CALCULATIONS OF ELECTRONIC POTENTIAL ENERGY SURFACES

A thesis presented for the degree

of

Ph.D. in the University of Glasgow

Ъy

Alan C. Roach

June 1967

ProQuest Number: 11011818

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 11011818

Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

Calculations of Electronic Potential Energy Surfaces

It is ordinarily possible to simplify the treatment of the dynamics of a general polyatomic system by first considering only the electronic motions, for all possible configurations of artificially fixed nuclei. Any particular electronic eigenvalue, as a function of nuclear geometry, then constitutes an effective potential energy surface, which governs the nuclear motion.

The calculation of potential energy surfaces for practical systems represents a major quantum mechanical undertaking which in general becomes tractable only within a framework of approximation and semi empiricism.

The major part of this thesis describes calculations developed to estimate the lower lying potential surfaces for the reactive system K + NaCl = KCl + Na. A model treatment is developed and discussed in detail. Essentially the problem is reduced to the consideration of the motion of a single electron in the fields of the closed shell ions Na⁺, K⁺ and Cl⁻. There is good evidence that these ions can be treated as classical polarisable charged spheres in their longer range electrostatic interactions and also that their structures are not seriously modified by the presence of the single valence electron. The electronic eigenfunction is expanded in terms of a basis set of alkali atom valence s and p-orbitals The most difficult problem is the evaluation of certain close range interactions between the electron and the ions and this matter is discussed in detail. The electronic problem is first solved in neglect of the polarisation of the ion cores and this latter effect is afterwards introduced, resulting in a first order perturbation correction to the energy surfaces. Empirical evidence used consists of values for ionic polarisabilities and radii, together with experimental ionisation potentials.

A suitably reduced version of this model is applied to the calculation of potential curves for the diatomic ions Na_2^+ , K_2^+ and NaK^+ and yields encouragingly close agreement with experimentally observed properties.

The results for the complete system are presented and discussed. The reaction exothermicity is slightly overestimated. There is no calculated activation barrier, the reaction appearing to conform to the "early downhill" classification. A potential well indicates that, if the excess energy were removed, a triangular complex molecule could be formed, some 13 Kcal more stable than the product. Finally there appears to be some qualitative evidence that highly energetic collisions of the reactants may lead to electronically excited product atoms, a phenomenon observed experimentally for the reaction Na+ KBr = NaBr+K.

The shorter second part of the thesis presents an estimate of the Jahn-Teller effect in rhenium hexafluoride. This effect arises from the coupling between electronic and nuclear motions

when two or more potential surfaces have the same energy in a non linear symmetrical configuration. In such cases the degeneracy is relieved by certain vibrational displacements, leading to a distortion in the equilibrium geometry and a complication of the In rhenium hexafluoride it is assumed that vibrational spectrum. this effect arises from a purely electrostatic interaction between the fluorine atoms and the non-bonding 5d rhenium electron in a degenerate P8 state arising from strong spin orbit coupling of the t_{2g} configuration. The electrostatic potential of a fluorine atom is taken as that of a fluoride ion less some variable fraction of an electron, depending on bond ionicity, taken from a hybrid orbital directed towards the central rhenium atom. The rhenium 5d orbital is taken of Slater form with variable exponent. The results, which depend essentially on the potential surface gradients in the octahedral configuration are relatively insensitive to physically reasonable choices of these parameters. A large splitting in the V2 band of the Raman spectrum is predicted, in good order of magnitude agreement with experiment. There is a corresponding very small distortion of the molecular geometry calculated, probably in a tetragonal sense.

Preface

The major section of this thesis, Part I, gives an account of a calculation of electronic potential energy surfaces for the reaction K + NaCl = KCl + Na. A model is developed at length which considers basically the motion of a single valence electron in the fields of the three ions Na⁺, K⁺, Cl⁻, and which, when applied to the calculation of potential curves for the diatomic ions Na^+_2 , K^+_2 , and NaK^+ , gives very satisfactory agreement with experiment. The most interesting predictions arising from the calculated results for the system K+ NaCl are that there is no activation barrier to reaction, that, on the contrary, the reaction complex NaKCl is over 10 Kcal/mole more stable than the products, and that under normal conditions an essentially adiabatic mechanism should apply.

Part II is devoted to a calculation of the magnitude of the Jahn-Teller effect in ReF_6 , assuming that it arises from a purely electrostatic interaction between the single Re non-bonding t_{2g} electron and the fluorine atoms. The results, in addition to suggesting a small (~0.005Å) tetragonal distortion in the equilibrium geometry of the molecule, give order of magnitude agreement with the experimentally observed splitting

i

(~170 cm⁻¹) in the ω_2 band of the vibrational spectrum.

This account describes original work carried through in pursuit of the degree of Ph. D. in the University of Glasgow. Although a small pilot calculation on the subject of Part II was performed in partial fulfillment of the requirements of the degree of B. Sc., the work recorded here constitutes a very considerable expansion and amplification of the earlier probe.

June 1967.

Alan C. Roach.

Acknowledgements

The author wishes to indicate his deep indebtedness to Dr M. S. Child, who supervised this work, making many valuable suggestions and devoting much time and energy to helpful discussions.

The author also wishes to express his thanks to the Carnegie Trust for the Universities of Scotland, who provided him with a grant, and to his wife, Anne, who typed this manuscript.

•

	Contents	
	Preface	age i
	Acknowledgements	iii
	Introduction	l
Par	rt I: A calculation of potential surfaces for the reaction K+NaCl=KCl+Na	
	Chapter 1: Introduction	11
	Chapter 2: The model	15
	Chapter 3: The zero-order eigenstates	25
	3.1: The spherical ionic potentials	27
	3.2: Calculation of integrals	43
	3.3: Solution of the eigenstate problem	47
	Chapter 4: The core polarisation interactions	50
	Chapter 5: The potential curves of Na_2^+ , K_2^+ , and NaK^+	59
	Chapter 6: The potential surfaces for the reaction $K + MaCl = KCl + Ma$	77
	Appendix IA: The electrostatic potentials of Nat Kt and CI	146
	Appendix IB: The Cizek approximation for the evaluation of multicentre integrals	151
Par	t II: The Jahn-Teller effect in ReF6	
	II.1: Introduction	157
	II.2; The degenerate wavefunctions in an octahedral field	164
	II.3: The Jahn-Teller active modes of vibration	166
	II.4: Calculation of the integrals	170
	II.5: Results and discussion	172
	References	180

iv

Introduction

In the study of the properties of a general chemical system, composed of several nuclei and electrons, it is usually possible for the problem to be divided conveniently into two parts by taking advantage of the relative lightness and mobility of the electrons. In a quantum mechanical treatment the many particle hamiltonian, in neglect of small spin and magnetic effects, may be written in the form

$$\hat{H} = \sum_{N} \frac{\hat{p}_{N}}{2M_{N}} + \sum_{e} \frac{\hat{p}_{e}}{2m} + V, \qquad (1)$$

where the successive terms represent the nuclear and electronic kinetic energy operators, and the total potential energy arising from the coulomb interaction between every pair of particles. $\hat{\beta}_{\mathcal{L}}$ and $\hat{\beta}_{\mathcal{L}}$ are nuclear and electronic momentum operators and $M_{\mathcal{N}}$ and m are the respective particle masses. Grouping the latter two terms together, and collectively representing nuclear coordinates by R and electronic coordinates by r, (1) may be rewritten:

$$\widehat{\mathcal{H}}(r,R) = \sum_{N} \frac{\widehat{P}_{N}}{2M_{N}} + \widehat{\mathcal{H}}_{e}(r;R)$$
(2)

where $\mathcal{H}_{e}(\mathbf{r}, \mathbf{R})$ is the "electronic" hamiltonian. The electronic wavefunctions at fixed R, $\mathcal{V}_{n}(\mathbf{r}, \mathbf{R})$, are chosen to satisfy the Schrodinger equation

 $\widehat{\mathcal{H}}_{e}\left(r;R\right)\mathcal{\Psi}_{n}\left(r;R\right)=\mathcal{U}_{n}\left(R\right)\mathcal{\Psi}_{n}\left(r;R\right),\qquad(3)$

and $\mathcal{U}_n(\mathcal{R})$ is the corresponding electronic energy. The eigenvalues \mathcal{U}_n and the normalised eigenfunctions \mathcal{V}_n depend parametrically on and very continuously with R. Since the \mathcal{V}_n always constitute a complete orthonormal set of functions over the electronic coordinates, it is possible to write the wavefunction for the total system in the form:

$$\Psi(r,R) = \sum_{n} \chi_{n}(R) \Psi_{n}(r;R), \qquad (4)$$

where the χ depend only on the nuclear coordinates. Substituting into the full Schrodinger equation, multiplying by χ^* and integrating over the electronic coordinates, using (3), coupled equations of the following type result for the χ_{χ} :

$$\begin{bmatrix} \sum_{N=2M_{N}}^{\hat{P}_{N}^{2}} + \int \Psi_{m}^{*} \left(\sum_{N=2M_{N}}^{\hat{P}_{N}^{2}} \right) \Psi_{m} dr + U_{m}(R) - E \end{bmatrix} \chi_{m} \\ + \sum_{n\neq m} \begin{bmatrix} \sum_{N=2M_{N}}^{1} \sum_{N=2M_{N}}^{1} \left\{ \int \Psi_{m}^{*} \hat{P}_{N}^{2} \Psi_{n} dr + 2 \left(\int \Psi_{m}^{*} \hat{P}_{N} \Psi_{n} dr \right) \hat{P}_{N} \right\} \end{bmatrix} \chi_{n}^{2} = O_{n} \quad (5)$$

where, as is always possible, the Y_n have been chosen to be real, so that $\int \Psi_n^* \hat{\rho}_N \Psi_n dr = o$.

It can be shown that the electronic integrals involving the nuclear momentum operators are ordinarily of the relative order of the square root of the ratio of the electronic to the nuclear mass. (1,2) Neglect of these terms leads to the adiabatic approximation:

$$\left[\sum_{N}\frac{\widehat{F}_{N}}{2M_{N}}+U_{n}(R)\right]\gamma_{n}(R)=E\gamma_{n}(R), \qquad (6)$$

For a system in the state $\mathcal{V}_{h}(\boldsymbol{r};\boldsymbol{R})$, the nth electronic eigenvalue, a function of nuclear configuration, constitutes the potential energy surface governing the motions of the nuclei. Within the framework of this approximation, the whole motion of the system may be described in terms of a single, continually adjusting, electronic solution of (3). No transitions between electronic states occur as a result of the motion.

There are, however, situations in which the adiabatic approximation is inadequate. The circumstances in which this may occur can be demonstrated by considering the simplest and most usual situation in which breakdown is caused at some configuration through appreciable coupling between two electronic states, a and b, by motion along a single nuclear coordinate Q_{i} , with corresponding momentum operator

$$\hat{p}_{\nu} = -i k \frac{\partial}{\partial \omega_{\nu}}$$
(7)

Neglecting the second derivative of the electronic functions \bigvee with respect to Q_{i} , equation (5) for the coupled nuclear motions takes the form:

$$\begin{bmatrix} \sum_{n} \frac{\hat{F}_{n}}{M_{N}} + U_{n} - E \end{bmatrix} \chi_{a} + \begin{bmatrix} ([\Psi_{a}^{*} \hat{F}_{v}, \Psi_{a} dr) \frac{\hat{F}_{v}}{M_{v}} \end{bmatrix} \chi_{a} = 0.$$
(8)

З

If the coupling is treated as a perturbation and if the zero order (adiabatic) state corresponds to motion over the potential surface $\mathcal{U}_{\mathbf{x}}$, with total wavefunction

$$\Psi^{(o)} = \Psi_a \, Y_a \,, \tag{9}$$

then the corrected wavefunction and energy are

$$\Psi^{(1)} = \Psi_{a} \chi_{a} + \sum_{\chi_{c}} \left\{ \frac{\left(\int \Psi_{a}^{*} \hat{p}_{o} \Psi_{a} dx \right) \left(\int \chi_{a} \hat{p}_{o} \chi_{c} dR \right)}{E_{a}^{(0)} - E_{c}^{(0)}} \right\} \Psi_{b} \chi_{c}, \quad (10)$$

and $E^{(2)} = E_{a}^{(0)} + \sum_{\chi_{c}} \left\{ \frac{\left| \left(\int \Psi_{a}^{*} \hat{p}_{o} \Psi_{c} dx \right) \left(\int \chi_{a}^{*} \hat{p}_{o} \chi_{c} dR \right) \right|^{2}}{E_{a}^{(0)} - E_{c}^{(0)}} \right\}$

where the complete set of nuclear functions χ_{c} is included in the summation (or integration if a continuum is involved). In the free particle case the only non zero nuclear integrals $\int \chi^{*}_{a} \hat{k}_{b} \chi_{c} dR$ will couple states χ_{a} and χ_{c} corresponding to identical de Broglie wavelengths, and hence identical nuclear momenta. It may be supposed that these interactions are predominant even in the general case and hence only this χ_{c} need be considered. In this event

$$\int \chi_a^* \frac{\hat{\mu}_s}{M_s} \chi_t dR \sim O(v), \qquad (11)$$

$$E_a^{(c)} - E_t^{(c)} \sim U_a - U_{c}, \qquad (11)$$

where $oldsymbol{
u}$ is the classical nuclear velocity conjugate to $oldsymbol{Q}$.

and

Further, from the electronic Schrodinger equation(3), it can be shown $\binom{(3)}{}$ that

$$\left(\Psi_{a}^{*} \stackrel{*}{\not{p}}_{b} \Psi_{b}^{c} dr = \frac{1}{u_{a} - u_{b}} \int \Psi_{a}^{*} \left(-it \frac{\partial \Psi}{\partial \alpha_{b}}\right) \Psi_{b}^{c} dr. \qquad (12)$$

It is apparent from equations (10-12) that the adiabatic approximation is unreliable in two cases. Firstly for exceptionally high nuclear velocities ⁽⁴⁾ the nuclear integral (11) becomes large, but the more important case at ordinary temperatures occurs at configurations where there is a near or actual degeneracy of electronic levels when the denominator of the electronic integral (12) becomes small, the integral diverging at an actual degeneracy unless the numerator on the right hand side of (12) also vanishes because of some symmetry property.

In regions where the adiabatic approximation fails coupled equations of form (5) must be employed to determine the nuclear motions. After passage through such a region there is a finite probability that a transition will have occurred to a different electronic state. For the case discussed above where two electronic surfaces "cross" as a result of motion along a single nuclear coordinate, $Q_{,}$, an approximate estimate of the transition probability, P, is given by the Landau-Zener formula: (5-7)

$$P = e_{x} \left\{ -\frac{\pi}{2 \star v} \frac{\Delta^{2}}{\left| \frac{\partial}{\partial a_{y}} (u_{a} - u_{c}) \right|} \right\}, \qquad (13)$$

where \boldsymbol{v} is the classical nuclear velocity along \boldsymbol{Q} , and $\boldsymbol{\Delta}$ is the separation between the two potential surfaces at their point of closest approach, at which position also the gradient difference $\frac{\partial}{\partial \boldsymbol{Q}}_{\boldsymbol{A}}(\boldsymbol{U}_{\boldsymbol{A}}-\boldsymbol{U}_{\boldsymbol{L}})$ is evaluated.

In Part I of this thesis a calculation is described of a set of electronic potential energy surfaces relevant to the gaseous chemical reaction K+NaCl = KCl+Na. In general the documentation of potential surfaces over a wide range of nuclear configurations constitutes a complex and lengthy quantum mechanical enterprise, even for rather simple systems, and relatively few reliable calculations have been performed, these employing for the most part serious approximation or varying degrees of empiricism.⁽⁸⁾ In the present work it is argued that the electronic problem can be reduced essentially to the consideration of the motion of a single valence electron in the fields of the ions Nat, Kt and Cl. It is shown, however, that considerable care must be exercised in the estimation of the closer range interactions between the electron and the ions. A detailed model is developed for the calculation and this is shown to stand up well when put to the test in the production of potential curves for the diatomic ions Na^+_2 , K^+_2 and NaK^+ , in

that excellent agreement is found between calculated and experimental properties. Finally the full results for the reactive system are laid out and discussed. It is predicted that there will be no activation barrier to reaction, and that, if excess energy were removed, a triangular molecule KNaCl could be formed with a dissociation energy of approximately 13 Kcal/mole. For the most part the reaction may be expected to conform to an adiabatic model though it is estimated that certain near collinear collisions could lead with significant probability to electronic transitions, though these could only manifest themselves in excited product states in the case of highly energetic collisions between the reactant species.

This work constitutes the necessary first step towards a calculation of the detailed dynamics of the reaction K+NaCl = KCl+Na, and the results provide material to which various approaches for tackling the problem of the nuclear motions could be applied. The reason for the choice of this particular system as a suitable one for which to produce information for such a project is worthy of mention. The full detail available from the results of such calculations involves unaveraged information for collisions at particular relative velocities, internal

energies and impact parameters. The only experimental method capable of providing a comparable range of detail is the observation of reactions using crossed molecular beams. This technique, as applied to neutral reactive species, is still in its infancy. though it is at present enjoying a very rapid expansion.⁽⁹⁾ One of the principal problems involved is detection of the very small flux of molecules scattered in a given direction. Alkali metal atoms, and some of their compounds, have been capable of observation at fluxes corresponding to the (10) deposition of a monolayer a month by means of the surface ionisation detector (11) which produces on impact alkali ions which can subsequently be counted by measuring the current they carry. For this reason most of the reactions studied to date experimentally have involved alkali metal atoms, and such reactions thus provide the most useful testing ground for theoretical treatments of the reactive scattering process, though it might be argued that as a class they are not quite typical of the chemically more interesting simple reactions. Within this range the present choice allows the formulation of a relatively simple model which seems to contain the seeds of a fairly reliable treatment. This model is equally applicable

to any similar reaction involving other alkali metals or halogens. The example chosen might be expected to be a fairly typical member of this series.

Part II sets out a rather less extensive calculation on the molecule ReF, . In an octahedral configuration, the ground electronic state of this molecule is expected to be degenerate. According to the theorem of Jahn and Teller (12,13), therefore, the octahedral geometry must be unstable with respect to certain asymmetric modes of displacement in which the degeneracy is relieved. If the distortion of the equilibrium arrangement from the octahedral geometry is small, then in the ordinary vibrations of the molecule, the octahedral crossing point is frequently traversed and the various electronic states are strongly coupled. (14) It is assumed in ReF₆ that the instability of the octahedral configuration arises from a purely electrostatic interaction between the single non-bonding rhenium 5d-electron and the fluorine atoms. On this basis a fairly uninvolved calculation of the shapes of the potential surfaces around the degenerate configuration leads to the conclusion that the molecule will be subject to a very small tetragonal distortion, corresponding to a change in an equatorial bondlength of approximately 0.005 Å.

In addition, the observed splitting in the ω_2 band of the Raman spectrum is successfully accounted for. The results are on the whole insensitive to the precise details of the model employed, and provide a satisfactory demonstration of the applicability of Jahn-Teller theory to this molecule.

Part I

A CALCULATION OF POTENTIAL SURFACES

FOR THE REACTION K+ NaCl = KCl + Na.

Chapter 1. Introduction

The documentation of a set of potential surfaces for the reaction K+ NaCl = KCl+ Na effectively involves the solution of a static triatomic, 47 electron problem at some thousands of configurations, there being three internal nuclear coordinates. It is clear that any hopeful calculation must make use of some simplified, and at least partially empirical model, both on the grounds of tractability and of accuracy. The object of this work is to produce the best possible estimate of the shape of the potential surfaces for this system and as such is not intended as a demonstration of the power and purity of the basic quantum mechanical postulates. The use of empirical data and the treatment of various factors as separate fragmentary model problems are judged, therefore, purely on grounds of the likelihood that they might lead to greater reliability in the eventual results.

In chapter 2 it is argued that the electronic problem can be reduced to a consideration of the motion of a single valence electron in the fields of the ions Na^+, K^+ and Cl^- , where these latter entities retain their essential identity at all configurations of interest, and behave in their

11

I.1.

I.1.

longer range electrostatic interactions as charged polarisable spheres. The wavefunction of the single electron is expanded in terms of valence s- and p-atomic orbitals on the alkali centres. The solution of a set of secular equations is thus required to determine the eigenstates of this valence electron.

Chapter 3 presents a discussion of the solution of these secular equations, in neglect of the contribution to the electronic energy arising from the ion core polarisabilities. A variety of integrals have to be evaluated. Experimental ionisation potentials are used to avoid all one centre and kinetic energy integrations, but, for the remaining two and three centre integrals, expressions are required for the various atomic orbitals and for the interaction potentials between the electron and the ions. The orbital forms used are chosen to fit fairly closely the outer lobes of the relevant self consistant field valence s-wavefunctions. An important disadvantage incurred by the use of atomic functions, however, is that an orbital centred on a given atom is not fully orthogonal to the occupied orbitals of the other ion cores, leading to a partial breach of the Pauli exclusion principle in the final calculated eigenfunction. This problem is discussed at length

and an adequate correction for it proves vital to the success of the whole project. The correction applied is basically in the spirit of the theory of pseudopotentials, in that the energetic effects of proper orthogonalisation are reproduced by suitably altering the close range interaction potential between the valence electron and the ion cores. ⁽¹⁵⁾ Simple forms are proposed for the pseudopotential of each ion. Finally, the methods of integration and of solution of the secular equations are given.

The interactions between the ion cores are discussed in chapter 4, and at this point also the electronic interactions involving the core polarisabilities are introduced as a first order perturbation to the energies of the eigenstates. In chapter 5 calculations and results are described for the potential curves of the diatomic ions $\operatorname{Na}_{2}^{+}$, K_{1}^{+} and NaK^{+} . The model as developed is extremely successful in the reproduction of experimentally known properties and the great importance of the earlier pseudopotential arguments is demonstrated. The inclusion of p-atomic orbitals is shown to be essential for the estimation of accurate binding energies and also for the proper description of the interactions at large separations.

The results for the calculation on the reactive

13

I.1.

I. 1.

system are presented in chapter 6, and there also their principal features are discussed, namely the absence of any activation barrier to reaction, the appearance of a well corresponding to the potential existence of a bound triangular complex molecule, and the possibility of small non adiabatic effects in near collinear collisions. Finally two appendices deal respectively with the calculation of electrostatic potentials for the ions Na⁺, K⁺ and Cl⁻ from Hartree Fock electronic distributions, and with a discussion of the situations in which the Cizek approximation for the evaluation of multicentre integrals⁽¹⁶⁾ cannot be applied.

Chapter 2

The model

In 1951 E.S. Rittner⁽¹⁷⁾ demonstrated that the binding energies, dipole moments and vibrational frequencies of the gaseous diatomic alkali halides could be calculated with remarkable accuracy on the assumption that these molecules are constituted of pure and discrete ions. This postulate is well supported by calculation ⁽¹⁸⁾ and experimentally on crystalline NaCl by accurate X-ray diffraction studies (19) and by nuclear quadrupole coupling investigations (20), where the latter method has been used to quantify the ionic character with a figure of 99%. Rittner further assumed that these ions could be treated as uniform classical charged spheres, each polarised in the electrostatic field of the other. The straightforward electrostatic interactions involving the ionic charges and the point dipoles induced at their centres then provide the major contribution to the stability of the molecules, being supplemented by a weak van der Waals attraction and opposed by a strong close range Pauli overlap repulsion term.

Taking the alkali to halogen direction as positive the induced dipoles D and D are given in terms of the ion

polarisabilities P_{+} , P_{-} and the internuclear separation R by solution of the simultaneous equations

where atomic units are employed. The brackets express the fields at each ion centre due to the unit charge and the induced dipole of the other ion. Pauling ⁽²¹⁾ lists values for the ion polarisabilities, P_{+} and P_{-} . The electrostatic contribution to the molecular potential energy curve is thus

$$Q = -\frac{1}{R} - \frac{D_{+} + D_{-}}{R^{2}} - \frac{2D_{+}D_{-}}{R^{2}} + \frac{D_{+}^{2}}{2P_{+}} + \frac{D_{-}^{2}}{2P_{-}}, \quad (2.2)$$

where the negative terms represent the charge-charge, charge-dipole and dipole-dipole interactions. The two final positive contributions give the quasi-elastic energies of formation of the induced dipoles.

Additional terms are included for the attractive van der Waals dispersion force and also an exponential form is chosen to take account of the close range Pauli overlap repulsion. Thus the resulting potential curve is given by

$$V = Q + A \exp(-R/e) - c/R^{6}$$
, (2.3)

where A, e and c are parameters.

c may be evaluated by the London formula (22)

$$c = \frac{3}{2} \frac{I_{+}I_{-}P_{-}P_{-}}{(I_{+}+I_{-})}, \qquad (2.4)$$

where I_{\star} , I_{\star} are the ionisation potentials of the ions. Values for A and can be chosen to reproduce the experimental bondlengths, R_{s} , and force constants, p, so that

$$\left(\frac{dV}{\partial R}\right)_{R=R_{0}} = 0$$
, and $\left(\frac{c\ell^{2}V}{\partial R^{2}}\right)_{R=R_{0}} = \dot{P}$. (2.5)

If this is done is found to be substantially constant throughout the alkali halides, with a value, typically 0.31 Å, some 10% less than that applicable in the crystal phase. Rittner thus used this averaged value so that the second condition (2.5) had not in general to be invoked and in fact the calculations could be used to predict vibrational frequencies with considerable accuracy.

For the crystalline alkali halides A and e can be determined experimentally within the context of the theory of Born and Mayer.⁽²³⁾ Use of these values for the gaseous molecules, however, leads to unsuccessful predictions of binding energies and bondlengths. One possible reason for this inconsistency is the inadequacy of a single exponential expression over a wide range of internuclear separations as has been shown by Amdur's experimental investigations of inert gas collisions.⁽²⁴⁾ Bonding properties are sensitive to the repulsion term over a relatively narrow region close to the equilibrium bondlength and the bonds of the diatomic molecules are some 10% shorter than corresponding crystalline values. However, a much more probable explanation here is the effect on these "hard" interactions of even small dipolar distortions of the ions, which are absent in the crystal.

With this approach, Rittner was able to calculate binding energies within 3% of the experimental values. A more conclusive test of the essential veracity of the electrostatic model is its ability to reproduce dipole moments with about 5% accuracy, these values being of order 30% lower than would apply if the ions were unpolarised. The polarisation interactions contribute typically 15% of the total binding energies.

It is possible to set up a table of gaseous ionic radii for the alkali and halide ions exactly analogous to Pauling's crystalline set (25), though the values are around 10% smaller.(17) These figures can be used to provide further support for the model. If the ions were treated not as uniform polarisable spheres but, more drastically, as classical conducting spheres of definite radius, then their polarisabilities would be equal to the cubes of their radii. In fact the gaseous ionic radii of the halide ions are only 2 to 3% larger than the cube roots of their respective Pauling polarisabilities. Agreement for the less polarisable, and electronically

more tightly bound alkali ions is less spectacular, but still around 20%. If these radii were used, therefore, together with the assumption that the ions behaved as conducting spheres, reasonable agreement with experiment would still be found. The fact that this cruder method would not fail, strongly supports the idea that the ions can be treated electrostatically as having definite sizes, and the fact that their actual polarisabilities are close to the limiting value for conducting spheres also supports the assumption that they are uniform in their electrostatic behaviour.

In the light of the success of these calculations the system K + NaCl will be treated as an assembly of the three ions Na⁺, K⁺ and Cl⁻ and a single valence electron. The interactions between the ions will be evaluated by an extension of Rittner's method; the main difficulties arise from the interactions between the electron and the ions.

It must be noted, however, that this treatment applies only for configurations where the chlorine unit is close to an alkali atom, so that it can be permanently described as a negative ion. Interest, in the reaction under study, is in fact confined to such situations.

The immediate question as to the validity of this

model concerns the assumption that the close presence of the valence electron does not seriously disturb the nature of the ion cores.

A direct measure of the effect of an electron on a core is given by the core relaxation energy, the energy released by the remaining core electronic system when it adjusts to its new ground state on ionisation of a valence electron. This quantity may be estimated from Hartree-Fock self consistent field calculations ⁽²⁶⁻²⁸⁾ by comparing the total calculated energy of the isolated ion with the total energy of the atom less the one electron energy of the valence electron. Relevant results, in atomic units, are collected in table 2.1.

Table 2	٠	1
---------	---	---

	Na.	K
Total energy of atom	161.85857	599.1 6447
Valence electron energy	0.18199	0.14742
Core energy in atom	161.67658	599.01705
Core energy in ion	161.67676	599.01711
Relaxation energy of ion	0.00018	0.000 06
Experimental ionisation potential (29)	0.18883	0.15946

The values derived for the relaxation energies are less than

20

I.2.

0.1% of the experimental ionisation potentials, though it is possible that the potassium value quoted may be an underestimate as in that case the ion and atom calculations referred to involved rather less comparable basis sets of analytical functions than were employed in the two sodium calculations. It does not seem likely that there will be any significant additional contribution from electronic correlation to the true relaxation energies. On the strength of these figures therefore, relaxation effects may be neglected.

It is as well to emphasise that the only assumptions inevitably implied up to this point are that the ions can be treated as definite entities whose structures are never seriously altered and which approximate to charged polarisable spheres in their long range electrostatic behaviour (as, for example, with one another). The neglect of such factors as Pauli exclusion, exchange or correlation in the short range interactions with the valence electron is not an automatic result of this subdivision.

The quantum mechanical problem is therefore reduced to that of finding the eigenstates of a single electron in the fields of the Na⁺, K⁺ and Cl⁻ cores. In the reactants region of the nuclear configuration space this electron

occupies a K 4s-orbital, whereas in the products region it fills a Na 3s-orbital. It is thus natural to expand the electronic eigenstate at any configuration in terms of Na and K valence states. In an obvious notation

$$\begin{aligned} |e\rangle &= c_1 |Na_1s\rangle + c_2 |Na_1p_1\rangle + c_3 |Na_1p_2\rangle \\ &+ c_4 |K_1s\rangle + c_5 |K_1p_1\rangle + c_6 |K_1p_2\rangle. \end{aligned} (2.6)$$

This summation is taken over the s- and p-states of the lowest unoccupied shells of Na⁺ and K⁺, where, on each atom, only the two valence p-orbitals, p, and p, which lie in the plane of the three nuclei, are included; p-orbitals perpendicular to the plane cannot interact with the lower energy s-functions. The inclusion of p-terms contributes significantly to binding forces and is essential to account for the long range interactions in which a K atom is polarised by the dipole of an NaCl molecule, and vice versa. (The K atom is approximately 70 times as polarisable as $a K^{+} ion^{(30)}$ The orbitals used do not of course constitute a complete set but the inclusion of higher Na and K valence orbitals, whilst considerably increasing the size of the problem, would probably effect little improvement in the final results. Equally there should be no necessity to improve the set by the inclusion of orbitals centred on Cl, since it is doubtful if stable

I.2.

unfilled orbitals even exist; Slater's rules, (31) for instance, estimate a 4s-radial maximum at around 30 Å, and in such circumstances the rules most certainly underestimate the degree of screening.

The theory is developed in the following way. The electronic hamiltonian is written in two parts:

$$\begin{aligned}
\widehat{H}_{e} &= \widehat{J} \overline{V}_{0} + V(core), \\
\widehat{J} \overline{V}_{0} &= -\frac{i}{2} \overline{V}^{2} + V(Na^{+}) + V(K^{+}) + V(ce^{-}).
\end{aligned}$$
(2.7)

The potentials $V(Na^+)$, $V(K^+)$ and $V(Cl^-)$ represent the spherically symmetric interactions between the electron and the ions, including possible exchange and correlation terms. All the interactions between the ions, and the polarisation of the ions by the electron are retained in the term V(core), which is in itself large by virtue of containing the charge-charge and overlap repulsion interactions These larger influences are independent between the ions. of the electronic coordinates and may be evaluated separately from the computation of the electronic eigenstates, giving a uniform additional contribution to the total The terms in V(core) resulting from the effect energies. of the electron in inducing and interacting with ion core dipoles are of course dependent on the electronic position but are of a small order of magnitude.

The electronic eigenstates are found from the zero

23

where

order equation:

$$\widehat{\mathbb{N}}_{o} | e^{\circ}, n \rangle = E_{n}^{\circ} | e^{\circ}, n \rangle, \qquad (2.8)$$

and the effect of V(core) is introduced as a first order perturbation, with the corrected energy levels given by

$$E_n^{(1)} = E_n^{(0)} + \langle e^0, n | V(core) | e^0, n \rangle.$$
 (2.9)

The advantages of this procedure will in due course be elucidated.

This chapter concerns the approximate solution of equation (2.8) when the electronic eigenfunction takes the form of equation (2.6). In matrix form these equations can be rewritten:

$$H_{\mathcal{L}_n} = S_{\mathcal{L}_n} \mathcal{E}_n^{\prime}, \qquad (3.1)$$

where H and S are the 6 x 6 real symmetric hamiltonian and overlap matrices respectively. \mathcal{L}_n is the vector of coefficients in (2.6) corresponding to the nth eigen vector with eigenvalue E_n° .

The first step is to determine the elements of the matrices H and S. Ionisation potentials are known experimentally for all of the atomic orbitals employed,⁽²⁹⁾ and these values can be used to avoid performing one centre and all kinetic energy integrals. Thus, for example,

$$\langle N_{a,s} | -\frac{1}{2} \nabla^{2} + V (N_{a}^{*}) | N_{a,s} \rangle = I (N_{a,s}),$$
 (3.2a)

and
$$\langle N_{a,s}|\frac{1}{2}\{-\nabla^{2}+V(N_{a}^{*})+V(K^{*})\}|K,b_{\sigma}\rangle = \frac{1}{2}\{I(N_{a,s})+I(K,b)\}\langle N_{a,s}|K,b_{\sigma}\rangle,$$
 (3.2b)

where I's represent the appropriate ionisation potentials. Within the framework of a one electron problem these relationships are exact, and the consistency between variants of type (3.2b) can be used as a test of the expressions chosen to represent the atomic orbitals. Furthermore the use of ionisation potentials automatically includes exchange, correlation and relaxation contributions to these integrals. In particular the relations of type (3.2a) ensure the inclusion of the largest of these effects, namely these arising in one centre interactions.

To complete the H and S matrices overlap and nuclear attraction integrals must be evaluated. These involve 31 two centre and 9 three centre quadratures for which forms of the orbitals and potentials are required. In such multicentre integrals only the outer lobes of the atomic orbitals contribute significantly. Analytical expressions for six term Na 3s- and eleven term K 4s-orbitals are available from Hartree-Fock calculations.⁽²⁸⁾ The outer lobes of these were fitted by single term Slater type expressions with exponents optimised by least squares. This process gives (in atomic units)

$$|N_{a,s}\rangle \propto r^{2} exp(-0.85r),$$
 (3.3)
 $|K,s\rangle \propto r^{3} exp(-0.736r).$

Tests indicate that with these expressions the required integrals can be reproduced to within about 2% of the

and
values obtained using the full Hartree-Fock functions.

Expressions for the p-functions are less readily available. The lower potential surfaces, however, will not be comparatively as sensitive to these as to the s-expressions so that it is assumed adequate to use the same radial variation as for the respective s-orbitals, with the appropriate angular modifications.

One point worthy of mention, and whose consequences will be apparent later, is the large size of these orbitals. The mean radii are 2.0 Å for $|M\rangle$ and 3.5 Å for $(K\rangle$ Even when the atoms are as much as 8 Å apart, the s-orbital overlap is still in excess of 0.1.

3.1 The spherical ionic potentials

The potential expressions $V(Na^+)$, $V(K^+)$ and $V(Cl^-)$ have to be chosen to embody the two and three centre interactions of the valence electron with the unpolarised ion cores. Table 3.1 gives a breakdown of the interactions of the Na 3s- and K 4s-electrons with their own ion cores.

	Na	a,s>	(K, s>		
Electrostatic energy	~-246 K	Ccal/mole	~ -210	Kcal/mole	
Exchange energy	~-7	11	~-7	11	
Correlation energy	-4	18	-6	11	
Relaxation energy	+0.1	11	7 + 0.03	3 11	

Table 3.1

I.3.1

The electrostatic and exchange values are estimated from the results of calculations described below: the (32.33)correlation energies have been calculated by Clementi, and the relaxation terms have already been discussed. The sum of the exchange and correlation energies amounts to less than 5% of the corresponding electrostatic energy. The strong one-centre interactions guoted are all accounted for in the present calculations by the use of ionisation potentials, and it is only the weaker multicentre contributions for which potential expressions are required. Since exchange and correlation interactions are relatively short range in character it is expected that they will form an even smaller percentage of multicentre terms, and they are neglected.

Calculations on a purely electrostatic model with the potentials calculated from Hartree-Fock charge distributions give unrealistic results, however, for a very fundamental reason. The valence electron cannot be treated independently unless its molecular orbital is orthogonal to all occupied core orbitals. In the present formulation the electron is assigned to a linear combination of atomic orbitals of the form $|Na,x\rangle + |K,y\rangle$ of which $|Na,x\rangle$ is orthogonal to $(Na, cores\rangle$ but not to $|K, cores\rangle$

and vice versa for $\langle K, y \rangle$. This constitutes a partial breach of the Pauli exclusion principle; the molecular orbitals may be of altogether an incorrect appearance in the immediate neighbourhood of the core nuclei, where electrostatic interactions are at their strongest. If one considers that, for example, the one electron energy of a K ls-electron is 133 A.U., ⁽²⁸⁾ whereas the valence electron energy will be of the order of 0.2 A.U., it is apparent that even a small spurious overlap of the valence orbital with the K ls- core orbital is capable of introducing a large negative discrepancy in the computed energy.

Ideally the basis set atomic orbitals should be orthogonalised to all the occupied orbitals belonging to "foreign" cores. Such a task would be prohibitive in itself, involving the evaluation of up to ten overlap integrals per atomic orbital at every configuration. The orbital expressions would by this process be considerably complicated, vastly increasing the effort required in computing the integrals involved in the completion of the H and S matrices.

When one considers that the orbitals are appreciably modified only in restricted regions of space, it seems

I.3.1.

reasonable to attempt to bypass this effort. Even if computational labour were no obstacle one would have to recognise in a complete treatment that small but troubling effects are introduced such as the removal of orthogonality between different atomic orbitals based on the same centre, and also in the last resort it is incorrect to associate atomic ionisation potentials with appreciably modified orbitals.

One method which was considered, in an attempt to find a tractable solution to this problem, was to represent each ion core by a single function of ls-, but suitably expanded, form and to orthogonalise foreign valence orbitals to these. This, however, gives no guarantee of improving orthogonalisation to individual core orbitals and in practice was found to worsten the situation.

The effect of proper orthogonalisation is to introduce radial nodes into a function within a foreign core. Locally the function is forced to behave in the manner of a valence shell orbital of that core. Thus, in addition to the potential energy stabilisation obtainable by an electron penetrating close to a nucleus, there is also an increased kinetic energy contribution within the same region, arising from the augmented curvature of the

wavefunction.

The object of the following discussion is to determine suitable potential functions so that the energetic effects of orthogonalisation may be approximated using the unmodified atomic orbitals. Consider the interaction between an electron in a valence orbital of atom A and the core of another atom B. Let Υ_A represent the unmodified atomic orbital of A and Υ_A' the wavefunction which results when orthogonalisation to the occupied orbitals on core B is carried out. Further let Υ_8 be the lowest lying unoccupied valence orbital of B.

Far from B the A orbital is unaffected by orthogonalisation so that

$$\mathcal{X}' = \mathcal{Y}_A \tag{3.4}$$

Deep inside the B core, on the other hand, the orthogonalised A orbital will vary as the B valence function, and thus

$$\gamma_{A}' = \lambda \gamma_{B} \tag{3.5}$$

where λ is a small numerical constant, which allows for the fact that relatively little of the electronic charge in orbital χ'_{4} is distributed around the foreign core B. In between these two extremes of behaviour there will be, in

reality, a region of transition. For the purposes of this current investigation, however, it will be assumed that the transition between (3.4) and (3.5) is a sharp one. B is assigned a "core radius", σ , outside of which the A orbital is assumed to be unaltered, but within which the core influence is sufficient to cause total modification to the form (3.5). This assumption is essentially that the core is hard edged. For the ions Na⁺, K⁺ and Cl⁻ the natural choice for σ is the gaseous ionic radius, although it is found that results are not crucially sensitive to the value chosen.

Within this radius a modified potential V_g' is defined so that

$$(\mathcal{Y}_{A} | \mathcal{V}_{B}^{\prime} | \mathcal{Y}_{A}) = (\mathcal{Y}_{A}^{\prime} / - \frac{1}{2} \nabla^{2} + \mathcal{V}_{B} | \mathcal{Y}_{A}^{\prime}),$$
 (3.6)

where rounded brackets are used in this context to signify that integration is restricted to the volume of the core B, pointed brackets being reserved for integrals over all space. The right hand side of (3.6) gives the sum of the local potential and kinetic energy contributions to the interaction when the A orbital has been properly orthogonalised, V_g representing, to a close approximation, the electrostatic potential of core B. On the left hand side V_g' has to be chosen in such a manner that its interaction with the unmodified function \bigvee_{4} preserves the equality. (3.5) and (3.6) taken together give

where $\bigvee_{\boldsymbol{\ell}}^{\mathscr{H}}$ is an effective point charge potential defined so that

$$(\chi_{g} | V_{g}^{ell} | \chi_{g}) = (\chi_{g} | - \frac{1}{2} \nabla^{2} + V_{g} | \chi_{g}).$$
(3.8)

The determination of a suitable expression for V_{g}^{\prime} therefore involves an evaluation of the integral $(\chi_{g} | V_{g}^{\prime} t_{g}^{\prime} | \chi_{g})$ and of the constant λ . Before completing such calculations expressions must be set out for the electrostatic potential V_{g} and for the valence orbital χ_{g} .

For the ions Na⁺, K⁺ and Cl⁻ electrostatic potentials may be obtained by applying Poisson's equation to numerical Hartree-Fock electronic charge distributions⁽³⁴⁻³⁶⁾ and then fitting the results to a suitable analytical expression by a least squares process.⁽³⁷⁻³⁸⁾ These calculations, which are described in appendix A, result in the following expressions (in atomic units):

$$V_{\rm AL}^{+} = \{-1 - 13.902 \exp(-3.4244r) + 3.902 \exp(-18.836r)\} /r$$

+62.646 exp(-10.733r),

$$V_{K^+} = \{-1-31.637 \exp(-2.5689r) + 13.637 \exp(-29.040r)\} /r$$

+128.54 (exp(-5.6428r) + 261.27 exp(-19.210r),
$$V_{C^-} = \{1-20.589 \exp(-1.6308r) + 2.589 \exp(-40.683r)\} /r$$

+47.688 exp(-4.0146r) + 89.361 exp(-21.097r).

(3.9)

		ta e (m. ta Le Berg. Nomenanie in transitione in the second	
` +)	+>	÷.M	
•	89 . 9	65.C	(·
- 10 A ■ 10 A	-0.5880	0008.0-	
	1688 . 14-1		<(ອ) {ຄ}<
U ,	8508.0	08.	Kat and the
ن مح	-049 E.0	0.10 f .0-	$\int \int ds \left(\frac{1}{3} \int ds + s \right) ds ds$
Ð	ersis o	and the second	(3 ⁶ v 5
b	: 80 90.7		$= \left(\frac{g}{2} \left(\frac{g}{2} \right) + \frac{g}{2} \left(\frac{g}{2} \right) \right)$
•	6Y00.0-	asaa . *	$= \{ a \}_{a} \{ \{ e \}_{a} \}_{a} \}_{a} $
ə)	70 5 6 . 9 . .	- Yansi oʻ- 🗄	10+1+>10

÷.

i , staded Sever; . Stadet udmid for the sever . A staded for a signification of the sever A staded for a several state over the several . A state over a lange of the several several .

and the second secon

/ solt ball bansistant ().at and side the second side of a solt of the second side of the second side

		Table 3.2	(a)	
		Na ⁺	K+	ce-
1.	r ⁽⁴⁾	1.70	2.23	3.00
2.	$\langle \chi_{g} V_{B} \chi_{g} \rangle$	-0.3909	-0.3320	(0.2171)
з.	$\langle \chi_{B} V_{SCF} \chi_{B} \rangle^{(c)}$	-0.4019	-0.3427	-
4.	$\langle \chi_{B} - \frac{1}{2} \nabla^{2} \chi_{B} \rangle$	0.2266	0.2032	(0.2709)
5.	$(\chi_8 \chi_8 \chi_8)$	-0.1316	-0.1249	-0.1454
6.	$(\chi_{B} - \frac{1}{2} \nabla^{2} \chi_{B})$	0.1377	0.1299	0.1734
7.	$(\chi_{g} _{1/r} \chi_{g})$	0.0311	0.0205	0.0368
8.	$\langle \chi_{g} V_{g} \chi_{g} \rangle - (\chi_{g} V_{g} \chi_{g})$	-0.2593	-0.2072	(0.3625)
9.	$\{\langle \Psi_{R} 2/r \Psi_{R} \rangle - (\Psi_{R} 2/r \Psi_{R})\}^{(d)}$	-0.2637	-0.2127	(0.3775)

- (a) Atomic units are used throughout. Curved brackets,(), refer to integrals restricted to the core volume and pointed brackets, <>, to integrals over all space.
- (b) $\sigma = \text{core radius.}$
- (c) $\langle \chi_{g} | V_{gcP} | \chi_{g} \rangle =$ self consistent field one electron energy less kinetic energy.

In the first instance it is convenient to treat together the two alkali ions Na⁺ and K⁺. The valence s-functions used are those derived from minimal basis set Hartree-Fock calculations.⁽²⁸⁾

 $\gamma_{N_{h}} = 0.697461 \exp(-10.6259r) - 0.928038r \exp(-3.28570r) + 0.06400048r^{2} \exp(-0.83576r)$ (3.10)

 $\begin{aligned} & \chi_{\mu} = -0.7903487 \, \exp\left(-18.48950r\right) + 2.3164226r \, \exp\left(-6.50312r\right) \\ & -0.8851556r^2 \, \exp\left(-2.89329r\right) + 0.01749141r^3 \, \exp\left(-0.87375r\right). \end{aligned}$

Table 3.2 presents an analysis of the contributions to various atomic integrals; the results involving Na and K are contained in columns 2 and 3. Comparison of the second and third rows shows that the total potential energy calculated for the valence electron using the electrostatic potentials (3.9) comes within 3% of the difference between the published self consistent field one electron energy and the kinetic energy. This close agreement illustrates the relative smallness of the exchange contribution to the self consistent field energy. (The estimates of exchange energies given in table 2.1 were obtained from these figures.)

From rows 5 and 6 it may be seen that within the core radii are concentrated approximately two thirds of the total kinetic energy and one third of the total potential energy and that these contributions cancel to within about 4%. This cancellation would be even more complete and possibly slightly reversed in sign if a suitable proportion of the exchange energies were included. Row 7 gives the contribution from within the core which would result if V_8^{*66} (~- $tv^2 + V_8$) were taken as 1/r. The conclusion drawn is that for both Na⁺ and K⁺ within the ion core,

$$V_{M+}^{*0} = 0 \pm \frac{0.2}{2}$$
 (3.11)

The maximum uncertainty incurred by use of $\bigvee_{n+1}^{\mathcal{H}} = 0$ within the cores in the atomic integrals of table 3.2 is of the order of 4 Kcal/mole. For the multicentre integrals with which this discussion is ultimately concerned, however, λ^2 of (3.5) is small (of order 0.1 to 0.01) so that the possible error incurred within the core is reduced to an acceptable level.

Comparison of rows 8 and 9 shows that the remaining contribution to the potential energy from outside the core can be accounted for to within 2% by computing only the interaction between the net ionic point charge and the outermost lobe of the valence orbital.

The final conclusion, therefore, is that for an alkali ion a suitable expression, V_{M^+} , for the modified potential to be used to interact with a foreign atomic

٠.

orbital is

$$V_{M+}(r) = \begin{cases} 0 & r = \sigma \\ -1/r & r > \sigma \end{cases}$$
 (3.12)

there being no requirement in this case to find λ . This form is very considerably different from the electrostatic potential, which near a K nucleus approaches -19/r. Calculations with other choices of core radius suggest that the ionic radius is a reasonable choice for this parameter, though the conclusions reached are not crucially altered by a deviation of up to 20% in \mathcal{C} . Whereas this implies that the potential form (3.12) derived by the above arguments is not critically sensitive to \mathcal{C} , it does not provide evidence for the wisest choice of radius to represent the discontinuity from unperturbed to totally modified behaviour of a foreign atomic orbital.

The choice of a modified potential \bigvee_{α} for the Cl⁻ ion is more difficult. As suggested above it is extremely unlikely that a stable valence orbital even exists. Certainly no expression has been published. The ion is, however, isoelectronic with K⁺, and, acknowledging that an orthogonalised foreign orbital will be approximately of 4s- disposition within the core the form \bigvee_{α} is taken as a suitably expanded version of the K 4s-function (3.10); the scaling factor, which allows for the difference in size between the two ions, is taken as the ratio of the gaseous ionic radii. Thus, within the Cl⁻ core, a foreign orbital Ψ_A after orthogonalisation takes the form

$$\Psi_{A} = \lambda \chi_{e}, \text{ where } \chi_{e}(r) = \chi_{k}(0.75r). \qquad (3.13)$$

I.3.1.

The final column of table 3.2 lists the Cl⁻ one centre integrals calculated using this unnormalised form for γ_{α} , together with the Cl⁻ electrostatic potential (3.9). In this case within the core the kinetic energy contribution overwhelms the attractive potential energy to an extent equivalent to a net repulsive potential,

$$V_{ce}^{eb} \sim + \frac{0.75}{r},$$
 (3.14)

where this form is not very sensitive to the choice of core radius. Since $V_{\alpha}^{\#}$ does not vanish, a value for λ must be estimated in this case.

If the final, modified potential, V_{α}^{\prime} is sought in the form

$$V_{ce^-} = \beta/r , \qquad (3.15)$$

then equation (3.7) shows that

$$\beta = \frac{\lambda^2 (\chi_{ce} | \chi_{ce}^{eff} | \chi_{ce})}{(\Psi_A | I/r_{ce} | \Psi_A)}$$
(3.16)

The two centre restricted integral on the denominator of

(3.16) is evaluated by using an approximate expression for the unperturbed atomic orbital $\frac{1}{4}$ within the Cl² core. If $\frac{1}{4}$ is a Slater-type orbital it may be written

$$Y_{A} = N r_{A}^{p} \exp\left(-\alpha r_{A}\right), \qquad (3.17)$$

where any angular part (centred on A) is assumed to be invariant over the volume of the Cl⁻ core, and is included, together with the normalisation factor, in N. To further facilitate the integration, which is over a small region where $\frac{\gamma}{A}$ changes slowly, only the linear variation of $\frac{\gamma}{A}$ parallel to the bond axis is included, and to this approximation,

$$\Psi_{A} = \gamma \left(1 - \delta r \cos \theta \right) \tag{3.18}$$

where $\chi = NR^{P} exp(-\alpha R)$ and $\delta = (\frac{P}{R} - \alpha)$. In (3.18) V_{A} has been expressed in polar coordinates centred on the Cl⁻ nucleus, with the A-Cl bond as principal axis. χ is the magnitude of V_{A} and δ is its gradient, both evaluated at the Cl nucleus. These approximations are adequate for all but the shortest bondlengths, R. Thus

$$(\Psi_{A}|/r_{ce}|\Psi_{A}) = 2\pi \sigma^{2} \gamma^{2} \left(1 + \frac{\delta^{2} \sigma^{2}}{6}\right).$$
 (3.19)

I.3.1.

closely as possible continuous) then, taking $\sigma = 3.0 \text{ A.U.}$

$$l \sim \frac{\gamma}{0.020}, \qquad (3.20)$$

so that, substituting in (3.16)

$$\beta \sim \frac{5}{4+65^2}$$
 (3.21)

For Na and K atomic orbitals, giving R physically reasonable values for appreciable core effects (2-5 Å), δ lies in the range 0.0 to -0.5, and hence a suitable modified potential within the core is

$$V_{ce^-} = + 1/r$$
. (3.22)

Whilst this expression is not completely reliable it should certainly be of the correct order. Outside the ionic radius only the point charge repulsion is significant so that (3.22) provides an extremely convenient and simple representation for the C1 potential throughout space, and again diverges markedly from the electrostatic potential which in the immediate vicinity of the nucleus behaves as -17/r.

The above derivation of the expression (3.22) for V'_{cc} can be supported in order of magnitude by another consideration based on the acceptance of the zero net potential within alkali ion cores. Close to a K⁺ nucleas an orthogonalised

I.3.1.

valence wavefunction gives rise on average to no net energy contribution from any particular small region of space. If two protons are removed from the nucleus to yield a Cl⁻ isotope the valence energy must rise. An upper bound to the new net repulsive potential is provided by + 2/rarising from the removal of the nucleons. On relaxation, however, the energy is reduced in two ways; the potential energy falls because the nucleus is less screened by the expanded core electron distribution, and there is a decrease in kinetic energy as a result of a smoothing of the oscillations of the valence orbital. These **arguments** are consistent with (3.22).

The discussion presented above is essentially in the spirit of the theory of pseudopotentials in which also the energetic effects of orthogonalisation to core functions are reproduced by the inclusion of an extra repulsive potential in the close range hamiltonian. It can be shown⁽¹⁵⁾ that, if this potential is suitably chosen, the modified hamiltonian has rigorously the same eigenvalues as the original genuine hamiltonian, but its eigenfunctions, whilst closely approximating those of the true hamiltonian outwith the core, are smoothed in the interior, and the constraint of orthogonalisation is removed. A complete treatment in

this problem would be prohibitive since the precise pseudopotential naturally depends on the forms of all of the core orbitals and also on the particular foreign orbital and bondlength to which it is applied. In practice the advantage of this approach seems to lie not in eliminating the labour required to satisfy the Pauli principle but in simplifying the forms of the valence eigenfunctions so that they may be more closely approximated by means of a relatively small basis set. The fixed potentials derived above are thus approximations to pseudopotentials.

In this approach the pseudohamiltonian, which should have the same valence eigenvalues as the real hamiltonian (2.7) and essentially similar eigenfunctions outside of the cores, becomes

$$\mathcal{J}_{\mathcal{O}} = V_{\mathcal{N}_{A}^{+}}^{\prime} + V_{\mathcal{K}^{+}}^{\prime} + V_{\mathcal{C}e^{-}}^{\prime} + \begin{cases} -\frac{1}{2}\nabla^{2} & \text{outside alkali cores} \\ 0 & \text{inside alkali cores} \end{cases}$$
(3.23)

The corresponding pseudohamiltonian for an alkali ion is

$$\widehat{H}_{M^{\dagger}} = \begin{cases} -\frac{1}{2}\nabla^2 - \frac{1}{r} & r > \sigma \\ 0 & r < \sigma \end{cases}$$
(3.24)

The valence atomic orbitals of \mathcal{H}_{m} are not oscillatory functions and should be fairly closely represented by the

single term smooth fits to the outer lobes of the true alkali orbitals. In table 3.3 it is demonstrated that the simple atomic expressions (3.3) taken with the hamiltonian (3.24) do in fact lead to encouragingly accurate estimates of the valence orbital ionisation potentials.

Table 3.3

	Na,s>	(Na,p)	(K, s>	(K,p>
I.P. calc. (A.U.)	-0.1849	-0.1046	-0.1388	-0.1021
I.P. expt. (29) (A.U.)	-0.1888	-0.1115	-0.1595	-0.1002

A very high level of accuracy is desirable in these large one centre terms, however, and the experimental values are retained in the evaluation of the integrals (3.2). Thus the matrix H is constructed from the matrix elements of $V_{M^+}^i$, $V_{M^+}^i$ and $V_{C\ell^-}^i$ and from overlap integrals.

3.2 Calculation of integrals

Equipped with expressions for the potentials and orbitals it is possible to proceed with the necessary integrations. All of the two centre integrals can be

treated analytically in terms of confocal ellipsoidal coordinates as series of products of the well known A and B functions:⁽³⁹⁾

$$A_n(a) = \int u^n e^{-a\mu} d\mu , \qquad (3.25)$$

and $B_m(t) = \int v^m e^{-b\nu} d\nu .$

Some care is required in the calculation of the A_n and B_m . In most configurations the recursion formulae

$$A_{n}(a) = \frac{1}{\alpha} \left\{ e^{-\alpha} + n A_{n-1}(a) \right\}$$
(3.26)
and $B_{m}(b) = \frac{1}{b} \left\{ (-1)^{m} e^{b} - e^{-b} + m B_{m-1}(b) \right\}$

give accurate values, but for b<l cancellations in (3.26) leads to a rapid loss of significant figures and the B_m are best calculated from the series: (40)

$$B_{m}(t) = \sum_{n=0}^{\infty} \frac{\{(-1)^{n} + (-1)^{n}\}}{(m+n+1)n!} t^{n}$$
(3.27)

Another complication, which is less well known, arises for nuclear attraction integrals, I, at large values of the internuclear separation, R.

$$I = \int \Psi_A^*(r_A) \frac{1}{r_g} \Psi_A(r_A) d\tau. \qquad (3.28)$$

If $\Psi_A = N r_A^{b} e^{-\alpha r_A}$ this integral in elliptical coordinates reduces to an expression of the general form

$$\mathbf{I} \propto R^{2+2\beta} \left\{ \sum_{r,s} c_{rs} A_r(uR) B_s(uR) \right\}, \qquad (3.29)$$

where the c_{rs} are the appropriate expansion coefficients. Now for large R, according to (3.26),

$$A_r(\kappa R) \sim \frac{1}{\kappa R} e^{-\kappa R}$$
, (3.30)
 $B_s(\kappa R) \sim \frac{(-1)^s}{\kappa R} e^{\kappa R}$.

so that each term in the bracket of (3.29) is of order R^{-2} . The integral, however, must tend to R^{-1} and so the bracketed sum is of order R^{2p+1} times smaller than its individual terms. Direct summation in equation (3.29) for large p or R may therefore lead to drastic rounding errors. In these situations the integral (3.28) is best calculated by making the substitution:

$$\stackrel{\perp}{}_{\mathcal{B}} = \begin{cases} \frac{1}{R} \sum_{n=0}^{\infty} {\binom{r}{A}}^n P_n(\cos\theta_A) & r \in R, \\ \frac{1}{r_A} \sum_{n=0}^{\infty} {\binom{R}{r_A}}^n P_n(\cos\theta_A) & r > R. \end{cases} (3.31)$$

In the present work, performed on a computer carrying ll significant figures, this effect becomes important only at such large R (~15Å) that sufficient accuracy is obtained retaining only the first term in the expansion (3.31)

The calculation of integrals involving the discontinuous alkali ion potentials (3.12) is performed by first assuming that the expression

$$V(r) = -1/r$$
 (3.32)

applies throughout space. The contribution which accrues

I.3.2.

to this integral from within the alkali core is then subtracted. This latter bounded integral is evaluated by approximating the foreign orbital expression in the core as linear and axially symmetric, in the manner proposed in equation (3.18). Errors incurred by this technique are insignificantly small, except possibly at uninterestingly close internuclear separations, and are expected to be at least an order of magnitude smaller than the error arising from the uncertainty in the close range part of V'(r).

The computation of the nine three centre integrals of form $\langle N_a | V_{ce}^{i} | K \rangle$ is more difficult. Comparison with numerical quadrature shows that Mulliken's approximation,⁽⁴¹⁾

 $\langle N_a | V'_{ce} | K \rangle = \frac{1}{2} \{\langle N_a | V'_{ce} | N_a \rangle + \langle K | V'_{ce} | K \rangle \} \langle N_a | K \rangle$, (3.33) can provide typically 10% accuracy for s-functions but otherwise may not even give the correct sign, and as such is totally inadequate. An elaborate method for approximating multicentre integrals in terms of two centre forms was proposed by Cizek and shown to work excellently in some simple examples.⁽¹⁶⁾ The model through which this method is applied, however, cannot in practice always be set up, and in this problem it was found that breakdowns

were frequent. This point is discussed in appendix B.

The three centre integrals are therefore evaluated numerically using confocal ellipsoidal coordinates based on the alkali ion centres. Gaussian quadrature is employed⁽⁴²⁾ and use of two separate 8x8x8 grids over the ranges $l \leq \mu \leq 2.5$ and $2.5 \leq \mu \leq 12$ is sufficient to guarantee l% accuracy ($\mu = \{ \gamma_{\mu} + \gamma_{\kappa} \} / R_{NaK}$). This constitutes the most time consuming part of the whole calculation.

Once all integrals are evaluated, the H and S matrices can be set up and the eigenvalue equation (3.1) obtained.

3.3. Solution of the eigenstate problem

Equations (3.1) can be combined to give an equation for all six eigenvectors simultaneously,

$$HC = SCE \tag{3.34}$$

where C is the matrix whose columns are the eigenvectors c_1, c_2, \dots, c_n and E is the diagonal matrix of eigenvalues. This equation is solved under the constraint that the set of eigenvector solutions are orthonormal, so that

$$C^{\dagger}SC = \mathbf{1} \tag{3.35}$$

where 1 is the unit matrix. The first step in the

solution is to find the real orthogonal matrix U which diagonalises S, which is positive definite. Taking

$$\widetilde{\mathcal{U}}S\mathcal{U} = \mathcal{A} \tag{3.36}$$

then S^t can be uniquely chosen as

$$S^{-\frac{1}{2}} = U S^{\frac{1}{2}} \widetilde{U}, \qquad (3.37)$$

where the elements of the diagonal matrix Λ^{t} are the inverse positive square roots of the elements of Λ . Multiplying by S^{-t}, equation (3.34) may be rewritten

$$S^{-\frac{1}{2}}HS^{-\frac{1}{2}}(S^{\frac{1}{2}}C) = (S^{\frac{1}{2}}C)E,$$
 (3.38)

where $S^{\frac{1}{2}}$ is uniquely defined as the inverse of $S^{\frac{1}{2}}$. Putting $X = S^{\frac{1}{2}}C$ and $H' = S^{-\frac{1}{2}}HS^{-\frac{1}{2}}$, (3.38) becomes

$$X''HX = E. \tag{3.39}$$

 $S^{-\varkappa}$ is real symmetric and therefore so is H'. The matrix X is then orthogonal, as it must be according to (3.35), and can be determined, along with E, by a second diagonalisation. The matrix of eigenvectors is finally obtained as

$$C = S^{-\frac{1}{2}} X,$$
 (3.40)

This method requires the diagonalisation of two real symmetric matrices. This can conveniently be achieved by the Jacobi method, ⁽⁴³⁾ involving successive elementary orthogonal transformations chosen to nullify each off-diagonal element in turn, and iterating over the matrix until all remaining off-diagonal elements are smaller than a specified allowable threshold (taken as 10⁻⁷ A.U. in the present work).

An oral of the solution area of a solution and a solution of the solu

The final stage in the calculation is to determine the energy of interaction between the ion cores and to compute to first order the electronic interactions involving core polarisation. The largest contributions to the energy are the chargecharge terms and the short range exponential repulsions between the ions: the influence of the induced dipoles and of the van der Waals dispersion forces are relatively weak. The full, non-perturbation, treatment would be to solve analytically the polarisation problem The total for arbitrary electronic position. hamiltonian thus derivable would be exceedingly complex and the evaluation of its matrix elements would involve a large number of arduous integrations. The extra labour thus introduced into the problem would be totally disproportionate to the smallness of the contribution of the electron to the polarisation terms. A perturbation treatment is more appropriate.

The dipoles induced on the cores must by symmetry lie in the plane of the three nuclei so that a total of six dipole components must be specified. Each of these is the product of the appropriate ion polarisability

and the parallel component of the electrostatic field at its centre, arising from the charges of the other ions and of the valence electron and from the induced dipoles at the other nuclei. Applying the full analogue of the diatomic alkali halide treatment would lead to six linear equations for the induced dipole components, and these could be systematically solved. The pairwise charge-dipole and dipole-dipole interactions between the centres could then be accounted for, together with the quasi-elastic energies of the dipoles.

The precise determination of the field components at the nuclei due to the valence electron, and of the interaction between the electronic charge and the core dipoles would involve the determination of some 70 two and three centre integrals of the types:

$$\langle N_{a} | \frac{1}{r_{\kappa}^{2}} | N_{a} \rangle$$
, $\langle N_{a} | \frac{\cos \theta_{\kappa}}{r_{\kappa}^{2}} | K \rangle$, (4.1)
and $\langle N_{a} | \frac{1}{r_{\kappa}^{2}} | K \rangle$.

Of these not even the two centre terms can be tackled in closed form, unless as a convergent Maclaurin series in integrals involving the A and B auxiliary functions.⁽⁴⁴⁾ Exact evaluation would be much more laborious than the whole remainder of the project. Instead the following method

has been adopted.

For the purposes of illustration consider the effect of an electron in a hybrid Na orbital:

$$|e\rangle = |Na, s|_{2}^{\lambda}\rangle = \frac{1}{\sqrt{1+\lambda^{2}}} \left\{ |Na, s\rangle + \lambda |Na, p_{\chi}\rangle \right\}, \quad (4.2)$$

where \mathcal{A} is a hybridisation coefficient and the unit vector \mathcal{Y} specifies the axis (in the plane) of the p-orbital. The electron, together with the Na⁺ ion constitutes a polarised Na atom, which, in addition to any core dipoles, exhibits a resultant "electronic dipole", given by

$$\mathcal{D}_{N_{c_1}} = \frac{-2 \langle r \rangle \lambda}{\sqrt{3} (1+\lambda^2)} \chi , \qquad (4.3)$$

where $\langle r \rangle$ represents the mean radius of the Na valence orbitals. If any eigenstate solution of the zero order equation (2.8) is rewritten in the form:

$$|e^{\circ},n\rangle = c_{Na}|Na,sp_{2}\rangle + c_{\kappa}|\kappa,sp_{2}\rangle, \qquad (4.4)$$

where $C_{N_{A}}$ and C_{K} are constants, a fraction of an electron,

$$P_{N_{a}} = \frac{c_{N_{a}}^{2}}{c_{N_{a}}^{2} + c_{K}^{2}}$$
 (4.5)

can be formally assigned to the Na hybrid and the remaining fraction $(I - P_{NA})$ to the K hybrid. In this approach there is situated on Na, for example, a residual

Figure 4.1: The electrostatic point charges, electronic dipole

D, and induced core dipoles, //.

positive charge of $(1 - \rho_{N_h})$ together with a partial electronic dipole given by

$$\mathcal{D}_{Na} = \frac{-2 \langle + \rangle P_{Na} \lambda}{\sqrt{3} (1 + \lambda^2)} \mathcal{V} . \qquad (4.6)$$

For each eigenstate, therefore, the core electrostatic interactions can be approximated in terms of point charges, electronic dipoles, \hat{p} , and core dipoles, $\hat{\mu}$, as illustrated in figure 4.1.

The problem is thus reduced to one of simple electrostatics. Since typically the electronic dipoles are very much larger than the core dipoles, the interactions between one core dipole and another are These will be of the order of the errors neglected. in the above treatment of the electron. In fact these effects, of order R^{-7} and smaller, were noted to be insignificant contribuents to the binding energies of the alkali halides. (17) Dipole induction is therefore supposed to be due only to the point charges and the electronic dipoles, giving non-coupled equations for the The polarisation contribution to the core dipoles. energy of each eigenstate now simply decomposes into charge-core dipole, electronic dipole-core dipole and core dipole quasi-elastic terms.

It is to be noted that in this approximate treatment it has been implicitly assumed that each foreign core experiences the average field of the valence electron, whereas, since the core electronic kinetic energies are typically much higher than that of the valence electron, the cores might be expected to respond to the instantaneous position of the electronic charge. The errors introduced by this assumption should not be great, however; the larger "own core" instantaneous polarisations are built-in parts of the ionisation potentials.

I.4.

The van der Waals terms are computed using coefficients straightforwardly obtained with the aid of the London formulae (2.4) and the Na⁺- Cl⁻ and K⁺- Cl⁻ exponential repulsion expressions are available from the alkali halide calculations.⁽¹⁷⁾

No equivalent expression is available for the short range Na⁺ - K⁺ repulsion and there is no direct method by which it can be obtained. Whilst the coulomb repulsion will ensure that close Na⁺ - K⁺ separations will be energetically unfavourable, an additional repulsion term is necessary to overpower the inner trends of dipolar and van der Waals forces. The necessary parameters may be estimated in the following way.

Some calculations have been reported, ⁽⁴⁵⁾ on the assumption that the exponential repulsion between two ions is proportional to the square of the total overlap between their respective core orbitals:

$$Ae^{-t/e} \propto S_{ab}^2$$
 (4.7)

I.4.

This work leads to ρ - values for the alkali ion - halide ion repulsions in rough agreement with values derived elsewhere. The computed results given for alkali ion alkali ion parameters are listed in table 4.1.

Table 4.1

Ion pair	Cs ⁺ - Cs ⁺	Rb ⁺ - Rb ⁺	K* - K*	Li ⁺ - Li ⁺
e (Å)	0.278	0.241	0.217	0.109

A typical alkali halide repulsion parameter is Q=0.31Å. These smaller values indicate steeper repulsion curves, consistent with the relative"hardness" of the more tightly bound positive ions. For the Na⁺ - K⁺ repulsion a value of Q=0.20 Å appears to be of the correct order of magnitude.

The parameter A may be estimated by analysing the significance of the assignment to each ion of a fixed

ionic radius. For ions of opposite sign equilibrium between the electrostatic attraction and the closed shell repulsion forces occurs at a bondlength equal to the sum of their radii. The closed shell repulsion is not directly electrostatic in nature. Hence, if the sign of the electrostatic interactions between Na⁺ and K⁺ is reversed, the resulting potential curve should show a minimum at a separation equal to the sum of the sodium and potassium gaseous ionic radii. A is chosen by insisting that this criterion should be satisfied.

Tables 4.2

	Na ⁺	K+	Cl-
s-orbital ionisation potential (29)	0.18883	0.15946	
p-orbital ionisation potential (29)	0.1115	0.1002	
orbital mean radius (28)	4.75	7.05	
ion polarisability (21)	1.22	5.67	24.90
ion ionisation potential (29)(46)	1.730	1.164	0.1367
gaseous ionic radius (17)	1.70	2.23	3.00

(17)(45) Exponential repulsion parameters

		A	le
Na ⁺	- C1-	124.2	0.586
K +	- Cl ⁻	248.4	0.586
Na ⁺	- K+	966.0	0.378
Nat	- Nat	535.6	0.350
K+	- K+	1247	0.416

and the second of the second second second

and the second second

It is now possible to complete the entire calculation and to arrive at the first order energy levels $\in_{n}^{(1)}$ corresponding to the zero-order eigenfunctions $|e_{n}^{\circ}n \rangle$. Tables 4.2 contain (in atomic units) all of the empirical data employed.

I.5.

59

In the course of the previous chapters a rather elaborate edifice has been constructed within the framework of which the proposed potential surface calculation can be performed. This chapter describes the application of the basic essentials of the model in some situations where experimental evidence is available for the purposes of comparison. It would otherwise be extremely difficult to assess the reliability of the results obtained for the system K+NaCl, in the absence of any detailed experimental knowledge.

The diatomic ions $\operatorname{Na}_{2}^{+}$, K_{2}^{+} and NaK^{+} are ideal for this purpose. They each, according to the above theory, may be decomposed into systems involving the interactions of a single electron and a pair of Rittner ions, and the treatment outlined above may be very easily simplified to deal with them. In particular these calculations provide a direct test of the pseudopotential expressions for Na⁺ and K⁺ although they cannot measure the reliability of the Cl⁻ pseudopotential. Nonetheless a test of the former functions does in itself provide a check on the validity of the general reasoning involved in the evolution of all of these potentials.

The treatment used in these calculations is precisely equivalent to the application of the model developed above in full detail to the system M+NCl, for configurations in which the halide ion is infinitely removed. Only the four sigma states derivable from the alkali valence orbitals are calculated. The diatomic systems lend themselves to experimentation with alternative techniques and parameters since the size of the problem is considerably eased as a result of the loss of the third centre, the smaller basis set of only four atomic orbitals, and particularly by the reduction to a single internal coordinate.

The experimental data to be compared with these calculations is all provided by studies of the neutral molecules and is listed in table 5.1.

	Naz	Na ⁺ 2 (expt	Na ⁺ .)(calc)	K2	K ⁺ ₂ (expt.)	K ⁺ (calc)	NaK '	NaK ⁺ (calc.
D _e (Kcal/mole)	16.8	22.9	22.8	11.8	17.5	16.5	14.3	12.5
R (Å)	3.08	~3.6	3.44	3.91	~4.7	4.86		3.91
ω (cm ⁻¹)		~105	132		~60	62		74
x (cm [~])		~- 050	-0.55		~- 0.13	-0.17		-0.32

Table 5.1
The neutral molecule dissociation energies, (47) D°, (48)and bondlengths, R, are derived direct from experimental work. The dissociation energies of Na⁺₂ and K⁺₁ are obtained by completing the cycle:

The ionisation potentials of the homonuclear neutral molecules and also the "experimental" bondlengths, vibrational frequencies, ω , and anharmonicities, x, for Na_{2}^{+} and K_{2}^{+} are obtained by extrapolation of the corresponding properties of series of Rydberg excited (49,50) states of the neutral molecules. (The bondlengths of Nat and K⁺ are estimated from extrapolated rotational constants). It may be noted in passing that, although there is an increase in bondlength from Na, to Na⁺ and from K_2 to K_2^+ , there is also an increase in dissociation This observation, which has been the subject of energy. some discussion, (51-53) is supported by other calculations, (51,54) and the quoted dissociation energy of $K_{\boldsymbol{z}}^{+}$ has recently been supported by photoionisation studies. (52)

The potential curves for the four lowest sigma states obtained by the present calculation are plotted in figures 5.1 - 5.3 and recorded numerically in tables 5.2 - 5.4.

r(Å)	VI (-Kcal/mole)	<u>V2</u>	<u>V3</u>	<u>V4</u>
I.5	-55.140	-107.133	-160.602	-450.529
2.0	93.442	I7.263	I.I98	-232.37I
2.5	127.675	46. 599	37.919	- 97.775
3.0	139.014	67.314	53.697	- 24.422
3.2	I40.600	74.400	57.756	- 7.5I2
3.4	I4I.I70	80.664	61.032	6.268
3 •5	I4I. 165	83.514	62.435	12.157
3.6	141.006	86.191	63.705	17 . 439
3.8	140.321	9 I .064	6 5 . 897	26.643
4.0	139.274	95.346	67.697	34.142
4.5	135 ,793	I 03. 776	70.865	47.505
5.0	131.967	109.517	72.602	55 .76I
5.5	I28.452	II3.26I	73.3IO	60.98I
6.0	I25.558	II5.6I7	73.318	64.34I
7.0	121.790	II7.886	72.365	67.939
8 .0	II9.994	II8.59I	71.344	69.420
I0.0	II8.854	II8.703	70.414	70 . I47
12.0	II8.597	II8.583	70.179	70 . 151
15.0	II8.487	II8.487	70.065	70.064
20.0	II8.438	II8.438	69.989	69.989
00	II8.4I5	II8.4I5	69.92 2	69.922

Energies refer to stability relative to the dissociation limit $Na^4 + Na^4 + e^$ ļ

Table 5.3

Potential curves of K2

r(Å)	VI(-Kcal/mole)	<u>V2</u>	<u>V3</u>	<u>V4</u>
2.0	-38.439	-87.I29	-105.612	-136.445
2.5	65.872	9.335	- 2.49I	- 3I.320
3.0	93.24I	33.3 48	25.666	9.646
3.5	106.387	45.992	39.837	29.632
4.0	II3.I55	58.IO6	48.589	I6.994
4.4	II5.64I	66.064	53.383	8.475
4.6	II6 . 207	69.432	55.278	9 . I27
4.7	116.360	71.002	56.125	I0.432
4.8	II6.436	72.505	56.912	I2.200
4.9	II6.4 46	73. 947	57.644	I4.296
5.0	II6.396	75.332	58.326	I6.605
5.5	II5.463	8I .4 98	61.097	28.705
6.0	113.821	86.519	63.033	38.726
7.0	109.864	93. 486	65.140	51.080
8.0	106.27 6	97.27I	65.629	57.I64
10.0	1 02.0 89	99.92I	64.533	61.774
12.0	100.710	100.295	63.555	62.883
15.0	100.218	100.19I	63.II5	63.623
20.0	100.063	100.063	62.964	62.964
8	99.998	99.998	62.835	62.835

Energies refer to stability relative to the dissociation limit $K^+ + K^+ + e^-$

e

I.5

Table 5.4 Potential curves of Nak

r(Å)	VI(Kcal/mole)	<u>V2</u>	<u>v3</u>	<u>V4</u>
2.0	42.560	-16.038	-50.799	-97.404
2.5	I04.3 25	32.864	21.422	-36.275
3.0	I24.970	56.340	4 4.909	- 8.037
3.3	129.176	60.III	54.767	0.562
3.6	I30.62I	64.064	6 0. 604	6.63I
3.8	130.919	68.733	6I . 394	I0.784
3.9	I30 . 954	71.014	6I.778	I3.053
4.0	130.927	73.205	62.192	I5.447
4.2	130 . 7 08	77.30I	63.097	20.492
4.5	130.020	82.752	64.535	28.126
5.0	I28.I89	90.094	66.753	39.204
5,5	I25 . 977	95.4II	68.479	47.347
6.0	I23.843	98.935	69.659	52.976
7.0	120. 824	101.937	70.665	59.347
8.0	II9.506	102.072	70.658	62.075
10.0	II8.786	I0I.045	70.305	63.27 2
12.0	II8.59I	100.5 08	70.166	63.230
I5.O	II8.487	100.206	70.064	63.090
2 0. 0	II8.438	I00.063	69.989	62.964
æ	II8.4I5	99. 998	69.922	62.835

Energies refer to stability relative to the dissociation limit $Na^* + K^* + e^*$

The calculated properties listed in table 5.1 are derived from the ground state curves. The agreement between the experimental and calculated dissociation energies for Na, and K, is striking. The dissociation energy predicted in the case of the heteroion Nak⁺suggests that it is more conventional in its binding behaviour, being marginally less strongly bound than the corresponding neutral molecule. The calculated vibrational frequencies and anharmonicities are derived from the parameters of Morse curves (55) fitted about the ground state minima. In view of the uncertainties of 5 - 10% in the extrapolation for experimental quantities, agreement is again very satisfactory. The correctness of the calculated bondlengths is supported within about 4% by the values obtained from the experimental extrapolated rotational constants. The expected trends in bondlength are followed among the three calculated ionic values and the experimental figures for neutral Na, and K, all of these distances being unusually The length of these large by normal chemical standards. bonds underlines the relative insensitivity of the results to the precise choice of M^+-N^+ exponential repulsion terms, as these become significant only at considerably shorter range.

One final point of interest concerns the asymptotic behaviour at large R. At sufficiently large separations

the interaction becomes principally that between an alkali ion and an alkali atom. The polarisabilities of the alkali atoms are of the order of a hundred times greater than those of their ions and values of 23Å for Na and 44Å for K have been proposed for these parameters. (30) With the aid of these figures, therefore, the limiting ion induced dipole interaction energy may be computed. Figure 5.4 demonstrates the agreement between these results and the calculated curves for the ground and first excited states of NaK⁺ (corresponding to the dissociation limits Na + K^+ and K + Na⁺ respectively) down to internuclear separations of around 8Å. In the homonuclear molecules, however, appreciable binding forces may be seen to operate at even larger separations. The correct form of asymptotic behaviour cannot be reproduced without the inclusion of p-atomic orbitals. It is important for any application to scattering experiments, that potential surfaces should be used which have the correct behaviour at large distances, because long range collisions predominate.

The success of these calculations provides encouraging evidence for the reliability of the model.

Before proceeding to outline and discuss the

70

I.5.

results obtained for the system K + NaCl, however, it is interesting to analyse the improvements to the diatomic ion calculations resulting from the inclusion first of the pseudopotentials of chapter 3.1, and secondly of p-orbitals in the wavefunctions.

Table 5.5

	Nak	+	N	a,+	K	- +
Calculation	W(Kcal/mole)	R(Å)	W	R	W	R
Zs	34	2.18	(70	1.5	150	2.2
-			(13	3.5	6	7.5
ls	6	4.0	16	3.3	7	7.0
lsp	74	2.4				
Hs	4	4. 4	12.5	3.7	9	5.1
Hsp	14	3.8	25	3.3	17	4.5
∀s p	12.5	3.9	22.8	3.4	16.5	4.9
Experiment			22.9		17.5	

Ground state minima of the diatomic ions

Table 5.5 lists the ground state potential curve minima obtained in a variety of calculations. If the electrostatic ion potentials (3.9) are employed within as well as outside the ion cores and if the wavefunctions contain only s-orbitals, the potential curves, labelled

Zs, are obtained. Figure 5.5 gives the relevant ground state curve for NaK⁺, showing unexpectedly high binding energy and a correspondingly short bond. (Furthermore the curve shape in the range 3-6Å is unusual.) The spurious characteristics of this calculation are much more clearly evidenced in the double minima recorded for Na, and K, , the curve for the former of which is plotted in figure 5.6. There is ample evidence that these disquieting features arise from interactions within the In the first instance the ground state curves ion cores. for Nat and K, around their inner minima are those corresponding to the antisymmetric molecular orbital. The positions of these respective minima at 1.5Å and 2.2Å may be compared with the radial maxima of the atomic orbitals which occur at 1.2Å for Na and 2.0Å for K. A simple calculation shows that under these circumstances the antisymmetric molecular orbital concentrates more charge within the ion cores than does the symmetric orbital. Further evidence that a core effect causes this behaviour is provided by the results labelled 1s where the electrostatic potentials are replaced by simple point charge expressions (throughout space) resulting in the disappearance of the inner minima giving more plausible bonding parameters.

However, the reintroduction of p-orbitals leads again to

a deep minimum at very short range as exemplified by the result lsp for NaK⁺.

In the calculations Hsp and Hs (respectively with and without p-orbitals) the valence orbitals are made orthogonal to foreign cores simply by setting them to be uniformly zero within the core radius. As is clear from table 5.5, the results Hsp obtained for the diatomic ions with this method are essentially the same as those from the adopted pseudopotential model (labelled Ψ sp). They are recorded In the first place comparison of here for two reasons. the two parallel sets demonstrates that only approximately half of the total binding in the diatomic ions results on the inclusion of s-orbitals alone in the valence basis Secondly, figure 5.7 shows the results of a series set. of Hsp calculations on K, , steadily increasing the size of the core radius from zero to the K⁺ gaseous ionic The inner curves demonstrate the successive radius. diminution of the antisymmetric curve at the inner minimum. The symmetric curve is not so sensitive to core radius and is shown only at its final position.

The procedure Hsp which involves cutting "holes" in the valence orbitals within foreign cores is, for the diatomic ions, nearly equivalent to the adopted procedure, though on the basis of the discussion in chapter 3.1,

insufficient core penetration is allowed in such a model. This effect would become important in a system containing a chloride ion. There are also difficulties inherent in such an approach in that the orbitals would presumably be required to be renormalised, and also strict orthogonality between s- and p- valence orbitals on a particular centre is relaxed, with the result that a suitable atomic combination assumes a larger "ionisation potential." The adopted procedure is clearly more

I.5.

satisfactory.

The salient points from this discussion may be summarised. The use of electrostatic potentials leads to spuriously strong and close range binding. Using pseudopotentials, however, as the core radius is steadily increased from zero to the ionic radius, these deep inner minima disappear, and the resulting longer range binding is not rapidly altered. The inclusion of p-orbitals is essential both to obtain accurate dissociation energies and to describe effectively the long range behaviour. As a result of these calculations it is possible to proceed with some confidence to outline the results for the reaction K + NaCl = KCl + Na.

$\frac{\text{Chapter 6}}{\text{K + NaCl} = \text{KCl + Na}}$

In table 6.1 the energies of the two lowest potential energy surfaces for the reaction K + NaCl = KCl + Na are listed at all configurations for which they were calculated. The format in which these results are presented requires some explanation. For the reaction M + NCl the nuclear configuration is specified in terms of the coordinate system depicted in figure 6.1.

R is the distance from the reactant atom M to the centre of mass, G, of the NCl molecule. The dimensionless constant c is defined in terms of the atomic masses as

$$C = \sqrt{\frac{m_{M} (m_{N} + m_{Ce})^{2}}{m_{N} m_{Ce} (m_{M} + m_{N} + m_{Ce})}}$$
(6.1)

and the length of the N-Cl bond is given by c ℓ . Finally, χ is the angle MGCl. In this coordinate system the classical energy for nuclear motion restricted to a plane is given by

$$E = \pm m \{ \dot{R}^{2} + \dot{\varrho}^{2} + (R^{2} + \varrho^{2}) \dot{\chi}^{2} \} + V(R, \varrho, \chi),$$
where $m = \frac{m_{M} (m_{N} + m_{C})}{m_{M} + m_{N} + m_{C}},$
(6.2)

so that any orthogonal transformation will preserve the diagonalisation of the kinetic energy. The results in table 6.1 are divided into two parts, expressed in the coordinate systems for K + NaCl and Na + KCl respectively; the former is concerned principally with configurations in the reactants region and the latter with the products For each part the results are broken down in the region. first instance into separate sections for each angle $\mathcal X$, at 15° intervals. These sections are further subdivided for each R, the value of which is given at the head of each subsection, together with an integer, n, indicating the number of configurations listed for that (\mathcal{X}, R) . The data for each point is then listed, giving first the relevant p - value, and then the two lowest electronic eigenvalues $E_{i}(R,e,X)$ and $E_{i}(R,e,X)$. The format of each section may be illustrated:

 $M + NCe \quad angle = \chi oleg;$ $R_{1}; n_{1};$ $e_{11}; E_{1}(R_{1}, e_{11}, \chi); E_{2}(R_{1}, e_{11}, \chi);$ $e_{12}; E_{1}(R_{1}, e_{12}, \chi); E_{2}(R_{1}, e_{12}, \chi);$ $e_{1n_{1}}; E_{1}(R_{1}, e_{1n_{1}}, \chi); E_{2}(R_{1}, e_{1n_{1}}, \chi);$ $R_{2}; n_{2};$ $e_{21}; E_{1}(R_{2}, e_{21}, \chi); E_{2}(R_{2}, e_{21}, \chi);$ $e_{21}: E_{1}(R_{2}, e_{21}, \chi); E_{2}(R_{2}, e_{21}, \chi);$

Distances are given in Å and the energies, in Kcal/mole, measure stability relative to the dissociation limit $(Na^++K^++Cl^-+e^-)$. The completion of the calculation at the points listed in table 6.1 required some 30 hours of computing time.

78

I.6

(6.3)

K+NaCI	l angle	e= ZERO;
3.5;	10 ;	
1.85; 1.90; 1.95; 2.05; 2.05; 2.10; 2.30; 2.50; 2.50; 3.00;	205.874; 207.529; 208.594; 209.007; 208.737; 207.786; 197.493; 176.769; 143.696; 61.500;	197.709; 198.706; 198.380; 196.987; 194.726; 191.743; 174.195; 148.895; 148.895; 114.935; 40.810;
3.8;	11;	
1.80; 1.90; 1.95; 2.00; 2.05; 2.10; 2.10; 2.30; 2.50; 2.50; 3.00;	219.018; 222.922; 224.356; 225.774; 227.039; 228.007; 228.627; 228.473; 224.131; 215.039; 189.579;	208.777; 216.509; 218.358; 219.076; 218.891; 218.025; 216.650; 210.493; 199.182; 184.818; 155.395;
4.0;	13;	
1.70; 1.80; 1.91; 1.95; 2.00; 2.00; 2.00; 2.00; 2.10; 2.20; 2.10; 2.20; 2.30; 2.30; 2.50; 3.00;	213.957; 223.013; 226.947; 227.499; 228.153; 229.103; 230.213; 231.230; 232.044; 233.021; 232.791; 230.021; 230.021; 220.082;	195.680; 209.929; 219.427; 221.555; 223.285; 224.042; 223.972; 223.290; 222.187; 219.189; 211.505; 202.427; 185.555;
4.5;	10;	
1.70; 1.85; 1.90; 1.90;	216.051; 227.580; 229.015; 229.660;	191.100; 209.468; 213.359; 216:458;

2.05; 2.10; 2.30; 2.70; 3.00;	229.192; 228.262; 227.212; 230.650; 232.250;	220.861; 222.300; 222.809; 212.136; 204.695;
5.0;	9;	
1.70;;;;; 1.80;;;;;; 1.85;;;;;; 1.93;;;;;; 1.93;;;;;; 1.93;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	215.721; 224.420; 226.686; 228.110; 228.332; 228.449; 228.345; 227.785; 218.234;	185.329; 197.570; 195.465; 206.144; 207.278; 208.309; 210.488; 212.194; 214.836;
5.0;	9;	
1.70;;;;; 1.80;;;;; 1.85;;;;; 1.91;;;;;; 1.93;;;;;; 1.93;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	215.018; 223.146; 225.132; 226.224; 226.337; 226.345; 225.971; 225.145; 217.7;	181.434; 189.328; 191.199; 193.873; 194.800; 195.626; 197.308; 198.537; 200.6;
8.0;	10;	
1.70; 1.80;; 1.85;; 1.891;; 1.91;; 1.93;; 1.995;; 1.995;; 1.995;;;	214.799; 222.554; 224.355; 225.069; 225.264; 225.264; 225.129; 224.791; 220.7; 216.5;	178.817; 186.540; 188.325; 189.027; 189.176; 189.209; 189.064; 189.064; 188.716; 184.5; 180.0;
12.0;	9;	
1.70; 1.80; 1.85; 1.89; 1.91; 1.93;	214.790; 222.451; 224.206; 224.821; 225.019; 225.039;	177.858; 185.523; 187.279; 187.957; 188.095; 188.116;

-		80		1.	• 6
Table	6.1 (cont.	,)			
1.95; 2.15; 2.30;	224.954; 220.3; 214.442;	188.031; 183.4; 177.531;	2.05; 2.10; 2.15; 2.20;	229.919; 230.818; 231.746; 232.549;	224.833; 224.977; 224.498; 223.579;
K+NaC	l angle	e= 15 deg;	2.30; 2.50; 2.70;	233 637; 234 049; 232 636;	220.935; 214.114; 206.352;
3.0;	6;		3.00;	226.764;	193.108;
1.80;	106.440;	95.5073;	4.5;	13;	
1.90; 1.95; 2.00; 2.05;	96.512; 89.311; 80.610; 70.405;	82.001; 72.314; 60.766; 47.293;	1.70; 1.80; 1.85; 1.90; 1.95;	216.693; 225.788; 228.222; 229.629; 230.228;	191.314; 204.554; 209.298; 213.099; 216.132;
3.5;	11;		2.00;	230.194;	216.533;
1.80; 1.85; 1.90; 1.95; 2.00; 2.05;	208.407; 210.708; 212.502; 213.827; 214.634; 214.887;	199.188; 202.242; 203.756; 204.006; 203.237; 201.650;	2.10; 2.20; 2.30; 2.50; 2.70; 3.00;	228.706; 226.328; 226.499; 228.196; 229.486; 231.196;	221 806; 223 303; 222 690; 217 681; 212 291; 205 170;
2.10; 2.30;	214.585; 208.224;	199.396; 185.458;	5.0;	103	
2.50; 2.70; 3.00;	194.200; 171.432; 117.115;	165.261; 140.500; 89.666;	1.70; 1.30; 1.85;	215.973; 224.646; 226.902;	185.132; 197.519; 201.868;
3.8;	12;		1.90;	228.159;	205 297;
1.70; 1.80; 1.90; 1.95; 2.00;	213.229; 221.472; 225.107; 226.341; 227.588;	196.029; 210.005; 217.965; 220.037; 221.029;	1 .96; 1 .99; 2 .10; 2 .30; 2 .50;	228.660; 228.586; 227.016; 221.193; 217.189;	208.451; 209.711; 212.993; 215.630; 214.505;
2.10;	229.805;	220.571;	6.0;	9;	
2.15; 2.30; 2.50; 2.70; 3.00;	230.552; 231.143; 228.697; 222.944; 206.483;	219.498; 214.355; 204.903; 193.334; 171.924;	1.70; 1.80; 1.85; 1.90; 1.90;	215.100; 223.203; 225.178; 226.158; 226.364;	181.295; 189.219; 191.094; 193.261; 194.660;
4.0;	143		1.96;	226.332;	195.833;
1.70;	215.930; 224.350;	196.273; 210.379; 215.257;	2.10; 2.30;	223.969; 217.427;	199.107; 200.273;
1.90; 1.95; 2.00;	228.266; 228.871; 229.278;	213.307; 219.218; 220.037; 223.889;	8.0;	103	

Table (6.1 (cont.)		_	
1.70; 1.80; 1.85; 1.89; 1.91; 1.93; 1.93; 1.95;; 2.05;; 2.30;	214.812; 222.563; 224.361; 225.073; 225.228; 225.266; 225.199; 223.622; 220.666; 215.723;	178.801; 186.522; 188.305; 189.001; 189.135; 189.653; 189.000; 187.507; 184.523; 179.097;	1.90 9950 9900 9900 900 900 900 900 900 90	223.170; 224.722; 225.925; 226.804; 226.804; 226.805; 222.329; 215.050; 199.003;	213.583; 214.923; 215.359; 215.072; 207.177; 197.124; 185.599; 166.041;
12.0;	9;		1.70:	216.821;	198.956;
1.70; 1.80; 1.85; 1.89; 1.93; 1.93; 1.93; 1.95; 2.30;	214 790; 222 451; 224 205; 224 882; 225 018; 225 039; 224 953; 224 953; 220 239; 214 439;	177.855; 185.520; 187.276; 187.954; 188.092; 188.112; 188.028; 188.028; 183.321; 183.321;	1.005050 9.95050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.00000000	225.708; 229.701; 230.750; 231.571; 232.332; 233.063; 233.720; 234.932; 234.860; 233.450; 233.450;	212 281; 220 243; 222 598; 224 045; 224 318; 224 357; 224 357; 224 256; 224 256; 214 732; 207 894; 197 297;
K+NaCl	angle	= 30 deg;	4.0 g	13;	
K+NaCl 3.0; 1.80; 1.85; 1.90; 1.95; 2.00; 2.05; 3.25; 1.90; 2.10; 2.30;	angle 5; 155.493; 155.660; 154.859; 153.152; 150.595; 147.226; 6; 204.710; 204.910; 197.299;	= 30 deg; 143.615; 143.118; 141.116; 137.856; 133.544; 128.348; 192.892; 197.484; 173.610;	4.0; 1.700505050000 1.800505050000 1.9005005005000 1.900011500000 1.900000 1.900000 1.900000 1.9000000 1.9000000 1.9000000000000000000000000000000000000	13; 218.000; 227.051; 229.453; 230.865; 231.555; 231.802; 231.908; 232.108; 232.466; 233.725; 234.550; 234.550; 234.593; 233.733;	197.896; 211.220; 215.909; 219.546; 222.272; 224.188; 225.372; 225.898; 225.859; 223.474; 218.111; 212.363; 204.170;
K+NaCl 3.0; (1.80; 1.85; 1.90; 1.95; 2.05; 3.25; 1.90; 2.50; 2.50; 2.70; 3.00; 3.5; 1	angle 5; 155.493; 155.660; 154.859; 153.152; 150.595; 147.226; 6; 204.710; 204.910; 197.299; 183.466; 164.160; 125.187; 11;	= 30 deg; 143.615; 143.118; 141.116; 137.856; 133.544; 128.348; 192.892; 187.484; 173.610; 155.546; 134.683;; 97.785;	4.0; 1.700505050505050 1.885050505050505050 1.885005050505050 1.885000 1.800050505050 1.800050 1.80	13; 218.000; 227.051; 229.453; 230.865; 231.555; 231.802; 231.908; 232.108; 232.108; 232.466; 233.725; 234.5593; 234.5593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 234.593; 235.733; 10;	197.896; 211.220; 215.909; 219.546 222.272; 224.188; 225.372; 225.898; 225.898; 225.859; 223.474; 218.111; 212.363; 204.170; 191.979; 204.480; 212.373; 215.106;

		02			
Table	6.1 (cont.)			
2.30; 2.50; 3.00;	224.860; 225.055; 226.761;	221.209; 217.062; 204.801;	1.85; 1.89; 1.91; 1.93;	224.204; 224.880; 225.017; 225.036;	187.268; 187.946; 188.083; 188.104;
5.0;	14;		1.95; 2.00;	224.951; 224.343;	188.019; 186.619;
1.70; 1.80; 1.85; 1.90;	216.387; 224.924; 227.111; 228.300;	185.655; 197.433; 201.515; 204.692;	2.10) 2.20) 2.30)	221.883; 218.407; 214.432;	184.958; 181.486; 177.515;
1.95;	228.628; 228.717; 228.602;	206.239; 207.559; 208.621;	K+NaCI	l angle	e= 45 deg;
2.05; 2.10;	227.879; 226.887;	210.426; 211.476;	3.0;	103	
2.20; 2.30; 2.50; 2.70; 3.00;	224.200; 220.930; 214.591; 214.337; 214.880;	212.777; 213.337; 212.693; 207.741; 200.170;	1.85; 1.90; 1.95; 2.00; 2.05;	201.254; 203.242; 204.577; 205.377; 205.734;	187.315; 188.769; 189.249; 188.945; 188.945; 188.014;
6.0;	103		2.10; 2.30;	205.719; 202.907;	186.583; 177.888;
1.70; 1.80; 1.85;	215.266; 223.302; 225.243;	180.772; 188.864; 190.767;	2.50; 2.70; 3.00;	196.873; 189.167; 176.962;	168.577; 159.724; 147.145;
1.93;	226.190;	192.983;	3.3;	12;	
1.96; 1.99; 2.10; 2.20; 2.30;	226.324; 226.070; 223.864; 220.768; 217.174;	195.376; 196.270; 198.275; 198.928; 198.952;	1.70; 1.80; 1.90; 1.95; 2.00;	213.957; 222.669; 227.684; 229.293; 230.477;	195.876; 208.161; 214.397; 215.951; 216.730;
8.0;	11;		2.05;	231.321; 231.885;	216.890; 216.564;
1.70; 1.80; 1.85; 1.85; 1.89; 1.91;	214.046; 222.589; 224.378; 225.082; 225.233;	178.761; 186.477; 188.257; 188.945; 189.073;	2.15; 2.30;; 2.50;; 2.70;; 3.00;	232.216; 232.136; 230.381; 227.520; 222.422;	215.856; 212.230; 205.772; 199.341; 190.744;
1.93;	225.267;	186.843;	3-5;	143	
2.10;	224.625; 222.241; 215.943; 214.948;	186.967; 186.967; 183.943; 182.474;	1.70; 1.80; 1.35; 1.90;	220.053; 228.297; 230.735; 232.513;	199.832; 212.764; 216.914; 219.844;
12.0;	115		1.95;	233.956; 234.946;	221.788; 222.938;
1.80;	21".791	177.848 185.512;	2.05; 2.10;	235.77; 236.209;	223.451, 223.459

Table	5.1 (cont.	•)	
2.15; 2.20; 2.30; 2.50; 2.70; 3.00;	236.580; 236.815; 236.951; 236.292; 234.957; 232.421;	223.071; 222.378; 220.356; 215.056; 209.444; 202.005;	1.70; 215.392; 179.551; 1.80; 223.350; 188.129; 1.85; 225.249; 190.219; 1.90; 226.154; 192.701; 1.93; 226.313; 193.859; 1.96; 226.235; 194.805;
4.03	13;		2.10; 223.649; 197.131; 2.30; 216.771; 197.105;
1.70;	220.187; 229.532; 230.117;	199.374; 211.174; 215.176;	8.0; 10;
1.90 1.9555555555555555555555555555555555555	233 617; 234 198; 234 160; 233 811; 233 348; 232 511; 232 010; 231 473; 231 055; 230 691;	218.275; 220.678; 222.443; 223.599; 224.215; 224.25; 224.152; 224.152; 222.845; 218.398; 213.388; 206.605;	1.70; 214.863; 178.713; 1.80; 222.581; 136.418; 1.85; 224.364; 188.189; 1.89; 225.063; 188.863; 1.91; 225.211; 188.980; 1.93; 225.242; 188.935; 1.93; 225.242; 188.935; 1.95; 225.242; 188.935; 2.95; 225.242; 188.935; 1.93; 225.242; 188.935; 1.95; 225.163; 186.591; 2.05; 223.558; 187.255; 2.15; 220.568; 184.342; 2.30; 214.854; 181.713;
4.53	12;		12.0; 11;
1.70 1.80 1.90 1	218.190; 226.914; 230.474; 230.981; 230.891; 230.344; 229.437; 224.231; 223.853; 220.702; 219.759; 219.230;	192.919; 204.273; 211.139; 213.393; 215.062; 216.262; 216.262; 217.091; 212.432; 217.650; 214.465; 209.389; 202.091;	1.70;214.792;177.839;1.80;222.450;185.503;1.85;224.202;187.258;1.89;224.877;187.935;1.91;225.013;188.073;1.93;225.033;188.093;1.95;224.328;187.402;2.0;221.876;184.945;2.20;218.398;181.473;2.30;214.422;177.501;
5.0;	9;		K+NaCl angle= 60 deg;
1.70; 1.80;;;;; 1.90;;;; 1.93;;; 1.96;;; 1.99;;; 2.05;;	216.737; 225.091; 227.186; 228.285; 228.560; 228.597; 228.431; 227.609; 213.026;	186.616; 197.420; 201.083; 203.874; 205.201; 206.307; 207.221; 208.569; 208.632;	2.80; 7; 1.80; 207.237; 190.950; 1.90; 214.219; 196.587; 2.10; 220.539; 198.798; 2.30; 222.311; 194.950; 2.50; 222.448; 190.566; 2.70; 221.363; 190.666;
6.0:	9:		3.00; 220.537; 100.999;

Table 5.1 (cont.)

3.03	13;		4.03	13;	
1.70 1.80 1.95 1.95 1.95 2.05 2.10 2.15 2.30 2.50 3.00	212.618; 223.567; 227.138; 229.818; 231.807; 233.257; 234.288; 234.288; 234.288; 235.445; 235.445; 235.809; 235.200; 234.060; 234.060; 234.060;	194.657; 205.396; 209.282; 211.718; 213.311; 213.311; 214.626; 214.626; 214.609; 214.626; 214.609; 214.275; 214.275; 214.038; 214.275; 203.899; 200.850;	1.70 1.855 1.859 1.9950 50050 1.00 1.00 1.00 500 500 500 500 500 500 500	221 152; 230 127; 232 534; 232 534; 233 950; 234 692; 234 695; 234 695; 234 695; 234 695; 234 695; 246	200.302; 210.668; 214.027; 216.471; 216.474; 219.2095; 219.8095; 219.603; 214.063; 214.063; 209.456; 200.265; 200.265; 200.2663; 200.266; 201.0663; 200.266; 201.0663; 200.2663; 200.2655; 20
3.3;	13;		4.53	8;	
1.60;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	203.676; 221.985; 232.103; 237.337; 236.624; 239.6075; 240.416; 240.748; 240.748; 240.672; 239.151; 237.677; 235.713;	184 751 203 045 213 886 219 792 221 439 222 433 222 433 222 901 222 954 222 954 222 683 220 683 216 481 212 111 206 605;	1.70; 1.80; 1.90; 2.00; 2.10; 2.30; 2.50; 2.70; 1.70; 1.80;	218.554; 227.039; 230.359; 230.537; 223.203; 217.729; 214.274; 10; 216.909; 225.083;	194.124; 204.088; 209.743; 212.297; 213.654; 212.686; 209.410; 204.873; 188.298; 197.807;
3.5;	15;		1.90;	228.101;	203.210;
1.60; 1.70; 1.80; 1.65; 1.90; 1.95;	205.202; 223.185; 232.909; 235.736; 237.623; 238.811;	186.047; 204.040; 214.720; 218.126; 220.561; 222.208;	1.96; 1.96; 1.99; 2.10; 2.30; 2.50;	228.309; 228.091; 226.013; 219.538; 212.257;	205.098; 205.756; 206.974; 206.334; 204.067;
2.05;	239.487; 239.799;	223.215;	6.03	9;	100 165
2.150000 2.22000000000000000000000000000000	239.050; 239.734; 239.491; 238.786; 237.055; 235.370; 233.334;	223.785; 223.534; 223.027; 221.470; 217.270; 212.783; 206.674;	1.70; 1.80; 1.85; 1.90; 1.93; 1.96;	215.517; 223.355; 225.203; 226.059; 226.191; 226.085;	180.165; 188.040; 190.772; 192.809; 193.741; 194.482;

		85			I. 6
Table	6.1 (cont.)			
1.993	225.778;	195.056;	3.00;	232.561;	196.527;
2.30;	216.324;	195.164;	2.8;	15;	
8.03	10;		1.60;	195.818; 216.726;	172.239;
1.70; 1.80;;; 1.85;; 1.91;; 1.93;; 1.93;; 1.95;; 2.05;; 2.15;; 2.30;	214.870; 222.571; 224.344; 225.036; 225.181; 225.209; 225.131; 225.131; 223.505; 220.493; 214.751;	178.689; 186.384; 188.143; 188.202; 188.909; 188.867; 188.639; 186.502; 186.502; 184.175; 180.920;	1.80 1.90 1.95 2.00 2.05 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.40 2.40 2.50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	228.981;; 235.986;; 238.200;; 239.799; 240.918; 241.664; 242.121; 242.356; 242.356; 242.360; 241.979; 241.403;	204.922; 211.112; 212.780; 213.769; 214.233; 214.235; 214.295; 214.053; 214.053; 212.199; 212.199; 210.471; 208.575;
12.03	ۋ 10		2.75; 3.00;	239.651; 237.781;	204.366; 202.264;
1.70; 1.80;	214.791; 222.447;	177.833; 185.496;	3.0;	16;	
1.85; 1.89; 1.93; 1.93; 1.95; 1.95; 2.05; 2.30;	224.199; 224.873; 225.009; 225.028; 224.942; 223.270; 220.217; 214.410;	187.251; 187.928; 188.066; 188.086; 188.001; 188.001; 186.336; 183.289; 177.491;	1.60; 1.70; 1.80; 1.85; 1.90; 1.95; 2.00; 2.05;	203.447; 222.881; 234.189; 237.713; 240.237; 241.994; 243.162; 243.877;	180.152; 197.778; 209.215; 212.805; 215.274; 216.859; 217.756; 218.122;
K+NaC	l angle	= 75 deg;	2.10; 2.15; 2.20; 2.30;	244.244; 244.346; 244.247; 243.641;	217.729; 217.147; 215.524;
2.25;	5;		2.40; 2.50;	242.709; 241.628;	213.568; 211.494;
2.10; 2.30;	183.745; 194.090;	151.887; 161.182;	2.75; 3.00;	238.843; 236.286;	206.443; 202.441;
2.50; 2.70;	200.845; 206.722;	171.674; 176.162;	3.5;	15;	
3.00;	214.715;	130.980;	1.60;	207.003;	186.714;
2.5;	8;	21.21	1.80;	234.609;	211.989;
1.90; 2.00; 2.10; 2.20; 2.30; 2.40; 2.70;	214.898; 220.723; 224.480; 226.977; 228.742; 229.994; 231.408;	193.047; 195.914; 196.691; 196.024; 193.948; 191.419; 196.172;	1.90; 1.90; 2.00; 2.05; 2.10; 2.15;	237.390; 239.189; 240.207; 240.635; 240.628; 240.313; 239.780;	214.000; 216.271; 217.366; 217.972; 218.156; 217.976; 217.499;

Table	6.1 (cont.)				
2.20; 2.30; 2.50; 2.70; 3.00;	239.097; 237.469; 233.906; 230.577; 226.436;	216.789; 214.893; 210.237; 205.479; 199.144;	1.70; 1.80; 1.90; 1.93; 1.96;	215.410; 223.242; 225.918; 226.038; 225.921;	182.602; 190.114; 193.849; 194.492; 194.964;	
4.03	15;		1.99; 2.10;	225.601; 223.148;	195.289; 195.498;	
1.60; 1.70;	204.377; 221.511;	184.122; 200.028;	و ٥٠. ٢ و ٥٠. ٢	8.0; 10;		
1.85; 1.90; 1.90; 1.95; 2.00; 2.10; 2.10; 2.20; 2.20; 2.20; 2.20; 2.30; 2.00; 3.	232.729; 234.111; 234.736; 234.784; 234.396; 234.396; 233.684; 233.684; 232.738; 231.631; 229.174; 224.309; 220.201; 215.529;	211.553; 213.285; 214.303; 214.760; 214.780; 214.467; 213.905; 213.158; 213.158; 211.273; 206.620; 201.692; 194.881;	1.70; 1.80; 1.85; 1.89; 1.91; 1.93; 1.95; 2.05; 2.15; 2.30;	214.863; 222.549; 224.316; 225.002; 225.144; 225.169; 225.088; 223.446; 220.423; 214.659;	178.740; 186.419; 188.159; 188.787; 188.874; 188.811; 188.587; 184.415; 183.678; 180.374;	
4.5;	10;		1.70;	214.790;	177.838;	
1.60; 1.70; 1.80; 1.90; 1.95; 2.00; 2.00; 2.10; 2.30; 2.50;	201.980; 218.657; 227.027; 230.244; 230.590; 230.348; 229.664; 228.651; 222.908; 216.705;	179.989; 195.308; 203.950; 208.335; 209.437; 210.009; 210.162; 209.989; 207.281; 203.112;	1.80; 1.85; 1.89; 1.91; 1.93; 1.95; 2.05; 2.15; 2.30;	222.445; 224.196; 224.870; 225.005; 225.024; 224.937; 223.264; 220.210; 214.400;	185.501; 187.256; 187.933; 188.070; 188.090; 188.005; 186.340; 183.293; 177.495;	
5.0;	9;		K+Na.Cl	angle	= 90 deg;	
1.70; 1.80; 1.90; 1.93; 1.96; 1.99; 2.10; 2.30; 2.50;	216.905; 225.003; 227.933; 228.130; 228.089; 227.847; 225.692; 219.149; 211.914;	190.485; 198.822; 203.084; 203.814; 204.348; 204.712; 204.937; 202.754; 199.264;	2.0; 1.70; 1.90; 2.10; 2.30; 2.50; 2.70; 3.00;	7; 151.949; 169.354; 188.488; 201.366; 210.045; 216.658; 224.265;	131.517; 167.852; 176.105; 179.572; 180.440; 177.230; 176.781;	
6.0;	8;		2.3;	7;		

10010		/			
1.70; 1.90; 2.10; 2.30; 2.50; 2.50; 2.70; 3.00;	197.095; 220.752; 229.997; 233.536; 234.672; 235.103; 235.253;	185.312; 198.471; 199.775; 196.434; 195.577; 196.262; 192.405;	1.85 1.91 1.95 2.00 2.05 2.10 2.15 2.20	<pre>239.652; 242.056; 243.052; 243.771; 244.041; 244.041; 243.974; 243.655; 243.140</pre>	204.622; 206.286; 207.357; 208.398; 208.907; 208.894; 208.469; 207.742
2.5;	16;		2.30	; 24 1 .76 1 ; 240.095;	205.701;
1.60; 1.70; 1.80;	193.893; 214.840; 227.331;	167.823; 187.207; 198.494;	2.50 2.75 3.00	; 238.320; ; 233.967; ; 230.103;	200.650; 194.472; 189.327;
1.90;	234.532;	203.893;	3.2;	13;	
2.00; 2.05; 2.10; 2.20; 2.20; 2.20; 2.30; 2.30; 2.40; 2.50; 2.75; 3.0;	238.483; 239.652; 240.437; 240.923; 241.177; 241.196; 240.797; 240.165; 238.267; 236.367;	205.774; 205.774; 205.872; 205.589; 205.022; 204.250; 202.307; 200.049; 197.597; 195.032; 193.021;	1.60 1.70 1.80 1.95 2.00 2.05 2.10 2.20 2.30	; 208.447; 226.217; 235.967; 240.726; 241.859; 242.396; 242.472; 242.472; 242.203; 242.203; 240.993; 239.276;	182.122; 198.132; 206.199; 209.166; 209.465; 209.398; 209.201; 208.878; 207.552; 205.411; 200.150;
2.8;	16;		2.70	; 231.433; ; 226.342;	194.901;
1.60; 1.70;	206.302; 224.892;	176.514; 189.608;	3.5;	15°	
1.80; 1.90; 1.90; 2.00; 2.00; 2.00; 2.00; 2.00; 2.00; 3.0; 3.0;	235.615; 238.974; 241.336; 242.927; 243.925; 244.467; 244.657; 244.657; 244.578; 244.295; 243.312; 242.002; 243.312; 242.002; 243.312; 243.332; 244.467; 244.295; 244.332; 244.467; 244.295; 244.332; 245.332; 245	197.621; 204.857; 206.945; 208.109; 208.574; 208.523; 208.523; 208.088; 207.372; 205.404; 203.067; 200.626; 194.874; 190.423;	1.60 1.70 1.80 1.91 1.95 2.00 2.02 2.02 2.07 2.10 2.15 2.30 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.5	;; 207.130; 224.640; 233.938; 238.423; 239.083; 239.398; 239.394; 239.394; 239.271; 239.122; 239.122; 238.809; 235.064; 235.064; 230.451; 220.640;	183.110; 198.907; 207.104; 210.608; 210.924; 210.808; 210.632; 210.632; 210.253; 209.935; 209.380; 209.380; 208.304; 208.304; 204.626; 199.140; 193.696; 186.689;
1.60:	208.303:	180 353:	4.0:	13;	
1.70;	226.421; 236.589;	195.821; 202.916;	,		

Table 6.1 (cont.)

Table	6.1 (cont.)			
1.60;	204.114;	182.720;	2.30;	216.061;	192.712;
1.80;	221.322; 230.147;	205.723;	8.0;	93	
1.91;;;;;; 1.95;;;;;; 2.05;;;; 2.20;; 2.20;; 2.20;; 2.3;;;;;;;	233.988; 234.399; 234.401; 233.967; 233.210; 231.060; 228.454; 222.949; 217.939; 211.906;	209.219; 209.584; 209.556; 209.105; 208.332; 206.133; 203.433; 197.642; 192.124; 184.907;	1.70 1.89 1.89 1.91 1.95 1.95 1.95 1.95 2.10 2.30 5	214.656; 222.538; 224.987; 225.128; 225.152; 225.071; 224.774; 224.774; 222.035; 214.628;	178.947;; 186.608;; 188.927; 189.003; 188.938; 188.738; 188.197; 188.197; 184.459; 180.432;
4.5;	10;		12.0;	8;	
1.70; 1.80; 1.85; 1.90; 1.95; 2.00; 2.05; 2.15; 2.30; 2.50;	218.669; 227.111; 229.241; 230.377; 230.744; 230.523; 229.860; 227.645; 223.202; 216.916;	195.440; 203.135; 205.228; 206.470; 207.044; 207.098; 206.748; 205.196; 201.665; 196.220;	1.70; 1.80; 1.89; 1.91; 1.93; 2.05; 2.15; 2.30;	214.789; 222.444; 224.368; 225.003; 225.022; 223.262; 220.207; 214.397;	177.860; 185.524; 187.957; 186.094; 188.114; 186.365; 183.319; 177.521;
5.0;	115		2 () *	7:	
1.70; 1.80; 1.91; 1.93; 1.95; 1.95; 1.96; 2.05; 2.05; 2.15; 2.30;	216.960; 225.114; 228.180; 228.290; 228.296; 228.132; 227.920; 227.098; 224.546; 219.561;	192.266; 199.830; 203.318; 203.587; 203.770; 203.899; 203.651; 202.353; 199.268;	1.70; 1.90; 2.10; 2.30; 2.50; 2.70; 3.00; 2.25;	169.509; 189.961; 204.351; 212.108; 216.595; 219.379; 222.219; 8;	159.071; 180.389; 182.638; 181.536; 178.415; 175.192; 169.494;
2.5;	212.523;	194.407;	1.70;	198.850; 212.506;	194.292; 198.192;
1.70; 1.80; 1.91; 1.93; 1.95; 1.95;	215.390; 223.228; 225.989; 226.044; 225.993; 225.742;	185.037; 192.579; 195.904; 196.158; 196.331; 196.462;	1.90; 2.10; 2.30; 2.50; 2.70; 3.00;	220.442; 226.728; 227.860; 227.348; 226.457; 225.410;	198.415; 195.073; 189.733; 185.048; 179.653; 168.521;
2.00;	225.471;	196.473;	2.5;	13;	100 601:0
2.15:	221.610	195.226:	1.60;	201.709;	180.004-9

I.6

.

Table	6.1 (cont.	>			
1.70; 1.80; 1.90; 1.905; 1.005; 2.005; 2.005; 2.20; 2.20; 2.20;	218.660; 228.240; 233.255; 234.627; 235.424; 235.778; 235.778; 235.806; 235.211; 234.107;	193.341; 198.803; 199.611; 199.398; 198.943; 198.100; 198.100; 196.929; 193.978; 190.658;	2.00 2.10 2.10 2.10 2.20 2.20 2.20 2.20	237.891; 237.738; 237.270; 236.569; 235.699; 233.643; 229.139; 224.876; 219.411;	199.418; 198.533; 197.314; 195.861; 194.253; 194.253; 190.807; 184.243; 184.243; 178.411; 170.737;
2.50;	231.389; 228.786;	184.160; 179.848;	3.5;	15;	
3.00;	225.092;	166.950;	1.60;	206.582;	173.450; 189.872;
1.70; 1.80; 1.90; 1.95; 2.005; 2.20; 2.20; 2.20; 2.20; 2.20; 2.20; 2.20; 2.20; 2.20; 3.00;	224.224; 233.100; 237.358; 238.334; 238.764; 238.764; 238.763; 238.468; 237.281; 235.647; 235.647; 231.889; 231.889; 228.284; 223.790;	189.675; 196.011; 197.307; 196.685; 195.446; 193.755; 192.008; 190.232; 188.563; 182.884; 182.884; 176.942; 170.085;	1.80 1.90 1	231.931; 234.217; 235.576; 236.225; 236.225; 236.331; 236.027; 235.415; 235.415; 235.415; 235.415; 231.267; 231.267; 231.267; 221.505; 215.726;	198.130; 200.196; 201.261; 201.545; 201.227; 201.227; 200.450; 199.331; 197.961; 197.961; 193.013; 193.013; 185.967; 171.482;
3.0;	143		4.03	13;	
1.70 1.00 1.00 90 1.90 00 1.90 00 1.00 00 1.00 00 1.00 00 1.00 00 00 00 00 00 00 00 00 00	224.643; 233.332; 235.819; 235.819; 237.412; 238.303; 238.650; 238.650; 238.580; 238.580; 238.580; 238.193; 237.572; 236.781; 236.781; 236.810; 234.910; 230.810; 230.810; 226.825; 221.748;	188.608; 196.086; 197.751; 198.420; 198.318; 197.629; 196.508; 195.083; 195.083; 195.452; 193.452; 191.714; 188.584; 183.380; 177.632; 170.307;	1.70;; 1.80;; 1.850;; 1.905;; 2.0050; 2.200;; 2.200; 2.200; 2.200; 2.200; 3.00; 3.00; 3.00; 3.00; 3.00; 3.00; 3.00; 3.00; 5;	220.469; 229.414; 231.735; 233.046; 233.538; 233.538; 233.051; 232.240; 232.240; 232.240; 232.240; 232.240; 232.240; 227.301; 227.301; 221.644; 216.402; 209.002; 9;	192.575; 200.105; 201.982; 202.927; 203.145; 202.033; 202.033; 200.936; 198.090; 198.090; 194.753; 187.737; 181.177; 172.937;
3.2;	143		1.70;	213.495;	193-749;
1.60; 1.70; 1.80; 1.90; 1.95;	208.345; 224.419; 232.941; 236.829; 237.630;	171.995 188.596 196.766 199.681 199.850;	1.90; 1.90; 2.00; 2.10; 2.30;	227.132; 230.599; 230.668; 229.299; 223.754;	200.770; 203.300; 203.156; 201.360; 195.489;

Table	6.1 (cont.)			
2.50; 2.70; 3.00;	217.516; 211.800; 204.755;	188.767; 182.413; 174.316;	1.95; 2.05; 2.15;	224.938; 223.265; 220.211; 214.402;	188.077; 186.414; 183.370; 177.575;
5.0;	11;		2.009	211029	11.01.09
1.70; 1.80; 1.85; 1.90;	217.031; 225.335; 227.416; 228.509;	192.554; 199.776; 201.554; 202.461;	K+NaCl 2.8;	. angle	= 120 deg;
1.93;; 1.95;; 1.95;; 2.05;; 2.15;; 2.30; 2.50;	228.785; 228.826; 228.665; 227.855; 225.478; 220.714; 213.945;	202.671; 202.675; 202.503; 201.742; 199.624; 195.385; 189.154;	1.70; 1.80; 1.95; 1.95; 2.05; 2.100;	216.115; 222.654; 224.895; 224.998; 223.998; 222.9939; 222.994;	181.489; 185.803; 185.855; 184.863; 184.863; 181.632; 179.615; 175.160;
6.0;	93		2.30;	218.055;	170.436;
1.70; 1.80; 1.85; 1.90; 1.93; 1.96; 1.96; 1.99; 2.10; 2.30;	215.517; 223.412; 225.286; 226.167; 226.314; 226.225; 225.935; 225.935; 223.604; 216.735;	187.224; 194.750; 196.642; 197.672; 197.966; 198.062; 197.992; 196.714; 192.295;	2.40, 3.0; 1.700; 1.805; 1.905; 1.905; 1.905; 1.905;	13; 220.329; 226.745; 228.264; 228.989; 229.101; 228.746; 228.746;	175.986; 184.167; 185.592; 185.428; 185.428; 184.344;
8.0;	10;		2.10;	227.079;	180.985;
1.70; 1.80; 1.85; 1.89;	214.875; 222.565; 224.334; 225.021; 225.164;	179.444; 187.108; 188.830; 189.455;	2.20; 2.30; 2.50; 2.70; 3.00;	221.942; 216.505; 211.853; 206.698;	171.971; 161.684; 154.244; 145.084;
1.93;	225.190;	189.532;	3.3;	12;	
2.05; 2.15; 2.30;	223.474; 223.474; 220.457; 214.704;	187.533; 184.930; 181.401;	1.60; 1.70; 1.80;	207.668; 221.762; 228.811; 231.578;	162.445; 175.450; 180.766; 186.005
12.0;	103		2.00;	231.344;	185.741; 184.852;
1.70; 1.80; 1.85; 1.89; 1.91; 1.93;	214.790; 222.445; 224.196; 224.370; 225.006; 225.024;	177.904; 185.569; 187.326; 133.003; 188.141; 188.162;	2.10;;;; 2.20;;; 2.30;;; 2.50;; 2.50;; 2.50;;	229.874; 227.591; 224.923; 219.412; 214.444; 208.549;	183.516;; 179.996;; 175.888;; 167.370;; 159.762; 151.035;
Table	0.1 (cont.)			
--	--	--	---	---	--
3.5;	15;		1.99; 2.10;	229.192; 227.465;	200.028; 197.581;
1.60;	207.236; 221.740;	165.424; 179.482;	2.30	215.217;	163.188;
1.80;	229.030; 230.883;	185.743; 186.795;	5.0;	9;	
1.90;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	231.852; 232.120; 231.894; 231.313; 230.462; 229.413; 225.584; 225.584; 220.069; 214.997; 208.832;	187.242; 187.657; 187.655; 187.017; 185.882; 184.399; 182.675; 178.800; 170.601; 163.020; 154.128;	1.70 1.855 1.993 1.993 1.993 1.993 1.993 1.990 1.990 2.30 2.30	215.918; 223.936; 225.871; 226.820; 227.009; 226.964; 226.719; 226.719; 224.568; 218.068;	189.056; 196.354; 198.105; 198.971; 199.153; 199.129; 199.129; 198.928; 198.928; 197.097; 191.488;
4.0:	13:		ۇ O . U	103	
1.70;;;;; 1.80;;;;;; 1.95;;;;;; 1.95;;;;;; 1.95;;;;;; 1.95;;;;;;; 1.95;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	220.018; 228.153; 230.218; 231.337; 231.729; 231.569; 230.998; 230.122; 227.737; 224.895; 219.077; 213.747; 207.119;	186.853; 193.425; 194.829; 195.334; 195.139; 195.139; 194.401; 193.240; 191.763; 191.763; 188.319; 199.449; 199.449; 199.449; 199.449; 199.449; 199.449; 199.449; 199.449; 199.449; 199.449; 199.44040; 199.4403; 199.44040; 199.44050; 199.44040; 199.44040; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.44050; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.490; 199.400	1.70;; 1.805;; 1.805;; 1.91;; 1.93;; 1.93;; 1.93;; 1.93;; 1.93;; 1.95;; 2.30; 1.20; 1.20; 1.70; 1.60;	214.938; 222.652; 224.433; 225.131; 225.280; 225.311; 225.237; 225.237; 223.629; 220.643; 214.943; 10; 214.795; 222.451;	180.257; 187.994; 199.782; 190.482; 190.635; 190.675; 190.615; 189.233; 186.907; 185.983; 185.632;
4.5;	79		1.85; 1.39;	224.203; 224.878;	187.389; 188.068;
1.70;; 1.80;; 1.90;; 2.00;; 2.10;; 2.30;; 2.50;;	218.187; 226.728; 230.127; 230.424; 228.919; 223.481; 217.274;	190.632; 197.173; 199.112; 198.242; 195.726; 180.457; 180.511;	1.91; 1.93; 1.95; 2.05; 2.15; 2.30;	225.014; 225.033; 224.946; 223.275; 220.223; 214.417;	188.206; 138.226; 138.143; 186.483; 186.483; 183.442; 177.651;
5.0;	ۋ 10		K+NaCl	angle	= 135 deg;
1.70; 1.80; 1.85; 1.90; 1.93; 1.96;	217.240; 225.661; 227.796; 228.942; 229.249; 229.320;	191.653; 198.392; 199.904; 200.529; 200.563; 200.386;	3.0; 1.70; 1.80; 1.85;	7; 202.308; 205.122; 204.865;	165.630; 167.972; 167.391;

Table	6.1 (cont.)			
1.90; 1.95; 2.00; 2.05;	203.857; 202.326; 200.419; 198.216;	165.952; 163.801; 161.099; 158.034;	1.90; 1.95; 2.00; 2.05; 2.10;	229.757; 230.032; 229.727; 228.991; 227.943;	193.656; 193.229; 192.257; 190.866; 189.161;
3.5;	103		2.20;	225.2475	185.124; 180.631;
1.60; 1.70; 1.80;	208.369; 219.786; 224.706;	158.078; 171.572; 177.003;	2.50; 2.70; 3.00;	215.740; 209.819; 202.311;	171.355; 162.574; 151.029;
1.90;	225.543;	177-437;	5.0;	105	
2.00; 2.05; 2.15; 2.30;	224.950; 223.882; 222.454; 218.869; 212.579;	174.837; 172.814; 167.895; 159.722;	1.70; 1.80; 1.85; 1.90; 1.93;	217.320; 225.857; 228.020; 229.131; 229.495;	189.761; 195.927; 197.159; 197.502; 197.305;
4.03	11;		1.96; 1.99;	229.573; 229.451;	197.013; 196,480;
1.60; 1.70; 1.80;	207.320; 221.670; 228.211;	165.523; 179.282; 185.638;	2.10; 2.30; 2.50;	227.716; 221.883; 215.304;	193.385; 185.364; 176.571;
1.90;	230.216;	187.020;	6.0;	9;	
90;; 2.00;; 2.05;; 2.10;; 2.30;; 2.50;	229,590; 228,663; 227,461; 221,166; 214,204;	185 384; 185 384; 183 844; 181 978; 172 767; 162 888;	1.70; 1.80; 1.85; 1.90; 1.93; 1.96;	216.369; 224.567; 226.599; 227.644; 227.892; 227.906;	189.843; 196.918; 198.530; 199.229; 199.300; 199.154;
4.23	12;		1.99; 2.10;	227.720; 225.786;	198.826; 196.467;
1.70; 1.80; 1.85;	220.228; 227.750; 229.469;	182.466; 188.599; 189.803;	2.30; 8.0;	219.651; 10;	189.758;
1.90; 1.95; 2.00; 2.10; 2.20; 2.30; 2.50; 2.50; 3.00;	230.256; 230.342; 229.904; 227.965; 225.191; 222.025; 215.450; 209.263; 201.275;	190.067; 189.598; 188.566; 185.323; 181.121; 176.459; 166.882; 157.878; 145.968;	1.70; 1.80; 1.85; 1.89; 1.91; 1.93; 1.93; 2.05; 2.05; 2.15;	215.053; 222.807; 224.610; 225.326; 225.483; 225.524; 225.460; 223.903; 220.974;	181.392; 189.227; 191.089; 191.872; 192.071; 192.161; 192.154; 191.041; 188.867;
4.5;	13;		2.503	10.	10-7-9699
1.70;	218.304; 226.640;	186.330; 192.277;	12.03	214 802:	178.028;
1.05;	228.703;	193.3983	1.103	21-1-0029	101-109

		93		т	• 6
Table	6.1 (cont.)			
1.80; 1.85; 1.89; 1.91; 1.93; 1.95; 2.05; 2.15; 2.30;	222.461; 224.214; 224.890; 225.026; 225.046; 224.960; 223.292; 220.243; 214.441;	185.700; 187.458; 188.138; 188.278; 188.299; 183.299; 183.216; 186.559; 183.521; 177.734;	1.60; 1.70; 1.80; 1.85; 1.90; 1.95; 2.05; 2.15; 2.50; 2.50;	209.593; 223.559; 229.578; 230.691; 230.931; 230.505; 228.252; 224.808; 218.476; 209.144;	167.262; 179.610; 184.640; 185.278; 185.003; 185.003; 184.010; 180.466; 175.573; 166.940; 154.490;
K+NaC	l angle	= 150 deg;	4.5;	10;	
3.0; 1.80;; 1.85;; 1.90;; 1.95; 2.00;; 2.05;	6; 140.867; 134.129; 127.096; 119.708; 111.102; 101.227;	116.724; 109.899; 102.393; 94.450; 35.122; 74.563;	1.60; 1.70; 1.80; 1.85; 1.90; 1.95; 2.00; 2.10; 2.30; 2.50;	205.174; 221.031; 228.452; 230.092; 230.768; 230.768; 230.711; 230.102; 227.750; 220.724; 212.666;	170.356; 182.785; 187.966; 188.709; 188.558; 187.706; 186.310; 182.356; 171.989; 160.523;
3.5;	9;		4.7;	8;	
1.60; 1.70; 1.75; 1.80; 1.85; 1.90; 1.90; 1.95; 2.05;	203.586; 210.838; 211.844; 211.547; 210.224; 208.075; 205.245; 201.853; 197.992;	150.969; 161.511; 163.728; 164.497; 164.084; 162.647; 160.364; 157.424; 153.989;	1.70; 1.85; 1.90; 1.95; 2.00; 2.10; 2.30; 2.50;	218.841; 228.962; 229.926; 230.122; 229.736; 227.770; 221.479; 214.298;	185.254; 191.397; 191.332; 190.574; 189.281; 185.564; 175.768; 165.047;
4.03	13;		5.0;	11;	
1.60;;;;; 1.75;;;;;;; 1.85;;;;;;; 1.85;;;;;;; 1.90;;;;;; 1.90;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	213.320; 223.951; 226.624; 228.029; 228.435; 228.052; 227.046; 225.549; 225.549; 223.664; 221.475; 216.440; 210.830; 198.737;	161.309; 173.423; 176.454; 176.354; 177.988; 178.325; 177.712; 176.350; 174.412; 172.052; 169.382; 163.348; 156.658; 142.493;	1.70; 1.80; 1.85; 1.90; 1.93; 1.93; 1.96; 1.99; 2.05; 2.15; 2.30; 2.50; 6.0;	217.466; 225.913; 228.036; 229.154; 229.437; 229.482; 229.323; 228.516; 226.170; 221.482; 214.766; 10;	187.800; 193.410; 194.357; 194.414; 194.104; 193.582; 192.879; 191.032; 187.039; 179.924; 169.879;
4.3;	10;		1. (0 9	210,0009	

Table 6.1 (cont.	.)		.L. • C	0
1.80; 225.161; 1.85; 227.253; 1.90; 228.358; 1.93; 228.640; 1.96; 228.688; 1.99; 228.535; 2.05; 227.748; 2.15; 225.443; 2.30; 220.791;	196.808; 198.242; 198.756; 198.711; 198.447; 197.997; 196.646; 193.458; 187.512;	1.70; 1.75; 1.80; 1.85; 1.90; 1.95; 2.00; 2.05;	223.558; 225.025; 225.218; 224.278; 222.552; 220.156; 217.188; 213.724;	167.256; 169.105; 169.515; 170.176; 169.193; 167.183; 164.437; 161.128;
8.0: 10:		4.33	10,	164 0120
1.70; 215.204; 1.80; 223.006; 1.85; 224.836; 1.89; 225.575; 1.91; 225.744; 1.93; 225.744; 1.95; 225.744; 2.00; 225.224; 2.10; 222.951;	182.629; 190.524; 192.431; 193.258; 193.482; 193.596; 193.615; 193.308; 191.637;	1.80; 1.70; 1.80; 1.85; 1.90; 1.95; 2.00; 2.10; 2.30; 2.50;	215.900; 227.102; 230.959; 231.158; 230.566; 229.270; 227.431; 222.669; 210.149; 194.855;	175.700; 179.799; 179.850; 178.790; 177.303; 175.378; 169.824; 155.138; 138.358;
2.30; 215.936;	186.398;	4.5;	10;	
12.0; 10; 1.70; 214.810; 1.80; 222.472; 1.85; 224.227; 1.89; 224.904; 1.91; 225.041; 1.93; 225.061; 1.95; 224.976; 2.05; 223.311; 2.15; 220.265; 2.30; 214.469;	178.086; 185.760; 187.520; 188.202; 188.341; 188.364; 188.281; 186.627; 183.593; 177.811;	1.60; 1.70; 1.80; 1.85; 1.90; 1.90; 2.00; 2.10; 2.50; 4.7;	210.790; 225.316; 231.298; 232.245; 232.258; 231.570; 230.357; 226.675; 216.657; 204.626;	168.166; 179.878; 184.356; 184.725; 184.166; 182.834; 180.869; 176.064; 163.093; 148.112;
K+NaCl angle	= 165 deg;	1.60; 1.70; 1.80;	205.275; 221.721; 229.466; 231.165;	171.117; 183.067; 187.798; 188.329;
3.5; 6;		1.90;	231.834;	187.967;
1.80; 185.528; 1.85; 180.673; 1.90; 174.494; 1.95; 167.320; 2.00; 159.589;	146.992; 143.182; 138.031; 131.706; 124.288;	2.00; 2.10; 2.30; 2.50;	230.995; 228.330; 220.182; 210.416;	185.264; 180.740; 169.173; 155.837;
2.05; 151.084;	115.892;	5.0;	12;	
4.0; 9;		1.70;	218.272;	186.353; 191.471;
1.60; 215.750;	156.473;			

	•••			
Table 6.1 (cont)			
1.85; 228.862; 1.90; 229.956;	192.183; 192.006;	4.03	4.5	
1.93; 230.220; 1.96; 230.241;	191.558; 190.896;	1.91;	218.245; 215.657;	165.475; 163.260;
1.99; 230.056; 2.05; 229.190; 2.10; 228.084;	187.918; 185.785;	2.20;	211.816; 190.705;	159.876; 141.330;
2.20; 225.204 2.30; 221.755	180.843; 175.424;	4.25;	73	
2.50; 214.204;	163.890;	1.60; 1.70;	218.618; 227.584;	162.611; 173.547;
	100.000.	1.903	228.399;	175.527;
1.80; 225.549 1.85; 227.676	196.464; 197.759;	2.30; 2.50;	201.661; 180.338;	164.192; 147.120; 126.990;
1.90; 228.812; 1.93; 229.113; 1.06; 220.177	198.130; 197.996; 197.643:	4.53	113	1
1.99; 229.041 2.05: 228.231	197.102; 195.564;	1.50;	214.136; 227.338;	1.67.799;
2.15; 226.007; 2.30; 221.368;	192.052; 185.597;	1.80; 1.89;	232.266; 232.563;	183.300; 182.908;
8.0; 10;		1.92;	232.085; 231.386;	182.159; 181.166;
1.70; 215.332 1.80; 223.178	183.523; 191.447;	2.10; 2.30;	225.488; 213.779;	173.469; 159.029;
1.85; 225.031 1.89; 225.791	193.377; 194.222;	2.503 2.703	199.253; 181.723;	142.289; 124.134;
1.91; 225.970 1.93; 226.034;	194.455; 194.578; 194.604;	4.73	6;	
2.00; 225.502 2.10; 223.294	194.313; 192.643;	1.60; 1.70;	207.578; 223.652;	170.819; 132.516;
2.30; 216.439	; 187.246;	: 1.80 1.90	230.887; 232.712;	186.995; 186.864;
12.0; 10;		2.00; 2.10;	231.355; 228.156;	183.817; 178.942;
1.70; 214.817 1.80; 222.482	; 178.126; ; 185.802; ; 197.564;	5.0;	13;	
1.89; 224.915 1.91: 225.053	188.246;	1.70;	218.863;	185.938;
1.93; 225.074 1.95; 224.989	188.409; 188.327;	1.85;	229.456;	191.493;
2.05; 223.326 2.15; 220.284	186.676; 183.645;	1.93; 1.95;	230.782; 230.810;	190.717; 190.257;
2.30; 214.492	; 177.866;	1.98; 2.01;	230.670; 230.343;	189.409j 188.392;
K+NaCl ang	le= 180 deg;	2.05;	229.662; 228.498;	184.564;

Table 6.1 (cont	.)			
2.20; 225.434; 2.30; 221.755; 2.50; 213.435;	179.369; 173.589; 161.142;	3.1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	225.093; 225.322; 222.753; 215.513;	218.056; 215.527; 206.453; 193.228;
6.0; 10;		4.5;	13;	
1.70; 217.216; 1.80; 225.634; 1.85; 227.770; 1.91; 229.044; 1.93; 229.218; 1.95; 229.287; 1.97; 229.261; 2.00; 229.067; 2.10; 227.304; 2.30; 221.474;	189.920; 196.289; 197.535; 197.327; 197.691; 197.457; 197.134; 196.504; 193.433; 184.858;		217.176; 225.304; 230.077; 232.490; 233.257; 232.089; 231.751; 228.614; 228.614; 229.404;	191.475; 202.099; 209.703; 215.144; 219.037; 221.809; 223.732; 225.139; 222.117; 216.739;
8.03 113		3.8:	229.290; 227.982;	213.616; 206.506;
1.70; 215.384; 1.80; 223.247; 1.85; 225.110;	183.851; 191.778; 193.711;	4.2j 5.0j	224.710 [°] 10°°	197.824;
1.89; 225.877; 1.91; 226.061; 1.93; 226.129; 1.95; 226.092; 1.97; 225.962; 2.05; 224.688; 2.15; 221.934; 2.30; 216.642;	194.559; 194.793; 194.918; 194.945; 194.885; 193.961; 191.779; 187.506;	N N N N N M M M	218.206; 226.174; 230.813; 233.127; 233.837; 233.460; 232.367; 228.996;	185.525; 195.127; 201.871; 206.594; 209.905; 212.245; 213.931; 216.176;
12.0; 10;		3.5;	225.000; 221.004;	217.717; 218.715;
1.70; 214.820; 1.80; 222.485;	178.140; 185.817;	6.03	103	
1.85; 224.241; 1.89; 224.920; 1.91; 225.057; 1.93; 225.078; 1.95; 224.994; 2.05; 223.333; 2.15; 220.291; 2.30; 214.501; →	187.579; 188.262; 188.402; 188.425; 188.343; 186.693; 183.663; 183.663; 177.886;	100 10 10 10 10 10 10 10 10 10 10 10 10	218.022; 225.674; 229.995; 231.232; 231.988; 232.345; 232.373; 231.670; 228.374;	175.947; 184.082; 139.493; 191.438; 192.986; 194.203; 195.148; 195.148; 196.404; 197.332;
Na+KC1 zero	angle;	3.5;	221.623;	197.191;
4.09 09		8.0;	8;	
2.6; 217.520; 2.7; 221.774; 2.8; 223.720; 2.9; 224.502	205.131 212.407 216.799 218.620	2.5;	217.811; 225.289; 229.427;	169.983; 177.456; 181.592;

Table	6.1 (cont	•)			
2223355 2223355	231.231; 231.421; 228.883; 224.413; 219.313;	183.391; 183.576; 181.025; 177.644; 175.716;	07-00001 07-00001	226.446; 231.053; 233.320; 233.982; 233.564; 232.435;	194.664; 201.270; 205.852; 209.006; 211.175; 212.681;
12.0;	9; 217.760;	169.394:	3.575	229.012; 224.993; 220.939;	214.553; 215.742; 216.675;
2.60; 2.70;	225.201; 229.304;	176.8389 180.9449	6.0;	103	
2.2.95;; 2.2.95;; 2.2.2.95;; 3.5;;	231.071; 231.312; 230.360; 228.601; 224.042; 218.645;	182.713; 182.955; 182.505; 180.250; 175.697; 170.504;		218.066; 225.706; 230.016; 231.246; 231.995; 232.346; 232.367;	175.899; 103.923; 189.224; 191.114; 192.606; 193.769; 194.657;
Na+KC	l angl	e=15 deg;	3.2;	231.649; 228.312;	195.801; 196.502;
4.03	9;		3.5;	221.400;	195.990;
	220.371; 224.941; 227.166; 227.968; 228.293; 228.771; 229.131; 226.772; 218.879;	206.227; 213.767; 218.646; 221.332; 222.039; 220.967; 214.933; 205.579; 194.520;		217.814; 225.289; 229.426; 231.227; 231.414; 228.869; 224.392; 219.284;	169.967; 177.439; 181.573; 183.370; 183.551; 180.989; 177.294; 175.270;
4.5;	13;		12.03	9;	
1999 1997 1997 1997 1997 1997 1997 1997	217.975; 226.063; 230.821; 233.249; 234.059; 232.720; 232.720; 229.453; 229.453; 229.033; 229.637;	191.101; 201.679; 209.179; 214.487; 218.245; 220.905; 222.770; 224.671; 223.386; 219.371; 216.939;	150 7 00 0 1 0 5 16 7 0 0 0 1 0 5 1 0 0 0 0 0 0 1 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	217.760; 225.201; 229.304; 231.071; 231.312; 230.660; 228.601; 228.601; 224.042; 218.845;	169.394; 176.335; 180.944; 182.713; 182.955; 182.505; 180.250; 175.697; 170.504;
4.03	229.593; 228.539;	205.896;	Na+KC	l angl	e=30 deg;
5.0;	10;		3.0;	6;	in the second
2.5;	218.494;	185.213;	2.8;	145.641;	124.555;

Table	6.1 (cont.)			
	137.360; 126.620; 114.051; 84.636; 52.073;	118.367; 110.322; 100.718; 78.061; 50.737;	2.2000	231.190; 233.385; 233.971; 233.468; 232.246; 288.623;	199.760; 203.843; 206.501; 208.174; 209.180; 210.035;
3.5;	8;		3.5;	224.400; 220.201;	210.192; 210.182;
2.45	190.572; 204.110;	176.827;	6.0;	10 j	
00004475 00004475 00004475	212.941; 221.846; 224.078; 222.077; 216.670; 204.087;	201.448; 210.225; 209.847; 204.340; 196.215; 181.300;	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	218.130; 225.732; 229.999; 231.207; 231.933; 232.260;	175.768; 183.505; 188.513; 190.257; 191.603; 192.618;
4.03	12;		2.93	232.256; 231.485;	193.360; 194.208;
	217.166; 225.499; 230.490; 233.152; 234.234;	196.130; 206.957; 214.474; 219.585; 222.920;	3.2; 3.5; 8.0;	228.036; 221.000; 8;	194.304; 192.842;
0.10007000 0.10077000 0.10077000 0.10077000	234.308; 233.249; 232.832; 232.497; 231.981; 230.063; 226.956;	224.908; 225.821; 225.072; 221.052; 217.403; 210.003; 202.265;		225.287; 229.417; 231.211; 231.391; 228.329; 224.334; 219.203;	177.394 181.524 183.316 183.492; 180.400; 176.413; 174.076
4.53	13;		12.03	9;	
5570000100070000 00000000000000000000000	219.091; 227.172; 231.920; 234.339; 235.150; 234.871; 233.871; 230.697; 223.569; 224.105; 224.025; 224.023; 224.023;	190.443; 200.406; 207.340; 212.114; 215.362; 217.539; 218.972; 220.430; 220.694; 219.725; 218.653; 215.806; 215.806;	2.5; 2.60; 2.7;; 2.85; 2.85; 2.95; 3.3; 3.5; Na.+KC	217.758; 225.198; 229.300; 231.065; 231.305; 230.852; 228.590; 224.028; 218.828;	169.378; 176.821; 180.926; 182.694; 182.935; 182.484; 180.227; 175.671; 170.475;
5.0:	10;	2.2.0009	3.0;	6;	
2.5;	218.801; 226.663;	184.667; 193.646;	2.8;	217.622; 219.948;	200.084; 201.664;

Table	5.1 (cont	.)			
3.0 3.1 3.3 5.5 5.5	220.956; 221.041; 219.563; 217.142;	202.081; 201.724; 199.719; 196.985;	2.8;	233.232; 233.720; 233.108; 231.702; 227.707;	200.968; 202.944; 203.967; 204.396; 204.0395;
3.5;	93		3.5;	223.128; 210.553;	202.934; 201.660;
4 10 6 0 0 4 -	202.963; 216.865; 226.023; 235.375; 236.233; 238.288;	182.592; 198.165; 208.680; 220.047; 223.938; 224.023;	6.0; 2.0; 2.0; 7.5; 7.5; 7.5; 7.5; 7.5; 7.5; 7.5; 7.5	10; 218.150; 225.703; 229.919; 231.100	175.694; 183.073; 187.670; 189.207;
3.79	235.115; 232.930;	218.271; 214.099;	2.655	231.800; 232.098;	190.347; 191.158;
4.03	133		2000	231.238; 227.665;	192.147;
22220	208.045; 220.713; 228.765;	176.995; 193.333; 204.342;	3.5; 8.0;	220.431; 8;	188.831
	233.034 236.230 237.246 237.192 237.192 237.192 237.192 237.292 237.292 237.292 237.292 233.8633 230.933 230.933 220.410 225.6935 2224.443	211.451; 216.047; 218.926; 220.608; 221.449; 221.522; 220.338; 218.456; 218.456; 214.955; 211.244;	50700105 50700105 00000105	217.817; 225.277; 229.398; 231.184; 231.354; 228.772; 224.255; 219.100;	169.881; 177.343; 181.468; 103.255; 183.426; 180.779; 180.779; 176.193; 172.505;
4.5;	113		12.0;	9;	160 378
10070001m	219.908; 227.913; 232.575; 234.745; 235.316; 234.640; 233.660; 230.130;	188.664; 197.575; 203.565; 207.858; 210.535; 212.029; 212.753; 212.852;		225.198; 229.300; 231.065; 231.305; 230.852; 228.590; 224.028; 218.828;	176.821; 180.926; 182.694; 182.935; 182.484; 180.227; 175.671; 170.475;
3.73	225.997;	212.060; 210.926; 208.947;	Na.+KC	l angl	e= 60 deg;
5.0;	10;		2.5;	8;	100 060
2.5;	218.980; 226.728; 231.144;	183.823; 192.132; 197.567;	2.95;;;;	214.408; 218.922; 222.120; 224.380;	193.313; 195.760; 197.662;

		100			I.6
Table	6.1 (cont)			
3.55 3.55 3.75 3.75 3.75 3.75 3.75 3.75	227.120; 228.631; 229.660; 230.835;	200.217; 201.517; 202.172; 202.653;	2.8; 2.9; 3.0; 3.1; 3.3;	234.245; 234.726; 234.108; 232.759; 228.843;	204.075; 205.691; 206.298; 206.222; 204.877;
3.0;	13;		3.5; 3.7;	224.290; 219.726;	202.771; 200.454;
2.4;	202.475; 217.732;	182.241;	4.0;	213.405;	197.109;
2.09	234.701;	206.562;	5.03		100 070
2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4	238.928; 241.417; 242.705; 243.170; 243.610; 241.022; 239.047; 235.980; 233.107;	216.447; 218.463; 219.316; 219.410; 218.387; 216.622; 214.572; 214.572; 211.402; 208.294;	2078999199999 2078999199999 202229991999 10577 202239991999 10577	216.943; 226.572; 230.864; 232.820; 233.161; 232.404; 230.918; 226.735; 221.906; 217.055;	191.018; 195.777; 195.777; 198.516; 199.854; 200.235; 199.974; 198.357; 198.357; 196.109; 193.751;
3.5;	9 ŝ		6.0;	10 ;	
4;;;;;;;;;;;;; 4.5680024;;;;; 2.2.2.2.3.3.3.3.5;;;;;;;;;;;;;;;;;;;;;;;	209.112; 222.508; 231.147; 239.449; 241.086; 239.652; 236.973; 232.437; 228.204;	181.728; 195.920; 205.713; 215.964; 218.984; 218.570; 216.619; 212.737; 208.773;	22222 20775 20775 2000 2000 2000 2000 20	218.119; 225.628; 229.800; 230.959; 231.635; 231.911; 231.856; 230.979; 227.304;	175.852; 183.103; 187.330; 188.645; 189.556; 190.136; 190.447; 190.448; 189.922;
4.03	12;		3.5;	219.897;	185.147;
45678901359 10010570	208.752; 221.520; 229.568; 234.275; 236.635; 237.371; 237.012; 235.936; 232.597; 228.630; 224.650; 210.208	179.176; 192.250; 200.983; 206.626; 210.102; 212.061; 212.930; 213.023; 211.794; 209.640; 207.179; 203.485	8.0; 2.5; 2.6; 2.7; 2.8; 2.9; 3.1; 3.5; 3.5;	8; 217.807; 225.260; 229.374; 231.152; 231.314; 228.715; 224.179; 219.004;	169.861; 177.320; 181.442; 183.226; 183.395; 180.792; 175.792; 171.149;
4.03	219.2005	203•409 j	0 5.	2) 017 758 ·	169.378:
4.2; 2.5; 2.6; 2.7;	219.948; 227.716; 232.148;	187.683; 195.822; 200.996;	2.60; 2.60; 2.7; 2.85;	225.198; 229.300; 231.065; 231.305;	176.821 180.926; 182.694; 182.935

•

100

					T . O
Table	6.1 (cont	.)			
2.95; 3.1; 3.3; 3.5;	230.852; 228.590; 224.028; 218.828;	182.484; 180.227; 175.671; 170.475;	4 556 7-60 2 2 2 2 2 2	209.088; 221.632; 229.466; 233.971; 236.142;	178.220; 190.015; 197.552; 202.078; 204.493;
Na+KCI	l anglo	e= 75 deg;	2.9;	236.700; 236.159;	205.381;
2.5;	13;		3.7;	234.889; 231.126;	204.645; 202.021;
2.4;	201.394; 217.197; 227.878;	182.057; 193.737; 201.062;	3.7; 4.0;	222.251; 216.027;	195.315; 190.491;
2.7;	234.919; 239.377;	205-316; 207-424;	4.5°	10;	
2	242 009; 243 356; 243 806; 243 048; 241 100; 238 669; 234 811; 230 976;	208.074; 207.787; 206.935; 204.464; 202.870; 201.523; 198.199; 194.477;	2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 5 5 5 5	219.935; 227.588; 231.911; 233.902; 234.280; 233.562; 232.116; 228.013;	186.947; 194.262; 198.608; 200.882; 201.723; 201.598; 200.827; 198.201;
3.0;	13;		3.5; 3.7;	223.266; 218.495;	194.975;
4.5678901355555 2.22222 2.2222 2.2222 2.222 2.222 2.225 2.5570 2.3570 3.5700 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000 3.57000000000000000000000000000000000000	210.922; 224.749; 233.713; 239.254; 242.397; 243.863; 244.168; 244.168; 243.679; 244.299; 238.032; 234.516; 229.368; 224.640;	180.460; 193.175; 201.868; 207.289; 210.240; 211.477; 211.559; 210.876; 208.218; 208.218; 204.831; 201.345; 196.425; 192.072;	5.0; 5.55;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	9; 218.922; 226.481; 230.707; 232.599; 232.878; 232.061; 230.516; 226.216; 221.274; 10;	183.603; 190.743; 194.926; 197.061; 197.794; 197.582; 196.750; 194.066; 190.850;
3.5;	9;		2.5;	218.088;	176.588; 183.858;
4;;;;;;;;;;; 4568024;;;;;;; 22223333334	210.908; 223.834; 232.034; 239.399; 240.032; 237.595; 233.920; 227.870; 222.133;	180.342; 192.444; 200.239; 207.528; 208.705; 206.931; 203.832; 198.555; 193.537;		229.719; 230.866; 231.530; 231.793; 231.725; 230.822; 227.097; 219.614; 8:	187.941; 189.124; 189.872; 190.269; 190.381; 189.965; 187.606; 182.717;
4.0:	12:		0.09	02	

lol

•

Table	6.1 (cont	5.)			
2.5;	217. 96; 225.243; 229.353;	169.923; 177.382; 181.504*	4.33	222.308; 217.143;	177.759 172.929
2.8;	231.125;	183.291;	3.5;	9;	
2.9; 3.1; 3.3; 3.5;	228.673; 224.126; 218.941;	180.884; 176.319; 171.121;	2.4; 2.5; 2.6;	210.332; 222.935; 230.855; 237.736	178.276 186.782 195.053
ۋ12.0	9;		3.0;	237.966;	198.511
2.5; 2.6; 2.7;	217.755; 225.194; 229.295;	169.382; 176.825; 180.929;	3.4; 3.7; 4.0;	231.092; 224.545; 218.415;	190.631 184.178 178.287
2.85;	231.298;	182.938;	4.0;	12;	
2.90, 3.1; 3.3; 3.5;	228.580; 228.015; 224.015; 218.811;	180.228; 175.670; 170.473;	2.455555 2.55675 2.0076	209.087; 221.494; 229.210; 233.611; 235.601;	176.579 187.516 194.167 197.807
Na+KC	l angl	.e= 90 deg;	2.95	236.166;	199.481
2.5;	1 3;		3.1;	234.201;	197.197
2.4;; 2.5;; 2.6;	205.928; 219.799; 228.806; 234.404.	182.784; 192.031; 197.293;	3.5; 3.7; 4.0;	250.295; 225.732; 221.124; 214.697;	188.960 188.960 184.693 178.879
2.8;	237.596;	200.182;	4.5;	103	
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	239.454; 239.011; 236.734; 233.586; 230.215; 225.370; 220.913;	197.814; 195.704; 190.758; 185.695; 181.442; 177.035; 173.115;	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	220.107; 227.715; 231.998; 233.954; 234.304; 233.562; 232.096;	186.077 192.852 196.609 198.274 198.274 193.507 197.779 196.426
3.0;	13;		3.5;	223.180;	183.529
2.4; 2.5;	210.462; 223.440;	180.998; 190.217;	5.0;	93	
99999999999999999999999999999999999999	231.704; 236.624; 239.189; 240.132; 239.966; 239.050; 235.935; 232.063; 238.048;	195.203; 197.069; 197.047; 197.182; 197.182; 195.836; 195.836; 192.072; 187.731; 183.483;	500 F-00 90 F-01 0 0 0 0 0 0 - 01 0 0 0 0 0 0 - 01	219.097; 226.641; 230.8555; 232.738; 232.738; 233.005; 233.005; 233.005; 233.005; 233.005; 233.005; 233.005; 235; 235; 235; 235;	184.011 190.862 194.673 196.382 196.660 195.982 194.683 191.095

Table	6.1 (cont	•)			
3.5;	221.398;	187.039;	3.0;	12;	
6.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	10; 218.139; 225.619; 229.762; 230.906; 231.569; 231.830; 231.761; 230.857; 230.857; 227.130; 219.646;	178.175; 185.343; 189.318; 190.432; 191.099; 191.398; 191.399; 191.399; 190.724; 187.755; 181.909;	2450000010570 2450000010570	204.347; 216.824; 224.694; 229.310; 231.649; 232.416; 232.115; 231.115; 227.942; 224.104; 224.104; 220.187; 214.736;	164.886; 175.331; 131.228; 183.902; 184.268; 185.268; 184.268; 184.268; 184.268; 184.268; 184.268; 184.268; 184.268; 184.268; 184.268; 184.268; 185.2749; 186.3149; 186.3149; 186.5149;
8.0;	8;		3.5;	8;	
2 2 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	217.793; 225.239; 229.347; 231.118; 231.274; 228.662; 224.112; 218.924;	170.183; 177.647; 181.779; 183.579; 183.769; 181.249; 176.835; 171.909;	450000447 222200000447	207.484; 219.998; 227.831; 234.571; 234.706; 231.837; 227.780; 221.266;	169.307; 180.519; 187.086; 191.503; 189.625; 185.000; 179.384; 170.831;
12.0 ₃	9;		4.03	12;	
2222222 222222 22222 22222 22222 222	217.755; 225.194; 229.295; 231.059; 231.298; 230.843; 228.580; 224.015; 218.811;	169.382; 176.825; 180.929; 182.696; 182.938; 182.486; 180.228; 175.670; 179.473;	45670901057	208.476; 220.873; 228.581; 232.967; 235.023; 235.475; 235.475; 233.4840; 233.482; 233.482; 229.562; 224.995; 220.393;	172.605 183.403 189.767 193.010; 194.090; 193.701; 192.333; 190.335; 185.357; 179.974; 174.355
Na+KC]	l angle=	105 deg;	4.03	213.968;	167.7193
2.5;	8;		4.59	103	
222223333 	216.740; 221.596; 224.138; 225.083; 224.967; 224.162; 221.431; 218.143;	183.786; 185.539; 185.340; 183.685; 181.234; 178.382; 178.382; 172.202; 155.981;		220.372; 227.990; 232.287; 234.261; 234.630; 234.630; 233.906; 233.456; 232.354; 245.4; 245.4; 245.4; 245.354; 243.618;	184.093 190.6023; 194.023; 195.300; 195.122; 195.145; 193.145; 192.501; 182.501;

Table	6.1 (cont.	104			I.6
0 510	010 000	1 777 5 74 .	0 0 .	105 100.	110 000
3.19	218.5023	177.5713	2.95	196.100;	149.227;
5.0;	93		3.00	195.143;	147463;
2.5;	219.529;	183.822;	3.3	189.768;	139.470;
2.05	231.332;	194.037;	0•2ş	102.1019	134.004,
2.8;	233.241;	195.456; 195.412;	3.0;	63	
3.0;	232.750;	194.390;	2.8;	219.086;	167.889;
3.3;	227.002;	188.411;	3.0;	218.483;	165:059;
3.53	222.135;	183.631 ;	3.1;	217.005;	155.851;
6.03	10;		3.5;	208.556;	148.626;
2.5;	218.346;	180.227;	3.53	73	
2.73	230.001;	191.031;	2.43	202.249;	152.782;
2.75;	231.155; 231.826;	192.071; 192.661;	2.6;	214.611; 222.319;	170.903;
2.85;	232.097;	192.883;	2.8;	228.853;	175.833;
3.0;	231.154;	191.949;	3.2;	225.7033	170.590;
3.53	227.471; 220.059;	182.026;	و به • C	221.4945	102.5009
8.0:	8:		4.03	10 j	
2 5 .	217 208 .	170 827*	2.5%	219.003; 226.705;	175.406; 182.025;
2.5;	225.256;	178.305;	2.75	231.093;	185.4135
2.3;	229.367; 231.140;	184.289;	2.93	233.622;	186.138;
2.9;	231.298;	184.519; 182.108:	3.0; 3.1;	232.992;	182.551;
3.5	224.147;	177.858;	3.5	227.713;	177.1873
J. J.	210.90-19	(1).(20)	3.7;	218.499;	165.5053
12.03	95	and second	4.5;	10;	
2.5;	217.755; 225.194:	169.382; 176.825;	2.5;	220.331;	180.432;
2.7;	229.295;	180.929;	2.6;	227.961;	186.900;
2.85;	231.298;	182.938;	2.0;	234.262;	191.309;
2.953	230.043;	180.228;	3.0;	233.940;	189.476;
N.N.	224.015; 218.811;	175.670; 170.473;	3.1; 3.3;	232.510; 228.447;	182.145;
Na+KC	l anglo	e= 120 deg;	3.5; 3.7;	223.743; 219.015;	176.400;

2.5; 6;

.

Table	6.1 (cont	•)				
5.0;	10;					
2.5;	220.090;	182.540;	Na.+KC	1 a:	ngle	= 135 deg;
2.73	231.950;	192.4075	3.5;	6;		
	233.595; 234.229; 233.475; 231.997; 227.842; 223.054; 218.250;	193.313; 192.020; 190.074; 185.135; 179.703; 174.348;	56000 N.4 N. N. N	206.97 214.06 219.28 217.83 213.35 207.67	0429799	157.637; 164.222; 168.370; 165.855; 160.270; 153.403;
6.03	10 ;		4.03	و10		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	218.750; 226.275; 230.468; 231.640; 232.330; 232.620; 232.580; 231.737; 228.139; 220.866;	182.120; 188.865; 192.430; 193.425; 193.923; 194.053; 193.882; 192.847; 189.089; 181.919;		215.67 223.35 227.50 229.41 229.69 220.69 220.87 227.30 227.30 222.92 217.64 212.69	100000000000000	169.774; 173.577; 177.064; 176.233; 176.209; 176.309; 174.106; 168.566; 168.566; 156.470;
8.0;	63		4.53	9;		
22222 20222 2022 2022 2022 2022 2022 2	217.847; 225.301; 229.418; 231.198; 231.362; 228.769; 224.240; 219.074;	172.048; 179.540; 183.719; 185.586; 185.862; 183.570; 179.464; 174.865;	10070000 - 010 0007000 - 010	219.53 227.14 231.43 233.39 233.74 232.99 231.51 227.34 222.51	094 1 0077-0	175.296; 181.338; 185.148; 186.200; 185.698; 184.144; 181.898; 181.898; 176.277; 170.094;
12.0;	9;		5.0;	10;		
2222222333 5.676555 5.676555 5.676555 5.57555 5.27555 5.575555 5.57555 5.57555 5.57555 5.575555 5.575555 5.575555 5.575555 5.575555 5.575555 5.5755555 5.5755555555	217.761; 225.201; 229.302; 231.067; 231.307; 230.854; 228.592; 224.030; 218.829;	169.459; 176.903; 181.010; 182.779; 183.022; 182.572; 180.317; 175.764; 170.572;		220.45 228.05 232.33 234.29 234.64 233.89 232.42 233.89 232.42 233.89 232.42 233.89 232.42 233.89 232.42 233.67	45000001050	180.132; 186.537; 189.782; 190.823; 190.346; 188.843; 186.668; 181.227; 175.247; 160.310;

Table	6.1 (cont.	.)			
6.0;	10;		2.6; 2.7;	225.448; 229.639;	177.137; 180.450;
2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	219.299; 226.363; 231.098; 232.291; 233.004; 233.317;	183.251; 189.767; 193.171; 194.015; 194.413; 194.445;		231.483; 231.695; 230.790; 229.131; 224.518; 219.128;	181.462; 180.883; 179.226; 176.856; 170.943; 164.422;
2.9;	233.300; 232.505;	194.174; 192.941;	5.03	10 ;	
3.2; 3.5;	229.010;	180.929;	2.5;	220.353; 227.930;	177.165; 183.543;
8.0;	83		2.7;	232.181; 234.104;	186.724; 187.670;
	217.911; 225.374; 229.500; 231.291; 231.466; 228.897; 204.205;	173.852; 181.331; 185.507; 183.379; 183.668; 185.422;	20000000	234.415; 233.627; 232.110; 227.848; 222.912; 217.914;	187.074; 185.434; 183.106; 177.317; 170.948; 164.595;
3.5;	219.258;	176.631;	6.0;	10 ș	No. Co
12.0; 2.5; 2.6;	9; 217.761; 225.201;	169.459; 176.903;	100778 200778	219.862; 227.455; 231.722; 232.932; 233.662;	183.556; 189.875; 193.093; 193.845; 194.153;
2.055; 2.055; 3.1; 3.3;	229.502; 231.067; 230.854; 228.592; 224.030;	182.779; 182.779; 182.572; 182.572; 180.317; 175.764;	2220025 2220025	233.993; 233.995; 233.237; 229.817; 222.817;	194.093; 193.730; 192.309; 187.743; 179.251;
3.5;	218.829;	170.5723	8.0;	8;	
Na+KC	l angle	e= 150 deg;	2.5;	217.989; 225.463;	175.850; 183.266;
4.03	8;		2.75	229.601; 231.404;	187.389; 189.218;
2.6; 2.7; 2.0; 2.9;	218.413; 222.234; 223.657; 223.400;	168.069; 171.108; 171.799; 170.918;	2.3.5 3.5 3.5 3.5 3.5 3.5	231.594; 229.056; 224.589; 219.493;	189.473; 183.182; 183.111; 178.538;
3.0; 3.1;	221.975; 219.750;	169.322; 167.138;	12.0;	9;	
3.3; 3.5;	213.872; 207.072;	154.112;	2.20	217.761; 225.201; 229.302;	169.459; 176.903; 181.010;
4.5;	9; 217 016°	170.534:	2.85;	231.067; 231.307;	182.779;
2.29	211.9109	() ())))			

		# OI			
Table	6.1 (cont.	.)			
2.95; 3.1; 3.3;	230.854; 228.592; 224.030;	182.572; 180.317; 175.764;	3.0;;;;;	233.718; 230.326; 223.353;	191.508; 186.656; 177.689;
0-20	610.0699	11000169	8.0;	8;	
Na+KC	l angle	i= 165 deg;	2.5%	218.056;	177.395;
4.03	8;		2.7%	229.688;	188.787;
22222	213.840; 217.082; 217.859; 216.884; 214.666	164.422; 167.685; 168.570; 167.785; 165.837;	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	231.705; 229.194; 224.360; 219.702;	190.761; 188.392; 184.261; 179.627;
).1.; .1.;	211.569;	163.087;	12.0;	9;	
3.5;	194.296;	148.022;	2.5;	217.767; 225.208;	169.510;
4.5;	93		2.7;	229.311; 231.077;	181.064;
10000000000000000000000000000000000000	216.294; 223.691; 227.717; 229.363; 229.338; 228.145;	168.109; 174.682; 177.914; 178.796; 178.043; 176.162;	2.85; 2.95; 3.1; 3.3; 3.5;	231.318; 230.865; 228.606; 224.047; 218.849;	183.079; 182.632; 180.382; 175.835; 170.650;
3.1;	226.153;	173.515; 166.847;	Na+KC	l angle	e= 180 deg
3.5;	214.283;	159.252;	4.0;	8;	
5.0;	10;		2.6;	211.891;	163.323;
	219.978; 227.511; 231.714; 233.579; 233.825; 232.963; 231.359; 231.359;	174.819; 181.204; 184.364; 185.267; 184.610; 182.893; 180.476;	2.7; 2.8; 2.9; 3.0; 3.1; 3.3; 3.5;	214.885; 215.377; 214.076; 211.485; 207.959; 198.996; 188.291;	166.517; 167.295; 166.366; 164.234; 161.253; 153.634; 144.580;
3.5;	221.660;	167.867;	4.5;	9;	
5.00	10:	و 0 ر 2 . ۱ 0 ۱	2.5;	215.574; 222.898;	167.478; 173.985;
10000000000000000000000000000000000000	220.266; 227.873; 232.156; 233.374; 234.111; 234.451; 234.460;	183.394; 189.586; 192.680; 193.370; 193.614; 193.491; 193.063;	2222 2001 2001 2001 2001 2001 2001 2001	226.832; 228.365; 228.205; 226.862; 224.693; 218.815; 211.794;	177.126; 177.891; 176.992; 174.937; 172.080; 164.873; 157.787;

Table 6.1 (cont.)

219.787 ; 9;	218.083 225.571 229.723 231.542 231.749 229.250 224.829	; 8;	5; 220.407 228.017 7; 232.303 75; 233.523 234.262 234.603 9; 234.614 233.874 230.485 223.506); 10;	; 219.758 227.270 231.448 233.285 233.497 232.594 230.943 220.943 220.957 215.352
7.76	8.083 5.577 9.723 1.542 1.542 9.250 4.820 9.78		0.407 3.01 2.303 3.522 4.262 4.601 4.601 4.611 3.871 3.871 3.871 3.871 3.871 3.871 3.871	°	1.448 3.289 3.497 2.594 2.594 2.594 2.594 2.594 2.594 2.594 2.595 2.555
° 1 ° 1	11111 1111 1111 1111		٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥، ٥		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
69. 76.	77. 85. 91. 91. 88. 84. 79.		83 89 92 93 93 93 93 93 93 91 86 77		73 · 83 · 83 · 83 · 83 · 79 · 73 · 66 ·
510 956	971 273 296 039 221 815 654 990		261 410 461 128 351 351 7530 7530 1957		950 350 40 950 40 350 40 350 40 350 40 350 40 80 80 80 80 80 80 80 80 80 80 80 80 80
00 00	tested to the tested to tested		tes too tes tes too too too tes too too		

 \rightarrow

(...) Na-Ol distance ç, cŋ. \$ 3 30 5 6 1 1 (ċ 5 ā 03-K-Cl distance (Å) 40 S. Figure 6.12: 0 01-Ground state potential surface N $\theta = 45^{\circ}$ 0. w 7. 1000 5 +15 5. 0

The results as listed could form the basis for an investigation of the nuclear motions. For the purposes of a discussion of the surfaces, however, it is more convenient to document them in terms of a visually more straightforward coordinate system, composed of the lengths R_{NaCe} and R_{KCe} of the two alkali halide bonds and the angle θ between them.

This latter system forms the basis of figures 6.3 - 6.15 in which the lowest potential surface is plotted at 15° intervals in θ . These contour diagrams were obtained from the results of table 6.1 by 4 - point Lagrangian interpolation in three dimensions, and they are referred to an energy zero corresponding to the minimum surface energy for the separated products. Figure 6.3a gives the first excited electronic surface for the collinear ($\theta \approx 180^{\circ}$) case.

The asymptotic surface minima corresponding to infinitely separated reactants and products respectively, taken together with estimated zero-point vibrational energies for Na Cl and KCl of 0.52 and 0.40 Kcal/mole respectively⁽⁴⁷⁾ leads to a calculated reaction exothermicity of just over 6 Kcal/mole. This figure must be compared with the accepted value of 4 Kcal/mole, derived from the experimental dissociation energies of NaCl and KCl.⁽⁵⁶⁾ The overestimate is the result of small discrepancies in the asymptotic Rittner treatments of the binding energies of NaCl and KCl and does not constitute a serious defect in the calculation.

A distinctive feature of the surfaces is the absence of any activation barrier. This is not unexpected as in the course of the reaction the only substantial electronic rearrangement concerns the non bonding valence electron; the main binding forces in the system are electrostatic rather than covalent and are as such subject to no valency restriction that one bond should be partially broken before another can be formed. Furthermore, there is a relatively strong long range dipole - induced dipole attraction between the K atom and the NaCl molecule. This interaction may contribute up to 1 Kcal/mole to the binding when the K atom is around 7 Å from the NaCl molecule.

At close distances directions of approach in the range $0 \le \emptyset \le 45^\circ$ are energetically unfavourable. The crucial stages of reaction cannot occur along such paths simply

because the approaching K atom is obstructed by the Na⁺ ion before coming within bonding range of the Cl⁻ ion. At long range, however, $\theta = 0$ is the most energetically favourable direction of approach as the asymptotic dipoleinduced dipole interaction may become supplemented by a certain degree of bonding between the alkali centres. Thus, for example, the configuration,

 $\mathbb{R} \xrightarrow{4.5 \text{ Å}} \mathbb{Q} \xrightarrow{2.5 \text{ Å}} \mathbb{Q}$ (6.4)

is 4 Kcal/mole more stable than the reactants and 2 Kcal/mole more stable than the corresponding ∂ = 180° configuration in which the Na and Cl positions are reversed. Similarly, at long range ∂ = 0 is the energetically most favourable exit surface. Thus the configuration

@<u>4.5Å</u> <u>R</u> <u>2.9Å</u> <u>@</u> (6.5)

is 3 Kcal/mole more stable than the products and 2 Kcal/mole more stable than the corresponding exit configuration in which the K and Cl positions are interchanged.

All stages of reaction can occur quite smoothly in the range $45^{\circ} < \theta \le 180^{\circ}$. If a "reaction path" is defined for each value of θ , in this range, to follow the line of least energy from reactants to products, then along this path, the reaction may be envisaged as occurring in three stages.

First the K atom approaches from infinity to within about 3.5 Å of the Cl ion, without appreciably influencing the length of the NaCl bond. In this stage most or all of the reaction exothermicity is released. In the second phase the K-Cl distance decreases to the diatomic bond length while the Na-Cl bond increases to approximately 3Å. During this stage the energy typically falls to its lowest value. Finally, reaction is completed by the departure of the Na atom, the KCl bond length remaining constant, and the energy climbs to that of the products (the transition complex is more stable than either the reactants or the products). The potential surface is thus of the "attractive" classification, and classical Monte Carlo calculations⁽⁵⁷⁾ suggest that much of the exothermicity may be expected to appear in vibrational excitation of the product KCl molecule. Since there is no activation barrier the precise course of the "reaction path" is not of outstanding significance as a great variety of routes leading to reaction are energetically accessible, though the minimum energy path is still favoured.

The prediction of a reaction complex NaKCl which is

more stable than both the reactants and the products is of considerable interest. For a collinear collision $(\theta = 180^{\circ})$ this complex is only about 2 Kcal/mole more stable than the products. As θ decreases, however, the potential well becomes steadily more pronounced, reaching a maximum depth of 13.5 Kcal/mole for θ =75. If, therefore, excess internal energy were removed (by collision at a wall or with a third body) the molecule NaKCl would be formed, with a dissociation energy, D_o° , of 13.5 Kcal/mole into the reaction products Na + KCl. As might be expected the Na-K bond is the weakest of the three in NaKCl as evidenced in figure 6.16 where energy contours are plotted for the complex as a function of the position of the K atom with respect to the centre of mass of the NaCl bond. The NaCl bond is allowed to take up its optimum length for each position of the K atom, so that the minimum energy of the complex is selected at each point. It is apparent that the largest vibrational amplitude of the molecule will involve the deformation of the angle $\theta = \text{NaClK}.$ The predicted equilibrium geometry is given in figure 6.17.

The prediction of a stable molecule NaKCl is not

altogether surprising. No covalent bonds need to be broken in its formation, and there is a relatively strong long range dipole-induced dipole attraction between Na Also the stability of NaK⁺ indicates that the and KCl. complex NaKCl may possess three positive bonds. In addition the positive ion NaKCl⁺ has been observed in a mass spectrometer, as have the symmetrical ions Na, Cl⁺, K,Cl⁺ and Rb, Cl⁺; these latter have been assigned experimental dissociation energies of 42, 41 and 28 Kcal/mole respectively.⁽⁵⁸⁾ The same author reported that a Rittner calculation on Rb, Cl⁺ gave a value for the dissociation energy in close agreement with his experimental measurement (which success incidentally provides direct evidence for the applicability of the Rittner approach to an assembly of three ions). A similar Rittner calculation on NaKCl⁺ (equivalent entirely to the K + NaCl calculation with the omission of the valence electron), gives rise to a calculated dissociation energy of 30.7 Kcal/mole (for NaKCl⁺ -> NaCl+ K⁺), so that the positive ion appears to be about twice as stable to dissociation as the neutral NaKCl molecule.

One further point of interest arising from this latter calculation is the equilibrium geometry of the ion

128

NaKCl⁺. The Na-Cl and K-Cl bond lengths at 2.7Å and 3.0Å respectively are very little different from those suggested for neutral NaKCl. For totally unpolarisable ions, however, the repulsion between the alkali ions would dictate that β (= NaClK) would take a value of 180°. The weaker polarisation interactions, however, favour a nonlinear arrangement. In fact the calculation predicts that θ -135°, a surprisingly large deviation from linearity. Figure 6.18 gives the calculated equilibrium geometry for the ion. Figure 6.19 gives the energy of NaKCl⁺ as a function of the angle θ , showing a shallow double minimum on either side of the linear configuration, the central barrier having a height of only 0.6 Kcal/mole. The ion might thus be expected to exhibit an anomalous vibrational spectrum, analogous to that of PH,. The spacing between successive levels should at first decrease until an energy close to the barrier height is attained whereupon higher levels should appear at increasing energy intervals. (59) The experimental confirm ation of a bent equilibrium geometry or of this type of vibrational spectrum would provide extremely direct evidence of the importance of polarisation interactions in gaseous ionic molecules.

The discussion thus far has assumed that the system

is confined to the lowest electronic potential surface. In support of this assumption the results in table 6.1 show that for most configurations the lowest surface is well separated from the excited electronic levels. For a restricted range of configurations near the turning point of the "reaction paths" for near collinear collisions $(\theta \ge 135^\circ)$, however the first excited electronic energy surface may come within 2 Kcal/mole of the ground state. Figure 6.3a gives the first excited electronic surface for $\theta = 180^\circ$. This raises the possibility of a non-adiabatic, electron jump, reaction mechanism.

In order of magnitude the probability of a non-adiabatic transition may be determined by the Landau-Zener formula⁽⁵⁾:

$$P = e_{n} \left\{ -\frac{TT}{2 \star v} - \frac{\Delta^{2}}{\left| \frac{2}{3 \omega_{s}} (U_{a} - U_{s}) \right|} \right\}, \qquad (6.6)$$

using the notation of the introduction, equation (13). For the collinear case (θ =180°), figure 6.20 gives a plot of the four sigma energy levels along the path which is drawn across the surface plotted in figure 6.3. (This path is deliberately chosen to pass through the point of closest collinear approach of the two surfaces and therefore does not follow precisely the defined "reaction path" for θ =180°.) The labels on the energy curves in

figure 6.20 indicate the predominant atomic orbital contribution to the state in a given region. The lowest curves come within 3 Kcal/mole of each other at the arbitrarily chosen origin of the path and around this region in the lowest surface the valence electron is transferred from an orbital of predominantly K 4s-form to one of principally Na 3s-disposition. This "electron jump" takes place in regions where the atomic states $|Na,s\rangle$ and (K,s) are of similar energy but where bonding between the alkali centres is inhibited by the interposition of the Cl^- ion.

From the figure it appears that the difference in slopes between the states $\langle Na, s \rangle$ and $\langle K, s \rangle$ at the "crossing point" is of the order of 20 Kcal/mole/Å. The reduced mass associated with motion along the path may be taken as 20 A.M.U. which is of the order of both the reduced mass for the motion of a K atom relative to an NaCl molecule and of an Na atom relative to a KCl molecule. The classical velocity, v, of passage through the crossing point may be obtained from the estimated relative kinetic energy. The closest separation, 4, in this case is 3 Kcal/mole.

In the first instance consider a thermal collision

133

where the initial relative kinetic energy of the reactants is of the order of 0.5 Kcal/mole. If the exothermicity released up to the crossing point appears as additional kinetic energy along the reaction path, then the net kinetic energy at the crossing is of the order of 3.5 Kcal/mole, $v = 1.2 \times 10^5$ cm/sec and P ~ 0.03, a very small probability.

P is very dependent on the separation Δ . For $\Delta = 2$ Kcal/ mole, as it is for some, not quite collinear, paths, $P \sim 0.2$, whereas for $\Delta = 1$ Kcal/mole, $P \sim 0.6$. On the other hand, for $\Delta = 5$ Kcal/mole, $P \sim 10^{-5}$. Bearing in mind that only a small proportion of collisions will pass through regions in which $\Delta < 5$ Kcal/mole, it seems that any non-adiabatic effects will be slight. In any event for thermal collisions there is no prospect of non-adiabatic effects resulting in excited product states as there is insufficient energy available, so that a second transition, returning to the ground state, must precede dissociation. The main effect of a non-adiabatic collision in this case is therefore in extending the lifetime of the collision complex, leading to randomisation in the angular distribution of the small proportion of the total products which arise by this mechanism.

(60)

Moulton and Herschbach have, however, observed experimentally that, for vibrationally excited KBr, the reaction

 $Na + KBr = NaBr + K(p), \qquad (6.7)$

leading to a K atom in an excited p-electronic state, occurs with a considerable cross section (> 10Å^2). In these experiments the KBr is formed from a primary beam reaction K + Br₂ = KBr + Br. This primary reaction has an exothermicity of 45 Kcal/mole which is almost entirely produced as vibrational excitation; approximately half of the KBr molecules possess over the 41 Kcal/mole threshold energy necessary for the reaction (6.7) to proceed.

In the present example both of the reactions K + NaCl = KCl + Na(p), (6.8a) and Na + KCl = NaCl + K(p), (6.8b)

are approximately 43 Kcal/mole endothermic. If the crossing point of figure 6.20 is traversed with a relative kinetic energy of 50 Kcal/mole, the probability of transition given by the Landau-Zener formula is increased to $P \sim 0.35$. (For a separation A = 1 Kcal/mole the probability would be further increased to $P \sim 0.9$.) Nonetheless it is to be noted again that relatively few collisions will follow paths passing through the calculated

range of configurations where the lowest surfaces are close. To such energetic collisions, however, there is accessible a much wider range of nuclear paths traversing regions of considerably higher energy than have been documented here. Typically the configurations passed through, in which the atomic states $|Na,s\rangle$ and $|K,s\rangle$ become of similar energy, will correspond to rather longer Na-K separations and hence the interaction between the states will be smaller, so that Δ may be considerably reduced. It is quite possible that a reasonable proportion of collisions, at least for $135^{\circ} \leq \theta \leq 180^{\circ}$ may lead to non-adiabatic transitions to the second surface.

The occurrence of this transition does not, however, automatically lead to the production of an electronically excited product atom. For the reaction K + NaCl, occurring along a path similar to that of figure 6.20, after transition the electron remains essentially in a K 4s-orbital as the Na centre moves away. If no further crossing occurred this surface would lead to the dissociation limit Na⁺ + KCl⁻. When the Na-Cl distance has increased to around 6-7 Å, however, a crossing with a predominantly Na 3p-state occurs. The interaction between these surfaces at this large separation is rather small ($\Delta < 0.1$ Kcal/mole) and it would seem on this

ground unlikely that an electron jump to the p-state would occur. (Note that for reaction (6.8a) to be completed this second crossing has to be passed adiabatically.) On the other hand the available kinetic energy is reduced by more than 40 Kcal/mole by this second crossing and the corresponding reduction in nuclear velocity improves the probability of the jump occurring, to yield an electronically excited Na atom. It must be noted that dissociation into either of the ion pairs Nat + KCl or Kt + NaCl is of the order of 90 Kcal/mole endothermic and thus can be witnessed only for extremely energetic collisions. In the light of this picture it is significant that in the observation of excited product K atoms from the reaction $Na + KBr^{(60)}$ none of the reactant KBr molecules contained more than 4 Kcal/mole energy in excess of the threshold required for the electron excitation reaction to occur. Thus if the potential surfaces for this latter reaction are similar to those for K+NaCl, the second crossing point would indeed be traversed relatively slowly. It is a prediction of this work, therefore, that the yield of excited K atoms in that experiment would be diminished on any further increase in the vibrational excitation of the reactant KBr.

A serious treatment of the possible non-adiabatic effects would require detailed information about the electronic wavefunctions for the two lowest states. Table 6.2 presents a list of the atomic orbital coefficients for

137

the two lowest eigenstates for all configurations of table 6.1 in which they lie within 10 Kcal/mole of each other.

Table 6.2: Eigenfunctions of the two lowest potential

surfaces at the configurations of table 6.1 at which

their energies are less than 10 Kcal/mole separate.

 $|e\rangle = c, |Na, s\rangle + c_2 |Na, p_1\rangle + c_3 |Na, p_2\rangle + c_4 |K, s\rangle + c_5 |K, p_1\rangle + c_6 |K, p_2\rangle.$

(Note: The p-orbitals point towards the alternative alkali centre and the p-orbitals are perpendicular to the NaK bond, with their positive lobes nearer the chloride centre.)

X	R	e	Energy	C,	C,	C3	C4	C,	C.
				1.520		0.65			.2.68
0"	3.5	1.85	205.874	.698	353	- 098	.541	156	
			197.709	.568	216	520	783	.308	
	13.0	1.90	207.529	.760	367	-,077	.453	131	191
			198.706	.493	177		833	.323	
	3.8	1.90	222.922	.610	310	C3-	.657	218	
			216.509	671	.270		.680	272	084
		1.95	224.356	.708	340		.546	183	072
			218.358	.574	219	- 1015 S	769	.302	
		2.00	225.774	.781	358	- 096	.439	149	
			219.076	.478	172		832	.325	Contraction of
		2.05	227.039	.830	367		.351	122	
			218.891	.396	134		870	.341	
		2.10	228.007	.862	368		.283	101	
			218.025	.332	106		892	.352	
	4.0	1.91	226.947	.451	244		.791	274	- 4.0203
			219.427	.789	332		517	.212	1 - U.S.
		1.95	227.499	.547	278		.720	252	
			221.555	.728	297		610	.243	
		2.00	228.153	.670	319		.600	212	
			223.285	623	.241	1.1.0.27	.725	284	1000
		2.05	229.103	.767	348		.472	169	1.
			224.042	.506	185		811	.316	

A: Reactant coordinates K+ NaCl

Table 6.2: (cont.)

A: Reactant coordinates K+ NaCl

X	R	C	Energy	C,	C ₂	C ₃	C.4	°5	° ₆
o	4.0	2.10	230.213	.828	361	09.5	.365	134	031
		2.15	223.972 231.230 223.290	•405 •865	139 365		862 .284	•338 •.108	1045
		2.20	232.044	.888 273	364 .082		•226 •904	090	
	4.5	2.05	229.192 220.861	.272 .874	156 370		.886 321	320	
		2.10	228.262 222.300	.380 .837	196		.838 428	308	07 4
		2.30	227.212 222.809	.881 .300	358 094		.264 895	110 .348	
	5.0	2.50	218.234 214.836	.917 .196	349 052		.166	076	025
15°	3.5	1.80	208.408 199.188	.581 .679	316 258	083	•663 -•695	168	094 .078
	5.5	1.85	210.708	.660	334	090	•578 •761	149	086
		1.90	212.502	.726	347	095	.494	129	078
	5.0	1.95	213.827 204.006	.777 +.474	354 154	098 046	•418 852	111	069
	3.8	1.90	225.107 217.965	•566 -•708	291 .269	077	.692 .653	209 244	092 069
		1.95	226.341 220.037	•665 -•623	319	086	.590 .741	182	083
	•	2.00	227.588 221.029	.745	338 .182	092 +.053	•487 •809	152	072
		2.05	228.791 221.139	.802 .448	348 145	096 042	•396 -•854	126 .313	062 .107
		2.10	229.805 220.571	.841 .380	351 116	098 034	.322	106 .324	053
	4.0	1.90	228.266 219.218	.392 818	226 .328	058	.824 .478	258 182	098
		1.95	228.871 220.037	.501	260	068 084	.751	241	094
		2.00	229.278 223.889	.261	297	079	.647 .690	212 252	085 073
-		2.05	229.919 224.833	.725	325	088	.526 .782	176 285	073
		2.10	230.818 224.977	•798 - • 462	341 .151	094 .044	.415 .843	142 309	061

Table 6.2: (Cont.)

A: Reactant coordinates K+ NaCl

$\left \chi \right $	R	C	Energy	C,	C,	C3	°4	C ₅	°,
1 5	4.0	2.15 2.20	231.746 224.498 232.549	•844 •380 •873	348 116 348	096 034 097	•328 -•878 •262	115 .324 096	051 .108 043
	4.5	2.05	223.579 229.660 220.404	317 .243 885	.091 151 .356	.026 037 .099	.897 .898 .307	334 300 107	114 093 020
		2.20	228.706 221.806 226.328 223.303	•357 •857 •657 •652	182 .335 288 231	046 .093 077 065	•858 •397 •625 •703	294 137 225 .248	092 032 074 .070
		2.30	226.499 222.690	.860 .358	340	092 031	.316 881	123	043 .097
	5.0	2.30 2.50	221.193 215.630 217.214	907	138 .338 .335	034 .091 .089	.894 .306 204	309 094 .089	086 022 .026
30 [°]	3.5	1.90	214.505 223.170 213.583		289 204	168 131	•581 •757	107 .248	164 .171
	3.8	1.95	224.722 214.923 229.701	•689 •582 •488	297 180 242	176 115 135	•798 •740	095 .254 172	152 .189 182
		1.95	220.243 230.750 222.598	•754 •567 •703	262 260 235	166 149 150	604 .672 673	.213 158 .227	.114 172 .136
		2.00	231.571 224.045	.643 .642	277	162 131	.595 737	141 .241	158
		2.05 2.10	232.332 224.318 233.063	•709 •575 •762	289 177 297	172 112 179	.516 790 .442	125 .253 106	143 .178 128
		2.15	224.357 233.720 224.299	.511 .803 .452	150 300 128	094 183 079	831 .377 859	•263 -•092 •270	+.195 114 .208
	4.0	1.95	231.555 222.272	•434 ••793	217 .279	119 .175	.787 .537	200	182 094
		2.00 2.05	231.802 224.188 231.908	704 .611	240 252 261	159 152	.616 .641	208	117 160
		2.10	225.372 232.108 225.898	678 .693 .601	280 186	165 118	.551 765	145 .246	144 .164

141

Table 6.2: (cont.)

A: Reactant coordinates K + NaCl

X	R	C	Energy	c,	°,	c3	°4	و ^C	°6
30	4.0	2.15	232.466	•758	292	174	•463	123	126
		0 10	220.009	•020	100 107	097	-•010	• 200	100
	4.0	2 • 1 U	229.179	•50Z	107 7.06	082	•871 770	748	175
		0 70	220.040	805	•306	•180	•378	128	055
		2.30	224.860	•748	- 278	10%	.506	155	179
		0 50	221.209	550	.102	• TOT	•795	249	128
		2.50	225.055	.906	292	175	•195	068	057
		0 7 0	217.062	251	.058	.034	•912	293	205
	5.0	2.30	220.130	•229		059	.906	265	163
		0 50	213.337	897	•308	•185	•284	084	037
		2.50	214.591	•814	280	161	• 426	137	091
		0 70	212.693	- 463	•127	.079	•841	256	156
		2.70	214.337	.931	283	165	• 127	05L	035
	·		207.741	169	•031	.020	• 928	295	190
45°	4.0	2.10	233.348	•547	205	207	•671	101	227
			224.215	729	.178	.205	•682	174	177
		2.20	232.511	•668	217	230	•547	084	199
			224.152	.630	147	165	773	•189	.224
	<i>,</i>	2.30	232.010	•759	223	243	•432	066	168
			222.845	531	.118	.126	•835	198	260
	4.5	2.30	223.853	•553	190	190	.697	139	213
			217.650	•742	178	199	648	.155	.157
		2.50	220.702	•820	223	238	.375	077	133
			214.465	453	.093	.100	.863	203	249
	5.0	2.50	213.026	• 539	174	170	.734	162	199
			208.832	764	.181	.196	.607	136	135
60'	4.5	2.50	217.729	.651	132	254	.574	038	218
			209.410	.660	102	202	760	.131	.236
		2.70	214.274	.793	132	237	.392	021	164
			204.873	507	.074	.130	.857	124	295
ſ	5.0	2.50	212.257	.418	103	174	.804	087	245
			204.067	824	.142	.277	• 52 5	110	126

Table 6.2: (cont.)

B: Product coordinates Na+KCl

X	·R	C	Energy	С,	°,	с ₃	° ₄	°5	C 6
ం	4.0	2.8	223.720	•770	358	• •	• 454	151	
		2.9	224.502	492 .666 620	•178 •327 •242		•825 •598 •731	201	
		3.0	225.093 218.056	•513 •747	272 .311		•745 •583	253 237	
		3.1	225.322 215.527	•362 -•827	213 .360		•844 •433	286 186	
	4.5	3.1	231.751	.891 269	362 .081		•226 •904	093	
		3.5	228.454	•776 •501	181 181		180 851	179 312	
		J •J	222.117	.847	350		- 403	.155	
	5.0	3.5	225.000	•924 ••162	348 .040		•128 •922	064	
		3.7	221.004	.878	099			118 .338	
15°	4.0	2.8	227.166	•800 •450	346 143	108 047	•394 ••856	118	070 .122
		2.9	227.968	•732 •544	331 185	105 064	.502 801	152 .287	085
	· .	3.0	228 . 293 222 . 039	•622 •667	300 240	097 085	•638 • •702	194 .251	102
		3.1	228.771 220.967	•475 -•776	254 .293	082	•767 •566	230	117 607
	4.5	3.1	232.720	.900 .252	340 066	104 020	911	079	037
		3.3	229.455	•841 •395	119	041	•348 •870	128	057 .116
		3.5	227.498	•557 •738	255 262	084 094	•716 -•614	245	102 073
		3.7	229.033	•200 •900	141 344	043 129	•914 273	286	119 .021
	5.0	3.5	224.993 215.742	.930 .152	324 031	099	924	056	210 .122
<u></u>		3.7	220.989 216.675	.909 .231	332 056	107	.191 916	083 .328	031 .116
30	4.0	3.0	234.308 224.908	•771 -•499	281 .138	201 .099	•419 •842	087 249	138 223
		3.1	233.849 225.821	.721 565	270 .160	198 +.122	•495 •802	104	157 206

Table 6.2: (cont.)

B: Product coordinates Na+KCl

x	R	е	Energy	C,	С т	C 3	°4	°5	°6
30°	4.0	3.3	232.832 225.072	.566 .712	230 213	176 177	•672 -•670	144 .206	197 .156
	4.5	3.5	227.027 220.694	•839 - 408	274 .103	201	•343 •872	092 256	106 218
		3.7	224.105	•705 •603	244	187	•555 •762	143	155 .178
		3.8	223.569	•582 •719	212	165	•687 •650	174	- 182
		4.0	224.023	.331 - 859	143	111	+ •858 •411	207	- 211
45 °	4.0	3.7	228.410	•614	155	251	•587	041	232
	4.5	4.0	216.538	•793 •793	169	262 127	• <u>407</u>	047 .155	159

Finally it is of some concern to investigate how sensitive these results are to details of the model. in particular to the precise choice of pseudopotentials. Test calculations indicate that changes of up to 20% in the alkali ion core radii cause changes in the calculated energy levels at thermally accessible configurations of less than 2 Kcal/mole, except that, for close Na-K separations, and correspondingly small values of hetadiscrepancies of up to 5 Kcal/mole may occur. These latter configurations are relatively unimportant. from the point of view of the reaction K+NaCl. Similarly, inside the Cl core, a reduction of the order of 20% in the repulsive pseudopotential causes energy changes up to 2 Kcal/mole. The conclusions about the stability of the NaKCl complex and the possibility of non-adiabatic transitions are not seriously affected by these changes. On the other hand more drastic modifications, such as the use of point charge potentials throughout space, or the complete removal of the intra-core repulsion in the Cl pseudopotential, may lead to energy changes of many tens of Kcal/mole. These investigations throw no further light on the most suitable choice for these parameters, which are selected and supported on grounds of the arguments of

chapter 3.1 and in the light of the calculations of chapter

144

5 on the diatomic ions. Nonetheless the latter test calculations underline the importance of the pseudopotential arguments, while the former indicate that the final results are acceptably insensitive to discrepancies of the order of 20% in the precise parametric values employed.

In summary, therefore, the results of the calculations on K + NaCl lead to an estimated reaction exothermicity of 6 Kcal/mole, compared with an experimental value of 4 Kcal/mole. There is no calculated activation barrier, the potential surfaces conforming to the "attractive" classification. The existence of a triangular complex NaKCl of dissociation energy $D_{s}^{\circ} = 13.5$ Kcal/mole is predicted. Further, it is suggested that for collisions at thermal energies, the reaction is essentially adiabatic, but that at high translational energies there is a plausible non-adiabatic mechanism by which a proportion of the product atoms may be produced in an electronically excited state. These conclusions are not critically affected by deviations up to 20% in the choice of ion core pseudopotential parameters.

145

Appendix IA "The electrostatic potentials of Nat, Kt and Cl

Analytical expressions for the electrostatic potentials of the isolated ions Na⁺, K⁺ and Cl⁻ are derived by a method analogous to that applied to the first 36 neutral atoms by T.G. Strand and R.A. Bonham.⁽³⁷⁾ The electronic charge distributions are derived from Hartree Fock numerical wavefunctions.⁽³⁴⁻³⁶⁾ Integration of Poisson's equation then leads to numerical potential expressions which are fitted by a modified Newton Gauss least squares process to yield the expressions listed in chapter 3.1, equation (3.9).

The numerical self consistent field results, referred to, list radial distribution functions, P. On summing over all electrons the total spherically symmetric charge distribution, e, is given by

$$e(r) = \frac{\sum P^{2}(r)}{4\pi r^{2}}, \qquad (I.A.1)$$

where $\Sigma \rho^2(r)$ may be tabulated directly from the listed wavefunctions, and interpolated by the Lagrangian technique,⁽⁶¹⁾ at any required intervals. The potential, V, satisfies Poisson's condition, so that

$$\nabla^2 V = -4\pi \mathcal{C} = -\frac{\Sigma \mathcal{P}'(r)}{r^2}, \qquad (I.A.2)$$
I.A

and, since V is spherically symmetric,

$$\nabla^2 V = \frac{1}{\tau} \frac{d^2}{d\tau^2} (\tau V), \qquad (I.A.3)$$

and therefore,

$$\frac{d^2 Y(r)}{dr^2} = - \frac{\Sigma P^2(r)}{r}, \qquad (I.A.4)$$

where Y(r) (= rV(r)) is the total electronic charge confined within a sphere of radius r around the nucleus. This equation may be numerically integrated inwards point by point, using, for the second difference of the tabulated Y function, the equation

$$\delta^{2} Y_{j} = \left(\delta_{r}\right)^{2} \left[-\left(\frac{\Sigma P^{2}}{r}\right)_{j}^{2} + \frac{1}{2} \delta^{2} \left(\frac{\Sigma P^{2}}{r}\right)_{j}^{2}\right], \qquad (I.A.5)$$

which applies when fourth and higher order differences are neglected.⁽⁶²⁾ The boundary conditions are that, at sufficiently large r, Y is equal to the total number of electrons present and its first difference, \mathcal{S} Y, is zero. Y may therefore be built up by applying (I.A.5) at successive equal steps towards the origin. It is convenient to use a reduced step interval at smaller and more significant r-values and interval halving is particularly easy to introduce at any chosen stage, requiring a minimum number of interpolations between previously calculated values. A good check on the accuracy of the calculation, and on the wavefunctions employed, is provided by the requirement that Y should vanish at the origin.

The function Y obtained in this way provides the potential due to the electronic charge distribution. The complete electrostatic potential, V_{T} , contains also the contribution due to the point nuclear charge, Z, and corresponds to

$$\frac{\nabla_{T}}{T} = Y_{T} = Y + Z . \qquad (I.A.6)$$

Least squares is then used to fit Y, by an expression of the form:

$$Y_{T} = -Q + \frac{2}{2} A_{i} \exp[(-B_{i} +) + \sum_{j=1}^{m} C_{j} + \exp[(-D_{j} +)]_{j} \qquad (I.A.7)$$

where Q is the net charge of the ion and the A, B, C, and D, are adjustable parameters. m is taken as unity for Nat and as 2 for K⁺ and Cl⁻. The sum A, + A is constrained so that at the nucleus $Y \rightarrow Z$. In contrast to V_{τ} , V_{τ} does not diverge at the origin, nor does it diminish so rapidly at large r, so that least squares fitting of $Y_{\tau}(r)$ rather than of $V_{\tau}(r)$ should lead to expressions whose accuracy is more evenly weighted at large r, which may be important in the calculation of molecular properties.

The fitting process is carried out by guessing initial values for the parameters A_{i} , B_{i} , C. and D. and then solving the usual Newton Gauss normal equations (61) for a shift vector (SA, δB_{ij} , δG , δD_{j}) which, if the initial estimates are sufficiently good, will lead to a modified expression (I.A.7) of smaller standard deviation from the tabulated function. Strand, Kohl and Bonham⁽³⁸⁾ introduced a shift factor, k, to modify the length but not the orientation of the Newton Gauss shift vector. This device is employed here, choosing k in the range -1.5 to 1.75, so as to minimise the sum of the squares of the deviations, Σa^2 , between the tabulated and analytical functions. This is achieved simply by computing $\sum d^2$ for values of k at intervals of 0.25. If the smallest value occurs at either of the extremes k = -1.5 or k = 1.75, this factor is taken. Otherwise a parabola is fitted through the minimum point and its two nearest neighbours, leading to a closer estimate of the optimum factor k. The improved estimates for the parameters form a basis for iteration. The straightforward Newton Gauss method, which automatically takes k = 1, may lead to divergence or may converge only very slowly when used to fit a function of the complexity of (I.A.7), unless the initial estimates of the

parameters are inspiredly accurate. By the introduction of the variable shift factor convergence is considerably speeded and made more certain.

150

I.A

Initial estimates of the parameters were suggested by the tabulated values for the first 36 neutral atoms, (37) and convergence of $\mathbf{z}a^{i}$ and of the parameters to five significant figures is usually achieved in about six cycles. The resulting expressions for the Y, give immediately, on division by r, the ion electrostatic potentials quoted in equation (3.9).

Appendix IB The Cizek approximation for the evaluation of multicentre integrals

J. Cizek has proposed an elaborate method for the approximate reduction of multicentre integrals in terms of two centre forms.⁽¹⁶⁾ The most important step in this method is the replacement of the overlap density of two Slater-type orbital functions by a sum of Slater-type charge densities on two new centres. In the case where the original overlap function is positive throughout space this replacement may be written:

$$|A, m, \alpha\rangle |B, n, \beta\rangle = k_c |C, +, \gamma\rangle^2 + k_3 |D, +, \delta\rangle^2. \qquad (IB.1)$$

A and B are the old and C and D the new centres; m, n, and r are quantum numbers, where $r = \min(m,n)$; k_c and k_y are constants and \prec, β, γ and δ represent orbital exponents. C and D are chosen to lie on the x-axis, AB, and their coordinates x_e and x_y, together with the parameters k_c, k_y γ and δ are chosen so that the right hand side of (IB.1) reproduces the monopole, dipole, quadruple and octupole moments of the original product on the left. That is, integrals of the form

$$[x^{i}y^{j}z^{k}] \equiv \langle A, m, \kappa | x^{i}y^{j}z^{k} | B, n, \beta \rangle \qquad (IB.2)$$

are reproduced up to (i + j + k) = 3. The six parameters of (IB.1) are thus determined by the equations:

 $k_{c}, h_{y} = [.7] = \langle i \rangle, \qquad (IB.3)$ $k_{c}x_{c} + k_{g}x_{g} = [.x] = \langle 2 \rangle, \qquad (IB.3)$ $k_{c}x_{c}^{2} + k_{g}x_{g}^{2} = [x^{2}] \cdot [y^{2}] = \langle 3 \rangle, \qquad (IB.3)$ $k_{c}x_{c}^{2} + k_{g}x_{g}^{3} = [x^{3}] \cdot [y^{2}] = \langle 3 \rangle, \qquad (IB.3)$ $k_{c}x_{c}^{3} + k_{g}x_{g}^{3} = [x^{3}] \cdot [y^{2}] = \langle 4 \rangle, \qquad (IB.3)$ $t_{c}(k_{c}y_{c}^{-2} + k_{g}x_{g}^{-2}) = [y^{2}] = \langle 5 \rangle, \qquad (IB.3)$

where $\tau_{\mathbf{L}}$ is a simple function of the quantum number \mathbf{r} .

and

In more complicated cases where the overlap function $|A,m,\prec\rangle|B,n,\beta\rangle$ may vary in sign in different regions of space, a simple factorisation leads to a new product $|A,p,\prec\rangle|B,q,\beta\rangle$ (involving lower quantum numbers p and q) to which the above treatment is applicable, so that the solution of equations of the form (IB.3) is always a crucial stage in the application of the Cizek approximation.

It is found, however, that the solutions of (IB.3) are frequently complex, in which case the representation (IB.1) provides no help in the evaluation of multicentre integrals. Conditions under which at least one of the parameters is complex are derived below.

The problem can be simplified by choosing the origin to lie at the centre of gravity of the overlap density, so that the dipole moment $\langle 2 \rangle$ vanishes. The first four equations of (IB.3) can be solved simultaneously to give

$$\begin{aligned} z_{c} &= \frac{1}{2} \left\{ \frac{\langle 4 \rangle}{\langle 3 \rangle} - \sqrt{\left(\frac{\langle 4 \rangle}{\langle 3 \rangle} \right)^{2} + 4 \left(\frac{\langle 3 \rangle}{\langle 1 \rangle} \right)^{2}} \right\}, \\ z_{p} &= \frac{1}{2} \left\{ \frac{\langle 4 \rangle}{\langle 3 \rangle} + \sqrt{\left(\frac{\langle 4 \rangle}{\langle 3 \rangle} \right)^{2} + 4 \left(\frac{\langle 3 \rangle}{\langle 1 \rangle} \right)^{2}} \right\}, \\ k_{c} &= -\frac{\langle 1 \rangle}{z_{p} - x_{c}}, \end{aligned}$$
(IB.4)

and $h_g = \frac{\zeta_i > \chi_c}{\chi_c - \chi_g}$,

where conventionally $x_{y} > x_{c} \cdot x_{c}$ and x_{y} (and also k_{c} and k_{s}) will therefore be complex whenever

$$\frac{\langle 3\rangle^3}{\langle 1\rangle \langle 4\rangle^2} < -\frac{i}{4}$$
(IB.5)

 $\langle 1 \rangle$ is always positive but the inequality (IB.5) will hold if $\langle 3 \rangle$ is sufficiently large and negative, i.e. if the overlap density $(A,m, \prec \rangle | B,n, \beta \rangle$ is less spread out along the bond AB than perpendicular to it. This type of breakdown is relatively infrequent; more common is the case in which, although x_c , x_j , k_c and k_s are real, at least one of the exponents γ and δ is imaginary.

Consider first the case in which $\langle 3 \rangle$ is positive. It follows immediately from (IB.4) that x_c and x_s lie on opposite sides of the origin and that k_c and k_s are both positive. Solving the last two of equations (IB.3) for ζ^2 gives:

154

$$\gamma^{2} = \frac{c_{r} k_{c}(x_{0} - x_{c})}{\langle 5 \rangle x_{0} - \langle 6 \rangle}$$
(IB.6)

 au_r is always positive so that, if γ^r is positive it is necessary that

$$x_{p} > \frac{\langle 6 \rangle}{\langle 5 \rangle}$$
 (IB.7)

For both χ^2 and δ^2 to be positive the condition (IB.7) is enlarged to:

$$x_{y} > \frac{\langle 6 \rangle}{\langle 5 \rangle} > x_{c} \qquad (\text{IB.8})$$

Consider now the case when $\langle 3 \rangle$ is negative. If the direction of the x-axis is chosen so that $\langle 4 \rangle$ is negative also, then (IB.4) implies that x_c , x_p and k_c are positive and that k_p is negative. The condition for both χ^2 and δ^2 to be positive becomes

$$(x_{p} >) x_{c} > \frac{\langle 6 \rangle}{\langle 5 \rangle} .$$
 (IB.9)

Should the appropriate condition (IB.8) or (IB.9) not hold, then at least one of the exponents γ and δ is pure imaginary, so that the Cizek approximation breaks down completely, because at least one of the new orbitals becomes a travelling wave.

It is worth noting that, to a first approximation, it is expected that

$$\frac{\langle 6 \rangle}{\langle 5 \rangle} = \frac{C \times j^{2} j}{C y^{2} j} \sim \frac{C \times j}{E^{1} j} = 0. \qquad (IB.10)$$

Were this rigorously true, as it is for an overlap function with a centre of symmetry, imaginary solutions for the exponents would never occur. More generally (IB.10) suggests that this breakdown should not occur when the modulus of $\langle 3 \rangle$ is large, but that the most vulnerable situations will be those near the transition from condition (IB.8) to (IB.9) where $x_e \sim 0$ and where $[x^2]$ and $[y^2]$ are most nearly equal.

A more detailed analysis of the circumstances in which the Cizek approximation fails is complicated by the need to involve analytical forms for the two centre integrals $(x^{i}y^{j}z^{k}]$. It does appear, however, that, when $|A,m,a\rangle$ and $(B,n,\beta\rangle$ are both 1s Slater functions, breakdown will never occur; it was largely in cases of this

type that Cizek demonstrated the value of his method. On the other hand, frequent failures, such as those discovered "experimentally" in the present calculations, appear likely for higher Slater orbitals.

Part II

THE JAHN-TELLER EFFECT IN ReF6

II.The Jahn-Teller effect in ReFII.1Introduction

The theorem of Jahn and Teller^(12,13) states that a non-linear symmetrical molecule in an electronically degenerate state will tend to distort in at least one non-totally symmetrical normal coordinate and that, as a consequence of this distortion, the electronic degeneracy will be resolved. As a result two or more electronic potential surfaces cross at the symmetrical configuration.

Recalling the development outlined in the main introduction to this thesis, the general equation governing the nuclear wavefunctions is, in terms of the notation there outlined,

$$\begin{bmatrix} \sum \hat{b}_{n}^{2} \\ \sum \frac{1}{2M_{w}} + \int \Psi_{m}^{*} \left(\sum \hat{b}_{2M_{w}}^{2} \right) \Psi_{m} dr + \mathcal{U}_{m}(R) - E \int X_{m} \\ + \sum_{n+m} \left\{ \sum_{n'} \frac{1}{2M_{w}} \left[\int \Psi_{m}^{*} \hat{F}_{n'}^{2} \Psi_{n'} dr + 2 \left(\int \Psi_{m}^{*} \hat{F}_{n'} \Psi_{n'} dr \right) \hat{F}_{w} \right] \right\} X_{n} = 0.$$

$$(II.1)$$

The coupling integrals between a given pair of electronic states become most important in configurations of near or actual degeneracy. Hence it is no longer a good approximation to treat the total wavefunction of the

<u>_</u>

system as a simple product of an electronic function and a nuclear function. Instead the total wavefunction must, in such a region, be written as a sum of such products taken over the degenerate electronic states. Thus

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{n} \chi'_{n}(\mathbf{R}) \Psi_{n}(\mathbf{r}; \mathbf{R}), \qquad (\text{II.2})$$

and the coupling between these states must be invoked when considering the nuclear motions around these configurations. If the stable equilibrium geometry of the molecule is not far removed from the crossing point, then such coupling is important in the ordinary vibrational motions of the molecule, and may have a striking effect on the observed vibrational spectrum.

The first stage in any problem is to investigate the nature of the potential energy surfaces and of the electronic wavefunctions. If it is anticipated that only small deviations from the symmetrical arrangement will be involved, then it is convenient to express the electronic functions $\mathcal{V}_{k}(r;\mathbb{R})$ at nuclear configuration R in terms of the set of eigenfunctions $\mathcal{V}_{k}(r;0)$ of the electronic hamiltonian $\widehat{\mathcal{V}}_{k}$ relevant to the symmetrical configuration, so that

$$\Psi_m(r;R) = \sum_n c_{mn}(R) \Psi_n(r,0). \qquad (11.3)$$

It is assumed that the summation need only include those electronic states $\Psi_n(r;0)$ which are degenerate at R = 0, an approximation which is valid for sufficiently small displacements.

If the electronic hamiltonian is written in the form:

$$\widehat{\mathcal{H}}_{e} = \widehat{\mathcal{H}}_{o} + \vee \langle (\mathcal{R}) \rangle, \qquad (II.4)$$

where V'(R) is the change in the total potential energy as the nuclear configuration is moved from R = 0 to R = R, then the coefficients $c_{mn}(R)$ in equation (II.3) and the corresponding eigenvalues, U(R), may be determined as functions of nuclear geometry by solution of the secular equations:

$$\sum_{n} \left[V_{mn}(R) + (W_0 - U(R)) \delta_{mn} \right] c_{mn} = 0, \qquad (II.5)$$

where W_o is the electronic energy in the degenerate configuration and

$$V_{mn}(R) = \int \Psi_{m}^{*}(r; 0) V'(r, R) \Psi_{n}(r; 0) dv. \quad (II.6)$$

It is convenient to write

$$V_{mn} = V_{mn}^{o} + V_{mn}^{JT}$$
(II.7)

where V_{mn}° is the value of the integral V_{mn} when the interactions giving rise to the Jahn-Teller effect are

switched off, V_{mn}^{JT} constituting the remaining contribution..

Expanding the diagonal element V_{mm}° in a Maclaurin series and neglecting terms of higher than quadratic order,

$$V_{mm}^{\circ} = \frac{1}{2} \sum_{\nu} \left(\frac{\partial^2 V_{mm}^{\circ}}{\partial Q_{\nu}^2} \right)_{\rho} Q_{\nu}^2. \qquad (II.8)$$

In (II.8) the nuclear coordinates, which have hitherto been collected in the symbol R, are broken down into the individual normal coordinates $\mathcal{Q}_{\mathcal{Y}}$. The origin of the $Q_{\mathcal{Y}}$ can always be chosen so that there are no linear terms in the Maclaurin series, and their forms can be chosen to avoid the appearance of cross quadratic terms $Q_{\mathcal{Y}}$. Furthermore, since the terms which relieve the degeneracy of the \mathcal{Y} are retained in the matrix $\mathcal{V}_{\mathcal{Y}}^{\mathcal{T}\mathcal{T}}$

$$V_{mn}^{\circ} = \frac{\delta_{mn}}{2} \sum_{j} \lambda_{j} Q_{j}^{2} \qquad (II.9)$$

where $\lambda_{j} = \left(\frac{\partial^{2} V_{i}}{\partial Q_{j}^{2}}\right)_{0}$

If the interactions giving rise to the Jahn-Teller effect are relatively weak, as they must be if the expansion (II.3) for the electronic functions is to be used, then the Maclaurin series for the elements V_{mn}^{TT} may be truncated after terms which are linear in the Q_{0} . It is in any case conventional that the phrase "Jahn-Teller effect" encompasses only such terms. Thus

$$V_{mn}^{JT} = \sum_{\nu} \left(\frac{\partial V_{mn}}{\partial Q_{\nu}} \right) Q_{\nu} . \qquad (II.10)$$

Since the electronic functions $\mathscr{V}_{m}(r;0)$ are independent of the Q_{a} , it follows that

$$\left(\frac{\partial V_{mn}}{\partial Q_{3}} \right)_{0} = \int \Psi_{m}^{*}(v; 0) \left(\frac{\partial V(r, R)}{\partial Q_{3}} \right) \Psi_{n}(v; 0) dr.$$
(II.11)

For any given molecular symmetry and class of electronic degeneracy, the Q, which give rise to non zero coupling integrals (II.10) have been documented. (12,13)

The solution of the secular equation (II.5) rests on the evaluation of the λ_{γ} and of the elements of the matrix V^{TT} . If the expansion (II.8) is valid throughout the range of configurations which concern the vibrational motions of the molecule, the λ_{γ} are given simply by the experimental force constants derived from the vibrational spectrum. Thus

 $\lambda_{\gamma} = 4\pi^{2} \mu_{\gamma} \omega_{\gamma}^{2} c^{2}, \qquad (II.12)$

where μ_{i} is the reduced mass of the vibration whose observed spectral frequency is $\omega_{i}c$ sec. The evaluation of $V^{3\tau}$ thus represents the largest obstacle to the calculation.

If indeed the Jahn-Teller distortion is small, the most striking consequences appear in the vibrational motions of the molecule, which couple together the different electronic states, leading in particular to an anomalous

II.l

vibrational spectrum. The total wavefunction may be written as

$$\Psi(\mathbf{r}, \mathbf{R}) = \sum_{n} \chi_n(\mathbf{R}) \Psi_n(\mathbf{r}; \mathbf{0}), \qquad (\text{II.13})$$

where the sum, as in (II.3) is over the degenerate electronic functions of the symmetrical geometry. The coupled equations for the nuclear functions then take the form:

$$\begin{bmatrix} \sum_{N} \frac{\hat{\beta}_{N}}{2M_{N}} + V_{mm}^{JT} + W_{c} + \frac{1}{2} \sum_{v} \lambda_{v} Q_{v}^{2} - E \end{bmatrix} \chi_{m}$$

$$+ \sum_{n \neq m} V_{mn}^{JT} \chi_{n} = 0 ,$$
(II.14)

and may be set up immediately. It can be shown that the use of this formalism, in terms of the fixed $\mathcal{V}_{\alpha}(r;0)$, rather than that of (II.1), in terms of the instantaneous

 $\Psi_{n}(r;R)$, transfers the burden of the calculation from kinetic to potential energy.⁽⁶³⁾

Rhenium hexafluoride in an octahedral configuration is in a four-fold degenerate (\prod_{g}) electronic state, ⁽⁶⁴⁾ and will therefore exhibit the Jahn-Teller effect. The calculations here described are aimed at achieving a measure of the direction and extent of the effect in this case. One reason for this calculation is that features of the ReF₄ vibrational spectrum have been ascribed to the

In the homologous hexafluoride of tungsten there are six valence electrons on the central atom which may be assigned to the W-F bonding orbitals. The molecule is of regular octahedral geometry and has the characteristic vibrational spectrum. (66) ReF₄ has an extra valence electron on the central atom and this is assigned to the non-bonding rhenium 5d- (ℓ_{2g}) orbital, leading in the octahedral arrangement to a four-fold degeneracy when spin orbit coupling is taken into account. The coupling terms, $V_{mn}^{\tau\tau}$, giving rise to the Jahn-Teller effect in this case arise principally from the sensitivity to the nuclear geometry of the disposition of this single electron. In this calculation it is assumed that these terms arise simply from the electrostatic interactions between this nonbonding electron and the bonded fluorine atoms. The integrals V_{mn}^{JT} thus depend only on the coordinates of a single electron, which is a further encouragement for considering this particular case.

The course of the work may be briefly summarised. The electronically degenerate states of octahedral ReF₆ are discussed and the normal coordinates Q_{2} which contribute to V^{TT} are enumerated. An analytical form is postulated

· · · · · ·

.II.1

for the electrostatic interaction potential between the non-bonding electron and the fluorine atoms and the necessary integrals (II.11) are evaluated using postulated parameters governing the size of the Re 5d-orbital, the ionic character of the Re-F bond and the extent of sp-hybridisation of the bonding F orbitals. The results are relatively insensitive to reasonable choices of these parameters and are in good agreement with the large splitting observed in the ω_2 band of the vibrational spectrum. A very small (~0.005Å) tetragonal distortion from octahedral geometry is predicted.

II.2 The degenerate wavefunctions in an octahedral field

The electronic structure of octahedral transition metal hexafluorides may be envisaged in the following way. Each fluorine atom contributes a 2s2p σ -hybrid atomic orbital and a single electron to the bonding. Linear combinations of these six fluorine orbitals may be constructed to give one group orbital of symmetry a_{ig} , two of symmetry e_g and three of symmetry t_{ie} . These interact, respectively, with the central atom 6s, $5d_{2i}$, $5d_{2i-j^2}$, $6p_x$, $6p_y$ and $6p_z$ orbitals, yielding a set of six bonding orbitals and six antibonding orbitals. The metal $5d_{ie}$,

164 -

II.Ž

 $5d_{y_z}$ and $5d_{z_x}$ orbitals, of symmetry t_{y_y} , are not involved in the binding. The six bonding orbitals are expected to lie lowest in energy, followed by the t_{2g} non-bonding levels and then, at a somewhat higher energy, the e_g antibonding levels. In the ground state of ReF₆ according to this picture, the six bonding orbitals are fully occupied, leaving a single electron occupying the degenerate t_{2g} levels.

In ReF₆ there will also be coupling between the spin and orbital angular momenta of the non bonding electron. Spin orbit coupling effects increase in magnitude through the periodic table as the square of the atomic number and are far from negligible in the third row transition metals. The six spin orbit states arising from the ${}^{2}T_{23}$ state are split into an upper doublet and a lower quartet. In the ground state, octahedral ReF₆ is therefore, fourfold degenerate, belonging to the representation \prod_{8} of the extended octahedral point group 0_{4}° .⁽⁶⁷⁾ This quartet of states correlates with the ${}^{2}D_{3}$ levels of the isolated atom and may conveniently be written in terms of the d₃₇, d₃₄ and d₂₄ orbitals as

$$|\frac{3}{2}\rangle = \frac{1}{\sqrt{2}} (|z_{x},\alpha\rangle - i|y_{z},\alpha\rangle),$$

$$|\frac{1}{2}\rangle = \frac{1}{\sqrt{6}} (2i|x_{y},\alpha\rangle + |z_{x},\beta\rangle - i|y_{z},\beta\rangle),$$

$$|\frac{1}{2}\rangle = \frac{1}{\sqrt{6}} (2i|x_{y},\beta\rangle + |z_{x},\alpha\rangle + i|y_{z},\alpha\rangle),$$

and
$$|\frac{-3}{2}\rangle = -\frac{1}{\sqrt{2}} (|z_{x},\beta\rangle + i|y_{z},\beta\rangle),$$

(II.15)

where α and β represent the spin functions $m_{s^2} \frac{1}{2}$ and $m_{s^2} - \frac{1}{2}$ respectively. This assignment, and in particular the validity of treating the spin orbit interaction as a perturbation of the crystal field states, is based on an analysis of the electronic spectrum of ReF₂.⁽⁶⁴⁾

II.3 The Jahn-Teller active modes of vibration

The integrals $V_{nn}^{\tau\tau}$ ranging over the functions (II.15) can easily be expressed in terms of similar integrals over the simple d_{nn} , $d_{\eta t}$ and $d_{\tau t}$ orbitals. The normal coordinates which contribute to the Jahn-Teller effect are therefore, by (II.11) restricted to Q, for which

$$< m \left(\frac{\partial V(r, R)}{\partial \varphi_{3}} \right) (n > \pm 0, \qquad (II.16)$$

where m and n range over the t_{2g} functions. Following the original arguments of Jahn and Teller⁽¹²⁾ non zero contributions arise only for those Q, which belong to irreducible representations, of the octahedral point group, O_L, contained in the symmetrised product of T_{2g} with itself. Now

$$\begin{bmatrix} T_{2g}^2 \end{bmatrix} = A_{ig} + E_{g} + T_{2g}, \qquad (II.17)$$

so that the "vibronically active" Q, are the totally
symmetric vibration Q, and the modes Q₂ and Q₅ which
are doubly and triply degenerate respectively. These

0 ŝΞ

II.3

vibrations are illustrated in figure II.1. It is apparent that Q_1 and Q_2 involve changes in bond lengths, while Q_2 involves changes in bond angles.

The non zero integrals (II.16), which are interrelated by symmetry, may be expressed in terms of three constants k_1 , k_2 and k_5 , defined by

$$k_{1} = \langle xy | \left(\frac{\partial V}{\partial Q_{1}} \right)_{0} | xy \rangle,$$

$$k_{2} = -\frac{1}{2} \langle xy | \left(\frac{\partial V}{\partial Q_{2}} \right)_{0} | xy \rangle,$$
(II.18)
and
$$k_{5} = -\frac{1}{\sqrt{3}} \langle xy | \left(\frac{\partial V}{\partial Q_{5}} \right)_{0} | zx \rangle,$$

and when taken over the \prod_g states (II.15), the matrix of $V^{\mathbf{J}\mathbf{\tau}}$ becomes

$$V_{3T} = \begin{bmatrix} k_{i}Q_{i} + k_{2}Q_{2a} & k_{5}(Q_{5j} - iQ_{5x}) & k_{2}Q_{2l} - ik_{5}Q_{52} & 0 \\ k_{5}(Q_{5j} + iQ_{5x}) & k_{i}Q_{i} - k_{2}Q_{1a} & 0 & -k_{2}Q_{2l} + ik_{5}Q_{52} \\ k_{2}Q_{2l} + ik_{5}Q_{52} & 0 & k_{i}Q_{i} - k_{2}Q_{2a} & k_{5}(Q_{5j} - iQ_{5j}) \\ 0 & -k_{2}Q_{2l} - ik_{5}Q_{52} & k_{5}(Q_{5j} + iQ_{5x}) & k_{i}Q_{i} + k_{2}Q_{2a} \end{bmatrix}$$
(II.19)

The constants k_1 , k_2 and k_5 are most conviently expressed in terms of basic integrals involving the interaction with a single fluorine atom. If v(x,y,z) is the potential between the non bonding electron and a single fluorine atom at the

point (x,y,z), then simple symmetry considerations show that

$$\langle xy| \langle \partial x_{0} \rangle | xy \rangle = \frac{1}{\sqrt{6}} \left\{ 2 \langle xy| v_{2}(0,0,R_{0}) | xy \rangle + 4 \langle zx| v_{2}(0,0,R_{0}) | zx \rangle \right\}, \qquad (II.20)$$

$$\langle xy| \langle \partial x_{2} \rangle | xy \rangle = \frac{1}{\sqrt{6}} \left\{ 4 \langle xy| v_{2}(0,0,R_{0}) | xy \rangle = 4 \langle zx| v_{2}(0,0,R_{0}) | zx \rangle \right\}, \qquad (II.20)$$

$$\text{and } \langle xy| \langle \partial y_{2} \rangle | zx \rangle = \frac{1}{2} \left\{ 4 \langle xy| v_{3}(0,0,R_{0}) | zx \rangle \right\},$$

where v_y and v_z are the appropriate derivatives of the function v and R_o is the equilibrium bondlength in the absence of the Jahn-Teller interactions. Furthermore $\langle x_y | v_y(0,0,k_o) | zx \rangle = \langle \lim_{\omega \to 0} t \{ \frac{\langle x_y | v(0,k_o) | zx \rangle - \langle x_y | v(0,0,k_o) | zx \rangle}{R_o \sin \omega} \}$ $= \frac{\langle z_x | v(0,0,k_o) | z_x \rangle - \langle x_y | v(0,0,k_o) | x_y \rangle}{R_o}$, (II.21)

so that only four basic two centre integrals are required. These are

$$\begin{aligned} v_{xy}^{\prime} &= \langle xy | v_{z}(0,0,R_{o}) | xy \rangle, \\ v_{zx}^{\prime} &= \langle zx | v_{z}(0,0,R_{o}) | zx \rangle, \\ v_{xy} &= \langle xy | v(0,0,R_{o}) | xy \rangle, \\ and v_{zx} &= \langle zx | v(0,0,R_{o}) | zx \rangle. \end{aligned}$$
(II.22)

In terms of these quantities the coupling constants k, k, and k, become

$$h_{1} = \int_{\frac{1}{3}}^{\frac{1}{2}} \left(\upsilon_{xy}^{\dagger} + \upsilon_{zx}^{\dagger} \right),$$

$$h_{2} = \frac{1}{\sqrt{3}} \left(\upsilon_{zx}^{\dagger} - \upsilon_{xy}^{\dagger} \right),$$

and
$$h_{5} = \frac{1}{\sqrt{3}} \left(\frac{\upsilon_{xy} - \upsilon_{zx}}{R_{o}} \right).$$

(11.23)

II.4 Calculation of the integrals

The evaluation of the integrals (II.22) requires expressions for the electrostatic potential due to the fluorine atom on the positive z-axis and for the rhenium 5d-orbitals.

If the bonding were completely ionic the electrostatic fluorine potential would closely approximate that of a fluoride ion, for which an analytical expression, derived from self consistent field calculations is available.⁽⁶⁹⁾ In order to correct for covalency, the bonding fluorine orbital is assumed to be a hybrid 2s2p Slater-type function with exponent c. Thus

$$|F\rangle \propto r_{F} \exp\left(-cr_{F}\right) \left\{ \sqrt{3} cos \alpha + (1-k) \right\}, \qquad (II.24)$$

where h is a hybridisation parameter (h=0 corresponds to a pure s-orbital and h=1 to a pure p-function). The angle \propto is measured from the F-Re bond. The electrostatic potential v ($\mathbf{r}, \boldsymbol{\kappa}$) may be expressed as

$$v(r_{F}, \alpha) = v_{F}(r_{F}) - (1-g) < F[\frac{1}{r_{F}}]F>,$$
 (II.25)

where completely covalent and totally ionic situations correspond to g=0 and g=1 respectively. On substituting for the fluoride ion potential $v_{g=0}$, and performing the integration in (II.25) the following expression is obtained:

$$\Psi\left(r_{F}, \mu\right) = \left\{ \frac{1}{r_{F}} - \frac{10}{r_{F}} \exp\left(-2.674r_{F}\right) - 147r_{F}^{2} \exp\left(-5.365r_{F}\right) \right\}$$

$$- \left(1-9\right) \left\{ \frac{1}{r_{F}} - \exp\left(-2cr_{F}\right) \left[\frac{1}{r_{F}} + \frac{3c}{2} + c^{2}r_{F} + \frac{c^{3}r_{F}^{2}}{3} \right]$$

$$- \left(1-3ccs^{2}d\right) \left[\frac{3}{2c^{2}r_{F}^{3}} - \exp\left(-2cr_{F}\right) \left(\frac{3}{2c^{2}r_{F}^{3}} + \frac{3}{cr_{F}^{2}} \right) \right]$$

$$+ \frac{3}{r_{F}} + 2c + c^{2}r_{F} + \frac{c^{3}r_{F}^{2}}{3} \right]$$

$$(II.26)$$

The radial part for the rhenium 5d-orbitals is taken in Slater-type form:

$$|Re \rangle \propto f(0,\phi) r^3 enp(-pr). \qquad (II.27)$$

Since the true radial variation of these functions is uncertain the exponent p is varied widely about the value p=1.4 estimated by Slater's rules.⁽³¹⁾

Because of the terms in r^2 and r^3 in the expression (II.26) for v, the two centre integrals (II.22) are best computed numerically. Gaussian quadrature ⁽⁴²⁾ using confocal ellipsoidal coordinates was adopted, with an integration grid whose mesh was reduced until the desired accuracy was obtained. The integrals v'_{xy} and v'_{zx} which involve the derivative of v, with respect to the z-coordinate of the fluorine atom on which it is centred, are best performed by carrying out the differentiation after transforming to ellipsoidal coordinates. The bond length R, in equations (II.22) was taken as 1.830Å, the observed internuclear distance in WF, (70)

II.5 Results and discussion

The measurable consequences of the Jahn-Teller effect fall into two categories. In the static aspect the form of the lowest potential surface determines the (distorted) equilibrium geometry of the molecule. In the dynamical problem the coupling between the surfaces induced by the nuclear motions determines the vibrational spectrum of the molecule.

Once the integrals (II.22) have been evaluated it is possible to set up the secular equations, (II.5), whose eigenvalues determine the electronic potential surfaces. Thus, in matrix notation,

$$\{V^{3T} + (W_0 + \frac{1}{2} \overline{z}_{\lambda_0} \alpha_{\lambda_0}^2) \mathbf{1}\} C = UC, \qquad (II.28)$$

where C is the matrix of eigenvectors and U is that of eigenvalues; V^{JT} is constructed from (II.19) and is the unit matrix. The potential surfaces in this situation have been derived by Moffitt and Thorson. (71) correspond to two Kramer doublet levels whose energies may

be written

$$\mathcal{U} = W_0 + \frac{1}{2} \left(\lambda_1 Q_1^2 + \lambda_2 r^2 + \lambda_5 R^2 \right) + R_1 Q_1 \pm \sqrt{R_2^2 r^2 + R_5^2 R^2}, \quad (II.29)$$

where $r^2 = Q_{2a}^2 + Q_{2e}^2$ and $R^2 = Q_{5x}^2 + Q_{9y}^2 + Q_{5z}^2$. If $k_5^2/\lambda_5 > k_2^2/\lambda_2$ the minima lie at $Q_x = -k_1/\lambda_1$, r = 0, $R = (k_5)/\lambda_5$, (II.30)

where $\mathcal{U}_{min} = W_0 - \frac{1}{2} \frac{k_0^2}{X_1} - \frac{1}{2} \frac{k_0^2}{X_0}$ On the other hand, when $\frac{k_0^2}{X_0} - \frac{1}{2} \frac{k_0^2}{X_0}$, the minima lie at $Q_1 = -\frac{k_0}{A_1}$, $Q_{2a} = \frac{1}{2} \frac{k_0}{A_2} \frac{k_0}{A_0}$, R = 0, (II.31) where $\mathcal{U}_{min} = W_0 - \frac{1}{2} \frac{k_0^2}{X_0} - \frac{1}{2} \frac{k_0^2}{A_0}$

In the latter case, where the asymmetric distortion is in the Q_2 mode, it has been shown ⁽⁷²⁾ that any quadratic coupling terms (neglected in this work) will cause the absolute minimum to lie in Q_{2q} rather than in the Q_{2c} component.

It can be shown⁽⁷³⁾ that the vibrational consequences of the Jahn-Teller effect depend on the dimensionless ratio D_i to the ith vibrational quantum, of the depression of the energy minimum caused in that mode. Thus

$$D_{i} = \frac{1}{2} \frac{k_{i}^{2}}{k_{i} \omega_{i}}$$
(II.32)

The force constants λ_{y} , required in equations (II.29-II32), are evaluated from the vibrational frequencies

Table II

d,	د 0	д	r (Å)	Ч,	ď	D S	R2/12 (ani 1)	Rs/15(cm-1)	$\Delta Q_{i}(A)$	$\Delta Q_{i}(A)$	$\Delta Q_{s}(\hat{A})$	4w2(c=1)
1.0	0	r-1	2.12	0.038	0.0069	0.068	9.27	40.2	-0.0055		±0.014	13
1 . 4	0	<u>r-i</u>	1.51	0.413	0.062	0.188	82.3	TTT	-0.018		±0.025	130
	C	-:	1.25	0.760	0•101	0.188	136	TTT	-0.024	±0.0067		190
°.	0	ri	1.06	0.866	0.101	0.140	135	82.4	-0.026	±0.0067		190
າ ເ	0	-:	0*85	0.714	0.061	0.068	81.0	39.9	-0.024	±0.0052		130
1,0	C	÷	2,12	0.065	0.0093	0.092	12.4	54.1	-0.0072		±0.017	20
1.4	С	C	1,51	C.543	0.079	0.200	106	118	-0.021		±0.025	160
р. 	С	0	1, 25	0.813	0.117	0.164	157	96.7	- 0. 025	±0.0072		21.0
0 0	C	0	1,06	0.738	0.104	0.096	1.39	56.7	-0.024	±0.0068		2.00 2
2•5	C	0	0.85	0.371	0.048	0.029	64.4	16.9	4T0 •0 -	±0.0046		TTO
1.4	ः	щ	1.51	0.413	0.062	0.188	00 00 00		- 0, 018		±0.025	130
1.435	С. С.	r-l	1.47	0.222	0.063	0.110	ර: දි (ර	65 • 0	- 0- 013	±0.0053		140
1. 505	0°3	Ч	r-1 ++ r-1	0.0034	0.059	0.015	78.6	8.62	- 0° 0076	±0.0051		130
1.61	0 . 6	1	1.31	0.482	0.043	0•04l	57.9	24•2	0.019	+0.0044		100
54°T	С г!	н	1.81	3.693	0.016	0.394	21.4	232	0.054		∓0•034	40

 $\begin{array}{l} r_{\text{A}_{S}} = radial \text{ distribution maximum of } t_{2} \\ \Delta \mathbb{Q}_{i} = increase \text{ in average bond length}} \\ \Delta \mathbb{Q}_{i} = increase \text{ in average bond length}} \\ \Delta \mathbb{Q}_{s} = increase \text{ in equatorial bond length}} \\ \Delta \mathbb{Q}_{s} = atomic \text{ displacement in a } \mathbb{Q}_{S} \text{ mode}}. \end{array}$

II.5

 $\omega_{1} = 755 \text{ cm}^{\circ}$, $\omega_{2} = 670 \text{ cm}^{\circ}$ and $\omega_{5} = 295 \text{ cm}^{\circ}$. Of these ω_{1} is taken direct from the Raman spectrum⁽⁶⁵⁾ but ω_{2} and ω_{5} are interpolated from the sequence WF₆, IrF₆ and PtF₆^(66,74,75) because the observed ReF₆ frequencies are dependent on the Jahn-Teller effect. These spectra have been reviewed at length.⁽⁶⁵⁾

In the results, collected in table II, a value of 2.425 has been used throughout for the fluorine bonding orbital exponent c. This value is in accordance with Slater's rules and in one case the choice c=2.6 was found to alter the calculated coupling constants by only about 2%, so that the accuracy of this choice does not appear to be crucial. On the other hand the t_{23} orbital exponent, p, is varied widely, though the extreme values of 1.0 and 2.5 appear inrealistic when the corresponding orbital maxima, at 2.12Å and 0.85Å respectively, are compared with the molecular dimensions (Re-F~1.8Å).

Horizontally, the table is divided into three sections. The first two correspond to purely covalent binding (g=0), using 2p- and 2s- fluorine orbitals respectively, and in each case varying the rhenium exponent p over a wide range. It appears that the hybridisation of the fluorine orbital has little influence on the results, though significant

II.5

variations do occur on changing the rhenium exponent. Order of magnitude consistency is however maintained, especially over the physically reasonable range 1.4 sp <2.0. The effect on the results of a gradual introduction of bond polarity is shown in the last section of the table, where g is the charge transferred to each fluorine atom and the rhenium exponent is at each step derived by applying Slater's rules to the configuration Re $5d_{e_{2}} \begin{bmatrix} 5d_{e_{3}}^{4} & 6s \end{bmatrix}^{(l-g)}$, thereby taking account of the increasing effective nuclear charge of the central atom. The increasing ionic character appears to have little influence on the magnitude of D,, but to cause a rapid diminution of D, and D, both of which pass through zero before g = 0.4. Since the positive charge on the central atom is 6g it is unlikely that g will exceed 0.3.

The calculated equilibrium geometry of the molecule may be derived by superimposing the atomic displacements $\mathbf{AQ}_{1,1}\mathbf{AQ}$ and \mathbf{AQ}_{5} on to the unperturbed (WF₆) geometry. The predicted values of these displacements and an explanation of the symbols are given in the table. It is apparent that neither \mathbf{Q}_{2} nor \mathbf{Q}_{5} distortions predominate over the entire range of values of p. A small degree of ionicity tends to

favour Q_1 , however, and a distortion in this mode seems the more likely. In order of magnitude, therefore, it seems probable that there will be a net decrease in bondlength (~0.01Å) compared with WF₆ and that superimposed on this will be a small tetragonal distortion corresponding to a change in the equatorial bondlength of ~0.005Å. Since the mean amplitude of vibrational motion in the ReF bonds is of the order of 0.02Å, it appears improbable that the net asymmetry would be detectable.

The influence of the Jahn-Teller effect on the vibrational spectrum, however, is more striking. The Q displacement does not reduce the molecular symmetry, nor relieve the electronic degeneracy. It marks only the influence of the non bonding electron on the net stability of the molecule. The values of D, and D, however, determine the expected splitting in the ω_{z} and ω_{s} bands in the Raman spectrum. If k << k or if it is assumed that the vibrational interactions in Q, and Q, may be treated separately, then the vibronic problem in Q, reduces to that treated by Longuet-Higgins and others (76) and the predicted splittings $\Delta \omega_{2}$ quoted in the last column are derived from their tables of energy levels. An experimental value of 168 cm has been reported (65) for this splitting, and this figure is in reasonable agreement with values

calculated for $1.4 \le p \le 2.0$. The necessary data is not available for a similar estimate of the structure of the ω_5 band.

This calculation is of necessity rather crude. Ιt does, however, show that a simple electrostatic interaction accounts for the observed anomalous Jahn-Teller splitting in the ω_{2} band of the spectrum of ReF4 . It also predicts that the net geometric distortion will be very small, a conclusion which is susceptible to test. In this straightforward electrostatic approach no allowance has been made for the Pauli exclusion effects which were shown to be of such significance in the calculation in part I. This omission should be relatively unimportant here as the t_{29} rhenium orbital expressions have nodes in the octahedral directions, and are thus of small amplitude within the fluorine cores, and overlap in any case only with the occupied fluorine 2p orbitals. Neglect of such other factors as exchange should be entirely justifiable within the framework of this calculation, since the fundamental uncertainties in the detailed electronic distributions restrict the reasonable objectives of the work to a demonstration of the applicability of Jahn-Teller theory to ReF, and an order of magnitude estimate of the

detailed effects. A more precise calculation would require a very much more elaborate treatment of the problem. The results of this work have been published.⁽⁷⁷⁾
References

1.	Born, M., and Oppenheimer, R.J., 1927, Ann. Physik, <u>84</u> , 457.
2.	Born, M., 1951, Festschrift Gött. Nachr. Math , Phys.Kl.l.
3.	Hobey, W.D., and McLachlan, A.D., 1960, J.Chem. Phys. 33, 1695.
4.	Thorson, W.R., 1963, J. Chem. Phys. 39, 1431.
5.	Landau, L.D., 1932, Z. Phys. Sowj. 2, 46.
6.	Zener, C., 1932, Proc. Roy. Soc. A.137, 696.
7.	Steueckelberg, E.G.C., 1932, Helv. Phys. Acta, 5, 369.
8.	Laidler, K.J., and Polanyi,J.C., 1965, Prog. React. Kinet. 3,1.
9.	Herschbach, D.R., 1966, Adv. Chem. Phys. 10, 319.
10.	Herschbach, D.R., 1965, Appl. Opt. 4, Supplement, p 128.
11.	Taylor, E.H., and Datz, S., 1955, J. Chem. Phys. 23, 1711.
12.	Jahn, H.A., and Teller, E., 1937, Proc. Roy. Soc. A. 161, 220
13.	Jahn, H.A., 1938, Proc. Roy. Soc. A164, 117.
14.	Longuet-Higgins, H.C., 1960, Adv. Spect. 2,249.
15.	Austin,B.J., Heine,V., and Sham,L.J., 1962, Phys. Rev. 127, 276.
16.	Cizek, J., 1963, Mol. Phys. <u>6</u> , 19.
17.	Rittner, E.S., 1951, J. Chem. Phys., 19, 1030.
18.	London, F., 1937, Z. Physik, 74, 143.
19.	Renninger, M., 1952, Acta Cryst. 5, 711.
20.	Gordy, W., 1951, J. Chem. Phys. 19, 792.

R

21.	Pauling, L., 1927, Proc. Roy. Soc. A. 114, 181.
22.	London, F., 1930, Z. Physik, <u>63</u> , 245.
23.	Born, M., and Mayer, J.E., 1932, Z. Physik, 75, 1.
24.	Amdur, I., and Ross, J., 1958, Combust. Flame, 2, 412.
25.	Pauling,L.C., 1940, "The Nature of the Chemical Bond" (Cornell Univ. Press, Ithaca,New York) 2nd edition
26.	Clementi,E., 1964, J. Chem. Phys. <u>41</u> , 295.
27.	Clementi, E., 1963, J. Chem. Phys. <u>38</u> , 996 and 1001
28.	Clementi, E., 1963, Document Nos. 7440, 7441, ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington 25, D.C.
29.	Atomic Energy Levels, 1949, Circular 467, United States Dept. of Commerce, National Bureau of Standards.
30.	Sternheimer, R.M., 1962, Phys. Rev. 127, 1220.
31.	Slater, J.C., 1930, Phys. Rev. <u>36</u> , 57.
32.	Clementi, E., 1963, J. Chem. Phys. 39, 175.
33.	Clementi, E., 1965, J. Chem. Phys. <u>42</u> , 2783.
34.	Hartree, D.R., and Hartree, W., 1948, Proc. Roy. Soc. <u>A.193</u> , 299.
35.	Hartree, D.R., and Hartree, W., 1938, Proc. Roy. Soc. <u>A.166</u> , 450.
36.	Hartree, D.R., and Hartree, W, 1936, Proc. Roy. Soc. <u>A.156</u> , 45.
37.	Strand, T.G., and Bonham, R.A., 1964, J. Chem. Phys. <u>40</u> , 1686.
38.	Strand, T.G., Kohl, D.A., and Bonham, R.A., 1963, J. Chem. Phys. <u>39</u> , 1307.

R

39.	Mulliken, R.S., Rieke, C.A., Orloff, D., and Orloff, H., 1949, J. Chem. Phys. <u>17</u> , 1248.
40.	Magnusson, E.A., 1964, Rev. Pure Appl. Chem. 14, 57.
41.	Mulliken, R.S., 1949, J. Chim. phys. 46, 497, 500 and 521.
42.	Lowan, A.N., Davids, N., and Levenson, A., 1942, Bull. Amer. Math. Soc. <u>48</u> ,739.
43.	Pope, D.A., and Tomkins, C., 1957, J. Assoc. Comp. Mach. <u>4</u> , 459.
44.	Leifer,L. Cotton,F.A., and Leto,J.R., 1958, J. Chem.Phys. 28, 364.
45.	Hafemeister, D.W., and Flygare, M.H., 1965, J. Chem. Phys. 43, 795.
46.	Mayer, J.E., and Helmholz, L., 1932, Z. Phys. 75, 19.
47.	Herzberg, G., 1950, "Spectra of Diatomic Molecules" (D. Van Hostrand Company, Inc., New York)2nd edition.
4 8.	Rosen, N., and Ikehara, S., 1932, Phys. Rev. 43, 5.
49.	Barrow, R.F., Travis, N., and Wright, C.V., 1960, Nature, 187, 141.
50.	Robertson, E.W., and Barrow, R.F., 1961, Proc. Chem. Soc. 329.
51.	James,H.M., 1935, J. Chem.Phys. <u>3</u> ,9.
52.	Lee,Y., and Mahan, B.H., 1965, J. Chem Phys. <u>42</u> , 2893.
53.	Sinanoglu, 0., and Mortensen, E.M., 1961, J. Chem Phys. 34, 1078.
54.	Faulkner, J.E., 1957, J. Chem. Phys. 27, 369.
55.	Morse, P.M., 1929, Phys. Rev. 34, 57.
56.	Kachhava, C.M., and Saxena, S.C., 1963, Mol. Phys. 7, 465.
57.	Bunker, D.L., and Blais, N.C., 1964, J. Chem. Phys., 41, 2377.
58.	Chupka, W.A., 1959, J. Chem. Phys. 30, 458.

Dixon, R.N., 1964, Trans. Farad. Soc. 60, 1363. Moulton, M.C., and Herschbach, D.R., 1966, J. Chem. Phys. 44, 3010. Margenau, H., and Murphy, G.M., 1956, "The Mathematics of Physics and Chemistry" (D. Van Nostrand Company Inc., New York) 2nd edition. Hartree, D.R., 1955, "Numerical Analysis" (Oxford Univ. Press.) McLachlan, A.D., 1961, Mol. Phys. 4, 417. 64. Moffitt, W., Goodman, G.L., Fred, M., and Weinstock, B., 1959, Mol. Phys. 2, 109.

- Weinstock, B., and Goodman, G.L., 1965, Adv. Chem. Phys.9, 65. 169.
- 66. Burke, T.G., Smith, D.F., and Nielsen, A.H., 1952, J. Chem. Phys. 20, 447.
- 67. Bethe, H., 1929, Ann. Phys. 3, 133.
- 68. Froese, C., 1957, Proc. Camb. Phil. Soc. 53, 206.
- Craig, D.P., and Zauli, C., 1962, J. Chem Phys. 37, 601. 69.
- 70. Weinstock, B., and Malm, J.G., 1958, Proc. U.N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva, 28, 125.
- 71. Moffitt, W. and Thorson, W.R., 1957, Phys. Rev. 108, 1251.
- 72. Balhausen, C.J., and Liehr, A.D., 1958, Annals of Physics, 3, 304.
- 73. Moffitt, W., and Thorson, W.R., 1958, Rec. Mém. Centre Nat. Rech. Sci., November.
- 74. Weinstock, B., Claassen, H. H., and Malm, J.G., 1960, J. Chem. Phys. 32, 181.
- 75. Claassen, H.H., Malm, J.G., and Selig, H., 1962, J. Chem. Phys. 36, 2890.

183

59.

60.

61.

62.

63.

76. Longuet-Higgins, H.C., Öpik, U., Price, M.H.L., and Sack, R.A., 1958., Proc. Roy. Soc. A.244, 1.

77. Child, M.S., and Roach, A.C., 1965, Mol. Phys., 9, 281.