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SULLLARY

The phase problem of X-ray crystallography is
stated, some of the methods available for its solution
are surveyed and their theoretical background is outlined.

Three computer programs written by the author, are
described. These are a program for scanning three-
dimensional density maps, which automatically produces
interpolated coordinates for every peak im the map; a
program for sorting crystallographic reflexion data into
order by the liiller indices; and a program which supplies
a suitable weighting-scheme for structure-factor-least-
squares refinement. The "ASS" system of crystallographic
computer programs is then described with special
reference to the method of storing the crystallographic
data, and the features which enable it, in some cases,
to obtain the positions of all the light atoms auto-
matically, given the position of only the heavy-atom.

The crystal structure analysis of tris (ethyl sulphonyl)
methane is described, and the structure obtained is com-
pared to that of tris (methyl sulphonyl) methane. A
description is given of the course of the structure
analyses of three acid salts, potassium hydrogen dianisate,
potassium hydrogen dicrotonate and rubidium hydfogen
dicrotonate, and their structures, which all contain

short hydrogen bonds, are discussed.
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Chapter 1

1l.1. Introduction

The central problem in X-ray crystallography is to
determine the relative phases of the waves of radiation
diffracted by the crystal. Both the phases and the
amplitudes must be available in order to combine the
waves and to obtain an image of the diffracting crystal
structure. While the amplitudes are readily obtained
experimentally by measuring the intensities of the
diffracted beams, the phases cannot be measured. In
many small compounds the atom positions are determined
entirely by the requirements of the space group
symmetry. In others, only some, or none, of the atom
positions are symmetry-determined. The positions of
atoms not found by symmetry must be determined from
intensity measurements, and the phase problem appears.

The earliest structure solutions were by trial-and-
error, but; except for the smallest structures, the
nunber of trial structures required is astronomical.
There are two approaches to the phase problem; one is
to use more of the information contained in the experi-
mentally measured amplitudes, the other is to change any
difficult problem into one which is simpler to éolve. '

Although both these approaches have produced powerful




methods of structure solution, up till now those of the
second kind have been the most successful. These are
egssentially chemical methods which reduce the many atom
problem to a one or two atom problem, followed by an
iterative structure improvement and refinement. They are
the heavy atom and isomorphous replacement methods, and
their extensions, the vector superposition and the
anomalous scattering method. Of all these the most

widely applied is the heavy-atom method.
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1.2. The Heavy-Atom llethod

For this method to be applicable the chemical com-
pound must contain at least one atom which is considerably
heavier than the rest, or a heavy atom or group of atoms
containing a heavy-atom must be incorporated in the
structure by some chemical means. The positions of these
heavy atoms in the unit cell of the crystal can then be
determined by considering the vector peaks in the Patterson
. map. From fhe known positions of the heavy atoms structure
factors can be calculated for a hypothetical structure of
the heavy atoms alone.

For any one reflexion this calculation gives the
contribution of the heavy atoms to the observed structure
amplitﬁde. The limitations on the phase of the structure
factor of a non—centrosymmetric structure imposedAby the
size of the heavy atom contriﬁutions are shown in Fig. 1
(Robertson, 1963). F is the contribution of the unknown
portion of the structure, fH is.the known contribution of
the heavy atom, FH is the resultant structure fdctor of
the heavy atom derivative.

The phase of fH is krown, while that of F is com-
pletely unknown. The phase of the resultant structure
factor of the whole structure FH is constrained-so that
the end of the vector Fy must lie on theﬂgﬂﬁuﬁ circle.
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The diagrams show that where fH is large, compared to F,
the phase angle of the actual structure factor FH must be
gimilar to that of the heavy-atom scattering vector. " As
fy; becomes smaller, the probability tends to 1 / 2 that
the structure factor will have a phase within ZTT/2 of
the heavy-atom phase. Considering the range of possible
phase angles of a typical structure factor, it is sur-
prising that the solution of a non-centrosymmetric
structure does not present even more difficulty in
practice.

The larger the heavy—-atom contribution, the more
likely is the phase of the structure factor to be close
to that of the heavy-atom contribution. By examining a
list of the structure factors, a crystallographer can
decide which are safe to be included in the electron-
density synthesis. (A small computer program can do this
equally well.) Sim (1960) has pointed out that this
arbitrary procedure is not completely satisfactory.
Either too few unreliable terms may be omitted, or else,
if too many are eliminated, the electron-density maps may
actually be made worse in spite of the phase errors in
these terms.

A more objective procedure is to weight thé terms’

according to the reliability of their phases, as suggested

-4~




by Woolfson (1958) and Sim (1960). Even so, except
where the heavy-atom is barely heavy enough, unweighted

electron-density maps are remarkably successful at

revealing the structure.




1.3. The IsomorphouseReplacement liethod

This is not so widely applicable as the heavy-atom
method. At least one heavy-atom derivative, isomorphous
with the parent compound, is required. In the non-
centrosymmetric case, three isomorphous compounds must be
used to obtain a complete solution of the phase problem.
The requirement of isomorphism is the chief limitation on
the method, since, with small or medium-sized chemical
molecules, the addition of a heavy-atom frequently forces
the compound to crystallise in a different space group.
Compounds such as the phthalocyanines (Robertson, 1936)
are rare. Sometimes a series of solvates can be used with
great effect, (Cheung, 1966), but solvates frequently form
crystals of unsatisfactory composition (Islam, 1966).
With exceedingly large molecules such as proteins, however,
the addition of heavy-atoms may leave the structure
relatively undisturbed. The isomorphous replacemenﬁ has
been brilliantly used by Kendrew (1961 ) in solving the
structure of the protein myoglobin, and by Philips (1965)
in the structure determination of lysozyme.

Double Isomorphous Substitution

In the case where three isomorphous crystals are
available, compound, compound + Heavy—atom 1, compound +

Heavy-atom 2, F, FHl, FH2 are the structure factors for

-6
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one reflexion in the three compounds, and le, fH2 are
the scattering vectors for the heavy-atoms 1 and 2
respectively.
Only the magnitude of F, FHl and FH2 are known, and ﬁot
their phases. Using vector notation we have:-
FH; = F + fH; : (1)
and

FH, = F + fH, (2)
These can be re-arranged as shown below:-

FH, - fH, = F (3)

FH2 - fH2 =F (4)
Since we know both the phase and amplitude of le and sz,
these equations can be solved graphically (Fig. 2) by a
procedure introduced by Harker (1956).

From Fig. 2 it can be seen that each isomorphous pair
gives rise to two possible solutions. Thus the vector F
must be along either OB or OC, and the vector FHl must be
along either AB or AC. In Fig. 2.b. the vector F must be
along OB1 or OCl and the vector F must be along either
AlB'l or AlCl. When we combine these in a single drawing,
Fig. 2c. we can see that there is only one possible
solution and the phases of F, FHl, FHQ can be determined
unambiguously.

In practice the three circles rarely meet at one

e




point, and a statistical technique must be used. The
"best" intersection-point is usually taken as the centre

of gravity of the probability distribution.




l.4. The Heavy-Atom, Anowalous Dispersion llethod

This method can be used to obtain more accurate phase-
angles, to assist the solution of general non-centrosymmetric
structures by the heavy-atom method, to determine absolute
molecular configurations directly, and, in some cases, to
resolve the problem of '"pseudo-symmetry'" in the initial
heavy-atom-phased electron-density maps.

Psewdo-symmetry occurs whenever the arrangement of
the heavy-atoms alone corresponds to a space group more
symmetrical than that of the actual crystal. In this case
the first electron-density map, phased from the heavywatom
position, is a multiple image of the structure. The
weighting procedures discussed earlier do not alter this,>
and only improve the quality of the multiple image.

Usually, structures of this type are solved by selecting
some chemically recognisable group of atoms from the
initial maps and, after structure factors have been cal-
culated, an improved map is obtained.

Systematic methods are available for non—centrosymmetric.
structures which make useof the fact that certain atoms
scatter X-rays anomalously. They are the directQphase
method of Ramachandran and Raman (1956) and the»sine;
Patterson method proposed by Okaya, Saito and Pepinsky
(1955). Geurtz, Peerdeman and Byvoet (1963) compared the

=g




two methods and concluded that the direct phase method
gave the more satisfactory results.

The only disadvantage is that the intensities of
both the Fhkl and the Fhkl reflexions have to be
measured. At present this is laborious, and the method
is seldom used. With the coming of computer-controlled
diffractometers, data collection will become much more
flexible. Since small or accidentally absent amplitudes
have little effect on an electron-density map, it would
be necessary to phase only the larger terms accurately.

Therefore it would be necessary to measure only the
second reflexion hkl if its twinAthe‘hkl reflexion were
larger than some specified minimum.

The departure from Friedel's Law (1913) is caused by
an atom in the structure being excited by the incident
radiation. This results in the diffracted wave's having
both a real and an imaginary component. The effect is at
its maximum if the wavelength of the incident radiation
is just longer than the wavelength at which the atom has
an absorption-edge, but comparatively small effects can

be utilized by the method (Raman, 1958).

Fry FR are the components of the unknown, normally-
scattering atoms;
Fys F, are the real components of the diffracted beam

-10~
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Fig 3a

Fig 3b



scattered by the anomalously-scattering

aton;

I . .
FA’ FK are the imaginary components of the wave

scattered by the anomalously-scattering

atom;
F, F are the structure factor vectors;
/=
F, F are the mean structure factor vectors which

are to be used in the electron-density map;

A is the required phase angle;

C*A is the known phase angle of the normal
component of the heavy atom scattering
vector;

e is the angle between EA" and F'.
From the figure it is seen that the phase of F, is TI/2+0‘A. )
Therefore we have

X+ 0 = T/2 +o

and so:

]

® =T/2 + o4 - O (1)

From the Cosine we have
IF1% < IF1 IF 15 - 20F 1R Tcos (180 -6) (@)

and

FI* =1F1% 11" = 20F1IR"| cos (o) (3)

HE
we naveAcFos(e)‘ < AIFIV(AIF’lJFA”l) (4)

and lFl =L OFP+[F1)- |FF (5)

-1]-
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The ambiguity in the value of @ obtained from
equation (4) is resolved by taking the value of &close
to X, the phase of the heavy-atom scattering vector.
Although the data must be placed on an absolute scale,
this may be done adequately (Harris and Mills, 1966) by
finding the batch scale factor K from the following

expression:

bdi batch

w3 R 2

where [Fc| is the amplitude of the heavy-atom contribution
to the structure factor and |Fo] is the experimentally-
determined structure amplitude on the relative scale.

Some limitation must be imbosed . on the values of the
shifts from the heavy-atom phase obtained by applying this
method. Hall and iaslen (1965) suggest that, if co5(g))> 1-0

then X = Ok,+ Tr/')_)
aa sz 2ff ) IFI

/
then A = K ]

/ ’ 4
and if F = O or FA/'-’O,

/

then A =

This method therefore seems assured of more frequent

use in future.

-12-~




1.5. Vector 3pace llethods

1.5.1. The Patterson Function

The first and most important method of displaying
the information in the observed structure amplitudesbis
the Patterson function. This is a Fourier synthesis as

shown below:

Aluvw) = é‘hz ; ; /F(Au)llcos (lﬂ(hwkw/w})--..(l)

Patterson derived this synthesis by considering the;
convolution of the electron-density with itself. 1Its
important property is that the peaks in the Patterson
function océur at the ends of the inkratomic vectors,,
for every pair of atoms in the crystal a peak occurs in
the Patterson function. Thus there are in a unit cell

2

containing N atoms, N peaks in the Patterson map and N

of these are at the origin.
There are two problems in interpreting the Patterson
map: ‘
(1) Obtaining the actual structure from a set of vector

peaks of the structure;
(ii) Dealing with the lack of resolution of the Patterson
which is far from a set of point vectors.
In the matter of obtaining the structure ffom the

Patterson function, the presence of one atom slightly

-13-




heavier than the others greatly increases the chances of

succes3.

1.5.2. Heavy—Atom Superposition liethods

One of the first was the vector superposition method
of Beevers and Robertson (1950) , which utilised the so-
called sum function, and was carried out by placing the
origin of the Patterson on each heavy-atom position in
turn. The positions of the light atoms were then revealed
in the sum function. A more popular image-seeking
function is the Buerger Minimum Function (Buerger, 1959).
In this the value recorded on the resulting map is the

lower of the two values at any grid-point, on two displaced

Patterson maps.

As carried out by hand, the Minimum Function mdp does
not compare well with a normal heavy-atom phased electron-
density map. This may be due partly to the limited
accuracy of superposition. In the heavy-atom method it
is important that the heavy-atom co-ordinates should be
accurate to much better than 0.2 A° and interpolation is
used to achieve this. By analogy, one would expect that
for good results the minimum fung¢tion must be carried out
with interpolated Patterson values. A second point is
that the simple minimum-function can be improved-if, on

choosing one heavy-atom position, other minimum-functions

-14-




are obtained for the other heavy-atom positions related
by the space group symmetry, and if these minimum-
functions are combined, again by the minimum-function.

The advantages of the superposition method are that
the accuracy of the image produced does not depend on
the weight of the atom, only on its positional accuracy,
and on the general accuracy of the observational measure-
ments. Only when the random fluctuations caused by
experimental error in the measurements become of com-
parable size to the image of the structure which is
being sought will the result become unreliable.

The disadvantage of the method is that it is much
more complicated than the heavy-atom method, and in cases
where the heavy-atom is insufficiently heavy to give
reliable phasing, it is sometimes difficult to locate the
heavy-atom itself.

1.5.3. Equal Atom Structures

Here the problem is to locate one or two atoms, 80
that the Patterson superposition methods can be used.
The most promising approach here is through the S-map,

Wanderlich and Lipscomb
JacobsonX(1954), Simpson, Dobrott and Lipscomb: (1965).

The S-Map

This is a special map obtained from the Patterson

function by the use of the minimum-function. When an

-15-



atom occurs at some position in the unit cell of a
crystal, identical atoms must also occur at other positions
in the unit cell in accordance with the space-group
gymmetry. Thus these atoms must give rise to interatomic
vectors in the Patterson. The procedure is as follows:-—
a position in the real space unit cell is séiected and,
from the space group equivalent positions, the positions
in vector space which correspond to these are generated
and examined in the Patterson map. The value of S(x,y,z)
is the lowest value that occurs at any of the vector
positions. |

The S-map has the property that it must have density
at every point where the structure has electron-density.
It is easier to compute than the superposition minimum
map, because interpolation is not required, and the map
displays all the information that can be obtained directly
from the intensities. This is a very powerful function.
It has been used to obtain accurate trial atom positions
for the superposition method, mainly by Lipscomb and his
co-workers. It can also be used to obtain an "M-function"

(Woolfson and Main, 1963) from which phases can be deter-

mined.

Conclusion

The vector space methods are simpler to understand

~16-




than the reciprocal space direct methods, but the large
size of the three-dimensional maps makes them difficult
to program successfully. They are not rendered powerless
by the lack of a centre of symmetry, and some moderately
complicated structures have been solved, e.g. Cellobiose,

(Jacobson, Wunderlich and Lipscomb, 1959).




1.6. Direct liethods

1.6.1. Introduction

| Although the solution of any unknown structure by the
heavy-atom method, or any of the methods so far discussed,
is a direct solution, the term "direct method" has been
restricted by usage to methods which attempt to obtain
phase information from the measured amplitudes. The
Patterson function displays all the information in the
measured amplitudes, but though its form is more under-
standable, it cannot contain any more "information"

than the amplitudes themselves. It is worth noting that,
for a thirty-atom problem, a three-dimensional Patterson
may contain 50,000 grid-points, whereas there may be only
2,000 intensity measurements, of which perhaps half are
reasonably large. Thus the volume of data to be handled

is much less for direct methods than for vector methods.

1.6.2. Inequalities

Historically this was the first method. Inequalities
arising from different symmetry elements were derived by
Harker and Kasper (1949) in their definitive paper.

The theory is based on the application of two well-
known inequalities, the Schwarg Inequality and the Cauchy

Inequality, to the structure factor equation:

-18-




F(hk?) = ]j/oéty,ﬁ LZTH (AX+f<y /Z)dxdydz.

000
Schwarz's inequality is

Jrao's (ua)fiafer)

Let us consider a centrosymmetric crystal. If the

(1)

origin is taken at the centre of symmetry, equation (1)

FIhkE) = \//j/o(x y, ) oS (2Tr(/\x+/<7+/z)a/zc/]alz_

In equation (2) let
el o)
f 56//0 (X,y/z)>l/f

9 (\73 (x, y, z)) l/lcos aT (hx+ky +12))
dr = dx dy a/z)

I



then '

Foks<f[ Voot g 2dx dydo

X/j/\//o(x, j,Z)[(OS(ZTF(hXJfk)'*/Z)ﬂ%{deﬂ/Z (4)

000
Since cos o =% (1+cos 26), Qzuaﬁon (1) can
be Simpggiea'. The number of sca?Teang |
| electrons ) in the  unif cel s qiven 6]

Z z—\/ﬁj/o(x,y,z)dx ofya/z/ (5)

0oo

Afplyinj these To (L) we 3eT
Fond <2( 2+ Fln2k,20)) - (0)

ﬂ%ullzé)i + ) Flah2k,22)  (7)

or

z
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By the use of the Cauchyinequality it is possible to
produce a stronger inequality, which utilises the fact
that atomic scattering decreases in a similar manner for
all atoms as the angle of diffraction increases. The
inequality obtained is analogous to (7) for the case of a

centrosymmetriic Crym 1 v [ 2k 2k 24
U(hk[) = ATLY ' £ /a + /i AN
/1 1; £

verss (8)

L

U(hkl) is known as the unitary structure factor, a quantity
much used in direct methods.

Conclusion

It is interesting to read that Harker and Kasper saw
that the inequalities could be still further strengthened

by the use of statistical methods.

"In the case of crystals with large unit cells, it may
be possible to divide the values of Fhkl/Z by numbers
which decrease much more rapidly with increasing sin®/A

A
than do the values of f .
N
A ‘/ .
(f = ZE)‘J,
i=!
In practice the method has solved very few structures.

Its importance is in the impetus it gave to the search

for methods of obtaining phases directly from measured



amplitudes.

1.6.3. Phase-Determining Equations

Sayre's Equation

The next advance was made by Sayre (1952) who con-
sidered a hypothetical crystal with an electron—denéity
which was everywhere the square of the electron-density

in the actual crystal. For the real crystal

| ) .
/0()()=72;FH27‘W°HX, (1)

while for the '"squared crystal",

§ . 59, 2T L H X
1/o(x)=/o(x)x/0(x)= V Z fue o (2)
H
The structure factors for the squared crystal differ
from those of the real crystal. The difference between
the structures is that the squared atoms are much "sharper"
than the real atoms. Thus the 57FH structure factors
are "sharpened" (in the Patterson sense) compared to the
Fy series. That is, Fy and ’1FH are related by a factor

which takes account of this change of shape of the atoms.

In general, this factor is different for different values

of H,

K fu = _‘}HF;-I . (3)
Thus - . L ‘ '
/O(X)Z;A(X)X/O()() =[‘\“/‘%: fu 2 HTT A X,J (4)
= W%-;E:-[%&- 2:: f]fl f;b J-e-.zqu’(ﬁlf+b):x (5)
Hy, |

Hl
-0~




c‘.e/a(z)z = —\’/'H};[Tl/_;ﬂl ﬂlJenzm(HﬁH"')xw)

. +H, = H, and H; = ul.

summations in (5) run over all integers, the range of H

is the same as the range of Hl.

Let H, + H Then since the

Thus

/o(x =_ [ ZF FI;H] T2 HX (6)

and comparing (2). (3) and (6), we get

Vo= L Fu P B
H/

/

—'ZFH' Fr-n, (8)
whence H
o

FH- gn Vv HZFH'E—H’, (9)

This final equation must hold for crystals composed

or

q

gu fu

of equal resolved atoms. The equation will hold for any
structure factors, including unitary or normalised
gtructure factors. It is also applicable directly to

non-centrosymmetric crystals. In this last case K is

complex.
et 5 = (b +i84) =307 L (' Bl )0
then AH:gT{L\'/‘ B i Ab-n’ - BH/BH-HI), a1

By =) (An'Biew = BiAuew) a2)
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I

Now T{an 52)(H Bf/AH , (13)
T tan g YAy Buew+Buh)
Z(AH Au-H' - By By-n') (14)

It can be seen frdm the form of equations (9) and

t

(14) that they are iteration formulae. They give the
values of the structure factor or phase in terms of all
the other structure factors. They cannot be applied
directly until at least some signs or phases have been
determined. They have, however, been used to improve
sets of signs to make them self—consistenﬁ. Equation (9)
has been used by Cochran and Douglas (1957) to evaluate
various sets of signs obtained by another method. This
was done by calculating the value of an index k for

each set of signs, where

fQ :‘,Z 3HVZFHFHH'
IR 15)

This has a value close to zero for the correct set of

signs.

The initial sign determination is often accomplished
by means of a degenerate form of Sayre's equa ion. If,
in equation (9), one of the terms in the summation is very

large, the sign of the total may be taken as the sign of

this largest'term,
S = SH/SH'H') (16)
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and 1f two or more terms in the summation are large,

and the structure factor on the left hand side is also
large, it is taken that the large terms all have the same
sign.

l.6.4. Statistical Methods

This method stems from the work by Hauptman and
Karle (1952) (1953). These workers developed mathematical
relationships involving normalised structure factors.

This is defined as

E = (‘(F—J—Tz;) 1 F
where E is the normalised structure factor and <F2>
is the "local average" value of F2.
The magnitudes of the E values are thus independent

of the number of electrons in the structure.

Even so, their undoubted success seems to stem mainly
from their meticulous attention to practical details
rather than from any of the special formulae used.

Practical points which must not be overlooked are:-
1. The collection of data for as much of reciprocal

Spéce as possible.

2. The data must be scaled, to obtain a single relative

scale.

3. Great care must be taken in obtaining the value of
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<Enj> to trausform the structure amplitudes to
normalised amplitudes.

4. The use of a method, the "Symbolic Addition Method";
which assigns letter phases to various large E |
values. The technique is based entirely on the

"Karle and Hauptman Z:2 relationship, which is very
similar to Sayre's equation.

5. The initial set of signs is made self-consistent,
and is expanded by the use of the 212 equation.

6. If any signs are still in doubt, electron-density
maps are calculated for all possible sets of signs.
The co-efficients used in this Fourier é&nthesis are
the normalised structure factors, and the resuiting
map is a kind of "sharpened" electron-density map.

By using this method the Karles have solved many
crystal structures (1957) (1961) ( 1963) (19664, B, C),
including a non-centrosymmetric crystal structure of some
complexity

1.7. Conclusion

It seems certain that in the future crystal structures
of compounds containing only light atoms will be solved
more frequently , especially if the substance studied is

precious, or the attachment of a suitable heavy-atom
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proves difficult. Direct methods, vector methods and
anomalous dispersion methods may also be used to supple-
ment the basic heavy—-atom and isbmorphous replacement .
techniques.

"It may be better to spend a few days in the

calculating room than six months in the laboratory".
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Chapnter 2

CRYSTALLOGRAFHIC COMrUTER FROGRAIIING

2.1. Introduction

While the work for this thesis was being done an
English Electric KDF 9 computer was installed at
Glasgow University. This replaced the older DEUCE
computer which had been used for all the crystallographic
. calculations, and the changeover necessitated the
re-writing of all the computer programs.

When a fast modern computer became available, it
was apparent that the bottleneck of a crystal structure
analysis was the stage at which the crystallographer
plotted out his maps, examined the results of his
labours and decided what to do next. 1t therefore
seemed desirable to shift some of the burden of the
interpretative work from the crystallographer to the
computer. |

The programs described in this chapter are the

author's contributions to this.
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2.2. The Fourier Search Program

Description

In structure anglysis the interpretation of large,
three-dimensional maps of all kinds is a very important
Job. The program described below can help the crystal-
lographer in this.

The program scans any three-dimensional map and
picks up the approximate positions of all the maxima
above a given threshold value. From these approximate
positions and the density values surrounding them the
program then calculates the interpolated co-ordinates
of the maximum, the maximum density value (or peak
height) and the integrated density (or peak weight).
The program then sorts the peaks into order of decreas-
ing density and outputs them.

The map to be searched must be input to the pro-
gram in an agreed format from a magnetic tape. It has
been used successfully to search Patterson maps and
"difference" maps as well as the more usual electron-
density maps. A second version is available which
searches for minima, and this has been used successfully
to search for hydrogen peaks in the maps producgd in

structure analysis by neutron diffraction.
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Iiethod

The program requires as input a magnetic tape on
which the map to be scanned is stored in a binary form.
This is usually calculated by the Glasgow Fourier
program (Dr. J. G. Sime).

The map is searched, one section at a time, and
a list is obtained of all the maxima greater than the
threshold value which the user has specified. This list
of peaks in any one section is then examined to
determine whether a higher maximum for any peak occurs
in another section. A second check is made on whether
it is possible that the maximum of any peak lies out-
gide the computed section of the map. If either of
these occurs, then the peak is ignored. In this way, the
approximate co-ordinates of each distinct maximum are
obtained.

A second search through the map is then made, and
the density values of the 27 grid points containing each
maximum are picked from the map.

The interpolation follows that of~Shoémaker,
Donohue, Schomeker and Corey(1950). A4n expression

Pxyz) = ax® + By? + cz°
+Dx + Ey + Fz
+ Gxy + Hyz + Ixz
# J eeeeescecesessll),
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is used, and the coefficients are fitted to the density
values by the Least-Squares llethod. Originally the
logarithm of the density was fitted. Since ;£omic
electron-density is Gaussian, this was expected to be
the best method. When an electron-density map is not
well- phased, or if it suffers from severe termination-
-of-series-error, the peaks are often truncated or mis-
shapen, It was found by experience that (I) gave a much
better fit to the interpolated maximum peak height. No
doubt the logarithmic formula could have been made to
fit better by using a suitable weighting scheme in the
Least-Squares calculation, but (I) has been found to
give excellent results in practice.

The co-ordinates of the maximum are then found by
evaluating the partial derivatives of (I) with respect
to x, y and z, equating these to zero and solving for
the co-ordinates x, y and z. Two difficulties may arise.
The first is that the expression for the density fitted
10 the maximum may not tend to zero in all directions.
This results in a failure of the solving procedure.

The second is the related difficulty that the
"interpolated" maximum may appear to be outside the
block of 27 grid-points. This is physically unreason-
able. Should either of these difficulties arise the
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program outputs the approximate co-ordinates of the
peak, with a marker, at the end of the main 1list of
maxima.

The program does a simple numerical integration
over the block of 27 grid-points surrounding each peak.
Since this volume is less than the total volume of a
typical peak, the result is always considerably smaller
than the chemically expected number of electrons. The
volume of integration is kept small because density
maps often lack resolution and, on integration over a
large volume, would include density from neighbouring
peaks. The integrated density is a better criterion of
the reliability of a peak than the maximum height,
because this height also depends on the vibration
amplitude of the atom concerned. The list of peaks is
| therefore sorted into descending order by peak-density.

Results

The program has been in regular use in Glasgow and
at several other universities for over a year. It has
been found to be very reliable and to produce accurate
co~ordinates. It is used for searching all types of

maps and several structures have been solved without a

single map being plotted out.
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2.3. The Sorting Program

Introduction

Since the actual operation of sorting is easy to
understand, and mechanical card sorters work very
efficiently, the difficulty of sorting large quantities
of crystallographic data, stored on paper tape or
magnetic tape is not, at first, obvious. The problem
becomes serious only when the information to be sorted
exceeds the fast-storage capacity of the computer.

Sorting lMethods

Two methods suggest themselves. The first is the
sort-and-merge technique. From information theory this
can be shown to be, in general, the most efficient
téchnique. It requires at least three magnetic tapes,
one for input and output of data and two for temporary
storage of partially sorted data. As much information
as possible is read into the core-store of the computer,
where it is sorted, and output to one of the two "work"
tapes. Another core-full of data is then read in, sorted
and output to the other of the two "work" tapes. In
this way all the data are given a preliminary sorting.
The partially sorted data are then compared, term by
term, one term from each of the two batches, to‘produce

ordered sequences of double the size of the original
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batches, and this is repeated until finally the sorting
is complete.

The second method is to select batches for sorting
from the original data. Thus, if the core could hold
1,000 items, the largest (or smallest) thousand would
first be selected and sorted. This second method was
adopted for this program as it is simpler and requires
fewer magnetic tapes.

Description

The program accepts data from a magnetic tape. The
format is the one used in the ASS system, but it is
inefficient if many passes have to be made through the
data. The data are therefore read into the computer
and stored on a "work" tape in batches of fifty
reflexions. The program also requires the information
defining the required order of the data, - which index
is going to change most slowly, which most quickly, -
which at a medium rate and whether the order is to be
ascending or descending. For each reflexion plane,
therefore, an index number is generated from the
crystallographic indices. It is this composite index
which will be sorted into order. Its value is given

by:
Index = 10,000 x 8 + 100 xm + £,
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where s 18 the value of the slowest-changing index;
m is the value of the medium - changing index;
f is the value of the fastest-changing index.

A histogram of the number of data with each of the

values of the slowest changing index is also constructed.

From the histogram maximum and minimum values of the

slowest changing index are then chosen so as to define

the biggest possible batch which can be stbred, complete,

in the core store of the computer.

These batches are then selected, sorted and output.

The actual sorting is done in two stages:

l. The sorting index and only the address of each
reflexion are sorted. The method follows that of
Hibbard's program C, (1963), This takes advantage
of order in the data, and for unbiased data the
time taken is approximately dependent on nlogzn
where n is the number of items to be sorted.

2. The second stage is to transfer the reflexions to
their new addresses.

Finally, the sorted data are output, again in the

standard ASS format, on to the output magnetic tape.

Results

The program has been in use in Glasgow for some
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time. Typical times reguired are shown below, (using

the unoptimised Kalgol translator):-

No. of
No. of items per
Planes Plane Tinme
4,400 12 4 minutes
800 14 " 49 seconds
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2.4. Wlelghting Scheme Program

Introduction

This program will calculate a satisfactory weight-
ing function and will output a paper tape giving an
individual weight to each reflexion. The resultant
distribution of WA 2 as a bivariate function of |Fol and
sin29/>g is also calculated. (The symbols have their
usual significance.)

Theory

In a Least-Squares Refinement the weight given to

any observation should be 1/s°, (Cruickshank, 1964)

2 is the variance of the observatioﬁ;

where o
In crystal structure analysis, however, it is
customary to0 have only one observation for the majority
of the reflexions, thus making a direct estimate ofcr2

impossible. A second difficulty is that a direct
estimate of 02 from the observations will not include
the variance due to systematic errors which may be
present in certain classes of observations. The direct
estimate of wg may, therefore, be much too small for
such classes of reflexions.

Cruickshank shows that a better method of estimating
dz, which includes random errors, systematic errors

present in the data but not paralleled in the model, and
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systematic errors present in the model, but not present

in the data, is to take:

0’2 5=A2

where A = [P - }Fc}

Of course, for any individual observation AF may be
a very bad estimate of the variance, but in crystal
structure analysis the number of observations is always
large. Thus the Cruickshank procedure is to divide the
data into batches by [Fo| and sin28/)? and to use the
average value of A2 for the batch as a measure of the
variance.

Method

The present program divides all the reflexions into
batches depending on [Fol and sin29/7?, and the average
[Fo| and sin®0/>2 and 2? are calculated for each batch.

An expression of the form:

bio(E) =(A+ 8F R (... 2F...
+EX fino +F Nofon'e + G 9/>»}

is used. The coefficients are fitted by the ILeast-
Squares llethod. The observational equations are weighted
in proportion to the numbers in each batch. Very small
batches are ignored and slightly larger batches are

tested to ensure that the value of Zf2 is not dispropor-
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tionately smell. Isolated reflexions with large
unrepresentative values of A2 are also omitted from the
calculation of the weighting expression.

From the expression:

w o= axp={a + Bl6l + IR (oo JRL )
+ F )3/51%29 + F)é’/SI'n"‘9+Gsir3€/7\2_}. .. .(2)
weights are now calculated for every reflexion. Provision
is also made for scaling the weights to a suitable
relative scale, if this is desired. The output tape is
in the format required for the Cruickshank Structure
Factor Least-Squares Program.
Results
This is one of the most recent programs so there
has not yet been wide general usage, but the structures
described in this thesis were all weighted by it. The
distribution of W’A? which it produces are generally
satisfactory and the time taken is only a few seconds

for the average structure.
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2.5.1. Introduction

This was set up shortly after the completion of the
Fourier Search program had shown that the computer inter-
pretation of electron-density maps was possible. Its
name meant Automatic Structure Solution but it was also
intended to convey that this was to be a simple approach
and that i1t should not be left to do too much unattended!

The main feature is that ASS can carry out cycles
of calculations, - structure factor calculation,

Fourier summation, Fourier search, structure factor
calculation, Fourier swmation etc. = with very little
attention from the crystallographer.

A second important feature is that the system of
storing crystallograpnhic data on magnetic tape can be
used easily by inexperienced programmers. In fact, the
system was deliberately kept simple, at the cost of
complete generality, for this reason.

A third feature is that the handling of data and
intermediate results on magnetic tape has largely
eliminated the punching of very large quantities of
paper tape, which 'was time consuming and much less
reliable than has been the case with magnetic tape.

The work was carried out in collaboration with
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ir. £. Y. Muir and Lr. K. Folisard, who discussed the
design with the author and who have both written programs
for the systen.

Several other programs have been adapted, principally
J. G. Sime's Fourier Program, and various other people
have contributed programs»

2.5.2. Description

Data Handling

In crystal structure analysis, there are two types
of information to be stored.
Type 1
This may be thought of as "permanent" information.
It is already possessed by the crystallographer at the
start of the attempt to solve the structure, and is seldom
changed in the course of the refinement. Examples are:-
unit cell dimensions,
space group symometry,
chemical elements present and their
atomic scattering factors, and

experimental reflexion data.

Txpe 2

This information relates to the model proposed for
the structure, and changes as the solution and refinement

proceed. Examples are:
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atomic co—ordinates and other parameters,
structure factors,
modified structure factors,
maps, and
peak co-ordinates.
All this information is stored on magnetic tape which
acts as a "file'".

Since this is a simplified data-storage system, only
one set of "temporary'" type 2 data is kept in the file.
The temporary data are over-written when the next
iteration commences.

The permanent data are loaded from paper tape.
This is done oniy once per structure when computation for '
the structure analysis is started. The current atomic
parameters, also on paper tape, are added to the file once
per cycle, to replace the previous atomic parameters.
- Peak co-ordinates from maps are stored directly on the
magnetic tape by the Fourier Search Program, which also
prints them, and punches them out on paper tape.

Should an accident happen to the magnetic tape file, -
failures are fortunately a rare occurrence, all the
information to load a new magnetic file tape is thus
available on paper tape, although structure factors may

have to be re-calculated.
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Crystallograpnic informeticon nas a very varied format.

emn 18 to use a system of "keys',

'._J

One approacih to thls proo,
as in the "Index of Lists" compiled by Cruickshank, Freeman,
Rollett, Sime, Smith, Truter and Wells (1964). The
approach in the ASS system is to define rigorously the
format of the information which is stored. For example,
it was decided that every structure factor array would be
named "SFS" and that its first three items would always
be the crystallographic Miller indices of the structure
factor; the fourth and fifth items would be |Fo| and
[Fe| respectively, and so on for all the other items
(licGregor, 1966). This is not such a general method as
the "keys" method, but since the programmers were all
working together, lack of generality was not a serious
disadvantage and, moreover, it simplified the programs
considerably.

The variable sizes of the blocks of information are
dealt with in two ways:

(A) For reflexion data, structure factors and modified
structure factors the tape has one block per reflexion.
The last block contains a "last block marker'". No check
is kept on the number of individual blocks which can'

therefore easily be altered at will by adding or deleting

individual reflexions.
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(B) Ia fromt of individual blocks of variable size are
small "key" blocks of fixed size. zZach small block gives
the size of the variable blocks following it.

Prozrams for ASS

Since this 1s basically a data~handling systen,
many ASS programs have no connection with "Automatic
Structure Solution", e.g. R. Pollard's Isotropic Structure-
Factor - Least-Squares FProgram. These will not be discussed

here.

2.5.3. Automatic Structure Solution

When the Fourier Search Program became available
it was seen that automatic Fourier refinement and structure
solution were at least possibilities. There are two
difficulties.

Not all the peaks on an electron-density map corres-
pond to genuine atoms. They may be diffraction ripples
or peaks causedbby incorrect phasing of the structure
amplitudes. When the map is phased by structure factors
calculated from a heavy atom in a special position the
peaks may, in fact, be multiple images of the light atoms
in the structure. The second difficulty is that, once an
incorrect peak is accepted as an atom and is included in

the phasing calculation, it will appear in the next

_.44_...



electron—censity map. Tais is parvicularly true of non-
centrosymmetric refinements. An automatic Fourier refine-
ment system must therefore apply a series of tests to
eliminate the spurious peaks picked up by the Fourier
Search Program.

A crystallographer can look at a three-dimensional
plot of electron-density or peak positions and decide
intuitively which peaks agree with what is known of the
chemical structure and whether the packing of the mole-
cules is feasivle. A program to do this would need to be
fairly sophisticated. Kitaigorodskii (1965) has suggested
that the criterion of packing may be sufficient to
determine organic structures.

Another method, which has been applied by
J. S. Rollett (1965) is to carrybout one or two cycles of
Least-Squares Refinement, refining the occupation number
of the "unknown" peaks.

The ASS testing scheme for peaks is somewhat simpler
than either of the other methods, and it is incorporated
in the Structure-Iactor-with-Testing Program. This was
written in collabhoration with Mr. K. W. Muir. The peaks
are fed, one at a time, into a structure factor calculation
over a randomly-selected sub-set of the data. The contri-

butions of the tentative atom are combined with the
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ntative atoms
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contrivutions of the known atoms. Those
wnich prodgce a speciiled arop in tne R-Tactor are
accepted. VWhere pseudo-symmetry i1s present the peak 1is
tested in all the possible positions and the position
giving the lowest R-factor is adopted. After this
preliminary test the tentative atoms which were rejected
are re-tested to determine whether, in the company of the
other newly accepted atoms, they now lower the R-factor.
The iterative process is continued until no more tentative
atoms are accepted.

The newly accepted atoms are now subjected to a second
test. They are re-tested to determine whether they still
lower the R-factor, and, in the cases where pseudo-
symmetry was present, whether the atom is in the best
position. This second test is re-cycled until no further

dhanges occcur.
2.5.4. Results

The system has now been in operation at Glasgow for
about ten months. During this period it has b;en used
for the refinement of almost all the crystal structures,
up to the point at which a transition has to be made to
refinement by an Anisotropic Least-Squares Program.

In spite of this, few attempts have been méde to

solve structures automatically. NMost crystallographers
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ceell Yo nave an instinctive cistrust of
procedure. They prefer 1o maxe a model, or plot the pealb

N

positions. Having decided now the molecule lies, the;

<

often check that the peaks which they have chosen do
lower the R-Tactor. Altogetner, about itwenty-five
structures have been solved using the system in this way.

Nevertneless, some examples of automatic struciure
solution can Dbe cited.

Potassiun Hydrogen Zi-Crotonate

This structure had already been solved by conven-
tional methods and is descrived elsewhere in this thesis.
The space group is PTI and the formula is K0804H11‘
Starting with only the potassium atom, after twp cycles,
eleven out of the thirteen atoms, excluding hydrogen, had
been picked out correctly. The two missing atoms were
carboxyl carbon atoms which had been dropped by the

Fourier Search Program because the interpolation matrix

=

was singular. No incorrect peak was accepted as an abtom
although the lowest correct atom was twenty-second on
the peak list. (This structure gave electron-density
ﬁaps with many diffraction ripples because only three
layers of reflexion data were collected up the b-axis.)

Thus the gross sitructure of this compound was obtained

after an expenditure of lgss than 60 minutes' computer time.
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(Solved by kir. R. Pollard and Dr. G. Ferguson)

The space group 1s P21/C and the chemical formula is
034(K02)33r. The R-factor for the bromine atom alone was
58%. 4fter two cycles the expected number of atoms had
been picked out and the R-factor had been reduced to 36%.
On exanining the 1ist of peak heights it was decided thav
disorder was present and that the tri-nitro-bromo-
filuorenone molecule could pack in alternative ways. Tais
meant that the bromine atomn and one of the nitro-groups
were disordered. Without altering the structure in any
way except to adjust the scattering factors of the
bromine and nitrogen atoms involved, the R-factor fell
immediately to 29%. The refinement has since been con-
tinued to a terminal R-factor of 8%.

Tris-Ethyl Sulphonyl liethane

The solution and refinement of this compound will be

dealt with elsewhere in this thesis.
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Tris-sulvihcnyl-methene cousounds, cnd their

unusual suvrongly-acidic properties have been known for

4

ong time (Fromm, 1899; Samen, 1941, 1942, 1247).

Right from their discovery, speculaticn has existed as

to whether the cenirzal carbon atom of the methane molecule
lies in the plaze of the three sulphur atoms, or vwaether

the molecule has a tetrahedrzl configuragtion. If

t

different alkyl groups could be attached to each sulphur
atom, the molecule, if non-planar, would rotate the
plane of polarised light. 4Attempts 1o prepare unsymmnet-—
rical tris-alkyl-sulphonyl-rcetharnes and resolve the
mixture into its optically-active components all failed.
(Gibson, 1931; Kivping, 1935; Bohme and Marx, 1949). In
1955, Doering and Levy suggested that the acidic proton
woull e lost more rezadily from a planar than from a non-
planar nmolecule.

Initial X-ray diffraciion work on tris-methyl-
sulphonyl-methane (THSII) (Spezkman and Abrahams, 1956)

revealed a mosst unusual diffraction effect. In addition

to sharply-defined normal X-ray reflexions from which a
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rhorbonedral shece grouDd wase deduced, remarkaple Gi

reflexions were observed (See Fiz. 1). These occurred at

Hh

reciprocel letivice positions oI the hexagonal cell for-

ifiuse

Clj

tidden to the rnomboliecral space group. Since the

-+
v

©

refiexions remeined unalterec in zhotograpns taken
78 I, they decicded that the phenomenon was caused by dis-
order of the crystal lattice, and not by any molecular
vibration effect. TFuriher support was lent to this con-
. clusion by a study of the thermel capacity of TISH
(Staveley and Davies, 1956) in which no phase transitions
were observed beiween lAOK and room temperaiure.

The crystel structure of the ammonium salt of TS
was determined by Hoogsteen (1957). Its structure was
vfound to be planar.

Silverton, Gibson ard Abracams (1966) investigated
TIiSII by three-cimensional X-ray methods. They were unable
to refine an ordered structure and found that, to explain
anomalous features of their Fatterson and difference maps,
they had to postulate a discordered structure containing
two crystallographically-cdfferent molecules, type A and
type B, in the ratio of ©61:35 respectively. The molecules
which are non-pleanar are stacked in columns, each column
having 3-fold symmetry and lying along the 3-fold axes of

the space group. Each column contains only one type of
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, FIG. 1
‘ Weissenberg photograph of hkio reciprocal lattice net

of TMSH, showing diffuse reflexions.







FIG. 2

ielssenberg protograpn of hxio reciprocal lattice net
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tyse E, or between stacks of tywe A and type 4, or
between stacks of type B and type B;

Tris-ethyl-sulphonyl methane (TESH) is very similar
cherically to TiiSLki. It belongs to the same rhombohedral
space group, buv no diffuse X-ray reflexions are observed
experimentally (See Fig. 2).

It was therefore thought that this structure would
provide a useful comparison with the disordered TMSM.

The complete crystal structure has been determined, and
the molecular bond lengths have been measured accurately.

The crystals used in this determination were prepared by

Dr. D. T. Gibson.



Crirstzl Dats
Tris—ethyl-sulzaonyl-methane (CHBCH2502)3CH;

(o]
hexagonal lattice constants a = b = 14.965, ¢ = 9.814,
_ 0, tme = 1Q04 83 . o 4
y= 120.07; volume = 1904 4”; six molecules per unit
cell; DIm = 1.55 g c*—3; Dx = 1.565 g cm_3;
FOO0 = Q42 electmns;
absorption coefficient for ok = 5.83 cm .

Choice cf Space Group

From the Laue Group the space group is either R3c
or R3c. Since there are six molecules in the unit cell,

R

and the molecule can nave a 3~fold axis, the more obvious
choice is R3c. The alternative is that the molecule
would statistically half-occupy the twelve-fold positions
in R3c, although no diffuse reflexions of the type found
in TIISL1 were ovuserved.

The initizl choice of R3c has been justified by the
successful solution and refinement of the crystal

structure.

Collection of Data

The crystals were fine hexagonal needles, grown by

the slow cooling of agueous solutions of TESH. Since the
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in order to obtalixn fairly large

sions were approximsiel

v 0.4 x 0.4 x 0.8 mnm.

counts. The crystal

d Prillips, 1961)

dimen-

Welssenberg

pnotographs of the reciprocal latiice layers were taken

about the needle (c) axis using Culy radiaiion.

3 - -
raer o

were teken in
to facilitate setting

The a axial leungth was

photograph, and hoth a

Precession photographs
dimensions agreed vell

fromn the

cneck the.spsce

T
FS

These

group absences and

the crystal on the diffractometer.

mezsured on a zero—layer Weilssenberg
(&)

and ¢ axes were measured
of the 2 0 1 net. These

with the cell dimensions

Giffractometer.

fron
cell

obtained

It was decidecd to use the hexagonal representation

of tlhie space group
ation. Two-thirds
are systematically

-h +k+1=23n; hho

1 only for 1 = 2n).

instead of the rhombohedral represent-
of the general hexagonal reflexions
absent (h k 1 1 is only present for

Thus to

collect the data on the hexagonal reciprocal lattice would

have meant that two~thirds of the time would be spent

measuring the intensities of systematically-absent

reflexions.

For tlhis reason another reciprocal cell was

chosen with which all the reciprocal lattice points were
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"Hexagonal" "diffractoreter"

where a O for lgyers 0, 3, 6, 9 and 12;
= 1 -for lzyers 1, 4, 7, 10 and 13;
= 2 for leyers 2, 5, 8 and 11.

In the Linear Diffrectometer there is an analogue of
the reciprocal letitice in two machined slides which are
positioned by lead screws in order to set the counter to
the correct zzngle for any reflexion in any net up to
approximately 28 = 60°. 'Tae layer line or net is set by
a third slide whicn is at rizht angles to the plane of
the other two. If Hhe reciprocal axes are obligue, the
first two slides can be set at the appropriate ( X%J
angle. If the other two angles (CA¥ anuﬁ *) are also
oblique, this is met by moving the origin . of the
analogue reciprocal rnet away from the rotation axis by
the appropriate reciprocal distance. The diffractometer

provides no% only a print-out of the reflexion indices
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conteining tnis informaiicn whlch can be processed

CireCtly oy CcomLulel.
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The crystal was mcunted and adjusted on a Precession
casera, the needle-axis oI tThe crystal being co-axial
witiz the rotation-zxis. The crystel and goniometer ncad
were then mounted oa the ciffractomever, and the crysval
tate on tne rotation axis. The c¥* vertical
slide was tren raised to tie (000)position with both a¥
and ov¥* slides in tne zero position. Radiation from the
axial reflexions reacires tne counter independently of the
rotation angle of the crystal. The output from the
scintillation counter was Ifed to the count-rate meter,
and the goniometer axes were adjusted slightly until it
was seen ;rom the count-rate meter that the count-rate
was independent of the rotation angle. (This is similar
t0 adjusting a wheel until it runs true). The vertical
slide position was then aliered sligatly to obtain
maximunm count-rate. The vertical slide was then returned
to the zero positionx.

From the zero layer VWeissenberg photozrapn a large

.__:

axial reflex. . (CO0) was choser Tae a* axis was set

t0 the appropriate reciprocal distance, and the crystal
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nd o¥* slides were then set at 600, and the vpositions of
axial reflexions on The b¥* gxis were cnecked.

411 reflexions are neasured on the Iinear Diffracto-
meter by nhavinz the counter stationary, and rotating
fhe crystal avbout i%s rotation axis until the reciprocal
lattice point cuvs the reflecting circle. Subsecuent
measurements are made by repeaiting a small angular
rotation of tne crystal. ©The anzgular range of rotation
through which the (600) reflexion was observable was about
0.50. This range increases as the distance of
reflexion from tre point of rotation of tne reciprocal
net decreases. The oscilliation range was set at 3.5°

Whenever tne diffractometer was set to collect the
next layer, the setting of the rovation axis was checked
on the (006) reflexion, and the intensity of the (600)
reflexion was monitored to guard against unnoticed
decomposition of the crystal in the continual intense X-ray
radiation. No deterioration of the TIESH crystal was
observed taroughout the data collection. Very.large

intensities were re-measured at low power.
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1. The irternsities were corrected for vacxkx:sround and for

0
wiite rediation by tre Ross filter tecanique (

b
also detected punching errors in
fron the diffractometer. Ileasurements waich failed to
pass the prograxfs tests were scrutinised, and compared
with the paper print-out from the diffractometer. Those
wnicn could bne corrected, and the re—-scaled intensities
wnichh had been measured at low power were then added 10
the irntensities wnicih nad alrealy passed the tests.

2. Tne reilexions of the prircitive "diffractometer!

reciprocal cell were now re-indexed in terms of the space
group's hexaggonal cell. This entalled a rotation of the
axes and a different translation of the origin for each
net of reflexions. Iurtuer ccuivalent reflexions
measured in different parts of reciprocal space had
different indices. These were re-indexed in terms of
their equivalent reflexions in the chosen asymmetric
position of'reoiprocal space. They were then sorted into
order, by indices, and tne inteusities witnh the same

index were averaged. If agreement between the intensities

was bad, and there were more than two estimates oif tne



intensity of tne reflexion, the value farthest from the
average was eliminated. Tae remaining intvensities were
averaged and thne agreezent 0f the remeining intensities
was checked. Tae individual intensity measurements

were always printed out, as well as the averaged inten—
sity values, so that the processing could be checked by
hand. 7Two Algol coumputer programs were written to carry
out the data processing described above.

3. The intensities were reduced to |Fo| structure ampli-
tudes, a straight-forward operation since the reflexion

eometry of the Linear Diffractometer is the same as
g

that of the equi-inclination Veissenberg camera.

3.3. Course of the Structure Analysis

°  Calculation of Fourier llaps

At the time when the structure was solved, the
Fourier Program available could not be used directly to
calculated any Fourier map in the rhombohedral or hexagonal
space groups. It was decided to treat the sumaation as
though the space group were P 1 (21 for the Patterson
map). To do this it is necessary to generaﬁe all the
structure factors throughout a hemisphere of reciprocal
space. This was done by generating all the equivalent
structure amplitudes of the Laue Group 3 m, and‘the phases

for these amplitudes, required for electron-density
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calculations, were obtained by calculating structure-
factors for all the generated amplitudes. The generation
of the set of equivalent structure-amplitudes was carried
out by a computer program written for this purpose.

Structure Solution

The main feature of interest in the solution of this
structure was the extent to which it was carried out
automatically on the ASS system.

A sharpened three-dimensional Patterson map was
calculated, and was searched for peakgby means of the
"Fourier Search" program described in Chapter 2. The 3D~
Patterson function was calculated because it was desired
to check that the equivalent reflexions generated by the
special conmputer program were correct, and to see if
there was any possibility of a disordered structure
(cef. TIiSHM). The map would also indicate whether the
index transformations had been carried out correctly.
There are two Harker Sections at w= 0 and w= %.

Since R3c is a polar space group the origin of the
co-ordinate axis is arbitrary in the z direction, and
therefore the sulphur atom z-coordinate was set at zero.
The x- and y-coordinates of the heavy-atom were easily
obtained from the peak coordinates of the largeét non-

origin peaks on the Harker sections.
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Structure factors calculated for the sulphur atom
alone gave an R-factor of 28%. A 3 D electron-density
map was then calculated and was searched for peaks by the
Fourier Search program. Since the Fourier program could
accomnodate only rectangular or square sections,
considerably more than the asymmetric portion of the
Fourier was calculated. The 1list of peaks obtained from
the searching program was examined, and those outside the
asymnetric part of the Fourier were discarded. Instead
of drawing up the map, the "atom testing" program of the
ASS system was used. Although the z-coordinate of the
heavy-atom is arbitrary, the map phased by the heavy-atom
alone does not have pseudo-symmetry, because the arrange-
ment of the atoms does not exhibit any symmetry above
that of the space group R3c. This made the map relatively
simple to interpret, and the program quickly selected
5 peaks out of a list of 7 peaks which were presented to
it.

Structure factors calculated for these 5 atoms, plus
the sulphur atom, gave an R-factor of 16% over all the
reflexions, and the structure has subsequently been
refined successfully. No atoms, other than hydrogen atoms,

~were found on the difference map.
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3.4. Least-Sguares Refinenent

R. Pollard's Least-Squares program (1966) was used
for a preliminary refinement. ZXach reciprocal lattice
layer was given an individual scale factor, and each
atom a single isotropic temperature parameter. The obser-
vations were all given unit weight. After 3 cycles (full
matrix) the R-factor was reduced to 10%.

Cruickshank's (1965) Least-Squares program was then
used to continue the refinement. Templeton (1965) has
shown that if the observations are taken with the crystal
rotating about only one axis, and the data from each of
the individual reciprocal lattice layers have- different
scale factorswhich must be refined, then there is insuf-
ficient information to refine all the atoms fully aniso-
tropically. The Ujj temperature parameters correspond-
ing to the rotation axis are indeterminate. Since the
monitoring of the intensity of one of the strong zero-
layer reflexions had disclosed no apparent fall-off of
intensity caused by radiation damage, and since the same
counting-times had been used for all the data, the
different layers were assumed t0 be on the same relative
scale. Only one overall scale factor was employed.

The arbitrary origin in the z-direction was con-

strained, (Templeton, 1960) by taking the sulphur atom,
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z-coordinate as zero. This coordinate was not refined.
if the origin is not constrained, the molecule may "walk"
through the unit cell. Cruickshank (1965) suggested

that the above procedure gives more rapid convergence
than the alternative one of refining all the atomic
coordinates and altering the sulphur atom z-coordinate
back to zero while applying the opposite of this shift

to all the other atoms. ©No convergence difficulties were
experienced at any stage of the refinement.

The anisotropic refinement was commenced with unit
weights. The R-factor did not drop below 12.6%, however,
and the U33 temperature parameters all became unreasonably
large. It was found on re-examining the scale-factor for
the individual layers which had been obtained by the iso-
tropic refinement that there was no smooth trend in the
values. Two of the higher layers had irregularly large
values.

After considerable thought it was decided not to
refine the U33 temperature parameters, but to fix these
at their isotropic values, and to refine the individual
scalecfactors. Refinement was then commenced. The
weigh%ing scheme employed was:-

W =K exp - (A + BFo + CFo® + D(R/sine)

+ B( f/sin“'e) + F(sin29/7\-2))
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where K is an arbitrary scale-factor, and the constants
A, B, C, D, E and F are fitted by Least—-Squares by the

program described in Chapter 2. This produced a weight-

ing scheme in which different batches of WA® by [Fol

and by sin29/>x2 did not differ by more than X 10%.

Three consecutive cycles of refinement were then carried
out. The estimated standard deviations of the parameters
improved greatly, and the two chemically-equivalent
sulphur-oxygen bonds which had differed by ~ 0.1% now

differed by only ~0.01%.
3.5, Difference liap and Location of Hydrogen Atoms

Anisotropic structure-factors were calculated using
R. Pollard's structure-factor program, and a difference-
map was calculated. All the hydrogen atoms were located
without difficulty; +this also implies that the thermal
vibration parameters could not be large in the direction
of the c-axis. No large positive or negative peaks were
observed, although the fluctuating background was
usually in the region of ¥ 0.2 electrons /33.

Positions for the two methylene hydrogen atoms were
then calculated using G. Ferguson's hydrogen-placing
program. The calculated coordinates for these atoms
were used in the subsequent refinement. The coérdinates

of the hydrogen atom of the central carbon atom and those
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of the methyl group were those obtained from the

difference map.

3.6. Polar coordinate shift caused by uncorrected

Anomalous Dispersion

It has been pointed out (Templeton, 1966; Crﬁickshank
and MacDonald, 1966) that the neglect of the anomalous
dispersion correction in structure-factor-least-squares
refinement can lead to a serious error in the polar
coordinates of the anomalously scattering atoms. This
occurs in cases where the data have been collected from
only one reciprocal hemisphere. Cruickshank has
estimated that the correction in the direction of the
polar axis would be of the order of 0.01R for a sulphur
atom scattering LioKg( radiation. This is approximately
three to four times the estimated standard deviation of
the sulphur atom in TESNM, so that the anomalous disper-
sion correction was required. The data had been collected
only from the upper half of the reciprocal lattice, and
the equivalent intensities had been averaged. All these
equivalent réflexions are, however, of the same "hand"
with regard to the anomalous dispersion correction.

In the space group R3c either the molecule'or its
enantiomer are present although the TESM chemical molecule

is not optically active, and the activity cannot be
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resolved since one enantiomer can easily be changed into
the other by rotation about the sulphur-central carbon
single bonds.

In Fig,.5a, - P, F. are structure factors which
would ordinarily be related by Friedel's law.
;, leare the real components of the scattering
vector caused by the anomalously scatfering atom.

F

e

Fx, FR are the imaginary components of the

scattering vector caused by the anomalously scattering

atom. |
FR, TE are the real scattering components.of the

other ordinary atoms.

Fig. 5b shows the modulus of F drawn in the first
quadrant for comparison with F.

In structures where only one reflexively dissymetric
. enantiomer is present, and data from only one half of
reciprocal space has been collected, models of both
enantiomers will give equally good agreement in the absence
of anomalous dispersion, and with either of these the
data collected may have been either Fhkl or Fhkl .

Thus four possibilities arise:-
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FI1G. 3
Projection of structure down z—-axis onto Xy plane.
. The molecules shown are sited between z = 0.5 and
2 = 0. The molecules with the largest z-coordinates
are shown with three circles; . those with the smallest

z-coordinates are given only one circle.






FIG. 4
Projection of structure perpendicular to yz plane.
The molecules shown are all sited between x = 0.5
and x = 1. Those molecules nearer X = 170 are

drawn as double circles.






FIG. 5
The effect of anomalous dispersion on the observed

structure factors.
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Fig S5a

Fig Sb



FIG. 6
Important bond-lengths and bond-angles






I 11

Ifolecule liolecule
Fhkl Fhkl
1L i
Enantiomer Enantiomer
Fhkl FEEI

When anomalous dispersion occurs, a choice can be
made as to whether the data are |Fhkll or |FhkIl, but
the absolute configuration cannot be determined unless
data are collected from both halves of reciprocal space.

In this case both enantiomers are present whenever
the substance is dissolved by any solvent, so only the
two possible ways of indexing the data have to be
considered, because the absolute configuration of the
molecule is of little interest.

The comparison between these was made by doing two
separate refinements. The change in indexing to FhkI
was simulated by changing the sign of f! in the structure-
factor least squares calculation, where f" is the
imaginary component of the anomalous atom's scattering-

factor.

The results of the refinements are shown below:-—

R% 8.52 8.72
S-{0(1) 1.440%7 1.433%7
5-0(2) 1.444%8 1.456%8
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The lengths of the two sulphur-oxygen bonds are
given because they are sensitive to the polar shift
correction, S-0(1l) being almost perpendicular to the
c-axis, S-0(2) being parallel to the c-axis. The polar
shift correction will thus have maximum effect on S-0(2)
length and much less effect on the S-0(1l) distance.

The final coordinates and parameters given in this
chapter are those which correspond to the data being

indexed as |Fhkl) .

3.7. Description and Discussion of Structure of TESM

The molecular and crystal structure of TESM are
shown in Fig. 3 and Fig. 4; the more important inter-
atomic distances and angles are shown in Fig.6: and Tables
8 and 9. For comparison, the interatomic distances :-
of THSM (Silverton, 1966) are shown in Table 10.

The interatomic distances and angles were calculated by
K. W. Muir's (1965) program.

The configuration of the bonds of the central carbon
atom is clearly tetrahedral. This is similar to the con-
figuration of TiSM, and differs from tﬁe situation in ‘
the ammonium salt of TSM which is planar (Hoogsteen, 1957).

The two chemically-equivalent sulphur-oxygen bonds are:
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1+

S-0(1) 1.440 - 7

5-0(2) 1.444 T 8
These are virtually identical, and compare very well
with average sulphur-oxygen distance of 1.435 3 in/TMSM,
and in Dichlorodiphenyl sulphone (DCDPS) (Sime and
Abrahams, 1960). In both TESH and TMSH the two sulphur-
oxygen bonds point in different directions, one bond-
direction being almost parallel to the c-axis, the other
being almost perpendicular to the c-axis. The anomalous
dispersion correction affects the length of the bond
parallel to the polar-axis much more than the other
bond-length. The correction was applied to TESM but not
to TiSH.

The O - S - O bond angle is 119.1° which compares
with 120.4 ¥ .4° in DCDPS, 119.3 = .9° in TNSH, and
118.4° in N-methyl-2:2-dimethyl sulphonyl vinylidene
amine (NVDSVA) (Wheatley, 1954).

There are two distinct carbon-sulphur bond lengths
in TESM, sulphur-C central and sulphur-C ethyl.
Sulphur-C central

This bond length is 1.834 % 4R. It compares with

0
1.83 £ 18 in THSH, 1,726% in MIDSVA and 1.704 in
NHY, TMSK™ . Partial double-bond character of the sulphur-

4
carbon bond is entirely consistent with the chemical
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formulae of these last twoO . compounds.

Sulvhur-C ethyl

This bond length is 1.785 Z 102 and compares with
the corresponding sulphur-methyl bond in TLiSM with a
length of 1.73 T 2%, and with 1.71% in FMDSVA. Correc-
tions for vibration havé not been applied to any of
these bond-lengths, and this correction would lengthen
all the bonds slightly. It may be noted that the C-C bond
of TESL is slightly shorter than the accepted C-C single
bond-distance. Ilevertheless, there can be no suggestion
of double-bond character in these C-S bonds in TESHM and
TIISM although both are shorter than the standard C-S
single bond distance of 1.8152 proposed by Abrahams (1956).
One substance having the standard S5-C single bond dis-
tance is DCDPS where the group attached to the carbon
atom is powerfully electron-withdrawing. This may well
lengthen the bond.

Molecular Packing

The packing of the molecules is shown in Fig. 3 and
Fig. 4. As in TIISH the moleccules are packed in "stacks"
or columns, the axis of each stack being one of the 3-fold
axes of the space group. As mentioned earlier, in the
space group R3c the columns consist of the molecﬁle, then

the molecule rotated to its other orientation, alternately
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along the length of the stack. Although the molecules
in the crystal are reflexively dissymmetric, with TESH
and TLiSI: molecules the enantiomer is produced by a
rotation of the R—802 group about the S-C central bonds,
and there can be little, if any, energy barrier between
the two enantiomers. Thus the enantiomers could never
be resolved chemically, The molecules of the column are
not bound together significantly by hydrogen bonding
along the 3-fold axis. The distance between the central
carbon atom and the three "axial" oxygen atoms of the

next molecule in the stack (C.....0(2)) is 3.28.

Three stacks are grouped together about 31 or 32
screw axes. In Fig. 3, the projection of the lower half
of the unit cell down the z-axis on to the xy plane, it
can be seen that the molecules in different stacks inter- |
' mesh like three-toothed gear wheels. Fig. 4 shows the |
projection normal to the yz plane. Here the molecules
of the different columns interleave with each other.

3.8, TESM and THSNM

It was anticipated that the structures of TESM and
DUSH would be isomorphous, or that TESK would be iso-
structural with either the "major" or "minor" TMSM

structures. In spite of the similarity of the actual
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coordinate values it can be seen from the Appendix
that the structure of TS differs from béth TKSIM
structures. It can be seen that the relationship between
the structures is that the TEZSI molecule is inverted with
reapect to the TLiSli molecule. This corresponds to an
interchange of a and b-axes, or to the replééement of ¢
by E}axis. No space group transformation can be applied
to TESL coordinates to convert them into approximations
to the TiiSM coordinates.

Further, when the a*-axis has been chosen in the
reciprocal lattice, the general absences and the
symmetry of the Laue Group 3m define the directions of
the b*-and c*-axes. It is not possible to interchange
b* and c* without changing c¢* to ¢c*. The Patterson maps
of both TESM and TIISII were calculated during the course
of this investigation. Their features are different,
- and the positions of the sulphur atoms deduced from them
are different. The electron-density maps phased from
the sulphur-atom-structure-factors give essentially the
known structures, the atomic coordinates of which are
shown in Tables 12 and 13. Indeed, since the chemical mole-
cules both have the same tetrahedral shape and the same
3-fold axis, and the molecular centres must each occupy a
special position, the "similarity" of the coordinates is

not surprising.
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TART R 2,1

FRACTTNNAT, COORDTNATES AND E.S.D.

ATOM X 4 ¢/
s(1) 0.1329 + 1 0.0796 + 2 0.0000 + 0
n(1) 0.1832 + 5 0.0206 + 5 0.0253 + 7
0(2) 0.1292 + 5 0.1119 + A -0.12375 + 7
c(1) 0.3012 + 9 0.2382 + 12 0.1206 + 13
c(2) 0.186L + 7 0.18R8 + 7 0.1109 + 10
c(R) 0.0000 + 0O 0.0000 + 0O 0.0610 + 10
H(1) 0.0000 + 0 0.0000 + 0O S 0.187 +21
H(2) 0.175 +1€ 0.248 +17 0.065 +21
H(3) 0.185 +20 0.105 +22 0.186 +30
H(4) 0.30L +22 0.24h 420 0.074 +30
H(5) 0.307 +20 0.296 +20 0-202}i33

H(6) 0.316 +20 0.175 +19 0.173 +23



TARLFE 2.2

FRACTINNATL CONRDINATES AND E.S.D.

0

ATOM X v Z
s(1) 0.1329 + 1 0.0796 + 2 0.0000 +

0(1) . 0.1832 + 5 0.0206 + 5 0.0253 + 7
b(z) 0.1292 + 5 0.1119 + 6 -0.1375 + 7
c(1) 0.3012 + 9 0.2382 + 12 0.1206 + 13
c(?) 0.1864 + 7 0.1888 + 7 0.1109 + 10
c(3)  0.0000 :t’ 0 0.0000 + 0 0.0610 + 10



ATOM
- s(1)
0(1)
0(2)
c(1)
c(2)
c(3)

COORDINATES AND E.S.D.

TARTHE 3.3

TN ANGSTROMS

WITH RESPECT TOQ THE CRYSTAL AXES

X
1.9837 + 21
2.7416 + 73
1.9327 + 81
I ,5079 +142
2.7896 +103

0.0000 + O

Y

1.1014 + 20

S 0.R081 + A1
1.6743 + 87
3,564 +175
2.8251 +109

0.0000 + O

P

Z
0. 0000
0.,2L83
~-1.3402
1.1834
1.0881
0.5984

o+ I+ I+ I+
O O BV} N DN
E 3 0o o c

I+
O



" ORTHOGONAL COORDINATES

The orthogonal axes (X, Y, Z) are defined as follows:

X is parallel to a*
Y is parallel to Db

Z is parallel to c



ATOM

s(1) -

o(1)
0(2)
c(1)
c(2)
c(3)

0.0000

CRTHOGNONAL

X
1.7223 + 18
2.3743 + 6L
1.6738 + 70
3.9040 +123

2.4159 89

I+

0]

I+

TARTE 3,/

COORDINATES AND E.S.D.

C
0
-
C
I+
)
20

-1.062L + 70
- 0.7079 £ 73
1.3108 +167
1.4303 +106

0.0000 + 0O

Z
0.0000
0.2483

-1.34092
1.1834
1.0881
0.5984

I+ 1+ I+ I+ I+

i+

[y

0N
o3



TARTE 2,5

FRACTIONAL CONRDTINATES AND TEMPRRATURE FACTORS

ATOM
H(1)
H(2)
E(3)
H(L)
H(5)
H(6)

X
0.000
0.175
0.185
0.304
0.306
0.316

w L

)4
0,000
0.248

0.195

7
0.187

0.065

0.186

0.074

0.202
0.173

3]
0.0152
0.0487
0.0209
0.0150
0.0799
0.0715



T -

TE 3,6

S|

T5

L

i

ANISOTRCPIC TEMPERATURE FACTORS AND E.S.D.

ATCM Ul1 | Ue2 U3z  2u23 2U31 . 2u12
S(1) 0.0302 0.0339 0.0215 0.0041 0.0090 0.0288
9 10 0 15 11 il

0(1) 0.0426 0.0569 0.0333 0.0086 0.0078 0.0570
‘ 29 37 0 48 by 55
0(2) 0.0545 ©.043L 0.0271 0.0176 0.0218 0.0426
i) 36 0 52 46 72

c(1) 0.0493 0.0806 0.0431 -0.0169 -0.0208 0.0348
54 89 0 102 83 114

c(2) 0.,0384 0.0352 0.,0345 -0.0028 -0.0059 0.0183
41 43 0 61 60 66

c(3) 0.0261 0.0261 0.0174 o.oooov 0.0000 0.0261

28 8 0 0 0 28



ATOM
s(1)

-0(1)

&y
(1)
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tu
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PRINCIPAL VALUES AND DIRECTIONS OF
VIBRATION
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— OWD

O N Oy

=~
Fo~3
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ALY
\O

cCC cCccc ccc
6
C
N

0.0488

0.1021
0.0344
0.0566

0.0556
0.0294
0.0355

0.0261
0.0261
0.0174

=

[} L] L]

0 == (W
C QD
- PO
~J CO\O

~J WU
QO =
LIONC
ccCcc
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C (oW

o

Ul —
OwCcom

TENSCORS
PECT TO ORTHCGONAL AXES

D2

-0.0063
-0.8802
0.1981

C.8421
C.0210
"O 05389

-0.2302
-0.3976
0.5882

-0.9881
10.1215
-0.0944

0.8192
0.4846
0.3067

0.0000
1.0000
0.0000

D3

0.9204
0.0718
0.3843

0.1754
0.9342
0.3105

0.9073
0.2423
0.3436

0.0365
0.7813
0.6231

0.0828
0.4292
"'O 08994

0.0000
0.0000
1.0000



TABLE 3.8

BOND-LENGTHS MITH E.S.D.

S(1) - 0(1) 1.440
S(1) - o(2) C 1.444
S(1) - c(2) 1.785
- 8(1) - ¢(3) 1.834
c(2) - c(1) - 1.496

c(3) - H(1) 1.24

I+ I+ 1+ 14+ 1+

1+



0(1)
o(1)
(1)
c(1)
c(2)
S(1)
S(1)

TiBLE 3.9

BOXD-ALGLES  WITH E.S5.D.
- s(1) - 0(2) 119.1
- 5(1) - c(2) 108.9
- 5(1) - ¢(3) 106.0
- ¢c(2) - s(1) 111.7
- 5(1) - C(3) 103.9
- C(3) - 5(1) 109.9
- C(3) - H(1) 109.0

I+ I+ I+ 14+ 1+ 1+

1+

S A LV T Y -



S(1)
S(1)
S(1)
S(1)

TABLE _3.10

BOND-LENGTHS WITH

- 0(1)
- 0(2)
- c(1)
- ¢(2)

(TIiSLi)

E.S.

1l.427
1.442
1.729
1.830

I+ 1+ i+

I+

17
12
17
10



TABLE 3.1l

Pinal observed and calculated structure factors.
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"TABLE  3.12

TLiSk major Structure, with S at z = 0.0000

X hs Z
S 0.1525 0.1040 0.0000
0(1) 0.2217 0.0469 -0.0219
0(2) 0.1415 0.1401 0.1399
c(1) 0.2061 0.2230 -0.1159

¢(2) 0.0000 0.0000 -0.0597



TABLE 3.13

TSk minor Structure with S at z = 0.0000

X v z
S 0.1040 0.1525 0.0000
0(1) 0.0469 0.2217 0.0219
0(2) 0.1401 0.1415 ~0.1399
c(1) 0.2230 0.2061 0.1159

c(2) 0.0000 , 0.0000 0. 0597



ACPEIDIX
oo

COLPARISONI OF TSIl with TiiSL (major) and TLISL (minor

STRUCTURES

The fractional coordinates of TESK, TiSH (major)
and TiSH (minor) are given in Tables 1, 12 and 13
respectively. These tables give the molecular coordinates
adjusted so that the (arvitrary) z-coordinate of the
sulphur atom is zero in all three cases. Tables 12 and
13 therefore do not show the correct z-values of
TLiSH (major) relative to TiSii (winor), but the purpose
here is to compare both these structures independently
with that of TESI. In making this comparison, any of
the equivalent positions of the molecules in the unit
cell may be taken, the origin of the coordinate system
may be moved in the z direction, and, since the absolute
configuration of the molecules is unknown, a centre of
.symmetry may be applied, in the attempt to convert the
TESM coordinates into others anaiogous with one or both
of the TESI coordinates.

Let the TESL fractional coordinates be x, y, 2.

The following approximate relationships then occur:

-72-



FIG. 1T |
Comparison of TESM structures with THMSM (Major)
and THSH (Minor) structures. ’



(TE sM)

X
(TMS" MAJOR STRUCTURE)

(INS n MINOR STRUCTURE)



TESH TSl (major)

x'l y’ 2 X’ Y1 2
TESH TiSH (minor)
Xy Jy 2 Jr Xy 2

Listed below are all the "equivalent" TESK

coordinates:-
Actual Space Group z-origin —_—
Coordinates Equivalent shift hkl to hk1l(1l)
X, ¥y 2 %, Yy 2
Yy %Xy, 2
Y=X, X, 2
¥ %y 5+ 2 7y Xy 2 Yy X, Z
X, X=y, 3 + 2
J=X, y,%+ 2

-T73=
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Chapter 4

THE STRUCTURE DETERIINATION

4.1. Introduction

Acid salts of carboxyl acids are very common sub-
stances. The potassium and rubidium acid salts of anisic
acid are readily prepared by mixing alconol-water
solutions of the acid with potassium hydroxide or rubidium
carbonate, in the ratio of one equivalent of acid to half
an equivalent of the metal aydroxide or carbonate. The
crystals are produced when the solutions are allowed to
evaporate slowly.

Crystal structures of acid salts have frequently
been studied by X-ray diffraction techniques (Mills and
Speak man, 1961; Bryan, liills and Speakman, 19634; Mills
and Speakman, 1963B; Gol1il and Speakmah, 19654; Golic
and Speakman, 1965B). They have also been examined by
neutron diffraction (Currie, Curry and Speakman, 1967)
and their infra-red spectra have been classified by
Blinc, Had¥i and Novak (1960), Shrivastava and Speakman
(1961). The chemical interest is centred on thé short

hydrogen bonds which occur in some of these compounds.

_7 4__



The infra-red spectra of these two acid salts of
anisic acid show the anomaly characteristic of "Type A"
acid salts (Shrivastava and Speakman, 1961). That the
structures are, in fact, "Type A", nas been confirmed by
the solution of both structures. In the case of the
potassium salt the length of the O ..... O distance in
the effectively symmetrical hydrogen bond has been

determined with considerable accuracy.

-75=



4.2. Ixperimental

Crystal Data

The following values were established by photo-
grapnic methods with CuKm - radiation (A= 1.5418 X)‘
Potassiun pydrogen dianisate, KH(08H703)2;orthorhombic;
M= 342.4; a = 35.77; b = 7.05; ¢ = 6.16 &; V = 1553 &;
Dm =[43 (by flotation in bromoform~carbon tetrachloride);

Z = 4; Dc = 1.46; Fooo = 712; space group Pbcn;
absorption coefficient for Cu Kyradiation = 33.2 cm T;

crystal shape, latha-like crystals (cut for intensity

determination).

Rubidium hydrogen Gianisate RbH (C8H7O3)2 ; M = 388.8;
Orthorhombic; a = 35.3 ~ 0.2%; b = 7.00 £ 0.10 &;

¢ =6.40%0.20% vV = 1581 23; Da = 1.63 £ .01 (by

flotation in CHBr3 -C Cl¢); Z = 4; Dc = 1.62; Fooo = T84;
1

.

space group Pbcn; absorption coefficient Cu Ko = 47.6 cm

4.3. Course of the Analysis

From the similarity of space group, cell dimensions
and the number of formula units per unit cell, it was

inferred that the potassium compound was isomorphous

with the rubidium one. The space group implies that the
metal ion and the acidic hydrogen atom occupy 4-fold

positions while the two anisate residues of the chemical

formula occupy 8-fold symmetry positions and are therefore
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Lacnvicar, cyimetry-relasel Zolzeules. This situation
1c vyrical of M"Eywe AU ocilld salis.

Lae suructure of rutidiws hydrogen dianisate nad
peen so0lved in Two projecticuns (Forgie, 1964) (Skinaer,

1550). Sixnce the two crysizl siruciures were believed

4%

To be isomorpacus, it was decided to work only on the

potassium comnound WalCh 4as & o
coscfficient. intenslity data were measured visually from
multiple film Veissenberg photographs, whi cq were taken

aopout vota b and € axes, alinougn the crystal shape
caused the v—-axis paoctograpns -0 be subject to much
greater avsorpition errors

The potassiunm ion was assumed 1O occupy a 4-Fold
This was checked by cal-

position of the tyre 0, ¥, w.

thne 3D Patterson at w =

l=

culating a marker section of

frou which the y-coordinate of the potassium ilon was
deduced.

Structure factors calculated for the potassium ion

alone gave & R-Tactor of 42j%. The position of the

heavy-atom is such that the three-dimensional eicctron-

density map calculated using the heavy-atom phased

structure amplitude has mirror planes at 3 = 7 and Z =

This pseudo-symmetry was desiroyed by choosing one of

the images of the carvoxyl sroup of tane acid residue. 4



set of structure factors and an electron-density map
were then calculated, and this time it was possible %o
locate the benzene ring and the methoxyl group.

A tnird siructure~facior-electron-density map
calculation Wasfcarried out, and cooydinatés obtained

from tais map gave an R-factor of 24%.
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L4, Least-Scuares Refinement

1 Least Sguares Refinement was carried

o

The initi
out wita an early version of the Cruicksnank and Snith
Least Squares program. This early version could not
refine batch scale parameters for the different reciprocal

“lattice layers. Thus layer scaling was done by cal=-

culating:

k- LRl /ZIRL,

layer ayer
with a scale and agreement—-factor program written by the
author. In the first three cycles unit weights and
individual atomic isotropic temperature parameters were
employed. The weighting scheme was adjusted to make the
value oféi-22> (average)constant for batches of obser-
vations within different ranges by [Fof. This adjustment
was made by altering tane parameters pl, p2, p3 in the

expression for Jw :-
1
Jw = ’
2 3)/1
pl + Fo + p2 Fo™ + p3 Fo

until, by trial and error, an approximately "flat" distri-

bution of {W A ) was obtained.

"Unobserved" reflexions were given an intensity

equal to half the minimum observed intensity, i.e.

!Fo/ unobserved = i /Fo[ local minimum.

-7 9..



This initiel refinement was somewhat unsatisfactory;
the estlmated standard deviations were insufficieant %o
account Ior Tne anomalous bond-lengths of the benzene
ring (C(2) - C(3) 1.32 &, C(2) - C(7) 1.44 2);the scale
parameter values had been obtained by a somewhat rough-
and-ready method, and the distribution af(ﬁﬂfj} by
sinQ{was not particularly "flat".

A difference map was calculated, from which it was
possible to locate the four hydrogen atom peaks of the
benzene ring, but not those of the methoxyl group.
(Subsequent analysis nas shown that this group has high
thermal vibration parameters). VWhen layer-scale-para-
meter refinement became possible with a later version of
the Least—Squares Frogram, it was decided to continue
the refinement, and to apply a different weighting
scheme. The weighting scheme applied was of the form:

w = Kexp - {4 + BFo + CFo® + DFos + E( )‘?_/sinze)
* F<>i’f/sin4e) + G(sin‘?c/x?)} :
where K is an arbitrary parameter for scaling the
relative weights and the coefficients A, By, Cire.u. & are

fitted by the Least-Squares method by the program

described in Chapter 2.

It was possible to obtain fully anisotropic atomic

vibration parameters for this structure because data
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nad Dbeen collected gbout Lovh b and ¢ axes, although, as
mentioned earlier, the b axis data were subject to severe
absorption errors because of the crystal shape. This
refinement produced marked changes in the layer-scale
parameters. Thnere was a considergble improvement in

the coordinate estimated standard deviations, as would
have been expected from the more comprehensive weighting-
'scheme, but more important than this was the change in
the bond-lengths of the benzene ring. Final values are
given in Table 8.

A final difference map was calculated, but the
missing hydrogen atoms of the methoxyl group could still
not be located. There was a complex region of positive
and negative density surrounding the heavy-atom position.
The difference map, however, displays the transformation
in real space of (Fo - Fc) whereas the least-squares
procedure minimises a function of W(Fo - Fc)z. The
complex region is thus probably caused by the uncorrected
absorption and extinction errors of the large low-angle
reflexions, which are down-weighted by the weighting
scheme. The final R-factor is 15.1%. This may seem
high, but it is considered to be reasonable in view of
the absorption errors of the hol and hll mets, and the

large number of "unobserved" reflexions.
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4.5, Discussion of Siructure

The atomic parameters of the structural model are
given 1n Tables 1 to 5; the more importarnt bond-lengths
and angles are given in Tablesbbolfalong with the more
important interatomic contacts. In addition, the
molecular bondé-lengths and angles are given in Fig. 1.
Tne general packing of the molecules is shown in Fig. 2
and Fig. 3.

This structure is a "Type 4" acid salt, and the
two acid residues of the gross formula KH(An)2 are
crystallographically eguivalent. They cannct be dis-
tinguished as H-in (acid) and An (anion) and this is
the structural criterion used to allocate an acid salt
to one of the two classes. The mean of the bond-
lengths of the bonds in the benzene ring is
1.393 "= 128 and nome of tie individual bond-lengths
differs significantly from this value. The C(1) - C(2)
bond-length is somewhat shorter than the normal
3. sp3) C - C single-bond length 1.54 %, since the

(sp
carboxyl carbon atom is sp2 hybridised. The length
asrees well with values found in other similar compounds
(Table 12. The average length is 1.495 2 which is in
good agreement with the value found nere.

Neither ithe oxygen of the methoxyl group nor the

82—



‘ FIG. 1
Important b.ond—lengths and bond-angles.
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FIG. 2
Projection down the z-axis onto the Xy :plane of unit
cell contents from z = 0 to z = 1. The‘atoms of the
molecules in the upper half of the unit cell are

drawn with double lines.
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FIG. 3
Projection down the y-axis onto the xz piane of the

unit cell contents from y = 0 to y = 1.






carbon atom o the carboxyl group deviates significantly
from the plane of the beunzene ring which is given by the
paraueters:—

0.1516X + 0.8592Y - 0.483862 = 1.063 (1)
where X, Y, Z are given in 2 with respect to the crystal

axes.

The mean plane through the carboxyl group aad C2
is given by:

0.2102X + 0.6987Y - 0.68382 = .5361 (2)
The angle between planes (1) and (2) is 14.9°. Since
the planar configuration would be expected to be
stabilised by delocalisation of the anion's extra electron
with the vbenzene ring, this large angular displacement
is, at first, surprising. There are no larger Substitu-
ents in the ortho position of the benzene ring, and the
p-methoxy group cannot have any effect on the angle.
The tilting must therefore ve caused by molecular pack-

ing (i.e. crystal) forces. This twisting also occurs in

the crystal structure of potassium hydrogen di-p-

chlorobenzoate (liills and Speakman, 1963) where the
angle of twist is 90. As can be seen from Fig. 2 and
Fig. 3 the benzene rings themselves are very tightly

packed, and this close packing of the benzene rings is

in conflict with the demands of the packing of the
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OXygen atoms ébout the potassium ion.

The plane tharouzh C(5), 0(3) and C(8) is:

0.1899X + 0.8231Y - 0.5352Z = 1.0544, (3)
and tinis makes an angle of 4° with the plane of the
benzene ring, and an angle of 11.2° with the plane of
the carboxyl group.

An unusual, but not unique feature of this structure
is that the "mydrogen" of the hydrogen bond is not
located at é centre of iaversion as is usual in "Type 49
acid salts, but is situated on a diad axis. Another
example of a symmetrical hydrogen bond in this situation
is given by Kills and Speakman (1961) in the structure of
sodium hydrogen diacetate. The hydrogen bond itself is
of the short symmetrical type and has a length (0 .....0)
of 2.476 £ 7 2. The low value of the estimated standard
deviation is obtained though the hydrogen bond lies across
a diad axis. The estimatéd standard deviation of the

x—-coordinate of the 0(1) atom is>#ery low, and the standard

deviation of the y-coordinate has no effect.

The packing of the oxygen atoms round the potassium
ion is best described as a distorted octahedron. The
potassium ion is situated on a diad axis, surrounded by
six oxygen atoms, all at distances in the range 2.74 to
2.97 R, and the closest contacts are between the "double-

bonded" oxygen atoms and the potassium ion.
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ATQM
K(1)
o(1)
0(2)
0(3)
Cc(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)

TABLE 4.1

FRACTIONAL CCOCRDINATES AND E.S.D.

X

0,000

[+

00,0309

I+

0,0450

I+

02049

I+

0,0543

I+

0,0936

I+

0,1C30
00,1397
0.1068C

I+ |+

1+

0,1588

I+

0.1227 +

-—

2
2
2
2
2
2
2

0.2159 + 20

Y

~0,2059 + 5

0.3523
0.1226
0.2412
002355
00,2428
0.3332
0.3341
0.2490
0.,1619
0.1553
0.3381

*

N N N N LT

1+

9

9
10
14
10
12
11
12
12
13
19

Z
00,2500

I+

0.3407

I+

0.C973
0.5271
0.2429
0.3246
0.5139
0.5935
0, L4648
0.2738 +

I+ 1+ I+ 1+ 1+

I+

0,1984 +
0.7202 +

W OV v W C

14
17



ATCM
K(1)
0(1)
0(2)
0(3)
c(1)
c(2)
C(3)
c(4)
c(5)
c(6)
c(7)
c(8)

. 3350

ATCOMIC COORDINATES AND EoSoDe.

0,000

I+

1,105

I+

1,609
7.330
1,943

I+ 1+

I+

3,684
4,996

1+

1+

6.009
5,681
4,388
T.723 + T2

1+

I+

I+
OO OO 1 O O O X &~ UM & C

1+

TABLE 4,2

IN ANGSTROMS

-1.452
2,483
0.864

I+ I+

1+

1,700
1,660
1.711

i+

I+

2,349
2.355

1,755
10141

I+ 1+ 1+

I+ I+
W W W &® Vv N ¢ N 93 O w

1,095 +
2,383 + 14

1,539
2,098
0599
3.246
1,496
1,999
3.165
3655
2.862
1,686
1,222
L.435

I+ I+ I+ I+ I+ 1+ 1+ I+ 1+ I+

I+

o O & 0 o W 0 O O O C

-—
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ATOM
H(3)
H(4)
H(6)
H(7)

0,081
0,148

0,179
0,116

TABLE 4,3

FRACTIONAL COORDINATES
AND TEMPERATURE FACTORS
FOR HYDROGEN ATQOMS

Y
0. 407
0,403
0,081

0,076

0,608
0,743
0,178
0,033

U
0,0658
0,0454
C.0T14
00,0446



ATOM
X(1)

0(1)
0(2)
0(3)
c(1)
c(2)
c(3)
C(4)
c(5)
c(6)
c(7)

c(8)

TABLE 4.4

ANISOTRCPIC TEMPERATURE FACTORS
AND THEIR E.S.D.

U1l
0e0L4T
11

Co.0262
19

0.0U15
22

0.0262
19

0,0387
33

0,0283
27

0.0238
25

0,0304

0,0178
24

0,0299
27

00,0321
29

0,0278
29

vze

0.0570
17
0,0636
37

00,0661
41

0.COTH
49

00,0568
55

0,0310
38

0,0523
50

00436
45

0,0494
48

0,0422
bt

0,0494
50

0,1053
90

U33

00404
17

0. 0564
34

0,0532
36

0,0642
37

0.C415
52

0.0396
Ly
0.0431
48
0.,0398
46
00,0591
54

00,0457
50

0.0443
48

0,0822
73

2u23

0,0QUL0
0

‘000193
63

-0,0143
68

~0,0073
67
~0,0U33
a7

0.0173
71

-0,0150
79

-0,0001
75

0,0130
82

0,0016
76

=0,0044
86

-0,0410
134

2U31
=0,0116

18
-0,0116
39

-0.0104
43

0.0010
4o
0,0C41
56

0.0117
53

0,0025
51

0,0088
53
~0,0004
52

0.0148
54

0,0132
58

-0,0436
70

2u12

CeOLVY
0

=0,00u1
4s

-0,0063

0,0061
61

-0,0022
58

~0,0uU90
63

-0,0052
66

0,068
91



ATCM
K(1)

c(2)

0(3)

c(1)

c(2)

c(3)

Lﬂ

4.5

PRINCIPAL VALUES AND DIRECTIONS OF

o2
U A

0.0364
0.0570
0.0487

0.0250
0.0705
0.0506

0.0693
0.0384
0.0531

0.0257
0.0701
0.0620

0.0573
0.0376
0.0422

0.04863
0.0230
0.0296

0.0569
0.0227
0.0396

0.0281
0.0445
0.0412

0.0178
0.0024
0.0462

0.0258
0.0488

. NS Ead
OO !

D1

0.5711
1.0000
"O 08208

0.9792

-0.0753
0.1885

0.0295
0.8550
"‘O 04589

"'OQQJ_)O
-0.0822
0.0774

0.1220
-0.8954
—004202

0.2667
0.7438

-0.1083
-0.9734
"O 02017

-0.9197
0.2787
-0.2764

0.295%
-00015]
0.0315

-C.8010
Oa ﬁq )\-)

~0. 1837

VIBRATICN TENSCRS

D2

0.0000
0.0000
0.0000

0.0505
-0.8091
-0.5855

-0.9171

0.2067 -

0.34170

0.1104
-0.8497
0.5155

—0 . 9854
-0.0575
-0.1605

04710
-005904
-0.E554

-0.8773
0.1890
04411

0.1825
0.9270
0.3277

-0.0007

04450

-0.8928

- ~0.2633

-5.1889
0.9515

D3

0.8208

0.0000
0.5711

0.1966
0.5828
-0.7885

0.3977
0.4108
0.8204

0.0234
0.5208
0.8534

0.1191
04415
-0.8893

0.8408
0.5251
0.1312

0.4676
0.1292
_008745

0.3476
0.2509
-0,9034

0.0349
0.8934
0.4493

0.3448
0.9057
OQQLPL.)‘?



c(7)

c(8)

0,.0291
0,0516
0.0451

0,0200
0.1195
0,0758

-0,9186
0.2779

09281ov‘
009381 '

~0,160.
0,3073

-0,0756

~0,8215
0,5652

00,0452
-0,8229
-0,5664

0,3879
0.4979
07756

0.3435
Ue5L52
=0, 7647



(G2

m:oT o
sl 4—.

Bond-lengtns snd T.S.D.

1+

o(1) - c@a) 1.320 % 10
0(2) - ¢(1) l.244 T 12
c(1) - ¢c(2) 1.495 % 9
c(2) - ¢(3) 1.370 ¥ 11 g
c(3) - c(4) 1.401 I 9 %
c(4) - c(5) 10411 %10 ; Benzene
c(5) - c(6) 1.367 £ 12 g Ring
c(6) - ¢(7) 1.374 9 ;
c(7) - ¢(2) 1.436 £ 10 )
c(5) - 0(3) 1.376 X 7
T3

c(3) - c(8) 1.427



TABLE 4.7

Final observed and calculated structure factors.
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Tevles 0 oond-Lensins, bont—an-ies and Interstonic

In the following sables, coordinates of atoms (x, y, z)
denoted only by a braciketed number are those given in

T4BLE 4.1. The others are related to this set as

follows:
A Xy, =¥, 5 +z
B =Xy, =¥, = T2
C Xy, =V -5 + 3
D -X, =¥, 1 -2z
E -X, +¥, 5 - 2
F -x, -l+y, % - z

G X’ —1+y’ b4



(1) eernn. 0(24) 2.740
K1) veens . 0(2B 2.740
K{1) +..... 0(1C) 2.939
K(1) +v.... 0(1D) 2.939
K(1) «vven. 0(2) 2.973
K(1) ec.... 0(22) 2.973
K(1) «ve... O(1F) 3.351
K(1) veee.. 0(1G) 3.351



PinL= 4.9

Oxyzen-Cxycen Contact

0(1) +vev.. O(LE) 2,476 = 15



o(1)
0(1)
0(2)
c(1)
c(1)
c(2)
C(3)
c(4)
c(5)
c(6)
c(4)
c(6)
c(5)

Lond-4Anzgles ard I.S.D.

—wTT™

TABLE 4.10

c(1)
c(1)
c(1)

c(2)
c(2)

c(3)
Cc(4)

- ¢(5)

c(6)
c(7)
c(5)
c(5)
0(3)

0(2)
c(2)
c(2)
C(3)
c(7)
c(4)
c(5)
c(6)
c(7)
c(2)
0(3)
0(3)
c(8)

123.
115.
121.
122.
118.
121.
118.
119.
122.
118,
©123.
116.
118.

Vi o WO H W O W W K O o™
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J

=Y

-
> 3 {
Lodfls L

+

0(1) - 0(2) - ¢{1) - c{(2)
0.2102 X + 0.6987 Y - 0.6338 2 0.5361 (%)

0.0054 ()

Il

I

Root liean Square Deviation from Plane

Maximum Deviation (C(1)) = 0.009 (2)
Flane 2

C(1) - ¢(2) = c(3) - c(4) -¢c(5) =c(6) - Cc(7) - 0(3)

0.1516 X + 0.8592 Y - 0.4886 2 = 1.0063 (%)
Root llean Square Deviation from Plame =  0.0147 (&)
liaximun Deviation (C(3)) = 0.024 ()
Plane 3

0(3) - ¢(5) - c(8)

0.1859 X + 0.8231 Y - 0.5352 ¥ = 1.0544 (&)
Plane 4 A

c(2) - ¢(3) - c(4) - c(5) - c(6) - ¢(T)

0.1501 X + 0.8594 Y - 0.4887 2 = 1.0054 (&)
Root lMean Square Deviation from Plane =  0.0117 4)
liaximum Deviation (C(3))V =  0.019 (%

Deviations of atoms not in the Plane:

0(3) = -0.031 (&)
c(1) = -0.018 (&)

c(8) = 0.034 (2)



w NN

Plane
Plane
Plane
Piane
Plane

Plane

ANGLIS

oW WD

i

14.90
11.18°
14.92°
4.03° .
0.09°
4.08°



TABLE 4.12

0
) . N
BOND-LENGTHS OF THE /C(l) - C(2) BOND IN VARIOUS ACID SALTS
0

c(1) - ¢(2)(4) COLIPOUND

1.492 potassium hydrogen diacetate
1.486 potassium hydrogen di(p-chloro-benzoate)
1.515 potassium hydrogen di(tri-fluoro-acetate)
1.52 caesium hydrogen di(tri-fluoro-acetate)
1.465 potassium hydrogen di crotonate

Average = 1.495

References

lills and Speakman (1961)
Mills and Speakman (1963)
Golid and Speakman (1965B)

(The structure of potassium hydrogen di crotonate is

g

described in Chapter 5)
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POTASSIUL HYDROGEN DICROTONATE

5.1. Introduction

The crystal structures of the acid salts of mono-
carboxylic acids have been intensively studied over the
past 20 years by Speakman and his co-workers. Their
interest has centred on the very sphort hydrogen bonds
which occur in some of these compounds. The compounds
have been assigned to two classes (See Chapter 4) on
the basis of their crystal structure as Tevealed by
infra-red spectroscopy, X-ray diffraction and neutron
diffraction.

Prior to the present work, the crystal structure of

crotonic acid itself CH3 - CH : CH - COZH was determined

by S. A. Sutherland in 1961. Later, crystals of
potassium hydrogen dicrotonate, rubidium hydrogen
dicrotonate and ammonium hydrogen dicrotonate were
prepared by I. lcCrorie (B.Sc. Thesis, Glasgow, 1963)
who measured the cell dimensions of the potassium com-~
pound, and derived the "reduced" cell from the morpho—

logical unit cell by application of the Delaunay

reduction.
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This chapter describes the structure analysis and
the crystal structure of potassium hydrogen dicrotonate

from three-dimensional X-ray diffraction data.
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5.2. Experimental

Preparation of crystals: potassium hydrogen
dicrotonate is readily prepared by dissolving crotonic
acid with potassium hydroxide (in the ratio of two
equivalents to one equivalent) in a little 50% agqueous
ethanol, and allowing the solution to cool.

Crystal Data

Potassium hydrogen ditrotonate KH (C4H502)2;
M = 210.3; triclinic; a = 12.46;
b= 6.02; ¢ =7.45 &; k= 66931}
B= 10339 Y= 95%12.
The reduced cell is given in the Appendix to this
chapter, along with the matrix for transforming the
above cell to the reduced cell. |
The unit cell given above was used throughout these

investigations. All atomic fractional co-ordinates and

indexing of reflexions refer to it and its correspond-
ing reciprocal cell, not to the reduced cell.

V = 496.72 ffx}, . Z2=2; Dm=1.37 g/cc;

Dc = 1.40 g/cc; space group PI (See below);

FQO0 = 220;. o | | N
Absorption coefficient (CuKy radiation) s = 46 cm .

-87-



5.3. Choice of Space Groups

The space groups ¥l and F. cannot be distinguished
by systematic absences of classes of X-ray reflexious.
Initially an attempt was made to distinguish between the
two by applying the”N(Z)“and‘variance“statistical tests
to tne distribution of intensities. Both these simple
tests indicated that the space group was Pl. It has
been shown by Sim (1959) and Foster and Hargreaves (1963)
that the presence of heavy atoms can distort the
intensity distribution. Indeed it was found that the
N(2) distribution was almost identical to one given by
Cochran (1963) for a heavy-atom compound in the space
group PI.

The Patterson map was interpreted in terms of a
centrosymmetric structure and this has been confirmed by
the successful refinement of the structure in PI, and by
comparing the results of the refinement with those of a

parallel refinement in the space group Pl1.

-88—



5.4. tructure Solution

The intensities of 1225 independent X-ray reflexions
were estimated visually from multiple-film Weissenberg
photographs of the hko, okﬂ, hoﬁ, hl/ -and n2/l reciprocal
lattice nets. No absorption corrections were applied.
The position of the potassium~-potassium veé%or peak could
not be located unambiguously from the two (uvo and vow)
short-axial projections of the Patterson function. Two
three-dimensional Patterson maps were therefore cal-
culated, one '"sharpened", the other unsharpened. An
empirical sharpening function, which increased the magni-
tudes of the F2 coefficients of reflexions as sine ©
increased, was used.

It was then realised that the shortest distance
between potassium ions in the crystal could not be less
than ~v33, and was probably in the range 3.12 - 3.44.
When looking for the potassium-potassium vector peak,
therefore, only peaks at least 33 from the origin were
considered. This left only one major peak, from which
the co—ordinatés of the potassium atom were derived.

Structure factors for all the reflexions calculated
for this one potassium atom alone gave an R-faqtor of
58%. An .electron-density map was then calculated using

the observed structure amplitudes with the phases of the

-89-



structure~factors calculated for the potassium atonm
alone. This revealed an imperfect image of the structure
from which it was possible to pick out the atomic

positions of the four oxygen atoms.

After four cycles of structure-factors and electron-
density maps, the positions of all the atoms, except .

hydrogen, were known and the R-factor was now 31%.

=950~



5¢5,. Least-Sguares Refinement

The structure was now refined by the Least-Squares
method. Only co-ordinate parameters and a single iso-
tropic temperature-parameter were refined for each atom.
A single over-all scale-parameter was used, and the
observations were given equal weights, but no "unobserved"
reflexions were included in the refinement at this stage.
Four cycles of refinement brought the R-factor to 18%,
with considerable shifts in atomic co-ordinates and
temperature paraneters.

Unobserved reflexions were included at % I min (i.e.

#|Fo|local average ), and a weighting scheme was fitted
by means of the program described in Chapter 2. The

weighting scheme was:

W=Kexp- (A+3B Fo+ C Fo?

+ D )\2/ sin%e + E >§/sin49 + F sinze/)\z)

where K is an arbitrary scale factor and A, B, C, D, E
and F are fitted by the Least—-Squares method, so that

W o= l/(A‘} where < A'Y is the local average of
(Fo - Fc)z.

Bach atom's isotropic temperature parameter was
feplaced by 6 anisotropic temperature parameters, and
each reciprocal net was given its own scale factor.

Three cycles of Least-Squares reduced the R-factor
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to 15.5%. It was then apparent that the weighting scheme
would have to be re-adjusted to maintain a "flat" dis-
tribution of@ﬂya. Anisotropic structure factors were
calculated, using R. Pollard's (1966) program. These

were now used for the calculation of an (Fo-Fc¢) map and

to obtain re-adjusted weighting parameters. |

The difference map revealed a complex depressed
region surrounding the heavy-atqm site, which was thought
to have been caused by uncorrected absorption and extinc-
tion errors. TFour peaks were located near the positions
where it was expected the hydrogen atoms of the double-
bonded carbon atoms would lie, but no definite peaks were
obser&ed which could be assigned to the hydrogen atonms
of the methyl groups. The acidic hydrogen atom could not
be located.

Least-Squares Refinement was then continued for
another three cycles. Although the final R-factor over
all the reflexions is 15.2%, it can be seen from the
tables of the structure factors that the agreement between
the observed and calculated values of individual structure
factors is satisfactory. Approximately 30% of the |
reflexions were "unobserved" and these contripgte

significantly to the R-factor.
To check that the space-group was really Pl and was
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ATOM
K(1)
a(1)
6(2)
0(3)
O(4)
c(1)
c(2)
C(3)
c(4)
c(5)
c(6)
c(7)
c(8)

TABLE 5,1

FRACTIONAL COORDINATES AND E.S.D,

X
~0,090U
0.7356
0,8198
00001
0., 0476
0.7326
0.6240
0.6115
0,5038
0,0662
0.1665
001929
0.2912

I+ I+ I+ 1+ 1+ 1+ 1+ I+ 1+ 0+ I+

I+

®® v O o o oUW,

Y
-0,0390
0,2002
00,4924
0.3243
0,7052
03775
04774
0.6527
0.TU62
04780
0.3879
0,1561

0,0540

R N o O R E R L L FU PR

I+

15
13
12
13
19
23
23
27
20
21
20

27

Z

0.2143 + 3

00,2054
063107
0.3464
06,1510
0,2498
0,2276
0,2741
0.2503
0.,2439
0.,2290

_0,3044
00,2842

I+ I+ I+ I+ 1+ 1+ I+ 1+ 4+ I+ 1+

1+

1"
10
8
8
11
13
14
19
11
13
12
17



ATOM
K(1)
a(1)
0(2)
0(3)
o(4)
c(1)
c(2)
c(3)
C(4)
c(s)
c(6)
c(7)
c(8)

TABLE 5,2

COORDINATES AND E.S.D.

WITH RESPECT TO THE CRYSTAL AXES

X
-1 0121

9,165
10,215

I+ 1+

I+

0,002
0.593
9.129
7775
72620

60277
0.825 +

I+ 1+ 1+ 4+ 1+

I+

2,074 +
2,403 +
3.629 +

10

IN ANGSTROMS

1,706 + 10

2.268 + 9

2,118 + 13



ORTHOGOLAL COORDINATES

The orthogonal axes (X, Y, Z) are defined as follows:

X is parallel to a*
Z is parallel to ¢
Y is normal to X and Z, so as to

‘complete a right-handed set.



ATOM
K(1)
o(1)
o(2)
0(3)
o(4)
c(1)
c(2)
C(3)
C(4)

c(5)

c(6)
c(7)
c(8)

TABLE 5.3

ORTHOGONAL COCRDINATES AND E.S.D.

10

Y
~0,220

1. 140

- 2.757
1.791
3.896
2,118
2,665
3.632
4o143
2.642
2,149
0.871
0.312

I+ I+ 1+ 1+ I+ I+ 1+ 1+

I+

@ N o9 NP

10

13

11



TABLE 5.4

FRACTIONAL COQORDINATES AND TEMPERATURE FACTORS
FOR HYDROGEN ATOMS

ATOM X Y yA U

H(1) 04551 0.384 0,168 00500
H(2) 0.684 0.755 00323 00,0500
.H(3) 0.225 0.482 0.178 0,0500

H(4) 0.134 0,071 | 00363 ooo5oo



CRTHOGONAL COORDINATES FOR HYDROGEN ATOMS

ATOM X Y Z
H(1) 6.67 2.14 055
H(2) 8.29 4,20 2,20
H(3)  2.73 2,67 1.82

H(4) 1.63 0. 40 2,48



un

0.0235
7

0,0356
27

00,0263
22

00,0249
20

0,0378
25

0.0171
26

0,0310
35

0.0323
36
00,0430
45

0.0244
29

0.0249
31

0.0166
26

00473
47

TABLE 5.6

uz2

0,0212
12

0.0505
5L

0.,02738
38

0.,0187
32

0,0263
38
0.0342
62

0,0531
79

0.0493
83

0,0583
95

00349
59

0.0370
62

0,0365
o4

00,0646
100

U33

0,0369
9

0.0587

38

00672
4o

00,8340
26

0.0367
28
0,0280
35
0,0343
41
0.CU483
50

00,0826
81

0,0258
34

0.,0416
42

O, 0402
41

0.,0694
66

2ua3

~0,0251
20

-0,0522
87

~0,0696
73

-C.0127
59

~0,01C6
66

0,0054
90

‘000355
107

-0,0288
121

-0,0486
172

-0,0327
87

-0,0222
100

-0,0317
98

-0,0148
156

ANISCTROPIC TEMPERATURE FACTORS AND E.S.D.

2U31

C.0305
14

0,0081
54

0.0297
50

0.0123
39

0,0269
45

0,0103
51

0,0263
63

0,0301
73

0,0526
103

0,0228
53

0,0344
61
0.,0218
55

0.0757
95

- 2Uu12

0.,0063
19

—O oO\)EO
71

~0,0035
57

0.0107
50

00,0180
61

~0,0179
71

0.,0165
98

0,0490
101

0,0453
128

0.0135
83
0,0178

0,0150
76

0.0787
129



ATOM
K(1)

0(1)
o(2)
0(3)
o(L)
c(1)
c(2)

c(3)

TABLE 5,7

PRINCIPAL VALUES AND DIRECTIONS OF

VIBRATION

TENSORS

WITH RESPECT TO ORTHOGONAL AXES

o2

UA

0.0415
0.0137
C.0262

00,0623
0.0344
C. 0470

0,0688
00091
0.0254

0.0154

U377
0.0274

0.0512
0,0211
0,03C6

0,0610
0,0115
00228

0,0183
000568
00,0376

0.0266
0,0580
0.0U455

0.,0136
0,0924
0.0695

D1

0,6662
-0,5290
~-0.5257

=0,1301
C.9601
-0.2476

02032
=0 02387
-Co.9496

-0,5172
0.2643
08141

CoO9UT
—005353
-0, 4800

0o 1660
0.,06105

00,6922
00,3703
~0,6192

~-0.8977
0. 4061
-0,1711

~0.7771
05626
0,2823

. D2

-0,0946
6392

=C,7632

-0, 4972
0.1529
0.8541

~0.5353
Co7850
-0,3119

C.8515
0.0629
5205

U.3U415
08334
-0, 4345

C.6241
-C.5619
-0,5430

0, 1403
00,9106
0,3886

C.1017
00,5686
C.8163

0.,4637
0,283
0.8612

D3

0.7397
0.5582
03758

0.8578
0.2342

0,4575

0.8199
05717
0,0317

00,0863
00,9624
-0.2576

00,6331
0. 1377
0.7617

0.7635
0.2909
0.5765

0,780
091821
-0,6823

0.4288
07154
-0.5517

0. 4257
008001
-0.4227



c(5)

c(6)

c(7)

c(8)

Co0UT79
0.,0383
0.0299

00,0116
00,0528
0.0361

00,0087
00406
00,0391

0.1251
0,023
0.,0549

"005785
Colllty
~Ue0G09

-0,8223
05689
~0,0160

~-0,8648
O.l2hh
00,2684

0,6236
-0,7814
0,0253

00,2587
0.3986
0.8799

02879
-0,0188
0.9575

0.5115
00,3833
~0,7691

07727
0,051
5096348

0,.5069
007194
~0.4750 -

004114 :
0,9053
”001059

0.5912
0.4925
00,6387



In the following tables, coordinates of atoms (x, y, 2)
denoted only by a bracketed number are those given in
TABLE 5.1. The others are related to this set as
follows:

- 1+x ¥, 2z

- X, ¥ ~'l, Z

x-1, ¥, 2

- x, y+1, 2z

H YU Q W o
|

.- X—l, y_l, 'Z



Co

L

=
Je

-

o

I
¥

[

INTERATOMIC DISTANCLS IN  ANGSTROMS

o(1) - ¢(1) 1.242 + 13
c(1) - o(2) 1.321 + 10
c{1) - c(2) | 1.478 + 11
c(2) - c(3) 1.267 + 16
c(3) - c(4) 1.447 + 14
0(3) - ¢(5) 1.308 + 10
C(5) - o(&) 1.277 + 13
c(5) - c(6) 1450 £ 11
c(6) - c(7) 1.320 + 16
c(7) - c(8) 1.483 + 13
o(2) ....0(34) 2.462 + io
K(1) ....0(4B) 2.640 + 6
K(1) ....0(1C)  2.690 + T
K(1) ....0(3) 2.786 + 6
K(1) ....0(4D) 2.802 + 6
K(1) ....0(2E) 2.816 + 6



o(1)
- 0(1)
0(2)
c(1)
c(2)
0(3)
a(4)
c(5)
c(6)

BOND-ANGLES AND E«S.D.

c(1) - o(2)
c(1) - c(2)
c(1) - c(2)
c(2) - ¢(3)
C(3) - C(4)
c(s) - ¢(6)
c(5) - c(6)
c(6) - ¢(7)

- C(8)

c(7)

TABLE 5o

125.3 + 7
118.8 + 7
115.9 + 8
123.9 + 8
1225 + 9
118.9 + 9
116.8 + 8
123,7 + 9
125.8 + 9



TABLE 5.10

‘Final observed and calculated structure factors.
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FIG. 3
Projection of the structure, from z = -0.3 to z = 1.0,
onto the xy plane. This projection is perpendicular
to the plane, i.e. down the c* axis. ﬁoleculeé
represented by double circles have the largest
z—-coordinates, those represented by'dotted,ciroles have

the smallest z-coordinates.
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FIG. 4
Projection of the structure from z = -0.5 to z = 0.5

onto the xy plane, down the c¢* axis.
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Foot liean Sqguare Deviation from

llaximun Deviation (C(1))

Plane 2
C(1) - Cc(2) - C(3) - C(4)
0.0382 X + 0.6423 Y - 0.7655 Z

bd

All Deviaztiocns

-

y

+

Plane 3

(007 l.ean Sguare Deviation from

0(3) = 0(4) - ¢(5) - c(6)
-0.4911 X - 0.1442 ¥ - 0.8591 2

Root ilean Sguare Deviation from

liaximum Deviation (C(5))

Plane 4
Cc(5) - ¢c(6) - ¢c(7) - c(8)
-0.5008 X - 0.0754 Y - 0.8623 Z

Root liean Square Deviation fron

Maximum Deviation (C(7))

Plane 1 -

&v]

o
&)

ane 3 -

ANGLES
LT

Plane 2

Plane 4

Plane =
Plane =
Plane =
Plane =
= 3.34°
= 3.98°

0.8386 (2)
(2)

(2)

0.006
0.011

1.230 (2)

0.00018 ()

0.0002 (%)

-3.1467(8)
0.0041 ()
0.007 (2)

~3.0068 (1)
(2)
(2)

0.018
0.019



equivalent To the firnsl structure, in the laltier space-
sroun. Ssfter two cyeles of Least-Scuares Refinement the
-— - -

I-Factor nad dronuved from 15.2% to 15.08%. Mo signi-
ficant change took place iz any of the atomic co-
ordinate parameters, but Thelr standard deviations

became much larger because the ratio of parameters to

~

observations was greatly increased. It was therefore

concluded that the space group is indeed PI.

_93_.



Ihis structure has a very short hydrogen bpnd

r+ 0 -~ 3 o~
(2.46 = .01la). Zonds of tihis lenzgth are most often
found in syrmetrical acid salts of Type a4 (cf. potassium

hydrogen dianisate), Hydrogen bonds joining crystallo-

graphically CGistiunguishable acid residues are usually

@]

.4 e, 4 =40
cusideratly longer (2.53a).

From the molecular packing diagram 1t can be seen

that there does, in fact, zppear 0 be a pseudo-centre

of symmetry siituated on the nid-zmoint of the hydrogen

bond between the oxygen atoms. From the present X-ray

structure analysis the accuracy is, unfortunately, not

high enougn to distinguish between the anion-like

residue &nd the acid-like residue. Nevertheless it can
be seen that the residues are nuch more similar than
most "unsymzetrical' Tyve B acid salts.

As in the case of ammonium hydrogen dicinnamate
(Bryan, Mills and Speaskman, 1963) some subtle form of

disorder may be present in this structure. Crotonic and

cinnamic acid have similax unsymmetrical "tails" avtached

to the carboxyl group, and these may possibly prevent

efficient packing of the molecules. In all three compounds,



anroniv nydrogzen dicinnsmate, povassium hydrogen

’
a

dicrotonate and rubicium hydrogen dicrotonate, disorder

of thc "tails" nas been suspected.



neduced celil:
& =12.92 ., v =26.0224, c=7.483%,

d=14" 5%, p=108°29, y=98 11,

Cell used in this analysis:

a =12.46 2%, b=6.022 ¢=17.45 3%,
-~ ~-\l N o :

o= 66° 317, p=103° 339, y=95 12"

Transformation matrix for transforming the arbiirary
cell to the reduced cell:

1 0

o
e Ml
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6.1. Intrcduction

The complex crystal sitructure of this chemically

simple acid sall has been The main feature of interest
throughout the structure determination by X-ray diffrac-
tion. This structure determination is not of high

ﬁ ,

accuracy, meinly because oi the poor quality of the

crystals, the rapid fell-off of tne Xrray diffracted
intensities with sin © and the large ratio of parameters
t0 observations. Taere are four rubidium atoms and |
eight associated acid residues in the asymmetric portion
of the unit cell. These 52 atoms (excluding hydrogen)
had to be positioned, making a total of 236 parameters
(including thermal-vibration-parameters and layer-
scale-factors) to be deteruined. 1269 independent
reflexions ware measured; thus giving a ratio of para-
meters:observations of approximately 1:5.4. It is.sus-
pected that a cértain amount of disorder occurs in the
positions occupied by the hydrocarbon "tails" of the
molecules, and this, combined with the relatively §mall

number of observations, and the large number of atomic



the over-all structure is
certainly correct, and is the most complex acid-salt

structure which has so far been determined.

)



6.2. Iq'\——/‘;-":s'j(:/“‘-dl

N

The crystals wiere of poor cuaslity. They had a soft

- .

cxture, exikibited poor exbtinction beitween crossed Nicol

(')

T
nrisins, and were s0 delicuescent that small Tragments
would often dissolve while bpelng examined on the micro-
scope stage. Sclected crystals were mounted individually
in thin-walled capillary-gl“ss tubes, which were then

sealed 2% boeth ends.

Some difficulty was experienced in selecting a small
single crystail. About a dozen different crystals were
mounted, and set, only to be discarded when X-ray photo-
graohs revealed that the crystal was split, or that
several "satellite" crystals were adhering to'the main
one. The crystalbfinally selected, although not perfect,

had only a single small "satellite'.

Weissenberg photographs were itaken about both the
shorter axes. The following parameters were obtained
from photographs taken with Cu Ky radiation:

Rubidium hydrogen dicrotonate Rb H(C4H502)2; M = 259;
orthorhombic; a = 33.10; b = 17.465 ¢ = 7.62%;
4404430m = 1.52; z = 16; De = 1.52; absorption

. - 1
co-efficient for (Cu) X-raysx= 63cm ~.
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hey been true,
would have indicated the space groupn Pcen. A careful
examination of the photographs enabled the crystal to be
assigned to the space group 321212 Which'is a sub-

group of Pccn.
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5.3. Structure Solution

Two two—-dimensional Patterson maps were Ltated
A =i NS ot = 5 \ & 3 R
for the projections (u, v, o) and (u, o, w). B were

ected to nave tihne symmeitry of the plane group pum.
The plane group of the (u, v, o) projection, however,

was found t0 approximaite to cmm, while the (u, o, w)

. from the

Bl

?rojection had a pseuvdo-mirror line at w =
pseudo-symmetry, and the syst uicaily weak reflexiouns
noted above, 1t was inferred that the heavy-atoms, at
least, were in a more symwmetrical arrangement than that
reguired by the true spaceAgroug.

"Sharypened" and 'unsharpened! three—dimensilohal
Patterson maps were then calculated, and the positions
¢f four rubidium atoms were obtained, which accounted
for all the major peaxs of the maps. The initial
structure-factors, calculated for the heavy-atoms alone,
gave an R-factor of 48%.

calculated from the observed

'”u

The electron—-density na;
structure—amplitudes with the heavy-atom phases, had
pseudo¥symmetry (pseudo centre-of-symmetry) and only two
crotonate residues could be recognised. The struciure
“solution proceeded slowly. after seven structure-factor-
|Fo] —electron~density map cycles, a’Bunn Error Synthesis?

nd one |Feof electron-density map, only 32 atoms had

-101-



bsen located, and the R-factor had only dropved to 30%.
1thou;n the wositions of the unkacwn atoms were
indicated by complex regions of electron-density, it was

actual molecules were
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aboms. Another causs oF aiffic&lty was the continued
pseudo-symmefry of the structure.

It was therefore decided to re fine the partisal
structure by the Least-Scuares Jlethod. R. Pollard's
(1966) Least-Squares Program was used, with individual
isotropic atomic temperature parémeters, iné&vidual
batch scale factors for each reciprocal lattice net, and
unit weights for every observation. After four cycles
this refinement of the partial. structure converged to an
R-factor of 22%, but by now the atomic co-ordinates had
been shifted considerably by the refinement.

in (Fo - F¢) map was now calculated. Its most
easily interpretable features were large characteristic

"elover~leaf" patterns at the site of each heavy aton.

It was therefore decided to continue the Least-Squares

Refinement of the partial structure, with anisotropic

temperature parameters for the heavy atoms

Three cycles of refinement with Cruickshank's (1965)

=102~



M m 7 omm o S miy = R | + o m A
e peasSiooguares SAeilnenient CEesTroyel Tiie pseulo-

litudes were now in much betier agreenent.
A T S v s maAamas mas mie.y, - - 3 ER
riprling remained. Thus the problem was to differentiate

it

the unknown ztoms of the structure from the diffraction

yetaw] L
ripples.

AT this stage, %he usual course would be to cal-
culate zn (Fo — Pe) map. If the atoms of the known acid
residuasand carpoxyl grousere -included in the paasing
calculgtior, they do xnot appear on the difference map,
and it becomes difficult to link-up the isolated peaks
which do appear. If, however, the light atoms are
excluded from the phasing calculation, the pseudo-
symzebry of the heavy—aton arraﬁve‘eat causes confusing
poeudo-symmetry in the resulting difference map.

It was decided thaet what was required was a map,
effectively an electron—-density wap of the light-atom
regions of the unit cell, and a difference map of the
heavy—atom‘structure. Thus the heavy-atom diffraction

riovles woulé also be removed Irom the map. 4 map was

calculated, using Fourier -coefficients AD and BD such

that:



and BD = 3c - BH;

wnere Ac and Be, AH and BH are the real and imaginary
con Donepts of the calculated structure factors for al
the kunown atoms, and only the heavy-atoms, respeciively.

|Fo] and IFc] are the observed and calculated structure

The map degecnerates to a difference-map if thne
positions of ounly the heavy-aztoms are known. The modified
co-c¢fficients AD and ED were calculated by a small Algol
vrogramn. The map procuced from these co-efficients was

ery clean in appearance. The light-atom structure showed

up clearly, and it was possible to locate the remaining

ey
< f

in the

o

9}

atoms, bringing the total number of at
asymmetric portion of the urit cell to fifty-two.

“he whole structure was then given two cycles of-
Izast- Squares refinement, as a result of which the
R-factor fell to 16.5%. Structure-factors were then
calculated, using R. Pollard's (1966) program, and a

welghting scheme:
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) o} 4 ; o)
D OXC/5in6 + B X /5in"8 + Fan“G/?ug )
vgs Titted by the program described in clapter 2.

furtiier three cyclec. The varameter sitandard de?latl ns
fell steadily, alithough they were still large compared
with those normelly encountered at this stage of a
structure gungzlysis.

sotropic structure-factors viere again calcul&fed,
and g final (Fo - Fc) man was obtained. Thiz showed no

mejor fezbures, althouzh the packground Ifluctuated in

0.8 £/4°, and a2 complex region °‘rround d
t

om site. Since, during the course of the

refinement, the distribution of W’A2 had again becone
uneven, the welgntlng scaeme program was used to re-adjust
the paramcters of the weighting scheme. Tw¢ further
cycles of least -squares concluded the refinement. The

final R-factor was 13.5%.
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ortion of the unld cell, and thess would ve related by

S tze cemtre ¢f symmetry Vo two other rubidiunm atoms and
To znotlier Jour acic residues.

The majority of gzeid salts with very short aydéro-—
sen toiis Lave ueen found to have a symmeltrical siructure
bond are crystallographically eqguivalent. The bond

lies across a centre of symzetry, or az diad axis, and the
acid residues cannot pe distirnguished as "acid molecule"
and "anion". These are kzown as "Cless A" gcid salts.
Vihere .he two residues linked by the hydrogen bond are
not themselves symnmetry-related, the hydrogen bond 1s
usuglly longer than ia "symmetrical' acid salts and the
residues can be distinguished as "acid molecule" and

"anion" respectively. These are known as "Class B" acid

salt

(6]

In rubidium hydrogen dicrotonate, the hydroszen bonds,
though short, do not consect crystallographically equi-
valent residues, nor do they lie across the pseudofcentre
of- symmetry of the pseudo Pcen space group. The criterion
for a residue being an anion is:i-

Symmetry of the carboxyl group (equal C-0 bonds and

equal ¢-0-0 angles).

The criteria for recozrising a residue as an acid

-107-



fh

L. Distinguishable unequal € =0 and C - 0 ... ¥ bonds.
2. The bond-angles in the carboxyl groups are unegqual

_C—OOOOH<C—C=OQ

«Q

Unfortunately this structure determination is not

sticction. It nust

[oN

sufficiently accurate to observe the
be noted, however, that while in not one of the eight acid
residues are vhe cax ”ooa-oxjgen bonds of the carboxyl group

guai, in every case the hydrogen bond is atiached througl

[¢]
|.<_]

the oxygen with the longer bvond. In addition the average

¥

O ... O distance for tae rydrogen honded .atoms is .
+ - . " :
2.47 = .05 2 waich compares with 2.462 2in potassiun

hydrogen dicrotonate vwhere, in spite of greater accuracy

than in the present determingtion, again no distinction
can be made between molecule and anion.

Thus, though these bonds are as short as many
hydrogen bonés found in syumeirical "Class A" strucitures,
it is interesting to observe thalt in neithef the potassium
hydrogen dicrotonate nor the rubidium hydrogen dicrotonate
have the molecules packed so that the hydrogen bond could
occupy a symmetrical environment, although in the potassiun
compound the space group is P I, with a éentre of symmetry

available, and in the rubidium compound the pseudo-centre

of symmetry is ignored.

~108-
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acid salts with differens cabions. This change of

the extremely deliquescent behaviour of.
the rubidium compound, indicate that neither of these
ciures has good ?acking stavility. This nmust be due

t0 the nature of the carvon chein attached to tae

carboxyl group. It is less symmetrical than any of the
derivatives of benzoic acid or acetic acid.

1t is interesting To note thalt the struciture an alJSlS

of amzonium hydrogen dicingsmate ((Ph.CH.CH.C0%)H N,
Bryan, iiills and Speakmen, 1963), was hampered by the

rapid fall-off of intensity with sin®, and that the

corresponding molecular dimensions are anomalous. Here,

to0, the authors suspected "SOme subtle disorder" of the

carbon chaln.

The cinnamic acid residue has exactly the same "kink"

in the "tail" as the crotonate residue. It-is felt that

in the rubidiunm hydrogen dicrotonate structure disorder

nay be present, par

ticularly with regard to the outermost
d residue "tails". As can be seen

carbvon atoms of the acl

from Table 6.3, these all have large vibration Luramcters,



and these large valucs may be caused by a partial dis-
orcéer in the "tail" portions.

The coc—ordination of the rubidiu: ions is also

anoialous. DThe contacts are listed in Table 6.8.
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FRACTIONAL CCORDINATES AND E.S.D.

X
0.2900
0.3197
0.2135

0.1806

(@)

I+

0.158

n

0.1390
0.1297
0.0902
0.0734
0.0289

0.2785

0.2L405

0.2777
0.3156

1+

I+

N N N & N E N S (N (VU WA TR

1+

o

20
26
31
12
16

0.0351
-0,0854
-0.0070

0.0151

0.0890

0.1136

0.2735

0.1656

0.1971

0.1788

0.2258

0.2007

I+

I+

R e e N o R

4+

ERNNEE

I+

i+

w w w Ww

4l

50.
23

22

4
\\5)

0.9951

0.9255

R s N E S N I B

I+

Hoo1+ 1

1+

C

0
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0.1552 + 22 ¢.2652 + 39 0.7235
0.1138 + 24 0.2918 + 43 0.7702
0.2489 + 13 0.4226 + 24 0.1521
0.2138 + 18 . 0.3155 + 32 0.1200
0.2133 + 26 0.4029 + 43 0.1931 +
0.1820 + 27 0.4422 + 47 0.3307 +
0.1467 + 27 0.0k £ 45 0.3258
0.1185 + 35 0.4501 + 68 0.4107
0.2850 + 12 0.1627 + 21 0.3651
0.2524 + 13 0.0640 + 24 0.2991
0.2808 + 2C 0.0994 + 35 0;2750
0.3214 + 25 0.0581 .+ 43 0.2299
0.3487 + 26 0.0895 + 47 0.2002
0.3881 + 26 0.0k02 + 52 . 0.1014
0.3702 + 13 0.5812 + 25 0.5633
0.3397 = 17 0.4671 + 32 0.5440 +
0.3714 + 24 L0.5064 + 46 0.568L4
0.4109 + 27 0.4812 + 52 0.5947
0.4216 + 25 0.4132 + 44 0.6316
0.4665 + 26 0.4127 * 46 0,676k
0.0955 + 13 0.224G + 24 0.2440
0.073%0 + 14 0.1690 + 25 0.4183
0.0671 + 26 0.2200 + 46 0.3329 +
0.0322 + 25 0.2738 + 47 o.337f
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Rb(3)
Rb(4)
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5.51

5,14 + 7 L,63 + 7 + 7
3.77 = 8 5.09 + 8 5.87 + 8
.24 + 4 7.38 + 4 1.16 = 5
7.08 + & 5.51 + 6 0.91 + 6
7.06 + 9 7.04 + -8 1.47 + 9
6.02 + 9 7.72 + 8 2.52  + 10
L85 + 9 7.07 + 8 2.48 + 10
3.92 + 12 7.86 =+ 12 3.16 + 13
9.43 + 4 2,84 + 4 2.78 + 4
8.36 + 4 1,12+ L 2.28 + 5
.30 + 7 1.74 + 6 2.10° + 6
10.64 + 8 1.02 + 8 1.75 + 8
11.54 + G 1.56 + 8 1.53 + 10
12.85 + 9 0.70 +* 9 0.77 * 10
12.25 + 4 10.15 =+ LL’ -4.29 + 5
ek o+ 6 §.16 + 6 415 + 6
12.25 + 8 8.8% + 8° . 433 £ 9
13.60 + 9 8.Lo + 9 Lh.e3 + 9
13.96 + 8- 7.21 + 8 4,81 + &
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c(27)
c(28)
6(15)
0(16)
c(29)
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- C(31)
c(32)

I+ 1+ 1+ I+ i+ 1+

I+

12
14

11
12

- 5.90

6.31
4,51
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X
0.1586
0;1390
0.1297
0.0902

0.0734

0.0289

0.2785
0.2405
0.2777

0.3156

0.3476
0.3776
0.2458
0.2260
0. 2204
0.1840
0.1552
0.1138
0.2489

TABLE 6.3

Y
0.0351
-0.0854
-0.0070
0.0151
0.089ol
0.1136
0.2736
.0;1656

. 0.1971

0.1788

©0.2258

0.2067
0.3251
0.2102
0.2737
0.3071
0.2652
0.2918
0.4226

FRACTIONAL COORDINATES
AND TEMPERATURE FACTORS
FOR CARBON AND OXYGEN ATOMS

Z

0.9874

0.9758

- 0.9646

0.9389

10,9455
0.9070

0.9951
0.9255
0.9170
0.8049
0.8355
0.6602
0.5690
0.5059
0.5938
0.6413
0.7235
0.7702
0.1521

U.
0.0508

0.0670

0.0250

0.0732
0.0962

0.1212

0.0607
0.0967
0.0818
0.1221
0.0957
0.1084
0.0699
0.0648
0.0422
0.1084
0.0734
0.0841

0.0775



0.2138
0.2133
0.1820
0.1467
0.1185
0.2850

0.2524

0.2808
0.3214
0.3487
0.3881
0.3702
0.3397
0.3714
0.4109
0.4216
0.4665
0.0955
0.0736
0.0671
0.0322
0.0412
0.0003
0.3910

. 0.3155

0.4029
0.4422
0.4049
0.4501

L 0.1627

0.0640
0.0994
0.0581

0.0895

0.0402
0.5812
0.4671
0.5064
0.4812
0.4132
04127
0.2249
0.1690
0.2200
0.2788
0.3378
0.3615
0.2581

C.1200
0.1931

0.3307
0.3258
0.4167
0.3651

0.2991

0.2750
0.2299
0.2002

C0.1014

0.5633
0.5440

0.5684

0.5947
0.6316
0.6764
0.2440

_ 0.4183

0.3329
0.3371
0.2028
0.2919
0.2588

0.1133
0.0974
0.1099
0.1087 -
0.1311
0.0606
0.0822
0.0618
0.0915
0.1050
0.1082
0.0797
0.1119
0.0935
0.1101
0.0913
0.1046
0.0705
0.0782
0.1040
0.1009
0.1321
0.1297
0.0745



0(16)
c(29)

c(3o>»

c(31)
c(32)

o.4240

0.4204
0.4618

10.4599

05022

0.3246
0.2679
0.2267
0.1721
0.1194

0.0023

0.1476v

0.1274

0.2548
0.3116

©0.0835

0.0787

*'0.0839

0.1224
0.1338




ATOM
Rb(1)

" Rb(2)

Rb(3)

Rb(L4)

ANISOTROPIC

U11
0.1066
0.0786

4o

0.0864
4o

0.0712
38

TEMPERATURE FACTORS AND E.S.D.
FOR RUBIDIUM ATOMS

U22

0.0427
31
0.0L43
33

0.0357
30

33

U33

0.0474
39

0.0702

45
0.0565
Lo

0.0700
L4

2023

-7

2031

0.0059 -0.0094

63

90

0.0009 -0.0020

75

87

0.0102 0.0068

64

87

-0.0059 -0.0219

76

86

A

2u12

-0.0287
74

-0.0272
69

-0.0135
65

"0003]]
70



ATOM

Ro(1)

Rb(2) .

Rb(3)

Rb{4)

]

AT T ~ |
TABLE 6.5

tr

PRINCIPAL VALUES AND DIRZCTIONS OF

o2
U A

0.1101
0.0392
0.0474

' 0.0396

0.0834
0.0701

0.0375
0.0335
0.0576

0.0396
0.0846
0.0668

. VIBRATION TEN

D1

"O 097}‘;0
0.1287

~0.9411
—000757

0.9838
-0.1373
0.0572

10,4967
~0.7901
0.3593

SORS

D2

0.2110
—0-9539
0.2136

—009&44
0.3280
0.0241

-0.2433

0.8284
0.3080

- 20.3678

AD3

0.0829
0.2352
0.9684



TABLE 6.6

BOND-LENGTHS WITH E.S.D.
0(1) - ¢(1) 1.22% 6
0(2) - ¢c(1) 1.41 T 6
c(1) - ¢(2) 1.38 % 8
c(2) - ¢(3) 1.40 T 11
c(3) - C(4) 1.56 ¥ 13
0(3) - ¢(5) 1.46 = 8
0(4) - ¢(5) 1.35 £ 9
c(5) - c(6) 1.55 £ 13
c(6) - ¢(7) 1.36 T 12
(1) - ¢(8) 1.69 = 13
0(5) - ¢(9) l.24 T 7
0(6) - ¢(9) 1.31 % 7
c(9) - ¢(10) 1.39 T 11
- ¢(10) - ©(21) 1.35 = 12
c(11) - c(12) 1.49 T 11
0(7) - €(13) 1.27 = 10
0(8) = ¢(13) 1.62 £ 10
c(13) - c(14) 1.63 = 13
c(14) - C(15) 1.34 12
c(15) - C(16) 1.40 £ 15
0(g) - ¢(17) 1.31 %
0(10) - €(17) 1.14 =



c(17) -
c(18) -
c(19) -
0(11) -
0(12) -
c(21) -
c(22) -
- ¢(23) -
0(13) -
0(14) -
c(25) -
c(26) -
c(27) -
0(15) -
0(16) -
c(29) -
c(30) -

c(31) -

c(18)
c(19)

.¢(20)

¢(21)
c(21)
c(22)
c(23)
Cc(24)
c(25)
c(25)
c(26)
c(27)
C(28)
c(29)
c(29)
c(30)

c(31) -

c(32)

1.56
1.08
1.74
1.31
1.27

1.40
.27

1.52

1.16

l.12
1.55
1.48
1.57
1.30
1.49
1.55

1.36

1073

I+ 14+ 1+ 14+ 1+

I+

I+ + 1+ 1+ 1+ 1+

I+

I+ 1+

I+

S+ 1+

10
12
13

10
12
12
12
10
10
12
15
18

10

13

15



TABLE 6.7

INTERIOLECULAR O

...0 CONTACTS

0( 2) ... 0(164)
o( 3) ... 0 8B)
o( 6) ... 0(9)

0(11) +.. 0(14C)

2.62
2.46
2.38

2.41

+

I+ 1+

I+

7
T
6
6



Atoms with coordinates given in Table 6.1 have no extra
designation; other symmetry related ’atéms are dis-
tinguished as follows:-— \
A x+3, y-%3,1-2

B | Xy, ¥y 2 +1 |

"¢ x+ E,y+E,1l-2z
D |

X, y,Z—l




TABLE 6.8

RUBIDIUH ... OXYGEN CONTAGCTS
Rb(1) ... 0(12) - 2.78
Bb(1) ... 0O(73) 2.87
Rb(1) ... 0(10C) 2.96
Rb(1) ... 0(5) 2.97
Rb(1) ... 0(3) 2.98
Rb(2) ... 0(15) 2.68
Rb(2) ... 0(3D) 2,97
Rb(2) ... 0(20) 3.06
Rb(2) ... 0(12) 3.07
Ro(2) ... 0(9) 3.09
Rb(2) ... 0(5) 3.09
Rb(2) ... O(7) 3.16
Rb(3) ... 0(4) 2,76
Rb(3) ... 0(6) 2.94
Rb(3) ... 0(124) 2.95
Rb(3) ... 0(2) 3.00
Rb(3) ... O(74) 3.01
Rb(3) ... 0(10) 3.18
Rb(4) ... 0(1D) 2
Rb(4) ... 0(4D) 2.79
Rb(4) ... 0(114) 2.91
Rb(4) «.. 0(8) 2.95

.75



Rb(4) ... 0(6)

Rb(4) ... 0(10) |

" Rb(4) ... 0(13)

3.00
3.05
3.07

-




TABLE 6.9

Final observed and calculated structure factors.




r

c*Ic

£1]]U £ CUC

t

r

CcM

r

cLC



>k

13%



TABLE 6.10

AVERAGE BOND-LERGTHS FOR A CROTONATE RESIDUE

c(3) - c(4)

0(1) 47

SXN¢(1) - o(2)

0(3)..H..0(2)

Atoms Hean(Z) Iie]a),n c()§) S.D. (%) %as']))(X) |
0(1) - ¢(1) 1.24 0.02 0.07 0.09
0(2) - c(1) 1.38 0.05 0.14 0.08
c(1) - c(2) 1.51 - 0.04 0.10 0.11
c(2) - ¢(3)  1.33 0.04 0.12 0.12
Cc(3) - c(4) 1.59 0.04 = 0.12 0.14

0(2)...H...0(3) 2.47 0.06 0.12 0.07




FIG. 1

Projection of the asymmetric portion of the structure
onto the xy plane, down the c-axis (from x = 0.0 to
x = 0.25, from y = 0.0 to y = 0.25,from z = 0.0 %o

z = 1.0) | | |










FIGrA 2
Projection of the asymmetric portioﬁ of thé structure
0.0 to
0.0 to

onto the xz plane, down the b-axis (from x

x=0.25, fromy = 0.0 to y = 0.25, from z
z = 1.0) |
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A.l.1. The
A.1.2. The
A.l.3. The

Fourier Search Zrogram

Sorting Progran

Weighting—-Scheme Program




NN ._,J “’ i Pl‘-[.

FOURISR SEARCH PROGRAN-
D(}; lY
Liorary 50,06,AT,A8,A9,A12, A14
procedure uUH” (n, t, p, inj); value n, t, p;

integer n, ¢, p; real array inj;
pegzin ,
iritexer h, i, j, flags
recl Cj .
for j:= 1 gtepn 1 until entier (n/2) do
pezin
flag:=0;
for i:= j+1 sten 1 until n-j+1 do
veiin
ir in [1,p]> in [i-1,p] then zoto L1;
flag:= 1;
for ni= 1 step 1 until t do
besin
C:=in [i,n]; in [i,hl:= in [1-1,n];
in [1i-1,n]:=C;
end;
L1: if in [n-i+1,pl< in [n-1i+2,p] then goto L2;
flag:=1; '
for h:= 1 gtep 1 until t do

:=in[n-i+1,hl; in [n-i+1,hl:= in [n~-i+2,h];
in [n-1+2,h]):=C;

ends
Le:
end:
ir flag=0 then goto finishj;
end;
finish:

end procedure SORT;
procedure SOLVE(n, h,conot,coeiftu,uing)

velue n3 integer sing,n; real array N, const coefitu,
De“ih

resl arrsy L,U[l:in,1:n];
srocedure | DECOMP (A,L,U,n,sing); value A,n;

sing,n; real array A L,U

integer
begin
integer 1,
for 1:= 1 s
for k:=
begin
il k=i then L[i,k]:=1;
if k<i then

begd
eilnab (D[k K])<wn-15 then
-116-

1 uptil n do
sen 1 untlii n do

—
f‘ <




‘end  procedure INVERT;

perin

sing:=0; S0L0 LS
ends;
Lli,kle=Al1,n],Ulk,xl;
for j:= 1 gtep 1 until k-1 do
T (1,0 ]~n01,31x0L3,k1/Ulk,x] 3

end;
if ¥k>i ghen 1[i,i]:=0;
if k>i then

tegin
Uli,k]e=al1i,k];
for j:= 1 sten 1 until i-1 do
Uli,k]):=Ul1,k] = TlL,3Ixuls,k];
end;
end;

end procedure DECOMP; :

procedure INVERT (°.,l,n); value L,n;
integer nj; real zrrzy  L,M;

be 5 in

izteger 1,75
for 1:= 1 step 1T until n do
for k:= 1 step 1 until n do

besin
1f 1=k then M[1i,k]:= /L[i,k];
if i<: then N[l,h] =03 '
if i>dk toen
begin
M li,k]:=0; 1
for j:=k gtep 1 until i- d
M{1,k] =M1kl -(LlL,IxM{3,k])/Ll1,1];
end; '
end;

procedure TRANS (A,s5,n); value A,n;

integer nj; real zrray A,bs '
begin

intemer 1,33

for 1:= 1 gten 1 until n Q_

for j:= 1 step 1 until n do Bli,j]:=A[J,1];

end UrOLedure ”RAW~“
procedure MM MULT (A,8,n, Y); value A,B,n;
real arvay A,B,Y;

integer n;
begin

integer 1,Jj,k;

for 1:= 1 step 1 until n do

for k:= 1 step 1 until n do

=117~



verdr
V1,k] =0
ror j:= 1 step 1 urtil n do
Vid,k]:=Y{i,k] + AL, Ixelg,k];

end procedure M MULTS
orocedure MV MULT  ( A,x,n,b); value A,x,n;
infteser nj; real srray A,x,b;

verin

intezer 1,j:
for i:= 1 sten 1 until n do

i]:=0;
r j:= 1 step 1 until n do
ol1] = bli] + &11,31xx[3];
- ena;
end procedure WV UL
sing:=13 DECﬁHp\i,u,U,L,olnb)
i sing=0 then goTo :
INVERT(L,N,n); TRALS(U,L,n) s INVERT(L,U,n) ;
TRANG(U,L,n)y M MULT(L,N,n,U): '
M NULr(L,conva,n,coe”ft )3

T

end Jrocedure SOLVE

Ve

Ty %, X omin, X max, y min,

integer 1, 5, k, 2%, ¥V, .

¥ mex, 2z mnin, z ma}, sing,p, UX, Uy, Nz, 1, 0, i, 43
resl V, a4, b, ¢, s, aipha, veta, ganma, thresho¢d.
operl (10)2 openi {20): open (30);

£ind(100,1D6030003));  find(101, [201);
copy text. (20, 30, jﬁlj,
besin
reazl array unit cell[1:6],5[1:44];
read tinary(100,S,[vart2in Uutl)ﬁ
re binary(101,unit cell,unitce }ll);
2

tasllp§101) dxe=S{e]y Ny:=S[9] Nzi=5[16];
% min:=S[1] x mhz.=L15}; y min:=G[8];

v mex:=5[12]; z min.=6[15}5 2 max:=3[19];
a:=unit celll1] ;=unit celll[2];

EXRTE]

c:=unit cell[3]:

= unit cell(#] x.0174532;
veta:=unit cell[5] x .«174532
romma i=unit cellilc] X 017 4)32,
for i:= 1 gtep 1 until 3 gg
ir abs(Sl26+1]-1)<0.000T then o:=ij;

alpha .

;L_o=2 then
besin
o: =3; coto fixed;
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i1l 0o=3 then o0:=2;
€rd;
sroids
=recdl20)3  Vi=2xaxoxe, (lxxiiyxiiz) ;
u:=(alpna+beta+$anmmd,@h
Vi=Txsgrt(sin(s) X sin(s-alpha) X sin(s-beta) X
sir(s-gaome) ) 3
L 0=2 then
vesir , .
i:=z min; S i=mma; z min:=y min; ZIaxX i =YMax;
¥ riin:=xmin; ¥ maxi=x max; X min:=i; X max:=j;
erd;
i o = 3 then
vezin
i:=zmin; J:=2z nax; znin:=2min; z”ma"=xmgx~
Z nin:=y min; Xmaxn =y mex; ¥y min:=1i ¥y maxi=j];
erd

vesdn ~
rezl zrray listl[1: 206, 1: 4
begin
resl srray  density [x minxmax y min
Tmax], s[1:100,1: SJ,LiSttLT: ,
for z:= 2 nin sten T uwntil zmax do

fao®

vegin
lns()e .
rezd binary (100, density, [Electrondensityl);
for x:= xmin step 1 Lnill max do
ror y:= ymin sten 1 until ymax x do
be;in
ir densitylx,y]<threshold then gsoto continue;
if )~+‘l >xmax or y+1 Dymax or z- 1 <midn
r v-1 {ymin then goto continue;

for i?= -1 sten 1 until 1 do
for j:= -1 step T until 1 do

i densitylx+i,y+]>dens sity[%,v] then

soto continue;
1:=1%1; sli,1]:=x; s[1,2]:=y;
s[1,3]: —aer&ity[x,yj

continue:

end;
if 1=0 then goto next section;
if n=0 then
begsin
for i:= 1 gtep 1 until 1 do
begd
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list[i,3]:=2; listl4,4]):=5(1,3];
for j:= 1 step 1 untll 2 do :

i1 St[i,,_,] =°[i:d.i:

end s

n:=1j; goto next section;
end s
for 1:=1 step 1 until 1 do
begin

for j:=1 step 1 until n do
T ir abs(sTi,T]-1Tst[j,117<1.001 and
absgsfi 2]-*Lstgj 2]5(1 001 and

abs(z-11st[j,3])<1.001 then
begin

T if s[1,3]>1ist[J,4] then

begin
lLSbrd,Ij =3{1,1]; 1ist[j,2]:=sl1,2];
list[ 3,3]:=2; 1istlj,41:=s[1,3];
goto next peak;

end;

Di=p+13 1istt[p,1]:=s[1,1];

listt{p,2]:=s[1,2]; listt{p,3]:=2;

listt{p,4]:=5{1,3];

if p<40 then goto next peak;

repack: k:=0;
for x:= 1 step 1 until p do
T if abs(z ‘1stt{x,3])<1 001 then

begin
k:=k+1;
for y:= 1 step 1 until 3 do
T Tisttlk,yl:=11istt{x,y];
end;
§:=k; goto next peak;
end;

if p=0 then goto new;
for Ji=1 & q‘cep 1 until p do
Tif abs(sTi,1]-1TstElJ,17)<1. 001 and
absgs[i s2]- listtl I, 2]3<1 001 and
abs z~listtfj,3])<1 001 then
begin
if s[1,3]>1ist6[J,4] then ot new,
listt[3,1] —s{i 1]; “1istt
listtl ,31:=z; listt[J,4] —s[i 3],
goto next peak;
end;
new: n:=n+1j l1ist[n,1]:=s{1,1];
list(n,2] =s[1, 2%; list[n,3]:=z
3

1ist{n,4 ] =s[1,3

next peak:
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end;
next section:
end;
SDRT(n L,3,1ist);  1:=03
for 1:= 1 step 1 until n do
beALn -
l.LSt i,4]: :=03
ir abs(lﬁst[i 1]-xmin)>.001 and

T abs(listli, 2]-ymin)> 001 and
abs (1ist[1,3]- zmin§> .001 and
abs >.001 then
begin
1: —1+1,
for j:= 1 step 1 until 3 do
T Iist[1,3T:=11stT 1,373
ends
end'
rewind(100),
end density and s loop;
begin
T real array values[1:1,-1:1,-1:1,-1:1];

begin
real array density|xmin:xmax,ymin: ymax];

for z:= zmin step 1 until zmax do

begin
“read binary (100, density,LElectrondensity]);

for i:= 1 step 1 until 1 do

begin
ifr 1ist[1,3]-2+1<¢~.299 then got NEXT PEAK,

IF 115t[1,3]-2-15.999 then

goto NEXT SECTION;
for k:= -1 step 1 until 1 do

list[1,3]-zmax

begin
if abs(list[1,3]+k-2)<.001 then
begin
for x:= -1 step 1 until 1 do
for y:= -1 step 1 until 1 do
begin

values[i,x,y,k]:=
density[list[i,1]4x,1ist[1,2]+y];
list{i,4]: —list[i h]+values[i,x,y,k]xv,

end;
ggg_ NEXT PEAK,
end; '
end;

NEXT PEAK:
end;

NEXT SECTION
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end;
end seccond density block;
interchange(100);
begin
T real array A[1:27,1:10]),const[1: 27]
,coelfts1: 10},coora511 :31,C[1:3]
LLIST[1:8],N[1:10,1: 10],vect{1 10],B[1:3,1:3];
for i:= 1 step 1 until 1 do
begin
n:=0; . :
for z:= =1 step T until 1 do
for x:= =1 step 1 untcil 1 ¢ do
T for yi= -3 step 1T until T do

begin
n:=n+i;

co: Aln,1]:=1;

X: Aln,5]:=1istli,1]+x

Y: Aln,6] =*ist[*,2]+y,

Z: A[n,7]):=1ist{1,3]+z;
xsq: Aln,2]:=A[n,5]12;
vsq: A[n,3}:=A[n,6]72;

Z5Q: A[n,&]:=A{n,7]T2;
xy: Aln,8]:=A[n,5]xAIn,6];
xz: Aln,9]:=A[n, 5]xATn,7],
yz: A[n,10]: —Afn,6}xn{n,7],
RHS: constin]:=values{i,x,y,2
end;
for J:= 1 step 1 until 10 do
begln
T for ki= 1 step 1 until 10 do N[Jj,k]:=0;
vect[ j]:=0;

for j:= step 1 until 27 do
for k:= 1 step 1 until 10 do

T for n:= Kk step 1 until 10 do
NIn,k]:=NTk,n]:=N[Kk,n]+A[J,kIxA[ j,n];
vect{k]: —vect[k]+A[j,k]xaonst[j];
end;
SOLVE(10,N,vect,coeffts,sing);
if 31ng—0 then goto 163
For j:= 1 step 1 until 3 do
TB[3,J]:=BXcoefftsl J+1 J;
B[1, 2].~Bf¢,1] —CueLfUS[B];
B[1,3] =B[3,1J:—coeffto[9 5
Bl2.3]:=B[3.2] i=coeffts[10]3
C[1]:a-coeffts[5]; C[“] *~coeffus{6},
Cc[3]:=-coefrts{T]; SDLVE(B B,C, coords,sing)
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if sing=0 then goto L6;
ni:=03
for j:=1 step 1 until 3 do
If abs(11st{1i,JT~-coordsTJ])>1.000 then n:=1;
A7 n=0 fhen go%o L7 —
L6: Tor k:= 7 step 1 until 3 do
cooras[k]:=listli,k];
list[1,4]:=-900;
L7: 4if o =1 then
for j:=1 step 1 until 3 do
LIST{j1l:=coords{ji;
if 0=2 then
begin
LIST{1]:=coords[2]; LIST[2]:=coords{3];
M

LIST[3]:=coords[1]

end;
if o=3 then
begin

LIST[1]:=coords£3% LIST[2]:=coords[1];
2

LIST[3]:=coords
end;
LIST[4]:=LIST[1]/Nx; LIST[5]:=LIST[2]/Ny;
LIST[6]:=LIST[3]/Nz; LIST[7]:=1list[1,4];
peak density:
LIST[8]:=coeffts[1]+coeffts[2]Xcoords[1]T2

+coefftal 3 ]Xcoords[2]12+coerfts[ U]

Xcoords[3]12 +coeffts{5]xcoords|1]

+ecoeffis[6]xcoords[2]+coeffts[ 7]

Xcoords| 3 ]+coeffts[8]xcoords[1]

Xcoords[2]+coeffis[9]xcoords(1]

xcoords|[ 3 ]+coeffts[10]xcoords{2]xcoords{3];

store: q:=g+1; write binary(100,LIST,[LIST]);
another peak: _
end extrapolation loop;
end normal equations block;
- end values block;
end list block;
interchange(1003;
B2 array 1ist] 81,LIST[1:8]
real array list{1:i:q,1:0],L :3]3
%gg 1:=1 step 1 until q do
egin
read binary (100,LIST,[LIST]);
for J:= 1 step 1 until 8 do 1list[1,31:=LIST[J];

end; ,
Tewind(100);  interchange(101);
write text(30,[[2c7s]GRID[ 10s]COORDINATES]9s]

FRACTIONAL[ 25 JCOORDINATES[6s]

.
2
.
3

ey g

dataskip(100);  skip(100,-q); -
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PEAK*WT, ***PEAK*HEIGHT  4c11);

SORT(q,8,7,1ist); -
for i:='q step -1 until i do
begin

for j:=1 step 1 until 3 do
virite(30,format(] 2s-ndd.dddd]),1ist[1,51);
for j:= 4 step 1 until 6 do
write(30,format(2s-nd.ddddad]),1ist[1,3]);
if abs(1ist[1,7]+999)<.001 then
write text(30,[[2s |FALSE*PEAK[2c]]) else
bezin )
'wfite€30,formatg[2s-nddd.ddl),1ist{1,7])'
write(30,format §2s-nddd.ddccl),1ist[i,8§);
end;
end;
write text(10,[[6c]FRACTIONAL*COORDINATES*FROM*] )3
o:=read(20);
if o=0 then write text(10,] PATTERSON*MAP[4c]]);
if o=1 Then write text TO,TFO*MAPfﬂcllg;
0=2 Then write text(10,[Fe*MAP4cTT);
=3 then write text(10,DIFFERENCE*MAP[L4e]]);s
0<0 or o>3 then write text(10,[MAP[4c]]);
ap(10,250);
or i:= q step -1 until 1 do
ezin -
if abs(1ist[1,7]+999)<.001 then goto last;
for j:= U4 step 1 until 5 do
“write(10,format(] Ps-nd.ddddd;]),1ist{1,]]
write (10, ormat (] 25-nd.ddddd;e T, 11s5(1,6])
gap(10,15);
end ;
last:
gap(10,300)3
beztn 11[1:6]
real array 1015 -
ILT 1) =q; LL[2]:=8; LL[3]:=03 LL{ 4] :=Nx;
LL{5]:=Ny; LL[6]:=Nzj
write binary(101,LL,[LL]); -
write binary(101,1ist,[LST]); interchange(101);
rewind (101); | ,
end mark block; ‘
end 1list and LIST block; ‘ )
5?55e£100); close(101); -close(30);  close(10);
close(20); ‘ :
end~>

ot s

g

|

o’

);
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DEX018400KP

CRYSTALLCGRAPHIC DATA INDEX SORTING PROGRANM~>
bezin

1ibrary AO0,A6,A7,A8,A9; ,

integer t,f,lmin,lmax,n,m,s,np,dv,1,1,j,q,core,
order,nbl;next,spare,empty;

integer array ind[-100:1001;

real array LS[1:6]; :

open(20);  £ind(101,[20]1); f£ind(100,[DG030003]);

av:=1013 interchange(?@@i; order:=read(20); ~

comment order=1 ascending, =2 descendings;

for i:= =100 step 1 until 100 do ind{1]:=03

rezd binary(1071,LS,[IS]); f:=read(20); m:=read(20);

s:=read(20);  ©:=LS[17]; 1l:=t+1;

core:={6500~52x1)/(t+3); 1max:=-100; lmin:=100;

begin
real array block[1:50,1:1],SFS,hold[1:t];
nbl:=np:=0;

start:
np:=np+il;
1f np>50 then
begin

np:=0; nbl:=nbl+1;
write binary(100,block,[block]); goto start;
end s
read binary(101,SFS,[SFS]);
ir SFS[11<-998 then
begin
block{np,1]:==999; nbl:=nbl+1l;
blockinp,2]:=nbl; np:=03

write binary(100,block,Lplockl;;
interchange§100); rewind (100); r'ewind§1()1);
interchange(dv);  write binary(dv,LS,[LS]);
goto select;

enc; _
Tor 1:= 1 step 1 until t do block[np,1]:=SFS[1];
block[np,1T:=block{np,s ]xT0000+block(np,m]
X100+block[np,f];
ind[block[np,s]]:=ind{block[np,s]]+1; goto start;
select: » :
if order=2 then goto descending order;
n:=0; lmin:=Ilmax;
for i:= =100 step 1 until 100 do
T if ind[1]>0 then
begin
m:=1ind[ i]+n;
if mdcore then goto batceh;
beglin
n:=m;

lmax:=1;  ind[1]:=0;
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end.;

. end:
if n=0 then goto finishj

batch:

begin

L1:

L2:

sorting:

Ci:
C2:

C3:
ChH:

Ch:

exit:
end.;

real array in{1:n,1:1],add[1:n,1:2];
np:=51;  q:=0;
np:=np+1;
if np>50 then
begin .
nbl:=nbl-1; read binary(100,block,[block])}
np:=0; goto L1;
end;
if nbl>0 then goto L2;
if block[np,1]<—098 then
begin
nol:=blockinp,2]; rewind(100); goto sorting;
end s ‘
j:=block[np,s];
if j>lmax or j¢lmin then goto Li;
qi=qgHl;
for j:= 1 step 1 until 1 do in[q,Jj]: -block[np, 13
addl q,1]:=block[np,1]; add[g,2]:=q; goto Li;

begin
integer d,k;
array yl1:2];
d:-2*ent1er(ln(n)/1n(2)) ~13
if d<O then goto exit;
:=13
=1}
for k:= 1 step 1 until 2 do ylkl:=add[i+d,k];
If y[11<addlJ,1] Then goto C4;
for k= 1 tep 1 until 2 do add[j+d k]: —y[k],
if 1+d$p then goto C2;
d:=(d-1)/2; goto C1;
for k:= 1 step 1 until 2 do add[j+d k] =add[ j,k];
t=g-d3
if~3>0 then goto €33
goto 05,

»

o b

C_t.

rearrange:

for 1:= 1 step 1 until n do

bezin
if aad[i, 2]=0 then goto next cycle;

next:=1; spare:=i;

~126-




for j:=1 step ' un 11 t do hold[Jjl:=in[spare,j];
L3: empty: —next, next:=add{ empty,2];
- add[empty ,2]:=0;
if next=0 then goto next cycle;
1f next=spare uhen
begin
for j:=1 step 1 until ¢t do
in[ ermty JT:=holdl jl;
goto next cycle;
end;
for j:= 1 step 1 until t do
T Inlempty,jI:=inTnext,J]3
goto L3;

next cycle
for j:= 1 step 1 until t do SFS{Jj]l:=in(1,J];

write binary(av,SFs;TSFS]T—
end rearrange block;
goto select;
end ascending order block;
descending order:
n:=0} Imax:=lmin;
for i:= 100 step -1 until -100 do
T if ind[1]>0 then
begin -
m:=ind[ 1]+n;
if m>core then goto batch down;
n: =rﬂ’ lmin. —i, Ii.nd[l].—(),
end;
if n=0 then goto finishj
batch down:
begin

real array infl1:n,1:1],add[1:n,1:2];

np-: "‘51, qg: "O
L10: np:=npt+l;

if np>50 then

begin
nbl:=nbl-1; read binary(100, block,Lplock}),
np:=0; goto L10; }

&Y goto L20;

ir nbl>O then 0 H

if block[np,11<~998 then

be;

nbl:=block[np,2]; rewind(100);
goto sorting down; :
end;

L20: J: —block[np,s],
if j<imin or j>lmax then goto L1035 .

q:- qr=q+1;
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Lgf i: ;]1 step } until 1 do 1nzo,J] =block(np,j];
addl q =block{np,17]; addlg,2]:=q; goto L10;
sorting down: ’ ’ v ’
begin

integer d, k‘

array yl1:2]3

d‘:§7ént1er(1n(n)/1n(2)) -13

C10: 1if d<0 then goto exit downj;

Ti=13
C20: J:=i3
for k:= 1 step 1 until 2 do ylk]:=add[1+d,k];
C30: if y[11>add[j,1] Then goto C40;
C50: for k:= 1 step 1 until 2 do addl j+d,k]:i=ylk];
« 1:=1413
if 1+d<n then goto C205
d:=(a-1)/2;  goto C10;
C40: for k:= 1 step “Tuntil 2 do add[ j+d,k]:=add[ J, k],
Ji=J-d;
if J>0 then goto C30;
' goto C5035
exlt dovn: ’
end;

rearrange down:
for i:= 1 step 1 until n do

begin
if add[1,2]=0 then goto next cycle down;

next:=1; spare: —i,
for J:= 1 step 1 until t do hold[J]:=in[spare,J];
L30: empty:=next; neAt =add[empty,2]; :

add[ empty,2]:= 4
1f next=0 then goto next cycle down;
il next=spare then
begin

for j:= 1 step 1 until t do

" In[empty,Jjl:=hold[J];
goto next cycle down;

end;
Tor J:= 1 step 1 until t do

" In[empty,J ] :=inlnext,J];
E oto LBO,

next cycle down:
for j:= 1 step 1 until t do SFS[jl:=in[41,31;

write binary(dv,SFS, [SFSIT"
end rearrange down block;
goto descending order;
end descending order block;

finish:
SFS[1]:=-999; write binary(dv,SFS,[SFS]);
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interchange(dv); close(101); close(100);
close(20);

gnd H
end->
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”“""G IEAST SQUARES DATA PROGRAM™

1ibrary AO A6, 7,A8,A12,414 I s
orozedure SOLVE \n,J CO”ASL},CO&.«‘PLIL‘;S,SlnN}}

value nj integser sing,n;’ real array N,const,coelfis;
bagin ‘

real array L,U[1:n,1:n
Trocequre  DECOMP (A,L,Y,n,sing)s value A,n;
sing,n: rezl array A,L,U;

J.;-.;e cer
pegin )
integer 1,J,Ks
for i:=1 8

= ]

i,k]:=al1,k]/Ulk,k]; ‘
j 1T step T until k-1 do

for ji=
T O i,k]=I11,k]-L11,3IxUl 55%] /Ul k,k]
Uli,k]:=0;

end ;

if ki then L{i,k]:=0;

11 kz} then

bezin

U1, k] :=Al1,k] 5,

for j:= 1 step 1 wtil 1-1 do
Oli,x):=Ul1,k] = L[1,JIxul3,k%l;s
end;
end;

Lh:
end procedure DECCMP;
rocedure INVERT (L,M,n)3 value L,n;

inteper nj; real array L, M;
begin
integer 1,J,k;
Tor i:=1 steD 1 wntil n do
T for ki= 1T step ! untiln do

be sin
1/101,k];
03

IQ

o]

if i=k then Mi,k]:
if i<k Fhen M1, k]
if idk then
begin

M 1i,k]:=0;
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L5

for ji= kLsten T until 1-1 4
ML,k] =M1,k (i, 3Ix 35%) ) /2l 1,10 s
end
end s
end Tvrocedwe INVERT;
rocedure TRANS (A,B,n); value A,n;
integer nj; real arrey A,B;
beoin
integer 1,7:
for 1:= 1 sten 1 until n do
Tor ji=T sten T untiln do Bli,j]:=Alj,11;
end Trocedure TRANS;
rocedure MM MULT (A,B,n,Y)3 value A,B,n;
intemer nj rezal array A,3,Y;
bezin
integer 1,J,k;
for 1:=1 sten Tuntil n do
for ki= 1 sten 1 untiln do
beain
Ytigl-} =03
for ji=1sten V' until n do
T11,k]:=%11,%x] F+AIL, 1%l 3,ul;
end ;
end procedwure MM MULT
trecedure MW MULT  ( A,x,n,b)3 value A,x,n;
integer ns real array A,x,b; A
‘oer:m :

becin
bli]:=0;
for ji= 1 sten 1 until n do
Tplil = DlLI] + ATL,ixx[ 3]s
end ;

hY

end 4 procedwre MV MULT;
sing:=13; DECOM (w L, U, n,s1nw);
if svn@—o then g0uo Lh

INVERT (L,N,n) 3 NS (U,L,n); INVERT (L, U;n) 3
TRANS (U, L n), MLIT( N,n,U);
MV MULT(U const n,coeffts$

end progedure SCLVE;
Integer 1,J,1,8ing,psk,n,no,fc,de,be,nobs,put,

T )o’h SC,Qq,I 45

real fo,de l,aelm‘m scale,c onst,rs muh sinth;
reuxl array LS[1: 613

fwmtlﬂammﬁﬂ g:=forrat ([ -ndddd.dd]);
=formt ([~nd3]); r:=formt([ndd.dd;]);
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St

h:=formet (L4s-nddd]): s:=formb ([¢ d.dd windjel);
oven(1C) s = ormen (20 Tind (100, 20]
c ooy text(20,1o[;3f§s read binary (’100 1S [Jﬁ])
de lriax :=read (2035— out i=read (20);  nobs =173 5
fe =1°ea.d§’r?0 3 de:=rexd(20); sc:i=read( 'U),
ci=read{20)3  scale:=read(20);  pi=read (20)+4;
no =read22o 3
bezin
resl array A,vect,cceffts{1:p]l,fos,nos,sins,
rszns,rsuxso £onl 1 ino0,1:11],N[1:0,1:p]
21[1:nol Sbe1:IS{1j],Valu{1:11}3
f_‘_qj_ fi= 1 stev 1 until pdo
vezin
vectl1]:=0
for ji= 1 leeu T unbil pdo N[i,j]:=0;

i:= 1 step 1 until no do

Vail 1] :=read (20);
for ji= 1 step 1 until 11 do

hegin
fosli,3]:=05 sinsli,j]:=0; rswnsri,gl =03
totli,3]:=0; nOS[i,;;]] =03 orsinsqli,j]:=0;3
end;
end;
for i:= 1 sten 1 until 5 do valul i+2]:=1X0.1;
JaTu[1]1:=0.0T3 valul 21:=0.05;  valul 9] :=0.75;
valu[10]:=0.50; wvaiu[11]:=1.5;
[92
read blnary(‘: SFS,[SFS ]);
if SFS| 1)<—998 then "OUO exi
fo: =SFS! {fcl; del:=S7Sldec ]
if abs (de1)>de 1mx then
begin i
Twrite text (10, [lc ’.])
for 1:= 1 sten 1 wtil 3 do write(10,q,57S[1]);
write (10, 8,955 ¢ ;? write (10,g,5FS[de]);
write text (10, [[ ] goto start; :
end ;
Sinth’—SbS[SC] consti=de1T2}
far 1:= 1 step 1 wntil no do if fovalli] then
begin
ki=1; goto S13;
end; ~
for 1:=1 steg1 wtil 11 do
if sinth{valu[i] then
be gl
n:=L; goto S23 )
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$2:

exit:

loop:

totlk,nli=tot{i,nl+co 1=n
LOHLV?HJ :=fos{¥k,n]+0; rsinth:=1/sinth;
rsinsi k,n n] 1=rsins| k,nl+rsinth;
1osnaqLA€nJ.=fsinsqgk,nj+351nthT2§
sinsl¥,nl:=sins{ k,nl+sinth; goto start;

0
o
}-J
o]
&

const:=In{totl I,3jl/del);

Hy
Q)O

. :D—::j
I

| oo 0 |
-
o}

-y :I>
Q™
R Te}
!
AV I

1 uatil v p=3 do Al1]: f0((14}
,@§15 Al p-TT:=rsinsqlI ,J,@eL
s Jl

[

I
.t )

(@]

[}

| e 3

4 Lot
—

0
o3

Fg
.JL.J.
5

P

=8
e
LY .e
5

n
ct
D
"3
—
5
o

D do Nin,k]:=N[k,nl;

~
0N

-
c= -
-
ot <
3 cjct

jo ()
[Ol'e

= .
wrice text (00,[[c ]WATRIK*SINGULA?]), coto Ll

7mp(10,250);
for i:= 1 sten 1 until no do

T for ji= T sten T until 1T do tot[1,3]:=0;

read blnarV(TOO SFS,[SFS]);
1f SFS[1]¢<-998 then gobto finishj
F0:=SFS[fc]; del:=Srdldel];
if abs(del)ddelmx then goto loop;
Sinth:=SFS[sc]; rsinth:=1/sinth;
consti:=coeffts[1] + coeffisl p~2]

srs inthic ceffos [ p-11xrs inthTote cef £ts[ plxsinth;
for 1i:= 2 step 1 until p=3 do

T consti=const+cosfits LIXEOT (1-1)3
const: SCalGXGXP(ﬂCOHSt)' del:=(delT2)xc onst ;
if put=0 then goto noput 3
for 1:= 17step T uwtil 3 do write (10,q,SFS[il);
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write (10,q0,n0ps )5 write(10,q,5FS{nc]);
write (10,r,fo); write(10,s,sart{const));

for 1:=1 step 1 until no do if fxXvalli] then

S3: do
Sk o050 100D;
finish:

gaD(? ] QJ\)) s
write text (10,[[ 2 ]Colum *patching*oy *Fo,
©Frow oatcnln{;' by "5 in fbe -by~—l»r a —v‘.ll—
squared. [c}First *ror *is *¥average *w *de lta *
aou.mea.[_ TSec ond *rav *isaverage *Fo. [c ]
 Third*raoi ¥is % veragse #g 'n-tne"“ a =by -lampda -

c.J_T."bGL@LI‘eCl;[C’J_‘ ourth *row *is funber ¥in ¥
each*paten.L2c ) )3
for ki=1 stev 1 until no do

E‘:Sll’l_ .

wrwte text (T O,il2cil)
for j:= 1 step

Tif noe[k,gj\\)

0
ﬁr_fiteg‘a ,g,fos[k 3
write (10,5,f OD[ 5
write tex’c(w } ?
for j:=1 step 1 b i
Tir nos[ k53,50, 00T
write (10,9 ,sinsl k
write (10,f, sulo[’f
write tex t(‘lo cﬂ_
for j:= 1 step 1 unk
end;
beein
resl arrix f oav,f onol
for 17= T step 1 untiln
benﬁn o
foav(i]:= fonoli]:=0;
nd 5

<t \./u “

Hrwe e, e

e [ S .
~—
s

11 do write (10,h,noslk,3]);

inav,sinol[1:11];
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Tor i:= 1 stes ¥ wnfil 11 4
bersin T
cinaviil:=03  sinoli]:=03
:.'ﬁvi;'
for 1:=1 sten 1
Teor S:= 1 sten
besin
Toavii]=foav[ij+totl 1,3l
fonolij:=fonolil+nosii,jl;
sinav( jl:=sinavl sl+ootli, 515
sinol jl:=sinol ji+mosli,jl;
end s
write text (10,[[ 2 1AVERACES *BY ¥F O*AND ¥
WUMBERS *IN #*BATCHES[c1]) ;3
for 1:= 1 sten ntilno do
if fonol1]>0.COT fhen
write (10,f,fcavii] Fonoli]) else
write (10,7 ,foavli]):
write text (10,[[cll);
for i1:= 1 sten 1 1ntil no do write(10,h,fonolil]);
write text (10,11 2 AVERAGES ¥BY *SINTHETA * ‘
AND *NUMBERS *IN*2A7CHES[c 1) 5
for 1:=1 step 1T until 11 do
Tif sinol 1]15C. 00T then
write §10,f,sinavi_,ij sinoli]) else
virite (10,f,8inaviil);
write text (10,[[cll);
for i:= 1 step 1 unpili 11 do write(10,h,sinol1]);

end s

write text (10,{[2c]Coefficients *of *
polynomia l*used *f or weighting® ;
observations.Fo*ternms *are *irst.[c]

The *three *sine *theta *terrs *are *last.[c]
They Yare *c ceff icients *of *( 1z mbda /s intheta)
T2, *(lambda/sinthsta)Th, *and *
(sintheta/lanmvda)T2.[2ci]l);

J

or- ji= 1 step 1 unbil p do write (10, ,coeffts] j1);

)

1.

end s
Tose (100);  close(10); close(20);

o

|

0

en

|
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ATPEGDIX 2

hele Errors and the Accuracy of Crystal Structure

Structure Determination by Z-ray Diffraction




Aopendix 2

ACCURACY OF STRUCTURES

At the completion of a crystal structure analysis
it is usual to calculate a final difference mép. This
. map has features caused by: |
1. Random errors in the data,

2. Systematic errors in the data which cannot be
accounted for by the adjustment of the model.
If the model can account for a systematic trend in
the data then refinement will make it do so, even if this
trend is caused by & systematic error. Nd sign of these
errors will appear in a difference map, in the standard
deviations or in the R-factor; they will manifest them—
selves as chemically unsatisfactory models.
Examples of these errors are well known to crystal-
lography: |
1. Uncorrectéd absorption errors will be taken up by
adjustments to the temperature factors.

2. Uncorrected anomalous dispersion — in polar space
groups ~ can lead to incorrect atomic positions.

| 3. Partial site occupancy and structural disorder may
be hidden by anisotropic temperature factors.

4. Vhen data haVe been collected up one axis only, the
scale factors and temperature factor components
cannot both be refined.
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Thus we can see that all our usual criteria,
E.5.D., Difference naps agnd R-Tactors are powerless to
detect this type of error.

As stated previously there are twobtypes of error
which are snown up by difference map technigue, - random
errors and systematic errors which cannot be accounted
for by the model.

The magnitude of features on the difference map, -
that is, the scale of the topography, - will depend on
the average size of the Fourier coefficients used to |
calculate that map. Thus we can see that it is the
absolute size of these coefficients which is important.
That is, in a difference map it is the absolute value
of A which is important, not the relative ratio of A to
|Fol. )

With diffractometer data collected here in Glasgow
both the expected errors from counting statistics, and
the actual average value of{Avare smallest for the
smallest reflexions ( K. W. luir, 1967).  There is
absolutely no case for removing them, - in fact they are
the most accurate measurements and should in least-squares
be given the highest welights.

The R-factor is basically unsuitable therefore as

a final criterion of the accuracy of a structure because
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the class of small reflexions which have smaller absolute
errors, as a class have a very high R-factor.

TEER LEAST-SQUARES ITETHCD

Observations should be given a weighit such that
the most accurate observations are given the largest
weights. Cruickshank has suggested that the average A‘2
is taken as a measure of ithe accuracy for reflexions in
the same batch by sin28 or I7d magnitude and weights are
. . ' — 2\ . L
introduced so that<W'A‘)1s constant over all the Fo and

.. 2 B '
sin~© ranges.

YWhen BEstinated Standard Deviations (E.S.D's) are
calculated this technique thus makes allowances both for
different accuracies of observation for different sizes
of reflexions, arnd for any systematic errors present in
the data which cannot be accommodated by adjustment of
the model.

The formula for parameter Estimated Standard
Deviations is. given below:

) oo Ay
o= Y. L owy A

(S C LL—-—-j:,———i__l_/
m-—

N

L= E.S.D. of jth parameter,

"d; . .
(C it Element of the inverse matrix of the normal,
equations '
m = Number of observations 6
n = Number of parameters.
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With the coming of the diffractometer two things
have happened:
l. == is now much larger since many more observations
are taken. |
2. The absolute size of A has decreased because many
of the small reflexions are measured Very accurately.
Thus the E.S.D. has become much smaller. In fact
it now has reached the point when the uncorrected systematic
trends in the data are larger than the uncertainty of
meagsurement.
CONCLUSION
We can no longer expect the calculated E.S}D. to
explain away anomalous bond—lengths. The bést model may
in fact be significantly different from the true structure.
Further impfovement in accuracy can be dbtained'only by

payingVStricter attention to the systematié errors.
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