of this thesis, symbols and 

abbreviations for some common phrases and quantities are used 
where possible. The nomenclature adopted is presented below: 
the symbol or abbreviation is listed first followed by a short 
explanation.

MO molecular orbital.
VB valence bond.
SCF self-consistent field.
LCAO linear combination of atomic orbitals.
R representation of the one-particle density matrix
MC multiconfiguration.
Cl configuration interaction.
SCGF self-consistent group function.
ZDO zero differential overlap.
CNDO complete neglect of differential overlap.
NDDO neglect of diatomic differential overlap.
STO Slater type (atomic) orbital.
GTF Gaussian type function.
MSO molecular spin orbital.
0A0 orthogonal atomic orbital.
NAO natural atomic orbital.
LOAO LBwdin orthogonalised atomic orbital.



MA
IMA
PLA
FLA
DZ
DZ+P
BA+P

9

X

M
M

tr

Mulliken approximation, 
invariant Mulliken approximation, 
partial LBwdin approximation, 
full LBwdin approximation, 
double zeta.
double zeta + polarisation, 
big atom + polarisation, 
symbol used for an MO,
symbol used for an AO in the NAO basis; % (1) may bea
abbreviated to %a for compactness,

a tilda beneath a symbol denotes a matrix, e.g. R.
a bar above a symbol denotes the 0A0 basis, e.g. % is the
symbol for an AO in the 0A0 basis.

symbol for the trace of a matrix.
the Kronecker Delta; = 1 when i = j and = 0
when i / j.

Chemical symbols such as C for carbon, etc., are also used in the
text.

Ike AOfs on an atom are represented by Is, 2s, 2p , 2p , 2p ; forz x y
simplicity the p orbitals may be written as 2z, 2x, 2y.
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The title of this research work first appeared in the literature 
in 1935 as one of a series of papers on the electronic structure of 
molecules by R, S. Mulliken Cl], His paper deals specifically with 
linear triatomic molecules whose electronic structure he tried to 
elucidate by using simple MO theory and additional chemical concepts 
such as electronegativity• Mulliken was mainly interested in 
correlating the electronic structures of isoelectronic species.

Since then many workers have investigated molecular electronic 
structures by various means in an attempt to uncover the factors 
which affect chemical reactivity. Perhaps the best known is the 
1933 treatise on "The Nature of the Chemical Bond" by Linus Pauling 
[2],

With the increasing availability of computers in the late 1950*s, 
quantum mechanical calculations on small molecules became possible, 
thus stimulating investigation of molecular electronic structures and 
the chemical bond. The early work of B. J. Ransil [3] on certain 
first row diatomic molecules set the standard for future years.

By the early i960's successful calculations had been achieved 
for a number of diatomic molecular systems; interest then turned to 
larger molecules. The problem of effecting such calculations was 
tackled in two ways; firstly by finding satisfactory approximate 
methods particularly with regard to integral evaluation, and secondly 
by improving computing and mathematical techniques, thus gradually 
increasing the size of molecule whose structure could be elucidated.
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One of the first ab initio calculations on a linear triatomic 
molecule was performed by A. D. McLean [if] in 1962. The molecule 
was hydrogen cyanide, HCN.

It was to this background that it was decided to attempt an 
elucidation of the electronic structures of the linear nitrile 
molecules, CN , HCN and FCN. FCN is particularly interesting 
because of the unusually short CF bondJHl In choosing the XCN system, 
the intention was to examine the effect on the CN residue of yarying 
X. In order to achieve this with any success the calculations were 
performed as accurately as possible. However, some approximate 
methods had to be used and an attempt was made to evaluate their 
effect on the accuracy of the calculated molecular parameters. This 
was achieved by comparison with McLean's work on HCN. The calcula­
tions were then performed at a variety of X-C distances.

The basic problem in wave mechanics is to solve the equation 
H ^  = (1.1)

where E and ‘■3E-* are the total energy and wave function, respectively, 
of the system under discussion and H. is the Hamiltonian operator.
This equation is insoluble for all but the very simplest problems and 
accurate approximations have to be invoked to simplify the more 
interesting situations. The most important of these is the fixed- 
nucleus approximation which provides the basis for performing 
molecular electronic structure calculations. The wave-mechanical 
basis for this approximation was given by Born and Oppenheimer [6]
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in 1927* Basically it means that the vibrational and rotational 
motions of a molecule are effectively quite separate from the 
electronic motions. This approximation is valid provided that 
the electronic ground state is not degenerate or nearly degenerate. 
Consequently, for fixed nuclear coordinates there is a definite set 
of electronic energies which can be obtained by solving the appro­
priate wave equation. The solution of this equation for all 
possible nuclear configurations gives the total electronic energy 
as a function of the nuclear coordinates, a plot of which yields an 
energy hypersurface. For diatomic molecules this hypersurface is 
a plane curve since the distance between the atoms is the only 
internal coordinate. These hypersurfaces are important since they 
represent the potential energy which governs the motion of the nuclei.

The complexity of the wave equation is thus reduced by eliminat­
ing the terms involving nuclear motion, but it is still rather complex 
for direct solution. As a result, further approximations have to be 
made. The two most commonly used are the molecular orbital and 
valence-bond approximations.

The VB method was historically the first and was developed by 
Heitler and London [73* This theory considers a molecule to be 
composed of atoms to some extent retaining their individuality even 
when chemically bonded. It is particularly designed to consider a 
molecule as being characterised by a series of structures based on 
the simple chemical concept of the localised electron pair bond.
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The MO method was originated by Hund [8] and developed in a 
series of papers by Mulliken [93* It is essentially an extension 
of the quantum theory of atoms. Each electron is assigned to a 
one—electron wave function, but this now extends over the whole 
molecule. The corresponding one-electron orbitals are also 
obtained in an analogous manner by an SCF procedure.

Since both the MO and VB methods are approximations, neither 
is the ideal solution yet each has its special merits. Chemical 
concepts such as valence, the two-electron bond and resonance are 
more easily seen in the VB scheme while processes such as excitation 
and ionization are more readily shown in MO theory. This follows 
since for closed shell molecules, the one-electron MO's transform 
according to the irreducible representations of the molecular point 
group. It should be stated that, although in their simpler forms
the two theories lead to different results, when each is refined,
the two methods yield the same molecular wave function. The main 
difference really is in the starting points.

The disadvantages of the two methods are also well known,
VB theory is difficult to apply especially to large molecules, 
mainly because of orthogonality problems, and molecular properties 
are not so easily obtained. The simple VB method also over­
estimates the effect of electron correlation, but it does give the
correct lowest energy dissociation products allowing only radical
formation on dissociation.
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The simple MO method fails at large internuclear distances by 
predicting both radical and ionic dissociation products i.e. it 
under-estimates electron correlation by allowing two electrons of 
opposite spin too great a possibility of being in the same region 
of space.

A reasonably complete treatment of oxygen requires Zf95 con­
figurations in MO theory and many thousands of ionic structures in 
VB theory. Consequently, for most molecules it is not a feasible 
proposition to carry each theory to its limits and one is forced to 
make a choice of either a VB or MO approach. Because MO theory is 
conceptually the simpler and is also easier to work with it was 
decided to use it as a basis for the present work.

About twenty years after its origin, a rigorous mathematical 
analysis of the MO method was given by Roothaan [10]. His analysis 
for the LCAO-MO-SCF method has been used in the majority of molecular 
calculations performed since then.

Despite the success of this method it was decided to follow the 
more recent analysis of McWeeny [11]. Here the LCAO-MCHSCF method 
is elaborated in terms of density matrix theory. In the Roothaan 
scheme each cycle of the SCF iteration procedure requires a matrix 
diagonalisation which can be rather time consuming. In the density 
matrix method this is replaced merely by a set of matrix operations 
and one final diagonalisation. In addition to the increase in 
speed there is a saving in time arising from the fact that fewer
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iterations are usually required to reach the minimum•
McWeeny uses the method of steepest descents to descend the 

energy surface and determines the best correction to R, AR, which 
gives the maximum lowering in energy. The corrected R may no 
longer be idempotent and small departures from idempotency are 
eliminated by a simple iterative procedure. The process is repeated 
until AR is as small as desired. More recently Hoffmann [12] has 
indicated that a smoother descent of the energy surface is obtained 
by keeping R rigorously idempotent during the descent. However, 
little trouble was experienced in the present work using the McWeeny 
method and consequently, there was no need to employ Hoffmann's more 
rigorous and more involved procedure. It must be kept in mind, 
however, that it might be necessary to change the minimisation 
procedure when studying more complicated molecules, perhaps those 
containing more than twenty electrons.

It was mentioned above that the simple VB and MO theories 
converged to the same molecular wave function if the necessary 
refinements were made. These refinements, of course, also improve 
the resulting wave function. While the VB wave function is 
improved by including ionic terms, the MO wave function is improved 
by allowing for configuration interaction. This involves perform­
ing a variational calculation by considering the mixing of selected 
excited states with the ground state. These excited states must 
have the same symmetry as the ground state. This technique improves
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the total wave function by admitting better electron correlation 
than in the simple MO wave function made up of one-electron 
functions which place no limit on the relative positions of the 
electrons of opposite spins. A limited amount of correlation 
for electrons of parallel spins is built into the wave function, 
however, by the use of an antisymmetric product of these one electron 
functions.

Many configuration interaction calculations have been performed 
using the virtual orbitals arising out of a normal ground state SCF 
MO calculation, but it is now becoming more widely realised that 
because of their nature the improvement in energy and wave function 
is limited. The MC SCF method is an improved technique recently 
developed by Veillard and Clementi [13,141• It incorporates the 
feature of configuration interaction thus decreasing the error 
arising from the neglect of electron correlation. Instead of 
merely finding the best molecular wave function for thee ground 
state, t|/0, HC SCF theory construct® the doubly excited state wave 
functions <|>j, ijij, etc., as well a® determines the best total
wave function in the form aQ v|*Q + fi'j'l + *2^*2 + **•••• The 
variation principle is applied to optimise both the a's, the Cl 
coefficients, and the AO coefficients in the MO's: a fast con­
vergence results.

Although the correlation of electrons of opposed spins is not 
taken fully into account in simple MO theory, Brillouin's theorem[15]
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ensures that the one—electron properties will be reasonably well 
represented by the SCF wave function. This follows since the 
matrix elements between the ground and singly excited states are 
zero for MO*s determined by an SCF procedure. Consequently, by 
performing a Cl, it is the two-electron properties which will be 
improved through the inclusion of the doubly-excited configurations.

The disadvantages of simple MO theory could be summed up as the 
physical unrealism of mono-electronic molecular spin orbitals. It 
is much more realistic to consider larger groups of electrons 
together as for example the two-electron bond or the lone pair. A 
theory based on this concept has been elaborated in density matrix 
notation by McWeeny [11]• A recent evaluation of the technique, 
the self-consistent group function method, was performed by Cook et 
al [16] and a comparison was made with ordinary SCF MO theory as 
applied to the water molecule and some simple hydrocarbons. The 
SC6F method, which has much of the chemical interest of VB theory in 
it yet maintains a simple orbital notation, was found to be very 
successful and it is possible that future work will find this a most 
useful tool.

It is also very possible that the correlation problem could be 
solved by the use of two-electron molecular functions, now called 
geminals [17]. This avenue has not been explored to any great 
extent, or with much success, due to the numerical complexity involved 
but it is possible that if the same effort were applied in this
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direction as is being applied to conventional LCAO-MOHSCF calculations 
even more useful results would be obtained*

Until recently all-electron ab initio calculations on molecules 
containing between thirty and fifty electrons were impossible and 
there was the obvious need to develop more approximate methods for 
dealing with such molecular systems* Indeed the SCGF method, as
used by Cook et al [16], is the latest attempt to perform accurate 
calculations using an approximate technique*

B3r reducing the number of electrons considered, the quantum 
mechanical problem is simplified. For example, in the study of 
conjugated hydrocarbons this is done by considering the sigma 
electrons as part of the core in the potential field of which the pi 
electrons move* A rigorous mathematical framework for the pi- 
electron approximation was given by Lykos and Parr [l8]. This 
approach has had wide application and can be seen as the forerunner 
of the SCGF method since it recognises specific groups of electrons.

The semi-empirical methods due to Pariser and Parr [191 and 
Pople [20] are examples of theories based on the pi-electron approxim­
ation, An AO basis set of pi orbitals is chosen explicitly but some 
of the integrals are evaluated empirically to agree with certain known 
experimental quantities such as the first ionisation potential or the 
lowest energy pi-pi* transition* An integral part of this method 
is the ZDO approximation. This allows for the neglect of all two- 
electron integrals involving one or two-centre overlap charge
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densities. The hope, which has some justification, is that the 
neglected integrals will be small or at least very much smaller than 
the one— or two—centre coulomb integrals which remain.

Despite some limited success, the need to extend such an approxim­
ate method to include all electrons was apparent. A technique having 
a good mathematical foundation was given by Pople, Segal and Santry 
[21,22] in 1965« These authors distinguish two levels of the ZDO 
approximation since it is now possible to neglect integrals containing 
one-centre overlap charge densities. The CNDO approximation which, 
like the ZDO approximation, is normally applied to pi-electron systems, 
neglects all two-electron integrals involving overlap charge densities 
even if they are associated with one centre. In pi-electron theory 
the ZDO approximation can be written as

(TT TT | TT TT ) = % i Y <1.2)p q r s pq rs pr

It is found to be quite accurate provided the 2p orbitals on each 
centre are chosen to be symmetrically orthogonalised [233 AO's.
However, when there are several AO's on each centre some of the one- 
centre integrals neglected in CNDO theory are quite large.

This rather important disadvantage is overcome in Pople*s second 
level of the ZDO approximation. In his NDDO approximation only those 
two-electron integrals involving bicentric overlap charge distribut­
ions are neglected. In recent work [16] it was shown that the NDDO 
method was vastly superior to the CNDO method and reproduced the
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electron density and bond polarities of full non—empirical 
calculations on the methane and water molecules surprisingly well*
In contrast, the CNDO approximation caused the bond polarities to be 
incorrect in both magnitude and direction* In Pople*s method the 
one-electron integrals are often chosen semi-empirically whereas 
Cook, Hollis and McWeeny evaluated all the integrals theoretically* 

Pople has since developed an improvement on the CNDO method 
called the intermediate neglect of differential overlap approximation 
[21f]* Here, one-centre overlap densities are allowed only in 
completely monocentric integrals. This method, however, still 
contains the rather drastic approximations imposed by the integral 
invariancy conditions imposed in the first paper of their series*

One of the most unsatisfactory procedures in 1hese methods is in 
attempting to justify the empirical values of some integrals, without 
reference to a basis set and then choosing AO's to evaluate other 
integrals*

One of the first problems in LCA0-M0H5CF theory is to choose a 
specific AO basis set. Although many mathematical functions have 
been tried in molecular calculations, the most widely used basis 
function is the STO having the form

(n,l,m) = Nn(Orn_1e_?r^(e,«() (1.3)
where n, 1, m are the quantum numbers defining the real AO, N (() is7 7 S

a normalising factor, I is the orbital exponent and the S functions 
are the normalised real spherical harmonics* X is now seldom
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calculated according to the original rules given by Slater, but is 
instead optimised in some manner* Ransil [3] has defined the various 
choices of STO: e*g* Slater AO, best atom AO, best AO etc* In 
molecular calculations it has been usual to use the minimum number 
of STO basis functions which could reasonably represent the structure 
of each of the atoms in the molecule* It is also fairly common 
practice to use best atom £'s, which are determined variationally, so 
that an atomic wave function comprised of best atom AO's will minimise 
the energy of the atom*

However, there is no reason why best atom zeta's used in 
molecules will give the best molecular energy. When the zeta's are 
chosen to minimise the molecular energy they are normally termed 
best MO zeta's C3U• Such an optimisation is very time consuming 
as can be seen, for example, from the method outlined by Sahni and 
Sawhney II25] who were studying the ground and ionised states of N^. 
Because nonlinear exponent optimisation is so expensive in computer 
time, some workers, for example, Matcha [26], doubt if a molecular 
zeta optimisation is justified at present*

There is a second method for improving the basis set which is 
becoming more common. This involves increasing the number of AO's 
in the basis set* This method is much more economical in computing 
terms. Such basis sets are known as accurate AO, SCF AO or Hartree- 
Fock AO bases. Enough STO*s are used in these sets to reproduce the 
true Hartree-Fock numerical solutions for atoms. Clementi [27] has
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tabulated these functions and also includes a very useful contracted 
set of double—zeta functions for molecular calculations* It is well 
known that double £ functions can represent the SCF AO quite closely 
and Clementi believed they would be useful in calculations where the 
size of basis set which could be used was limited* Matcha has since 
shown that the Clementi double £ functions yield results in good 
agreement with those obtained by the use of more accurate AO basis 
sets •

There has been a recent tendency to replace the minimal basis 
set by an extended basis set in molecular calculations* Here extra­
valence shell AO's are added to allow a better representation of the 
electron distribution in the molecule* Hbweveî  as a molecular 
system can be completely determined by a mathematically complete set 
of functions centred at a given point in space, care must be taken 
in adding extra-valence shell AO's to minimal basis sets on many 
centres in space to avoid the ill-conditioning of the SCF equations 
which could arise through having effectively an overcomplete set*
In addition the extra-valence shell AO's which are added must form 
a well balanced basis set as described by Mulliken [28]•

Interesting comparisons of some of these basis sets have been 
made by Mulliken [28] and Ballinger [29] for HF. Karo and Allen 
[30] found a large improvement in energy resulted by using free atom 
SCF AO's instead of best atom AO's* Ballinger using STO's optimised 
the orbital exponents for the molecule but obtained only a slight
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improvement in total energy* He also found that overlap populations , 
excitation energies and the dipole moment were not greatly improved.

Becently growing numbers of molecular electronic calculations 
have been performed using a linear combination of Gaussian orbitals 
to approximate the MO's, as for example by Clementi [31]« GTF’s 
were initially introduced by Boys [32] and have the form,

5(4,1,a) = x“' ^ JZA9(rA)a*e-ar* (I,lf)
2 2 _2 2

where e^c«* rA * ^A + ^A + ̂ A* a* ’a* ,Sl3 311(1 ai* have
integral values and a is positive.

The use of GTF’s has the distinct advantage over STO’s that the 
multicentre integrals are much more easily evaluated. There is an 
overcompensating disadvantage in the fact that convergence to a good
wave function is very much slower. Two recent calculations on HCN
[33i3*f] have shown that the number of GTF’s required to reproduce 
the best total energy obtained using STO's would be very large indeed; 
probably at least fifty.

In the present work it was decided to use a minimal basis set 
of double-zeta functions comprised of STO's whose exponents had been 
chosen to minimise the atomic energies. The limitation to a minimal 
basis set was made partly for computational economy reasons and partly 
from the hope that quite accurate calculations could be carried out 
from a simple chemical orbital picture.

Clementi double zeta functions [27] were chosen as the most 
economical way of improving the AO basis set as discussed above.
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The recent work of Matcha [26] also shows that it is probably more
important to improve the double zeta basis set by adding orbitals
to allow for polarisation rather than by replacing it with accurate
Hartree-Fock AO*s.

One of the initial objectives of this work was to find an
approximate method of performing molecular calculations which would
reproduce many of the results of accurate ab initio calculations to
a reasonable degree of precision. The use of an STO basis set also
complicated the evaluation of the three—centre integrals. Since it
was not economically possible to evaluate these integrals exactly,
approximate methods had to be used or, alternatively, they could be
neglected as for example in the CNDO scheme.

It was felt that the CNDO scheme was rather too approximate to
yield useful results, an opinion which has been to some extent
justified by the work of Cook et al [16], Therefore it was decided
to perform and evaluate an ab initio SCF method with the single
limitation that the multicentre integrals would be calculated by
an approximate method. Indeed the question must be answered whether
the improvement in the basis set can be justified when integral
approximations are used.

As far as approximate methods are concerned, the problem of
the multicentre integrals has been tackled mainly by replacing a

*two-centre charge distribution % a(D X b(l) *7 one or more 
carefully chosen one-centre distributions. The first method which
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had any success was given by Sklar [35], who replaced the two-centre 
orbital product by the product of two identical orbitals located at 
the midpoint between the centres*

X*(DXbU) = sakX>)X,d) (1.5)
, *where X  a(l) X^ClMv^ is the overlap integral between the

orbitals•
The second important method which has an accuracy similar to 

Sklar1s method was given by Mulliken [36] who simply averaged two 
mono—centric distributions located at the two centres involved*

X*(i)Xb(D = isabILX*(i)Xaa)+Xb(i)Xba )3 (1.6)
Rudenberg [37] showed the Mulliken approximation to be the first term
of an infinite series whose sum wasX a(l) X^(l)* When the right 
hand side of (1*6) was the dominant term, the Mulliken approximation 
was quite good but when other terms of the series become important, 
or even dominant, the accuracy was poor* Rudenberg*s method uses 
the fact that an AO on any centre, a, can be expanded in terms of a 
complete set of AO*s on another centre, b:

^ a a (1) “ ^  SaablP^bk(1) (I#7)

aa ^  bP “ ^ a a b k  ^  bp ^  b k^ b ^ a k  ^  aa ^  ak3

Although there have been many attempts to improve these methods, 
perhaps the most interesting from an intuitive point of view was the 
method proposed by Lowdin [38]* He modified the Mulliken
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approximation by weighting the relative contributions of the mono- 
centric distributions in order that the approximated charge distribu­
tion should have the correct dipole moment*

X  > )  X  b(D = nlSab X  *(1> X  a(D + X  ’(1) X  b(D (1.9) 

$X I(D=aX btt>*Tlwhere = ----- -— g-------- , = 1 and Rab is the inter-
ab ab

nuclear separation.
Recently two improved approximate methods have been proposed 

which are based on the representation of a bicentric charge distri­
bution as a truncated expansion of monocentric distributions. The 
first was given by Cizek [393* His approximation was again a linear 
combination of two single-centre distributions but whose locations 
and relative weightings were chosen to reproduce the lower multipole 
moments up to and including the octupole moment. The second was 
proposed by Harris and Rein [IfO]. They used symmetry criteria in 
selecting the one-centre products in the expansion; the coefficients 
of which were determined by requiring agreement for certain key 
integrals.

Each of these methods is, however, rather cumbersome to apply 
in practice. Also, the evaluation of their accuracy is given 
almost exclusively for two-centre integrals mainly of the hybrid 
and exchange type although Cizek also gives comparisons for certain 
two-centre one-electron integrals. Admittedly there are very few
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accurate three and four centre integral values available in the 
literature. The respective authors of these last two methods are 
hopeful, however, that the extension of their approximations to 
raulticentre integrals will be almost as successful. Roach [l+l]has 
shown from practical experience in evaluating three—centre integrals 
that, in a few cases, certain of the intermediary equations in Cizek*s 
analysis have complex roots. The approximation breaks down in these 
cases.

It would appear that although many approximate methods exist for 
multicentre integral evaluation, few detailed examinations of these 
methods appear to have been made. Indeed the whole purpose of their 
existence seems thwarted as very few molecular calculations have been 
performed which make use of the above integral approximations. As 
is pointed out by Cizek, no trace of an evaluation of the simple 
Lowdin [33] method is apparent except for a short note by Ellison 
[if2] who compares the Lowdin and exact values of two two-centre one- 
electron integrals for the water molecule. He; also compares the 
Lbwdin and Mulliken approximations for one three-centre one-electron 
integral, but no exact value was available for a more interesting 
comparison. An even greater mystery is the lack of reference to 
Ldwdin's improved method [1+3] • This method is also based on the 
expansion or a function on one centre in terms of a complete set of 
functions on another centre. For practical applications, however, 
it is necessary to limit the size of this set to involve only those
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A0*s which occur in the given basis set* Lowdin fs improved method 
bears a comparable relationship to his simpler method given in (1*9) 
as the Rudenberg method bears to the Mulliken approximation* It 
takes the form:

^ a ^ b  = X1 £  ^  a ^  A SAb + X2 B ^ b  SaB (I*10)A*a B«b
where X^ + X^ - 1 A runs over all A0*s having a principal quantum
number equal to or less than that of a etc* X^ and X^ are further
chosen so that the total electric dipole moment along the line ar— b
is given correctly.

The Mulliken approximation is the major exception, however, as it
has been widely used in electronic structure calculations* This
obviously arises from the ease of its application. For similar 
reasons it was decided to use this approximation as the basic integral 
approximation procedure in the present work. Also, conscious of the 
fact that, even as the sole approximation in an ab initio type 
calculation, the use of Mulliken's method might yield rather 
inaccurate results, it was decided to evaluate the improved approxim­
ation of LBwdin, given in (1*10), as an alternative method.

One of the major roles of the theoretical chemist is to feed
back simple yet useful concepts to the experimentalist • Wahl [lf2f]
has pointed out that results presented in the form of vast numerical 
tables are nearly always incomprehensible. It is surely a recogni­
tion of these facts which has led to the recent increase in papers
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which display wave functions in pictorial form as contour diagrams 
of electronic probability densities [45,^6]. Perhaps the other 
most thought provoking concept to arise from the analysis of the 
wave function, as opposed to its use in calculating various 
molecular properties, is the effective charge on an atom in a 
molecule. The population analysis of molecular wave functions is 
not new and since it was introduced by Mulliken [Itf] it has been 
widely used to yield quantities such as the atom and bond populations 
and the effective atomic charges. Lfiwdin [23] had previously 
defined the charge on an atom derived from a molecular wave function 
using a basis set of orthogonalised AO's but this has had little 
usage. Its main disadvantage is that, having mixed AO's from other 
atoms into those of the atom being considered to obtain orthogonality, 
the charge assigned to that atom is to some extent delocalised over 
the other atoms.

It since become apparent that these methods have certain 
limitations and it is dubious to what extent the concept of atomic 
charge can be taken. Mulliken has since shown [28] how the choice 
of basis set can affect the atom and bond populations. Cusachs 
and Politzer [J+8] have recently highlighted the question of the 
physical significance of atom charges after noting that quite 
different wave functions result when the Mulliken or Lbwdin 
definitions of atomic charge are used as self-consistency criteria 
in their SCF computations.
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Doggett [lf9] has recently proposed an alternative method of 
performing a population analysis. It has the distinct advantage 
over other methods in that the resulting gross atom charge densities 
will reproduce the calculated molecular dipole moment when atomic 
contributions are included. This new method partitions the bond 
charge density asymmetrically in order to reproduce the bond dipole 
moments and is based on Ldwdin's [38] original partitioning as given 
in (1.9)* Doggett also gives the analysis in a matrix notation 
which lends itself well to computer calculation. He studied the 
first row diatomic hydrides and shows with the aid of contour 
diagrams that, although it is difficult to justify any absolute 
validity in the atom charge concept, when a series of related 
molecules is considered the trends shown by the charge densities 
are indeed significant.

It is a further aim of this work to show how the use of contour 
diagrams and population analyses, can aid the elucidation of the 
electronic structures of the molecular series CN~, HCN, FCN.
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2*1. General Theory*
Within the Born-Opperheimer [6] approximation and neglecting

spin-orbit and spin-spin interactions, the wave functions, , forA
the stationary states of an N—electron molecule are solutions of 
the equation

where A = 0,1,2...... labels the various electronic states and
1,2,...N represents the four space and spin coordinates of each of 
the electrons 1,2,...N. The Hamiltonian operator, H, is given in 
atomic units by

H = - f  (iv? + Z - ^ - )  + 1  f. i Jl ^  (II.2)
i=l P=1 i,3=l ij a,P=l aP
N H~ n H Z Zo

= Z f ( i ) +  E  (II.3)1=1 i>j=l rij a>P=l aP
where p labels the M nuclei of nuclear charge in the molecule;
i labels the electrons; r^, r _  and r ^  are respectively the
distances between electron i and nucleus p, between electrons i and
j and between nuclei a and p. The eigenvalue £A corresponding to
an exact solution ^  of (II.l) is given byA

( dr M Z Zg
£ « “ EA + ^  ”r“^ (11^); dr a>p=l aPA A

Since exact solutions are seldom possible, approximate
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solutions f are sought and an approximate value to E.« E •, can be A A A
obtained by u s i n g i n  (Il.if). The stationary state of lowest
energy is the ground state and it can be shown that for this state
£q * ̂  ’ ecluality occurring only for the exact solution where
^ 0 0

The approximate total wave function is normally built from a 
set of monoelectronic wave functions called molecular spin orbitals 
and the simplest antisymmetric wave function is the Slater determinant 
obtained by antisymmetrising the product of the N (where N is even) 
lowest energy MSO *s 1^(1)<Ĵ (2)tf̂ (3) • • • .^(N) s

4^(1) 4^(2) .... I^CN)
42(1) ty2(.2) .... ̂ (N)

= It.i. (IX.5)

Since the MSO's are orthonormal, substitution of (II.5) into (II.Iv) 
leads to the following expression for the electronic energy:

E0 - f. V  + X (11.6)0 i=l 1 i>j=l J J
For a closed-shell state, (II.6) reduces to (II.7):

En = s i  f± + Z. (SJi. - %.) (II.7)0 i=l 1 i,j=l J J
where now N=2n, and f. , J. . and K.. represent the following integrals’
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over MO's:

= $ ^ ( D  f(l) ^ ( D  (II.8)

Jij ‘  ̂̂ (1) <*i(1) F^T <*j(2) t y 2* dvldv2 (II-9)

Kij = ^ |Z,i(1) ^ (1) F^T #j(2) <*i(2) dTidT2 (IX.10)

Normally in Hartree—Fock theory the best MO's are determined 
variationally by the self-consistent field method, The result of 
performing a variational calculation on (11,7) is the set of 
equations, (11,11),

*F <*i = (Iiai)0
Fwhere h is the Hartree-Fock Hamiltonian operator and is a 

lagrangian multiplier* For atoms, the problem of solving these 
equations is simplified by the central symmetry, but for molecules 
it is a very difficult mathematical problem. Consequently, it is 
necessary to use approximations to the best MO's. The most common 
method is to take a linear combination of atomic orbitals, for
each of the MO's, 0^:

P piP
for i = 1,2, n. It is convenient, though not essential, to
choose the AO's to be mutually orthogonal such that

$ X ; c i ) X qu) d̂  = Spq.
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h  - I ^ p V  (ii•«)p * *

or in matrix notation:

0 = X  T (11.14)

where the row matrix, 0, is the collection of occupied MO's, %  is 
the row matrix of OAO's, and T is the matrix of 0A0 coefficientsA*
arranged in columns.

The operator equation (11.11) is then transformed into the 
matrix equation (11.15)•

hF T = T e (11.15)»>/ Mr ** '

The conventional solution of (11.15) is effected by an SCF method 
as described by Roothaan [10]. But, as discussed in the intro­
duction, it was decided to perform the SCF calculation using the 
density matrix formulation as outlined by McWeeny [11]. In this 
method it is not necessary to determine the MO's themselves at each 
cycle, since, for a closed shell, the total wave function is 
completely determined by the one-electron density matrix for 
electrons of given spin, R:

R = T T+ ( I I . 16)

where T* is the transpose of the conjugate complexes of the 
elements of T. R is calculated directly by iterative matrix ̂ A*
methods as discussed by McWeeny and briefly reiterated below.
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The orthonormality conditions take the form

I *rS = I 5Rr+ *rS = (*+ 5)RS = £*5
i.e. T+ T = 1 (11.17)

This is equivalent to saying that R is idempotent since

R R = T ? f T + = T f  = R (11.18)

By substituting (11.13) in (II.8), (II.9), (II.10) and (II.7), and 
using (11.16), the total energy reduces to

Eq = 2 tr | f + tr | G (11.19)
where

f = ( X  I f \% ) (11.20)pq 'p q
and

^pq " X X ^ s r ^  ^p^ql 8 l^r^s ^  ^p^s^ 6 ^  ̂ q ^  (11.21)

(11.20) and (11.21) use a Dirac-type abbreviation for the one- and 
two-electron matrix elements:

( x pi * ixq ) = f(i) %  q(D <*i “ d

( Xp X q| 6  I %x %a )  = J X  %  q ( l ) 8 ( l , 2 )  %  ; ( 2 )  %  s (2 )

The variational problem of determining the best MO's is thus 
equivalent to finding the stationary value of (11.19) subject to
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the condition R^ = R. By considering a variation in R, AR, the 
corresponding change in energy, AEq, is determined and for the 
stationary energy condition, the first-order change (AEq)1 = 0. 
Neglecting second-order terms,

AE_ = 2 tr hF AR = 0 (11.22)u ■— —
—Fwhere h , the matrix of the Hartree-Fock Hamiltonian,is given by

£F = f + § (ix.23)

Since first-order terms vanish at the turning point, (11.22) 
subsequently yields the condition that at the minimum, provided R 
is idempotent,

R hF - hF R * 0 (II.2!*)

—  —Fi.e. R commutes with h •
Because hF depends through G on the matrix R, the problem must

— F —be solved iteratively. h is recalculated from each new R 
obtained. Starting from an arbitrary idempotent matrix R, and 
using a method of steepest descent of the energy surface, the best 
single descent correction AR is determined in the manner outlined 
by McWeeny [11]. 1516 new matrix, R*, is then given by

R« = R + AR (11.25)

and the whole process is repeated until self-consistency is
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obtained.

After each descent of the energy surface, the idempotency 
of Rq is maintained using the relationship

I»+l = S» ( 3 1 - 2 (11.26)

where Rq is the n'th term in the convergent sequence R^, R^....
derived via the steepest descent method, and whose limit R is 
rigorously idempotent.

2.2. Symmetric Orthogonalisation of the AO Basis Set.
As discussed in the introduction, the natural atomic orbitals 

in the AO basis set were chosen to be Clementi double-zeta functions. 
These functions sure not orthogonal to each other when situated on 
different centres. Since it is much simpler to perform the 
iteration procedure with a completely orthogonalised basis set, it 
was decided to use the symmetric orthogonalisation procedure of 
LOwdin [233 to transform from the NAO basis to the LOwdin 
orthogonalised atomic orbital basis. At the end of the calculation 
the reverse transformation can be applied to return to the basis 
of NAO's. The LOAO basis has the additional advantage of being 
a more valid basis for neglecting integrals in any future 
approximate calculations based on a neglect of differential overlap. 
If the AO's are orthogonal, (11.17) can be written in the form

%  dT 5 *  i #
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However, when the basis is comprised of NAO's (11*17) no longer 
holds and if the unbarred symbols denote matrices in the NAO 
basis, the normalisation condition (11*17) becomes

?fST = 1 (11.27)

where S is the matrix of overlap integrals in the NAO basis.
From (11.17) and (11.27) it follows that

T = §"% (11.28)

and T+ = (11.29)

By substituting for T in the relationship $ = % T and comparing 
with (II.Ilf) the LOAO^ are given in terms of the NAO basis set by

X = X (11.30)

This orthogonalisation is not unique [lf3] but is a convenient 
choice for the present analysis.

2.3. Transformation of the Matrices over NAOfs to Matrices
over LOAO's.

The matrices which appear in the McWeeny iteration scheme 
are defined with respect to an orthogonal basis, but the matrices 
which are formed initially are given in terms of molecular 
integrals calculated in an NAO basis. Before commencing the 
calculations, it is necessary, therefore, to transform the f, §
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Fand h matrices from the NAO basis to the IOAO basis.
For example, consider the (pq)th element of the f matrix as 

given in (II.20):

* = S X* f % dvpq ' * p q 

Using (11.30) in the form and substituting in (11.20)

?pq - l X i Si  dV

= X I  s4 * dv sjJ

= I Z s " f  **■ s4\  j pi ij jq 

= (fs4 )iq

= ( 54  ? §4  )pq

i . e .  f - 1 - 4  = r  f s / (11.31)

In a s im ila r  manner i t  can be shown th a t

- 4 - 1G = S G S ** & *0 +* (11.32)

f  - s4 hF s4 (11.33)

and
- 4  -  - 4R = S R S

A.  ̂^ (11.310
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As discussed above when two-electron integrals are being 
neglected in some form of neglect of differential overlap scheme, 
it is more valid to neglect integrals in an orthogonalised basis, 
than in a non-orthogonal basis* With the possibility of
performing future calculations of this kind in mind it is necessary
to find an interbasis transformation for the two-electron integrals* 
Another reason for obtaining such a transformation is that it 
affords one method of calculating G, as given in (11.21), using 
the elements of R and Y, where

V s - <XpXqi « i ^ V  (II*35)
Alternatively, G can be evaluated by (11*32) i.e* G is first 

calculated from the elements of R and Y, where

v  “ to'*'

and then transformed according to (11*32)*
The elements of Y and Y are interrelated in the following way:

Y = M  X  — % * %  dv^dv pqrs P q r- ~ r ̂ s 1 212
Substituting for ̂  etc. gives

Vrs = X3Sii 4  ^ 2

= ^  X ‘*X 1 dVldV2 Sd
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Ypqrs = Spi Sjq Si*k Sls Yijkl (II.37)

Since S~^ is a real symmetric matrix = s7^ etc., (11.37) can be 
rewritten

Ypqrs = ^"^"^pqij Yijkl ^ ^ k i r s

where matrix direct product nomenclature is used:

C = AxB if ^  = A.. ̂ .B^ , and C is of order n^ where A and B
are of order n. Hence,

Y y  V  (s”^xs“ )̂ . .[ Y(s”̂ xS~^)]. .oars 4  4- * ~ Tinn ~ ~ * -i-ni a

[ (S~^xS~^) Y (s“^xs"^) ]pqrs

i.e. T = (s“^xS~^) Y (s“̂ xs“̂ ) (11.38)

(II.38) is a neater expression than (11.37) and is faster to 
perform in the computer as well, but it suffers from the fact 
that it requires too much computer store. Consequently (11.37) 
has to be used, although it requires further modification for 
efficient computer evaluation as it requires all elements of 
Y. .. instead of only the unique elements. The technique for 
evaluating Y from the unique elements of and Y is described 
in chapter five.
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Berthier [50] and Moreau and Serre [51] have performed semi- 
empirical pi electron calculations involving an LOAO basis in which 
they suggest the following transformation for the coulomb integrals 
from an STO basis to those from an LOAO basis:

Y = (s"^xS+̂ ) Y (S~^x S+̂ ) (11.39)

They claim that this equation is valid for coulomb integrals 
and at the same time say that the other integrals are made 
negligible. However, the hybrid and exchange integrals are not 
made negligible by the transformation (11.39) although the coulomb 
integrals are reasonably well represented.

Experience has shown that if (11.38) is used, the coulomb 
integrals are exact while the exchange and hybrid integrals really 
are negligible. Table II.l compares the values of these integrals 
in the NAO basis and in the LOAO basis according to both (II.38) 
and (H.39) for the pi orbitals of the allyl system with the 
geometry shown below.

c
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Table,11.1.

Comparison of Integrals in NAO and 0A0 Bases.

Integral
Value in 
NAO Basis

Value in 0A0 
Basis by (11.39)

Value in LOAO 
Basis by (II.38)

(aalaa) 0.3937058 0.3956127 0.3956586
(aa|ab) 0.0886391 0.0964766 -0.0000261
(aa|ac) 0.0101987 0.0129208 -O.OOO4893
(aa|bb) 0.3321897 0.3321960 0.3321962
(aa|bc)* 0.0639371 0.0812180 0.0000940
(aa|cc) 0.2077917 0.2038792 0.2038665
(abj ab) 0.0216475 0.0235276 0.0000002
(ab|ac)+ 0.0026209 0.0031520 -O.OOOOOO6
(ab|bb) 0.0886391 0.0809604 O.OOOO685
(ab|bc) 0.0188754 0.0197938 0.0000001
(ab|cc)* 0.0659371 0.0497644 0.0000940
(ac | ac) 0.0003459 0.0004286 0.0000076
(ac|bb) 0.0112649 0.0102950 -O.OOO987I
(ac|bc)+ 0.0026209 0.0025167 -0.0000006
(ac|cc) 0.0101987 0.0064473 -O.OOO4893
(bbjbb) 0.3937058 0.3976911 0.3976241
(bb|bc) 0.0886391 0.0971868 O.OOOO685
(bb|cc) 0.3321897 0.3321960 0.3321962
(cc|cc) 0.3937058 0.3956127 0.3956586
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From Table II.l it is seen that when (11.39) is used the 0A0 
integrals, instead of tending to zero, actually increase in value 
in most cases. The one— said two—centre coulomb integrals are 
reasonably well represented but, in some cases, only to four 
decimal places. What is much more disturbing is that the symmetry 
of the system is not maintained as can be seen, for example, by 
comparing the rows marked * or +. Although not shown in the 
table, even the integrals (aajab) and (aa|ba) do not have the same 
value when (11.39) is used. In contrast, if (11.38) is used, the 
symmetry is maintained, the integrals are all accurate and the 
hybrid and exchange integrals are negligible.

Experience has shown that, although the transformation in
(11.38) is useful for pi orbitals, it is not useful for sigma 
orbitals where there are more than one orbital on each atom.

2.1f. Evaluation of the Molecular Integrals.
In molecular structure calculations the eventual basic 

problem is the evaluation of the molecular integrals which arise 
in (11.20) and (11.21). For example, the elements of the one- 
electron matrix, f, are evaluated by the algebraic addition of 
their constituent one electron integrals.
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(1 1 .4 0 )  conta ins  in te g ra ls  o f  the fo llo w in g  typ es :

K in e t ic
E n e rg y :  CXp | “ J V  | X q ) = - 4 )  X p ( D  V  X q (D d V q  (11.1*1)

N uclear ,
A t t r a c t io n :  QC 1§  I X ) = Z  )%  ( 1 )?  % „ (D d v . (11.1*2)

q p q p
Resonance

( S p l i t  N uclear Q M  £  I X .  ) = (1 )£  X n ( l ) d v .  (11.1*3)
A t t r a c t io n )  : p r p q p r p q 1

T h ree -C en tre : QC | §  I X . )  t Z S X . ( l ) ;  X -  ( 1 ) * ^  (11.1*1*)
p a q p a q

The o n e -e le c tro n  in te g r a l  w ith  u n it  o p e ra to r i s  the

Overlap
Integral: (Xp I X q ) * ) X p (D X q ( D ^  (11.45)

The two-electron integrals which arise in (11.21) can be 
classified according to four main types:
Coulomb:

(Xp X pl jrHXq X, > « 8 X p (i)Xp ( D ^ X q  (2)Xq (2>«V*2 in.#)

Hybrid:
CXp \  I ̂  Xq ) - g X p  (l)Xp (l)j~Xp (2)Xq (2 ) ^ 2  (11.1*7)

Exchange:

^p \ 1 ^ IXp \ } = ^ X p (1)Xq (1)̂  (2)Xq (2)dvidv2 (n^ 8)
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Multicentre:

«p \  I ̂  \  > - g X* U W ,  ( D ^ X r (2)XS ( 2 ) ^ * 2  (II.W)

In the present work all integrals are evaluated by numerical 
integration technique^ although a small number of one centre 
coulomb integrals, involving highly contracted Is AO'B, are 
evaluated by analytical means if the values obtained numerically 
are of insufficient accuracy. Numerical values for a few of 
these integrals, obtained both numerically and analytically, are 
presented in Tables V.2 and V.3 in chapter five.

Of the one- and two-centre integrals the exchange integrals 
are the most difficult to evaluate. Their values were obtained 
using Corbato and Switendick's [52] MIDIAT diatomic molecular 
integral program, originally coded for the MIT I.B.M. 70*f computer, 
but adapted by F. R. A. Hopgood for the S.R.C. ATLAS computer at 
Chilton. All other integrals are evaluated by programs developed 
in Glasgow. These programs use the Gaussian quadrature method, 
as discussed in chapter five and appendix one, to set up the 
integration mesh as opposed to the MIDIAT program which uses 
Simpson*s Rule. The Gaussian method is more economical in 
giving the required accuracy using fewer mesh points.

The STO's, y? , in the dementi expansion, X  9 a**© used in 
the normalised real form,
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where the functions are the normalised real spherical
harmonics defined by Roothaan C533® For the numerical integration
procedure the integrals are first expressed in prolate spheroidal 
coordinates defined in appendix one* Integration over # is then 
performed analytically and the remaining integrations are performed 
by two applications of Gaussian quadrature* This is also 
discussed in appendix one* The method and algebraic form of the 
integrals are illustrated below for the case of the overlap 
integral between two 2px Clementi functions on centres a and b,

-i- c k*^2 r e_kal*a sine cos# Vn a a a a r

:̂ /2k*^2r ar^e ”̂ aPP 3e qr ̂ sin^sinO^ co s2#dr d0d#

On rshan̂  ng to elliptical coordinates using (Al**f), (Al*5)* 
(A1o8), (A1.9) and (Al.10),
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1 = %  I Z s ° a p Cbqkap2kb(2 f <^+v)§<M-v> T ^ 2""2)

e-4caP2 +v>e^qf^-v) cos20 <*idyd0

The 0 integration is performed analytically since

Aw 2j cos 0 60 a tt Hence,

1 = ( X  ? ?  °apCbqka ^ f  ^ ( n 2- l ) a - v 2) (n2-v 2 ) *

R
e“kap2^i+v ê“ktq2^1“’);̂ d(idv

The Gaussian quadrature mesh is then set up and the integrand 
is evaluated at each point and summed with the necessary weighting 
factors to give the required value for the integral* Further 
details are given in appendix one*

The two-electron integrals can be written in the form

K  <iWp a);r-Xq (2)Xq (2) * ^  = $vp(2)Xq (2)Xq (2)*r_, (xi.50) 

where Vp(2) = *)Xp ( l ) X p  (1 1 .5 1 )

In (H*51) the integration over the coordinates of electron 
1 yields a known function of the coordinates of electron 2.



These potential functions for the constituent STO*s are tabulated 
in the paper of Barnett and Coulson [54], The integral 
evaluation is then similar to that given for the overlap integrals

2.5* Evaluation of the Multicentre Integrals by Approximate
Methods.

In the above section it was mentioned that the multicentre 
integrals which arise in LCAO MO SCF theory are difficult to 
evaluate accurately. In the present work three approximate 
methods for the evaluation of these integrals are compared: 
the Mulliken method, and L5wdin*s simple and improved methods.

The Mulliken approximation (MA) is very simple and has the
form

< ) £ $  * 2 s ip [<}£x£l + ( ] (11.52)

i.e. a bicentric charge distribution is replaced by the weighted 
sum of two monocentric distributions. Its application to a four 
centre two-electron integral gives

( X *  ) * K d Sp q C W V YJq 1 (II-53)
where the simplified nomenclature for a two-centre coulomb integral,
Y . , is used, ab’

Tab " < W l s  ixgxg) (H.54)
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As far as can be ascertained, the MA has been used in this 
form in nearly all applications to date. In the present work 
it has been used rather carefully. Ruttink [55] found that 
different results were obtained for some molecular properties in 
a molecular calculation invoking the MA* Bearing in mind Fople 
and co-worker*s [21] invariancy requirements in CNDO theory, 
Ruttink [55] investigated the invariancy conditions for two multi­
centre integral approximations. He found that when the Rudenberg 
[37] approximation is used the results of LCAO MO SCF calculations 
are invariant to orthogonal transformations of the AO basis set.
He also found that the MA itself is not invariant and pointed out 
that for (11.54) to be invariant it has to take the form

♦ K j V  TAC+YAL+YBC+YBD ] (II-55)

where the values of T _ etc*, are invariant to changes in theAC
corresponding orbitals caused by an orthogonal transformation*
To obtain this invariancy he suggested taking averages of the two- 
centre coulomb integrals

nA nC
v  ■ 4 ; ?  I  v  < n - * ’

In the present work the use of an invariant Mulliken
approximation (IMA) will be considered. However, it seems likely
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that such invariancy procedures are of dubious value. These 
methods yield often totally unrealistic values for integrals and 
it is quite possible that the MA may be closer to physical reality 
than the IMA# That is what is chemically important • A similar
viewpoint to this was in fact made by R. R, Hart in a discussion 
immediately following Fople and Segal*s work [22], It is really 
the experimental observables and the total wavefunction which must 
be invariant under orthogonal transformations of the basis set and 
not necessarily the integral approximation itself. However, the 
balance between mathematical rigour and integral reality needs 
much more investigation. An evaluation of the effect of using 
the IMA and MA, on the molecular properties of HCN, is presented 
in If.l,

The second method used in this work is Lftwdin*s first 
approximation [38], hereafter called the partial LOwdin approximat­
ion (FLA). It has a similar form to the MA and is also quite 
simple to apply. It is written as

The basis of this method recognises that an equi-partitioning 
of the overlap charge, as used in the MA* is not realistic in a 
heteronuclear system.

(11.57)



Mulliken Approximation Iowdin Approximation

It is obviously better to divide the charge asymmetrically* 
The asymmetrical partitioning suggested by Lowdin has the 
additional advantage of preserving the orbital bond dipole moment* 
If the centroid of the normalised overlap charge, measured from 
the left hand atom A, is defined thus

then the overlap charge is shared between nuclei A and B in the

x (11.58)

R~OC Xratio r - , respectively* R K
H1 and n2 in (11*57) are then given by

x XAB
—  S  ■ ■ (11.59)

and 1 (II.60)

In order to use this approximation it is necessary to 
evaluate the dipole moment integrals for each bond orbital pair.



These integrals are obtained in an analogous manner to the split 
nuclear attraction integrals mentioned in the last section, but

The third method to be investigated is Lbwdin's improved 
method hereafter referred to as the full LSwdin approximation
(FLA)* The PLA like the MA is not invariant to orthogonal
transformations of the AO basis set, but the FLA, like the Ruden- 
berg method which it resembles, is invariant. This invariancy 
arises out of* the formulation and is not enforced unnaturally. 
Consequently it is expected to be a better method than any of the 
others described so far. The FLA takes the form,

where a runs over all orbitals having principle quantum number 
equal to or less than that of i; X^ and X^ are not equal to

the operator is now the coordinate z., measured from A, ratherA
than the operator i •

A

and (î  respectively, but they are again chosen to reproduce the 
orbital bond dipole moment. Since

the expression for X^ is as follows:
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B x X i * X P - o$uAoft
"2 ’ l o £ | s A IX*)sap -  I < X ^ A l $ s bi (II'62)

X^ can then be derived since

= 1 - *2 (11.63)

The evaluation of X^ and X^ also requires the bond dipole 
moment integrals. X^ and X^ are also more tedious to evaluate 
than |î  and In any calculations using the integral approxim­
ations described above it is expected that the relative ordering 
of accuracy would be

ab initio > FLA > PLA > MA > IMA.
A detailed investigation of these approximations is presented 

for HCN in chapter four.

2.6. Calculation of the MO's and their Energies.
—FThe one-electron MO energies are the eigenvalues of the h

matrix corresponding to the minimum energy, and are obtained by 
-Fdiagonalising h •

P f u  * e (11.64)

— F  . —The components of the eigenvectors of h are contained in U
whose columns are therefore the various MO LOAO coefficients of both



occupied and virtual MO*s. The AO coefficients in the natural 
basis are obtained by performing the transformation

? = (11.65)

The ordering of the one—electron energies is very interesting 
and important especially when they are obtained from an approximate 
calculation. They are very sensitive to integral approximations 
and may even change their relative order when compared with a 
completely ab initio calculation.

An interesting property which may be obtained from the 
orbital energies is the first ionisation potential of the molecule. 
By Koopman*s [56] theorem, the lowest energy ionisation potential 
is the negative of the highest occupied e^. Koopman*s theorem 
has been more widely applied, often without justification, for 
calculating higher energy ionisation potentials. Also the anti­
bonding MO*s are frequently used as approximations to excited 
state orbitals in a configuration interaction calculation: a
procedure which assumes there is no reorganisation of the orbitals 
after excitation.

There been a recent reinterpretation of Koopman*s theorem 
by Newton [57]. It turns out that the theorem is much more 
general than was originally thought. He concludes that the ground 
state is stable under any one-electron excitation obtained by 
removing an electron from the ground state of the un—ionised system.
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2.7. Evaluation of Molecular Dipole Moment.
For molecules represented by a Slater determinant composed of 

doubly occupied LCAO MO's, 0^, where

- X*P VP *
as given in (11.12), the component of the molecular moment along 
the internuclear axis z, with origin on the left hand atom 
(See 3*3)» can be expressed in a.u.*s as

-  T Za za (II*66)i a
By substituting (11.12) in (11.66) and defining

V  = J X P 2 \  dV (II*6?)

then, u = 2 tr EX - Y  Zn z (11.68)Z ** ** *•> ■ GL Ua
= y  p x - y  z zn (11.69)pq qp a apq ^  a

tr EX is composed of one—centre and two—centre terms, and the one- 
centre terms, particularly the (2sIz I2z) integrals, give rise toCL
an atomic dipole contribution to the molecular dipole0

For ionic systems, e.g. CN~, the dipole moment depends on the 
origin of the axis reference frame and care must be taken over the 
choice of origin when making comparisons with other work.



50

2.8. Population Analyses.
The spinless one—electron density function is expressed in 

terms of R and the basis set A0*s as follows;

V 1) = 2 Z  Z  Xi (1) X, (1) B. (11.70)
i a J

Now ^P^(l)dv = n, the number of electrons in the system

n = j Z Z X ,  (1) X, (1) P., dv
i j J J

• = Z I P±1 J Xi (1) X, (1) dvx .i J 0

= Z  IP,, S.. (11.71)
i j 10 10

Since S is symmetric

n = Z  CBS).. = tr PS (11.72)  111

(11.71) can be partitioned however to yield more interesting 
results.

11 - p i i  Sii + ^ Pi3 "id (II*73)

The electronic charge in the system has been subdivided into one— 
and two—centre terms: Q.. = P.. is a partial atom population andTil i i
0. . = P. . S. . is a partial bond population. If is summed ■ij xq 13
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over all orbitals on sin atom, the result is the atom population
Similarly is termed the bond population* In order to

perform the population analysis, the Is and 2s AO*s on an atom 
must be orthogonal*

There has always been a desire to represent the electron 
density in a molecule by point charges situated at the nuclei;
i.e. the gross atom charge densities. This is achieved by re­
placing the bicentric overlap charge distribution X* (1) X*(l) byJ
two monocentric charge distributions associated with the two atoms 
involved in the bonding.

Historically the first method was given by LBwdin [23] using 
a completely orthogonalised basis setj i.e. S.. = 5... In this 
case the gross atom charge densities, q , are given by

CL

qa = 7  Pi±  ( I I  .7k)i€a

This method has had little usage since it is difficult to 
accept the q^ as representing an atom charge since AO*s on other 
nuclei are mixed in to achieve the required orthogonality.

Mulliken»s method [if7] has had much wider application. The
overlap density X^(l) Xj(l) approximated by (1.6) and the
gross atom charge densities are obtained by substitution into 

(11.70).
qa  = Qa* +  X  X  si3 < n - T O >a 0X1 it a j/i 13 3
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The main objection to this type of population analysis is
that the overlap densities X^(l) Xj(l) are apportioned equally to
each atom c o n tr ib u t in g  th e  AO's X^ and , a s i t u a t io n  which m ight

only be true in general if the AO's X^ and Xj a1*© of a similar
size and symmetry.

The method recently proposed by Doggett [if9] eliminates this
criticism since the overlap densities are apportioned between the
two atoms according to the asymmetric bond parameters |-î and
defined in (1.9) • If the value of |î  for each orbital bond pair
X- (1) X-(l) denoted by |i. i.e. an element of the bond ^ 3 3
asymmetry matrix n, then the contributions to the gross atom 
charge densities on the atoms a and |3 from each diatomic overlap 
density are given by

(1 - u. .) P. . S. . for a and*1.3 i3 13it a jC-p

Z  Z  for p where pit a jtp
is the right hand atom.

The gross atom charge densities are then obtained by summing 
up all these diatomic contributions along with the atom population 
itself. This method is hereafter referred to as the Doggett I 

method.
The fourth method is similar to the last one given above
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except that the bond asymmetry parameters are now given by the 
X̂ _. elements of the full LOwdin bond asymmetry matrix, X; i.e. the 
overlap density X^l) X ^ 1) has been replaced by the FLA as given 
in (I.10)• This method is hereafter referred to as the Doggett 
II method.

Although it is unrealistic to represent the three-dimensional 
electron density distribution of a polyatomic molecule by a number 
of point charges, situated at the atomic nuclei, it is intuitively 
felt that they may have some relative meaning when discussing 
trends in charge distribution along a series of molecules. For 
example, Doggett [49] has shown this to be so in a series of first- 
row diatomic hybrides. Certainly, a method which yields gross 
atom densities capable of reproducing the calculated dipole moment 
of the molecule, providing atomic dipoles are also included, must 
be more acceptable than a method which does not have this property.

The relative ease of performing the population analyses must 
be considered as an important point also. The LOwdin method is 
slightly easier to perform than the Mulliken and Doggett I methods 
which are in turn easier to perform than the full LOwdin variation 
of Doggett*s method. Comparing the two methods which preserve 
the bond dipole moment there is no question that the Doggett I 
method is far easier to apply than the Doggett II modification, 
and since both methods must yield the same dipole moment, the 
Doggett I is always used in preference to the FLA modification for
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this purpose.
If it is shown, however, that the FLA to multicentre integrals 

is superior to the PLA, it could he argued that the FLA gives a 
better approximation to the division of the overlap densities 
between the atoms. It would, therefore, be expected in a 
population analysis that the gross atom charge densities from the 
Doggett II method might be superior to those of the Doggett I 
method.

The four methods described above are compared in more detail 
in chapter four*

2.9. Pictorial Representation of the One-Electron Density Function.
For a closed shell molecule, the spinless one-electron density 

function is given in terms of the occupied real MO*s by [11]

(11.76)

and since 0^(1) 
NAO's by

P
, P^(l) is given in terms of the

2

(11.77)
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The drawing of contour diagrams gives a simple visual picture
of the electronic structure of the molecule under investigation*
The method used in the present work differs from other cases in
that the diagrams were plotted by hand and not on a computer
controlled graph plotter*

The electronic probability density is evaluated at each point
on a variable mesh superimposed on the xz plane of the linear
molecules* Since they possess cylindrical symmetry, rotation
about the internuclear z axis would give the 3D situation*

From the table of electron probability densities, in units of 
3electrons/a.u. , P^(l) is displayed by drawing selected contours

of constant density, and it is a simple, though tedious matter of 
interpolating between the grid points to obtain the position of 
the required contour. Ransil and Sinai lk5l call these plots, 
p diagrams orp maps* They also define p  profiles which are plots 
of the electron probability density along a selected molecular 
axis which is often an internuclear axis. These profiles show 
in relief the charge density maxima and minima along the chosen 
axis* Ransil and Sinai also define Lp diagrams and hp profiles 
which are analogous plots to p diagrams and p profiles for a 
difference electron density which can be defined as

(11.78)
If necessary, dummy rows and columns of zeros are added to
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P* to give it the same ordeh as P. In most situations the density 
function being subtracted is given in terms of the same AO basis 
set e.g. as with PHCN- PCN".

These difference diagrams are very useful since they show 
immediately how the charge density has rearranged between two static 
molecular systems or situations. The results of the present work 
are presented in terms of various P and AP diagrams and profiles 
in chapter four in an attempt to elucidate trends of charge transfer 
among related molecules.
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3.1. Units#

Unless otherwise stated, all numerical values quoted in this 
thesis are in atomic units (a.u.). Dipole moments are quoted in 
Debye units. In obtaining the numerical values of the a.u. 
conversion factors, use was made of the values of fi and e given 
by Cohen et al [58]*

—27fi = 1.05¥f3 x 10 erg. sec.
e « if.80286 x 10 ^  esu.

—28Using the value for m of 9*1083 x 10~ gm., the atomic unit of 
distance, aQ, was calculated from the relationship

—12Using the energy conversion factor leV = 1.60206 x 10 erg., the 
atomic unit of energy was evaluated as e2/aQ.

The numerical values of the units obtained are

-8la.u. of distance ■ 0.529172 x 10 cm.
la.u. of energy * 27.20963 eV.

The conversion factor for dipole moments from a.u.s to Debye 
units is

la.u. « 2.5^16 Debye.
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3.2. Choice of Nuclear Configurations.
The equilibrium internuclear distances for XCN molecules used 

in this thesis are the microwave values reported by Tyler and 
Sheridan [5]. The results for X = H,F are given in Table III.l 
in both A and atomic units.

Table III.l.
(

Equilibrium Internuclear Distances for HCN and FCN.
HCN FCN

Internuclear
Distance A a.u. A a.u.

N - C 1.155 2.1826551 1.159 2.190211*1
C - X 1.063 2.0087986 1.262 2.38lf8578

However, to simplify comparisons between the XCN systems, the
C - N distance in CN~, HCN and FCN is chosen to be 1.159A. Future
calculations on the molecules ClCN, BrCN and ICN would then be open 
to direct comparisons since the C ~ N equilibrium distance of ClCN 
and ICN is 1.159A and in BrCN is I.I58A C5U•

Calculations are performed at five different internuclear 
distances of C - N in CN , of C — H in HCN and of C — F in FCN.
The distances used are given in a.u.s in Table III.2.
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0&bleIII^2.

Internuclear Distances used in Calculations•
Calc. 
No.

C - N distances 
in CN~

C - H distances 
in HCN

C - F distances 
in FCN

1 1.8000000 1.6000000 2.0000000
2 2.0000000 1.8000000 2.2000000
3 2.1902141 2.0087986 2.3848578
4 2.4000000 2.2000000 2.6000000
3 2.6000000 2.3848578 2.8000000

In addition, four calculations on HCN, each utilising a 
different multicentre integral approximation, were performed at 
the internuclear distances chosen by McLean [If]: namely
Rch = 2.000 a.u. and R ^  = 2.187 a.u.

3*3« Molecular Axis Convention.
!fhe electronic structure calculations are performed with the 

molecules oriented so that nitrogen is always the left hand atom. 
All the local z axes are taken in the same direction along the 
internuclear axis. The z axis on N is directed towards C, and 
the origin is taken at N when required, for example, in the 

calculation of the dipole moment.
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3»b» Atomic Orbital Indexing.
The AO numbering is shoton in Table III.3 below. The 

ordering of the indices is governed by two rules.
a) All AO's of a given symmetry on any atom are indexed

sequentially.
b) The atoms are indexed sequentially from left to right.

Table III.3*

Atomic Orbital Indexing for HCN and FCN.

type. HCN Indexing. FCN Indexing.

N C H N C F

Is 1 b 7 1 b 7
2s 2 5 2 5 8

2pz 3 6 3 6 9

2px 8 9 10 11 12
2p 10 11 13 1* 15
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3*5* Atomic Orbital Basis Functions in Real form.
Because Clementi quotes his double-zeta functions to only 

five decimal places, the normalisation and orthogonality integrals 
are only accurate at best to this level* Since there is no point

values have been extended to values which yield normalisation and 
orthogonality integrals accurate to eight places of decimals.
To this end, the orbital exponents given to five decimal places 
are assumed exact and normalisation and orthogonalisation are 
performed by adjusting the orbital coefficients*

The double-zeta AO*s are first normalised exactly, and the 
normalisation constant, N is given by

of which the double-zeta AO*s are composed, and the c^ are the 
STO coefficients. The normalised coefficients for the Is AO are 
then given by

Is . Is 
ni = A o i

where A is the appropriate normalisation constant. The ortho­
gonality between the Is and 2s AO*s is extended to eight decimal
places by performing a Schmidt orthogonalisation. If B is the

• 2snormalisation constant for the 2s AO and if the m^ are the

in introducing any unnecessary error into the integrals, Clementi»s

where S. . is the overlap integral between the STO's %. %  •i j ^  3
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normalised coefficients where

2s 2sm.i

then the orthogonalised 2s AO coefficients 9 Z^S» 31,6 given by

where x

These extended values are listed for C, N and F in Tables III.If, 
III.5 and 111*6 respectively.

The orbital exponent for hydrogen was taken as 1.0*

3o6. Accuracy of Calculations*
The molecular electronic structure calculations were regarded 

as having reached self-consistency if a given number of cycles had 
been completed or if the modulus of the difference of two 
successive electronic energies was less than a given tolerance*
In this work initial runs were made using a tolerance of 
and an upper limit of fifty or sixty cycles* For CN and HCN it 
was found that in production runs a tolerance of I^q-? or 1^-8 
was possible with the limit at sixty cycles. In the case of 
FCN a tolerance of 1 ^ —5 was roughly equivalent to a limit of
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fifty cycles. To obtain convergence to a tolerance of ll0“7 or
I^q"^* one hundred cycles were required. A AP diagram is presented
in chapter four showing the difference in the electron density
distributions of FCN in taking convergence at fifty cycles and one
hundred cycles* The contours are all small in magnitude, being
roughly two orders of magnitude less than the contours in the FCN
P diagram# It can be seen that a reasonable representation of the
electron density is obtained even after fifty cycles.

In the Jacobi diagonalisation procedure, the off-diagonal
elements were required to be zero to a given tolerance. The
values 1. -7 or 1,^-8 were used in this work.10 10

When applying equation (11.23) any improved R is regarded as
2 2being idempotent if the quantity tr(R H£) < tol where tol is 

some specified tolerance. In general a value of not less than 
1^q“7 was used in this work. It is possible, however, that in 
favourable cases where the deviation from idempotency is small, 
it is immaterial what value is chosen as all would probably be 
satisfied at the first idempotency cycle.

3.7« Contour Diagrams.
It is found that, in general, a mesh of O.la.u. is sufficient 

to accurately represent P contour diagrams. Occasionally, it is 
necessary to decrease the mesh to values such as 0*01f&*u. or 
0.023a.u., in order to throw into relief small areas either of
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rapidly varying electron probability density near the nuclei, or 
of uncertain contour direction* This is especially true for AP 
contour diagrams*

In calculating difference electron densities the orders of 
the two g matrices being subtracted must be compatible* Where 
the orders are not equal rows and columns of zeros are added to 
the matrix of smaller order hntil the orders are identical*

The electron probability densities are evaluated only for 
positive x ordinates in the xz plane since the molecules have 
cylindrical symmetry* To standardise the plotting of the 
contour diagrams for easy comparison, the starting z abscissa is 
always taken as -2*0a.u* where the N atom is the origin* The 
final abscissa depends on the molecule but is always at least 
2*0a*u. beyond the second or third atom*

3*8* Computation Times*
The total computer calculation times shown in Table 111*7 are 

for complete calculations making no use of previously calculated 
quantities* The times quoted in minutes are partitioned to show 
the relative times of the three main sections:
a) the evaluation of the integrals and the setting up of the

integral arrays*
b) the SCF energy minimisation (for a tolerance of h o ” '

c) the evaluation of molecular properties and contour diagrams*
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Section a) is also subdivided to show the exchange integral 
evaluation times on the Atlas computer*

Table 111*7.
Sample Calculation Times for CN~, HCN and FCN.

Integral Molecular
Evaluation SCF Energy Properties and

Molecule KDF9 ATLAS Minimisation Contour Diagrams Total
CN~ 9 10 10 7 36
HCN 18 12 25 9 6b

FCN 23 30 50 lb 117

By making use of previously evaluated integrals, for example, 
in performing the varied internuclear distance calculations in FCN 
and HCN, it is possible to save a certain amount of computer time: 
Ilf minutes for HCN and FCN* Also when performing the calculations 
with various multicentre integral approximations an even greater 
saving in time results for the second and subsequent calculations: 
23 minutes for HCN and lf2 minutes for FCN*



69

C H A P T E R  F O U R

R E S U L T S  A N D  D I S C U S S I O  N



70

4«1. Comparison of Multicentre Integral Approximations for HCN.
In this section, the results of four molecular electronic 

structure calculations, using best atom AO’s in a minimal basis 
set, are presented for the molecule HCN at the equilibrium 
configuration used in McLean’s 1962 accurate calculation [if].
The four calculations differ from McLean’s calculation in that the 
three—centre integrals are evaluated by four different multicentre 
integral approximations. In calculation IMA the invariant 
Mulliken method is used; in MA the ordinary Mulliken method; in 
PLA the partial Ldwdin method; and in FLA the full LSwdin method is 
used. These four calculations are compared wherever possible to 
McLean’s accurate calculation designated as MCL. The effect of 
introducing the sole approximation of the multicentre integrals 
into an ab initio calculation can thus be evaluated.

Additional comparisons are made where possible with the work 
of M.P. Melrose [59] who attempted a calculation similar to the one 
designated in this work as the MA i.e. using the ordinary Mulliken 
approximationo

A comparison of various calculated molecular properties is 
given in Table IV.1. The first point to be noted from this 
table is that the use of a multicentre integral approximation 
apparently lowers the total energy relative to the ab initio value. 
This is somewhat surprising since it was expected that, as the 
integral approximation became less rigorous, the energy would rise
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further above the ab initio value.
After further consideration it was realised that when sin 

integral approximation is invoked the effective Hamiltonian no 
longer represents the molecule accurately, and there is no theorem 
which states whether the resultant energy will be above or below 
the ab initio value. It can also be seen from Table IV.1 that 
as the integral approximation^ becomes more rigorous the energy 
approaches the ab initio value from below. Further to this it 
would seem that, if the total energy is used as a criterion of 
accuracy, the full LOwdin method is the best of all the approximates 
as it gives a total energy within 0.05# of the ab initio value. It 
is also interesting to notice that the simple Mulliken method, 
although not invariant, is a slightly better approximation on the 
basis of total energies, than the IMA.

However, the PLA reproduces -2T/ty and ji more satisfactorily. 
This is significant as E may not be the best criterion; it is 
important to obtain other molecular properties correctly as well.

Table XV.2 contains a comparison of the one-electron MO 
energies for all five methods. Also included are the e *s from 
Melrose*s two calculations MB41 and MFM2. Table TV.2 again shows 
the improvement obtained over the Mulliken approximation by the 
LBwdin methods. If the MO energies are used as a criterion of 
accuracy, the PLA would appear to be better than the FLA or the 
Mulliken methods. However, two points should be noted which are
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not quite so obvious* Firstly, the two orbital energy gaps, 
defined in the table are slightly better represented by the FLA.. 
Secondly, it can be seen that the MO energies are reasonably well 
represented in all four approximate calculations with the sole 
exception of which appears peculiarly sensitive to the nature 
of the integral approximation* Only in the FLA calculation is 
it reasonably well represented* A discussion of Melrose*s 
calculations is deferred to the end of this section*

In Table IV. 3 a comparison is given of the unique non-zero 
matrix elements of R, and Table IV* b contains the results of a 
Mulliken population analysis of the electron density distribution* 
Table IV* 5 compares the effective atom charges as given by three 
different methods; the Mulliken, Doggett I and Doggett II 
population analyses*

It is difficult to see from Table IV* 3 which of the R 
matrices resulting from the approximate calculations is closest to 
McLeanfs R, but it is clearly seen that the PLA and FLA R matrices 
are closer than the Mulliken R matrices. This is seen most 
clearly in the R matrix elements 88, 89 and 99* However, none 
of the methods appears to reproduce the 35 or 66 R elements to any 
degree of accuracy and this seems to be the main failing of the 
approximate methods* The off—diagonal elements of R, are 
reasonably well reproduced in general*

A similar picture is obtained from Tables IV* b and IV* 5*
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Table IV.?.

R Matrices for Best Atom HCN Calculations.

Indices IMA MA PLA FLA MCL
11 1.005 1.005 1.005 1.005 1.006
12 0.006 0.006 0.009 0.015 0.012
13 -0.028 -0.027 -0.027 -0.028 -0.032
Ilf 0.001 0.000 0.001 0.000 0.001
15 -0.033 -0.034 -0.028 -0.050 -O.O48
16 0.024 0.024 0.024 0.026 0.037
17 0.011 0.014 0.012 0.016 0.009
22 0.857 0.845 0.905 0.952 0.916
23 -0.338 -0.344 -0.507 -0.507 -0.332
24 -0,022 -0.022 -0.027 -0.053 -0.031
25 -0.058 -0.050 -0.055 -0.096 -0.071
26 -0.050 -0.052 -0.052 -0.007 -0.002
27 -0.028 -0.019 -0.021 0.020 0.042
33 0.544 0.537 0.565 0.505 0.522
3k -0.026 -0.025 -0.029 -0.021 -0.032
35 0.247 0.263 0.255 0.309 0.254
36 -0.215 -0.200 -0.210 -0.193 -0.251
37 ^O.l68 -0.185 -0.165 -0.193 -O.068

if if 1.006 1.006 1.006 1.006 1.008

k3 -0.025 -0.022 -0.025 -0.022 -0.025



76

Table IV.3 continued
AO Indices IMA

46 0.003
47 -0.007
55 0.495
56 0.042

57 O.I48
66 0.213
67 0.215
77 0.21*1
88 0.343
89 0.379

99 O . W

MA PLA
0.002 0.005
-O.OO6 -0.005
0.525 0.486
0.055 0.099
0.1-19 0.132
0.219 0.231
0.224 0.212
0.239 0.191
0.348 0.359
0.380 0.380

0.415 0.403

FLA MCL
-0.001 0.007
-0.005 -0.018
0.524 0.366
0.089 O.O64
0.080 0.167
0.247 0.344
0.234 0.213
0.223 0.183
0.374 0.366
0.381 0.381
0.388 0.396

/
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The PLA and FLA reproduce the results of the population analysis 
on McLean»s results a little better than do the MA or IMA. Of
these first two the FLA is slightly superior to the PLA, in all but
the Doggett II effective atomic charges.

Contour diagrams 1, 2, 3 and k present AP diagrams and 
profiles for the difference electron density between McLean*s 
calculation and respectively‘the FLA, PLA, IMA and MA calculations. 
The contours have quite small values indicating that there is not 
much difference between the approximate wave functions and McLean*s. 
accurate wave function. The profiles also show this quite 
clearly. As a generalisation, a given contour covers a smaller 
area in the PLA and FLA diagrams than it does in the IMA and MA
diagrams. The PLA seems to reproduce the electron density
distribution particularly well in the vicinity of the H atom.
The four diagrams show that the effect of the multicentre integral 
approximations is to take electronic charge away from the region 
of the atoms and deposit it in the bonds. The only significant 
difference among the four diagrams is that the FLA method has 
deposited charge in the region normally thought of as the N lone 
pair, whereas charge is depleted from this region in the other 
three methods.

The result of this evaluation indicates that the full and 

partial LOwdin approximations to the three—centre integrals lead 
to results which are a significant improvement over those obtained
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by the Mulliken approximation. In addition, they reproduce the 
molecular properties of an accurate calculation to a reasonable 
degree of accuracy.

In Table IV. 2 the one-electron MO energies of Melrose*s [59] 
Mulliken approximation calculations were presented. MPMl is 
directly comparable with the MA calculation. In the MTM2 calcul­
ation accurate three-centre 6ne-electron integrals were used. It 
is seen that the e *s bear little relationship to the values 
obtained by any of the other five calculations. The most serious 
discrepancy is that the 5cr MO has a higher energy than the Itr MO 
and the resulting first ionisation potential is seriously in error. 
This inaccuracy is also reflected in the total energies and in 
effective atomic charges. The total energies for the MFMl and 
MFM2 calculations are respectively -92.5007a.u. and -93*1033a.u. 
Both Melrose*s calculations predict that H is very negatively
chp'ged; -0.64 in MPMl and -2.40 in MPM2. Also the pi electronic

/

charge is polarised excessively in the direction of N. The trends 
become even more extreme in the MPM2 calculation.

Melrose does not rule out the possibility of an error in his 
calculations but he believes them to be correct and he blames the 
Mulliken approximation as the cause of the poor results. It is 
felt that the MA calculation reported above throws some doubt sis to 
the correctness of Melrose*s calculations especially when taken in 
context with the closeness to McLean*s results of sill the integral
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approximation calculations presented above. The rigorous testing 
carried out on the computer programs, which is discussed in chapter 
five, is an additional verification of the MA results.

It is possible to go further, as it is doubtful if even errors 
in Melrose*s molecular integrals would cause such drastic results. 
There are four main failings in the MPMl and MPM2 calculations; 
namely, too low an E; the transposition of the 50" and lirMO's; 
the very negative H atom; and the excessive polarity of the pi 
electronic charge. It has been the experience of this work that 
exactly these four symptoms are obtained if there are errors in the 
method of forming the G matrix.

ft*

)
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4*2. Molecular Electronic Structure Calculations on CN~.
In this section, results are presented for molecular electronic 

structure calculations performed at five internuclear distances 
of C-N, in CN , as given in chapter three. A minimal basis set 
of double-zeta AOfs is employed and all integrals are evaluated 
accurately.

A comparison of the various calculated molecular properties
is given in Table TV.6. This table shows how the molecular
properties behave as the C-N internuclear separation is increased.
For example, it can be seen that a minimum in the total energy is
predicted somewhere between 2.2 and 2.if a.u., probably closer to
2.4 a.u., and also that the dipole moment increases almost linearly
with increasing nuclear separation. The dipole moments are all in
the direction C - N ,  and the origin is taken at N.

Figures IV.l, IV.2 and IV.3 respectively, show the trends in
E.vii and -2T/V as R„„ varies, in more detail. From figure IV.l 

) NC CN
the predicted minimum energy at an internuclear separation of 2.32a.u.
is -92.17a.u. Figure IV.2 shows that the variation of ̂  with
R_.r is indeed almost linear.CN

A least squares fit of the variation of E with R^, to the 
parabola y = ax^+bx+c yields a minimum E of —92.18149 a.u. at an 
equilibrium R of 2.3*f& a.u.

Table IV.7 contains a comparison of the one-electron MO 
energies for all five distances and includes, G, twice the sum of
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the bonding MO energies to see whether G also has a turning point 
within the range of R under study.

In figures IV .J f and IV*3» the variations of G, and the e *s 
respectively, with R are shown. It can be seen from Table IV.7 
and figures IV.if  and IV.5 that G and all the bonding MO e*s, with 
the exception of the ifO' MO, are lowered as the internuclear 
separation decreases and consequently no min im um is predicted by G.

The first ionisation potential by Koopman*s theorem for the 
equilibrium R ^  is about 0.12 a.u. (3*26 eV), This compares 
fairly well with the experimental value of 3*7 - 0.2 eV derived 
from the electron affinity of CN C6o],

The results of a Mulliken population analysis are presented 
in Table IV.8. From the total gross atom charge densities it 
appears that, as the internuclear separation increases, the 
electronic charge is displaced progressively more towards C.
Howeyer, the constituent sigma and pi electronic charges are

✓
displaced in opposite senses. Pi electronic charge is displaced 
from C to N, but this is overcompensated by the sigma charge 
displacement from N to C. The atom and bond populations show a 
similar trend. For example, the o'bond population increases as 
the rr bond population decreases. There is no real indication of 
how CN~ would dissociate although it appears from the above to be 
tending to dissociate to N and C • However the trend is 
ri-infrirngVnng by 2.6o a.u. and it may well reverse further out.
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Table IV.8.

Mulliken Population Analysis of CN~ Electron Density.

Gross Atom Charge 
R ^  Atom/Bond Populations. Densities.

N C NC N

sigma 5.276 4.605 0.119 5.555 4.665
1.80 Pi 1.702 1.057 1.261 2.552 1.668

total 6.978 5.642 1.580 7.667 6.555

sigma 5.141 4.587 0.272 5.277 4.725
2.00 Pi 1.767 1.084 1.149 2.541 1.659

total 6.908 5.671 1.421 7.618 6.582

sigma 5.061 4.589 0.550 5.256 4.764

2.19Q2141 Pi 1.854 1.124 1.042 2.555 1.645
total 6.895 5.715 1.592 7.591 6.409

sigma 5.002 4.604 0.595 5.199 4.801

2.40 pi 1.910 1.162 0.929 2.574 1.626
total 6.912 5.766 1.522 7.575 6.427

sigma 4.964 4.625 0.411 5.170 4.850

2.60 Pi 1.982 1.195 0.825 2.594 I.606

total 6.946 5.818 1.255 7.564 6.456
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A comparison of the effective atomic charges as evaluated by 
the Mulliken, LOwdin, Doggett I and Doggett II population analyses 
is given in Table IV* 9«

As noted by Cusachs and Politzer [if8] in a slightly different 
context, the Mulliken and LBwdin methods lead to opposite results 
and trends, as electronic charge appears to be displaced from C to 
N as the internuclear separation increases* The trend of the 
Mulliken and Doggett I methods is similar but it is seen that the 
Mulliken method underestimates the polarity of the CN bond because 
it does not partition the bond charge density according to the bond 
dipole moment* The Doggett H  method exaggerates this polarity 
even more but also finds a minimum in the N electronic density*

The one-electron density functions P^(l) corresponding to the 
wave functions for the five CN calculations are shown in pictorial 
form in Contour Diagrams 5* 6, 7* 8 and 9* Also, the total
electron probability density distribution of 7 is divided into its

/

constituent or and tt distributions which are shown in the upper and 

lower halves, respectively, of Contour Diagram 10*
P diagrams 5 to 9 show that as the C - N internuclear 

separation increases the probability density decreases in the 
vicinity of the N atom and in the bond* This is particularly
well seen by comparing the 0*4 contours* It is not quite so
easily seen that* this charge is building up on to the C atom, but 
by careful examination of the 0*1 contour above and to the right
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Table IV. 9*

Effective Atomic Charges for CN •

rcn Mulliken LOwdin Doggett I Doggett 3

1.80 N -0.667’ -0.422 -0.859 -1.040

C -0.333 -0.378 -0.141 •+0.040

2.00 N —O.618 -0.440 -0.715 -0.853

C —O.382 -O.560 -0.285 -0.147

2.19021^1 N -0.391 -0.456 -0.644 -0.775

C -0.409 -0.544 -0.356 -0.225

2*40 N -0.373 -0.476 -0.601 -0.772

\/ C -0.427 -0.524 -0.399 -0.228

2.60 N -0.364 -0.492 -O.58I -1.315

C -0.436 -0.508 -O.419 40.315
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of the C nucleus this trend is clearly visible. Also, from the 
P profiles of Contour Diagrams 5 to 9 it is seen that the electron 
density in the bond is polarised towards the N atom: a fact which
is in agreement with simple electronegativity ideas.

It is seen, therefore, that the general trends predicted by 
the population analyses are correct. It shows, in particular, 
that the Lowdin method gives-the wrong trend as opposed to the 
Mulliken method which is in agreement with the trends displayed in 
the contour diagrams. It is felt that this goes a long way to 
answering the question as to which, if any, of these two methods is 
to be preferred. Cusachs and Politzer posed this question but were 
unable to answer it from the results of their work.

The trends of the Doggett i and Doggett II methods are 
generally in agreement with those of the contour diagrams.
Although no significance can yet be definitely attached to the 
absolute)magnitudes of the effective charges of any of the four 
methods, the Doggett I and Doggett II values must be preferred 
since jut can be reproduced from them.

A comparison of P diagrams 7 and 10 shows how the o' and tt 
probability densities combine to give the total density. It can 
be seen that the or electron density is more contracted around N 
than around C. The build up of or electronic charge between the 
atoms is also clearly seen. The tt electron density is polarised 
more towards N as predicted by the Mulliken population analysis,
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but again only the trend is probably of any use and not the absolute 
values.

Table IV. 10 contains a comparison of the results of this work, 
using Rcn = 2.19a.u., with the recent work of Bonaccorsi et al [6l] 
who used a minimal basis set of best atom A0*s at an internuclear 
separation of 2.l8a.u. Although these internuclear separations 
are close enough for a direct comparison, the middle column shows 
the double zeta results for 2*l8a.u. obtained by interpolation from 
figures IV.l to IV.5*

As expected, it is seen that the total energy is significantly 
improved by using double-zeta A0*s in the basis set. However, 
the best atom calculation gives a poor estimate for the first 
ionisation potential in contrast to the calculation using the double- 
zeta basis. Also, the gross atom populations from the best atom 
calculation appear to resemble the LOwdin values for the double- 
zeta calculation rather than the Mulliken values as can be seen from 
a comparison with Table IV.9*

It should be noted that —2T/V is only a valid test of the 
Virial Theorem at the equilibrium internuclear separation, which is 
not at 2.19a.u. From figure IV.3 the value of -2T/V at 2.3*f8a.u. 

is 1.0025*
Finally, for completeness, the R matrix for the CN calculation

with R_„ = 2.Jfa.u. is presented in Table IV.ll.CN
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Table IV.10.

Comparison of Double-Zeta and Best Atom Calculations for CN~.

Interpolated
Double-Zeta Double-Zeta Best Atom

rcn 2.1902141 2.18 2.18

Eel -111.33430 -111.332 -111.1934
E ^92.13809 -92.156 -91.9273
T 92.78333 92.802 92.5726

-2T A 1.00339 1.00345 1.0035
e(lo} -13.22047 -15.22 -15.1791
e(2or) -10.93821 -10.938 -10.8272

e (3cr) -0.90035 -0.90 -O.8167
e(4o") -0.28734 -0.287 -0.2143
e(lTf) -0.16972 -0.171 -O.0807
e (3cr) N -0.12162 -0.123 -0.0359

/
1st I.P.(eV) 3.265 - 0.98

Gross atom 7.591 - 7.4984
population on N 
Gross atom 6.409 _ 6.5017
population on C
UCN (Debye)* 2.23 2.24 I.84

♦These values are relative to C as origin
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k*3* Molecular Electronic Structure Calculations on HCN.
Results are presented below for molecular electronic structure 

calculations performed at the five internuclear distances of the 
C - H bond given in 3*2. A minimal basis set of double-zeta AO*s 
is used and all two-centre integrals are evaluated accurately.
The three—centre integrals are evaluated by two methods: the

Mulliken Approximation made invariant to orthogonal transformations 
of the basis set and the Full LOwdin Approximation.

A comparison of various calculated molecular properties is
given in Tables IV.12 and IV.13* These tables indicate how the
molecular properties vary as the C — H internuclear separation is
increased. A minimum in E is predicted somewhere between 1.80 and
2.0088a.u. for the IMA calculation whereas the FLA calculation
predicts the minimum to be on the other side of the experimental
value, i.e. between 2.0088 and 2.20a.u. but probably closer to
the experimental value. The dipole moment again appears to vary
almost linearly with increasing C - H distance but it can be seen
that the (i *s from the FLA calculations are greater than the IMA HCN
values by about 0.7 Debye. The experimental value of nHCN is 
known accurately to be 3.00 Debye and the FLA again shows 
itself to be superior to the IMA by predicting the dipole moment 

more accurately.
The variation of the total energy E with R ^  is shown in 

Figure IV.6 for each approximation. The IMA is the lower
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curve. As with the best atom calculations on HCN reported in 
if.l. the FLA gives a higher E than the IMA and by the trends shown 
in that section, the FLA value must be regarded as being close to 
the accurate result. From figure IV.6 the predicted equilibrium 
C - H separations are about 2.050 and 1.912 for the FLA and IMA 
calculations respectively. It is to be noticed again that the 
FLA value seems closer to the experimental 2.0088a.u. than is the 
IMA value and also that they straddle the experimental value.

Least squares fits of the variation of E with R to theCH2parabola y = ax +bx+c, yielded an E of -92.89698 at an equilibrium 
R of 1.968 for the IMA calculation, and an E of -92.7kk9k at an 
equilibrium R of 2.086 for the FLA calculation. The situation 
is complicated in HCN by the fact that the C - N distance is 
slightly longer than the experimental value. However, the IMA 
now appears to predict an Rg better than the FLA but both are 
reasonable ̂ or HCN and are within O.O^A of the experimental value.

Comparisons of the one-electron MO energies from the IMA and 
FLA calculations at all five C — H distances are presented in 
Tables IV.11+ and IV.15 respectively. All e*s are lowered as the 
internuclear separation decreases. Both equilibrium configuration 
first ionisation potentials are similar; 15**f3eV for the IMA and 
15.67eV for the FLA. These overestimate the experimental value 
of 15.91eV but this is a common finding in MO calculations. The 
tt bonding — antibonding gap remains almost constant as R ^  varies
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as might be expected since H has no TT orbitals. Certainly it 
would seem that H has little penetration effect on the pi orbitals.

The results of a Mulliken population analysis on the IMA and 
FLA calculations are presented in Tables IV. 16 and IV. 17 
respectively. From the gross atom charge densities of the IMA
calculation it is seen that as R increases, N loses o'electronic

CH

charge to C but gains more if charge to give a net gain in electronic 
charge at N. Meanwhile the gross atom charge density on H goes
through a maximum roughly at the equilibrium This maximumGH
is also reflected in the CH bond population. It is interesting 
to see that although the it atom populations change markedly, the
bond population remains constant at about 1.065* As R increases

CH

electronic charge is lost from the NC bond and compensates for the
decreasing antibonding NH population.

The gross atom charge densities of the FLA calculation show 
\

slightly different trends. The N charge density goes through a
minimum at the equilibrium configuration but this time C loses
slightly more charge overall, and also loses it from both o'and tt
contributions. H is markedly more positive at the innermost ROH
and gains more electronic charge as the C — H separation increases. 
But the most startling difference is that the vr bond polarity is 
the reverse of the IMA calculation.

As far as the bond populations are concerned there is now no
maximum in the CH bond population and the CH and NH bonds
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sigma 
4*937 

3*663 
0.340 

0.468 
0*654 

-0.062 
5*140 

4*224 
0*636

2.3849 
pi 

1*574 
1.363 

0.000 
1.063 

0.000 
0.000 

2.105 
1*895 

0.000 
total 

6.511 
5*026 

0.340 
1.531 

0.654 
-0.062 

7.245 
6.119 

O.636
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progressively gain electronic charge at the expense of the NC
bond# The negative CH bond population at the innermost R isCH
probably a reflection on the unrealistic nature of this inter-
nuclear separation# Another interesting point is that the
bond population is again constant despite marked changes in atom
populations and again has the value 1.065# An apparent anomaly
in both calculations is that the H atom population decreases for
increasing R ^  despite an increasing gross atom density#

A comparison of the effective atomic charges as evaluated by
the Mulliken, LSwdin, Doggett j and Doggett II population analyses
is presented in Tables IV. 18 and IV# 19 for the IMA and FLA
calculations, respectively# The unsatisfactory nature of the
concept of effective charges is apparent from these tables as
nearly every possible combination of trends in the movement of
electronic charge is apparent. There are, however, a few inter­

's
esting points which appear to yield consistent conclusions# 
Whichever population analysis is used it is generally true that the 
IMA calculation leads to a more equable distribution of charge than 
does the FLA calculation# This is particularly well shown in the 
Doggett I population analysis where all atoms are close to neutral­
ity in the IMA calculation# In contrast to the case of CN , the 
Mulliken and LSwdin methods appear to overestimate the charge 
separation between the NC and H molecular fragments, compared with 
the Doggett I and Doggett II methods# This phenomenon can again
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Table IV.18.

Effective Atomic Charges for IMA HCN Calculations.

Mulliken. Lowdin. Doggett I. Doggett II,

N -fO.Oll 40.108 40.003 40.055
C -0.254 , -0.212 40.071 40.445
H 40.243 40.104 -0.074 -0.500

N -0.002 40.082 40.005 40.032
C -0.230 -0.201+ 40.026 40.020
H 40.232 40.122 -0.031 -0.052

N -0.018 40.054 40.002 40.014
C -0.209 -0.194 -0.014 -0.115
H 40.227 40.140 40.012 40.101

\
N -0.034 40.032 -0.003 0.000
C -0.194 -0.190 -0.045 -0.170
H 40.228 40.158 40.048 40.170

N -0.051 4O.OI6 -0.010 -0.014
c -0.182 -0.190 -0.070 -0.198
H 40.233 40.174 40.080 40.212
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Table IV.19.

Effective Atomic Chargeis for FLA HCN Calculations1 •

ech Mulliken Ldwdin Doggett I Doggett ]

N -0.295 -O.O80 -0.166 +0.022*
1.60 C -O.285 1 -0.136 -0.205 +0.191

H +0.580 +0.216 +0.371 -0.215

N -0.252 -0.086 -0.139 -0.039
1.80 C -0.198 -0.128 -0.052 -0.010

H +0.2*50 +0.212* +0.191 +0.02*9

N -0.22*2 -0.100 -0.133 -0.070
2.0088 C -O.I56 -0.126 -0.039 -0.120

H +0.598 +0.226 +0.172 +0.190
\VN -0.2if2 -0.110 -0.131f -0.089

2.20 C -0.153 -0.128 -0 .02*8 -0.167
H +0.375 +0.238 +0.182 +0.256

N -0.22*5 -0.122* -0.138 -0.103

2.385 C -0.119 -0.128 -0.062 -0.191
H +0.362* +0.252 +0.200 +0.292*
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be attributed to the poorer partitioning of the overlap population 
in the Mulliken method. A direct result of this is that the 
Mulliken method never admits the somewhat surprising negative 
hydrogen atom density exhibited by the asymmetric partitioning 
methods for both the IMA and FLA calculations. Chemically it 

would be surprising if H was not positively charged at the HCN 
equilibrium configuration but there is nothing to say what its 
polarity should be when it is closer to the C atom. Indeed, 
because of the more realistic partitioning of the overlap populat­

ion, the Doggett I and Doggett II results should be more satisfact­
ory.

Generally as R increases N gains electrons but the Doggett I CH
method for both calculations and the Mulliken for the FLA calculation

have the N effective charge passing through a minimum. There is

a sharp division in the trends shown for C by the asymmetric

partitioning methods and the Mulliken and LSwdin analyses. The

latter two methods generally predict that C loses electronic charge

as R increases while the Doggett I and Doggett II methods predict CH
a gain or, in one case, a minimum value for the electronic charge 

associated with the C atom. There is no general trend obvious 
with respect to the gross atom charges on H. For the IMA 
calculation the Mulliken population analysis predicts that H just 

goes through a maximum of electronic charge while the other three 

predict that it loses electronic charge as the CH distance increases.
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The same trend is shown by the Doggett II and the L8wdin analyses
for the FLA calculation. The Mulliken analysis gives exactly the
opposite trend; namely, that H gains electronic charge as the CH
distance increases, while the Doggett I method predicts that the
charge on H goes through a maximum.

Contour diagrams 11 to 15 give a pictorial representation of
how the electron density distribution changes as the CH inter-
nuclear distance increases. The charge distribution is quite stable
and only two trends can be discerned. Electronic charge is being
displaced from the vicinity of H as the C - H internuclear separation
increases, and this charge appears to be moving in to the region of
the CN bond. Only the Doggett II method really agrees with this
conclusion. However, from Tables IV. 16 and IV. 17 it is seen
that the CN bond population decreases as C - H increases.

Contour diagram 16 gives a pictorial representation of the
charge distribution for the experimental R distance using theIsJtl
IMA and is to be compared with the corresponding FLA diagram, 13.
The distributions are similar, but the IMA yields more charge on 
H and in the CN bond but less on N« These trends corroborate 
those shown in the atom and bond populations. The polarity of 
the CN tt atom populations, i.e. C^+ N* , predicted in the FLA 
calculation, is also shown to be substantiated by contour diagram

17.
Contour diagrams 18 and 19 give * for the FLA and IMA
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calculations respectively, AP diagrams and profiles of the differ­
ence charge densities between the molecular distribution and the 
theoretical state of the free atoms at the equilibrium ground state 
configuration. The free atom configurations are taken as

1SH lsC 2SC 2zC 2yC 1SN 2SN 2zN

Contour diagram 20 gives a similar picture for the closest C - H
distance, using the IMA method where the Doggett I and II 
population analyses predict a negative hydrogen atom density.

From diagrams 18 and 19 it is seen that the effect of allowing
interaction between the free atoms is as expected: charge is
displaced from the vicinity of the atoms and is deposited in the 
bond regions. It is also clearly seen that charge is deposited 
in what appears to be a lone pair orbital on N, which closely 
resembles a classical sp hybrid orbital. The difference between 
the FLA and IMA methods appears to be that in the FLA calculation 
more charge is displaced from the atoms into the bonds and slightly 
less into the N lone pair. This again seems to show the Mulliken 
population analysis to be wrong.

By comparing the positions of the node and the 0.01 contour 
close to the H atom in diagrams 19 and 20 it can be seen that H 
indeed has more charge associated with it at the innermost C — H 
distance. However it cannot be said quantitatively how negative 
H actually is. It seems unlikely that it is as much as the -0.5
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predicted by the Doggett II method.
Table TV. 20 contains a comparison of the main results of this 

work with those of other recent calculations by McLean [if] and 
Bonaccorsi et al [6l] who used a minimal basis set of best atom 
STO’s; Palke and Lipscomb [62] who used a Slater exponent minimal 
basis set; and Moffat and Collens l3kl and Pan and Allen [53] who 
used Gaussian AO basis setsf. McLean and Yoshimine [63] use 
R_.T = 2.1791a.u. and R = 2.0l43a.u. as the internuclear separationsUl'l On
in their calculations using extended basis sets. The total energies 
for their DZ? DZ+P and BA+P calculations are respectively -92®8369a.u. 
-92„9089a.u. and -92.9Uf7a.u. The latter two yielded dipole 
moments of 3«20 Debye and 3*29 Debye. The improvement in total 
energy obtained by using extended basis sets can thus be seen from 
McLean and Yoshimine*s double-zeta and big atom calculations both 
with optimised polarisation orbitals added in.

It appears from the results shown in table IV. 20 that the 
FLA double-zeta calculation is better than the best atom STO 
calculations and the two poorer STO [62] and GTF C3*f] calculations 9 
but worse than the STO extended basis set calculations and the 
molecular optimised GTF calculation of Pan and Allen (last column 
of table)• The FLA calculation and Pan and Alien’s simpler 
calculation have much in common but the dipole moment from the GTF 

calculation is superior.
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rcn

rch

Eel
E
T
—2T/V 
e (lex) 
e (2<r) 
e(3or) 
e(4<y) 
e(5ir) 

e(6<y) 
e(7or) 
e(lir) 
e(2tr)
1st I.P.(eV)

^calc(Debye)
qN

qH

Table

Comparison of Results of Recent
This Work (FLA) 

2.1902141 
2.0087986 

-116.57417 
-92.74404 
91.83104 
0.99303 

-15.77383 
-11.49190 
-1.32598 
-0.82330 
-0.63919 
O.28841
0.96532
-0.57615
0.15336
13.67
2.486
7.242
6.156
0.602

McLean [4]
2.187
2.000 

-116.4236 

-92.5474

-15.7402

-11.4277
- 1.2522

-0.7965
-0.5582
0.3648
1.0860

-0.3074
0.2516
13.81
2.100
7.082
6.156
0.761

Bonaccorsi [6l]
2.187
2.000 

-116.4234 
-92.5471 
91.3268 

0.9934 
-15.7363 
-11.4303 
-1.2515 
-0.7975 
-0.5366

-0.3071

13.81

2.07
7.082
6.156
0.761
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IV. 20.

Calculations on the Ground State of HCN.
Palke and Moffat and

Lipscomb [62] Collens [34] Pan and Allen [33]
2.187 2.187 2.1775 2.1775
2.000 2.000 2.000 2.000

-116.4665 -116.5676 -II6.63513 -II6.79248
-92.5903 -92.6914 -92.67131 -92.82866
92.6803 - - -

-15.6471 -15.6182 -15.7830 -15.6265
-11.3353 -11.3464 -11.5266 -11.3100
-1.2181 -1.2773 -1.3355 -1.2699
-0.7770 -0.8089 -0.8544 -0.8130
-0.5287 -0.5583 -0.6319 -0.5758
0.4882 0.2169 0.3295 0.2491
1.2173 - -
-0.4764 -0.4794 -O.5811 -0.5032
0.2949 0.2009 0.1543 O.I656
12.9> 13.05 15.81 13.69
2.11 - 2.712 3.366 
7.075 - -
6.141 - -
0.784 - -



137

The B matrix for the FLA. calculation on HCN at the experiment­
al internuclear separations is presented in Table IV. 21#



138

>w=1

o
-F“-P-

o o• •

9

I—1

-p-

o <!> A• • •'Jl l\J oVJ1 VO

A A o• • •o O Qrv> ro ovji vo ro

o
•

6
•

6
•53 o

Oo
o
H

-< ] ~ o VO
O OV H

A A O
• • •ro o Oo VjJ ro
-< i
-p -

oo
H 8

A o o

R 
Matrix 

for 
HCN 

FLA 
Calculation 

3: 
R(CH) 

= 
2«0087986a*u



139

M o le c u la r  E le c t r o n ic  S t r u c tu r e  C a lc u la t io n s  on FCN.

I n  t h i s  s e c t io n ,  r e s u l t s  a re  p re s e n te d  f o r  m o le c u la r  e le c t r o n ic  

s t r u c tu r e  c a lc u la t io n s  p e r fo rm e d  a t  th e  f i v e  in t e r n u c le a r  d is ta n c e s  

o f  th e  C -  F bond g iv e n  i n  3 . 2 .  A m in im a l b a s is  s e t  o f  d o u b le -  

z e ta  AO’ s i s  a g a in  used  and a l l  tw o - f . e A t r e  in t e g r a ls  a re  

e v a lu a te d  a c c u r a te ly .  As i n  4 .3 *  tw o s e ts  o f  c a lc u la t io n s  a re  

p e rfo rm e d  i n  w h ic h  th e  th r e e - c e n t r e  in t e g r a ls  a re  e v a lu a te d  e i t h e r  

by th e  in v a r ia n t  M u l l ik e n  a p p ro x im a t io n  o r  by  th e  f u l l  Ldw d in  

a p p ro x im a t io n .  I n  a d d i t io n ,  one c a lc u la t io n  was p e rfo rm e d  on FCN 

a t  i t s  e x p e r im e n ta l c o n f ig u r a t io n  u s in g  th e  p a r t i a l  L&w din  a p p ro x im ­

a t io n  to  th e  th r e e - c e n t r e  i n t e g r a l s .

A co m p a riso n  o f  v a r io u s  c a lc u la te d  m o le c u la r  p r o p e r t ie s  i s  

p re s e n te d  i n  T a b le s  IV .  22 and IV .  2 3 . C a lc u la t io n  6 o f  T a b le  

I V .  23 c o n ta in s  th e  r e s u l t s  o f  th e  PLA c a lc u la t io n .  T a b le s  IV .  22

and IV .  23 in d ic a t e  how th e  m o le c u la r  p r o p e r t ie s  v a r y  as th e  C — F 

s e p a ra t io n  i s  in c re a s e d .  A minimum i n  E i s  p r e d ic te d  c lo s e  to  

2 .2 0 a .u .  f o r  th e  IMA c a lc u la t io n  and be tw een 2.1f0 and 2 .60a . u .  f o r  

th e  F L A ^ c a lc u la t io n .  F ig u re  IV .  7 shows th e  v a r i a t i o n  o f  E w i t h

R more c l e a r l y .  I t  i s  im m e d ia te ly  o b v io u s  t h a t  th e  FLA c a l c u l -
GF

a t io n  a t  th e  FCN e x p e r im e n ta l in te r n u c le a r  s e p a ra t io n s  i s  o u t  o f  

s te p  w i t h  th e  o th e r s .  T h is  f a c t  can  a ls o  be seen i n  T a b le  IV .  23 

fro m  th e  v a lu e  o f  jjl; a  v a lu e  o f  a b o u t 1 .5 5  Debye w o u ld  have been 

e x p e c te d  n o t  1 .3 2  D ebye. A co m p a riso n  o f  th e  t o t a l  e n e rg ie s  o f  

c a lc u la t io n s  3 and 6 shows t h a t  th e  FLA v a lu e  i s  lo w e r  th a n  th e
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PLA, which is a complete reversal of the trends noted in the 

previous sections. Neglecting this point for the moment, in 

figure IV. 7 the minimum energy predictions for the IMA and FLA. 
calculations on FCN are respectively -192.270a.u. at an equilibrium
B of 2.22a.u., and -191.566 at an equilibrium R of 2.54a.u.Cr CF
The FLA prediction, however, must be open to a little doubt because 
of the estimation involved ;in drawing the figure. Least squares 

fits on the two sets of results yield an E of -192.2624a.u. at an
R of 2.26a.u. for the IMA calculation and an E of -191.6l80a.u.OF
at an R of 2.if8a.u. for the FLA calculation.CF

From Tables IV. 22 and IV. 23 it can be seen that the 
experimental dipole moment of 2.17a.u. [5], is reproduced a little 
better by the FLA calculation than by the IMA calculation.- It is 
also seen that the predicted by the PLA calculation is closer to 

the experimental value than either of the other two.
Accurate calculations have recently been performed on FCN by 

McLean and Yoshimine [633. As with their HCN results little 
informatiort_is available for comparison, but they do quote their 

total energy for the three levels of calculation defined in 4*3» 

i.e. the DZ, DZ+P and BA+P. The values are respectively 
-191.6275a.u., -191.7668a.u. and -191.7798a.u. The dipole moments 

are quoted for the last two levels and are 2.24 and 2.28 Debye^. 
Unfortunately as with HCN they do not quote their double-zeta 
value. It is possible that it is close to the PLA or FLA derived



values because McLean and Yoshimine*s value for their BA 
calculation is 1.67 Debye. It seems likely, then, that the 
inclusion of polarisation orbitals is necessary to improve the 
calculated dipole moment of FCN.

The question must now be answered as to why the FLA calculat­
ion broke down as shown by the results of calculation 3» The clue 
was obtained by examination of the elements of the bond asymmetry 
matrix, X, where a value of -^.97 occurred for the \0 0 element.M uZ.&Z—C F

It can be seen from (II. 62) that the calculation of X is 
open to the possibility of a singularity since it is theoretically 
possible for the denomimator to be zero. It is conceivable, 
therefore, that for certain choices of basis set and internuclear 

separations the method may be close to breakdown. That this is 
much more the exception rather than the rule was confirmed to some 
degree by examining the X elements for the other four C - F inter­

nuclear separations and finding them to be quite stable. So far, 

it has been impossible to find any rules to predict when a singular­
ity will ocdur. The best method of avoiding it seems to be to 
carry out a search of the X matrices at various internuclear 

separations, before performing the SCF calculations, and avoiding 

any separations which could lead to a breakdown.
The one-electron MO energies from the IMA calculation are 

shown in Table IV. 2k and those from the FLA and PLA calculations 
are presented in Table IV. 25. It can again be seen that the FLA
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calculation 3 values are slightly varied from the trend predicted 
by the other four* However, the most important point obtained 
from the two tables is that the Mulliken approximation has 

transposed the 7o* and 2ir MO energies. This is a rather serious 

effect and one which again shows the superiority of the PLA and 
FLA methods over the MA*

Although McLean and Yofehiminefs values for the MO energies 
of their calculations have not been published some of their results 
have been made available privately. The ordering of their MO 

energy levels is exactly as predicted by the FLA and PLA calculations 
i.e. with the 2ir higher than the 7o.

It is also seen that the it bonding-antibonding gap is

reasonably constant as varies in the FLA calculations butCF
varies much more in the IMA calculations. No experimental value 
for the first ionisation potential of FCN could be traced but the 

value of about 15«if0eV interpolated from the FLA calculations 

seems reasonable, especially when considering the trends in 

experimental ionisation potentials of the series HCN, (FCN), ClCN, 

BrCN and ICN: these are, respectively, 13«86eV, 12.if9eV, 11.95©V

and lO«98eVo A value of about 13.1eV might be expected if FCN 

fitted in to the series trend.

Tables IV. 26 and IV. 27 contain the results of a Mulliken 

population analysis on respectively, the IMA and FLA calculations. 

The set of PLA populations and densities are included for
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comparison. In discussing trends the FLA calculation 5 results 
will be ignored in general. The important points to notice are 
as follows: there is little or no bonding between the carbon and 
fluorine pi orbitals; the NC bond population from the FLA series
is seen to increase as R increases whereas the opposite trend isOF
shown in the IMA series; and in both series the atom populations on
N and F decrease as R increases, while on C the charge densityOn
increases in the IMA series, and increases after passing through
a minimum in the FLA series. It is interesting to note again the
opposing trends of the o- and nr electronic charges. It is clearly 
seen from the gross atom charge densities that as the or charge 
increases the tt charge decreases.

The effective atomic charges, as evaluated by the Mulliken, 
LBwdin, Doggett I and Doggett II population analyses, are presented 
in Tables IV. 28 and IV. 29 for the IMA and FLA series respectively. 
The trends shown by the Doggett II method are of little value
because of the singularity at the experimental R distance. InCJJ
general N appears to be negatively charged but loses some of this
charge as R increases. C is positively charged and F isCF
negatively charged. On the whole C tends to gain electronic
charge as R increases but it is not clear what happens to the CF
charge on F. The Mulliken method predicts a loss of charge from 

F; the LBwdin method predicts a gain in charge on F and the Doggett 

I method oscillates very slightly but tends to predict a minimum



Table IV. 28.

Effective Atomic Chargeis for IMA FCN Calculations.

r cf Mulliken L&wdin Doggett I Doggett :

N -0.218 —0.l86 -0.206 -0.176
2.00 C 40.222 40.294 40.266

F -0.218 -0.026 -0.088 -0.090

N -O.I92 -0.144 -0.166 -O.I43
2.20 C 40.393 40.204 40.241 40.353

F -0.203 -O.060 -0.075 -0.210

N -0.175 -0.118 -0.138 -0 .II8
2.384 8578 C 40.358 40.194 40.202 -1.068

F -0.183 -0.076 -O.064 41.186

N -O.I62 -0.094 -0.110 -0.093
2.60 C 40.319 40.174 40.164 -0.064

F -0.157 -0.080 •0.054 40.157

N -0.145 -0.074 -0.076 -0.056

2.80 C 40.291 40.162 40.144 -0.011
F -O.146 -O.088 -0.068 4O.067
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Table IV. 29*
Effective Atomic Charges for FLA and PLA* FCN Calculations.

rcf Mulliken LBwdin Doggett I Doggett II
N -0.237 -0.212 -0.017 0.044

2.00 C 0.446 0.202 0.068 0.054
F -0.209 0.010 -0.051 -0.098

N -0.219 f -0.172 -0.030 0.023
2.20 C ■ O . W 0.212 0.088 0.208

. F -0.198 -0.040 -0.058 -0.231

N -0.186 -0.132 0.115 0.208
2.38if8578 C +0.317 0.164 -0.138 -2.033

F -0.131 -0.032 0.023 +1.825

N -0.193 -0.120 -0.005 0.052
2.60 C 0.334 O.I84 0.032 0.244

F -O.141 -O.O64 -0.027 0.192

N -O.189 -0.110 -0.015 0.040
2.80 C 0.311 0.178 0.048 0.141

F -0.122 -0.068 -0.033 0.101

N -0.140 -0.104 0.000 0.050
2.38^8578* C 0.263 0.126 -0.010 -1.545

F -0.123 -0.022 0.010 +1.495

* FLA. Calculation Results.
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in the effective charge.
The trends in electron density movement as R increases,CF

are shown in pictorial form for the FLA series, in contour dia­
grams 21 to 25. As expected charge is depleted from the region 
of the CF bond. It can be seen from Table IV, 27 that this trend 
is not clearly displayed by the population analysis. The only 
other trend discernible is:that C loses electronic charge as well.
It is not obvious that N and F gain the charge.

Contour diagram 26 shows the electron density distribution 
for the IMA calculation at the experimental internuclear separat­
ions, The main difference from the FLA series seems to be that 
the charge in the vicinity of N is polarised more towards C,
Contour diagram 27 shows the pi electronic charge distribution of 
the FLA calculation at the experimental internuclear separations.
It shows clearly both the lack of bonding between the C and F 
atoms, and the build up of electronic charge on the N atom as 
compared with the C atom. Contour diagram 28 is interesting as 
it shows the difference density between taking convergence at 50 
cycles and 100 cycles of the SCF iteration scheme for the FLA 
equilibrium geometry calculation. The main changes in the charge 
distribution appear to have taken place in the region of the N atom. 
Otherwise the contours are small in magnitude and cover small areas.

For the same calculation, contour diagram 29 shows how the 
electronic charge has rearranged from the theoretical state of the
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free atoms at bonding internuclear distances to the FCN molecule 
itself* It is seen that as expected charge is displaced from the 
regions around the atoms and deposited either in the bonds or in 
the regions normally thought of as the N and F lone pairs. It is 
also interesting to note that the bond charge densities are both 
polarised towards C. This is unexpected from simple electro­
negativity concepts*

Finally, the E matrix for the FCN FLA calculation k with 
= 2*6a.u* is presented in Table IV* 30*CF
The results for FCN are reasonably encouraging although the 

calculations do not predict an B^ as efficiently for FCN as they 
did for HCN. Once again, however, the general improvement 
obtained by invoking the FLA or PLA rather than Mulliken*s method 
is clearly shown*



0.9776

l6if

9

VJlS3
OO-P*VO

V*lVJl
ro■p-

8VJlH
VO
vOHSJ

OH
rovo

8
vOVoJ

VJl
V>J-v3

-P-
8VJl

O A A• • •-P- VM OVJl ro -P-00 ro o-P- H H

H A A O•8 •O
ro

©o
ro

•8
-p- VM vo rovo VJl H OV

A o A A• • • •p ro H O
VM oo OV VMo 8 OO HVO -P* oo

O• o• o
•

ro o o
VM H H
ro VO VM
oo VO VM

ro-p-HO 8
O•o 
ro cT\ H

H• 6• <5•O o o
8vo

H
3

HHOo V>J
oo

roVJl -p*VH
o
ro
VMH

H
H
roov

oH-P-
ro

oHHH
OO-P--P*

O o
• • • • •
VJl H o ro roH VO H oo VMS3 vO oo H VM
ro ro S ] ro S )

V*l
ro

A A
H  O  OS3 -P* H-P- VM -P-Oo -p* 00

R 
Matrix 

for 
FCN 

FLA 
Calculation 

If: 
R(CF) 

a 
2«6o 

a.u



165

Jf*5« Discussion of the Electronic Structure of the XCN system*
In this section the trends in the redistribution of the

electronic charge among the molecules CN~, HCN and FCN are discussed.
In addition to the results presented in If.2, if.3 and if .if, four other
AP diagrams are presented to help elucidate the features of charge
redistribution. Contour diagrams 30 and 31 present AP diagrams
and profiles for [p — P_;t—] from the FLA and IMA calculationsHCN CN
on HCN, respectively. They show how electronic charge has 
redistributed itself as a proton is allowed to bond with the CN 
ion.

Diagrams 30 and 31 are very similar in outline. They both 
show that charge has been transferred from the vicinity of the N 
atom, from the CN bond and from the region normally referred to as 
the C lone pair, to the region around the proton, as would be 
expected. Charge has also built up in the region of the C atom.
The only major difference between the two calculations appears to 
be that the FLA causes a slight build up of charge close to the N 
nucleus.

In contour diagrams 32 and 33, AP diagrams and profiles are 
presented for the difference densities between FCN and CN and
between FCN and HCN where R__ = RntJ, respectively. Since HCN andCr On
CN are isoelectronic and have eight electrons fewer than FCN, it 
is not surprising that there is some resemblance between the 
diagrams.
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In general it is seen that electronic charge is built up 
round the F atom. It is interesting to note that charge is also 
built up, though to a much lesser degree, in the vicinity of the 
N nucleus. Electronic charge is depleted in the region normally 
ascribed to the N lone pair as is shown in both diagrams.

The high electronegativity effect of F can be seen as the 
NC and CF bond electron densities have been polarised towards C 
and F, respectively.

From the results of the foregoing sections, and this section, 
it is obvious that the value of the population analyses, in the 
elucidation of electronic structures, is difficult to assess.
In most cases trends are shown to be in agreement but a quantitative 
estimate of the charge on an atom is not possible. The pictorial 
representations of the charge density are a much more reliable 
method of investigating the electronic structures of molecules, 
and AP diagrams and profiles are especially useful in detecting 
the redistribution of electron density between molecular systems.
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**•6* Evaluation of the Multicentre Integral Approximations,
The multicentre integral approximations considered in this 

thesis are evaluated in this section from two separate viewpoints* 
The main evaluation is based on the results of the electronic 
structure calculations presented in the previous five sections*

In lf*l it is seen that the two asymmetric partitioning 
methods, the PLA and the ELA undoubtedly give much improved results 
as compared with the Mulliken approximation* This trend is 
confirmed by 4»2 and 4«3 although the IMA calculation is shown to 
be surprisingly good for HCN* However, the possible danger in 
using the IMA is highlighted in 4*3 hy the unacceptable ordering 
of the MO energy levels in FCN when 70' instead of 2it is the highest 
energy bonding orbital*

It is not so simple to choose between the PLA and the FLA, 
however* Both have their merits. Although the FLA suffers from 
the danger of breakdown due to the possible singularity in choosing 
the bond asymmetry parameter, X, as is shown in 4»4> it is still 
obviously very useful in that provided a near singularity does not 
occur the resultant calculated molecular properties are close to 
those deduced from ab initio calculations.

Provided that exploratory calculations are performed first 
of all to detect a possible breakdown, this danger can be avoided 
by making a different choice for the internuclear separations.
The possibility of a breakdown can be determined by examining the
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bond asymmetry matrix, X. If any elements vary markedly from
the range 0,0 to 1.0, the internuclear separations which correspond
to that X, should be avoided* For example, the X_ _ value, in

C F
the FLA calculation on FCN which is close to breakdown, is -4*97*

The PLA does not suffer from the difficulty of this singular—  
ity, yet also gives results close to those of ab initio calculations, 
although in general it is .-slightly inferior to the FLA* Before 
recommending the use of the PLA further investigation of its 
effects on observables such as the dipole moment, and on the 
predicted minimum energy and equilibrium configuration, would have 
to be carried out. From this work it would appear that the use 
of the FLA and PLA should preferably be complementary.

In the second evaluation of the various raulticentre integral 
approximations comparisons are made with accurate values of some 
three—centre one-electron integrals obtained from a program being 
developed in Glasgow [6lf]* A few integral values are presented 
in Table IV*31 for the molecules HCN and FCN, using double-zeta 
AO*s. It is clear from this table that the FLA is consistently 
the best of the approximations* In the cases where it does not 
yield the value closest to the accurate integral, it provides a 
value which is still acceptable• Although the PLA is in general 
poorer than the FLA it also yields integrals much more accurately 

than the IMA*
Because of the dearth of accurate three—centre two-electron
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Table IV.31.
Comparison of Approximated Three-Centre 
One-Electron Integrals with Accurate Values.

Integral Accurate MA IMA PLA FLA
(lsN|l/rHllsC) 0.00011 0.00013 0.00013 0.00012 0.00012
(lSN |l/rH|2sC) 0.01482 0.02152 0.02267 0.01515 0.01557
(1sN|1AjjI 2zc) 0.02506 0.0^069 0.03873 0.02579 0.02566
(2sNU A h |1sC) 0.02869 0.02508 0.02328 0.02983 0.02855
(2sN |l/rH|2sC) 0.14774 0.17045 0.18117 0.16287 0.15401
(2sN |l/rH|2zC) 0.12280 0.20562 0.19548 0.14170 0.12846
(2zN |l/rH|lsC) 0.05280 0.04233 0.04195 0.05451 0.05429
(2zN |l/rH|2sC) 0.16996 0.15667 0.16547 0.19203 0.17505
(2zN |l/rHl2zC) 0.04877 0.08206 0.07748 0.09179 0.06214
(2xH |l/rH|2xC) 0.10570 0.11773 0.11773 0.11442 0.11442
(1sN |1Ac I1sH) 0.00372 0.00357 0.00357 0.00352 0.00552
(2sN U A c |1sH) 0.07600 0.05387 0.05573 0.05360 0.07074

(2zN |lAcllsH) O.II489 0.07386 0.07148 0.07306 0.08108

(1sC|1A h|1sH) 0.03611 0.02905 0.02905 0.03696 0.05696

(2sC |1A n|1sH) 0.18565 0.19890 0.20903 0.19885 0.17108

(2zC U A NlleH) 0.10153 0.19047 O.18167 0.11285 0.11535
(2xN |1A fI2xC) 0.09600 - 0.10561 0.10284 0.10284
(2zH|1Af |2sC) 0.14965 - 0.14350 0.16667 0.15340

(2sN|1A c|2sF) -O.OI892 - -0.01246 -O.OII65 -0.01750

(2sC 1 1 A H I 2z F ) -0.10296 - -0.10745 -0.11855 -0.09952

(2zC |1A n|2sF) 0.10289 - 0.15231 0.11692 0.10617
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integrals, no useful comparisons for these integrals can yet be 
made. However, it would be expected that the trends shown in 
Table IV.31 would be confirmed for the two-electron integrals also.

Ellison [lf2] has suggested that different approximations 
should be used to evaluate specific classes of integrals on the 
grounds that some multicentre integral approximations are better 
equipped to evaluate certain types of integrals than are others.

From the point of view of consistency it would seem better to 
use only one approximation in a given calculation. An attempt was 
made in this work to perform a calculation where the one-electron 
integrals were evaluated by the PLA and the two-electron integrals 
by the IMA, but the method failed to converge to a minimum.

Although a fuller investigation of this topic is necessary it 
would appear that the use of more than one integral approximation 
per calculation should be approached with caution.
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b»7» Conclusion.
Perhaps the first question pertinent to this work, which has 

to be answered, is whether it is now worthwhile to perform 
approximate calculations• Clementi [65] has recently suggested 
that, since there are now quite a few computer programs capable of 
performing accurate ab initio calculations, the effort put into 
semi-empirical calculations should at least be reduced.

Although such a viewpoint must be agreed with on theoretical 
grounds, it is not always a practical proposition. As discussed 
in chapter five, only now are the computers being installed in 
parts of the world other than North America which allow the running 
of these ab initio programs. The second restriction is that the 
amount of computer time available in many institutions is limited.

For this reason, alone, it seems necessary to search for 
reliable approximate methods. Also there is still a limit on the 
size of molecule whose structure can be elucidated, and tested 
approximate methods will almost certainly play a part when 
molecules larger than pyridine are studied.

An additional impetus to find a reliable multicentre integral 
approximation is provided by the desirability of using a basis set 
of STO's rather than one of GTF*s of which many more are required 
to adequately reproduce the molecular properties.

Accepting that the above approach is worthwhile, there still 
remains the problem of deciding whether it is reasonable to employ
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accurate one— and two—centre integrals, and improved basis sets, 
when multicentre integral approximations are being invoked* From 
the results presented in this thesis it is felt that such improve­
ments are definitely important provided the integral approximations 
are accurate enough* It is well known that the use of restricted 
basis sets does not yield good values for observables such as the 
dipole moment* It is shown here that in addition to obtaining a 
better total energy, the use of the double-zeta functions, in 
conjunction with either of the Lbwdin approximations, yields a 
dipole moment close to the ab initio value* It is therefore, 
reasonably confidently predicted that further improvements to the 
basis set by adding in polarisation orbitals will lead to molecular 
properties close to those obtained by the most accurate ab initio 
calculations of the type performed by McLean and Yoshimine [63]*

The other main objective of this work was to investigate the 
reliability of population analyses as guides to the electronic 
structure of molecules. From the results of the various 
population analyses presented in this chapter, it is seen that the 
trends shown are often at variance with each other and only one 
trend can be correct* Until adequate proof of which method, if 
any, always predicts the correct trend, the results of population 
analyses should be treated with caution* It is more desirable, 
though, of course, more time consuming, to investigate trends in 
electronic charge redistribution by the use of P and AP diagrams
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and profiles. However, bearing in mind results of the evaluation 
of the multicentre integral approximations and the more complex 
nature of the Doggett II method, it seems likely that the Doggett 
I method may be the most useful of the existing methods of deter­
mining gross atom charge densities*
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5»1« Introduction*
Undoubtedly one of the most important developments in 

theoretical chemistry in the past ten or fifteen years been the 
ever increasing use of the electronic digital computer. Computers 
have allowed the chemist to undertake calculations which would 
otherwise be virtually impossible or at least very time consuming 
and prone to error. As well as allowing him to cover much more 
work, machine calculation has minimised the time spent at a subpro­
fessional level operating desk calculators.

Computers can also aid the theoretical chemist more adventurously 
in the fields of experimental design, simulation and evaluation but it 
is in the first respect which they have been used in this work.

The University of Glasgow has installed an English Electric Leo 
Marconi KDF9 computer which became operational just prior to the start 
of this work. Programming was carried out in ALGOL as defined in the 
KDF9 ALGOL programming manual [66].

Initially fbw programs were available at Glasgow and it was 
decided that a system of programs to effect electronic structure 
calculations of various degrees of complexity should be built up. 
During the period of this work some advances in the availability of 
quantum chemical computer programs were achieved both internationally 
and in Britain.

The quantum Chemistry program Exchange scheme was inaugurated 
in I965 and is administered from the University of 1jv<AUo,a;<u This
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project is a welcome start towards the goal of saving needless 
duplication of programs, but at present suffers from restrictions 
imposed by the incompatibility of the various computers involved. 
Often programs are too large for some university computers or are 
written in whole, or in part, in specific machine codes in order to 
reduce run times. Computer configuration is a restriction in some 
cases: for example, the McLean-Yoshimine LCAO program [67] is
written, partly in machine code, for an IBM 70%9 a computer config­
uration which, as far as can be determined, is not readily available 
in Britain at the moment. This particular restriction will soon be 
removed as the program is at present being rewritten for the new IBM 
360 series.

The British project, involving the *KDF9 universities* and 
administered from Nottingham, is in its early stages yet but should 
be very useful as there are no compatibility problems here. It is 
hoped the computer programs described below can make a useful 
contribution, either in part or as a whole, to this scheme.

5*2. The Program System.
m  designing the program system a compromise had to be made 

between the desire for generality and the problem of keeping down 
computer store requirements and run times. With this in mind, the 
programs were written so that they could be run not only in close 
succession, i.e. effectively as one large program) but also as
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Individual entities realising specific results useful in other calcul­
ations* Algol procedures were written where possible as these could 
be useful in future programs* In this system, input data are read 
in from paper tape and the results are output on line print* Large 
matrices which are required by subsequent programs are stored on 
magnetic tape* Also in most programs there is the option of having 
these large matrices output on paper tape*

The major programs in the system are listed below and are 
designated by their computer identifier and a program title:

DD023AA00KP5 SCF CONTROL PROGRAM

DD023I607KP5 INVARIANT MULLIKEN ONE ELECTRON MATRICES
DD023I705KP5 PARTIAL LOWDIN ONE ELECTRON MATRICES

DD023l80lfKP5 FULL L5WDIN ONE ELECTRON MATRICES
DD023N100KP5 TWO ELECTRON INTEGRALS

DD023N200KP5 LABEL TWO ELECTRON MATRICES

DD023H301KP5 INVARIANT MULLIKEN THREE CENTRE T INTEGRALS

DD023Nif0lKP5 PARTIAL L5WDIN THREE CENTRE T INTEGRALS
DD023M306KP5 FULL LOWDIN THREE CENTRE Y INTEGRALS

DD023N500KP5 ENERGY MINIMISATION USING Y

DD023E206KP5 ENERGY MINIMISATION USING Y

DD023D400KPlf MO ENERGIES
DD023Cl06m ELECTRONIC PROBABILITY DENSITIES

DD023F103KP** MOLECULAR PROPERTIES
The function of each program is described in more detail in the
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succeeding paragraphs. If a program was developed in collabaration 
with another author, an acknowledgement is made to this effect.

Flow diagram 1 shows how the programs are linked together. The
various routes can be chosen by the user, via the input data tape, by 
varying the parameter Macfn.
5.3* The One-electron Matrices Programs; l6, 17 and l8.
Description. The purpose of each of these programs is to set up 
all the one electron matrices required in the SCF calculation; 
namely, the overlap matrix S; the matrix required for the LSwdin 
symmetrical orthogonalisation procedure, S ; the dipole moment 
matrix d; the kinetic energy matrix K; the nuclear attraction 
matrices ra, rb, re; and the one-electron Hamiltonian matrices in the 
natural and orthogonal bases, f and f, respectively.

The calculation procedure is shown in flow diagram 2.
procedure. The program first reads in general data concerning
the setting up of array bounds, and the route to be taken is
designated by the decision parameters. Specific data about the
first diatomic fragment of the molecule are then read in: the number
of AO’B on centre A; the number of AO’s on centre B; the internuclear
distance. R in atomic units; the Clementi double-zeta data for the ’ AB
AO’s on A and B. All one-electron integrals involving orbitals on 
atoms A and B are then evaluated using Gaussian quadrature. (see 
appendix 1). The program then forks. If a triatomic molecule is 
being studied then further data are read in: the number of orbitals
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FLOW DIAGRAM 1.

l6 17 l8

Nl

N2

N3 M3

N /
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FLOW DIAGRAM 2.

if
molecule

diatomic
onlyRead in data for centre C

Evaluate three-centre integrals

Read in data for centres A and B

Diagonalise the overlap matrix S

Block all matrices by symmetry classes

Form ABC triatomic one-electron matrices

Calculate AC diatomic one-electron matrix elements

Calculate BC diatomic one-electron matrix elements

Calculate AB diatomic one-electron matrix elements

Convert one-electron matrices to molecular axes system

V
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Form inverse square roots of eigenvalues of S

Form Lowdin symmetrical orthogonalisation matrix S

Form matrix of the one-electron Hamiltonian operator f

Transform f to f

Output results on line print

if mag=l

Store results on magnetic tape

X  Is X  
X  another 
program to be 
\  entered X

NO
9 STOP

YES

Call next program
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on centre C; the internuclear separation R^; the Cleraenti double-
zeta AO data for centres A and C* The one electron integrals for the
A and C AO’s are then evaluated* The orbital data for centres B and
C, prefixed by the internuclear separation, R__, is then read in saidBC
the one-electron BC integrals are evaluated.

The one electron matrices for ABC are formed, and the integral
signs are modified to allow for the change in frame of axes from the
local diatomic system to the molecular frame* The next step is the
evaluation of the three centre integrals* This is where the main
difference in l6, 17 and l8 lies* l6 evaluates these integrals
using the Mulliken approximation which has been made invariant to
transformations of the basis set (Chapter 2*5)*. 17 provides the
option of using the Mulliken approximation or the Partial Lbwdin
approximation, neither of which is invariant. 18 evaluates the
integrals by using the Full LBwdin approximation which is invariant.

The fork ends here and if a diatomic molecule is the subject
of the calculation, the one-electron matrix elements are corrected
to allow for the change of axes: to the molecular frame*

The one-electron MO’s in a linear molecule can be classified
according to the value of the component of angular momentum, X,
along the internuclear axis, taken here as the Z-axis. For X = 0
nnri 1 the one-electron MO’s are said to have o' and it symmetry
respectively. For example, s and pz AOrs combine to give o' MO’S,
while p and p AO’s yield tt MO’s. The fact that matrix elementsx y
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between AO's of different symmetries are zero, can now be used to 
factorise the one-electron matrices.

In forming these one-electron matrices the basis functions on 
each atom were indexed sequentially. However, it is more convenient 
to index the AOfs as in chapter three. In this case only AO's in 
the same symmetry class on an atom are numbered sequentially, This 
leads to the required symmetry factorisation of the matrices. As a 
result of this factorisation, computer store is saved and, since the 
effective size of the matrices being handled is now less, computer 
time is additionally saved.

In the programs this is achieved by inter changing rows and 
columns of a given matrix, M, to yield the symmetry blocked matrix,
W, This is accomplished in matrix terminology by applying the 
following transformation:

W = A M Af (V.l)
where A is the matrix describing how the AO's have been reordered.

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
1

0
0
0
1
0
0
0
0
0

0  

0  

0 
0 
0 
0 
0 
1 
0 J

A for an HCN calculation is given above as an example.
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It is to be noted that in these programs the p AO*s are not
considered explicitly since the integrals involving them are

o xcs wueu iormea uy cu-agoneuLising S, taking the inverse
square root of the eigenvalues in A to give A and then performing

_la unitary transformation on A with the matrix of eigenvectors U. 
In matrix notation, if

The Jacobi method is used to diagonalise matrices in these 
programs. Successive elementary orthogonal transformations 
chosen to nullify each off-diagonal element in turn are applied to 
the matrix to be diagonalised. The procedure then iterates until 
all off-diagonal elements are less than a previously specified 
allowable threshold. It is a slower method than the more 
preferable Givens and Householder methods but this is not too 
significant as the order of matrices being handled is not large, 
and the actual number of diagonalisations per SCF calculation is 
only two.

f, is then formed by the algebraic addition of its constituent
00 '

one-electron integral matrices. Using S , f is transformed to 
f, the corresponding matrix in the LOAO basis.

Finally, the results are output and if desired the next 
program in the system is entered.

(V.2)
(v.3)then
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Discussion. Rigorous tests were applied to these three programs 
to ensure their correct execution, and experience has shown them to 
be very reliable. Testing was carried out by requiring the 
programs to reproduce the results of hand calculations involving 
small matrices. In the case of the one-electron integration pro­
cedure the results were checked with the values published in Sahni 
and Cooley*s tables [68] .for single STOfs. Integrals formed from 
double-zeta AO*s were checked with results from the HI DIAT program 
on the Atlas computer. Table V.l compares various integrals of 
double-zeta AO's as evaluated by l6, 17 or l8 and by MI DIAT.

TABLE V.l.

Comparison of One-Electron Molecular Integrals in a Double-Zeta 
basis as evaluated by the Glasgow Programs and by MIDIAT.

Integral 16/17/18 Value MIDIAT Value

(2zN|2eC) 0.4317284 0.4317284

(leC|-Jv2 |lsC) 16.0494005 16.0494007
(lsN|l/rN |lsN) 6.6527985 6.6527985
(2sN|l/rc |2zN) 0.1465851 0.1465831
(2zC|X/rH |l.H) 0.5048310 0.5048310

(2p°|l/rF |2p£) 0.1449265 0.1449265

(2s®|-J^ |2z^) 0.0099810 0.0099810

The integrals are evidently reliable to seven places of decimals
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and the tolerance parameter for the dj-ago n a l l R a t i  o n  procedure was 
set to be compatible with this accuracy*

5*Jf# The Two-Electron Integral Program Nl*
Description* This program evaluates the one— and two—centre 
two-electron coulomb and hybrid molecular integrals by the method 
of Gaussian quadrature, i,e* integrals of the type (AAIAA),
(AAIBB) and (AAIAB)* This program is designed explicitly for 
Clementi type AO's, but it will also evaluate the molecular 
integrals for single STO's. All non-zero integrals between Is, 2s, 
2p , 2p„ and 2p_ orbitals on each of two centres are evaluated*Z A I

The input data are read in from paper tape and the results output 
to line printer, and to magnetic tape if required. The calculation 
procedure is shown in flow diagram 3#
Procedure. After reading in the decision parameters, the program 
sets up the Gaussian quadrature mesh* (See Appendix 1). Specific 
data about the first diatomic fragment of the molecule are then read
in* Only the number of components in the minimal basis set need be
given, along with the internuclear separation and specific orbital 
data*

At this point the program evaluates each unique exponential
which arises in the integral expressions over all mesh points.
This saves the unnecessary evaluation of exponentials at every
mesh point and as exponentiation is relatively costly in computer
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FLOW DIAGRAM 3*

Read in general data

Set up Gaussian quadrature mesh

Read in orbital data for centres A and 6

Evaluate exponentials at each mesh point

Evaluate integrand at each mesh point

Sum integrand over all mesh points

Output results

YES

X  18X  another 
program to be 
v entered /

XAreX 
there \  
any more 
runs y

NONO

YES
STOP

Call next program
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time this is an important saving*
The Gaussian quadrature consisting of (2 x 16) x 16 = 512 

mesh points is then set up, the Gaussian weighted integrand 
evaluated at each point and then summed over all mesh points as 
given in appendix 1* In ALGOL such loops are easily programmed 
as nested for statements, i.e.

for i:=l step 1 until 16 do for j:=l step 1 until 32 do *..*•; 
This part of the program consumes the most time and every 

computing technique which will minimise the time has been used 
within these for statements* The Clementi integrand

X  X'.d) X'b(Djr- X' (2) X'd(2)
abed a D r12 c a

was expressed in its two constituent partsf the Clementi potential

X  X'„(l) and the orbital density X  X_(2)
ab 12 cd

The two double summations were then performed together using
another two nested for statements i*e* the summations over c and d
were performed in the same loops as the summations over a and b*

Although it is convenient practice to consider two-electron

integrals and orbital densities as elements of four suad two
dimensional arrays this is impracticable since the computer
manipulation of such higher dimensioned arrays is not efficient.
Consequently only one dimensional arrays are used within the

multiple for statements and whenever possible single variables are
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substituted even for elements of these one—dimension arrays.
For example, an array element appearing in an inner for statement 
but which remains constant throughout its execution since it depends 
on an outer for parameter, is assigned to a real variable whose 
access time in the computer is significantly less.

The results are output to the line printer and magnetic tape 

and optionally to the paper tape punch. Nl can then enter the SCF 
control program if desired.

Discussion. At the start of this research work the coulomb and 
hybrid integrals were obtained, as the exchange integrals still are, 
from the MIT diatom program [52] available at the SRC ATLAS computing 
laboratory at Didcot. Although the integrals were accurate enough 
there was the physical problem of transferring the integral values 
from line printer or paper tape output to suitably ordered input for 
KDF9. It was decided to eliminate most of this time consuming data 
handling by writing this program. At the same time the chance was 
taken to use a Gaussian rather than a Simpson grid thus yielding 
greater accuracy for comparable grid sizes.

The integral values were tested by comparing them with the 
published tables of coulomb integrals by Sahni and Cooley [68] and 
of hybrid integrals by Preuss [69] and Kotani [70]* In addition, 
the integrals from Nl were checked with those from Corbato' and 
Switendick's MIDIAT program. A few examples of this last integral 
comparison are given in Table V«2.
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TABLE V.2.

Comparison of Two-Electron Molecular Integrals in a Double—Zeta 
basis as evaluated by the Glasgow Programs and by MIDIAT.

Integral Nl Value MIDIAT Value

(:UC2zC|l/r12|26r2zF) o.00592684 0.00592684
(2zN2JCN|l/r12|2zF2xF) 0.00083697 0.00083697
(2s C2z C | 1 A 1 2 |2s C2z C ) O.II46086I O.H46086I
(lsC2sF|l/r12|2sF2eF) -0.01272423 -O.OI272429
(lsC2zC | lA-j^ | 0.01404553 0.01404553
(ls^s^iA-^ |isH2sc) 0.31256598 0.31256596
(1sN2zN|1A12 |lsH2zN) 0.00247795 0.00247794

All two-centre coulomb and hybrid integrals are accurate to 

seven or eight decimal places* In most cases the one-centre 
integrals have a similar accuracy, but in a few one-centre integrals 

involving highly contracted Is AO's, some accuracy is lost. The 

diatomic mesh is inadequate for these integrals but the accuracy 
only falls below five decimal places for one-centre integrals 

involving the Fluorine Is AO. Although integrals accurate to five 
decimal places are probably sufficient for molecular computations, 

this is a possible limitation on the extension of this program to 

elements of the second row of the periodic table.
Table V.3 compares some one—centre integrals evaluated by Nl and
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MIDIAT with accurate analytic values.

TABLE V.3*

Comparison of Analytically obtained One-Centre Two-Electron Molecular 
Integrals in a Double-Zeta basis with those evaluated by Nl and MIDIAT.

Integral MIDIAT Value Nl Value Analytic Value

(lsHlsN| l/r12|lsNleN) It.1281+11+05 4.12497454 4.12497823
(1sN1bN|l/r12|lsN2aN) -0.1+0561+592 -0.40502596 -0.40502650
(lsHlsN| 1A 12 |2sN2sN) 0.97063772 0.97027951 0.97027958
(1sN2sN| 1/r^ |1sN2sN) 0.061+1+8263 0.06437717 0.06437726
(leN2sH| 1A 12 |2sN2sN) -0.01708425 -0.01701217 -0.01701218
(2sN2sN|l/rj2 |2sN2sH) 0.68323552 0.68320893 0.68320893
(lsNlsN|1/r^ | 2zN2zN) 0.94921442 0.94897163 0.94897163
/i H, Nln , H, N, (Is 2s 11/ r | 2z 2z ) -0.01150523 -O.OU45178 -0.01145178
(2bN2bN| 1A 12 |2zN2zN) 0.66904289 0.66903122 0.66903122

( l s ^ l l A ^  |1sC1sC) 3.50903057 3.50893809 3.50893004
( I b ^ I I A ^  |lsC2sC) -0.33567295 -0.33565721 -0.33565671
(1sC1bC| 1 A j2 |2sC2sC) 0.81090513 0.81089585 0.81089484
(1bC2bC| l A ^  |lsC2sC) 0.05187206 0.05186950 0.05186945
(1bC2sC| 1A 12 |2sC2sC) -0.01332651 -O.OI332473 -0.01332473
(2sC2sC| 1A 12 |2sC2sC) 0.57244152 0.57244089 0.57244089
(1bC1bC|1A12|2zC2zC) 0.77688788 0.77688149 0.77688568
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TABLE V.3 continued. 

Integral MIDIAT Value Nl Value Analytic Value

( Is  2s 11/ 1* ^  12z 2z ) -O.OO81+0630 -O.OO840498 -0 .00840502

(2sC2sC | l / r 1 2 |2zC2zC) 0. 55̂ 61666 0.55461639 0.55462033

( l s Fls F |V r22 *ls Fls F ) 5.37250504 5.35699773 5.35714552

( ls Fls F 11/1* ^  1 1sF2sF ) 0.55031953 0.54735516 0.54738500

( ls Fls F | l / r 1 2 l2sF2sF ) 1.29782875 1.29614476 1.29615037

( l s F2sF | l / r 1 2 |1sF2sF) 0.09136712 0.09082921 0.09083570

( 1 8 ^ 1 1 / ^ 1 2 8 ^ ) 0.02540711 0.02504907 0.02505023

(2 sF2sF 1 1 / r ^  I26*'28*') 0.91001835 0.90988003 0.90988026

( ls Fls F | 1 / r  ̂  |2zF2zF ) 1.25886631 1.25778258 1.25778246

(1s F2sF | 1 / r  ̂  |2zF2z F ) 0.01729283 0.01703815 0.01703813

(2 sF2sF | 1 / r  ̂  |2zF2zF ) 0.88301559 0.88295654 0.88295654

It can be seen from Table V.3 that the diatomic mesh used in 
MIDIAT gives a much poorer integration of the one-centre integrals 
than does Nl although both are chosen to give two-centre integrals 
accurate to at least six decimal places. Improved values of 
these integrals can be obtained from MIDIAT, of course, by choosing 
a different mesh but this is inconvenient. As stated elsewhere, 
these analytically obtained integrals were used in the SCF 

Calculations reported in chapter four.
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Nl takes about O.Jf seconds to evaluate an integral of single 
STO’s but̂  as it is written specifically for Clementi’s double-zeta 
AO’s which can implicitly contain the weighted sum of 256 STO’s,
Nl takes only 0*785 seconds per ’’Clementi’* integral*

5*5* The Labelling Program N2*
Description. This program is complementary to Nl. It takes 
the output of Nl, reorders the integrals and assigns them to their 
unique positions in the reduced two-electron integral matrices.
It also accepts the exchange integrals from paper tape input and 
assigns them similarly. The manipulation procedure is shown in 
flow diagram if.
Procedure. The general input data are read in and it is from 
this that the array sizes of the reduced two-electron matrices are 
calculated. This is an important space saving procedure and is 
discussed below.

Since the complete matrix of two-electron integrals, T, can be 
regarded as a direct product matrix, its order is the square of the 
total number of A0*s in the basis set. For example in HCN with a
minimal basis set, a one—electron matrix would be an 11 x 11 
containing 121 elements while the two-electron matrix would be a 
121 x 121 containing 1/*,6̂ 1 elements. Obviously this would be 
impracticable since most computers have immediate access stores of 
only 8k, 16k or 32K. Certainly complicated handling procedures
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involving backing store would have to be used*
However many of these llf,6ifl elements are zero by symmetry

and by rearranging rows and columns this matrix can be factorised
into blocks sis shown in figure V*l* The six unique blocks which
contain sill integrals between AO*s in a linear molecule can be
denoted by (<r<r|<r<r), (<r<r|trir), (trirlvriO, (irnlTrV), (o’nlorrr) and (irn'lirirO •
The largest of these is the (cv|c*oO block containing in the case of 

2 2HCN, 7 x7 - 2,lf01 elements. This is an improvement but is still
impracticable for core store usage, especially when molecules such 
as FCN are to be studied.

Each element of these arrays containing the two-electron 
integrals is designated by four subscripts i, j, k, 1. These can 
occur in any order. For example, in the sigma matrix, if i=j=k=l 
there is only one element with the value of the integral but
if i/jjAc/l there are eight positions containing the same integral 
value. What is wanted, therefore, is either a one dimensional 
matrix containing only the unique integral value or a two dimen­
sional array with the unique values stored in the upper triangle. 
The conditions for such an element are fourfold, i4j, k41, 14k, and 
when i=k then 3=1.

These unique elements can be stored in the upper triangle of a 
n(n+l)/2 x n(n+l)/2 matrix involving in the case of HCN only l̂ o6 
stores•

The formula for reducing the element of a four dimensional
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FIGURE V.l.

Diagram to show Factorisation of Y Matrix by Symmetry.

<r<r or or o'arn nr v o  n'n'

0 0 0
IT TT O' O' irtrirtr nirnV

rr’n'oro' rr'n'ir ir irVrrV

0

ar ir or it O' XT ft O'

0 0

rro'trir IT <T IT

0 0

G'n'trn1 o,n,TT/<r

0

n'tr<r it' rrV n' or

0 0 0
jrn'irn' irn'n'ir

n'lrirn' n'nv'ff

All off-diagonal blocks which are unnamed contain 
integrals whose values are zero by symmetry.
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matrix of the symmetry type (XX|XX) to its unique two dimensional 
counterpart is as follows. In reducing the matrix element 
(i,j,k,l) to the element (p,q) the expression for q in terms of 
k and 1 is identical to the expression for p in terms of i and j.

P = ^(b—1)(2n—b+2)+a+l (V«^)

where a =|i-j| , b = i(i+j-a) and n is the order of the two- 
electron matrix. In the case of the matrices of the symmetry 
type (XX||4a), the element (i,j,u,v) is reduced to (p,x) in the same 
manner as given above. However, the conditions for such a matrix 
are different since now only i < j and u < v. This results in 
every element (p,x) in the reduced matrix being filled. For 
matrices of the symmetry type (X|i|Xfi) the elements of the reduced 
matrix are stored in the upper triangle. Here, the element 
(i,u,j,v) is reduced to (p,q) and the conditions for this matrix 
are that i < j and for i = j, u £ v. pis given in terms of i 

and u by (V*5)«

p = £(m,-mt+l)(i-Hi-a)+a+l (V.5)
a

where a = I i—u I and ql and m are the number of orbitals with
' 1 A | i

symmetry X and jj, respectively.
After setting up the two-electron reduced matrices, and 

zeroing them, the program reads the first set of diatomic integrals 
from magnetic tape. The orbital numbering appropriate to the two
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atoms involved is then read in and the integrals are assigned by 
the above formulae to their correct position in the arrays. If one 
of the atoms is hydrogen the program forks through a shorter route 
thus cutting down the run time. The integrals are also axis 
corrected from the local diatomic system to the molecular, system 
in this section of the program.

N2 then cycles back if more sets of diatomic integrals are to 
be read in and repeats the above process until all integrals have 
been assigned to their appropriate array position. The exchange 
integrals which are evaluated using the MIDIAT program are read in 
from paper tape and assigned to their array positions.

The reduced arrays which now lack only the three-centre 
integrals are output on line print and stored on magnetic tape.
N2 then enters the next program in the system.
Discussion. This program was tested by the only method available, 
namely by following through the procedure by hand and checking to 
ensure that each integral value occupied the correct array site.

The main limitation of this program is that it is specifically 
designed for linear molecules. However the method and procedures 
are quite general and N2 could easily be adapted to study simple 
molecules of any configuration.
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5*6 • The Multicentre Integral Approximations and Orthogonal 
Transformation programs N3, N*f and M3*

Description. These programs evaluate the two-electron three- 
centre integrals by various approximate methods. N3 uses the 
well-4cnown Mulliken Approximation which has been additionally made 
invariant to transformations of the basis set. N4 has the option 
of two approximations: either the simple Mulliken Approximation or 
the Partial L5wdin method, neither of which is invariant to 
orthogonal transformations of the basis set. M3 uses the Full 
Lowdin method which is an invariant procedure. If desired, these 
programs can also transform the integrals from the basis of natural 
A0*s to one of LOAO*s.

Input is again from magnetic tape and the results are output 
on line print and stored either on magnetic tape or on paper tape.
The calculation procedure is shown in flow diagram 
Procedure. The general input data is read in and the array 
stores reserved. The two-electron reduced matrices and the Lowdin 
orthogonaKsation matrix are then read from magnetic tape. If three- 
centre integrals are to be evaluated the overlap matrix is read from 
magnetic tape. In the case of N*+ and M3, the bond asymmetry matrix 
is also read in. The three-centre integrals are then evaluated 
by the appropriate integral approximations, aus given in 2.5, and 
assigned to the empty array stores.

An additional, optional facility is included in the program at
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this point. This facility allows the value of any integral in 
any of the two-electron arrays to be changed if desired. This
could be useful if, for example, accurate multi—centre integrals 
were to become available from some other source. Another use 
would be for overwriting any integral value which is suspected of 
being inaccurate. To effect such a change the program reads the 
number of integrals to be qhanged from paper tape, together with 
the four dimensional subscripts for each integral followed by the 
new values. The switch facility in ALGOL is used to choose the 
array in which the desired alteration is to be made.

The final section of the program is also optional. Here,
two-electron integrals which have been evaluated in the basis of 
natural AO*s can be transformed to one of orthogonalised AO*s as in 

2.3.

I = (s”^xs” )̂ T (S^xS- )̂ (V.6)

This equation, although simple to programme, requires a considerable 
amount of computer storage. An entirely equivalent if less concise 
way of writing the above equation is

(Ulkl) = (pqlrs) (V.7)
p q r s

A large amount of core store is saved by specifying only the
-4 -4unique elements of S and (pqlrs) i.e. by using S as a one- 

dimensional matrix of n(n4i)/2 elements and (pq|rs) in the two—
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(pq|rs)

0 dimensional reduced form as described earlier* It is, however, 
questionable if much, if indeed any, time is saved because of the 
complex nested for statements which are required for the evaluation,

In order that all the integrals of Y are summed with their
correct coefficients, (V*7) has to be modified slightly.

f [s7JsTi©s^sTi] [ s i -f ©s-|si]\ xp jq xq jp rk si sk rl
djiki) = Z  I  

< ■ » > « ">

where, symbolically, f(pq)©f(qp) = f(pq)+f(qp) if P^q
= f(pp) if p=q

and f(pq,rs)©f(rs,pq) » f(pq,rs)+f(rs,pq) if (pq)/(rs)
= f(pqiPq) if (pq)=(rs).

The five rules for the ordering of these Indices and indice 

pairs are as follows:
a) P £ q
b) r 4 s
c) p 4 r
d) (pq) < (rs) if p<r or if p=r and q < s
e) (pq) s (rs) if p = r and q =s or if p= q =r= s
This analysis has been given previously by Nesbet C7U*
By suitable choice of the parameter *scf* read in at the

beginning of the program, the next program in the series may be
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entered.
Discussion. The run times for any of these programs is 
negligible compared with the complete SCF calculation if the 0A0 
transformation is not required. Otherwise these programs account 
for about k0% of the SCF calculation time.

The programs were carefully tested by hand using small matrices. 
The evaluation of the multi-centre integrals was also checked by 
hand calculation.

5*7• The Energy Minimisation Programs, N5 and E2.
Description. These programs carry out the SCF iterations to 
obtain the minimum in the electronic energy. McWeeny *s Density
Matrix method is used to obtain the best descent on the energy 
surface for each cycle. The programs additionally perform a 
Mulliken population analysis. Data are read in from paper tape 
and magnetic tape and the results are output on line print and 
optionally stored on paper tape or magnetic tape.

The calculation procedure is shown in flow diagram 6.
Procedure. After the general data are read in, the required one- 
and two-electron matrices are read from magnetic tape. The 
iterative SCF procedure requires a trial density matrix, R, as a 
first approximation and this is read in from paper tape. R is 
first of all made idempotent and is then used to calculate G. It 
is in this step that the programs N5 and E2 differ.
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N5 evaluates G directly from R and the 0A0 transformed two- 
electron integrals Y. But as was pointed out in 5*6 it is very 
time consuming to obtain Y, and E2 was developed to avoid this.
E2 first of all transforms R to R, the representation of the
density matrix in the natural AO basis and evaluates G using R and

^ v

Y which is also in the natural AO basis. G is then formed from 
G using (11.32).

—PThe matrix of the Hartree-Pock Hamiltonian, h , is formed and 
the total electronic energy is evaluated from the equation,

E t = 2 tr R f + tr R Gel ~ ~ ^

Normally the test for self-consistency is that the I£AO MO

coefficients from successive iterations should be identical within

the accuracy of the calculation. In N3 aad E2 these coefficients
appear implicitly in R, and it is more convenient to terminate the
calculation when two successive values of the total electronic

energy are self-consistent to any required accuracy. Experience
has shown that an E self-consistent to six decimal places is

roughly equivalent to R being self—consistent to three decimal.
——F —F—places* In this case the commutator Rh -h R is zero to at least 

three decimal places.
If self-consistency has not been reached the programs follow 

the method of steepest descents outlined by McWeeny [11]. From 
the optimum value of the steepest descent parameter, X, the best
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correction AR is formed and a new trial matrix R* is set up#
The program then cycles back to make §* iderapotent#

The total electronic energy is output to line printer at each
—  p p_cycle as is . The current R and the commutator (rE R),

which should be zero at the energy minimum, are also output every

five iterations# When self-consistency has been attained, R, G,
 —tp—R and (Rh -h R) are output on line print# There is also the

~"Foption here of staring the h and R matrices on magnetic tape and 
on paper tape#

The programs end by performing a Mulliken population analysis# 
The orbital population matrix, the atom and bond charge densities, 
the gross orbital charge densities and the gross atom charge 

densities are all evaluated# If it is desired, the next program 
in the system may then be entered#
Discussion. The density matrix iteration scheme is much 
faster and converges more quickly than the conventional SCF scheme 
which involves a matrix diagonalisation at each cycle# Approximate

speeds range between 10 and 30 seconds for one iteration in the case

of HCN, with N5 tending to be quicker than E2.
Again the testing was quite rigorous, the first few cycles

being evaluated by hand for simple matrices of small order# A 
more satisfactory test applied was the reproduction of a published 

calculation sub discussed in
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5*8. The Molecular Orbital Energies Program plf.

Description, This program diagonalises the self—consistent 
—Fmatrix, h , yielding the MO energies and the LCAO MO coefficients. 

These coefficients are used to reconstruct R for comparison with 
the self-consistent R obtained from E2 or N5* thus testing to 
ensure the iterations have been effected for the ground state.

Input is from paper tape and magnetic tape and the results are 
output on line print. The calculation procedure is shown in flow 
diagram 7«

—FProcedure. After the general data have been read in, h and
 ,1 —

S are read from magnetic tape. h is diagonalised using the

method of Jacobi [72], as in l6, 17 and l8, and the eigenvalues,
which are the one electron MO energies, are ordered in increasing

energy.
—FThe eigenvectors of h , which are the LCAO MO coefficients in 

the 0A0 basis stored in the columns of U, and the L&wdin 
orthogonalisation matrix are then used to obtain the LCAO MO 

coefficients in the natural AO basis by forming the product
-J-U = S 2U.
D4 finishes by reforming the density matrix R from the 

occupied LCAO MO coefficients which are stored in T. If the 
calculation has iterated to the ground state of the molecule this 

R and the final R from N5 or E2 should be identical.e* **

The next program in the system can then be entered from D*f*
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Discussion. As mentioned above the method of Jacobi is again 
used to obtain the eigenvalues and eigenvectors of a symmetric 
matrix. Although it is slower than other available methods, it 
should be pointed out that, for a molecule such as HCN, the 
computer times used by Dif and E2 are in the ratio of 1:150 which 
requires little improvement for such small molecules.

5®9o The Electron Density Program, Cl.
Description. This program uses the AO basis set data in 
conjunction with the representation of the one-electron density 
matrix in the natural AO basis corresponding to the molecular 
energy minimum, R, to evaluate the electron density at each point 
of a chosen grid.

= 2 XXxpu)Xqa> Rpq
Cl can also evaluate the difference electron density between two 
chemical systems, AP^(1)«

AP̂ l) = 2 IIXp (1) Xq (1) I Kpq -  Epq :
Input is from paper tape and magnetic tape and the results are 

output on line print. The calculation procedure is outlined in 

flow diagram 8.
procedure. General data are first of all read in from paper 
tape. This information includes the initial and final values of
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the abcissa, z, and ordinate, x, of the grid of points together 
with the desired mesh size* All parameters are expressed in 
atomic units of length.

The atomic orbital data, which is read in a form similar to 
that required for the one-electron matrices programs, is preceded 
by parameters recording the number of atoms present in the 
molecule; the number of orbitals present on each atom and the 
internuclear separations.

Cl then reads in R from magnetic or paper tape. If a 
difference electron density calculation is to be performed, the 
density matrix of the second system is also read in and subtracted 
from the first. The order of these two matrices must of course 
be the same and rows and columns of zeros are added to one of 
them if this is not the case.

The program then enters two loops: the outer loop increases
the abcissa by one mesh value and the inner loop the ordinate by 
a similar amount. This leads to the evaluation of the electron 
densities at all ordinate values for one particular abcissa value, 
in the inner loop.

The electronic charge density is then evaluated at each grid 
point according to one of the two equations given above, and the 
value of P1(l) or AP^l) is output on line print. The program 
then checks to see if the ordinate is below the maximum value 
required and, if it is, the inner loop is continued until the test
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is satisfied* A similar check is then applied to the outer loop* 
When this check is eventually satisfied the program can return to 
the beginning and begin a new calculation if this is required*
Cl can then call the next program in the system if desired* 
Discussion. This program was tested by reproducing a hand 
calculation on the hydrogen molecule. It normally requires from 
about one quarter to one half of the computer time used in the 
energy minimisation programs* Specific details of times for 
various molecules and mesh sizes are given in Table V.l*.

Table V.l*.

Sample Computer Run Times for Cl*

lecule
Electron
Density

Number of 
Grid Points Time

Time per 
Mesh Point

cn” total 112ft 3m 33s 0*l88s
cn" total 1701 5m l8s 0.187s

cn” total 211*0 6m l*ls 0.187s

cn” Pi 1809 lm 07s 0.037s

cn" sigma 1809 l*m 55s 0.163s

HCN total 222*1 7m l*5s 0.207s

HCN total 2691 9m 21s 0.208

HCN Pi 221*1 lm 21s 0.056s

FCN total 221*1 13m 30s 0.362s

FCN pi 221*1 2m 02*s 0.055s
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The times for difference electron densities are only a 
second or two longer them those quoted above*

5«>l0* The Molecular Properties Program* FI*
Description* This program is a beginning towards the goal of 
a program for evaluating molecular properties after an SCF 
calculation* By using the ALGOL switch facility, Fl can be very 
readily extended by the addition of small self-contained units*

At present Fl evaluates the molecular dipole moment, |i, the 
mean molecular kinetic energy T and the ratio —2T/V, where V is 
the mean potential energy, as a test of the Virial Theorem. In 
addition this program performs a population analysis according to 
the Doggett I and Doggett II methods whichever is desired*

Input is from paper and magnetic tape while the results are 
output on line print* The calculation procedure is outlined in 
flow diagram 9«
Procedure* Fl first reads in the general data from which all 
the array bounds are set* This is followed by the final R matrix 
of N5 or E2, read from magnetic tape, which is converted into the 
matrix P, where P = 2R* The program then reads in the fork 
parameter to choose which of the program sections is to be entered 
via the switch mechanism*

The first section (iff=l) deals with the dipole moment 
evaluation* The dipole moment matrix, D, calculated in 17 or l8
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is read from magnetic tape and the electronic contribution to the 
molecular dipole moment is calculated from

jie = 2 tr R D = tr P D (V.9)

The nuclear contribution is read in from paper tape and the dipole
moment in Debye units is calculated from the expression

H 85 (-|ie' +|iN) x 2.5416 (V.10)

The second section (iff « 2) evaluates the total mean kinetic 
energy. The kinetic energy matrix evaluated in 16, 17 or 18, is
read in from magnetic tape and the mean kinetic energy, T, is
evaluated from the relationship,

T = 2 tr R K = tr P K  (V.ll)
IV V

The total energy E is read in from paper tape allowing the 
potential energy V to be calculated since

V = E - T (V.12)

The ratio -2T/V is then evaluated.
The final two sections of the present program are linked 

together in that section four is automatically performed after 
three. However, having performed section three once, section 
four can be entered again without going through three by choosing 

iff = 4.
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Section three (iff = 3) has two purposes: firstly, a
Mulliken Population analysis is performed for comparison with the 
results of section four, and secondly the orbital population matrix, 
Q, is evaluated for use in that section.

The overlap matrix is read from magnetic tape and the sigma 
orbital indexing on each centre is read in from paper tape. P and 
S are multiplied together and since trPS = n, the total number of 
electrons in the molecule, the diagonal elements when summed for 
each atom give the Mulliken gross atom charges, as discussed in 
2.8. The Q matrix is then formed according to the relationship,

= V i d ^ - V  (v-13)

Section four which is then entered performs a population 
analysis according to the Doggett I method which asymmetrically 
partitions each overlap electron density.

The bond asymmetry matrix is read from magnetic tape and 
using the orbital population matrix a Doggett I population 
analysis is performed as described in 2.8.

Section four may be entered again (iff=4) if tbe Doggett II 
method is also to be performed. The copytext facility allows the 
results on line print to show which method has been used for a 
given set of results.

At the end of each section the program returns to the point 
where another fork parameter is read in. This parameter can also
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be the EXIT value (iff=5) which will terminate any particular run.
Fl can then cycle back to the beginning to perform another run 

if desired.
Discussion. This program has the useful feature that it can be 
very easily extended in the future. It is also a very fast 
running program: a full evaluation on HCN, for example, takes
only four seconds.

Fl was tested by checking with the results of hand calculations.

5*11* Discussion on the Program System.
There is one other program in the system not described above; 

namely, the SCF Control Program AA* It can be entered from any of 
the programs described above as an alternative to directly entering 
the succeeding program of the series. This is effected by giving 
*scf» the value 9*

The functioning of AA is very simple. It uses the switch 
facility thus giving it the feature of being easily extended for 
future additions to the system. A key number is read in from 
paper tape defining which program is to be entered. A second 
advantage of AA is that non-sequential programs can be entered.
For example, when effecting similar calculations using different 
multicentre integral approximations it is only necessary to enter 
Nl and N2 once and it is therefore desirable to enter N3, N*+ or M3
direct from l6, 17 or l8*
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The most important factor when compiling a series of programs 
is to be sure that they give the correct results# The first step 
is, of course, the rigorous testing of procedures and the individual 
programs themselves thus ensuring, for example, accurate integrals 
and correct matrix diagonalisations. However, the final test must 
be the reproduction of reliable quantities from a well known 
published work*

The first test applied to this program system was the simple 
molecule NH as published by B* J* Ransil [3] using an STO basis 
set# The second test applied was the HCN isoelectronic system CO, 
again the work of Ransil, using an STO basis set. The results of 
these comparisons were very encouraging and are shown in Tables 
V*5 and V.6 for NH and CO respectively.

Comparison of Total Energy and One-Electron MO Energies for NH*

Table V.5.

Glasgow Programs Ransil^ Calculation

Total Energy E
e ( 1 o' )

e ( 2or )

-5^.25979
-15.31733
- 0.87018

-5^.25981*
- 15.31801
- 0.87022

e ( 3<r ) 0.00295 0.00293

e ( ) 0.58W2 0.58W5

e ( In) -0.23758 -0.23778



226

Table V.6.

Comparison of Total Energy and One—Electron MO Energies for CO.

Total Energy E 
e ( lo' ) 
e ( 2<y ) 

e ( 3^  ) 
e ( 4<r ) 
e ( 5o') 
e ( 6o* ) 
e ( lrr ) 
e ( 2tt )

Glasgow Programs 
-112.34323 
-20.70574 
-11.33331 
-1.49879 
-0.73228 

-0.48079 
0.93370 
-0.38304 
0.26077

Ransilfs Calculation 

-112.34337 
-20.70397 
-11.35323 
-1.49881 
-0.73234 
-0.48078 
0.93222 

- 0.58308 
0.26082

Tbe third and last test applied was against an earlier best 
atom Slater calculation on HCN by McLean [4]. This calculation 
could not be exactly reproduced since exact multicentre integrals 
were used by McLean: nevertheless the published quantities give
a valuable guide to the accuracy of the present calculations and 
incidently to the overall effect of the multicentre approximations.

The results and comparisons using various approximations are 
presented and discussed in 4*1. and are perfectly satisfactory 
from the test viewpoint.

Another important point of modern quantum chemistry computing
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is the time involved in performing a calculation. Some statistics 
are shown in Table III#7 of chapter three for various calculations. 
The computing times of this system compare very favourably indeed 
with those of the McLean—Yoshimine program [67,73*74], where 
comparisons are possible. There are, however, two important 
factors which affect this comparison. The present system is much 
more limited in its field of application than the McL-Yosh program 
and increasing flexibility nearly always involves increasing run 
times. But, since much of the McL-Yosh Linear program is written 
in machine code this should compensate for the long run times 
imposed by the generality of the program.

It is difficult to make comparisons with the other major 
program systems, IBMOL [75,76], POLYATOM which was reviewed 
recently by Csizmadia et al [77] or the more recent MOSES [78], 
except to note that they all use Gaussian type functions in the AO 
basis set. The present program system, however, does not compare 
well in terms of run times with a recently reported double-zeta 
calculation on Ŷ .79'] which took 3*27 minutes. This exceptional 
time must be due solely to the use of a Univac II08 computer and 
it is doubtful if any of the above program systems would be 
comparable with such times.

The tests and comparisons made on the present system lead to 
the conclusion that the system, although limited in scope, is 
correct, accurate and reasonably fast.
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Arising out of the results and experience obtained from this 
work, a few proposals as to its possible extension are now put 
forward*

The major extension of this work must be in the direction of 
extending the basis set to include polarisation orbitals* This 
should lead to more accurate values for experimental observables 
and also allow the study of molecules containing second row 
elements. The system of computer programs must also be extended 
in order to study non-linear and open shell molecules*

However, a more immediate extension of this work would be in 
a fuller examination of the potential of the partial LBwdin 
approximation* It would also be useful if a set of rules could 
be found to determine whether the full or partial Lowdin method 
should be used for a given nuclear configuration*

Perhaps the greatest scope for expansion is in the informa­
tion which can be obtained from the contour diagrams and profiles* 
It would be very useful if some of the qualitative observations 
made on such diagrams could be given a quantitative basis* For 
example, the electron probability density could be integrated over 
some defined region of space to yield quantities similar to gross 
atom charges and bond populations* These regions, for example, 
could be spheres centred on the nuclei, or better still, cylinders 
of a given length and radius. The total number of electrons 
resulting from such an integration procedure would be less than
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reality and it would be necessary to scale the resulting charges 
accordingly. In the case of difference densities the total 
charge between the nodes might give more quantitative ideas of 
charge transfer on molecular formation but the integration 
procedure would be rather complex.

As was noted throughout chapter four, the total energy 
resulting from calculations involving multicentre integral 
approximations is lower than that of accurate calculations. It 
was also seen that the calculated dipole moments are lower than 
the experiments! values. Consequently, it would seem useful to 
investigate a constrained variation calculation where the resulting 
wave function is constrained to reproduce the experimental dipole 
moment. Because of the additional constraint imposed, the total 
energy would be a little higher and this would take it closer to 
the value from an accurate calculation. The expectation would be 
that other molecular properties would be obtained more accurately 
using this constrained wave function.

The goal of any such extensions must be to obtain as accurate 
molecular properties as possible with the minimum possible comput­
ation, The careful exploitation of the results obtained to yield 
simple new chemical concepts must be a complementary objective to 
the calculations themselves.
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Appendix One.
This appendix contains descriptions of the coordinate system 

used in the evaluation of the molecular integrals and the method 
of Gaussian numerical quadrature*
Prolate Spheroidal Coordinates.

As discussed in chapter two the molecular integrals are 
expressed in elliptical coordinates before performing the Gaussian 
quadrature* This coordinate system is defined below where the two 
centres are designated by a and b and their internnclear separation 
by H.

x
4 P(^,v,0)

b
(0,0,R/2)

y

All other symbols are defined in the above diagram. The 
elliptical coordinates of P are defined as follows:

(Al.l)
R
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The 
either a

r - r,
v = — --- £ (A1.2)

0 = 0, = 0h (A1.3)

formulae for converting from spherical coordinates, on 
or b, to prolate spheroidal coordinates are as follows

ra = | 01 + v) (Al.ii-)

f <H - v> (A1.3)

COS0 1 + M-V 
|I + V

(A1.6)

cose, = •/ ~ M (A1.7)b (Jl — v

a fa+v)



For volume integration the conversion is

2 2 2 r sine drdedgf = -v ) d(idvd0 (A1.10)

and the integration limits are

0 : 0 -» 2
p. : 1 — »
v : -1 -* 1

Gaussian Numerical Quadrature.
In the numerical integration of the definite integral

)^f(x)dx from a given number of values of f(x), the first problem
is to decide how the interval (a,b) should be divided to obtain
the greatest possible accuracy. Conventionally, for example, in
Simpson*s or Weddle*s rules, equally spaced ordinates are used.
However, Gauss showed that, for optimum accuracy, the ordinates
should not be equidistant although they should be symmetrically
placed with respect to the mid-point of the interval of integration. 

fbLet I = ) ydx denote the integral to be evaluated. On 
changing the variable by the substitution,
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X  . Itsiu + ihsl (Al.ll)
2 2

the limits of integration become —1.

Then y = f(x) = f |(~^)u + (“^)1 = 0f(u), say, and since

dx = (~^)du then,

1 = (^f) \ (2T(u)du = (^r)j (A1.12)

Gauss's formula is

/+iJ =  ̂ 0(u)du = + E 2(?(u2) + ... + En0(un) (A1.13)

where u.., Up, ..., are the points of subdivision in the interval 
u=—1 to u=+l. She corresponding values of x are,

■  ( ¥ h  ' ( ¥ )
/b

and the value of \ f(x)dx is given by

1 = ( ( ^ )  + R ^ C ^ )  + ... + Rn#(un)] (Al.l*)
-I
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Assuming that 0(u) can be expanded in a convergent power series in 
the interval -1 < u < +1,

/+l 2 mJ = ) ^(u)du = )̂  (a0+a1u+a2u +. ••+afflu +...)du

2 2
2ao + ̂ 2  + 5%  + ••• (A1.15)

Also ^(u^) = aQ + a^u^ + a2u ^  + ... + + ...

rtf \ 2 m
= 3.q + £LjU2 + a2u2 + ... + a^u2 + ...

(ai.i6)

2 mflf(u ) = a_ + a., u + a-u + ... + a u + .. ■n 0 jL n 2 n  m n

On substituting (A1.16) into (Al.13)

2 m 
J = ^1Cao+alUl+a2Ul +#***amUl ^

m,+R2(a0+aiU2+........amu2 )

+R^(aQ+......  (Al.17)

or J « aQ(R^4R2+** • •4®n  ̂+ ai^iul‘>®2U2+# * **+̂ nUn̂  +
2 2 2 

a2 ̂ 1 U 1 "*®2U 2 +• • • • +®nUn   ̂ * «* * (ai.i8)
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Now* for (Al.18) to be identical to (Al.15), the coefficients of 

a0’ ^  etc#» must 31180 be identical. Therefore,

2 

0

I etc. (A1.19)

By taking 2n of these equations and solving them simultaneously, it 
is theoretically possible to find the 2n quantities, u^ to u^ and 
R^ to R^. This is very laborious and the following method is 
preferentially used. It can be shown that if (2f(u) is a polynomial 
of degree not greater than 2n-l, then u^, u^ ••• u^ are the zero's 
of the Legendre polynomial P^Cu); i.e. the roots of Pn00 = 0»

P(u) = C (u2-X)n = 0 (A1.20)
11 du

where C is a constant. It is necessary, therefore, to solve the 
equation

—  (u2-l)“ = 0 (A1.21).
du11

For a particular n, the u^ can be found and substituted into 
equations (Al»19) to yield the R^. The u^ and R^ for n = 16 
which are used in the numerical integration of the molecular

R-i + R~ + ... + R 
J. d n

R-i + R0u_ + ... + R u 1 1  2 2 n n

R^u^ + %2a2 ^ *** R-un n
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integrals in this thesis are given in Table Al.l.

Table Al.l*

The Gaussian u and R values for n = 16.

U1 0.98940094 Ei 0.02715246

U2 0.94457502 K2 0.06225352

U3 0.86563120 E3 0.09515851

\ 0.75540441 E4 0.121|62897

U5 0.61787624 E5 0.14959599

u6 0.45801678 b6 0.16915652

u7 0.28160355 V 0.18260342

u8 0.09501251 B8 0.18945061

U9 -0.09501251 *9 0.18945061

u10 -0.28i6o355 H10 0.18260342

U11 -0.45801678 E11 0.16915652

u12 -O.61787624 B12 0.14959599

u13 -0.75540441 E13 0.12462897

u14 -0.86563120 0.09515851

U15 -0.94457502 E15 0.06225352

ul6 -0.98940094 B16 0.02715246
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After performing the 0 integration analytically the molecular 
integrals are dependent on the two remaining elliptical coordinates, 
|Ji and v. This double integration is effected by two applications 
of Gaussian quadrature; i.e. a.two dimensional grid is set up, and 
the integrand is evaluated at each grid point, followed by the 
summation, over all mesh points, of each integrand multiplied by

represents a typical molecular integral where the limits of fi run 
from 1 to*®. To change the limits to -1 to +1 a change of 
variable is made*

The integration over is divided into two ranges: from 
1 to D and from D to E. In this work D and E are taken as 2*3 
and 13 respectively as suggested by Magnusson and Zauli [8o]. Thus

the appropriate weight factor*

I = 1-,+!? = f(|̂ ,v)d̂ dv + C ( f (|i,v)d|Jidv
1 d '-i }\ C| 'a (A1.22)



For the first range, s ̂ ~=H, say, then the contribution
to the integral I for a particular v., 1^, is given by3

I3 = hCRjJKujV .) + E^CUjV ) + . . . +  fin0(uv.)] (A1.23)

where 0(u.v ) * + H + 1, v.) (A1.22+)

The complete integral is then obtained by summing over the v . toJ
give
1̂  = + R2R1(2f(u2v1) + ... + R^R^Cu.^)

+ ... + + ... + (Al.25)

The analysis is repeated for the second range of ji, but H is now
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APPENDIX TWO.
This appendix contains the values of all the molecular one— 

and two-electron integrals which were used in the improved 
calculation on HCN with the nuclei in their equilibrium ground state 
configuration as given in chapter three. The molecular axis 
convention is also given in that chapter.

All multicentre integrals quoted here were evaluated according 
to the full L5wdin approximation as shown in chapter two. The 
values of the elements of a few important one-electron matrices 
which occurred in the computation, are also included below. The 
integrals and matrix elements are indexed according to the nomen­
clature introduced in chapter three.

The following symbols for the various one-electron matrices 
are used in the table headings:

S
D
KE

R(N)
R(C)
R(H)
S“*

A
f
f
G

Overlap matrix 
Dipole moment matrix 
Kinetic energy matrix
Matrix of nuclear attraction integrals of form (p|l/rNlq) 
Matrix of nuclear attraction integrals of form (p|l/rc|q) 
Matrix of nuclear attraction integrals of form (p|l/rH|q) 
Lowdin orthogonalisation matrix 
Partial Lfiwdin bond asymmetry matrix 
Full L6wdin bond asymmetry matrix
Matrix of the one-electron Hamiltonian operator over NAO's
Matrix of the one-electron Hamiltonian operator over L0A0*s
Matrix of the two-electron Hamiltonian operator over L0A0*s 
at the SCF energy minimum



Index S D KE R(H) R(C) R(H)
11 1.00000 0.00000 22.14032 6.65280 0.45658 0.23815
12 0.00000 0.00000 -5.93114 -0.91915 -0.00001 -0.00002
13 0.00000 0.06989 0.00000 0.00000 0.01454 0.00396
14 0.00034 0.00035 -0.00193 0.00055 0.00045 0.00012
15 0.06039 0.00711 -0.00103 0.19339 0.02911 0.01357
16 -0.10318 -0.00857 -0.02822 -0.33679 -0.04912 -0.02566
17 0.00770 0.00115 -0.00193 0.02403 0.00352 0.00192
22 1.00000 0.00000 2.24545 1.07832 0.45015 0.23813
23 0.00000 0.77706 0.00000 0.00000 0.14658 0.04400
24 0.06271 0.12556 -0.01293 0.03141 0.16884 0.02853
25 0.47846 0.45374 0.10357 0.31519 0.28003 0.13401
26 -0.51628 -0.13155 -0.25961 -0.40514 -0.28122 -0.12846
27 001698 0.19143 -0.01041 0.06049 0.07074 0.04808
33 1.00000 0.00000 1.87870 0.95894 0.51362 0.25139
34 0.11299 0.23196 0.02182 0.05542 0.31415 0.05429
35 0.43173 0.81998 0.22833 0.25402 0.32059 0.17505
36 -0.20462 *0.29532 -0.33764 -0.20058 -0.20476 -0.06214
37 0.15004 0.39277 0.00702 0.06242 0.08108 0.08204
44 1.00000 2.19021 16.04940 0.45658 5.66398 0.49781
45 0.00000 0.00000 -4.17365 -0.00002 -0.76063 -0.00004
46 0.00000 0.07815 0.00000 -0.01623 0.00000 0.01928
47 0.08367 0.19463 0.00303 0.03696 0.22926 0.04487
55 1.00000 2.19021 1.54334 0.44169 0.89744 0.47438
56 0.00000 0.93471 0.00000 -0.15987 0.00000 0.17807
57 0.58538 1.87083 0.12615 0.17108 0.34358 0.41884
66 1.00000 2.19021 1.25433 0.51089 0.78417 0.55067
67 0.50876 2.19671 0.25045 0.11535 0.27514 0.50483
77 1.00000 4.19901 0.50000 0.23787 0.47086 1.00000
88 1.00000 0.00000 1.87870 0.95894 0.41106 0.23144
89 0.36309 0.35848 0.16811 0.20615 0.19257 0.11442
99 1.00000 2.19021 1.25433 0.39236 0.78417 0.41708



Index -4s” _ H

2If2

X
11 1.01361 0.00000 0..00000
12 0.08076 0.00000 0.00000
13 0.04932 0.00000 0.00000
14 -0.00709 0.46248 0.4621$
13 -0.06633 0.05374 0.19840
16 0.11496 0.03791 0.05054
17 -0.03503 0.03556 0.03556
22 I.49157 0.00000 0.00000
23 0.31464 0.00000 0.00000
24 -0.07733 0.91416 0.76205
25 -O.48167 0.43298 0.51442
26 0.63094 0.11633 -0.05283
27 -0.18349 0.38971 0.19976
33 1.21793 0.00000 0.00000
34 -0.09056 0.93727 0.92188
33 -O.39838 0.86717 1.17355
36 0.32476 0.65898 0.30344
37 -0.08004 0.62341 0.55947
44 1.01644 0.00000 0.00000
45 0.09153 0.00000 0.00000
46 -0.02555 0.00000 0.00000
47 -0.05947 0.06766 0.06766
55 1.54109 0.00000 0.00000
56 -0.10525 0.00000 0.00000
57 -O.43140 0.50065 0.16159
66 1.58428 0.00000 0.00000
67 -O.56626 1.05911 1.12901
77 1.47608 0.00000 0.00000
88 1.05477 0.00000 0.00000
89 -0.19825 0.45078 0.45078
99 1.05477 0.00000 0.00000

f f G
-27.40688 -27.29046 11.59836
0.50298 0.83992 -0.56369
-0.09119 0.14062 0.00588
-0.00852 -0.05055 0.02657
-1.54296 -0.69653 0.15269
2.64967 1.16824.4 -0.21481

-0.19315 -0.19266 0.04220
-8.24182 -8.35544 7.69156
-0.92350 -0.82732 0.97697
-1.27432 -0.42008 0.00029
-3.91694 0.06552 -0.56756
4.39216 0.19253 0.44052

-0.90637 -0.06055 -0.07685
-8.16700 -7.96183 7.58958
-2.30531 -0.74748 0.04338
-3.64841 -0.25848 -0.26415
2.35715 0.47415 -0.03129

-0.99845 0.12789 -0.13367
-21.62830 -21.51079 10.10557
0.39032 0.75253 -0.47533
0.09435 0.04835 -0.10865
-1.67615 -0.81824 0.31906
-7.40747 -7.19068 6.76718
0.94104 0.34514 -0.48737
-3.55174 -0.27138 -0.01618
-7.57753 -7.35864 7.23159
-2.71266 0.07474 -0.54380
-4.99024 -4.29383 4.17734
-7.53168 -7.57503 7.35250
2.54478 0.02686 -0.39241

-6.61424 -6.59040 6.39214
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THE TWO-ELECTRON INTEGRALS.
(<r <r| <r<r)

1111 l*. 121*97 1214 -0.00002
1112 -0.1*0503 1215 -0.01016
1113 0..00000 1216 0.01784
1111* 0.0001*8 1217 -0.00125
1115 0.15776 1222 -0.01701
1116 -0.27391* 1223 0.00000
1117 0.01965 1224 -0.00000
1122 0.97628 1225 0.00016'
1123 0.00000 1226 -0.00036
1121* 0.0311*2 1227 0.00002
1125 0.32162 1233 -0.01145
1126 -0.1*1650 1234 -0.00001
1127 0.06128 1235 -0.00070
1133 0.91*897 1236 0.00097
1131* 0.0551*2 1237 -0.00008
1135 0.25361* 1244 -0.00001
1136 -0.20005 1245 -0.00000
1137 0.06238 1246 0.00001
111*1* 0.45658 1247 -0.00000
111*5 -0.00003 1255 -0.00064
111*6 -0.01623 1256 0.00107
111*7 0.03696 1257 0.00014
1155 0.1*4097 1266 -0.00182
1156 -0.15861 1267 0.00003
1157 0.17126 1277 -0.00001
1166 0.50868 1313 0.02875
1167 0.11539 1314 0.00002
1177 0.23786 1315 0.00163
1212 0.06438 1316 -0.00225
1213 0.00000 1317 0.00018

1322 0.00000 1427 0.00002
1323 0.03105 1433 0.00027
1324 0.00109 1434 0.00004
1325 0.00688 1435 0.00012
1326 -0.00724 1436 -0.00010
1327 0.00120 1437 0.00002
1333 0.00000 1444 0.00039
1334 0.00191 1445 -0.00001
1335 0.01413 1446 -0.00001
1336 -0.01909 1447 0.00003
1337 0.00248 1455 0.00021
1344 0.01454 1456 -0.00005
1345 -0.00001 1457 0.00009
1346 -0.00102 1466 0.00023
1347 0.00116 1467 0.00006
1355 0.01151 1477 0.00012
1356 -0.00602 1515 0.00722
1357 0.00345 1516 -0.01245
1366 0.01362 1517 0.00102
1367 0.00182 1522 0.05443
13 77 0.00392 1523 0.00259
1414 0.00000 1524 0.00201
1415 0.00003 1525 0.02002
1416 -0.00004 1526 -0.02577
1417 0.00000 1527 0.00394
1422 0.00025 1533 0.05459
1423 0.00006 1534 0.00354
1424 0.00002 1535 0.01636
1425 0.00012 1536 -0.01341
1426 -0.00014 1537 0.00385



1544
1545
1546
1547
1555
1556
1557
1566
1567
1577
1616
1617
1622
1623
1624
1625
1626
1627
1633
163**
1635
1636
1637
1644
161+5
161+6
161+7
1655
1656
1657
1666
1667

21+1+

0.02912 1677 -0.02531 2236 -O.I588I 2424
0.00000 1717 0.00010 2237 0.05836 2425
-0.00108 1722 0.00686 221+4 0.44950 21+26
0.00235 1723 0.00030 221+5 -0.00061+ 2427
0.02761 1721+ 0.00028 221+6 -0.01422 2453
-0.00983 1725 0.00276 2247 0.03641 2434
0.01071 1726 -0.00352 2255 0.41352 2435
0.03156 1727 0.0001+9 2256 -0.11902 2436
0.00687 1733 , 0.00687 2257 0.17458 2437
0.011+26 1731+ 0.0001+3 2266 0.44684 2444
0.0211+6 1735 0.0011+5 2267 0.11607 2445
-O.OOI95 1736 -0.00150 2277 0.23721 2446
-0.09350 1737 0.00050 2323 0.13737 2447
-0.0031+8 171+1+ 0.00352 2324 0.00987 2455
-0.00339 171+5 0.00000 2325 0.04351 2456
-O.031+07 171+6 -0.00012 2326 -0.03882 2457
0.01+396 171+7 0.00031 2327 0.009H 2466
-O.OO638 1755 0.00339 2355 0.00000 2467
-0.09369 1756 -0.00115 2334 0.01753 2477
-0.00598 1757 0.00237 2335 0.07633 2525
-0.02755 1766 0.00390 2336 -0.081+06 2526
0.0221+2 1767 0.00255 2337 0.01681+ 2527
-O.OO65O 1777 0.00191 2344 0.14536 2533
-0.01+912 2222 0.68321 2345 -0.00110 2534
0.00001 2223 0.00000 2346 -0.00729 2535
0.00182 2221f 0.03028 2347 0.01158 2536
-0.00398 2225 0.27508 2355 0.09809 2537
-0.01+673 2226 -0 .31+277 2356 -0.02964 2544
0.01670 2227 0.05491+ 2357 0.03945 2545
-O.OI82I 2233 0.66903 2366 0.09840 2546
-0.0531# 2231+ 0.05363 2367 0.02036 2547
-0.01231 2235 0.22165 2377 0.04266 2555



2556
2557
2566
2567
2577
2626
2627
2653
2634
2635
2636
2637
26lflf
2645
261*6
261*7
2655
2656
2657
2666
2667
2677
2727
2733
2731*
2735
2736
2737
2744
271*5
271*6
271*7

21*5

-0.01*972 2755
0.1101*2 2756
0.21*61*3 2757
0.06696 2766
0.13805 2767
0.18781* 2777
-0.02976 3333
■̂ ) .31*160 3331*
-0.031*09 3335
-0.13771 3336
0.10930 3337
-0.03332 331*1*
-0.28078 331*5
0.00081 331*6
0.0131*6 331*7
-0.02263 3355
-0.21*088 3356
0.07831 3357
-0.09693 3366
-0.25658 3367
-0.06315 3377
-0.12872 31*31*
0.00651* 31*35
0.05396 31*36
0.00788 3437
0.0281*9 341*1*
-O.OI696 3445
O.OO865 3446
0.07051 3447
-0.00022 3455
-0.00188 3456
0.00501* 3457

0.06038 3466
-0.01204 3467
0.03452 3477
0.06419 3535
0.03505 3536
0.04261 3537
0.70600 3544
0.06064 3545
0.23481 3546
-0.16937' 3547
0.06188 3555
0.5H33 3556
-0.00195 3557
-O.OI717 3566
0.04130 3567
0.43678 3577

-0.11992 3636
0.18663 3637
0.46932 3644
0.12142 3645
0.24893 3646
0.02246 3647
0.03905 3655
-0.02567 3656
0.00904 3657
0.25557 5666
-0.01622 3667
-0.00285 3677
0.02023 3737
0.08591 3744
-0.00449 3745
0.04397 3746

0.081*69 3747
0.02429 3755
0.05133 3756
0.13992 3757
-0.10281 3766
0.02910 3767
0.33087 3777
0.00032 4444
-0.00780 4445
0.02674 4446
0.26263 4447
-0.03904 4455
0.12786 4456
0.26078 4457
0.08061 4466
O.16485 4467
0.09945 4477
-0.01966 4545
-0.20409 4546
0.00120 4547
0.01621 4555
-0.01628 4556
-0.15171 4557
0.06740 4566
—0.05166 4567
-0.15989 4577
-O.03141 1*646
-0.06379 4647
0.01257 4655
0.08076 4656
-0.00027 4657
-0.00034 4666



2if6

if667 0.01547 if777 0.0ifl03
4677 0.01405 5555 0.572ifi+
if7if7 0.01202 5556 0.00000
if755 0.06333 5557 0.29621
4756 0.00303 3566 0.35if62
4757 0.03038 5567 0.23622
if766 0.06236 5577 o. if 2338
if767 0.02if76 5656 0.ilif6l

(<r<r|Trir)

1188 0.9if897 2288 0.66903
1189 0.20388 2289 0.l82if7
1199 0.39233 2299 0.38ifl6
1288 -0.0llif5 2388 0.00000
1289 -0.00050 2389 0.02475
1299 -O.OOOOif 2399 0.08855
1388 0.00000 31+88 0.02765
1389 0.00326 2if89 0.0l2lfif
1399 0.00903 2if99 O.Oif6l5
lif88 0.00023 2588 0.26638
lif89 0.00007 2389 0.08998
lif99 0.00019 2599 0.22928
1388 0.05if20 2688 -0.33286
1589 0.01258 2689 -O.lOllif
1399 0.02if6l 2699 -0.22397
1688 -0.09315 3 00 00 0.05323
1689 -0.021if2 2789 0.01975
1699 -0.04165 2799 0.05583
1788 O.OO683 3388 0.63if8if
1789 0.00186 3389 0.179ifl
1799 0.00302 3399 0. if0522

5657 O.Oif873 6666 0.57892
5666 0.00000 6667 0.25167
5667 0.0869if 6677 0.if5192
5677 0.11362 6767 0.19602
5757 O.I8569 6777 0.33893
5766 0.298ifl 7777 0.62500
5767 0.17797
5777 0.31257

3if88 O.Oif899 4788 0.03337
3if89 0.02225 4789 0.01678
3if99 0.08383 4799 0.06184
3588 0.20958 5588 0.39489
3589 0.08506 5589 0.16690
3599 0.25088 5599 0.55462
3688 -0.1if778 5688 -0.11181
3689 -0.05722 5689 -0.02862
3699 -0.13893 5699 0.00000
3788 0.05567 5788 0.16796
3789 0.02167 5789 0.07982
3799 0.06456 5799 0.28303
1+1+88 O.ifllOif 6688 0.42591
ifif89 0.19230 6689 O.I6508
i+if99 0.77688 6699 0.52039
1+588 -0.00007 6788 0.11328
if589 -0.00050 6789 0.05854
if599 -0.00840 6799 0.21964
4688 -0.01163 7788 0.23097
1+689 -0.00380 7789 0.11075
if699 0.00000 7799 0.39527



21f7

(o' rr | <ttt)

1818 0.02873 2828 0.13737
1819 0.00115 2829 0.03531
1828 0.03105 2838 0.00000
1829 0.00536 2839 0.02475
1838 0.00000 2848 0.00068
1839 0.00326 2849 0.00504
1848 0.00009 2858 0.04877
1849 0.00052 2859 0.04306
1858 0.01027 2868 -0.06795
1859 0.00494 2869 -0.02365
1868 -0.01583 2878 0.00846
1869 -0.00351 2879 0.00000
1878 0.00155 2929 0.01809
1879 0.00000 2938 0.00986
1919 0.00004 2939 0.01974
1928 0.00185 2948 0.00072
1929 O.OOOlfl 2949 0.00778
1938 0.00026 2958 0.01939
1939 0.00031 2959 0.03757
1948 0.00001 2968 -0.02151
1949 0.00006 2969 -0.01020
1958 0.00066 2978 0.00000
1959 0.00044 2979 0.00000
1968 -0.00096 3838 0.03558
1969 -0.00028 3839 0.01485
1978 0.00000 3848 0.00041
1979 0.00000 3849 0.00333

fitirlntr)
8888 0.70600 8889 0.18712
8999 0.16836 9999 0.57892

3858 0.00999 4969 0.00000
3859 0.01983 4978 0.00000
3868 -O.OO885 4979 0.01050
3869 -0.00876 5858 0.02299
3878 O.OOI84 5859 0.03423
3879 0.00000 5868 -0.02783
3939 0.02532 5869 -0.01201
3948 0.00104 5878 0.00000
3949 0.01209 5879 0.00000
3958 0.01880 5959 0.11461
3959 0.05006 5968 -0.02862
3968 -0.01779 5969 0.00000
3969 -0.00867 5978 0.00000
3978 0.00000 5979 0.05072
3979 0.00000 6868 0.03691
4848 0.00008 6869 0.01683
4849 0.00119 6878 0.00000
4858 0.00057 6879 0.00000
4859 0.00196 6969 0.02926
4868 -0.00051 6978 0.00000
4869 -0.00037 6979 0.00997
4878 0.00000 7878 0.00093
4879 0.00000 7879 0.00000
4949 0.02150 7979 0.02803
4958 0.00515
4959 0.02428
4968 -0.00380

8899 0.37495 8989 0.06615



21*8

( t t t t I ttV )

881010 0.63if8if
881011 0.17208
881111 0.36203

( tttt' I ittt ' )

810810 0.03558
810811 0.00752
810910 0.00752
810911 0.0061*6

891010 0.17208
891011 0.05952
891111 0.15^95

811811 0.00331
811910 0.00331
811911 0.00670

991010 0.36203
991011 0.15^95
991111 0.52039

910910 0.00331
910911 0.00670
911911 0.02926



22*9
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