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Summary

The thesis is divided into three|parts: the
first part is a brief review of the theory and methods 
of x-ray crystallography, the second part describes 
a number of computer programmes devised either wholly 
or partly by the author, and in the third part accounts 
of three structure analyses are presented.

The computer programmes described in Part II are 
written in ALGOL for the English Electric KDP9 Computer. 
The molecular functions system is a group of six 
programmes for interpreting the results of a structure 
analysis: bond lengths and interbond angles with their
standard deviations, intermolecular contacts, and mean 
plane equations may be calculated and rigid-body 
vibrational analysis can be carried out. The automatic 
structure solution (ASS) system allows semi-automatic 
Fourier refinement to be performed. The minimum residual 
programme permits crystal structures to be refined in 
projection by direct calculation of the minimum R-factor.

The structure analyses presented in Part III are 
applications of the x-ray method to organic and organo- 
metallic structural problems0

It has been known for more than twenty years that 
indene can form a 1:2 adduct with dimethylacetylene- 
dicarboxylate. Earlier chemical and spectroscopic studies

- 2-



on the adduct did not lead to a successful structure 
determination. The molecular structure of the adduct 
has now been definitely established by x-ray analysis 
of its dibromo-derivative.

The structure analyses of phenanthrenechromium
tricarbonyl, C-j^H^Cr(CO)^, and of 9,10-dihydro-
phenanthrenechromium tricarbonyl, C-^H-^Cr (CO)^, were
undertaken to obtain accurate dimensions for aromatic
rings bonded to chromium. In both analyses the
standard deviations of the C-C bonds range from 0.006 

oto 0.010 A. The results suggest that the chromium 
atom causes a slight increase in the mean bond length 
of the bonded ring without alteration of the ring 
symmetry. Structural studies on related arenechromium 
complexes are discussed.
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PART I

SOME METHODS OP X-RAY' ANALYSIS



1.1 INTRODUCTION
X-radiation is produced when high energy electrons 

collide with matter. It was shown by von Laue in 
1912 that x-ray wavelengths are of the same order of 
magnitude as the distances between adjacent atoms in 
solids and that, consequently, diffraction patterns 
are produced when an x-ray beam strikes a crystal.

The science of x-ray crystallography is mainly 
concerned, with the interpretation of such diffraction 
patterns. The angles at which diffracted beams occur 
are determined solely by the translations of the 
crystal lattice. Because x-rays are scattered by 
electrons the intensities of the diffracted beams are 
related to the distribution of electrons in the crystal. 
Prom a study of the x-ray diffraction pattern it is 
therefore possible to determine not only the geometry 
of the unit cell of the crystal and its space group, 
but also the electron density distribution and the 
positions of the constituent atoms.

The last fifty years have seen the methods of 
x-ray structure analysis being applied to more and more 
complex structures. Initially, greatest progress was 
made in the field of ionic crystals. Molecular 
crystals constituted more of a problem, due both to the
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greater difficulty of determining the electron density 
distribution from the x-ray intensities and to the 
scale of the calculations involved. The discovery that 
the interpretation of a diffraction pattern is greatly 
simplified when the structure contains a small number 
of atoms of much greater scattering power than the 
rest and, more recently, the advent of the electronic 
computer have removed these problems to a large extent. 
Today many complex organic molecules - steroids, 
carbohydrate's, terpenoids, alkaloids, and even proteins - 
have yielded to the x-ray analyst.
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1.2 THE GEOMETRY OP X-RAY DIPPRACTION
Consider monochromatic x-radiatiqn of wavelength A 

to be incident upon a crystal in a direction defined 
by the unit vector A s Q (Pig. 1.1). The path difference, 
dp, between a wave scattered at a point A in a direction 
defined by the unit vector A s is, relative to a wave 
scattered at the origin 0 in the same direction,

dp = 0.3—AC = Ar.(_s-_so) = Ar.S (1)

where OA = r and S = s-so. The vector S defines the
spatial relationship of the incident and diffracted 
beams. Prom Pig. 1.1 it is easily seen that if 2 0 
is the angle between incident and diffracted beams, then

|s| = 2sin0/A (2)

The path difference Ar.S corresponds to a phase 
difference 2 nr.S. If the electron density at A' in 
electrons per unit volume is p(r), then the wave 
scattered by the electron density in the volume element 
dV about A is defined in amplitude and phase, relative 
to the wave scattered by a single electron at the origin, 
by the expression /

= p (r )dVexp2TTir. S (3)
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The electron density p(r) is a periodic function. 
If a, b, and cp are the translations oi l the crystal 
lattice and u,v,w any three integers, then the points 
which lie on the lattice defined by the vector equation

R = r. + ua + vb + w_c (4)
have identical electron density. The wave scattered 
from anyone of these points, B, in the direction ̂  s 

is therefore
Gr-̂ (S) = p( r )dVexp277iR. S

= Gr̂ ( S)exp2Tri (ua + vb + vc).S (5)

The wave scattered by the crystal will have 
an appreciable amplitude only if all unit cells 'scatter
in phase, that is if the path' difference between G-̂ (_S)
and G--g(S) is always an integral number of wavelengths.
If n is an integer this condition may be written as

X(ua + vb + wc)S = n^for all values of u,v, and w, (6)
/so that /

a e S — h 
b _
c.S = I

S = k where h, k, and I  are integers0 (7)
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Equations (7) are called the Lane equations. 
a.S = h defines, in the space of S, a family of planes 
normal to a. The spacing between any two adjacent 
planes is l/| a I , Since a, b, and _£ are never 
parallel, the Laue equations- define three sets of equally 
spaced planes whose intersections form a lattice in the 
space of S. The equation which defines such a lattice is

S = ha* + kb* + X c* (8)
Prom (7) and (8) it immediately follows that a* is
normal to b and c and that the projection of a* upon a 
is l/| a! . Similar results follow for ,b* and £*,
The primitive translations of the lattice defined by (8), 
which is termed the reciprocal lattice of the crystal, 
are related to the primitive translations of the real 
space lattice of the crystal by 

a* = b x c/ V
b* = cx a/v (9)
c ■* = a x b/'V

where V is the volume of the unit cell in real space*
The physical significance of the Laue equations 

may now be stated. They define the values of the vector 
S, and hence the relationship between incident and 
diffracted beams, which result in the beam diffracted by 
a crystal having an appreciable amplitude. The values
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of S which fulfill this condition are functions only 
of the lattice translations of the cryptal. Each 
such value of S is associated with a point on the 
reciprocal lattice of the crystal and is uniquely 
defined by the lattice coordinates h,k, and A.

The Laue equations may be rewritten as
(a/h).S = (b/k).S = (c/A ).S = 1 (10)

By definition a/h, b/k, and 0/ 4are the intercepts 
which the plane with Miller indices hk 4 makes on the 
crystal axes. Prom (10) the projections of three 
points on this plane on to S are equal. S is therefore 
normal to the plane and | S |= l/d where d is the origin 
to plane distance. Substituting for | S Ifrom equation 
(2) gives

2dsin 0 = X (11)
Prom Pig. 1.1 it can be seen that s_ and Sq make equal 
angles 9 with the plane which is normal to S. When the 
diffraction conditions (7) hold, therefore, the incident 
and diffracted beams stand in the same relationship to 
the plane with Miller indices hkA as incident and 
reflected beams do to a mirror. This treatment, which 
is due to W.L. Bragg (1913), allows diffraction by a 
crystal to be considered in terms of the simpler concept 
of reflection by a crystal plane.
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1.3 THE STRUCTURE FACTOR
The wave scattered by the entire!contents of one

unit cell, G 
G(S) =

(S), is completely defined hy 
p(r)exp(2 n ±t .S)&Y (12)

where the integration is over the volume of the unit 
cell. U(s) is thus the Fourier transform of the
electron density distribution. The electron density
function, p(r), may be regarded as a sum of N independent 
atomic electron densities and (12) may then be rewritten 
as coN f r \

G(S) = R J pn( r )expl2Tii( r+r^). SJ dY (13)
n - l - m

In (13) Pn(ll) is e electron density distribution of 
t hthe n atom referred to an origin in the atom. This 

origin is connected to the origin of the unit cell by 
the vector rn .

The function
-f on

fn (S) = p (r)exp2 n ir.S dV (14)
_ c o

is the Fourier transform of the atomic electron density 
and is termed the atomic scattering factor. If the 
atom is centrosymmetric and if the origin of r has been 
taken at the centre of symmetry, fn (S) is a real function; 
if Pn(fO is spherically symmetric and hence a function
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of Ir I only, fn(S) is a function of I S '= 2sin only.
Since Pn (r) is known exactly only for,the isolated
hydrogen atom the atomic scattering factor can in
general only be calculated approximately. Tabulated
results of such calculations are given for spherically
symmetrical atoms in International Tables Vol. Ill
(1962). The physical interpretation of the scattering
factor is that it describes the total wave scattered
^y ■ an atom. There are phase differences between the
waves scattered at different parts of the same atom and
such phase differences increase with scattering angle.
Accordingly the amplitude of the total wave scattered
by the atom, and hence fn(S), decreases as sin 0 / X

increases.
Substitution of (14) into (13) yields 

G(S) = | f n (S)exp2TTirn .S (15)

The total wave scattered by the crystal has an appreciable
amplitude only if

S = ha* + kb* + & c* (8)
thIf the fractional coordinates of the n atom are 

xn,yn» and zn tllen

= xn— + yn— + A  (16)
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Making use of the relations a.a* = 1, a.b* = a.c* = 0 
and similar ones involving b and c, itj is found that

Substitution of (17) into (15) gives the structure 
factor expression

The structure factor, F(hkt), is defined only when the 
vector S takes values which result in the total-wave 
scattered by the crystal having a non-zero amplitude« 
It then describes the amplitude and phase of the wave 
scattered by one unit cell, and, since all unit cells 
are scattering in phase, also describes the amplitude 
and phase of the total wave scattered by the crystal. 
F(hk£) is generally complex and may be written as 
F(hk*) = A + iB /-iqN

(17)

G( S) = F (hk I ) a Z f (likfbxp2 Tri (hxn+ky^+ 4zj) (18)

where
A = S fn (nkX)cos2Tlhxn+kyn+Azn) (

B = S f (hk i )  sin2TT(hx +ky +£z ) ( ̂ n n n '

The modulus,| F(hk4)1, and phase, oc (hk-0, are defined
*>y

Ip(Mc^) 1= (A2 + B2)* 

a (hk i) = tan-'*' B/A
(22)
( 23)

- 12-



If the space group is centrosymmetric, provided 
the origin of coordinates has "been talpen at a centre 
of symmetry, then 33=0 anda(hk^) is restricted to the

o ovalues of 0 or 180 .
The atomic scattering factor is normally calculated 

from the electron density of an atom at rest. Atoms 
in crystals have an appreciable motion at room temper­
ature due to thermal vibration. The effect of such 
motion is to make the atomic electron density more 
diffuse and'so to increase the rate at which the amplitude 
of. the wave scattered by the atom falls off with scatter­
ing angle. To allow for the effect it is necessary 
to replace the atomic scattering factor in the structure 
factor expression by the transform of the electron density 
of the vibrating atom. If the smearing function, t(x), 
gives the probability that the atomic centre is at x, 
the origin of x being taken at the maximum of the electron 
density of the vibrating atom, then the electron density 
of the vibrating atom p,_(r) is given by

+m V ~
p (r) = I p(u)t(r-u)du (24-)

where p(u) is the electron density of the atom at rest.
/

py (r) is thus the convolution of p(u) and t(x), and its 
transform is the product of the transform of t(x) and the

- 13-



atomic scattering factor (which has already "been shown 
to he the transform of p(u))# Bloch^(1952) showed 
that for an atom vibrating in an isotropic harmonic 
potential the smearing function, t(x), is a Gaussian 
and that its transform is given by

q(S) = exp-2rr2 US2 = exp-8 r^Usin2 o A 2 (25)
2where U = u and u is the root mean square amplitude 

of vibration.
If the atomic vibrations are anisotropic U must be 
replaced by the symmetrical third order tensor TJ and the 
mean square amplitude of vibration in the direction of 
the unit vector4 is then

0 3 3
u" = E E U. . Z. Z. 

i=ij=i 1 J

(26)

where both Z_ and U are referred to the reciprocal lattice 
axes. In the anisotropic case the transform of the 
smearing function becomes

q(S) = q(hkj&J = exp-2n2 (U-^l^a*2 + T^k^b*2 + U^^o*2 
+2U25kjJb*c* + 2U31^hc*a* + 2U12hka*b*) (27)

The structure factor expression may therefore be written as 
N

F(hkX) = 2 fn (hk j0 qn (hk2)exp2 rri(hxn+kyn+.^) (28)
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1.4 THE POURIER SERIES REPRESENTATION OP EIECTRON TENSITY 
The electron density function, p(r), is a finite 

single-valued function which is periodic in three 
dimensions. It may therefore he represented hy a 
Pourier series. If u,v, and w.are integers and x,y,
and z fractional coordinates then

+ 00

p(r) = p(xyz) = £ E E A(uvw)exp-2 uL(ux+vy+wz) (29)U _ o n

The structure factor is the Pourier transform of p(xyz), 
so that ill
P(hkl) = viJ. p(xyz)exp2 Ti(hx-rky+xz)dxdydz (30)

000
Replacing p(xyz) in the ahove expression by the Pourier
series (29) gives, with some rearrangement,

+ 03 r  ̂11
P(hkl) = V E E EU V  V r r f ̂ A(uvv)oxQ2TTi (h-u )x. oxpliri (k-v )y J J o

uOu x exp2TTi(l-w)z.dxdydz (31)

The integral in (31) enclosed in square brackets is zero, 
unless h = u, k = v, and £= w. Therefore

P(hk x) =r VA(uvw) (32)
which on substitution in (29) yields

1 +*
p(xyz) = y E E E P(hk -0 exp-2 ni(hx+ky+ 4z) (33)h k i

-  COThe hkX coefficient of the Pourier series which 
represents the electron density function is thus the 
structure factor P(hk4 ), scaled by the reciprocal of the 
cell volume.
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1.5 THE MEASUREMENT OP STRUCTURE AMPLITUDES
The total energy, E(hk^), of the x-ray "beam 

reflected from the set of planes with Miller indices 
hkl of a small rotating crystal may be shown to be

E(hk X) = K.I(hJ£i).p(hkO. I^ChkOI2 (34)
where K is constant for the experiment and is given by

I0 x V d V  e4 (35)
w m2c4

The symbols in (55) have the following meanings:- 
I is the intensity of the incident beam,
X is the wavelength of the x-radiation,
N is the number of unit cells per unit volume,
dV is the volume of crystal irradiated,
w is the angular velocity of the crystal, 
e is the electronic charge,
m is the mass of an electron, and
c is the speed of light.
The polarisation factor, p(hki), takes into account the 
unpolarised nature of the radiation used. Por all 
experimental conditions it is given by

p(hkt) =(l+cos^20)/2 (36)

The lorentz factor, L(hk^), allows for the different 
times during which the reflecting condition is obeyed 
by different crystal planes. It depends on the
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experimental method used. For equi-inolination 
Weissenberg photographs it takes the form (Tunell, 1939)

p p j- *iL(hkX) = sin 0 (cos%  - cos 6)"J (sin2a) (37)
wheren is the angle between the incident beam and the 
plane normal to the rotation axis.

The energy of the diffracted beam is proportional 
to its intensity, I(hk^), which may be measured by dither 
the blackening produced by the beam on a photographic 
film or by the number of quanta detected by a radiation 
counter held in the beam.
Therefore

X(hki) cc l(hki) .p(hk£). | 2 (38)
Using (38) the structure amplitude,! PQ |, of a 

Bragg reflection may be determined from measurable 
quantities, albeit on an arbitrary scale. The absolute 
scale may be determined by experimental comparison with 
a standard (Robertson, 1934)® Alternatively, it may 
be deduced from the decrease in average structure amplitude 
with scattering angle (Wilson, 1942) or at a somewhat 
later stage in the analysis by comparison with structure 
factors calculated from a reliable model of the structure.

Equations (34) and (38) are strictly applicable 
only to microscopic crystals but they are also found to 
apply to the larger crystals used in diffraction experiments
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Such crystals have a mosaic structure, that is, their 
lattice contains regions of disregistry, and they behave 
like an aggregation of approximately alligned microscopic 
crystals rather than as a single block of ideal crystal. 
However even with small mosaic crystals some effects 
which are negligible in the case of diffraction by a 
microscopic crystal become important, and, if neglected, 
they may lead to systematic errors in the structure 
amplitudes calculated by equation (38).

Chief amongst these is absorption. As an x-ray 
beam passes through a crystal its intensity decreases 
due to absorption and the beam incident on the lower 
layers of the crystal is weaker than that incident on 
the surface layers. The diffracted beam is also partly 
absorbed. The resultant weakening of the intensity 
of the diffracted beam is different for different 
reflections and is greatest for the low order spectra. 
Adequate correction for the effect is possible only for 
crystals of spherical or cylindrical shape.

It is a consequence of the geometry of x-ray 
diffraction that the beam reflected from a set of crystal 
planes obeys the Bragg reflection condition for these 
planes and may therefore be reflected again. Such a 
doubly reflected beam is parallel to the incident beam
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and exactly out of phase with it. Primary extinction, 
as the effect is called, thus results in the be...n

i
incident on the lower layers of the crystal being weaker 
than the beam incident on the upper layers. Correction 
for the effect is difficult.

When the Bragg reflection condition is satisfied 
part of the incident beam is reflected by the upper 
layers of the crystal and the beam incident on the lower 
layers is consequently weakened. This effect is called 
secondary extinction. Methods of correcting for the 
effect are available.

1.6 THE PHASE PROBLEM
To calculate, using the Eourier series expression, 

the electron density distribution in a crystal it is 
necessary to know the amplitude and phase of each 
structure factor. The structure amplitude is an 
experimentally accessible quantity but there is no 
experimental method which allows phases to be determined; 
this constitutes the phase problem of crystal structure 
analysis.

Many ingenious methods of surmounting this problem 
have been devised and some of the more commonly used of 
these are described below. It is, however, still true 
that a proportion of structures cannot be solved by 
currently known methodso
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1.6.1 THE PATTERSON FUNCTION
The function defined by Patterson;(1934) is the 

self-convolution of the electron density. It is defined 
by illerr
P(uvw) = V jJJ p(xyz).n(x+u,y+v,z+w).dxdydz (39)

000
where u,v, and w are fractional coordinates. If 
Pourier series are substituted for the electron density 
functions in equation (39), P(uvw) is found to be a
sum of integrals of the form1JI
1 =  J j J  F(hk A)F(h*k* V  )exp-2TTi(h+h* )x.exp-2TTi(ic+k’ )y

000 xexp-2 'U( 4')z.exp-2ni(hu+kv+£w) .dxdydz (40)

The integral T is zero unless h =-h!, Ic = -k1, and I = -4f
when
T = F(hk ̂ )l'('kkl)exp-2TTi(hu+kv+^w) (41)
Since F(hk^) and F(hk*) are complex conjugates

3?(Mĉ  = |p(Wc^)!2 =!p(hkl)!2 (42)
and the Patterson function may be written as 
P(uvw) = Y ? £ 4' IN (hk l ) ! “exp-2 ni (h.u+kv+ i w) (43)

— no
To compute the Patterson function from equation (43)
only a knowledge of the structure amplitudes is required.
Prom equation (39) it can, be seen that the Patterson
function will attain large values only if the vector
defined by (uvw) corresponds to a vector between two
peaks in the electron density distribution; the value
of P(uvw) will then be approximately the product of the
electron density values at the two peaks. Harker (1936)

- 20-



pointed out that the presence of certain elements of I
symmetry results in peaks being concentrated on special !

i
lines and sections through the three-dimensional Patterson 
function.

In a unit cell containing H atoms the number of 
distinct interatomic vectors which can occur is N(N-l).
This also is the number of peaks which should appear 
in the corresponding Patterson function. It is therefore 
difficult to obtain the positions of all the atoms in 
even a moderately complicated structure by inspection 
of the Patterson synthesis.

1.6.2 THE HEAVY. ATOM METHOD
If a structure contains a small number of heavy 

atoms whose scattering power is approximately equal to 
the combined scattering power of the other atoms then 
the dominant peaks in the Patterson function will 
correspond to vectors between the heavy atoms and it will 
be possible to determine their positions. The phases of 
structure' factors in which only the heavy atom con­
tributions have been included are, under such circumstances, 
a good first approximation to the true phases and may be 
used to calculate an electron density distribution.

The heavy atom method, as this technique is called,
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is the most frequently used way of surmounting the 
phase problem and is often the only way if the structure 
is at all complicated. Its main disadvantage is that 
the major part of each structure amplitude comes from
the scattering of the heavy atoms and the accuracy with
which the positions of the lighter atoms can be fixed 
Is correspondingly lessened.

This difficulty is minimised in the method of 
isomorphous substitution. A heavy atom derivative is 
used to determine the phases but the final refinement 
is carried out on an isomorphous derivative in which
the heavy atom has been replaced by a much lighter one.

The structural studies of the phthalocyanin.es by 
Robertson (1935), (1936), and Robertson and Woodward 
(1937), (1940) are classical examples of the successful 
application of both heavy atom and isomorphous replacement 
methods.

1.6.3 TRIAL AND ERROR METHODS
Models of a crystal structure which stand a 

reasonable chance of being close to the true structure
can' sometimes be developed, from a consideration of such

/
factors as the limitations imposed by space group symmetry, 
the chemical and physical properties of the crystal, the

I
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dominant features of the diffraction pattern, and from 
possible similarities to known structures. The 
calculated diffraction patterns of the models may then 
be compared with the observed diffraction pattern of 
the crystal and those which show violent disagreement 
discarded. The method is usually only applicable when 
the molecular structure is known. The solutions of 
the structures of pyrene (Robertson and White, 1947) 
and of violanthrone (Stadler, 1953) are examples of 
this approach.

1.6.4 DIRECT METHODS
A number of authors, notably Harker and Kasper 

(1948) and Sayre (1952), have derived relationships 
between structure factors which arise, for example, 
if the electron density is constrained to be greater 
than. zero. Such relationships allow phases for the 
larger structure factors to be calculated directly.
The method has been mainly applied to centrosymmetric 
structures. A recent example of. its use is the 
determination of the structure of the alkaloid jamine 
by Karle and Karle (1964)*

1.7 METHODS OP STRUCTURE REPINEMENT
Prom the approximate electron density synthesis 

obtained by one of the methods outlined in the preceding 
section the positions of most- atoms in the structure
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can usually be determined. The process of structure 
refinement may then be started. I

The general aim is to minimise some function of 
the difference between the observed structure amplitudes 
and those calculated for the model which is being 
refined. In the early stages of refinement the 
usual function minimised is the discrepancy index or 
R-factor which is defined by

a = £| |Po l - |J?0 ! I/S|Fo I (44)
where I P I is the observed structure amplitude, | F | 
that calculated for the model, and the summation is 
over the structure amplitudes used in the refinement.

1.7.1 FOURIER REFINEMENT METHODS
The atomic positions obtained from an approximate 

electron density synthesis may be used to compute phases 
which are closer to the true values than those on which 
the original synthesis was based. It is therefore 
possible, by preparing successive electron density 
syntheses, to calculate continually better approximations 
to the true phases. Such a process of refinement is 
complete when the phases derived from a synthesis are 
the same as those used to calculate it.

The chief advantage of this method of refinement
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is that it can be started before all atoms in the
structure have been located. Under such circumstances

i
Woolfson (1956) and Sim (i960) have suggested that 
the Fourier coefficient should be multiplied by a 
weight proportional to the probability that the phase 
being applied to it is correct. The main disadvantage 
of. the Fourier method is that the atomic positions 
derived from it are affected by termination of series 
errors. Due to experimental limitations it is necessary 
to truncate the Fourier series used to calculate the 
electron density distribution after a finite number of 
terms. In a typical organic structure this may lead 
to errors in derived positions of the order of 0.02 fi. 
Booth (1946) has suggested a method of allowing for this 
effect by computing an electron density map with the 
calculated structure factors as coefficients. The 
corrections for termination of series errors to the 
coordinates derived from this map can be estimated.
These corrections may then be applied to the coordinates 
derived from the electron density map calculated with the 
observed structure amplitudes since series termination 
errors should be the same/in the two maps.

The properties of the difference synthesis, which 
is derived from a-Fourier series whose coefficients are
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(F -F ), have been described by Booth (1948a) andU V
Cochran (1951). The difference synthesis of a 
completely refined structure has a flat topography in 
which only random fluctuations in density are apparent.
A small error in an atomic position results in the atom 
lying on a steep gradient of density in the difference 
map. Temperature factor errors have also a characteristic 
appearance, The main applications of the difference 
synthesis in modern structure analysis have been in 
checking the results of a least-squares refinement 
(see below) and in determining the positions of hydrogen 
atoms.

1.7.2 LEAST-SQUARES REFINEMENT
The application of the method of least-squares 

to structure refinement was first suggested by Hughes 
(194l)o The object is to minimise some function of 
the differences between the observed and calculated 
intensities with respect to the structure parameters.
The function most commonly minimised is

M = Z v( |F I - |F I )2 (45 )
m 0 c

where the summation is over all m independent reflections 
and w is a weight for each term. If the standard
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deviation of | F (hk I) | iso (hk4) it can be shown that 
the choice of weights which gives the ̂ lowest standard 
deviations in the derived parameters is

w(hkA) = l/a2(hk*) (46)

If p-̂ , P2>****>Pn are n parameters whose values 
are to be determined the condition that M is a minimum 
is that

<JM/ Bp • = 0 ( o =:l*2>,..,n) (47)J
i.e. SwAB|Fc l/3p. = 0

where A = |f | - I F I. The parameters have to be variedU V
until these n conditions are satisfied. For a trial
set of p. close to the correct values A may be expandedJ
as a function of the parameters by a Taylor series of 
the first order

A(p+e) = A(p) - . 2ie.3|F l / a p .  ( 4 8 )_  ~  _  1=1 1 C  X

where ei is a small change in the parameter p^ and
p and e stand for the parameters and "changes as a whole*
Substitution of (48) into (47) yields the normal equations

E (£w 8|P I a|F.I)e. = SvA &|P I (j = l,2,...,n)
i=l m __ °______1 m ____

dPi dpj 3pj (49)
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The normal equations may be written in matrix 
notation as

n
£ a. .e. = b. (j=l,2,..... ,n), (50)

1 —x J

where
a. . = £ w3|F d F ,c, %1J m c c (51)

dPi Spj

and
b. =SvAS|Pel (52)

ap

The solution of (50) is

e. = S (a-1).,b. (53)
3 i=l 3

where (a"^) is the matrix inverse to a
The number of independent elements of the matrix 

a is proportional to the square of n, the number of 
parameters being refined. Since the capacity of a 
computer for storing numbers is limited, it is often 
necessary to make some approximation to a. The DEUCE 
least-squares programme (Rollett, 1961) used in the work 
described in Chapter T of Part III of this thesis 
calculated a chain of 3 x '3 and 6 x 6 matrices down the 
diagonal of a for the refinement of the fractional 
coordinates and anisotropic temperature factors for each 
atom plus a 2 x 2 matrix for scale and overall temperature
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factor refinement. The programme written by Cruickshank 
and Smith which was used for the rest)of the work 
described in Part III calculates a 9 x 9 matrix for 
the parameters of each atom instead; if an isotropic 
temperature factor is being refined a 4 x 4 matrdx 
is calculated.

Due to the omission of higher terms in the Tayior 
series for A (48) it is usually necessary to calculate 
several cycles of refinement before the minimum of M 
is obtained. The criterion generally used to decide 
when a refinement should be terminated is that the 
ratio of the shift,eq, of each parameter to its standard 
deviation should be less than unity and preferably less 
than a half. • The course of the refinement may be 
followed from the change in M or' from the function

R' = £v A 2/£w F 2 (54)o

The discrepancy index defined by equation (44) may also 
be used and has the advantage that it is unaffected 
by changes in the weighting scheme.

1.8 THE ANALYSIS OF RESULTS
At the conclusion of a structure analysis it is 

often important to decide whether some function of the
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refined parameters, a bond length say, differs from 
its theoretical or standard value. Such a problem 
can be solved by a statistical significance test, the 
application of which requires a knowledge of the 
standard deviation of the function in question.

The method of least-squares allows the standard 
deviations of the refined parameters to be estimated 
without much additional calculation. The variance 
of the parameter is given by

a(pi ) = (a"1)ii(SwA 2/m-n) (55)

and the covariance of the parameters p. and p. is givenJ

1 2covCp^) = (a" )i .̂(EwA /m-n)
= cr(p±)  ̂(pj)r±-j (56)

where r. . is the correlation coefficient of the parameters.
J- J

These equations are valid only if the weighting scheme
is appropriate to the data; the usual test applied is

2that the average wa should be approximately constant if 
the data are examined in a systematic manner.

The standard deviations of functions of the refined 
parameters may be calculated from the parameter variances 
and covariances obtained from equations (55) and (56),
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by established statistical methods. A set of 
programmes which allows such calculations to be performed 
is described in Part II Chapter X. Alternatively, 
if the experiment has resulted in several independent 
measurements of a quantity the root mean square deviation 
of these measurements from their mean value gives an 
estimate of the standard deviation of an individual 
measurement 0

If x is the value of an experimentally derived 
quantity whose standard deviation iscr (x), the probability, 
P, that x differs from its theoretical or expected value, 
m, due to random experimental errors may be determined 
from the value of t, where t is a random variable 
distributed in Student?s distribution, and defined by

when t « 2,6, P = 1$ and when t = 3o3, P = 0.1$.
If the goodness of fit of a set of experimental 

results to their expected values is under consideration

t = |x-m| / o(x) (57)

the y? test may be used. If, for instance, d^ is the 
deviation of the i *̂1 of a set of n points from the least-
squares plane through the points, then

/

(58)
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where c is the average positional standard deviation 
of a point. The probability that thê  deviations from 
the plane are due to random experimental errors can 
then be found by looking up tablescf^p for n-3 degrees 
of freedom (Fisher and Yates, 1953)*
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PART II



CHAPTER I 

THE MOLECULAR FUNCTIONS SYSTEM



1.1 INTRODUCTION
The molecular functions system consists of a 

group of six programmes for interpreting the results 
of a crystal structure analysis. With these programmes 
it is possible, in a single run on the computer, to 
calculate all bond lengths and interbond angles in 
the asymmetric unit, with our without their standard 
deviations, to determine the best plane through a 
specified group of atoms, and to find all intermolecular 
contacts less than a given value. It is also possible 
to perform an analysis of the molecular vibrations and 
to prepare tables of such quantities as fractional 
atomic coordinates in a form suitable for presentation 
in a thesis or paper. All the programmes are written 
in ALGOL for the English Electric KDE9 computer. As 
an illustration of the programming methods the ALGOL texts 
of two of the programmes are given in Appendix II,

The basic input data consists of the cell dimensions, 
the fractional coordinates and temperature factors 
punched in the same form as the output from the Glasgow 
least-squares programme, and, optionally, the coordinate 
standard deviations and correlation coefficients. This 
information is written on magnetic tape at the start 
of a run and is then available to any of the programmes
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described in sections 1.3 to 1.7. The rest of the
input data consists of instructions to the computer as

i
to which of the programmes are required and the small 
amounts of information needed to control the calculations. 
Output formats have been designed to be intelligible 
without any external key. Atoms are identified by . 
a chemical type symbol and bracketed integer and care 
has been taken that all the programmes use the same 
system of atomic identifiers.

Most of the programmes have been in general use 
in this laboratory for over a year and they have in 
addition been used by crystallographers in the University 
of Newcastle. Working copies of the programmes have 
also been sent to five other crystallographic laboratories 
which use KDP9 computers.

In the case of two of the programmes the role of 
the present author has been to adapt existing programmes 
so that they could fit into the system; the bond length 
and angle standard deviation programme was originally 
written by Dr. W.S. Macdonald and the mean plane 
programme by Dr. W. Oberhansli. Dr. W.S0 Macdonald
is also a co-author of the/molecular vibrations analysis 
programme. The donation of subroutines by Dr. J.G-. Sime, 
Mr. D. Macgregor and Mr. J.G.F. Smith is also acknowledged.
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1.2 ORTHOGONALISATION FORMULAE
In all of the programmes the first step is to

transform the imput data so that it refers to equal 
orthogonal axes. In this section the equations 
required to orthogonalise fractional coordinates, 
their standard deviations, and anisotropic vibration 
tensors are stated.

We take as a standard set of orthogonal axes unit
Z parallel to £, unit X parallel to a*, and unit Y
normal to X and Z. Such a set of axes should always 
be understood where orthogonal axes are referred to 
in other parts of this thesis.

Let x be the vector defining the position of an
atom with fractional coordinates (x^,X2,x^) and let X
be the same vector referred to unit orthogonal axes. 
If N is a square matrix of order three then

N is a lower triangular matrix and is given by
X = Nx (i)

N =
asin (3 siny *
aai nfi r*r>.qv *asinp cosy 
acosP

0
bsin a 
bcos a

0
0 (2)
c

thThe variance of the i component of X is then

( 3 )

'where r is the correlation coefficient betweenDk the
j and k *̂1 components of x.
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The anisotropic vibration tensor referred to 
orthogonal axes, V, is given by the matrix equation

m I
V = (N E) U (N E)1 (4)

Here U is the anisotropic vibration tensor referred
to reciprocal crystal axes, E is a square diagonal
matrix of order three such that E ^  = a^*, and superscript
T indicates the transposed matrix. If H is a unit
vector expressed in terms of the orthogonal axes then 

2u , the mean square amplitude of vibration in the 
direction of H, is given by

2 3 3
u = 2 E V. .H.H.i=lj=l 13 1 3 . (5)

1.3 THE BONE ANGLE E.S.L. PROGRAMME
In an orthogonal coordinate system the distance,

M, between atoms 1 and 2 is given by

M2 = (Xg-xp2 + (Yg-q)2 + (z2-zi)2 (6)
The direction cosines of the vector between atoms 1 
and 2 are

mi = (x2-x1)/m
m, = (Y2-Y1)/M (7)
m 3 = (Zg-zp/ta
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and the variance of M is

a2(M) = m12C 2(X1)+CT2(X2))+m22(o2(l1)+CT2(r2))
+ m32Co2(Z1)+a2(Z2)^ jgj

This formula neglects all covariances between the 
orthogonal coordinates and is therefore inapplicable, 
if these covariances are large, say because atoms 1 
and 2 are related by symmetry.

If N is the distance between atoms 2 and 3 and 
n-p n£, n^ the direction cosines of the vector joining 
2 and 3 then 9 , the angle 1-2-3, and its variance
(Darlow, I960) can be obtained from 

cos 9= mini + m̂ n-g + m^n^

o2( 0) *. (MNsin0)“2(a32ct2(Xx )+(A1+A3)2ct2(X2)+A12ct2(X3)
+ similar terms in X and ZJ (10)

where
A-̂  = M(m-^-cos 9n^)

= N(n1-cos 9 m-ĵ) etc.

For each atom in the asymmetric unit the 
programme first finds those distances to other atoms 
in the asymmetric unit which are less than a value 
specified on the input tape. The interatomic distances 
are then taken in pairs and the angle they define at 
the atom under consideration calculated. For each
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such angle trie identifiers of the three atoms involved, 
the two distances and their standard deviations, and 
the angle and its standard deviation are printed.

1.4- THE DISTANCE AND ANGLE PROGRAMME
The object of this programme is to find, for 

each atom in the asymmetric unit, the distances of 
its nearest neighbours and the angles between the points 
of contact. The data consists of the symmetry 
operations which define the space group, the maximum 
interatomic distance required (DMAX), and the maximum 
interatomic distance to be used in the angle calculation 
(AMAX). This information is read from paper tape; the 
unit cell dimensions and fractional coordinates are 
read from magnetic tape.

Each atom in the asymmetric unit is taken in turn 
and the following calculations are performed, 
a) From the list of atoms in the asymmetric unit 
(list A) a second list of atoms (list B) is compiled by 
applying in turn each of the symmetry operations specified 
on the input tape. List B thus normally covers all 
the atoms in a single unit cell.
(2) A third atom list (list C) is prepared from list 
B by applying each of the twenty seven possible combinations
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of unit or zero lattice translations. list C thus 
covers all the atoms in a block of 3 xi 3 x 3 unit cells. 
This step is optional .
(3) The distance of the atom in the asymmetric unit 
from each of the atoms in list C is calculated and 
stored if it is less than DMAX.
(4) When all the required nearest neighbour distances 
have been found they are sorted in ascending order and 
printed 0
(5) All the angles defined by pairs of nearest 
neighbours distances, both of which are less than AMAX, 
are calculated and printed.

For a large structure list C may contain entries
for more than five thousand atoms. It is therefore
not usually possible to hold in the store of the
computer all the orthogonal coordinates required for
stage (3). The programme generates them in the following

thway. The vector of orthogonal coordinates of the q 
atom in the asymmetric unit, transformed by the r 
symmetry operation of the space group, and translated

4" V»by the S of the twenty seven combinations of zero 
or unit lattice translations is defined by

V s  = + 2 S* (11)
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where and t are the rotation matrix and translation
-J-*Uvector (Cruickshank, 1961) defining the r symmetry 

operation and C is a vector of order three with“S
components +1 or 0, The programme calculates and 
stores the orthogonal coordinates required for list B 
by evaluating the first term in (11) for all values of 
r and q, NCg is also calculated for all values of S 
and stored. The orthogonal coordinates required for 
list C may then be obtained without any further matrix 
multiplications.

Redundancy in the output in stages (4) and (5) 
is kept to a minimum by arranging that, if required, 
atoms of different chemical types may have different 
DMAXs and by excluding the atoms in list A from’ list C 
if intermolecular contacts only are wanted.

For a structure containing twenty atoms with four 
equivalent positions a complete contacts search takes 
about eight minutes.

1.5 THE MOLECULAR VIBRATIONS ANALYSIS PROGRAMME 
This programme was written with the aims of 

providing sufficient information to decide whether a 
molecule behaves as a rigid body, of determining the 
tensors of molecular translational and librational 
motion, and of correcting atomic coordinates for the
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effects of libration.
The programme uses the treatment of Cruickshank

(1956) to determine the rigid body motions. In the
following discussion it is assumed that the atomic
coordinates, X, and vibration tensors, V, are referred
to orthogonal axes and that the mass centre of the
molecule has been taken as origin.

The molecular translational and librational
motions may be described by the symmetrical third order
tensors, T and W, which have respectively the dimensions 
0 2 2A s and radians • The mean square amplitude of vibration, 
2 thu , of the r atom in the molecule in the direction 

defined by the unit vector 1 may then be written as

observational equations can be obtained from which it 
is possible to derive the twelve independent elements 
of T and ¥ by a least-squares treatment.

The effect of a librational motion of the molecule 
is to make all atoms appear closer to the axis about 
which the libration occurs. The corrections (E) which 
should then be added to the coordinates to allow for the 
effect of librations have been shown by Cruickshank (1961a)

0 3 3 r 3 3  3 3
z T. .1.1 . +.E .£, V.3 3

x (1 x X ). (1 x X ). — —r i — —rj (12)
By equating coefficients of 1-1.; in (12) a set of linear-L J
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to be

EY _ 2(y (B33 bh )  ” zb23-xb12) 
Ez = -£(z(bi:l-b22) - xb15-yb23)

(13)

where B = A and A is a symmetric matrix of order 
three whose typical elements are

(q~ is the Gaussian peak width parameter for the atom
involved).

The programme is similar to the Pegasus programme 
described by Cruickshank (1961)* The calculation 
proceeds in the following stages.
(1) The atomic coordinates and vibration tensors,
Uobs, obtained from a least-squares refinement are 
referred to orthogonal axes,
(2) The latent roots and vectors of the vibration 
tensors (see Appendix) are found w.r.t. orthogonal and 
crystal axes.
(3) The mass centre and principal moments of inertia 
of the molecule are found..
(4) The coordinates and vibration tensors are referred 
to inertial axes and the mass centre is taken as origin.
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(5) The normal equations for T and ¥ are set up and 
solved. The standard deviations of tjhe elements of 
T and W are also found0
(6) The latent roots and vectors of T and W are found 
w.r.t. the inertial axes.
(7) —calc is comPuted from £  and W w.r.t. inertial, 
orthogonal and crystal axes.
(8) A U = U ft “U and the root mean square A U are 
found.
(9) The amplitude of vibration of each atom along
the line joining it to the centre of mass of the molecule 
is calculated from U ^ g  and Hcaqc
(10) The librational corrections to coordinates are 
f ound.
(11) The revised coordinates w.r.t. inertial, orthogonal, 
and crystal axes are calculated.

Apart from the normal equations all other results
are printed, A discussion of some of the mathematics
used is given in the Appendix to this chapter.

-43-



1.6 THE MdAN PTARE PROGRAMME
Using the method of Schornaker et al, (1959) the 

programme finds the plane through a sfet of atoms which 
obeys the condition that the sum of weighted squared 
deviations of the a.toms from the plane is a minimum.
The atoms which define the plane are specified on the 
input paper tape. Any number of plane calculations 
can be performed during a single run. For each plane 
the output includes the plane equation, the sum of 
weighted squared deviations, the root mean square 
deviation and the deviations of individual atoms from 
the plane 0

1.7 THE TABLES PROGRAMME
This programme prepares paginated tables of 

fractional and orthogonal coordinates, anisotropic 
temperature factors, and principal values and directions 
of atomic thermal motion, in. a form suitable for direct 
inclusion in a thesis or paper. The tables of such 
quantities presented in Part III of this thesis are 
almost untouched examples of the output. The chief 
advantages of preparing tables in this way are that 
typiing and transcribing errors are avoided and that the 
same data tape is used to prepare the tables ai}d for
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APPENDIX
Let V be a square matrix and p a vector, both of

I
order n . There are n values of the scalar A which 
yield a non-trivial (p> 0) solution of the system of
homogeneous equations

These values are termed the latent roots of V and the 
corresjjonding vectors, p, are the latent vectors of V. 
If I is a unit matrix the condition that (14) has a 
solution may be written a.s

If n = 3, expansion of (15) yields a cubic in A. which 
ma.y be solved by the methods of International Tables 
Yolo II (1959) p. 26. Substitution of X into (14) 
with the additional requirement that £ be a unit vector 
yields the latent vectors. It can be shown (e.g. Rollett, 
1965) that the latent vectors are orthogonal, provided 
two latent roots do not coincide.

2If the magnitude of a quantity U in the direction 
defined by the unit vectorJ is given by the quadratic 
form

V.£ = *£ (14)

det(X I-V) = 0 (15)

(16)
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then transformation to the system of orthogonal axes
pdefined by the latent vectors of V gi-vjes U as

U2 = I X.m.2 (17)
1 =  1 1 X

where m is the unit vector preferred to the new axes
and is the i *̂1 latent root of V. It can be shown that

2the maximum and minimum values of U are the maximum 
and minimum latent roots of V.

The mean square amplitude of atomic vibration in
a give^ rlirection is defined by an equation of the
form of (16)* The latent roots and vectors of the 
anisotropic vibration tensor thus define the amplitudes 
and directions of greatest and least thermal motion*

If the vector between the centre of mass and
the r atom in the molecule is Xf, the moment of inertia,
I, of the molecule about an axis passing through the mass
centre and defined by the unit vector £ is

N T 3 3
I = Ev X AX - n  A..p.p. (18)1 3—  r r irr]j_L i J

where, for example, A12 = s wrXrYr ; summa'tions
are over the N atoms in the molecule and wr is the 
mass of the r^h atom* The latent vectors of A thus 
define the axes of greatest and least inertia and are
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termed the inertial axes of the molecule. For a 
planar molecule the axis of greatest inertia is parallel 
to the normal of the molecular plane.
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CHAPTER II 

THE ASS SYSTEM



2.1 INTRODUCTION
The automatic structure solution j(ASS) system is 

a group of programmes which allow all the calculations 
necessary for a cycle of Fourier refinement to be 
performed during a single run on the computer. It 
also contains programmes which attempt to interpret 
the results of such a cycle of refinement.

Given a list of fractional coordinates derived 
either from study of a Patterson function or from a 
previous electron density synthesis the programmes will 
produce the fractional coordinates of the peaks in the 
electron density synthesis based on phases calculated 
from the input coordinates. At the option of the user 
the coordinates of certain atoms on the input list 
are used in the phasing calculation only if they are 
likely to improve structure factor agreement.

The system has proved reasonably efficient in 
meeting the computational requirements of the early 
stages of a structure analysis. It has been used in 
nearly all current work in this laboratory and in the 
last ten months at least fifteen structures have been 
solved using its programmes. In most of these structures 
the interpretative programmes have at leant accelerated
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the process of finding a solution.
The overall planning of the system was the joint 

work of Nr, D, MacGregor and the present author. Dr,
J.G, Sinie kindly made available his Fourier programme.
The present writer devised the modified structure 
factor programme used in the system, Mr. D, MacGregor 
wrote the Fourier map scanning programme and the 
programmes required for writing primary data on to 
magnetic tape, Mr, R, Pollard contributed the Fourier 
coefficient weighting programme which is based, in part, 
on an earlier programme of the present writer,

2.2. GENERAL DESCRIPTION OF THE SYSTEM
When work is started on a new structure, a magnetic 

file tape is prepared which contains for each Bragg 
reflection the indices, the observed structure amplitude 
|fo[ on an arbitrary scale, sin e / x  , and interpolated 

form factors for each chemical species present in the 
structure. This information is then available to any 
other programme in the system and is, for example, 
invariably part of the input data for a structure factor 
calculation.

The isotropic structure factor programme reads 
coordinates, temperature factors and equivalent positions 
from paper tape and the rest of the information required
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from the magnetic file tape. The output consists of 
structure factors with the structure amplitudes scaled 
so that ^  Jf J =£|Fc| either for the data as a whole 
or for each reciprocal net separately. The scaled 
structure factors are stored on magnetic tape and may 
optionally he printed. A summary of the scale and 
R-factors for each reciprocal net is also printed. The 
programme contains one novel feature. Atoms admitted 
to the structure factor calculation may he classed 
either as reliable or tentative. Structure factors 
are first calculated over part of the data, usually 
about four hundred reflections, with only the reliable 
atoms included and a value of R is obtained. The 
tentative atoms are then admitted to the structure factor 
calculation one at a time. If they reduce R by more 
than a specified amount they are accepted as genuine 
atoms and included in all further calculations. Otherwise 
they are ignored. The structure factors finally output 
are thus calculated over all the reliable atoms and 
those tentative atoms which have reduced R over the 
selected part of the data.

A separate programme calculates the weight which 
should be assigned to the Fourier coefficient to allow for
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the errors in phasing which result from omission of as 
yet unlocated atoms from the structure^ fa^or calculation*. 
The formulae of Sim (i960) or Woolfson (1956) are used 
to compute the weights. The weighted structure factors 
are scaled so that Sw | F | =E |F | and stored on 
magnetic tape.

The Fourier programme reads structure factors or 
weighted structure factors from magnetic tape and the 
rest of the required information from paper tape. The 
output consists of printed number fields. The sections 
are also stored on magnetic tape as they are computed.

The map scanning programme requires as its main 
input data the three-dimensional Fourier synthesis stored 
on magnetic tf̂ pe by the Fourier programme. The 
interpolated grid and fractional coordinates of all 
peaks greater than a specified threshold value are 
computed by least-squares fitting of the function 

? 2 2P = a+bx'+cy +dz +ex+fy+gz+hxy+iyz+jzx (l)
to the electron density values at the twenty seven grid 
points nearest the peak and printed. The interpolated 
peak height and integrated peak density are also printed. 
The fractional coordinates are finally output on paper 
tape in order of decreasing integrated peak density.
This paper tape is accepted as a list of atomic coordinates 
by the structure factor programme.
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2.3 ftX PEBIEHOE WITH THE PROGRAMMES
Many cycles of Fourier refinement have now been 

completed using the system. It has generally been 
found that most atoms which can be located from a 
contoured Fourier map are included in the output from 
the map scanning programme. Diffraction ripples and 
peaks due to incorrect phasing are also picked up by 
the programme but quite often such peaks are few in 
number and may be easily recognised from their low 
integrated peak density or from their position. The 
facility for including atoms in the structure factor 
calculation only after they have lowered R over part 
of the data has mainly been used to check atoms which 
are being introduced into the refinement for the first 
time. Under such circumstances an electron density 
peak which does not correspond to an atomic position is 
generallyrejected by the programme. Less frequently 
all the peaks produced by the map scanning programme, 
with the e-xceptions of obvious diffraction ripples and 
heavy atom peaks, have been tested in this manner. If 
the structure is oentrosymmetric and if most peaks in 
the electron density synthesis correspond to atoms, then 
the results are reliable. The system may then be used 
for semi-automatic Fourier refinement and the contouring
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of most of the electron density maps calculated in 
successive cycles can be avoided. .
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CHAPTER III 
THE MINIMUM RESIDUAL PROGRAMME



3.1 INTRODUCTION
Crystal structure refinement by direct calculation 

of the minimum residual was first described by Bhuiya and 
Stanley (1963 )o The method works as follows. Structure 
factors are calculated from starting values of the atomic 
coordinates and temperature factors and a value of R, 
the usual discrepancy index is obtained. The x coordinate 
of the first atom is then varied from -nDx to +nDx in 
2n+l steps of Dx, and for each value of the coordinate 
structure factors and the corresponding R-factor are calculated. 
The refined value of the coordinate is that which yields 
the lowest R-factor and it is used in all subsequent 
calculations. In one cycle each atomic coordinate or 
temperature factor is in turn varied in this manner. -

3.2 DESCRIPTION OP THE PROGRAMME
The minimum residual programme uses the above 

technique to refine crystal structures in projection.
Triclinic, monoclinic, and orthorhombic space groups can 
be handled. For each atom two coordinate parameters 
and one temperature parameter may be refined. An overall 
temperature factor can also be refined and provision has 
been made to keep the parameters of one or more atoms 
fixed to allow for atoms in special positions. The Re­
factor is always calculated from
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R= S|k|Po l - |PCI I / Sk|Fo |) kS|Po |= r|P0| (1)

I

3.3 EXPERIENCE ‘V/ITH THE PROGRAMME
The programme ha3 proved useful in a number of 

analyses carried out in this laboratory. The maximum 
drop in R achieved in one cycle is 0.1 and drops of
0.05 have not been uncommon. For projections in 
which the atoms overlap the method has advantages 
over full matrix least-squares or difference map 
refinement. Its main disadvantage is that it requires 
more extensive calculations than either of these 
methods and, even with careful programming, uses more 
machine time 0 For a problem involving thirty atoms 
and two hundred reflections, with n=5 for both coordinate 
and temperature parameters one cycle takes about twenty 
minutes.
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PART III



CHAPTER I
THE DIMETHYLACETYLENE DICARBOXYLATE 

INDENE ADBUCT



1.1 INTRODUCTION
The preparation of the 1:2 adduct} of indene and 

dimethyl acetylenedicarboxylate was first described 
by Alder, Pascher, and Vagt (1942). On the basis 
of known Diels — Alder chemistry Pascher (1944) favoured 
I as the most likely of a number of possible structures 
for the adduct.

The reaction was reinvestigated by Strachan and 
Huebner (Muir, Sim, Strachan, and Huebner, 1964) who 
showed that the adduct is formed under mild conditions 
even at room temperature. Their nuclear magnetic 
resonance studies indicated that the adduct contains 
four vinyl protons thus precluding I from further 
consideration. They also prepared a trideutero adduct 
by reacting dimethyl acetylenedicarboxylate with indene- 
l,l,3-d^(ll) and showed that its n.m.r. spectrum contains 
peaks corresponding to four vinyl protons. These 
results suggested that both acetylene moieties are 
attached to the five membered ring of the indene system. 

Further chemical and spectroscopic investigations 
Strachan and Huebner did not lead to a definitive 

solution of the structural problem.
The adduct forms a crystalline dibromo-derivative 

(Alder, Pascher, and Vagt, 1942) from which it may be



I

Co. Meco Me /

co.Me

id j>

ii

CO.Me CO .Ne

CO M e CC> Me

COjNe CÔ Me

—  H

III IV



regenerated by treatment with zinc in ether/tetrahydro-
furan. The x-ray analysis of the crystal structure of

i
the dibromo-adduct is described in the other sections 
of this chapter. The results establish the molecular 
structure as III from which it may be inferred that 
the adduct has structure IV, Structure IV has been 
shown by Strachan and Huebner to be in conformity with 
the n.m.r. spectrum of the adduct.
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1.2 EXPERIMENTAL
Crystal Data i

Dibromo-adduct

C21H20Br2°8
F.W. 560.2 M.P. 182-1830 C

o
Monoclinic, a = 8.48+2, b = 7.48+2, c = 34.63+1 A
P =98 0 2 1+201.

°3U = 2175 A
Dm = 1.67 gmcm (by flotation in aqueous ZnB^)
Z = 4

-3D = 1.711 gmcm
o

Linear absorption coefficient|i(Cu Ka; \  = 1.5418 A)
-1= 56.9cm

F(000) = 1120
Systematic absences

OkO when k is odd
hOA when I is odd

Space group D2-^/c (No. 14).
The crystals used in the analysis were supplied

by Dr. C.F. Huebner. They consisted of pale yellow
needles elongated about the b axis. The cell dimensions
were measured from rotation and equatorial layer
Weissenberg photographs taken about the b axis with

°copper Ka radiation (wavelength 1.5418 A) and from 
precession photographs of the hkO and 0k4 zones taken
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0with molybdenum K a radiation (wavelength 0.7107 A).
The intensity data were measured fpom equatorial 

and equi-inclination Weissenberg photographs of the 
reciprocal nets hOI  to h5 & , taken with copper K a 
radiation, by visual comparison with a calibrated intensity 
strip. The multiple film technique of Robertson (1943) 
with four films per pack was used; the interfilm scale 
factors were those of Rossman (1956). An empirical spot 
shape correction was applied to the data but no absorption 
corrections were made. The intensities were reduced 
to structure amplitudes using a DEUCE computer programme 
written by Dr. J.G-. Sime (Sime, 1961); the Lorentz, 
polarisation and rotation factors (Tunell, 1939) 
appropriate to a small mosaic crystal being applied. In 
all 1982 independent structure amplitudes (Table 1.4) 
were obtained, being approximately 40$ of the data 
accessible with copper K oc radiation. No unobserved 
reflections were used in the analysis.

The data were put on a rough absolute scale by 
comparison with the first set of calculated structure 
factors. The final scale factors were determined by 
least-squares refinement.
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1.3 STRUCTURE SOLUTION AND REFINEMENT
The x and z coordinates of both brdmine atoms were 

obtained from the Patterson projection on to (010) and 
the y coordinates were thereafter derived from line 
sections through the three-dimensional Patterson function.

The plane group of the (010) projection is p2, with 
equivalent positions x,z; x,z. The c axis is halved and 
accordingly there are four bromine atoms in the projected 
unit cell. Twelve non-zero vector peaks should therefore 
appear in the corresponding Patterson function, six peaks 
being related to other six by the inversion centre at the 
origin. Using subscripts to denote bromines 1 and 2 the 
analytical expressions for the six independent vectors 
are: -

(xq + X2), (zq + Z2); (twice)
(x-j - x2), (Zq - z2); (twice)
2xq, 2z1 ;
2x 2 , 2z 2 ;

The asymmetric unit of the projected Patterson 
function should thus show two doubleweight and two 
singleweight peaks. The projected Patterson is shown 
in Pig. 1.1. The peaks marked A and B were taken as
doubleweight peaks and those marked C and D were taken
as singleweight peaks. The coordinates of these peaks
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were worked out using Booth*s (1948) interpolation formula 
and the fractional coordinates of the bromine atoms were 
then derived from the analytical expressions given above.

Line sections parallel with the b axis were next 
computed through the three-dimensional Patterson function 
to obtain the y coordinates of the bromine atoms. In 
all seventeen such sections were calculated, one through 
each heavy atom vector found within the area bounded by 
the three-dimensional unit cell projected down b.

The coordinates of the bromine atoms so obtained 
were:-

X/a Y/b Z/c '
Br(1) O.6O94 0.4166 0.4636
Br(2) 0.2494 0.3210 0.3393

A three-dimensional electron density distribution 
based on phases calculated from these positions revealed 
almost the entire structure. In addition to the two bromines 
twenty carbon atoms and eight oxygen atoms could be located; 
oxygens were distinguished from carbons partly by peak 
height and partly by chemical considerations. There was 
a peak in the position subsequently assigned to C(19); 
there was, however, also a peak opposite 0(5) which 
could have been a methyl carbon although its position 
suggested that it was more probably a diffraction ripple
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from Br(2). C(l9) was accordingly omitted from the
second structure factor calculation for which the R- 
factor was 0.193. The R-factor with the heavy atoms 
alone was 0.39* A second electron density distribution 
allowed the position of C(19) to be determined un­
ambiguously. A third set of structure factors calculated 
from positions derived from the second electron density 
map, with all atoms included gave an R-factor of 0.187.

Six cycles of minimisation of the function 
Bar( |F | - | F | ) were now calculated using the least- 
squares programme by Dr. J.S. Rollettfor the DEUCE 
computer (Rollett, 1961). Three coordinates and six 
anisotropic temperature parameters for each atom were 
refined. A block diagonal approximation to the normal 
matrix was generally employed. In cycles 1 and 2 a 
diagonal approximation was used for the parameters of 
both bromine atoms and in cycles 4,5, and 6 the bromine 
parameters were left unchanged, while in cycle 3 only 
bromine parameters were refined. This course was 
rendered necessary by limitations on the size of elements 
of the normal equations which the programme could handle. 
During this stage of refinement a number of indexing 
and card-punching errors were corrected. At the end of 
the sixth cycle R stood at 0.118. Throughput this course
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of refinement scale factors were chosen so as to equalise 
£| Fq I and £| F I for each layer of da£a.

A difference synthesis using all the data was now 
computed to check the refinement and to find if it would 
be worthwhile including hydrogen atoms in the calculations. 
In this map peaks corresponding to all twenty hydrogen 
atoms could be made out. Hydrogen peak heights ranged 
from 0.32 to 0.64e/A with a mean of 0.5e/A . The 
other most obvious feature of the map was that nearly all 
the heavier atoms lay in negative troughs. This 
suggested that either the scale factors or the overall 
temperature factor had been underestimated and that 
further refinement was desirable.

Inclusion of the hydrogen atoms into the structure
factor computations in positions calculated from the
coordinates of the heavier atoms and using an assumed

o 2isotropic temperature facture U of 0.075 A led to a 
drop in R of 0.004, most of the improvement being in 
the lower order reflections. This drop was regarded as 
satisfactory and hydrogen atoms were included in all 
subsequent calculations.

The refinement was now completed using the least- 
squares programme written for the KDF9 computer by 
Ciuickshank and Smith. In the first cycle of refinement 
with the new programme the only parameters refined
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were separate scale factors for each layer of photographic 
data and an overall temperature factor. , R fell to 0.109.

Two further cycles of block diagonal refinement 
produced convergence with a final value of R of 0..087 
and of R 1 ( 2 w ^ / E  wFQ^) of 0.016. In the final cycle 
the ratios of average shift to average standard deviation 
were 0.4, 0.4 and 0.3 for the coordinates of bromine, 
carbon and oxygen respectively.

The weighting scheme used in the last three cycles 
of refinement was one of the form recommended by 
Cruickshank (1961) as suitable for photographic data, 
namely

/ w  = (10 + F + 0.009F^)
The atomic form factors used were for carbon Hoerni 

and Ibers (1954), for oxygen Berghuis et al. (1955), 
for bromine Thomas and Umeda (1957), and for hydrogen 
Stewart, Davidson, and Simpson (1965).

The last set of structure factors was used to 
phase electron density and difference syntheses. A 
composite view of the final electron density synthesis 
is shown in Fig. 1.2. The mean peak heights were 
40.9, 5.5, and 7.8e/A^ for bromine, carbon, and oxygen 
respectively. The standard deviation ofp(xyz), 
estimated by the approximate formula of Cruickshank (1949),
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was 0.22e/A . In the final difference synthesis there 
were regions of positive and negative (density greater 
than three times this standard deviation; the highest

O-zfunction value was 1.2 and the lowest -1.6e/A . These 
regions were associated with each heavy atom position 
and are probably due to uncorrected absorption.

Tables 1.1 and 1.2 contain the final values of 
the fractional coordinates and anisotropic temperature 
factors of the heavier atoms, together with their standard 
deviations derived from the inverse of the normal least- 
squares matrix. In Table 1.3 the assumed fractional 
coordinates and isotropic temperature factors of the 
hydrogen atoms are presented. The final list of 
calculated and observed structure factors is given in 
Table 1.4* Tables 1.5 and 1.6 show the coordinates of 
all the atoms referred to a set of orthogonal axes parallel 
to a*,b and c, while Table 1.7 contains the principal 
values and directions of the anisotropic vibration tensors. 
Tables 1.8 and 1.9 contain all the covalent bond lengths 
and interbond angles in the structure together with their 
estimated standard deviations. Table 1.10 lists all
intermolecular contacts between the heavier atoms which

o
are less than 4A and in Table 1.11 the equations of some 
molecular planes are given, together with some deviations 
of atoms from these planes. The results listed in Tables
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1.5 to 1.11 were all calculated with the programmes 
described in Part II of this thesis and the equations 
given there apply. Standard deviations, if quoted, 
are in units of the last decimal place of the quantity 
to which they refer.

A molecular drawing illustrating the numbering 
of the heavier atoms is shown in Pig. 1.3• The 
numbering of the hydrogen atoms is explained in Pig. 
1.4. A view of the molecular packing down b is shown 
in Fig. 1.5.
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Course of the Analysis

1. Fourier Refinement '
S.F. Cycle No. Atoms Included

1 2 Br
2 2 Br + 20 C + 80
3 2 Br + 21 C + 80

2. Least-Squares Refinement
S.F.L.So Comments
Cycle No.

1 Block diagonal for C and 0;
diagonal for Br

2 Block diagonal for C and 0;
diagonal for Br

3 Block diagonal for Br; C
and 0 not refined

4 Block diagonal for C and 0;
Br not refined

5 Block diagonal for C and 0;
Br not refined

6 Structure factors only
7 Structure factors only:

hydrogens included
8 Layer scales and overall

temperature factor refined
9 Block diagonal on all atoms

10 Block diagonal on all atoms
11 Structure factors only

R
0.39
0.193
0.187

R

0.187

0.152

0.133

0.130

0.122
0.118

0.114

0.114
0.109
0.091
0.087
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FIG. 1.2

The composite final electron density synthesis 
viewed down the b axis. Contours are at 1 e/X.̂  inter­
vals starting at 2 e/X^ except round the bromine atoms 
which are contoured at 5 intervals starting at
5 ./X3 .The broken contours are those of 0 ( k).
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TABLE 1,1
FRACTIONAL COORDINATES AND E.S.D.S.

ATOM X/a

B r(1) 0.8146 + 2

B r(2) 0.2498 + 2

C(1) 0.6431 + 18

C(2) 0.4871 + 18

C(3) 0.3792 + 16

C(4) 0.3976 + 15

C(5) 0.5663 + 17

C(6) 0.6556 + 19

C(7) 0.6137 ±  17

C(8) 0.7528 + 18

C(9) 0.8144 + 15

c( 10) 0.7923 + 15

c(11) 0.8131 + 18

C( 12) 0.6813 + 17

C(13) 0.6161 + 16

C(14) 0.6518 + 17

C(15) 0.7655 + 22

C(16) 0.9659 + 17

C( 17) 1.1145 + 21

C(18) 0.4804 + 18

Y/b Z/c
4205 + 3 0.46407 + 5

3259 + 3 0.34035 + 5

5047 + 22 0.4228 + 4

4708 + 24 0.4359 + 4

3546 + 23 0.4190 + 4

2378 + 23 0.3856 + 4

2349 + 21 0.3764 + 4

4251 + 23 0.3834 + 4

5606 + 22 0.3505 + 4

5417 + 22 0.3369 + 4

3947 + 20 0.3648 + 4

2035 + 23 0.3484 + 4

0849 + 21 0.3846 + 4

1059 + 22 0.4020 + 4

1837 + 23 0.3367 + 4

0210 + 20 0.4390 + 4

1086 + 27 0.4982 + 4

ooo4 + 24 0.4002 + 4

2658 + 26 0.4142 ± 6

6863 + 23 0.3403 + 5

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-0
0

-0
0



C(19) 0.3043 + 26 0.8195 ±  30 0.2898  +

C(2o) 0.8320  + 17 0.6220  + 22 0.3057 +

C(21) 0.8386  + 28 0.8799 + 31 0.2658 +

0 ( 1) 0.5218  + 12 0.0055 + 18 0.4488 +

0 ( 2 ) 0.7835 + 14 - 0.0356 + 18 0.4598 +

0(3 ) 1.0815 + 13 0.0855 ±  17

O•O +

0 (4 ) 0.9647 + 12 -0.1755 ±  15 0.3991 +

0(5 ) 0.4251 + 15 0.7705 + 17 0,3641 +

0(6 ) 0.4361 + 13 0.6974 + 16 0.3021 +

0(7 ) 0.9288 + 16 0.5480 + 20 0.2899 +

0(8 ) 0.7804 + 15 0.7864 + 17 0.2978 +

7

4

6
3

3

4

3

4

3

4

3



TABLE 1.2
ANISOTROPIC TEMPERATURE FACTORS AND E .S .D .S .

ATOM U11 U22 U33 2U23 2U31 2U12

B r ( l) 0.0637
11

0.0603
15

0.0586
9

-0.0077
18

-0.0048
15

0.0088
20

Br (2) 0.0447
8

0.0657
15

0.0674
9

0.0189
18

0.0029
14

0.0022
18

C(1) 0.0520
89

0.0296
110

0.0594
84

0.0110
141

0.0010
130

-0 .0013
153

C(2) 0.0491
88

0.0554
128

0.0595
85

0.0050
159

0.0331
133

-0.0116
174

c(3) 0.0302
67

0.0528
123

0.0666
86

0.0128
159

0.0278
116

0.0151
150

C(4) 0.0248
58

0.0505
120

0.0674
84

0.0257
154

0.0095
109

- 0.0008
143

C(5) 0.0485
79

0.0300
106

0.0528
75

0.0041
135

- 0.0236
121

-0 .0250
147

C (6) 0.0600
92

0.0530
128

0.0431
69

-0.0002
143

0.0216
125

0.0197
170

c(7) 0.0479
84

0.0387
117

0.0565
79

0.0036
143

0.0386
127

0.0038
154

C(8) 0.0544
90

0.0344
117

0.0558
80

-0 .0045
141

- 0.0005
130

0.0075
157

C(9) 0.0297
63

0.0327
105

0.0534
70

0.0006
131

0.0197
103

- 0.0066
134

C(10) 0.0320
67

0.0612
128

0.0503
73

0.0076
147

0.0226
106

-0.0032
152

C(11) 0.0547
86

0.0262
108

0.0514
72

-0.0041
134

0.0027
121

-0.0346
152



C(12) 0.0478
81

0.0279
106

0.0597
79

0.0056
139

0.0237
124

- 0.0098
146

C(13) 0.0403
74

0.0499
123

0.0506
72

0.0088
144

0.0232
112

-0.0025
152

C(14) 0.0478
82

0.0162
103

0.0607
82

0.0005
129

0.0285
123

0.0046
138

C(15) 0.0760
116

0.0776
149

0.0483
80

0.0058
174

0.0135
148

0.0305
219

C(16) 0.0427
80

0.0518
127

0.0543
79

0.0051
150

0.0173
120

- 0.0206
160

C(17) 0.0541
102

0.0336
127

0.1280
160

0.0033
215

0.0226
196

- 0.0029
185

C(18) 0.0471
85

0.0330
117

0.0760
98

0.0063
158

0.0338
140

0.0053
158

C( 19) 0.0739
134

0.0614
167

0.1370
191

0.0174
267

-0.0384
246

0.0125
235

C(20) 0.0452
81

0.0371
113

0.0582
80

0.0071
143

0.0206
124

-0.0013
151

C(21) 0.1228
183

0.0670
164

0.0836
126

0.0701
224

0.1010
245

0.0311
264

0(1 ) 0.0432
60

0.0886
101

0.0712
69

0.0503
134

0.0371
100

0.0093
128

0(2 ) 0.0715
75

00 
0\ 

VO0.0

0.0547
59

0.0220
115

0.0255
105

0.0183
134

0 (3 ) 0.0476
63

0.0456
89

0.1115
95

0.0297
137

-0.0055
120

-0.0094
120

0(4 ) o.o4o6
55

0.0360
81

0.0930
78

-0.0145
117

-0.0061
101

0.0067
103

0(5 ) 0.0733
82

0.0535
90

0.0940
85

0.0048
137

0.0551
132

0.0410
138

0(6 ) 0.0633
71

0.0413
84

0.0799
74

0.0077
120

0.0048
113

0.0203
122



0(7 ) 0.0891 0.0890  0.0924 0.0412 0.0905  0.0180
97 114 90 162 153 169

0 (8 ) 0.0818  0.0557 0.0690 0.0269 0.0506  0.0117
84 92 68 124 119 138



TABLE 1,3
ASSUMED FRACTIONAL COORDINATES AND TEMPERATURE FACTORS

OF HYDROGEN ATOMS.

ATOM X/a Y/b Z/c U

H( 1) 0.648 0.643 0.419 0.075

H(2) 0.459 0.546 o.46o 0.075

H(3) 0.269 0.346 0.430 0.075

H(4) 0.374 0.103 0.394 0.075

H(5) 0.917 0.424 0.384 0.075

H(6) 0.864 0.164 0.328 0.075

H(7) 0.571 0.265 0.314 0.075

H(8) 0.577 0.061 0.325 0.075

H(9) 0.871 -0 .144 0.514 0.075

H(10) 0.686 - 0.219 0.494 0.075

H(11) 0.708 -0 .010 0.515 0.075

H(12) 1.104 -o .4o4 0.413 0.075

H(13) 1.152 - 0.227 0.444 0.075

H(14) I .205 -0 .224 0.398 0.075

H(15) 0.278 0.821 0.258 0.075

H(16) 0.336 0.953 0.298 0.075

H(17) 0.201 0.784 0.300 0.075

H(18) 0.783 I .008 0.263 0.075

H(19) 0.798 0.809 0.239 0.075

H(20) 0.958 0.891 0.270 0.075



TA1JLK 1 ^

I ' i n a l  observed and calculated structure factors.



1 7 *0  -194.2

11*1 14.1
*7 .»  »t*4
>4*4 -54.4
>4.4 74.444./ //•#
44•> 44.1
17.1 JJ.4 
i t . « - i» .a44*1 -a..a
|4 .2  - l « . l
41*1 -37.7
44.4 -41.7
42*1 -4J.1

*41.4 -144*5 
15*4 -14.4
44.4 -41.4
71*4 -77.2

-4 44.1 3*.4
•4 34.2 44*4
-4 41.1 -44*7

• I t  24.4 -21.7

74*7 74.4
*14.9 114.4
14.1 1a .3

11.3 -14.4

421.7 2*1.2

*14.4 -123*1

12 75.3 -73.4
14 3«.4 .34.3
14 23.4 t l . t
2? 4 9.4 34*7
24 1**7 12.7
32 14.3 -13.1
•2 123.3 123.3
•4 4 3.4 47.7
—4 27.7 -23.4

-3 t 12I 4 - 4U
4 43.3 -41.3
2 144.7 -143.2
4 24.3 -24.3
4 23.1 -21.3

14 71.1 -74.2
14 1 /.3  14.1

24 12.4 -14.4

412.3 115.3

27.4 -21.4

*42*4 1*7.7
54.1 -37.4

14 37.4 -14*2

24.4 -23.4
*4.7 -2A.3
31.1 29.4
17.7 -13.4

27.4 -23.1

23 24.3 24.7
24 14.3 -14.4
27 t l . t  24.?

-3 77.4 71.1
-4 42.3 42.2
•3 131.3 134.4
-4 43.3 -144.7
-7 33.3 33.4
-4 34.7 -37.4

-17 13.1 4.4
-1« 3*.» -34.7
-19 34.4 -42.2
-24 4.3 -4.3
-21 44.2 -44.1
-22 *4.4 51.4
-24 22.3 -9.3
-23 12.4 -14.2
-27 *2 .3 -22.2

•31 21.4 14.2
-34 12.1 11.4
-33 11.*' 14.4

14.3 -17.2
42.3 44.?
59.4 -39.4
27.4 94.1 

133.7 - } 4 l . f
114.4 -131.4

44.2 *3 .2
14.7 -14.3
31.2 32.4
11.7 15.1
43.1 -143.3
44.4 41.1

21.2 ? 4.
13.2 19.
21.7 -21.

33.3 -93.9

72.4 -7 3.4

37.7 —3 >4 . A
14.4 14.7
71.7 -74.2
*4 .3 -*4 .3
23.3 -73.4

21.4

94.2

*3 .2 -57.1

44,4 34.4

31 23,4 -24.4
34 32,1 -94.7
37 .3 .4  11,2
34 7,4 7.3
39 11,4 9.4
•2 72.2 -72.4
•3 47.3 -44.2

•13 41.4
94,5 -97 .*

:!:j B
54.1 -34.4
33.2 31.4
11.7 -11.3

24.2 -27.4

9,3 -14.4

95.2 -142.3
47.4 #7.4
14.9 -13.3

17.4 -14.3

—14.4 1
22.4 21.7

21 12.2 11*3

13.4 14.1

-13 34.4

17,5 -19.3
22*7 -92*2
34.2 33.9>3.2 37.3
14.4 - !« .<

37.4 -39.2
24.4 -21.7
13.4 -14.7
24.4 -19,2
17.4 13.3

41.4 -**..9

11.4
19.9
34.3
13*3

11*324«*
34.4
97.4

-24 27.4 31.3

*<4 27.3 23.1
-27 24.4 !« . /
-2* 19.7 1*«9

•34 34.2 -14.2

a:::
24 14.4 17.7
2/ 14»* -14.4

24 7.4 -3.1
-4 24*4 -1«.3
-4 24.4 23.3

-14 33«3 -1 « .l

3 14.3 -31.4
4 27.1 -21.9
3 23*4 -29.4

14 34.4 -34.9
11 22*9 23.2

-34 24.2 -27.1

-31 12.2 -9 .

-14 24.1 14.3

73.4 34.4
144.4 124.4

113.2 -14A.9
144.4 93.1

51.7 -53.1

v,

912.3

21.4

27 24.9 31.

37 14 ., -

74«t -77.9

37.1 -*4 .2

31.3 - '9 .9

: s::;-14.2
-32.9

-135.4

31 34*3 7.2
33 19,4 -14.3
34 13.9 -14.3
39 1**4 *13.3
-1 »3«,7 213,4

■5 113.1
43.2

47.9 99!a

93,4 -39.4

-13 23.4

-13 24.1 -94.9

-3 7 :::: -144*2

- 1*

— 2 1
32.9

12.9
14.7
13.4

•93
43.9

B:i
24.2

—4 4.4

34,  3 
2*.9

37.7

-31 22,3 92.4

"ii ’*.1 24.4

-34 12.3 12.4

i "4,9

* 43^4
134.3 -134.2

5 44.9 —•4 .4

\ i i i i
42.7

I!
22*9

!*•*
13 52l3 92.4

I* 33)3 -14.2

17 19.4 * 0 0

*! 7*!a 44.9

?! 21.4 21.4

24
!« !* •14.9

-14*9

29
1 7^4 
92.4

• 17.3 
-93.4

J2 11.4

34 14.4 14.7
-92*3

~l 74U
53.7

-49.2
-41.4

ll • 3*2 
73.4 -71.4

-14 74.4 * * !*

-12 38.4 M*.i
-13 43.4 n y. i

22.3 -92.3

-h
54.4
43.4

-41.4

34^7
.7 .7

-34.2
-14.3

-32
31.7
92.2

31.3

’ •!*
-i! 4.4 4.9

1 14*3 i'*t
3 94.3

142.1
13.4 - 12.1
320 9 * !*

14 «!»
57,7
92.4
44.4 - ij ll

« Si!* -34.3

24
34.3
14.3

•  38.7

23
4* 13.4

12.4
11.4

-13.7
-14,5

31 21.4
4.7

-17.9

43,3
-14.4

zl 2* ! l  
4 * . 3

-25.4
-41.9

21.3
43.1
<2.4

-17

<0.1 
1 * • 2 ~ B

-24

-23

14.2
31,4

14.4

-34
-33

0 . 4
?4.9

•  92.2 
-13.3

m U -11.7

H I 9.3 III
13.1 004
74.4

13.4
24.4

;! 51.4
71.3

J * . l
0 . 7

3*.4

24
24

93I3
13.4

-94.4
13.4

23
24

29.3
13.4

-24.4
17.4

-2 44.7 « I a

O 74.2 I?a*.»



-3* 21*2 -19.8

13 31.4 -3 l«3

31 11.2 -14.4
14 »•» 11.2
37 4.1 11.1
<» 1.4 -11 »•
-1 I • • • •  121.4
•2 92.1 0 . 4

lll.l
13.3

23.4 »4 .|

12.4

31.8

-13 31.7
•14 33.8
-17 4.3

18.8 -18.2
8.7 18.4
7.7 -7.8

U . l  -14.2
•2 .3 78.2
23.3 93.3

93.8

-84.4
•23.4

12.7 -13.3

-21 12.3 -19.8

18 42.1 -38.311 *.1 -18.8
12 22.7 -29.2
13 24.3 -94.3
13 91.8 9*.«
14 93.4 -97.3
17 38.8 -32.3

|4  45.3 -4 0 4
’ • 2*.3 14.8
21 13.3 —14.4
2» 93.4 97.8
94 12.2 13.8
33 14.4 13.2

-2 38,8 -94.8
-4 42.3 19.8
-4 38.8 33.3

-4 94,3 -22.1

•18 29.3 93.7
-11 32.4 -44.4
-12 17.4 13.4
-13 34,3 -34.9
•14 33.7 -34.7
-14 4,8 -9.9
•17 23.3 -23.7
-18 18,3 9.4
-2* 92.4 -93.8
-21 97.3 11.4
-97 23.4 92.7
-19 99,3 14.4
-31 4.7 -18.7

-31 14.4 -8 .1
12 *3 .7 -84.4 11 97.7 94.8

12 33.4 38.4
13 93.7 -97.3
17 27.4 32.8
28 23.9 -21.8
21 >7.2 -32.4
42 24.1 -27.3
23 14.3 13.2
24 17.7 -28.2

\VA

12.3 -13.3 12 14,4 -14.1

8.1 0.1
-19 <7.4

74 J I .3 32.7
23 14.V 14.3
24 J i.7  31.4
29 41.8 29.1
94 18.4 -18.3
31 4«*8 24.2
34 1 ;.4  -12.1
33 18.3 -17.4

-1 32.4 27.i
-2 3>.8 47.1
•3 79.4 -44.3

2* 19.8 -11.3

34.1 -14.2
33.3 -34.8
72.3 28.9

-17 93.8 -27.2

-11 41.3 -4 1 ..
-13 14.8 14.1

-31.8

49.9
37.3

33.1

lit!

43.4 38.1

-17 13.7 -14.1

14.1 14.7

-13 2 j.«  23.2
-14 3 ..3  -39.3
-13 91*2 -31.3

*27 13.1 13*4
-44 24.4 -23.3
-38 13.9 -13.7
-32 14.3 -17.2 1»1«3

-1? 12.3 21.

11.9 11.3
12.3 -13.9
19.8 -13.1

13.4 14.3

17.7
14*3

.4 14.4 - I? .

11.4 -1?.3

74. 7f>,3

24.2 -94.3

24 21.1 -28.2

32*411*2
13 24.3 - ? / .

13.3 - 0 . 4

14.7 15.«
93.7 93
12.1 14
21.1 -11
17 ® 3 -13

-33 7.8 12.1
1 13.3 -12.8

13.9 14.3

13,3 13.3

413.8 31*8
448.3 -43*2
414.3 41.4

4 21.3 -14.3

14 33.3 -32.8
43 37.4 -34.4

•23 21.8

14 19.1 —13.8
17 11.9 -13.2
1* iS . l  -13.3

•13 33.9 -24.9

11.4 14.3

8 11.2 
1 28.3

19 11.4

‘A lA :i

7*1 7.1

-4 23.2 91.#
-7 74.8 -44.2

-31 1»
•33 19

9?.2 
-1* 97.3
-11 27.4

-31 8.4 -12.4
< 33.2 39.2
3 13,4 13.4
4 93.2 93.3
,  13.4 33.4

11 12.1 12.7
12 18.4 -19.4
13 14.9 17.4
99 18.4 4.9
21 14,1 -4.9
-1 33.3 -37.4
-2 94.4 -93.8
-3 H .7  -11.1
-4 14.7 -17.7
-7 12.3 -14.2



TABLE 1.5
ORTHOGONAL COORDINATES AND E.S.D.S.

ATOM X Y z

Br(l) 6.840 + 2 3.145 + 2 15.105 +
Br(2) 2.097 + 2 2.438 + 2 11.490 +
C(l) 5.400 + 15 3.775 + 16 13.879 +
C(2) 4.090 + 15 3.522 + 18 14.519 +
C(3) 3.184 + 13 2.652 + 17 14.060 +
C(4) 3.339 + 13 1.778 + 17 12.883 +
c (5) 4.755 + 14 1.757 + 16 12.362 +
C (6) 5.505 + 16 3.179 + 17 12.499 +
c(7) 5.153 + 14 4.193 + 17 11.411
C(8) 6.321 + 15 4.052 + 17 10.775 +
C(9) 6.838 + 12 2.952 + 15 11.668 +
C(10) 6.653 + 13 1.522 + 18 11.125 +
C (11 ) 6.827 ± 15 0.635 + 15 12.354 +
C(12) 5.721 + 14 0.792 + 16 13.115 +
C(13) 5.173 + 14 1 .374 + 17 10.929 +
c( 14) 5.473 + 14 0.157 + 15 14.429 +
c(15) 6.428 + 19 “0.813 + 20 16.346 +
C (16) 8.110 + 14 0.003 + 18 12.714 +

C( 17) 9.358 + 18 -1.988 + 19 13.024 ±

C( 18) 4.033 + 15 5.134 + 17 11.216 +

2
2
15
15
15
15
14
13
13
15
13
13
14
14
13
14
15
14
22
16



C(19) 2.555 + 22 6.130 + 23 9.675 +
C(20) 6.986 + 14 4.652 + 17 9.601 +
C(21) 7.042 + 24 6.581 + 23 8.209 +
0(1) 4.381 + 10 0.042 + 14 14.922 +

0(2) 6.579 + 12 -0.266 + 13 14.995 +

0(3) 9.081 + 1 1 0.640 + 12 12.928 +

0(4) 8.100 + 10 -1.313 + 12 12.677 +
0(5) 3.569 + 13 5.764 + 13 12.104 +
0(6) 3.662 + 11 5.216 + 12 9.943 +
0(7) 7.799 + 14 4.099 + 15 8.938 +
0(8) 6.553 + 13 5.882 + 13 9.386 +

26
14
19
11
10

13
12

13
11
13
11



TABLE 1.6
ORTHOGONAL HYDROGEN COORDINATES.

ATOM X Y Z
H(1) 5.44 4.81 13.75
H(2) 3.86 4.08 15.37
H(3) 2.26 2.59 14.58
H(4) 3.14 0.77 13.21
H(5) 7.70 3.17 12.19
H(6) 7.25 l .23 10.33
H(7) 4.79 1.98 10.18
H(8) 4.85 0.46 10.57
H(9) 7.32 -1.08 16.77
H(10) 5-76 -1.64 16.31
H( 1 1 ) 5.94 -0.07 16.98
H(12) 9.27 , -3.02 12.99
H(13) 9.68 0 .1 14.00
H(l4) 10.12 00VO.1 12.34
H(15) 2.34 6.14 8.60
H(16) 2.82 7.13 9.91
H( 17) 1.69 5.87 10.16
H( 18) 6.57 7.54 8.17
H(19) 6.70 6.05 7.33
H(20) 8.04 6.66 8.21



TABLE 1.7
PRINCIPAL VALUES OF VIBRATION TENSORS 
AND THEIR DIRECTION COSINES REFERRED 

TO ORTHOGONAL AXES.

ATOM
o2 

U A 01 D2 D3

B r (1) O.0766
O.05 I 2
O.0579

-0.6841
0.6656

-0 .2983

- 0.3601
0.0475
0.9317

0.6343
0.7448
0.2072

B r(2 ) O.0773
0.0434
0.0590

-0 .0948
0.9616
0.2577

0.6208
- 0.1453

0.7704

0.7782
0.2330

- 0.5831

C(1) 0.0286
0.0658
o.o486

0.0235
-0 .4438
- 0.8958

-0.9845
0.1457

- 0.0981

0.1740
0.8842

-0.4334

C(2) 0.0397
0.0636
0.0582

- 0.7669
0.5789

- 0.2770

- 0.3906
- 0.0785

0.9172

0.5092
0.8116
0.2863

C(3) 0.0262
0.0702
0.0511

- 0.9508
0.2875
0.1154

0.2275
0.3948
0.8902

0.2104
0.8726

-0.4408

C(4) 0.0749
0.0247
0.0436

0.0190
- 0.9985

0.0512

0.4712
- 0.0362
-0 .8813

0 . 88I 8
0.0409
0.4698

C(5) 0.0753
0.0227
0.0387

- 0.6285
0.5395

- 0.5603

0 . 236I
0.8187
0.5234

0.7411
0.1967

-0 .6419

C(6 ) 0.0670
0.0407
0.0473

0.8194
- 0.2865

0.4965

0.5714
0.3390

-0.7473

0.0457
0 . 896I
0.4415

0 (7 ) 0.0637
0.0373
0.0387

0.6312
-0.7369
-0.2419

0.0957
0.3835

- 0.9186

0.7697
0.5567
0.3125



C(8 ) 0.0651
0.0336
0.0482

- 0.6237
- 0.1540
-0 .7664

-0.1465
0.9861

- 0.0789

0.7678
0.0631

-0 .6376

C(9) 0.0536
0.0265
0.0345

0.2339
-0.8541

0.4645

- 0.0011
- 0.4780
-0 .8784

0.9723
0.2049

-0 .1128
C(10) 0.0293

0.0624
0.0502

-0 .9325
0.0158

- 0.3607

- 0.0912
0.9564
0.2776

0.3494
0.2917

- 0.8904

G(11) 0.0179
0.0657
0.0505

0.4339
- 0.8256

0.3608

0.8983
0.3659

-0.2432

0.0688
0.4296
0.9004

C(12) 0 . 026I
0.0607
0.0474

- 0.2507
0.3604

- 0.8985

- 0.9572
o.o462
0.2856

0.1444
0.9317
0.3334

C(13) 0.0364
0.0550
0.0479

-0 .8380
0.2535

-0.4832

- 0.2450
0 . 6 I 65
0.7483

0.4876
0.7^55

- 0.4545

C(14) 0.0160
0.0627
o.o44o

- 0.0758
0.4579
0.8858

0.9970
0.0213
0.0744

0.0152
0.8887

-0.4582

C(15) 0.0922
0.0479
0.0624

- 0.6914
0.2066

- 0.6922

- 0.7207
-0.1315

0.6806

0.0496
0.9695
0.2398

C(16) 0.0349
0.0593
0.0541

-0 .8046
-0.4437
-0.3947

- 0.5465 
0 . 8 I 32 
0.1999

0.2323
0.3766

- 0.8968

C(17) 0.1286
0.0334
0.0540

0.0501
- 0.0741

0.9960

0.0189
- 0.9970
- 0.0752

0.9986
0.0226

-0.0486

C( 18) 0.0775
0.0325
0.0437

0.3291
0.1599
0.9307

0.0789
- 0.9868

0.1416

0.9410
0.0268

-0 .3374

C(19) 0.1576
0.0536
0.0708

-0 .3313
0.6103
0.7196

0.0558
-0.7487

0.6606

0.9419
0.2590
o.214o



C(20 ) 0.0590
0.0362
0.0443

0.2689
-0.1593

0.9499

0.1514
- 0.9670
- 0.2050

0.9512
0.1990

-0 .2359

C(21) 0.1505
0.0350
0.0776

0.7966
-0 .1577

0.5836

0.3456
-0.6733
-0.6537

0.4960
0.7224

-0.4818

0 ( 1) 0.1071
0.0371
0.0558

0.1710
- 0.8692

o.464o

0.8050
-0.1483
- 0.5745

0.5681
0.4717
0.6743

0 (2 ) 0.0820
0.0486
0.0631

0.6693
0.0799
0.7387

0.6798
-0.4671
- 0.5654

0.2998
0.8806

- 0.3669

0 (3 ) 0.1203
0.0410
0.0474

-0 .1402
-0 .4420

0.8860

0.2117
-0.8875
- 0.4093

0.9672
0.1302
0.2180

0 (4 ) 0.0990
0.0341
o.o4oi

- 0.1553
- 0.3909
- 0.9072

-0.1295
0 . 9 I 85

-0 .3736

0.9793
0.0595

-0.1933

0(5 ) 0.0386
0.1033
0.0744

- 0.5722
o.6o64
0.5522

0.7944
0.2424
0.5570

0.2039
0.7574

-0.6204

0 (6 ) 0.0368
o.o84l
0.0657

0.3786
- 0.3067
-0 .8733

-0.9197
- 0 . 018I
-0.3923

0.1045
0.9516

- 0.2889

0 (7 ) 0.1293
0.0507
0 . 08I 2

0.6257
- 0.5989

0.4998

0.4488
-0.2478
-0.8586

0.6381
0.7615
0.1137

0 (8 ) 0.0933
0.0463
0.0627

0.7950
-0 .1184

0.5949

0.3023
-0 .7730
-0.5578

0.5259
0.6233

-0.5788



TABLE 1.8

BOND LENGTHS AND E.S.D.S.

oBr(l) - c 1 ) 1.993 + 15 A C 11 ) - c 12 ) 1 .352 + 21

Br(2) - c 4) 1.979 + 15 C 7) - c 18 ) 1 .475 + 22

C(l) - c 2 ) 1 .480 + 21 c 8 ) - c 2 0 ) 1 .477 + 21

C (1 ) - c 6 ) 1 .5 0 6 + 21 c 11 ) - c 16) 1 .475 + 21

C(2) - c 3) 1.337 + 23 c 12 ) - c 14) 1 .480 + 21

C (3) - c 4) 1 .474 + 22 0 1 ) - c 14) 1 .203 + 18

C(4) - c 5) 1.309 + 19 0 3) - c 16) 1 .181 + 19

C(5) - c 6) 1 .614 + 23 0 5) - c 18) 1 .183 + 20
C (5) - c 12) 1.559 + 21 0 7) - c 20) 1.186 + 20
C(5) - c 13) 1 .541 + 20 0 2) - c 14) 1.313 + 19

C ( 6 ) - c 7) 1 .528 + 22 0 4) - c 16) 1 .3 1 6 ± 21

0(6) - c 9) 1 .588 + 20 0 6 ) - c 18) 1.328 + 19

0(7) - c 8) 1.338 + 21 0 8) - c 20) 1.321 + 21
0(8) - c 9) 1.508 + 21 0 2 ) - c 15) 1 .465 + 19

0(9) - c 10) 1 .541 + 23 □ 4) - c 17) 1 .469 + 21
C(10) - c 11) 1 .5 2 6 + 21 0 6 ) - c 19) 1 .460 + 25

C(10) - c 13) 1 .5 0 0 + 19 0 8) - c 21) 1 .454 + 24

> 
o



TABLE 1,9  

INTERBOND ANGLES AND E .S .D .S .

o o01&

-  c ( 2 ) 108. 6+10 c ( 5 ) -  c ( 6 ) - C(7) 114.7+12

B r (1 )-  C(1) -  c ( 6 ) 112.S+11 C(5) -  C(6) - C(9) 102. 7+12

C(2) -  C(1) -  c ( 6 ) 112.9+13 C(7) -  C(6) - c (9 ) 85 . 2+10

C(1) -  C(2) -  C(3) 124.3+14 c ( 6 ) -  c (7 ) - C(8) 93. 9+13

C(2) -  C(3) -  C(4) 126.0+13 c(6 )  -  c ( 7 ) - C( 18) 133. 8+13

B r(2 )-  C(4) -  C(3) 107.4+10 c(8 )  -  c ( 7 ) - C(18) 131. 9+14

B r ( 2 ) -  C(4) -  C(5) 110.5+10 C(7) -  C(8) - c (9 ) 95. 5+12

C(3) -  c (4 ) -  C(5) 112.5+12 C(7) -  C(8 ) - C(20) 136. 8+15

C(4) -  C(5) -  C(6) 113.2+13 C(9) -  C(8) - C(20) 127. 8+13

C(4) -  C(5) -  C(12) 115.0+12 C(6) -  C( 9 ) - C(8) 85.3+11

C(4) -  C(5) -  C(13) 125.4+12 C(6) -  C(9) - C(10) 102. 5+11

C(6) -  C(5) -  c ( 12) 102.5+11 C(8) -  C(9) - C(10) 115. 3+11

C(6) -  C(5) -  C(13) 99.9+11 C(9) -  C (10 ) - C(11) 104.0+11

C (1 2 ) -  C(5) -  C(13) 97.3+11 c (9 )  -  c ( 10) - c(13) 104. 9+12

C(1) -  C(6) -  c (5 ) 113.2+12 C(11) -  C (10 ) - c (13) 99. 3+12

C(1) -  C(6) -  C(7) 112.0+14 C (1 0 )-  C(11) - C( 12) 107. 0+13

C(1) -  C(6) -  c (9 ) 126. 5+13 C (1 0 ) -  C (11)- C (16) 123. 0+12



C (12)- C(11 - C(16) 128.6+13 0 (6 ) -  C (18)- C(7) 112.3+13

C(5) -  C(12 - c(11) 107. 9+12 0 (8 ) -  C (20)- c (8 ) 111.1+13

C(5) -  C(12 - C(14) 126. 2+12 0 (1 ) -  C (14 )- 0 (2 ) 123.8+14

C (11)- C (12 - C(14) 125. 9+14 0 (3 ) -  C (16)- 0 (4 ) 123.4+14

C(5) -  C(13 - C(10) 97. 0+11 0 ( 5 ) -  C (18)- 0 ( 6 ) 125.2+15

0 (1 ) -  C(14 - C(12) 123.9+14 0 (7 ) -  C (20)- 0 (8 ) 124.6+15

0 (3 ) -  C(16 - C(11) 121.9+16 C (14)- 0 (2 ) -  c(15) 115.5+13

0 (5 ) -  C(18 - C(7) 122.5+15 C (16)- 0 (4 ) -  c(17) 116.5+12

0 (7 ) -  C(20 - c (8 ) 124.3+16 C (18)— 0 ( 6 ) -  c(19) 115.3+15

0 (2 ) -  C(14 - C(12) 112.3+12 C (20)- 0 (8 ) -  C(21) 118.0+14

0 (4 ) -  C(16 - C(11) 114.5+13



TABLE 1,10
o

INTERMOLECULAR CONTACTS BELOW 4 A.

C(4).. ii 3.14
C(21). ..0(7) viil 3 .2 0

c(3).. ii 3.21

C(15). ..0(3) x l 3.25
0(15). ..0 (1) X 3.34
C(8 ).. i 3.36
c(17). ..0(5) V 3.36
0 (1).. iv 3.42
Br(2). ..o(7) ii 3.45
C(12)• ..0(5) iv 3.46
Br(2). ..0(3) ii 3.48
C(14). ••0(5) iv 3.54
C(10). ..0 (8 ) iv 3.57
0(4).. iv 3.59
C(19). ..0(7) vii 3.59
C(9).. i 3 .6o
C(20). ..0(4) 1 3.61
c(3).. ill 3.61
0 (1).. X 3 .6 2

C(13)• ..0 (8 ) iv 3 .6 2

0(4). iv 3 .6 5

Br(2) ...C(2 1) Vi 3.67
C(13) ...0(5) iv 3.67
0(5). iv 3 .6 8

0 (2 ) . ili 3.71
C(11) .».0 (8) iv 3.72
C(3). X 3.75
Br( 1) ...0(15) i 3.76
c(7). i 3.77
C(19) •..0 (7 ) ii 3.78
C(1). ...0(4) i 3.80
C(1). 1 3.80
C(10) ...C(21) iv 3.81
0(9). i 3.83
0 (1). ii 3.83
0(2 1) ...0 (6) vii 3 .8 8

0 (1). i 3.90
c(13) ...C(18) iv 3.90
Br(1) ...Br(1) ix 3.91
0(19) ...0 (2 1) Vi 3.92

>o



Br(2)© ©*.C(9) ii 3.9^ C(6)••• ..□(4) i 3.96
C(1)... i 3.94 c(13) • • •©c(19) iv 3.98
C (19) • 0© ©C(21) ii 3.95 c(15).. ••C(16) xi 4©oo

Roman numerals refer to the following transformations 
of the fractional coordinates given in TABLE 1©1©

i x, 1 + Y» Zj vi 1 - *#-■1/2 + y,1/2 - z;
ii -1 + X, y> z* vii 1 - X# 1/2 + y,1/2 - z;
iii -1 + X, 1 + y# z; viii 2 - X, 1/2 + y,1/2 - z;
iv x*-1 + y# z; ix 2 - X, 1 - y, 1 - z;
V 1 + x,-1 + 

xi
y»

2

z;
-  X,

X

-  yJ
1 -

-  z;
X, “ y, 1 -  z;



TABLE 1.11
oPART I - DEVIATIONS FROM MEAN PLANES (A).

Plane 1 defined by C(1),C(2),C(3) and C(4).
C(1) 0.003 0(4) -0.0u3
C(2 ) -0.007 c(5) -0.299
c(3) 0.007 c(6) 0.327

Plane 2 defined by 0(6),C(7),C(8),C(9),0(18) and C(20). 
C(6) -0.040 C(20) -0.020
c(7) 0.043 0(5) -0.756
c(8) 0.003 0 (6) 0.833

c(9) 0.021 0(7) 0.394
c(18) -0.008 0(8) -0.557

Plane 3 defined by C(5),C(6),C(9) and C(10).
C(5) -0 .0 1 2 C(11) -1.374
C(6) 0.017 0(12) -1.414
C(9) -0.017 0(13) 0.819
C(10) 0 .0 1 3

Plane 4 defined by 0(5),0(10),C(11) and C(12).
0 (5 ) 0.0j8 0 (6) -1.469
C(io) -0 .0 0 8 0(9) -1.449
C(11) 0.013 0(13) 0.818
C(12) -0.013



Plane 5 defined by C(6),C(9),C(11) and C(12).
c ( 6 )  0 .0 1 2 c ( 5 )  0 .8 8 5

C(9)  - 0 . 0 1 2  C(10) 0 .872

C(11) 0 .0 1 4  c ( 13) 1 .886

C ( 12) - 0 . 0 1 4

Plane 6 defined by C(4),C(5),C(10) and C(13).
C(4) -o .o io  C(6) 1.293

C(5) 0.014 C(9) 1.207

C(10) -0 .0 0 8  C (11) -1 .202

c ( 13) 0 .0 0 3 c ( 12) -1.181

Plane 7 defined by C(5),C(10),C(11),C(12),C(14) and C(16).
C(5) -o.o47 c ( 6 ) -1.533
C(10) 0 .0 0 6 c ( 9 ) -1.463
C(11) 0 .0 8 0 0(13) 0.770
C (12 ) 0 .0 1 5 0 (1) 0.278
C(14) 0 .0 0 6 0 (2 ) -0.332
C(16) -0 .0 6 0 0 (3) -1.034

0(4) 1 .016

Plane 8 defined by C(12),C(14),C(15)#0(1) and 0(2). 
C(12) -0.025 0(1) 0.008
C(14) 0 .0 0 9 • 0(2) 0.040
c(15) -0.031



Plane 9 defined by C(11),C(16),C(17),0(3) and 0(4). 
C(11) 0 .0 0 3 0 (3) 0.011

C(16) -0.023 0(4) 0.014
c(i7) -0 .0 0 5

Plane 10 defined by C(7),C(18),C(19),0(5) and 0 (6).
C(7) o .o jl  0 (5) 0 .0 06

C(18) -0 .0 1 2 0 (6) 0 .0 0 9

0(19) -0.004

Plane 11 defined by C(8),C(20),C(21),0(7) and 0(8). 
C(8 ) 0.021 0(7) -0 .0 05

C(2 0) -0 .0 0 8 0 (8 ) -0 .0 35

C(2 1) 0 .0 2 7



PART II - PLANE EQUATIONS,
In the following table P,Q and R are the direction

cosines of the plane normal, S is the plane to origin
distance and RMS D is the root mean square deviation 

o
in A s. The plane equation is then

PX + QY + RZ - S 
o

where X,Y and Z are in A s and are referred to standard 
orthogonal axes.

PLANE P Q R S RMS D
2

%
1 -o.4o88 0 .7 108 -0.5724 -7.4717 0 .0 06 0 .5

2 -0.4333 -0 .6 90 5 -0.5792 -11.7809 0 .027 16 .8

3 -0 .4 72 0 0.3477 -0.8101 -11.6361 0 .0 15 3.6
4 -0.4167 0.7715 -0.4807 -9.2870 0 .0 10 1.7
5 -0.5553 -0.2444 -0.7949 -13.7817 0 .0 13 2.7
6 -0 .0 67 9 0 .9 60 7 -0 .2 69 0 -1.9741 0 .0 0 9 1.4
7 -0.37^3 -0 .8 022 -0.4652 -8.8919 0.046 49.1
8 -0 .0 9 7 0 -0 .8 98 9 -0.4273 -6.8460 0 .0 26 15.7
9 0 .2 4 9 9 -0 .0 02 9 -0 .9 683 -10.2615 0 .0 13 4.2

10 0.6573 0.7365 -0.1597 4.6517 o.oo7 1 .2

11 -0.7239 -0.3774 -0.5776 -12.3496 0 .0 22 11 .8



1.4 DISCUSSION
Although the analysis was undertaken to determine 

only the gross molecular structure the results allow 
something to be said about the details of the structure 
of the molecule.

The mean dimensions of the methyl ester groups 
are given in Table A. The figures in parentheses 
are the respective root mean square deviations from 
these means and they are in every case less than the 
estimated standard deviations of an individual measure­
ment calculated from the least-squares totals. The 
latter may thus be taken as reliable estimates of the 
random errors. Table A also contains values for 
comparable bond lengths and interbond angles obtained 
in some other recent analyses. They are in reasonable 
agreement with the results of this analysis.

The ester groups are planar to within the accuracy 
of the results, the deviations from the mean plane of 
the five atoms forming the group being significant at 
the 0.1$ level in one instance only.

In table B the means of the other types of 
covalent bond in the structure are given. With the 
exception of the C-Br bond which is about three standard 
deviations longer, they are in good agreement with 
accepted values.
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TABLE A
0

BOND LENGTHS (A) AND INTERBOND
ESTER GROUPS

1
ANGLES (°) IN SOME

a

c y o - a - c  
c a c<3>
b c d Reference

1.477(2) 1.188(9) 1.320(6) 1.462(6) This analysis
- 1.223 1.351 1.459 1
- 1.196 1.360 1.476 2

1.188 1.343 1.463 3
1.470 1.189 - - 4

/ab /ac Zbc Zcd Reference

123.2(10) 112.6(13) 124.3(7) 116.3(11) This analysis
124.6 111.2 124.2 120.3 1
126.3 110.6 123.1 120.7 2
126.0 108.0 125.8 120.2 3

References
1. d.1-AIt 

(I960,
Ihaprodine hydrochloride, Kartha, Ahmed & Barnes

2. d .1-Betaprodine hydrochloridei, Ahmed & Barnes (1963).
3. d •1-Betaprodine hydrobromide, Ahmed, Barnes & Masironi 

(1963).
4* Maleic anhydride, Marsh, Ubell, & Wilcox (1962)#
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TABLE B
o

AVERAGED BOND LENGTHS (A)

BOND TYPE MEAN 
sp5-sp5 1.543 
sp5-sp2 1.513 
sp2-sp2 1.342

NUMBER LITERATURE VALUE*
C-C 7 1.537

6 1.510
3 1.335

C-Br 1.986 2 1.938

* Sutton (1965)

The unusual carbon skeleton of this molecule 
results in a good deal of steric strain. This is 
shown by considerable departures from normal valence 
angles, by significant departures from ejected planarity, 
and in at least one instance by a departure from usual 
covalent bond lengths.

The 0(5)-C(6^ bond is 1.614 A which is more than
three standard deviations greater than the mean for
this type of bond. Both carbon atoms are fully
substituted and lengthening due to steric repulsion is
understandable. Such lengthening in bonds involving
highly substituted carbon atoms has been observed in
other analyses. The central bond in hexamethylethane was

o 0
found by Bauer and Beach (1942) to be 1.58 A \ 1.59 A 
was found for a similar bond in longifolene hydrochloride

o
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0
by Cesur and Grant (1965) and values up tn 1.66 A were
claimed in methyl melalsucate iodoacetate by Hall and
Maslen (1965). 1

3 2Angles at sp and sp carbon atoms show highly 
significant differences from their usual values of 109° 
and 120°. These differences are most marked at the 
ring junctions and in the cyclobutene ring. Angles 
at the sp^ carbons C(5) and C(6) range from 97° to 125°
and 85° to 127° respectively. The average internal

2 oangle at sp carbon is 94 in the cyclobutene ring and
107° in the bicycloheptene system. The angle at the
bridging C(l3) is 97°. These results are comparable
with those found in the electron diffraction studies
of methylcyc.lobuiene (Shand, Schomaker, and Fischer,
194.4), cyclobutene (Goldish, Hedberg, and Schomaker,
1956), and norbornadiene (Schomaker, I960), and with the
x-ray studies of norbornadiene palladium dichloride
(Baenziger, Richards, and Doyle, 1965)> and anti-8-
tricyclo 3,2,1,02 '* octyl-p-bromo-benzene sulphonate 
(Macdonald and Trotter, 1965).

The deviations from the planes defined by the 
carbons in carbon-carbon double bonds and the atoms 
adjacent to them (Table 1.11, planes 1,2 and 7) are 
significant at the 0 .1^ level in the case of the C(7)- 
C(8) and the C(ll)-C(l2) double bonds but not in that of
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the C(2)-C(3) double bond. This may reasonably be 
attributed to the greater steric straip in the cyclobutene 
and bicycloheptene ring systems.

Although their standard deviations are large 
the anisotropic vibration tensors give a physically 
reasonable description of the atomic vibrations. The 
atoms in the methyl ester groups, and in particular 
the methyl carbons, undergo vibrations which are both 
larger and more anisotropic than the atoms in the main 
part of the molecular skeleton. In each case the 
direction of maximum vibration of a methyl carbon is 
approximately normal to the direction of the Me-0 
bond. The peak heights and shapes of the final three 
dimensional Fourier (Fig. 1.2.) also support this 
picture.

There are three intermolecular contacts which 
are smaller than the sum of the van der Waals radii 
(Pauling, I960) of the participating atoms, namely 
two methylcarbon - carbonyl oxygen contacts of 3.20 
and 3.25 A and a contact between C(4) and 0(3) of 3.14 
All other contacts are normal. Since hydrogen atoms 
were included in the calculations in assumed positions 
it has not been considered worthwhile to list inter­
molecular contacts involving hydrogen.
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CliAPTElt II 
PHENANTHluENECHiiOKIUM T111 CAiiBONYL



2.1 INTRODUCTION
The structural study of phenanthrenechromium

i
tricarbonyl was prompted by a controversy over the 
molecular symmetry of dibenzenechromium. In one 
x-ray analysis of dibenzenechromium (Jellinek, 1963)
adjacent bond lengths in the benzene rings were foundo
to differ by 0.07 A, whereas in a second analysis 
(Cotton, Dollase, and Wood, 1963) the bond lengths 
in the aromatic rings were found to be equal. Structure 
analyses of arenechromium tricarbonyls might be 
expected to yield information relevant to this problem. 
When the present work was started x-ray analyses of 
benzenechromium tricarbonyl and biphenyl bis(chromium 
tricarbonyl) (Corradini and Allegra, 1959 & I960), 
and of a monoclinic modification of phenanthrene- 
chromium tricarbonyl (Deuschl and Hoppe, 1964) had been 
reported. However, each of these three analyses was 
based only on projection data and no worthwhile 
conclusions could be drawn about the effect of the 
chromium tricarbonyl fragment on the bond lengths of 
the aromatic ring.

From Deuschl and Hoppe!s work on the monoclinic 
polymorph it was known that the chromium tricarbonyl 
moiety is bonded-to one of the side rings of phenanthrene.
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An accurate x-ray analysis of phenanthrenechromium 
tricarbonyl thus allows direct comparisons to be made 
between the two side rings, which are different only 
in the respect that one is bonded to a chromium 
tricarbonyl fragment while the other is not.

2.2 EXPERIMENTAL 
Crystal Lata
Phenanthrenechromium Tricarbonyl

C14H10Cr(CO)3 
F.W. 314.3 o
Orthorhombic, a = 12.14, b = 18.08, c = 12.34 A, 

o 3U = 2709 A F(000) = 1280
Lm = 1.52 gmcnT^ Z = 8̂ DX = 1.540 gmcm"^
Linear absorption coefficient (Mo Ka , wavelength 
0.7107 A) = 8.8 cm-1 
Systematic Absences

Ok H when k is odd ooA when h is odd
hO I  when I is odd oMo when k is odd

hkO when h is odd oo when ji is odd
Space Group Pbca (No. 61)
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The systematic absences and cell dimensions 
were determined from equatorial layer1and equi-inclination 
upper layer Weissenberg photographs taken normal to o
the c axis with copper Ka radiation (wavelength 1.5418 A)
and from hO I and Ok I  precession photographs taken witho
molybdenum K a radiation (wavelength 0.7107 A). The
determination of the space group and density was carried
out by Mr. D.R. Pollard who also supplied preliminary ,
values of the cell dimensions (Pollard, 1964).

The intensities of 714 independent reflections
were measured by visual comparison with a calibrated

ointensity strip. Timed series of 30 precession 
photographs of the reciprocal lattice nets Ok I to 
4k i  and hO* to h2 & were taken with molybdenum Ka 
radiation. The charts of Grenville-We11s and Abrahams 
(1952) were used to correct for Lorentz and polarisation 
factors. The various reciprocal lattice nets were set 
on an approximately equal scale by comparison of common 
reflections. The final scale factors- were obtained by 
making £ |P I ' = E| pJ for each reciprocal lattice
net.

1
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2.3 STRUCTURE SOLUTION AND REFINEMENT OF PHOTOGRAPHIC
LATA

i
The space group implies that the chromium atom 

is in a general position in the unit cell. Its 
fractional coordinates were determined from the Harker 
sections at U =4, V = i ,  and W = -g-.

The space group Pbca is centrosymmetrie; there 
are three sets of non-intersecting two-fold screw axes 
parallel respectively to each of the crystal axes and 
three sets of axial glide planes normal to each of the 
crystal axes. If the origin is taken at a centre of 
symmetry then the coordinates of the eight general 
equivalent positions are: +(x,y,z), + (x,4-y»i+z)*
±(i+x,y,i-z ), and +(i-x,i+y,z).

If the 21 axis parallel to the a axis is considered 
it is apparent that four equivalent positions are connected 
to other four by vectors having a component of i  along 
a. The analytical expressions for these four vectors 
and their inverses are found to be !
+(4>i+2y,2z) , + (i,^-2y,2z) , + (i,-g-+2y,-2z) ,+(i,i-2y,-2z) •

Eight vectors between chromium atoms should 
therefore give rise to four double-weight peaks on the 
Harker section at U=i. These four peaks are related 
to each other by the pmm plane group symmetry of the 
section.
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The a glide plane normal to the c axis connects 
four equivalent positions to the other four by vectors 
having components i  along a and 0 aloiig b. The 
expressions for these four vectors and their inverses 
are found to be

each position occuring twice. Another eight vectors 
between chromium atoms should therefore give rise to 
two peaks of quadruple weight at V=0 on the Harker 
section at U=i. These two peaks are also related by 
the plane group symmetry of the Harker section. The
Harker section at U=-J- therefore contains two independent 
peaks corresponding to vectors between chromium atoms 
from which two estimates of the z coordinate and one of 
the y coordinate of the chromium atom may be derived. 

Analogous results may be obtained for the other 
two Harker sections, and the positions of the independent 
Harker peaks can then be summarised as:-

Section Two-fold Peak Pour-fold Peak

The asymmetric units of the three Harker sections 
of the unsharpened three-dimensional Patterson function

i,i+2y,2z
2x,i,i+2z

i+2x,2y,i

i,0,£+2z

i+2x,i,0

0,i+2y,i
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are shown in Pig. 2.1; the peaks which were taken as 
vectors between chromium atoms are indicated by crosses. 
The coordinates of these peaks were determined using 
Booth’s interpolation formula (1948). The chromium 
atom coordinates were then worked out from the analytical 
expressions given above and averaged.

The mean values obtained for the chromium coordinates 
werel-

An electron density synthesis based on phases 
calculated from the chromium positions revealed the 
entire structure except for one carbonyl group. Due 
to the small number of terms used in the Pourier series 
the peaks in this synthesis were rather poorly resolved, 
and there was a good deal of spurious electron density 
round the chromium. Inclusion of the atoms of the 
phenanthrene nucleus and of the two located carbonyl 
groups reduced R by 0.13 to 0.33. A second electron 
density synthesis allowed the atoms of the missing 
carbonyl group to be located. Structure factors 
calculated from the positions derived from this synthesis 
gave an R-factor of 0.28.

X/a
Cr(l) 0.4304

Y/b
0.6771 0.1609

Z/c
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At this stage of the analysis it was apparent that 
further data collection was necessary ,to achieve accurate 
results. It was therefore decided to collect a more 
complete set of data and in the meantime to refine 
the available photographic data in order to start the 
refinement of the second set with a reasonably good 
model of the structure.

With the photographic data the structure was 
refined in eight cycles of least-squares minimisation

r\
of the function M = £w(|F | -| F | ) . The programmeU V

devised by Dr. J.S. Rollett for the DEUCE computer was
used (Rollett, 1961). Since this programme did not
allow isotropic temperature factors to be refined the
temperature factors of the carbon and oxygen atoms were
held constant during the first four cycles. Thereafter
anisotropic temperature factors were refined for these
atoms. At the conclusion, of this refinement R stood
at 0.106 and the average standard deviation of a C-C 

o
bond was 0.03 A. The bond lengths at this stage of 
the analysis are presented in Table 2.7. It can be 
seen that none differ significantly from the final 
value s„
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2.4 COLLECTION OF DIFFRACTOMETER DATA
A second set of data was collected on a Hilger- 

Watts linear diffractometer (see Appendix I) with a 
crystal mounted about the c axis. Molybdenum radiation 
was used, with balanced Sr0-Zr02 Ross filters. A 
half-minute oscillation cycle was employed and each 
reflection was measured at least four times with each 
filter. A 3° oscillation angle was used for all 
reflections. About sixty reflections had to be set

o

by hand. The maximum recording angle was 9 = 30 .
The intensities of 4716 independent reflections 

on the reciprocal lattice nets hkO to hkl7 were measured*, 
of these 305 had intensities of zero and a further 42, 
including the 00 4 reflections, were known to be subject 
to serious systematic error. None of these reflections 
were used in the analysis. Of the remaining 4169 
reflections 1033 had intensities of less than 20 counts 
per minute and these were introduced into the refinement 
only in its later stages.

The intensities were reduced to structure amplitudes, 
using the Lorentz and polarisation corrections appropriate 
to equi-inclination Weissenberg geometry, by means 
of DEUCE computer programmes devised by Dr. J.G. Sime.
No absorption corrections were applied since the crystal 
was effectively transparent to molybdenum radiation.
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The data were placed on approximately absolute scale 
by comparison with the refined photographic data*
The final scale factor was determined by least-squares 
refinement.

-82-



2.5 REFINEMENT OF DIFFRACTOMETER DATA
The structure was now refined in fourteen cycles

of least-squares minimisation of the function
M = E w (|Fq| - I F I )^, using the programme written
by Cruickshank and Smith for the KDF9 computer. A
block-diagonal approximation to the normal least-squares
matrix was employed. The 1033 weak reflections were
first introduced into the refinement in cycle 11 and
were then used in all subsequent cycles.

Isotropic temperature factors were refined for
carbon and oxygen atoms in the first nine cycles; in
the first two cycles an isotropic temperature factor
was also refined for the chromium atom but thereafter
an anisotropic temperature factor was used.

The first six cycles reduced R from 0.231 to 0.138.
After cycle 6 a difference synthesis was computed using
the 437 reflections for which sinO / \  was less than 

°-l0.35 A . The purpose of this synthesis was to decide 
whether inclusion of the hydrogen atoms in the calculations 
was worthwhile. Peaks corresponding to the expected 
positions of all ten hydrogen atoms were found. The

O’zpeak heights ranged from 0.2 to 0.4e/A . The hydrogen 
atoms were accordingly included in the structure factor 
calculations in positions consistent with those of the
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carbon atoms adjacent to them. The isotropic 
temperature parameter of each hydrogen* atom was assumed 
to be 1.5 times that of the carbon atom to which it 
was bonded. Inclusion of the hydrogen atoms reduced 
R from 0.138 in cycle 6 to 0.133 in cycle 7*

In cycle 9 least-squares totals were accumulated 
to determine the anisotropic temperature factors of 
the carbon and oxygen atoms. As a result of allowing 
for the anisotropic vibrations of these atoms R fell 
from 0.130 in cycle 9 to 0.105 in cycle 10. In cycle 
11 all 4169 reflections were used for the first time.
R rose to 0.128 but the parameter standard deviations 
fell by 10io on average.

Unit weights were used in cycles 1 to 8 and in
cycles 9 to 12 a weighting scheme of the form

2 2w = l-exp(-6sin 0 /A ) was applied. After cycle 12 
the unweighted differences between the observed and 
calculated structure factors were analysed as functions 
of | Fq | , sin A/A , and of the layer line index. From 
this analysis it was apparent that equal weights were 
appropriate to about three-quarters of the data but 
that low order reflections and particularly strong 
reflections required some down-weighting. Similar 
conclusions have been reached about linear diffractometer

-84-



data in a number of analyses carried out in this 
laboratory and elsewhere (e.g. Wheatley 1964). Ini
the present case it was also found that for weak
reflections in which | FQ|was greater than | FQ (the 

2mean A was about three times the average for the data
as a whole. Only a quarter of the 2400 reflections
with |F | less than 10 showed this effect and the 

2average A for the remaining three-quarters was about
2the same as the average A for the data as a whole.

The following weighting scheme was devised to allow for 
these factors

w = 0 if IP I <-§-1 P I otherwise w=w-, x w0 whereC O 1 £
w-̂ = 1 if IPQI <75 otherwise w-̂  = 75/1PQI and

pW2= 1 if sinQ/X ̂  0.4 otherwise w ^ -  (sin ®/ X ) /0.16 
This weighting scheme was used in the last two cycles.
In all, 671 reflections were given zero weight. The 
change in weighting scheme had little effect on R or

ion the atomic coordinates. R , however, fell from 0.0184 
to 0.0080 and significant shifts in the scale factor 
and temperature parameters occurred. The parameter 
standard deviations fell on average by 15i° after allowance 
had been made for the smaller number of degrees of
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freedom on which they were "based*
In the last cycle of refinement t;he average shift

oin coordinates was less than 0*001 A and the maximum 
shift was less than one third of the corresponding 
standard deviation* The shifts in scale and temperature 
factors were also insignificant.

The atomic form factors used throughout the
refinement were those of Freeman and Watson (1961)
for chromium, of Hoerni and Ibers (1954) for carbon,
of Berghuis et al. (1955) for oxygen, and of Stewart,
Davidson and Simpson (1965) for hydrogen*

The structure factors from the final cycle of
least-squares were used to calculate electron density
and difference syntheses* A composite view of the
final electron density synthesis is shown in Fig. 2.2.
The standard deviation of the electron density,calculated
from the approximate formula of Cruickshank (1949)>was
O.le/A . A number of regions in the difference synthesis
showed function values greater or less than three times
this standard deviation. In particular there were
two regions of positive density with maximum function

° -2values of 0.8 and l.le/A associated with the chromium 
atom. These were tentatively ascribed to errors in the 
low order data down-weighted in the least-squares refine­
ment.
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Course of the Analysis

(1) Refinement of Photographic Data 1

S.P. Cycle No. Atoms Included R
1 Cr 0.46
2 Cr+16C+20 0.33
3 Cr+17C+30 0.28

S.FoL.S. R S.F.L.S. R
Cycle Cycle
No. No.

1 0.28 5 0.155
2 0.25 6 0.129
3 0.24 7 0.118
4 0.18 8 0.106

(2) Refinement of Partial Diffractometer Data
S.F.L.S. Remarks R

Cycle 
No.

1 All atoms isotropic 0.231
2 All atoms isotropic 0.174
3 Chromium set anisotropic 0.155
4 - 0.141
5 - 0.139
6 Structure factors only 0.138
7 Hydrogens included 0.133
8 - 0.131
9 -  0.130

10 A ll atoms set anisotropic 0.105
-87-



(3) Refinement of Complete Diffractometer Data
S.F.L.S.
Cycle
No.

R

11 0.128 0.0190 19976
12 0.123 0.0184 19087
13 0.123 0.0084 10476
14 0.123 0.0080 9892

i

- 8 8 -



The final values of the coordinates of the heavier 
atoms are presented, with their standard deviations, 
in Table 2.1. The assumed fractional coordinates of 
the hydrogen atoms are given in Table 2.2. Table 2.3 
contains the anisotropic vibration parameters of the 
heavier atoms. The final values of the observed 
and calculated structure factors are given in Table 
2.4 and an analysis of the structure factor agreement 
is presented in Table 2.5 . Table 2.6 contains the 
principal magnitudes and directions of atomic thermal
motion. The bond lengths, interbond angles, and

ointermolecular contacts below 4A are presented in 
Tables 2.7, 2.8, and 2.9 respectively. The deviati-ons 
from least-squares planes through various sets of atoms 
are given in Table 2.10. Standard deviations,if quoted, 
are in units of the last decimal place of the quantity 
to which they refer. The quantities given in Tables
2.6 to 2.10 were calculated with the programmes described 
in Part II of this thesis and the equations given there 
apply.

A view of the molecular packing down the c axis 
is given in Pig. 2.3.

2.6 ANALYSIS OP MOLECULAR VIBRATIONS
The molecular vibrations were analysed in the manner 

suggested by Cruickshank (1956, 1961a), using the
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F l u . H . 1

The barker sections at U = b, V = , anii W = I.

Peaks corresponding to vectors between chroi iim,i atons 

are indicated by crosses.





F I G .  2 . 2

The composite final electron density synthesis 
viewed down the c axis. Contours are at 1 e/5P inter­
vals starting at 2 e/SP except round the chromium atom 
where the contours are at 10 intervals starting
at 5 e/X^.





F I G .  2 . 3

The molecular packing viewed down the c axis. 
(Roman numerals have the same significance as in 
Table 2.9).





F I G . 2 . 4

Molecular diagram showing the numbering of the 
heavier atoms. (Hydrogen atoms have the same numbers 
as the carbon atoms to which they are bonded). The 
bond lengths after libration correction in the phen- 
anthrene ligand are also shown.
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TABLE 2.1
FRACTIONAL COORDINATES AND E.S.D.S.

ATOM X/a Y/b Z/c
C r(1) 0.43186 + 4 0a67807 + 3 0.16117 + 5

C(1) 0.4120 + 4 0.6803 + 3 - 0.0170 + 4

C(2) 0.3166 + 4 0.6512 + 3 0.0282 + 4

C(3) 0.3228 + 4 0.5909 + 3 0.0971 + 4

C(4) 0.4251 + 4 0.5587 2 0.1236 + 4

c (5 ) 0.6468 + 5 0.4921 + 3 0.1646 + 5

C(6) 0.7519 + 7 0.4590 + 3 0.1769 + 6

C(7) 0.8404 + 5 0.4872 + 3 0 . I I 69 + 6

C(8) 0.8281 + 4 0.5455 + 3 0.0515 + 6

C(9) 0.7125 + 4 0.6410 + 3 - 0.0325 + 5

C(10) 0.6157 + 4 0.6737 + 3 - 0.0499 + 4

C(11) 0.5172 + 3 0.6462 + 2 0.0025 + 3

C(12) 0.5246 + 3 0.5854 + 2 0.0737 + 3

C(13) 0.6324 + 4 0.5520 + 2 0.0937 + 4

C(14) 0.7242 + 3 0.5797 + 3 0.0379 + 4

C(15) 0.3173 + 4 0.7139 + 2 0.2417 + 4

C(16) 0.4882 + 4

00CVI
t*-.0 + 3 0.1621 + 4

C(17) 0.5102 + 3 0.6566 + 2 0.2866 + 4



0 (1) 0.2466 + 3 0 .7 382 + 3 0.2948 +
0 (2 ) 0.5189 + 5 0.8327 + 2 0.1634 +
0(3) 0 .5 57 2 + 3 0.6422 

TABLE 2.2

+ 2 0.3633 +

ASSUMEDAND HYDROGEN ATOM COORDINATES TEMPERATURE FACTORS.

ATOM X/a Y/b Z/a u

H(l) 0 .4 0 9 0 .7 2 8 -0 .0 70 0 .0 6 7

H(2) 0.235 0.677 0.011 0 .0 68

H(3) 0.247 0 .5 66 0 .1 30 0 .0 63

H(4) 0 .4 2 9 0.513 0 .1 82 0 .0 5 7

H(5) 0.575 0 .4 7 0 0 .2 1 0 0 .0 7 5

H(6) 0 .7 6 7 0.413 0 .2 32 0 .0 85

H(7) 0 .9 2 0 0 .4 5 9 0 .1 2 2 0.087
H(8 ) 0 .901 0 .5 6 8 0 .0 08 0 .0 8 0

H(9) 0.785 0 .6 6 3 -0 .0 73 0.071

H(10) 0 .6 1 0 0.721 -0.104 0 .0 66



TABLE 2.3
ANISOTROPIC TEMPERATURE FACTORS AND E .S .D .S .

ATOM U11 U22 U33 2U23 2U31 2U12

C r(1 ) 0 .0 28 6
2

0 .0333
2

0 .0 44 4
3

-O.OJ85
4

- 0 . 0^67
4

-0 .0 0 4 8
4

c ( i ) 0 .0 4 9 6
24

0 .0622
25

0.0481
22

0 .0119
39

-0 .0 2 1 4
35

0 .0 15 8
41

C (2 ) 0 .0 4 3 4
22

0.0681
28

0 .0569
25

- 0.0415
43

- 0 ,0202
37

0.0u03
4o

c (3 ) 0 .0 38 8
21

0 .0 5 3 6
24

0 .0683
28

- 0 .0528
41

0 .0 11 9
37

-0 .0 3 1 4
36

C (4 ) 0 .0 5 1 0
23

0 .0 377
18

0 .0 569
23

- 0 .0149
32

0.0099
38

- 0 .0 2 1 0
35

c (5 ) 0 .0 7 9 9
34

0 .0 42 7
22

0 .0655
30

-0 .0 2 4 2
42

-0 .0 2 8 4
53

0 .0 2 3 4
44

c (6 ) o p1120
48

0 .0 473
26

0 .0787
38

-0 .0 2 5 7
49

00 
OJ 

t'-C'- 
t*- 
0
 .01 0 .0546

58

c (7 ) 0*0656
32

0.0701
32

0 .0917
42

- 0 .0532
61

-O .0552
61

0 .0559
55

c (8 ) Op0473 
26

0 .0 718
32

0 .0935
42

- 0 .0659
61

- 0 .0232
52

0 .0 206
48

C(9) Op0464 
24

0 .0605
27

0 .073 0
31

- 0 .0099
46

0.0161
44

-U .O I53
42

C (10) 0.0531
24

0 .0532
24

0 .0 570
25

0 .0227
39

0 .0274
39

0 .0^56
41

c ( i i ) 0 .0 41 7
19

0 .0447
19

0 .0 430
18

- o . oo41
29

-0 .0 0 4 8
30

- 0 .0012
32

C (12) 0 .0 44 2
19

0 .0342
17

0 .0 4 7 0
19

- 0 .020 6
28

- 0 .0029
31

- 0 . 00U7
30



C (13) 0*0505
23

0*0370
18

0 .0512
22

- 0*0229
31

- 0 .0 15 8
35

0 .0 105
32

C (14) 0 o0383
21

0*0518
23

0 .0647
27

- 0*0398
39

- 0 .0102
36

0*0096
36

C (15) 0*0366
19

0 .0533
22

0*0584
24

-0 *0 1 3 7
39

- 0 .0267
35

- 0 .0 050
37

C (16) 0*0515
24

o*o487
23

0 .0656
27

0*0042
41

- 0 .0232
43

-0 .0 1 1 4
38

C (17) o * o4oj
19

0*0450
21

0*0510
22

- 0*0129
31

- 0 .0076
32

- 0*0033
32

0 ( 1) 0*0452
17

0*0973
30

0 .0 85 8
27

- 0 .0677
46

0*0029
37

0 .0 17 5
39

0 ( 2 ) 0*1062
35

0*0429
19

0*1381
45

0 .0217
48

- 0 .0492
67

-0 .0 4 6 2
43

□ (3 ) 0*0616
21

0*0774
24

0.0651
23

0*0154
36

- 0.0391
36

- 0.0011
38



TABLE 2.h

Observed and calculated structure factor
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TABLE 2.5 
STRUCTURE FACTOR AGREEMENT.

(a)Analysis of observed and calculated structure factors as a 
function of the layer line index* All figures are on 
absolute scale.

1 z H I M N R 2 f4 »
c 5053 5040 133 0.0557 2.11

1 6366 6284 265 0.0814 1.96

2 6376 6236 275 0.0699 1.62

3 5201 4965 263 0.0988 1.95

4 5623 5510 256 0.0709 1.56

5 5118 5018 253 0.0795 1.61

6 4739 4619 269 0.0960 1.69

7 3726 3722 229 0.0846 1.38

8 3236 3014 271 0.1470 1.75

9 2682 2490 242 0.1613 1.79

10 2797 2670 260 0.1443 1.55

11 2248 2029 231 0.1818 1.77

12 1953 1758 243 0.2180 1.75

13 1457 1270 213 0.2563 1.75

14 1260 1013 223 0.3584 2.02

15 1029 800 198 0.3876 2.01

16 984 735 196 0.4201 2.11

17 684 472 149 0.5013 2.30

All 60531 57645 4169 0.1229 1.77



(b)Analysis of observed and calculated structure factors 
as a function of the magnitude of the observed structure 
factors* All figures are on absolute scale*

Range of Fo S lF o l S i  Fcl N R Z I a i / n

0 - 5 3661 3023 1032 0.4953 1.76

5 - 10 10164 8130 1435 0.3113 2.21

10 - 15 6744 6679 551 0.1053 1.29

15 - 20 5721 5759 331 0.0693 1.20

20 - 30 8726 8763 358 0.0482 1.17

30 - 4o 6196 6242 179 0.0432 1.49

4c - 60 7089 7006 146 0.0373 1.81

6o - 80 4503 4444 67 0.0304 2.04

80 - 100 3121 3064 35 0.0300 2.67

10J - 150 3030 2987 26 0.0435 5.07

150 - 300 1579 1546 9 0.0378 6.62



TABLE 2.6
PRINCIPAL VALUES OF VIBRATION TENSORS 
AND THEIR DIRECTION COSINES REFERRED 

TO CRYSTAL AXES.

ATOM
02 

U A D1 D2 D3
C r(1) 0.0462

0.0263
0.0338

-0.1415
0.8523

- 0.5036

- 0.2862
0.4518
0.8450

0.9477
0.2637
0.1801

C(1) 0.0347
0 . 066I
0.0592

0.6593
0.3957

-0.6393

-0.3346
0.9159
0.2218

0.6733
0.0677
0.7363

C(2) 0.0850
0.0338
0.0496

- 0.1540
0.6681

- 0.7280

- 0.7672
0.3834
0.5142

0.6226
0.6377
0.4535

c (3 ) 0.0922
0.0256
0.0429

0.2634
0.6585

- 0.7050

-0.6148
0.6777
0.4033

0.7434
0.3272
0.5834

C(4) 0.0312
0.0650
0.0494

0.4265
O.56 I I
0.7094

0.8874
-0.4113
-0.2082

0.1750
0.7183

-0.6734

C(5) 0.0939
0.0367
0.0575

- 0.7926
-0 .1482
-0.5914

- 0.3060
0.9357
0.1756

0.5274
0.3201

- 0.7870

C(6) 0.1467
0.0372
0.0541

- 0.8065
0.3695
0.4616

-0.2884
-0.9273

0.2385

0.5162
0.0593
0.8544

C(7) 0.1321
0.0396
0.0556

- 0.5045
0.7705
0.3896

-0.5221
-0.6317

0.5731

0.6877
0.0857
0.7210

C(8) 0.1206
0.0435
0.0485

- 0.2062
- 0.9263
-0 .3155

-0.5771
0.3755

- 0.7252

0.7902
0.0326

-0.6120



C(9)

C(10)

C(11)

C(12)

C(13)

C (l4 )

C(15)

C(16)

C(17)

0(1)

0(2)

0(3)

0.0781 0.3132
0.0420 -0 .9244
0.0598 0.2179

0.0743 0.5254
0.0386 - 0.5750
0.0504 0.6272

0.0393 0.7069
0.0463 - 0.2362
0.0438 0.6667

0.0284 o.o64l
0.0529 - 0.1262
0.0441 0.9899

0.0641 - 0.5702
0.0306 - 0.0449
0.0440 - 0.8203

0.0803 -0 .1632
0.0364 - 0.7328
0 . 038I - 0.6606

0 . 029I 0.8683
0.0668 -0 .3495
0.0524 0.3519

0.0730 -0 .5044
0.0423 0.7580
0.0505 -0 .4135

0.0555 -0 .1559
0,0368 0.7611
0.0437 -0.6297

0.1263 - 0.0713
0.0418 -0 .9138
0.0602 -0 .3999

0.0353 - 0.3006
0.1554 - 0 . 508I
0.0966 - 0.8071

0.0430 0.7158
0.0870 -0 .5153
0,0741 -0 .4712

-0.3814 0.8697
-0.3325 0.1871
- 0.8625 - 0.4567

0.4569 0.7178
- 0.4312 0.6953
- 0.7780 0.0361

0.3176 0.6320
- 0.7362 0.6342
- 0.5976 -0 .4454

0.8708 0.4874
-0.4775 0.8695
-0.1172 0.0793

-0.4105 0.7115
o.88o4 0.4720
0.2372 - 0.5205

- 0.5829 0.7960
0.6118 0.2978

-0.5347 - 0.5270

0.2162 0.4464
-0 .3719 0.8599
- 0.9027 -0 .2474

0.1909 0.8421
0.5649 0.3260
0.8027 -0 .4297

- 0.4998 0.8520
0.4891 0.4262
0.7148 0.3042

- 0.7666 0.6382
0.3067 0.2663

-0 .5642 - 0.7223

-0 .9533 0.0287
0.1855 0.8411
0.2383 -0.5402

-0.1417 0.6837
0.5536  0.6543

- 0.8207 0.3232



TABLE 2.7
o

BOND LENGTHS (A) AFTER REFINEMENT OF PHOTOGRAPHIC DATA (I), 
AFTER REFINEMENT OF COUNTER DATA (ll)# AND AFTER LIBRATION

CORRECTION (III).

I I I I I I

C(1) - C(2) 1.46 1.389 + 7 1.394

C(2) - c (3 ) 1.44 1.385 + 7 1.392

C(3) - C(4) 1.41 1.410 + 6 1.414

C(4) - C(12) 1.39 1.439 + 6 1.445

C(11) - C(12) 1.44 1.410 + 6 1.417

C(1) - C(11) 1.44 1.440 + 6 1.444

C(5) - C(6) 1.4o 1.418 + 10 1.420

C(6) ■a C(7) 1.37 1,401 + 10 1.406

C(7) - C(8) 1.34 1.337 + 9 1.343

C(8) - C(14) 1.4o 1.415 + 7 1.417

C(13) - C(14) 1.44 1.402 + 6 1.408

C(5) - C(13) 1.41 1.402 + 7 1.408

C(9) - C (14) 1.36 1.416 + 8 1.422

C(9) - C(10) 1.34 1.333 + 7 1.337

C(10) - C(11) 1.44 1.447 + 7 1.452

C(12) - c(13) 1.52 1.462 + 6 1.467



Cr(1) - C(1) 2.25
Cr(1) - C(2) 2 .2 2

Cr(1) - C(3) 2 .21

Cr(1) - C(4) 2 .2 2

Cr(1) - C(11) S.27
Cr(1) - C(12) 2 .2 9

Cr(1) - C(15) 1.83
Cr(1) - C( 16) 1.76
Cr(1) - C(17) 1 .8 2

Cr(1) - 0(1) 2.97

0 1 o 2.99
Cr(1) - 0(3) 3 .0 2

C(15) - 0(1) 1.15
C(16) - 0(2) 1.24
C(17) - 0(3) 1 .20

2 .2 1 2 + 5 2.221

2 .2 1 0 + 5 2 .2 1 7

2 .2 0 6 + 5 2.214
2 .2 0 8 + 4 2 .2 1 7

2.289 + 4 2.298
2 .2 8 9 + 4 2 .2 9 6

1 .828 + 5 1.833
1.844 + 5 1.853
1.857 + 4 1.865

2.993 + 4 2.999
2.989 + 4 3 .0 0 0

2.993 + 4 3.oo4

1 .165 + 6 I.I67

1.145 + 6 1.149
1 .136 + 6 1.139



TABLE 2.8

INTERBOND ANGLES AND E.S.D.S

C ( 1 1 ) -  C (1) - c 2) 120#7+£

C (1 )  -  C (2 ) - c 3) 120.0+4

C (2 )  -  C (3 ) - c 4) 121.0+4

C (3 )  -  C (4) - c 12) 120.1+4

C ( 1 3 ) -  C (5) - c 6 ) 120.4+5

C(5)  -  C (6) - c 7) 118.7+6

C(6)  -  C (7) - c 8 ) 121.3+6

0001o

- c 14) 121.0+5

C ( 1 4 ) -  C(9) - c 10) 122.3+5

C(9)  -  C(10 - c 11) 120.3+5

C(1)  -  C ( 11 - c 10) 120.7+4

C(1)  -  C ( 11 - c 12) 119.7+4

C ( 1 0 ) -  C ( 11 - c 12 ) 119.6+4

C(4) -  C(12 - c 11) 118.4+4

C(4)  -  C ( 12 - c 13) 122.7+4

C( 1 1 ) -  C( 12 - c 13) 118.9+4

C(5) - C(13 - C(12) 122.4+4
C(5) - C(13 - C(14) 00 $

C(12)- C(13 - C(14) 118.8+4
0100o - C(9) 120.2+5

C(8) - C(14 - C(13) 119-7+5
C(9) - C(l4 - c ( i 3 ) 120.1+4
C(15)- Cr(1 - C(16) 87.1+2
C(16)— Cr(1 - C(17) 89.9+2
C(17)- Cr(1 - C(15) 9 0.6+2

0(1) - Cr(1 - 0 (2) 85.5+1
0(2) - Cr(1 - 0(3) 9 0.9+2

0(3) - Cr(1 - 0 (1) 9 0.1+1

Cr(1)- C(15 - 0 (1) 177.8+4
Cr(1)- C(16 - 0 (2 ) 177.1+5

0 1 o - 0(3) 178.7+4



TABLE 2.9
o

INTERMDLECULAR CONTACTS BELOW 4 A.

o
C (1 6 ). . . .0 1) i 3.24 A C (3 ). . . . . c ( 7 ) iii 3.59

0 ( 1 ) . . . 2) i l 3.29 C (8 ). . . ..C (1 7 ) i 3.59

C ( 2 ) . . . 6) 111 3.33 C (4 ) .. . . .C (7 ) ii 3.60

G(17) . . . .0 1) 1 3.38 C (2 ) .. . . . 0 ( 1 ) iv 3.61

c (3 ) .  . . 3) 11 3.39 C (3 ). . . . .C (6 ) ill 3.61

c ( D . . . 0 iv 3.41 C (2 ) .. • • .0 (7 ) iii 3.62

C (4 ). . . 13) 111 3.42 C (4 ). . . ..C (1 2 ) iii 3.62

C ( 2 ) . . . 3) 11 3.43 C (12). ...C (1 2 ) iii 3.63

C ( 9 ) . . . 1) 1 3.44 C(15) • . . .0 (3 ) li 3.65

C (8 )• • • 3) 1 3.45 C (1 ) .. . . .C (5 ) ill 3.68

0 ( 1 ) . . . 3) 11 3.48 C (4 ). . ...C (1 4 ) iii 3.68

C (3 )• • • 13) 111 3.54 C (4 ) .. . . .C (6 ) ii 3.71

C (1 4 ) . . . .0 1) 1 3.54 C (1 ) .. — C(15) iv 3.72

C (2 )• • • 5) 111 3.55 C(1o ) . . . .0 ( 1 ) i 3.72

c ( 3 ) . . . 14) i l l 3.55 c ( i o ) . . . .0 (2 ) lv 3.73

C (1 0 ). . . .0 3) iv 3.57 C (12). . . . c ( i 3 ) 111 3.75

c ( 3 ) . . . 8) iii 3.58 0 ( 2 ) . . lv 3.76

C (3 ). . . 5) iii 3.58 C (1 ) .. — C(6) 111 3.77

> 
o



c ( 3 ) . . . . . 0 ( 6 ) ii 3.77

C(10) . . . . 0 ( 1 ) V 3.77

C (4 ) . . . . . c (5 ) iii 3.78

C (5 ) • • ----C(11) iii 3.80

C( 14). — c(15) i 3.82

C(7) • • — 0(3) i 3.85

C(5) • • iii 3.86

C (7 ) •• . . . c ( i 7 ) i 3.88

c( 15) • . . .C (1 7 ) ii 3.88

C ( 9 ) . . . . .C (1 5 ) V 3.89

C(1o)... •C(17) iv 3.89

C (13 ) . . . .0(1) i 3.89

C ( 9 ) . . . . .0 (1) V 3.93

C ( 1 ) . . . . iv 3.95

C (2 )--- .c (9 ) vi 3.96

C (8 ) . . . . •C(15) 1 3.97

c (10)... -C(15) V 3.97

c( 1).... .0(17) iv 4.00
C ( 1 0 ) . . . .0(16) iv 4.00

Roman numerals refer to the following transformations 
of the fractional coordinates given in Table 2.1.

1 1/2 + x,
11 -1/2 + x,

ill 1 - x, 1
iv x,3/2
v 1/2 + x,3/2 

vi -1/2 + x,3/2

y, 1 /2 - z 
y> 1 /2 - z
y, - z 
y,-l/2 + z 
Y> - z 
y> -  z



TABLE 2.10
MEAN MOLECULAR PLANES.

PLANE NO. ATOMS DEFINING PLANE
1 C(15),C(16), and C(17)
2 0 (1),0 (2 ), and 0 (3)
3 C(1),C(2),C(3),C(4),C(11), and C(12)
4 C(9),C(10),C(11),C(12),C(13), and C(14)
5 C(5),C(6),C(7),C(8),C(13), and C(14)
6 The fourteen atoms of the phenanthrene ligand

PLANE EQUATIONS
3LANE NO, P Q R S RMS D
1 -0 ,0 73 9 -0 .5 949 -0 .8 00 4 -10.3504 -
2 -0 ,090 4 -0.5878 -0.8039 -11.0402 -
3 -0 ,120 6 -0 .6206 -0.7748 -8.0484 0 .0 1 8

4 -0,1643 -0.6264 -0 .7 62 0 -8.3776 0 .0 1 0

5 -0 ,2 043 -0.6264 -0 .7 540 -8.6842 0 .0 0 9

6 -0.1553 -0.6218 -0 .767 6 -8.2393 0 .0 4 3

*
P#Q, and R are the direction cosines on the crystal axes 
of the plane normal, S is the plane to origin distance, and 
RMS D is the root mean square deviation from the plane ( in >o



of the atoms defining it. The plane equation is

PX + QY + RZ

where and Z are coordinates in 

DIHEDRAL ANGLES

A s referred to

PLANE A PLANE B / AB
o

PLANE A PLANE B l  AB
1 2 1.05 2 6 4.69

1 3 3.39 3 4 2.63

1 4 5.91 3 5 4.95

1 5 8.12 3 6 2.03

1 6 5.26 4 5 2.34

2 3 3.05 4 6 0.66
2 4 5.35 5 6 2.92

7.43



o
DEVIATIONS FROM PLANES ( A )

PLANE NO. 
ATOM

1 2 3 4 5 6

C r(1) 1.078 1.761 -1 .733 -1 .679 -1 .540 -1 .725
C(1) 2.832 3.526 - 0.026 0.011 0.142 - 0.025

C(2) 2.783 3.491 0.008 0.105 0.286 0.054

C(3) 2.747 3.443 0.018 0.129 0.311 0.068

0(4 ) 2.738 3.409 - 0.025 0.039 0.173 - 0.015

0 (5 ) 2.852 3.468 0 .0  j 6 - 0.034 - 0.006 - 0.072

C(6 ) 2.993 3.583 0.107 0.017 - 0.007 - 0.013

0 (7 ) 3.202 3.781 0.234 0.085 0.013 0.071

C(8 ) 3.232 3.823 0.223 o.o64 - 0.006 0.058

0(9 ) 3.138 3.768 0.124 0.002 - 0.016 - 0.003

C(10) 3.046 3.700 0.066 - 0.010 0.018 - 0.022

C(11) 2.912 3.581 0.017 o. oj6 0.085 -0 .024

C(12) 2.856 3.512 0.008 0.009 0.090 - 0.029

C(13) 2.920 3.549 0.032 - 0.017 0.013 -0 .047

C(14) 3.092 3.709 0.122 0.012 - 0.007 -0 .002

0(15) - 0.707 -2 .737 -2 .613 -2 .409 -2 .675

C(16) - 0.683 -2 .887 -2 .872 -2 .757 -2 .9 04

C(17) - 0.659 -2 .806 -2.771 - 2.658 -2 .819

0 (1 ) - 0.722 - -3 .413 -3 .246 - 3.002 -3 .317

0 (2 ) -0 .6 85 - -3 .6 17 -3 .624 -3.521 -3 .648

0 (3 ) -0 .6 4 4 - -3 .446 -3 .422 -3 .326 -3 .472



TABLE 2.11 
ANALYSIS OF RIGID BODY VIBRATIONS.

(a) Centre of mass* referred to crystal axes In A s. 
X Y Z

6.3611 I I .5090 I .6059

(b) Principal moments of Inertia. 1, and direction cosines 
D1, D2, D3, of Inertial axes referred to crystal axes.

2 -40I (gmcm x 10 )
1504
3728
3517

D1 D2 D3
-0.7935 0 .571 7 0.2087 
0.5993 0.6744 0.4313 
0 .1 0 5 8 0 .4 07 4 -0 .8 777

(c) T and VI and their e.s.d.s* referred to Inertial axes

o2 T(A )

o 2 W( )

0.03448

24.0
2.2

S# referred

C C ro c -0 .0027
15 15

0241 -0.0o4911 18
0.037714

0 .8 -2.31.8 1.2
14.4 -4.71.1 1.4

6.41.0



(d) U obs - U calc, with respect to inertial sixes.

ATOM U11

C r(1 ) - 0.0013

0 (1 ) 0.0060

0(2 ) 0.0103

C(3) 0.0050

C(4) 0.0073

C(5) 0.0112

0 (6 ) 0.0258

c(7 ) 0.0096

0 (8 ) O.O068

0 (9) -0 .0013

C(10) - 0.0114

0(11) 0.0018

0(12) 0.0037

C(13) O.OJ62

C(14) - 0.0013

C(15) 0.0108

0(16) 0.0156

0(17) 0.0010

0 (1 ) 0.0063

0 (2 ) 0.0550

0 (3 ) 0.0216

U22 U33

-0.0OJ2 -O.O005

0.0055 -0.0033

- 0.0004 - 0.0025

-0 .0018 0.0010
0.0081 -0.0022

-0.0J21 0.0049

-0.0141 -0.0120
-0 .0089 - 0.0173

-O.OJ51 0.0032

-0 .0046 0.0102
0.0058 0.0J26

0.0012 0.0050

0 . 008I 0 .OJ73

0.0053 0.0031

-0.0012 O.OJ75

- 0.0085 -0 .0143

0.0066 - 0.0074

- 0.0036 0 . 0 j87

0.0026 0 .0 j33

0.0089 0.0081
- 0.0031 0.0095

2U23 2U31

O.O00O 0 . 0 ; 10

- 0.0049 0.0018

- 0.0015 0.0174

O.OoOl 0.0227

0 . 0;,80 0.0096

0.0242 0.0095

0.0211 - 0.0180

-0.0108 - 0.0139

-0.0120 - 0.0207

- 0.0075 -0 .0202

- 0 .0  94 - 0.0080

0.0J13 0.0032

0.0^77 0.0051

0.0114 -0.0020

0.0032 -0 .0124

- 0.0063 - 0.0276

0.0139 o.ooo4

- 0.0099 - 0.0037

- 0.0054 - 0.0030

-0.0148 -0.0404

- 0.0249 - 0.0287

2U12 
0.0^13 
0.0119 

•o.oo48 

.0.0162 

.0.0161 

•0.0228 

•0.0379 

■0.0132 

.0.0170 

0.0066

•O.Os>52

0.0J22

0.0164

0.0170

0.0123

0.0077

0.0226

0.0022
0.00J2
0.0159

0.0208



programme described in Part II. The main results of 
this analysis are presented in Table 2.11. The

i
bond lengths after librational correction are given 
in Table 2.7 and in Pig. 2.4- (which also explains 
the atomic numbering).

The molecular motions suggested by this analysis
are qualitatively reasonable. The tensor of
translational motion is almost isotropic while the
librational tensor is markedly anisotropic, with the
axis of maximum libration coinciding closely with the
axis of minimum inertia. The agreement between the
atomic vibration tensors obtained from the least-squares
refinement, UQt>s, and those calculated from the
molecular vibration tensors, ^;ca]_c, i-s> however,
disappointingly poor. The root mean square difference

o 2
between UQ-̂s and Uc&-̂c is 0.0130 A and this must be 
considered significant in terms of the estimated standard 
deviations of the Uo-kg(Table 2.2). Schomaker and Trueblood 
(1966) have shown that Cruickshank*s (1956) treatment 
should be extended to include "helical" motions in the 
case of a non-centrosymmetric molecule. This may be 
the reason for the poor agreement between Uobg and 1(J.
The agreement is also somewhat worse than average for 
the atoms in the carbonyl groups and there may well be

-90-



additional wagging motion in these groups.
In view of this it has seemed safqr to take the 

bond lengths before librational correction as the final 
values, while bearing in mind that they are subject 
to a systematic error of which the quoted standard 
deviations take no account.

2.7 DISCUSSION OP THE RESULTS
The gross molecular structure of phenanthrene- 

chromium tricarbonyl obtained from this analysis is 
basically the same as that described by Deuschl and 
Hoppe (1964). In the free hydrocarbon the side rings 
have greater overall aromatic character than the 
centre ring and it is to a side ring that the chromium 
tricarbonyl moiety is bonded. The linear carbonyl 
groups point roughly towards the midpoints of the ring 
C-C bonds which have greater double bond character in 
phenanthrene itself. The planes defined by the 
phenanthrene system,by the three carbonyl carbons»and 
by the three carbonyl oxygens are roughly parallel.
The carbonyl groups are approximately perpendicular 
to each other (Table 2.8).

Three aspects of the molecular structure merit 
detailed comment, namely, the effect of the chromium 
atom on the hydrocarbon ligand, the relationship of
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the chromium atom to the ring to which it is bonded,
and the geometry of the carbonyl groups.

A simple valence bond treatment (Trotter, 1963)
oleads to the prediction of 1.399 A for the mean C-C

bond in a side ring of phenanthrene. The latest
ox-ray analysis of this hydrocarbon gave 1.405 A for

the corresponding mean (Trotter, 1963). The comparable
o

means obtained in this analysis are 1.412 A for the
o

ring bonded to chromium and 1.396 A for the non-bonded
side ring. For the means of the two sets of three
alternate bond lengths in a side ring of phenanthrene

o
the V.B0 predictions are 1.388 and 1.409 A. The
comparable figures in this analysis are 1.386 and

o o1.406 A for the non-bonded ring and 1.403 and 1.421 A
for the bonded ring. This suggests that the main effect
of the chromium atom has been to increase the mean C-C
bond length in the ring to which it is bonded by 

o
about 0.016 A without inducing any further bond length 
alternation. The mean values for the non-bonded ring 
agree within experimental error with the V.B. predictions 
for phenanthrene, but the agreement with Tr otterfs 
x-ray study is not so good. The changes in individual 
bond lengths in the bonded ring,compared either with the

-92-



V.B, predictions or with the bond lengths in the non- 
bonded ring, show no obvious pattern and it is probable 
that little weight should be attached to them.

The bond lengths in the middle ring agree with the 
V.B. predictions except for the C(9)-C(14) bond which 
is more than three standard deviations shorter; it is, 
however, still longer than Trotter!s x-ray value.

As in Trotter’s analysis, the phenanthrene nucleus
is significantly non-planar,the root mean square deviation o
being 0.045 A. This is at least partly due to the 
intramolecular overcrowding of H(4) and H(5), which is 
also shewn by significant distortions of the interbond 
angles at 0(12) and 0(13). When the three rings of 
the phenanthrene ligand are considered separately, 
however, (Table 2.10 planes, 5,4,&5) the deviations 
of the atoms from the ring bonded to chromium are found 
to be rather larger than the deviations of the atoms 
from the other two rings. This seems to be due to a 
slight folding of the bonded ring about a line through 
0(1) and 0(4).

A possible explanation for this distortion of the 
bonded ring presents itself when the Cr-C(ring) distances 
are considered. The Cr-C(l), Cr-C(2), Cr-C(3)> and 
Cr-C(4) distances are equal within experimental error,
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o
with a mean of 2.209 A. The Cr-C(ll) and Cr-C(l2)

o
distances are equal at 2.289 A and the difference between
these two means cannot possibly be covered by the
standard deviations. Of the bonds opposite carbonyl
groups the C(ll)-C(12) bond is the one with least double
bond character in the free hydrocarbon. The orbitals
of C(ll) and C(12) might therefore be less capable of
forming a strong bond to the metal atom than those of the
other ring carbon atoms. Such an asymmetry in the
bonding could be responsible for small distortions in
the planarity of the bonded ring.

The Cr-0 distances are equal within experimental
o

error with a mean value of 2.992 A. The Cr-C(carbonyl)
and C(carbonyl)-0 distances are a little less regular;

o othe mean values are 1.843 A and 1.149 A and the root
o

mean square deviation from each of these means is 0.012 A, 
which is about twice the standard deviation of an 
individual measurement. The carbonyl groups all show 
small but significant departures from linearity. The 
mean ^Cr-C-0 is 177.9°. Kettle (1965) has suggested 
on theoretical grounds that such departures from linearity 
might be expected. In this case crystal packing forces 
provide an adequate explanation for the effect. Packing 
forces are also the likely explanation of the low
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0(l)-Cr-0(2) angle of 85.5 °.
The molecular packing (Pig. 2.5) involves pairs

of molecules arranged round centres of symmetry with
the phenanthrene units parallel to each other.
The interplanar spacing between phenanthrene units so

o
related is 3.35 A. This is close to the interplanar 
spacing found in graphite and in many analyses of aromatic 
hydrocarbons. None of the intermolecular atomic 
distances are significantly less than the sum of the 
van der Waals radii (Pauling I960) of the atoms involved.
A rather similar packing arrangement was found in 
Deuschl and Hoppe*s analysis of the monoclinic polymorph.

A detailed comparison of the structural features 
of the molecule with those of related compounds is 
postponed until Chapter IV.
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CHAPTER III

9,10 - DIHYDR0 PHENANTHRE NE CH R0 MIUM TRI CARBONYL



3.1 INTRODUCTION
The structure analysis of dihydrophenanthene- 

chromium tricarbonyl was undertaken for reasons 
similar to those which motivated the analysis of 
the phenanthrene compound.

In 9,10-dihydrophenanthrene (I) four of the 
bonds in the centre ring are single and only the 
C(ll)-C(12) and C(13)-C(14) bonds have double bond 
character. The requirement that the sp carbon 
atoms C(9) and 0(10) should have normal valency 
angles can only be met if the planes of the two 
side rings are not parallel. It therefore seems 
unlikely that there is much interaction between 
the aromatic systems in the two side rings. If 

6 .S’ A 7 the chromium tricarbonyl
^ fragment bonds to one side 
ring the bonding in the other 
side ring should be relatively 
unaffected.H H

I
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3.2 EXPERIMENTAL
Crystal Data i

9,10-Dihydrophenanthrenechromium Tricarbonyl

^'14^12^1' ̂  ̂3 
PcW. 316.3

0 oMonoclinic a = 10.50, b = 12e73, c = 11.98 A, |3 *=118.9
°rzU = 1404 A P(000) 8 648 

Dm = 1.48 gmcm  ̂ Z = 4 Dx = 1.502 gmcm"^
Linear absorption coefficient (Mo Ka x-rays, wavelength

00.7107 A) = 8.6 cm”1.
Systematic Absences

hO/ when I  is odd
OkO when k is odd

Space Group P2-^/c (No. 14)
When the present writer started work on this problem

the space group had already been determined as P2^ or
P2^/m. Moving film photographs of the three equatorial
reciprocal lattice nets and preliminary values of the
cell dimensions were available. A redetermination
of the cell dimensions from an hO I  Weissenberg photograph

o
(copper Ka radiation, \  = 1.5418 A) and from hkO and Ok A
precession photographs (molybdenum Ka radiation,

o o
\  = 0.7107 A) gave a = 5.99, b = 12.73, c = 9.24 A,

o
and (3 = 95.7,which were in good agreement with the previous
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values. These cell dimensions yield a calculated 
density of 1.502 gmcm  ̂ (Dm = 1.48 gmpm""^) for two 
molecules per unit cell. The space group P2^/m was 
thus incompatible with an ordered molecular packing’ 
and therefore the space group P2^ was assumed0

Intensity data were measured from a crystal
mounted about the b axis, using a Hilger-Watts linear
diffractometer equipped with balanced Sr0-Zr02 Ross
filters (see Appendix I). Molybdenum K« radiation
was employed. Each reflection was measured at least
four times with each filter, using a one minute
oscillation cycle and a 3° oscillation angle. About
thirty reflections had to be set by hand. The maximum

orecording angle was 0= 30 . Lorentz and polarisation 
factors appropriate to equi-inclination Weissenberg 
geometry were applied to the data using programmes 
devised by Dr. J.G. Sime for the KDE9 computer. In 
this manner 2353 independent structure amplitudes on 
the reciprocal lattice nets hO I  to hl6 I were obtained.
Of these, 382 reflections on the nets hl4^ to hl6A 
were used only in the last stages of refinement.

As described in Section 3.3, work on the structure 
led to the conclusion that the space group had been 
wrongly determined and hOX and hlX Weissenberg photographs

%
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allowed the true space group to he determined as
P2p/c. Using subscripts 1 and 2 to denote respectively
the P2-̂  and P2-^/c unit cells, the relationship between

»

the two cells can be expressed in terms of the vector 
equations:

C "j

The first set of data- collected corresponds only 
to the reflections with Xeven in the correct space 
group. The missed reflections (with Aodd) were 
therefore collected, using the same crystal and 
diffractometer settings as before, and were reduced to 
structure amplitudes using the same programmes. In this 
way a further 2037 reflections on the nets hlA to 
hl6 i  were obtained, giving a total of 4390 independent 
reflections.

The data were initially set on an approximately 
absolute scale by correlation with the calculated 
structure amplitudes. In the final refinement a scale 
factor was obtained by least-squares for each of the 
two sets of data.
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3.3 STRUCTURE SOLUTION AND REFINEMENT
A sharpened three-dimensional Patterson function 

was calculated using the first set of data. The 
sections i \ t U = 0 and V = i  through this function are 
shown in Pig. 3.1. On the Harker section at V = i 
there is a large peak which was attributed to a vector 
between chromium atoms related by the two-fold screw 
axis along b. On the section at U = 0 there is a 
peak of comparable height, on the line (0,V,0). This 
peak was initially attributed to unresolved vectors 
between a chromium atom and the carbon and oxygen atoms 
of a carbonyl group pointing almost exactly along the 
b axis. This interpretation did not lead to a success­
ful solution of the structure and it was necessary to 
consider another interpretation, namely that the peak 
at (0,V,0) was due to a vector between chromium atoms 
related by a mirror plane normal to the b axis. Such 
an interpretation could be accepted only if the space group 
were P2-^/m, with a disordered molecular packing. It 
fitted, however, with the presence in the Patterson 
function of a peak which was half the height of the peak 
on the Harker section at V = £ , and which had the same 
U and W coordinates as the Harker peak. In the space 
group P2-j/m such a peak is to be expected due to vectors
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between heavy atoms related by a centre of symmetry.
The coordinates of the chromium atom were therefore

iworked out from the Patterson function on the assumption 
that the space group was P2-^/m.

An electron density synthesis based on the phases 
of structure factors calculated from these coordinates 
contained peaks corresponding to a dihydrophenanthrene- 
chromium tricarbonyl molecule of acceptable stereo­
chemistry o Inclusion of the atoms of the aromatic 
ring bonded to chromium and of the atoms of the carbonyl 
groups in the structure factor calculations reduced R 
from 0.45 to 0.38. A second electron density synthesis 
allowed all the atoms to be reliably located and reduced 
R to 0.27. A further cycle of Fourier refinement by 
means of FQ and Fq maps reduced R to 0.24. The computer 
programmes described in Part II Chapter II were used 
throughout the Fourier refinement.

The model of the structure, as it stood at this 
stage of the analysis, gave satisfactory structure 
factor agreement, but it required a very unusual packing 
disorder. For this reason the space group was checked 
and was found to be in error. To complete the refinement 
further data collection was therefore necessary. While 
this was being done the structure was refined in the 
space group P2p/m.
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Two cycles of full matrix least-squares refinement 
with isotropic temperature factors, and five cycles of

i
block-diagonal least-squares with anisotropic temperature
factors, were calculated using the KDF9 computer
programme written by Cruickshank and Smith. As a result
R fell from 0.24 to 0.101.

When the complete set of data became available .the
indices of the reflections, the fractional atomic
coordinates, and the anisotropic temperature factors
were transformed to correspond with the true space group.
The transformed parameters of the seventh least-squares
cycle were used to calculate structure factors for all
4390 reflections; the resulting R-factor was 0.110,
indicating that the structure was essentially correct.

A difference synthesis was then calculated using
only the 483 reflections with sin 0/A <0.35 A”^. Peaks
corresponding to the expected positions of eleven of
the twelve hydrogen atoms could be located. The
hydrogen bonded to C(2) lay in a region of positive density
but not on a peak. The mean hydrogen peak height was 

°,0.4e/A . All the hydrogen atoms were then included in 
the structure factor calculations, assuming positions 
consistent with those of the carbon atoms adjacent to 
them. An isotropic temperature parameter 1*5 times greater 
than that of the carbon atom to which it was bonded was
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applied to each hydrogen. R dropped from 0.110 to 
0.102.

i
At this stage seven reflections for which 

0—1sin 9 /\ <0.10 A were excluded from the analysis.
Each had |F | much smaller than |Ecl and this was
ascribed to extinction or to partial interposition of
the beamstop.

A weighting scheme of the form

w = { l-exp(-3.5s^) 1 /(1+0.0015 I EQI ^); (s = sin 9 /A ) 
was applied and two further cycles of refinement were 
done, reducing R to 0.094o

The weighting scheme was then changed to

w = w1 x W2 where
w^= 1 if sin 9/\> 0.4 otherwise w-̂  = (sin9/\ ) /0o16
W2= 1 if I Eq| <40 otherwise W2 = 40/ | IPo I.

Three further cycles reduced R to 0.086. In the finalo
cycle coordinate shifts were all less than 0.001 A and 
the scale and temperature factor shifts were also 
insignificant. The change in the weighting scheme 
again affected mainly the scale and temperature factors.
R* was reduced to 0.0081 and the standard deviations 
were reduced by about 10$. It was not found necessary 
in this case to assign zero weight to any of the weaic
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reflections. This, and also the lower R-factor as 
compared with the phenanthrene compound, is probably 
due to the longer counting time used in collecting the 
data. R,f however, is about the same for both analyses 
and so are the parameter standard deviations.

The atomic scattering curves used in this analysis 
were for chromium those of Freeman and Watson (1963), 
for oxygen those of Berghuis et al. (1955), for carbon 
those of Hoerni and Ibers (1954), and for hydrogen those 
of Stewart, Davidson, and Simpson (1965)o

The structure factors from the last least-squares 
cycle were used to calculate electron density and 
difference syntheses. A composite view of the final 
electron density synthesis is shown in Fig. 3*2 which 
also explains the atomic numbering. The maximum and
minimum function values in the final difference synthesis

^3 °3were respectively +0.4e/A and -0.7e/A .
In Tables 3.1 and 3.2 the final values of the 

coordinates of the heavier atoms and the assumed 
coordinates of the hydrogen atoms are respectively 
presented. Hydrogen atoms have been assigned the numbers 
of the carbon atoms to which they are bonded, except 
that H(10) is bonded to G(9) and H.(ll) and H(12) are
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Course of the Analysis

(1) Refinement of Partial Data (1971 reflections )
S.F. Cycle No. Atoms Included R

1 Cr 0.45
2 Cr+30+9C 0.38
3 Cr+30+17C 0.27
4 Cr+30+17C 0.24

S.P.L.S. Cycle No. R S.P.L.S. Cycle No. R
1 0.24 5 0.113
2 0.164 6 0.105
3 0.148 7 0.101
4 0.122

(2) Refinement of Complete Data (4390 reflections)
S.F.L.S. Cycle 

No.
8

9

10

11
12

13
14

Comment

Same parameters 
as cycle 7

Hydrogen atoms 
included

Weighting scheme 
changed

Weighting scheme 
changed

R £ w A R

0.0144 15820 0.110

0.0110 12071 0.102

0.0097 9930 0.096
0.0096 9817 .0.095

0.0088 5324 0.092 
0.0082 4792 0.087
0.0081 4762 0.086
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bonded to C(10). Table 3*3 contains the anisotropic 
temperature parameters of the heavier atoms. Table 
3*4 contains the final observed and calculated structure 
factors. Orthogonal coordinates of the heavier atoms 
and of the hydrogen atoms are given respectively in 
Tables 3*5 and 3*6. Table 3.7 contains some results 
from a molecular vibrations analysis and Tables 3.8,
3.9, 3.10, and 3.11 present respectively bond lengths, 
interbond angles, intermolecular contacts, and the 
deviations from least-squares planes through various 
sets of atoms. Standard deviations, where quoted, are 
in units of the last place of the quantity to which 
they refer. The quantities in Tables 3.5 to 3.11 were 
calculated using the programmes described in Part II 
and the equations given there apply. A view of the 
molecular packing is given in Pig. 3.3.

3.4 ANALYSIS OP MOLECUIAR VIBRATIONS
An analysis of the molecular vibrations was 

carried out in the manner suggested by Cruickshank 
(1956, 1961a). The results (Tahle 3.7 and Pig. 3.4) 
are very similar to those obtained for phenanthrene- 
chromium tricarbonyl. The translational vibration 
tensor is almost isotropic. The tensor of librational 
motion is anisotropic and almost diagonal; the
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principal values correspond to root mean square
1 0amplitudes of oscillation of 2 ancf 3 and the

oprincipal directions make angles of 10 , on average,
with the molecular axes.

Though these results seem quite acceptable,
the root mean square difference between the observed
atomic vibration tensors, UQ-bg, and those calculated
from the molecular vibration tensors, Uca-̂, is
0.0130 A^. In terms of the standard deviations of
the (Table 3.2) this difference is large, even
allowing for the approximate nature of the rigid-
body hypothesis. There is not any obvious reason
for suspecting large systematic errors in the U ,
and the poor agreement may therefore be due to
deficiencies in the model used to describe the molecular
vibrations (Schomaker and Trueblood, 1966). This view
is supported by the similarity of these results with
those for the corresponding phenanthrene compound.

Because of these difficulties, the libration
corrections can only be accepted with reservations,
and therefore the detailed discussion of the molecular
structure has been conducted mainly in terms of the
uncorrected coordinates. Correction for librationo
results in an average increase of 0.005 A in the bond 
lengths and does not alter any of the main conclusions 
of the analysis.
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F I G .  3 . 1

The sections at V = \ and U = 0 of the sharpened 
three-dimensional Patterson function corresponding 
to the P2^/m unit cell.
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F I G .  3 . 2

The composite final electron density synthesis 
viewed down the b axis. Contours are at 1 e/i£̂  inter­
vals starting at 2 e/R? except round the chromium 
atom where the contours are at 5 intervals
starting at 5 Some symmetry elements have 
been omitted for clarity.
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F I G . 3*3

The molecular packing viewed down the b axis. 
(Roman numerals have the same significance as in 
Table 3.10). Some symmetry elements have been omitted 

for the sake of clarity.





F I G .  3 . 4

Molecular diagram showing the numbering of* the 
heavier atoms and the bond lengths after libration 
correction in the dihydrophenanthrene ligand.
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TABLE 3.1
FRACTIONAL COORDINATES AND E .S .D .S .

ATOM X/a Y/b Z/c
Cr(1) 0.36213 + 6 0.14786 + 4 0.10478 + 5
C(1) 0 .3 30 6 + 5 -0.0211 + 3 0.0573 + 4
C(2) 0.2883 + 5 c • c LO 00 + 4 -0 .0 542 + 4
C(3) 0.1837 + 5 0 .1132 + 4 -0 .0 885 + 4
C(4) 0.1239 + 4 0.1371 + 3 -0 .0 0 9 4 + 4
C(5) -0 .0 2 9 6 + 4 0.1563 + 4 0.1442 + 5
C(6 ) -0 .0 9 2 7 + 5 0 .1666 + 5 0.2235 + 6

C(7) -0 .0 3 0 8 + 6 0 .120 0 + 5 o.34o6 + 6

C(8) 0.0961 + 6 c • c o\ o\ 4=r ± 5 0.3842 + 5
C(9) 0 .3 0 5 8 + 5 0.0 0 .5 + 4 0.3589 + 4
C(10) 0 .3 1 3 0 + 5 -0 .0 63 6 + 4 0.2554 + 5
C(11) 0 .2 6 9 7 + 4 0 .000 8 + 3 0.1381 + 3
C(12) 0.1641 + 4 0.0801 + 3 0.1042 + 3
C(13) 0 .0 98 2 + 4 0 .1 002 + 3 0.1870 + 4
C(14) 0.1637 + 5 0 .0 552 + 4 0.3094 + 3
C(15) 0.4635 + 4 0.2177 + 3 0 .040 3 + 4
C(16) 0.5364 + 4 0 .1262 + 4 0 .2 51 0 + 4
C(17) 0.3401 + 4 0.2711 + 3 0.1730 + 4



0(1) 0.5285+ 4
0 (2) 0.6454 + 3
0(3) 0.3239 + 4

0.2617 + 3 
0.1138+ 4
0.3483 + 3

o.o„u6 ^  3

0.3405 + 3

0.2131 + 4

TABLE 3.2
ASSUMED HYDROGEN ATOM FRACTIONAL COORDINATESAND TEMPERATURE FACTORS.

ATOM X/a Y/b Z/a U
H(1) 0.411 -0.084 0 .0 82 0 .0 7 0

H(2) 0.338 0.021 -0 .1 15 0 .0 7 6

H(3) 0.148 0.155 -0.179 0 .0 6 7

H(4) o.o45 0.201 -O.035 o.o64
H(5) -0 .0 8 0 0 .1 9 2 0.048 0 .0 79

H(6 ) -0 .1 9 2 0 .2 1 5 O.I92 0 .0 9 9

H(7) -0.083 0 .1 22 0.401 0 .1 1 5

H(8 ) 0.146 0.031 0.479 0 .1 0 2

H(9) 0.393 0 .0 5 8 0.393 0 .0 7 8

H(10) 0.321 -0 .0 5 2 0 .4 3 6 0 .0 7 8

H( 11) 0.423 -0 .0 9 3 0.291 0 .0 7 8

H(12) 0 .2 3 9 -0 .1 3 0 0.233 0 .0 7 8



TABLE 3.3
ANISOTROPIC TEMPERATURE FACTORS AND E.S.D.S.

ATOM U11 U22 U33 2U23 2U31 2U12

Cr(1) 0.0383
2

0.0434
3

0.0356
2

- 0.0033
4

0.0384
4

- 0.0086
4

C(1) 0o0620
22

0.0467
19

0.0708
24

- 0.0165
33

0.0794
4o

- 0.0097
31

C(2) 0.0730
23

0.0661
24

0.0544
21

- 0.0343
35

0.0807
4o

-0.0435
39

C(3) 0.0595
22

0.0763
27

0.0355
17

-0.0048
32

0.0264
32

- 0.0392
39

C(4) 0.0402
17

0.0639
22

0.0482
19

0.0142
32

0.0191
29

- 0.0088
29

c (5 ) 0.0408
18

0.0699
27

0.0914
32

-0.0479
47

0.0577
4o

-0.0133
34

C(6 ) 0.0465
21

0.0859
34

0.1260
44

- 0.0947
64

0.0952
53

- 0.0367
42

c(7) O.076O
31

0.1016
4o

0.1076
41

-0.0863
66

0.1320
63

-0.0576
57

C(8 ) 0.0778
30

0.1067
41

0.0755
29

-0.0553
56

0.1097
53

-0.0653
57

C(9) 0.0619
23

0.0856
31

0.0546
22

0.0361
42

0.0611
39

O.OOjjO

C(10) 0.0639
23

0.0632
24

c » c
fO 

c
VJ

1 
00 0.0438

39
0.0799

42
0.0176

37

C(11) 0.0444
16

0.0457
17

0.0490
17

0 . 0U08
26

0.0466
29

- 0.0070
25

C(12) 0.0370
15

0.0489
17

0.0480
17

- 0.0056
26

0.0382
27

- 0.0094
24



C(13) 0.0351 0 .0 52 4 0 .0 54 6 -0.0151 0.0424 -0.0144
14 18 19 29 28 25

C(14) 0.0548
20

0.0679
24

0.0649
23

- 0.0203
37

0.0761 - 0.0352 
38 35

C(15) 0.0572
20

0.0566
20

0.0457
18

- 0.0156
29

0.0588 - 0.0165
32 31

C( 16) 0.0467
18

O.0750
25

0.0498
19

0.0067
34

0.0561 - 0.0017 
32 33

C(17) 0.0501
18

0.0616
21

0.0464
18

- 0.0070
30

0.0501 - 0.0153 
31 31

0 ( 1) 0.0895
23

0.0784
21

0.0711
19

-0.0135
32

0.1114 - 0.0507 
36 35

0 (2 ) 0.0486
16

0.1338
34

0.0556
17

0.0259
38

0.0384 0.0281 
27 37

0 (3 ) 0.0963
24

0.0613
19

0.0795
21

-0 .0445
31

0.1021 - 0.0021 
39 33



TA13LE 3.4

Observed and calculated structure factors.
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4.3
-3.7

5:;
14 13 3.4
14 -It 3.3
14 -It 3.4

•4 4.1

3.4 -?.a

14 *3* S.* -9.7
i* -3 t.a -a.4

5:1

14 *4
14 -9 t.4
1* -3 1.4 .

1.4 4.4

14 *3 4.9
14 -l 3.3
j:

3.4 *1.4

14 “4 t.4

5:;
} i:;

-4 1.3 -1.

::: :::

14 -4 S.*



TABLE 3.5
ORTHOGONAL COORDINATES AND E.S.D.S.

ATOM X Y Z

C r(1) 3.329 + 1 1.882 + 1 - 0.582  +

C(1) 3.039 + 4 - 0.269  + 4 - 0.991 +

C(2) 2.650  + 5 0.442 + 5 - 2.112  +

C(3) 1.689 + 4 1.441 + 5 -1 .992  +

C(4) 1.139 + 4 1.746 + 4 -0.741 +

c (5 ) - 0,272  + 4 1.989 + 5 1.877 +

c (6 ) - 0.852  + 5 2.120  + 6 3.148 +

c(7) -0 .283  + 6 1.528 + 7 4.237 +

c (8 ) 0.884 + 5 0.845 + 6 4.115 +

C(9) 2.811 + 5 o.ou6 + 5 2.748 +

C(10) 2.878  + 5 -0 .8 10  + 5 1.472 +

C(11) 2.480 + 3 0.010  + 4 0.286 +

C(12) 1.508 + 3 1.020 + 4 0.415 ±

c (13 ) 0.903  + 3 1.275 ± 4 1.742 +

C(14) 1.505 + 4 0.703  + 5 2.875 ±

C(15) 4.261 + 4 2.772 + 4 -1 .870  +

C(16) 4.931 + 4 1.607 + 5 0.286 +

C(17) 3.127  + 4 3.451 + 4 0.347 +

1

4

4

4

4

6
7

6
5
4

4

4

4

4

3

4

4

4



0 ( 1) 4.859 + 4 3.331 + 4 -2 .675  + 3

0 ( 2 ) 5.933 + 3 1.448 + 5 0.805  + 3

0 (3 ) 2.978 + 4 4.434 + 3 0.909  + 3

TABLE 3 .6

ORTHOGONAL HYDROGEN ATOM COORDINATES.

ATOM X Y z

H(1) 3.78 -1 .0 7 - 1.10

H(2) 3.11 0.26 - 3.09

H(3) 1.36 1.97 - 2.89

H(4) 0.41 2.56 - 0.65

H(5) - 0.74 2.44 0.98

H(6) -1 .7 7 2.73 3.27

H(7) - 0.76 1.56 5.23

H(8) 1.34 o.4o 5.00

H(9) 3.61 0.73 2.71

H( 10) 2.95 - 0.67 3.59

H (11) 3.89 -1 .1 8 1.34

H(12) 2.19 -1 .6 5 1.58



TABLE 3>7

MOLECULAR VIBRATIONS ANALYSIS.

(a)Principal values of vibration tensors and their direction cosines referred to standard orthogonal axes.

ATOM o2 U A D1 D2 D3

C r(1) 0.0458
0.0335
0.0362

-0 .4947
- 0.3217

0.8073

0.8691
- 0 . I 863

0.4583

0.0029
0.9283
0.3717

C(1) 0.0751
o.o44o
0.0508

0.6797
0.0420

-0 .7323

-0.2775
0.9389

-0.2037

0.6790
0.3416
0.6498

C(2) 0.0933
0.0401
o.o48o

0.7428
0.0358

- 0.6685

-0 .6447
0.3073

-0.6999

0.1804
0.9509
0.2514

C(3) 0.0953
0.0342
0.0542

- 0.5766
0.6454
0.5009

0.7419
0.1569
0.6519

0.3422
0.7475

- 0.5693

C(4) 0.0774
0.0356
0.0542

- 0.2906
0.9257
0.2423

0.6461
0 . 0 j 30
0.7632

0.7057
0.3783

-0.5990

C(5) 0.1116
0.0386
0.0557

0.1720
-0 .9849

0.0197

- 0.5068
- 0.1056
-0 .8556

0.8447
0.1372

-0 .5173

C(6) 0.1594
0.0362
0.0554

0.2888
-0 .9554-0.0620

-0 .5436
- 0 . I I 03-0.8321

0 . 788I
0.2740

-0 .5512

C(7) 0.1510
0.0445
0.0624

0.5019
-0 .6983
-0.5104

- 0.6659
0.0647

-0 .7433

0.5520
0.7129

-0 .4325

C(8) 0.1341
0.0418
0.0617

0.5518
- 0.5460
-0 .6304

-0.7903
- 0.1008
-0 .6044

0.2664
0.8317

-0.4871



C(9) 0.0945
0.0429
0.0617

0.0789
0.0194
0.9967

0.9091
-0 .4116
- 0.0639

0.4090
0.9111

- 0.0501

C(10) 0.0896
0.0420
0.0569

0.4657
- 0.0800

0.8813

0.6295
- 0.6700
-0 .3935

0.6219
0.7381

- 0.2617

C(11) 0.0402
0.0496
0.0484

- 0.6993
- 0.0263
-0 .7143

- 0.6098
0.5^33
0.5770

0.3729
0.8391

- 0.3960

C(12) 0.0353
0.0513
0.0491

- 0.9435
0.3032

-0 .1334

-0.3222
-0 .7464

0.5823

0.0770
0.5924
0.8020

c ( l 3 ) 0.0321
0.0613
0.0493

- 0.9431
0.3046

- 0.1329

- 0.3030
-0 .6239

0.7203

0.1365
0.7197
0.6808

C(14) 0.0831
0.0363
0.0567

0.6022
- 0.7501
-0 .2733

-0.7341
-0.3857
- 0.5588

0.3138
0.5371

- 0.7830

C(15) 0.0659
0.0389
0.0489

0.6972
0.0017

- 0.7169

- 0.6962
0.2398

- 0.6766

0.1708
0.9708
0.1683

C(16) 0.0756
0.0384
0.0515

-O.OOJl
- 0.6069

0.7948

0.9910
- 0.1066
-0 .0813

0.1341
0.7876
0.6015

C(17) 0.0654
0.0438
0.0467

0.4472
- 0.3308
-0.8310

-0 .8944
- 0.1543
-0 .4199

0.0107
0.9310

-0 .3648

0(1) 0.1108
0.0390
0.0679

0.7929
- 0.4309
- 0.4308

- 0.5967
-0.4061
-0.6921

0.1234
0.8058

- 0.5791

0(2) 0.1366
0.0444
0.0646

0.1526
0.9355
0.3187

0.9847
-0 .1714

0.0316

0.0842
0.3090

-0 .9473

0 (3 ) 0.0398
0.0988
0.0877

-0 .0457
0.8843
0.4646

0.7538
-0 .2746

0.5969

0.6555
0.3775

- 0.6541



(b) Centre of mass, referred to orthogonal axes

X Y Z
2.5364 1.5566 0 .5 07 6

(c) Principal moments of Inertia* I* and direction cosines 
D1* D2, D3* of Inertial axes referred to orthogonal axes.

2 -40I (gmcm x 10 )
1516

3615
3489

01 D2 D3
-0.6052 -0.1561 0.7727

0 .525 2 0.6499 0 .5 49 4

-0.5879 0 .7 4 3 9 -0.3179

(d) T and W and their e.s.d.s* referred to Inertial axes.

0.0354
8

0 . 0 j j 316 0 .000 916
o2 T(A ) 0.0348

15
o.oj41

19
0.035712

29.132.32 -2.341.61 0.041.60
0 2 W( ) « 15.571.12 1.461.21

4.52
1.20



(e) U obs - U calc, with respect to Inertial axes*

ATOM U11

C r(1) - 0.0013

C(1) 0.0070

c (2 ) 0.0053

c(3) 0.0149

C(4) 0.0138

C(5) 0.0211

C(6 ) 0.0232

c(7) 0.0134

C(8 ) 0.0033

C(9) - 0 . 0j42

C(10) - 0.0096

C(11) 0 . 0„21

c( 12) 0.0058

c (13) 0 . 0j64

0(14) o. ooj3

C(15) 0.0071

0 ( 16) - 0.0081

0(17) 0.0017

0 ( 1) 0.0058

0 (2 ) - 0.0012

0(3 ) 0.0261

U22 U33

-0 .0 0 0 6 -0 .0 0 0 2

o .o j46 -0 .0 0 7 2

o.oo4o -0 .0 0 7 3

-0 .0 0 5 2 -O .O 06I

0 .0 0 3 9 -O.OOC’7

-0 .0 1 1 7 0.0126
-0 .0 2 0 5 O.OO99

-0.0J21 0.00v>8
0 .0016 0 .017 9

0 .0 0 8 8 0 .0 09 7

0 .0 .7 7 0 .0053

0.0:21 0 .0 008

O.Ov.72 0 .005 2

0.0J16 0.0022
0 .0 J46 0.0143

-0 .O J75 -0 .0 1 5 4

0 .0 1 0 4 0 .0052

0 .0 0 2 0 0.0071

o .o j 12 -0 .0 1 3 8

0 .0195 0 .001 7

-o.oo46 0 .0 05 8

2U23 2U31

- 0.0009 0.0010

0.0032 0.0059

- 0.0076 0.0162

- 0.0089 0.0123

- 0.0096 - 0.0006

-0.0185 - 0.0256

- 0.0169 -0.0424

- 0.0055 - 0.0298

0.0045 - 0.0286

0.0098 - 0.0167

0.0213 -0 .0 -31

0.0119 0.0014

- 0.0062 - 0.0071

- 0.0030 - 0.0117

- 0.0088 - 0.0203

0.0034 - 0.0111

- 0.0057 0.0158

0.0320 - 0.0010

0.0035 o.oo44

0.0134 0.0077

0.0239 - 0.0130

2U12 

-0 . 0o07 

0.0048 

0 * 0j12 
0 .0 16 0  

0 .023 6  

0.0175 

0.0288 

0 .0 0 7 2  

0 .0 0 4 1  

■0.0012 

■o.ooo4 

0.0j61 
0 .0 10 2  

0 .0 1 3 9

0.0151

0.0126

0.0131

0.0044

0.0054

0.0336

0.0424



TABLE 3.8
o

BOND LENGTHS ( A ) AT COMPLETION OF LEAST-SQUARES 
REFINEMENT (I) AND AFTER LIBRATIQN CORRECTION (II).

I II
C(1) - C(2) 1.383 + 6 1.390
C(2) - C(3) 1.392 + 7 1.398
C(3) - C(4) 1.400 + 6 1.4o4
C(4) - C(12) 1.415 + 6 1.421
C(11) - C(12) 1.407 + 5 1.415
C(1) - C(11) 1.422 + 6 1.426

C(5) - C(6) 1.404 + 8 1.4o6
C(6) - 0(7) 1.364 + 9 1.369
c(7) - C(8) 1.358 + 8 1.363
C(8) - C(14) 1.394 + 6 1.396
C(14) - C(13) 1.405 + 5 1.413
C(13) - C(5) 1.381 + 5 1.387

C(14) - C(9) 1.485 + 6 1.492
C(9) - C(10) 1.517 + 7 1.522

C(10) - C(11) 1.495 + 6 1.502

C(12) - c (13) 1.48o + 5 1.485



Cr(1) - C(1) 2 .2 0 9 + 4 2.218
Cr(1) -  c (2 ) 2 .2 0 8 + 4 2 .2 1 6

Cr(1) -  c(3) ro • ro c + 4 2.217
Cr(1) - C(4) ooCVJ•CVJ + 4 2 .2 0 9

Cr(1) - C(11) 2.232 + 4 2.241
Cr(1) - C(12) 2.248 + 3 2.255

Cr(1) - C(15) 1.821 + 4 1 .826

Cr(1) - C(16) 1.843 + 4 1.852
Cr(1) - C(17) 1.834 Hh 4 1.843

Cr(1) - 0 (1) 2.970 + 3 2.975
Cr(1) - 0 (2 ) 2 .9 8 2 + 3 2.995
Cr(1) - 0(3) 2.976 + 4 2 .9 8 8

C(15) - 0 (1) 1.148 + 5 1.150
C(16) - 0 (2) 1.140 + 5 1.143
C(17) - 0(3) 1.142 + 5 1.145



TABLE 3.10
o

INTERMOLECULAR CONTACTS BELOW 4 A.
o

0(1)... 2) 1 3.16 A C 8).. 11) ii 3 .6 8

C(2)... 6) ii 3.30 C 9).. 2) vi 3 .6 8

C(2)... 3) i 3.34 C 6).. 2 ) iv 3.70
C(l6)....0 1) iii 3.35 C 9).. 1) iii 3.70
0 (1)... 3) i 3.36 C 10) .. . . c 15) V 3.70
C(1)-- 5) ii 3.38 c 3 ) . . 5) ii 3.71
C(3) — 3) i 3.38 c 1).. 3) V 3.72
c(7)  — 2) iv 3.4o c 2).. 7) ii 3.74
C(10).. . . 0 1) V 3.40 c 12). • . .  c 12) ii 3.74
C(2)... 5) ii 3.41 c 3 ) . . 13) ii 3.76
c ( i 7 ) •• ..0 1) iii 3.46 c 6).. 1) iv 3.76
0 (2)... 3) V 3.48 c 16)... .0 3) V 3.77
C(9)... 1) V 3.50 c 4).. 13) ii 3.78
C(4) • • • 7) i 3.55 c 8 ).. 17) iii 3.78
C(15)•• ..0 3) i 3.56 c 10) ... .0 3) V 3.81

C(1)-- 6) ii 3.59 c 4).. 6) i 3 .8 2

c( 1) ---- 1) vii 3.61 c 1).. 15) vii 3.84
C(8 )... 3) iii 3.65 c 3).. 6 ) ii 3.84

> 
o



C(4).....C(12) ii 3.84 C(3)... ••C(14) ii 3.95
C(9)... •*C(9) vl 3.84 C(4).....C(8) 1 3-95
C(8).....0(2) vl 3.85 C(2)... *-C(13) ii 3.96
C(3)... ..C(6) i 3.88 C(12)..•.C(13) ii 3.97
C(10).. ..C(17) V 3.92 c ( 3 ) . . . ..C(7) ii 3.98
C(3)... ..C(7) i 3.93 c ( 5 ) • . . ,.C(12) ii 3.98
c ( 15)--..C(17) i 3.94 C(4)... ii 4.00

Roman numerals refer to the following transformations 
of the fractional coordinates given in Table 3*1*

i x, 1/2 - y,-l/2 + zj
11 - X, - y, - z;

iii x, 1/2 - y, 1/2 + z;
iv -1 + x, y, z;

v 1 - x,-1/2 + y, 1/2 - z;
vi 1 - x, - y, 1 - z;
vii 1 - x, - y, - z;



TABLE 3.11
MEAN MOLECULAR PLANES

PLANE NO. ATOMS DEFINING PLANE
1 C(1),C(2),C(3),C(4),C(11), and C(12)
2 C(5 ) , C ( 6 ) , C ( 7 ) , C ( 8 ) , C ( 13) ,  and C (14)

3 C (15) , C ( 16) ,  and C (17)

4 0(1),0(2), and 0(3)

PLANE EQUATIONS 
PLANE NO. P Q R S

1 -0 .725C -C.667O -0 .1715 - 1.8523

2 -0 .5210  - 0.8382 -0.1613 -1.8291
3 -0 .7092  - 0.6885 -0 .1518  -4.6461

4 -0 .7047  -0 .6920  -0 .1568  - 5.3093

RMS D 
0.006

0 • 0 9

These symbols are defined in Table 2 . 10. The plane equation is
PX + QY + RZ = S 

where X,Y, and Z refer to orthogonal axes.

DIHEDRAL 
PLANE A PLANE B /_ AB

c
1 2 15.3

1 3 1.9

1 4 2.0

ANGLES
PLANE A PLANE B 
2 3
2 4
3 4

I  AB
<

13.8

13.3

0 .4



o
DEVIATIONS FROM PLANES ( A )

PLANE NO. 
ATOM

1 2 3 4

C r ( ! ) -1 .717 -1.389 1.078 1.752

C (1) - 0.002 0.631 2.826 3.509

C(2) - 0.002 0.418 2.783 3.467

C (3) 0.008 0.063 2.759 3.434

C(4) - 0.011 - 0.108 2.749 3.415

0(5) o.4oi 0.001 - -

C ( 6 ) 0.516 - 0.012 - -
C(7) 0.312 0.013 - -

C(8 ) - 0.058 - 0.003 - -

C(9) - 0.661 -o.o84 - -
C (10) 0.054 0.771 2.940 3.611

C(11) - 0.001 0.483 2.838 3.510

C( 12) 0.007 0.121 2.811 3.475

c( 13) 0.048 0.009 2.864 3.518

C (14) - 0.201 - 0.008 - -
C(15) -2.765 -2 .413 - 0.682

C(16) -2 .843 -2 .133 - 0.678

c ( 17) -2 .776 -2 .749 - 0.663

0(1) -3 .433 -3 .063 - 0.687 -
0(2) -3 .553 - 2.606 -0.681 -

0(3) -3 .420 -3 .586 -0 .657 -



3.5 DISCUSSION
The molecular structure of 9 ,10-di^ydrophenanthrene- 

chromium tricarbonyl is extremely similar to that 
of the corresponding phenanthrene compound. The 
chromium atom,as would be expected, is bonded to a side 
ring. Three linear carbonyl groups are disposed at 
right angles to one another and point approximately 
at the midpoints of the C(l)-C(2), C(3)—C(4), and C(ll)- 
C(l2) bonds. The possible Kekule structures of 9,10- 
dihydrophenanthrene indicate that the orders of the 
side ring bonds are equal, so that this configuration 
in 9,10-dihydrophenanthrenechromium tricarbonyl is 
presumably adopted to minimise intramolecular repulsions 
between the chromium tricarbonyl fragment and the 
hydrocarbon ligand.

No structural studies on 9,10-dihydrophenanthrene 
itself have been reported. However, an inspection of 
a Dreiding molecular model of the hydrocarbon suggests 
that there should be a two-fold symmetry axis passing 
through the midpoints of the C(9)-C(10) and C(12)-C(13) 
bonds, and also that the two side rings should be 
rotated about an axis passing through the C(12)-C(13) 
bond out of the plane defined by the symmetry axis,
C(12) and C(13). To a first approximation this is found
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to be the case in 9,10-dihydrophenanthrenechromium 
tricarbonyl. The dihedral angle between the planeso /
of the two side rings is 15.3.0(8), C(14), and 0(9) 
are displaced from the plane of the bonded side ring 
in the same direction as the chromium atom and 0(5) 
and 0(6) are displaced in the opposite direction.

As in the case of phenanthrenechromium tricarbonyl, 
three aspects of the molecular structure require 
detailed comment, namely, the effect of the chromium 
tricarbonyl moiety on the hydrocarbon ligand, the 
relationship of the chromium atom to the aromatic ring, 
and the stereochemistry of the chromium tricarbonyl 
fragment.

In the side ring of the hydrocarbon ligand bonded
o

to chromium (ring A) the mean bond length is 1.403 A,o
which is comparable with the 1.401 A found in benzene-
chromium tricarbonyl by Bailey and Dahl (1965).' One
bond, C(l)-C(2), differs from this mean at the 0.1$
significance level. In the non-bonded side ringo
(ring C) the mean bond length is 1.384 A which is slightlyo
shorter than the 1.394 A found in benzene (Sutton, 1965), 
and again one bond, C(13)-0(14), differs from the mean 
at the 0.1$ significance level. These results suggest
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that in each side ring the bond lengths are almost
equal to each other and that the effept of the chromium
atom has been to increase the mean bond length in ring

o
A by about 0,02 A, This conclusion is strengthened 
by comparison of the individual bonds in ring A with 
those in ring C which are related by the assumed two­
fold symmetry axis; four are longer by, on average, o
0.028 A and two are equal within experimental error.

The bonds in the central ring (ring B) are in
fair agreement with the literature values. The

o
formally single C(12)-C(13) bond of 1.480 A is between o
1.497 A found in biphenyl (Hargreaves and Rizvi, 1962) 

o
and 1.471 A found in perylene (Camerman and Trotter,
1964) for similar bonds. The C(9)-C(14) and C(10)-
C(ll) bonds are equal within experimental error, with

o
an average of 1.490 A, which is slightly shorter thano
the expected value (Sutton, 1965) of 1.505 A; librationo
correction increases this mean to 1.497 A. The C(9)-o
C(10) bond is 1.517 A, which is slightly less than theo
literature value of 1.537 A (Sutton, 1965)*

Ring A and ring C are planar, the respective
o

root mean square deviations being 0.006 and 0.009 A.
In the dihydrophenanthrene ligand there is some distortion 
of the assumed two-fold symmetry of the free hydrocarbon.
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This is shown by the displacements of the other atoms 
in the ligand from the plane of ring A. Atoms C(10)

i
and 0(13) have small but significant positive
displacements (i.e. in the direction opposite from the
chromium). A similar displacement of the methyl
groups was found in hexamethylbenzenechromium tricarbonyl
(Bailey and Dahl, 1965). Atom C(7) has a positiveo
displacement of 0.312 A, and the positive displacements
of C(5) and 0(6) are greater than the negative
displacements of 0(8) and 0(14). Rir^C is thus
placed below ring A in the direction opposite to that
of the chromium, as well as being rotated relative to
ring A about the C(12)-0(13) bond. Such a distortion
could be due to intramolecular repulsions or to packing
forces; the closest approaches to 0(9), 0(10), and
0(13) of the chromium atom and the atoms of the carbonyl

o
groups are all greater than 3.4 A.

The distances from the chromium atom to 0(1),
0(2), 0(3) and 0(4) are equal within the accuracy of

o
the results, with a mean value of 2.206 A. The
Cr-C(ll) and Cr-C(l2) distances are significantly longer,

o
with a mean of 2.240 A. A similar, though more marked,
effect was found in the phenanthrene compound, the longo
Cr-C bonds averaging 2.289 A, and was ascribed to the
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low double bond order of the C(ll)-C(12) bond. Such 
an explanation is not valid in the case.of dihydro-

i
phenanthrenechromiurn tricarbonyl and therefore intra­
molecular repulsions or crystal packing forces must 
presumably play a part.

The means of the Cr-C, C-0, and Cr-0 distances
in the tricarbonyl moiety are respectively 1.833,o
1*143, and 2.976 A. These means are in good agreement 
with comparable values for the phenanthrene compound.

o

The average Cr-C-0 angle of 178.9 indicates smaller
departures from linearity than were found in the
phenanthrene compound. The 0(l)-Cr-0(2) angle is again

oslightly less than 90 , presumably due to crystal 
packing forces.

The molecular packing (Pig. 3*3) is similar to 
that of the phenanthrene compound (Pig. 2.3). There 
are no intermolecular contacts significantly less than 
the sum of the van der Waals radii (Pauling, I960) 
of the participating atoms.

A comparison of the molecular structure with 
those of related compounds is postponed until Chapter IV.
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CHAPTER IV 
ARLNLCiiR0M1CJM TKICARBONYLS: A RLVILW



4.1 INTRODUCTION
This review covers structural studies on compounds 

with the general formula ArCrX, where Ar is a benzenoid 
aromatic ring and CrX is a chromium tricarbonyl 
fragment; in addition, a few compounds in which Ar is 
not benzenoid have been included. Structural work on 
dibenzenechromium and chromium hexacarbonyl is also' 
discussedo

4 o 2 DIBENZENECHROMIUM
The crystal structure of dibenzenechromium,

(C^H^)2Cr, was first described by Weiss and Fischer
(1956). In an apparently accurate analysis of the
structure, Jellinek (i960, 1963) found that the benzene
rings were significantly distorted, with long bonds of 

0 o
1.436+12 A alternating with short ones of 1.366+12 A.
However, in an independent analysis by Cotton, Dollase,
and Wood (1963) the bond lengths in the benzene rings
were found to be equal within experimental error, witho
a mean value of 1.387 A. Jellinek (1963) suggested 
that disorder in the crystals used by Cotton would 
explain the discrepancies between the results of the 
two analyses. Ibers (1964) undertook a rigid-body 
refinement of the structure, using Cotton!s data, and 
confirmed that they were not consistent with any
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distortion of the benzene rings from symmetry*
These analyses were complicated by thê  high crystal- 
lographic point group symmetry (C^) required of the 
molecule•

An electron diffraction study of the molecule by
Haaland (1965) provided no evidence for bond length
alternation. An x-ray investigation of the crystal
structure at low temperature, by Keulen and Jellinek
(1966), gave results which, after libration•correction,
were in very good agreement with the electron diffraction
study. The interatomic distances found by Keulen and

o o
Jellinek were C-C 1.420+3 A and 1.419+3 A, Cr-C

o
2.147+2 and 2.144+2 A. The Or-ring distance waso
1.609+1 A.

From these results it appears that sandwich bonding
o

to chromium results in an increase of 0.02-0.03 A in 
the mean benzene ring C-C bond length, without lowering 
the symmetry of the ring. This is in agreement with 
the most recent theoretical study of dibenzenechromium 
(den Boer et al«, 1962) which suggests that distortion 
of the benzene ring symmetry is unlikely.

4.3 CHROMIUM HEXACARBONYL
This molecule has been the subject of x-ray and
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electron diffraction studies, both of rather limited
accuracy. Using x-ray methods, Rudorjff and Hofmanno
(1935) found the' Cr-C distance to be 1.80 A; theyo
assumed the C-0 distance to be 1.15 A, which gave, by

oaddition, a Cr-0 distance of 2.95 A. Brockway et al.
(1938) did an electron diffraction study, which gave 

o o
1.92+4-A for the Cr-C distance, 1.16+5 A for the C-0o
bond, and 3o08+5 A for the Cr-0 distance. Octahedral 
coordination of the chromium was assumed.

4.4 ARENECHROMIUM TRICARBONYLS
Prior to 1965 only the structures of benzene- 

chromium tricarbonyl, CgH^Cr(CO)^(Corradini and 
Allegra, 1959),of biphenyl bis(chromium tricarbonyl), 
012^ 0 ( ^ ( 00)3)2 (Corradini and Allegra, I960), and 
of a monoclinic modification of phenanthrenechromium 
tricarbonyl, C-^̂ H10Cr(C0)^ (Deuschl and Hoppe, 1964), 
had been published. In each of these compounds linear 
carbonyl groups, disposed at right angles to one 
another, were found to point approximately towards the 
midpoints of ring C-C bonds; to within the accuracy 
of the results the arene rings were planar, and 
parallel to the planes defined by the carbon atoms and 
by the oxygen atoms of the carbopy^roups. No reliable 
conclusions could be drawn about the effect of the
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chromium atom on the arene ring, since projection 
data only were used in these analyse s,.

More recently, Bailey and Dahl (1965a, 1965b) 
have described analyses of hexamethylbenzenechromium 
tricarbonyl, C^Me^Cr(CO)^, and of benzenechromium 
tricarbonyl, both based on three-dimensional data.
The structures of an orthorhombic modification of 
phenanthrenechromium tricarbonyl and of 9,10-dihydro- 
phenanthrenechromium tricarbonyl, C^H^Cr(CO)^, have 
been described in the two previous chapters of this 
thesis (a preliminary note on this work has been 
published by Muir, Ferguson, and Sim, 1966). These 
four analyses allow fairly firm conclusions to be 
drawn about the effect of a bonded chromium atom on 
an arene ring.

No evidence for an alternation of the arene 
ring bond lengths due to the chromium atom has been 
found in any of these compounds.

Some molecular dimensions of these compounds are 
given in Table 4.1. The first column contains the 
mean arene ring C-G bond length, together with the 
standard deviation of an individual measurement, 
estimated from the least-squares totals (in brackets). 
The second column gives the root mean square difference
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Molecular
TABLE 4.1 

0
Dimensions (A) in some ArCr(CO)^ Complexes

Ar Mean C-C RMSD 1 RMS Cr-Ring

C6H6 1.401(11) 0.018 0.007 1.724

C14H12 1.403(7) 0.013 0.006 1.717

C14H10 1.412(7) 0.022 0.018 1.733

c6Me6 1.417(14) 0.033 0.009 1.726
C7H8° 1.39 0.02 - -

TABLE 4.2
Mean Dimensions of Carbonyl Groups in some Chromium

Carbonyls (in A and ° )
Compound Cr-C C-0 Cr-0 Cr-C-0
Cr(C0)6 1.92(4) 1.16(5) 3.08(5) 180(ass.)

1.80 1.15(ass) 2.95 -
C6H6Cr(C0)3 . 1.842(10) 1.142(8) 2.984(11) 179.2(6)

C14H12Cr(CO)3 1.833(4) 1.143(5) 2.976(4) 178.9(4)

C14H10Cr(CO)3 1.843(5) 1.149(6) 2.992(4) 177.9(5)
CgMegCr(CO), 1.814(13) 1.163(12) 2.977(9) 177.6(12)
C7HgOCr(CO)5 1.79 1.19(2) - 176(2)
C4H4SCr(CO)5 1.769(25) 1.210(25) 2.978(24) 175.0(22)
* Electron diffraction results
(Figures in brackets are e.s.d.s of individual
measurements estimated from least-squares totals.)
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from these means. The results suggest, but do not
conclusively prove that the mean C-C Ipond length is
a little greater in the complex than in the free
hydrocarbon. In benzenechromium tricarbonyl the

o 0
mean C-C bond length of 1.401 A differs only by 0.007 A

o
from the accepted benzenoid C-C bond length of 1.394 A
(Sutton, 1965), but libration correction would probably
increase this difference. In the phenanthrene and
dihydrophenanthrene compounds the means of the C-C
bond lengths in the bonded side rings are respectively

o
0.016 and 0.019 A greater than the comparable means
for the non-bonded side rings. The mean value of 

o
1.417 A in hexamethylbenzenechromium tricarbonyl is 
probably longer than the comparable mean in the free o
hydrocarbon, for which a projection study gave 1.39 A 
(Robertson and Brockway, 1939).

The third column of Table 4.1 gives the root 
mean square deviations from the planes of the bonded 
rings. Only in the case of phenanthrenechromium 
tricarbonyl, in which special circumstances seem to 
exist, are the deviations significant.

The mean Cr-ring distances (Table 4.1, column 
4) are all close to one another and rather greater than
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the corresponding values for dibenzenechromium. As 
pointed out previously, however, the chromium is not 
symmetrically placed with respect to •the ring carbon 
atoms either in phenanthrenechromium tricarbonyl or 
in the related dihydrophenanthrene compound.

The mean dimensions of the chromium tricarbonyl 
fragments in each of these compounds are included in 
Table 4.2. The results are in general agreement with 
one another. The departures from linearity of the 
carbonyl groups are uniformly small. The mean 
interatomic distances are in fair agreement with the 
x-ray study of chromium hexacarbonyl and in rather 
worse agreement with the electron diffraction study 
of the same compound. In view of the limited accuracy 
with which the bond lengths in chromium hexacarbonyl 
have been determined, these disagreements have little 
significance«

In the arenechromium tricarbonyl compounds so 
far discussed, the carbonyl groups have invariably 
pointed towards the midpoints of ring C-C bonds. 
However, in anisolechromium tricarbonyl, CyHgOCr(CO)^ 
(Carter, McPhail, and Sim, 1966a, 1966b), the carbonyls 
point towards ring carbon atoms. This is also the 
case in p-toluidinechromium tricarbonyl, CyHgNCr(CO)^ 
(Carter, McPhail, and Sim, 1966c). These authors
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suggest that this configuration is due to the presence 
of ortho-para directing substituents. f

In anisolechromium tricarbonyl the Cr-C(carbonyl) 
distances are shorter on average, and the C-0 distances 
are longer, than in other arenechromium tricarbonyls 
(see Table 4.2).. The departures from linearity of the 
carbonyl groups are also greater. No structural 
details have yet been published for the toluidine 
complex.

4.5 RELATED STRUCTURES
Brown, McPhail, and Sim (1966) have described 

the structure of a substituted cycloheptatrienechromium 
tricarbonyl, C^gH^^Cr(CO)^; their results suggest that 
alternation of double and single bonds is retained on 
complexing to chromium. A preliminary report suggests 
that this is also true of phenylcycloheptatrienechromium 
tricarbonyl, C-j^H^C^CO)^ (Baikie et al., 1965). 
Retention of single and double bond character was also 
found in cycloheptatrienemolybdenum tricarbonyl, 
CyHgMo(CO)^ (Dunitz and Pauling, I960). In each of 
these compounds the carbonyls are trans to the midpoints 
of the double bonds of the ligand. However, the ring 
bond lengths were found to be irregular and without 
marked alternation in cyclooctatrienechromium tricarbonyl,
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CgHioCrCCO)^ (Armstrong and Prout, 1962).
In 1,6-methanocyclodecapentaenechromium tricarbonyl,

CllH10Cr(C0>3 (talkie an(̂  Mills, 1966), four Cr-C(ring)
distances are equal to one another, with a mean of o
2.20 A, and two are longer and also about equal to one

o
another (2.54 and 2.57 A). It is possible that the 
chromium does not attain a formally inert gas electron 
structure in this molecule.

In thiophenechromium tricarbonyl, C^H^SCr(CO)^ 
(Bailey and Dahl, 1966c), the thiophene ring proved 
to be disordered. In the chromium tricarbonyl moiety 
the mean Cr-C distance is shorter and the mean C-0 
distance is longer than in benzenechromium tricarbonyl 
and similar compounds (Table 4.2). The differences 
are significant, at least at the ifo  probability level.
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APPENDIX I 

THE LINEAR DIFFRACTOMETER



Appendix 1 
The Linear Diffractometer ^

The Hilger-Watts linear diffractometer (Arndt 
and Phillips, 1961) is a device for automatic measure­
ment of the integrated intensities of diffracted x-ray 
beams. Its main components are a stabilised x-ray 
generator, counter equipment for measuring the 
intensities of x-ray beams, an analogue computer which 
positions the counter and crystal, and an output printer 
and tape punch.

Molybdenum radiation is most often used, in 
conjunction with balanced SrO-ZrC^ Ross filters.
With this radiation a scintillation counter is normally 
employed and monochromatization is improved by arranging 
the counting system so as to accept only pulses within 
a given energy range.

The analogue computer consists of three slides 
on which the counter is mounted. The counter is also 
constrained to be at a constant distance from the 
crystal. The crystal is set so that each of its 
reciprocal axes is parallel to one of the slides and 
its rotation is coupled to the movement of the counter. 
By moving the slides the crystal can be rotated to bring
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a predetermined crystal plane into the Bragg reflection
condition, while simultaneously the counter is positioned
so as to measure the diffracted beam.

The integrated reflection is measured by first
.outrotating the crystal by a small angle/of the reflection 

condition and measuring the background for t seconds, 
then by rotating the crystal at constant speed through 
the reflection condition and counting for 2t seconds, 
and finally by counting background again for t seconds. 
For phenanthrenechromium tricarbonyl 2t was thus 15 
seconds while for the dihydrophenanthrene compound it 
was 30 seconds. The intensity is the difference between 
the second count and the sum of the first and third.
This process is repeated at least once for each filter.

The diffractometer automatically measures each 
reflection in a given reciprocal net. Upper layers 
are bought into the reflecting condition in the 
equi-inclination Weissenberg setting.

Reference

1. Arndt, U.W. and Phillips, D.C. (1961). Acta Cryst.
14, 807.
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ALGOL TEXT

The programmes presented in this Appendix are 
written in the computer language KDF9 ALGOL. This 
language is defined in a manual by Green (1964).

DBX016000KP4 is part of the molecular functions 
system; it is used to write unit cell dimensions, 
fractional coordinates etc. on to magnetic tape 
at the start of a run.

DBX016100KP4 is the contacts-seeking distance 
and angle programme described in Part II Section 1.4.

Reference

1. Green,J.S. (1964). "KDF9 ALGOL Programming”, 
English Electric-Leo Computers Limited,Kidsgrove, 
England.
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DBX016000KP4+ 
begin

library AO,A6,A7,A9,A13;
Integer DV 1 ,D IN,MT 1,i,j,nat; 
real pi,angle,a;
array cell[1:6],N,M[1:3,1:3]* title[1:200],Index[1:20] 
boolean array key[1:20];
procedure pack four (d in,x); value d in;

Integer d in; real x; 
begin

Integer i,j;
integer array SYM [-2:5];
SYML-2J := SYM[-1] := SYM[o] := 158; 
for i := 1 step 1 until 5 do 
begin

in: SYM[i] := in basic symbol (d in);
if SYM[1] = 158 or SYM[1] = 160 or SYM[1] =

174 or SYM[1] = 209 or SYM[l] = 152 
then goto in; 

if SYM [ ± r y  132 and SYM[i] i  158 and
SYM[i]^ 160 and SYM[i] ? 209 then goto next; 

for j := 4 step -1 until 1 do 
SYM[J] := SYM[i + J - 5]; goto form x;

next:
end;

form x:
i := 256x (256x (256xSYM[1] + SYM[2]) + SYM[3J)
+ SYM[4J; 

x := i; 
end procedure pack four;
procedure form integer(x,failure); real x;

label failure; 
begin

integer y,i,symbol; 
y := 0;
for i := 1 step 1 until 3 do 
begin

in: symbol := in basic symbol (D IN);
if symbol = 158 then goto in;
if symbol = 148 then goto out;
if symbol > 9 then
begin
write text (DV 1 ,J^2cJPUNCHING*ERR0R*IN* 

BRACKETED*INTEGERJJ ; 
goto failure; 

end;
y : = yx10 + symbol



end;
write text (DV 1 , _[_[_2c_]BR AC KETED* INTEGER * TOO *LARGEj_) ; 
goto failure; 

out: x := y;
end of form integer;
procedure orthog(cell,matrix); value cell;

array cell,matrix; 
begin

real one;
matrix[1,2] := matrix[l,3] := matrix[2,3] := 0.0; 
matrix[3,3] • -  cell[3]; matrix[3,2] := cell[2] x cos(cell[4]);
matrix[3,l] •= cell[1] x cosjcell[5]);matrix[2,2] : = cell[2] x sin(cell[4]);
one := (cos(cell[6]) - cos(cell[5]) X

cos(cell[4]))/sin(cell[4]); 
matrix[2,1] := one x cell[l]; 
matrix[1,1] := cell[l] X sqrt(sin(cell[5])12 

- one?2); 
end procedure orthog;
procedure inverse(matrix,inv); value matrix;

array matrix,inv; 
begin

integer i;
invL1,2] := inv[1,3] Inv[2,3] := 0 .0; 
for 1 := 1 step 1 until 3 do 

inv[i,i] := i.0/matrix[i,i]; 
inv[2,1] := -matrix[2,1]/(matrix[1,1] X matrix[2,2]);
inv[3,1] := -matrix[3,1]/(matrix[1,1] x
matrix[3,3]) + matrix[2,1] x matrlx[3,2]/(matrix[1,1] x matrix[2,2] X 
matrix[3,3] ) yinv[3,2] := -matrix[3,2]/(matrix[2,2] X matrix[3,3] )> 

end procedure inverse;
t) IN := 20; DV 1 := 30; open(D IN); open(DV 1);
MT 1 := 100; find(MT 1 ,U>G030003j_);
interchange(MT 1); pi := 3.141 592 6536; 
angle := pi/180.0; 

caption:for 1 := 1 step 1 until 200 do 
begin

j := in basic symbol(D IN); title[i] := j; 
if j = 152 then goto unit cell; 
if i = 200 then goto failure; 

end~i~ 
unit cell:

for i := 1 step 1 until 3 do cell[i] := read(D IN); 
for i := 4 step 1 until 6 do
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cell[i] := read(D IN) x angle; 
orthog(cell,N); inverse(N,M); 

data:
for 1 := 1 step 1 until 4 do lndex[i] := read(D IN); 
nat := Index L1J; 
for 1 := 2 step 1 until 4 do 
key[i - 11 IndexL1] > 0.5; 

begin
array ch[ 1 mat, 1 :2] ,at[ 1 mat, 1: 3]

,vib[1:nat,0:6],sigma[1mat, 1:3],corr[1 mat,1:3];
sf tape:

for 1 :== 1, 2 do j := read(D IN);
for 1 := 1 step 1 until j do a := read(D IN);
key[20] := read(D IN) > 0.5;
for 1 := 1 step 1 until nat do
begin

pack four(D IN,ch[i,l]); 
form Integer(ch[1,2],fallure);
for j := 1 step 1 until 3 do at[i,j] := read(D IN); 
If not key[1J then goto exit; 
a := read(D INJ1
if a > 0.5 and a < 1.5 then goto aniso; 
for j := 1 step 1 until b do vib[i,j] := -999j 
vib[i,o] := read(D IN); goto exit;

aniso: for j := 1 step 1 until 6 do
vib[i,j] := read(D IN); 

vib[1,0] := -999, 
if key[20] then a := read(D IN);

exit:
end;
if read(D IN) < 998 then goto failure;

sdevs:
if not key[2] then goto load; 
for 1 := 1 step 1 until nat do

for j := 1 step 1 until 3 do
sigma[i,jj := read(D IN); 

if read(D IN) < 998 then goto failure; 
correIn:

if not key[3] then goto load; 
if index[4] > 3.5 then 
begin

for i := 1 step 1 until nat do 
for j := 3 step -1 until 1 do 

corr[i,j] := read(D IN);
end

else
begin

Integer row;
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if index[4] < 1 .5 then row := 3 else
if index[4] <2.5 then row := 2 else row := 1; 

for i := 1 step 1 until nat do 
begin

for j := 1 step 1 until 3 do corr[i,j] := 0.0; 
corr[i,row] := read(D IN); 

end; 
end;
if read(D IN) < 998 then goto failure;

load: —  ---- ---
write binary(MT 1, title ,_[TITLEj_) ; 
write binaryiMT 1,cell,[CELLjj ; 
write binary(MT 1 ,NJ_[NjJ’a write binary(MT 
write binary (MT 1, index,[ INDEX_]_) ; 
write binary(MT 1,ch,[CHT); 
write binary(MT 1,at,TxT7; 
if key[ 1 ] then write binary(MT 1,vib,_[u]);
if key[2] then write binary(MT 1, sigma,ijSIGMA]_);
if key[3] then write binary(MT 1,corr^CORRELATION^);goto terminate; 

end; 
failure:

write text ( 0 0 J_ERROR*IN*DATA*TERMINATE*RUN_[_cJ_]_) ; 
terminate:

interchange(MT 1); close(D IN); close(DV 1); 
close(MT 1); 

end->



DBX016100KP4-*
begin

library A0,A6,A12,A7,A8,A13;
boolean lineprint,axes orthogonal,restrictIons; 
real d max,a max,a,b,c,alpha,beta,gamma,pi, 

plbytwo,radian,angle,t,S,D;
Integer 1,j,k,l,m,n,CKEY,KEY 1,KEY 2,KEY 3,FORM 

1,FOftM 2, LT,C,P,LP,SN,Z,D IN,DV 1,DV 2, num,M; 
Integer array Cl [ 1:27»1:3];
array TEST[I s30,1s3],N[1s3,1s3],F,G[1s3],C2[1:27,1:3] ; 
procedure out equivalent positions ( d out,sym 
no,vector); value d out, sym no;
Integer d out, sym no; array vector; 

begin
Integer 1;
procedure out coordinate (d out,a1,a2,a3,t); 

value d out, a1,a2,a3,t; Integer d out; 
real a1,a2,a3,t; 

begin
array 0UT[1:3] I 
Integer j,k,F;
F := format(ldl); 0UT[1] :« a1; 0UT[2] :=* a2;
OUT[3] S -  a3; 
if t t  0 then 
begin
k entier(12xt + 0.5)I  
for J :* 6, 4, 3, 2, 1 do

If abs(k/j - k+j) < 0.000 000 1 
then goto number; 

number: write (d out,format(J[s^nd]) ,k/j);
out basic symbol (d out,l?>l); 
write (d out,F,12/j); 
out basic symbol (d out,158); 

end;
for J :» 1 step 1 until 3 do 
begin

If QUT[j] - 0 then goto exit; 
out basic symbol (d out,158); 
if OUT[ j ] > 0 then

out basic symbol (d out,193) else 
out basic symbol (d out,209); 

out basic symbol (d out,158); 
if abs(0UT[J]) f  1 then
write (d out,F,abs(OUT[j])); 

out basic symbol (d out,6o + j);
exit:

end;
end procedure out coordinate;
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write text (d out,_[[2c]EQUIVALENT*POSITION*
NUMBER ***j_); 

write (d out,format(JnddsssssJ_)»sym no); for i := 1 step 1 until 3 do 
begin

out coordinate(d out,vector[3xi -
2],vector[3xi - 1], vector[3xi],vector[9 + i]); 

out basic symbol (d out,(if 1 ^ 3  then 166 
else 152));

end;
out basic symbol (d out,l6o); 

end procedure out equivalent positions; 
procedure skip char(d in,char);

value d in,char; Integer d in,char; 
begin

Integer symbol; 
in: symbol := in basic symbol (d in);

if symbol r  char then goto in; 
end procedure skip char: 
procedure orthogonalise (in vector,out 

vector,matrix,mode);
value in vector,matrix,mode; boolean mode; 
array in vector,out vector,matrix; 

begin
procedure axes only (in vector,out vector,matrix); 

value in vector,matrix; 
array in vector,out vector,matrix; 

begin
Integer numb;
for numb := 1 step 1 until 3 do

out vector[numb] := in vector[numb] 
xmatrix[numb,numb]; 

end procedure axes only;
procedure full matrix (in vector,out vector,matrix); 

value in vector, matrix; 
array in vector,out vector,matrix; 

begin
Integer numb;
for numb := 1 step 1 until 3 do 

out vector[numbJ := in vector
[1]xmatrix[numb,1] + in vector
[2]xmatrix[numb,2] + in vector
[3]xmatrix[numb,33; end procedure full matrix; 

if mode then
axes only (in vector,out vector,matrix) 
else full matrix (in vector,out vector,matrix); 

end procedure orthogonalise;
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procedure out name(d out,f dev,a,b,fallure); 
value a,b,d out,f dev; Integer d out,f dev; 
real a,b; label failure; 

begin
Integer y,i,f,spaces:
Integer array SYMBOL!1:4];
y := a; spaces := 0;
for 1 :=* 4 step - 1 until 1 do
begin
f y+256; SYMBOL!1] y - 256xf; y := f;

end;
for 1 :« 1 step 1 until 4 do 

if SYMBOLTTj- 15d then 
spaces := spaces + 1 else 
out basic symbol (d out,SYMBOL!i]); 

y :« b;
for 1 :=» 3 step - 1 until 1 do 
begin

f :=* y+10; SYMB0L[i] :* y - lOxf; y :* f; 
end;
If y ^0 then 
begin
write text(f dev,[[2cllNTEGER*F0R*0UTPUT*

greater*than*99?T) ;goto failure; 
end;
out basic symbol(d out, 132); f :== 0;
for 1 :» 1 step 1 until 3 do
begin

if f » 0 and SYMBOL!i] =0 then 
begin

spaces :« spaces + 1; goto next; 
end;
out basic symbol (d out,SYMBOL! i]) ; f :=* 1;

next:
end;
out basic symbol (d out,148); 
for 1 := 0 step 1 until spaces do 

out basic symbo1 (d out,158); 
end procedure out name:
procedure out symmetry (d out,sym,cell,no); 

value d out,sym,no; integer d out,sym,no; 
integer array cell; 

begin
integer i;write { d out,format(_[nclsss] 1 ,sym); 
out basic symbol (d out, 13?); 
for i 1 step 1 until 3 do
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begin
write (d out,format(i_-d_]J ,cell[no,i]);
If 1 ^ 3  then out basic symbol (d out,166); 

end;
out basic symbol (d out,148); 

end procedure out symmetry;
procedure in equiv pos(d in, d out, vector, failure); 

value d in, d out; Integer d in, d out; 
array vector; label failure; 

begin
Integer i; 
boolean semicolon;
procedure coordinate(a1, a2, a3* t, termin);

real a1, a2, a3* t; boolean termin; 
begin

integer char a, char b, num, sig;
real number; 
boolean first;

set sig:
clear b:
next:

aT
sig
char
char

a2 a3 0 .0 : first true;
num o;

b
a o;

digits:

slash: 
xyz:

in basic symbol(d in); 
goto if char a * 158 or char a * 160 or 

char a * 174 then next else 
if char a = 193 or char a = 209 then 
signs else if char a <9 then digits 
else
if char a ** 61 or char a * 62 or char 
then xyz else lT~char a = 161 tlien 
slash else terminator;

* 63

char b :*= char b X 10 + char a; first :* false; 
goto next; 
num :=* char* b;
number :» if num , ~ ---

sig x nuiry’char b else if char b /  0Poto clear b;0 then 
b else if char

signs:

then sig X char b else sig; 
if char a = 61 then a1 := number else 

if char a =* 62 then a2 := number else 
a3 •= number; goto set sig; 

if first then 'pg&insig := if char a * 193 then +1 else -1; first :=* false
end;
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if char b t  0 then 
begin

t : = _if num r 0 then
sig x num/char b else sig x char b;

sig := if char a = 193 then +1 else -1
end;
num : = 0; goto clear b; 

terminator:
if char a r  166 and char a ^ 152 then
write text(d out, [[2c]Wrong*terminator.J); 

termin := char a = 152; 
if num ^ 0 or char b / 0 then

t := if num r  0 then 
sig x nuir/char b else sig X char b 

end procedure coordinate; 
for i :* 0, 1, 2 do 
begin

coordinate(vector[3 x 1 + 1], vector[3 x i 
+ 2], vector[3 x i + 3]* vector[10 + i], 
semicolon);

if semicolon and 1 ^ 2  or not semicolon and 
1 = 2  then 

begin
write text(d out, [[2c]Equivalent* 

positions*are*out*of*phasej_); 
goto failure 

end 
end

end procedure in equiv pos:
procedure pack four (d in,x); value d in;

integer d in; real x; 
begin

integer i,j;
integer array SYM [-2:5];
SYML-2J := SYM[-1] := SYM[0] := 158;
for i := 1 step 1 until 5 do 
begin

in: SYM[i] := in basic symbol (d in);
if SYM[1] = 158 or SYM[1] = 160 or SYM[1] =

174 or SYM[1] = 209 or SYM[1] * 152 
then goto in;

If SYM[lTT 132 and SYM[i] / 158 andSYM[l]^ 160 and SYM[i] f 209 then goto next;
for j :=■ 4 step -1 until 1 do
SYM[j] :=~SYM[i + j - 5]5 

goto form x;
next:

end;
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form x:
i := 256x(256x(256xSYM[1] + SYM[2]) + SYM[3])
+ SYM[4J j 

x :* i; 
end procedure pack four;
procedure SORT (n, t, p, in); value n, t, p;

Integer n, t, p; real array in; 
begin

integer h, i, j, flag; 
real C;
for j:- 1 step 1 until entier (n/2) do 
begin 
flag:-0;
for i:- j+1 step 1 until n-j+1 do 
begin

if in [i,p]> in [i-1,p] then goto L1; 
flag:- 1;
for h:- 1 step 1 until t do 
begin
C:-in [i,h]; in [i,h]:» in [i-1,h]; 
in [i-1,h]:=C; 

end;
L1: if in [n-i+1,p]< in [n-i+2,p] then goto L2;

Tlag:-1;
for h:- 1 step 1 until t do 
begin
C:=in[n-i+1,h]; in [n-i+1,h]:- in [n-i+2,h]; 
in [n-i+2,h]:-C; 

end;
L2:

end;
if flag-0 then goto finish; 

end; 
finish:

end procedure SORT;
D IN :- 20: DV 1 :- DV 2 :- 30; lineprint :- false;
open (D IN); open (DV 1); pi :- 3*141 592 653 b;
pibytwo :- pl/2; radian :- pl/180; 
angle :- 1 /radian; f ind( 100 ,_[DG030003j_) ; 
beginarray title[1:200],cell[1:6],index[1:20]; 
read binary (100,title,[TITLEJJ ; 
read binary (100,cell,_[5eLL] ):read binary (100, index,JJENDEXjJ > M : - index[ 1 ];
for i :- 1 step 1 until 200 do
beginJ :- entier(title[i] + 0.5); 

if j * 152 then goto unit cell;
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out basic symbol(DV 2,j); 
end; 

unit cell:
a :** cell[1]; b :=* cell[2]; c :* cell[3]; 
alpha :=* cell[4 ]; beta := cell[5]; gamma :* cell[6]; end;

d max :=• read (D IN); a max :=» read (D IN);
skip char (D IN,160);
if a max > d max or d max > 10 then
begin
write text (DV 1,[[2c]D*MAX*QR*A*MAX*INAPPROPRIATE!); 
goto end; 

end;
d max :** d maxT2; num :« 0; restrictions := false; 

enter:
i :* in basic symbol (D IN);
if i = 158 or i « 160 or i = 174 then goto enter; 
if i * 25 then goto next else if i = 29 then 
begin
num :* read (D IN); 
if num > 30 then 
begin
write text (DV 1 ,J!2c!T00*MANY*RESTRICTI0NS_].);foto end; ;

restrictions := true;
for j := 1 step 1 until num do
begin

pack four (D IN,TEST[j,1]); 
pack four (D IN,TEST[j,2]J;
TEST[j>3] read (D IN)T2; skip char (D IN,16o ); 

end;
goto enter; 

end 
else 

begin
write text (DV 1 ,l_[2clNUMBER*0F*CELLS*N0T*

SPECIFIED!);foto end; jnext-—  . NCKEY read (D IN): , ,if CKEY ? 0 and CKEY i  1 and CKEY ^ 27 then"begin
write text (DV 1 ,J! 2clWR0NG*NUMBER*0F*CELLSj.); 
goto end; 

end;
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if CKEY >0.5 then goto lattice;
ITT :* C :=* P : = Z :=* 1; goto evaluate matrices;

lattice:
LT := read (D IN); C :=* read (D IN);
P := read (D IN); Z :=* PxC;

evaluate matrices: 
begin
array R[1:Z,1:12],A[1:12]; 
if CKEY > 0.5 then 
begin

i := in basic symbol (D IN); 
for i := 1 step 1 until P do 
begin

in equiv pos (D IN,DV 1,A,end); 
for j := 1 step 1 until 12 do R[i,j] := A [J];

end; 
encT 

else 
begin

for i := 1 step 1 until 12 do R[1ji] 0.0;
RTT.I] RTT75] RL1>9] :-+1jend;

KEY 1 :- KEY 2 :* KEY 3 0;
print:

i := in basic symbol (D IN);
if i * 152 or i * 158 or i = 160 or i =» 174

then goto print else if i * 16Pthen
goto cpr finished else if i * 27 then

begin
KEY 1 :« 1; skip char (D IN*16o ); goto print;

end
else if i * 26 then 

begin
KEY 2 :* 1; skip char (D I N , l 6 o ) ;  goto print;

end
else if i * 30 then 

begin
KEY 3 skip char (D I N , l 6 o ) ;  goto print;

end 
else 

begin
write text (DV 1 ,JJ_2c]0PTI0NAL*0UTPUT*

instructions*n o t*unBerstqqdJ_) ;
goto end; 

end; 
cpr finished: 

beginarray X[1:M,1:3]>Ch[l:M,1:2];
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read binary (100,Ch,_[CHj_) ;
read binary (100,X,_[_X]_) ; rewind (100);
axes orthogonal :=* abs(pibytwo - alpha) <

0.000 000 1 and abs(pibytwo - beta) <
0.000 000 1 and abs(pibytwo - gamma) <
0.000 000 1; 

if axes orthogonal then 
begin
NL1 ,1 ] := as N[2,2] :-b; N[3,3] s- c;
N[1,2] := N[1,3] s-N[2,1] :»N[2,3]

N[3,l] s -  N[3>2] : = o.o;
end

else
begin
NIT,2] :«N[1,3] N[2,3] :«0.0;
N[1,l] :« a X sqrt((sin(beta))T2 - 

((cos(gamma) - cos(alpha)xcos(beta)) 
/sin(alpha);T2);

N[2,1] :* a X (cos(gamma) -
cos(alpha)xcos(beta))/sin(alpha);

N[2,2] :* b x sin(alpha);
N[3>1] s* a x cos(beta):
N[3j2] :=» b x cos(alpha); N[3»31 • * c; 

end;
if C > 1.5 then begin
for 1 :=* 1 step 1 until P do 

for j 1 step 1 until 12 do 
R[P + i,jTs^ -end;

LP :* (if LT 4 then LT - 1 else 1);
SN s- Z x (LP + 171 
begin
array T[0:LP,1:3J5 
TLo,1 ] :=* T[0,2] :« T[0,3] s- 0.0; 
if LP » 0 then goto generate; 
l f_ LT * 2 then goto I lattice else 

if LT * 3 then goto R lattice else
if LT ** 4 then goto F lattice else
if LT = 5 then goto A lattice else
if LT =* 6 then goto B lattice else
if LT * 7 then goto C lattice else

beginwrite text (DV 1, U^2cjLATTICE*NUiraER*WR0NGj_)
foto end; ;

lattice:T[l,1] :=T[1,2] :-T[1,3] 0.5{



goto generate;
R lattice:

T[1,l] := T[2,2] := T[2,3] := l/3j
T[1,2] := T[1,3] :=T[2,1] :=2/3;goto generate;

F lattice:
T[1,1] := T[2,2] := T[3,3] := 0.0;
T[1,2] :=T[1,3] :=T[2,1] := T[2,3] :=

T[3,1] := T[3,2] := 0.5;goto generate;
A lattice:

T[ 1,1 ] := o.o; T[1,2] :=T[1,3] :=0.5
goto generate;

B lattice:
T[1,2] := 0.0; T[1,1] :=T[1,3] :=0.5goto generate;

C lattice:
T[1,3] := 0.0; T[l,l] : = T[1,2] :=0.5.

generate:
begin
array Y[ 1 :M,1:SN,1:3]; for 1 := 0 step 1 until LP do 

for j := 1 step 1 until Z-do 
for k := 1 step 1 until M do

for 1 := 1 step 1 until T^do
Y[k,J + Z x 1,1] := R[j,Txl - 
2] x X[k,1] + R[Jj3 x 1 - 1 ] x 
X[k,2] + R[J,3 xljxX[k,3] +
R[J,9 + 1] + T[i,l]; for 1 : = 1 step 1 until SN do 

for j : = 1 step 1 until M~do 
begin

for k := 1 step 1 until 3 do 
F[k] := YHTljk]; 

orthogonalise (F,G,N,axes orthogonal); 
for k := 1 step 1 until 3 do 

Y[J,i,k] := G[k];
end;
if CKEY < 1.5 then 
begin

CTTl ,1]  := C l [ 1 , 2 ]  : = C 1 [ 1 , 3 ]  := 0 . 0 ;
CKEY := 1; goto jump; 

end;
i : =s 1 •
for j := 1, 2, 3, 10, 11, 12, 19, 20, 21 do 

Cl[J,i] := o; 
for 3 := 4, 5. 6, 13, 14, 15, 22, 23, 24 do 

C1[J,i] := +1;
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jump:

for j := 7, 8, 9, 16, 17, 18, 25, 26, 27 do
TT[j,i] := -1; —i := 2; •
for j := 1, 4, 7, 10, 13, 16, 19, 22, 25 do Cl[j,i] := 0; 
for j := 2, 5, 8, 11, 14, 17, 20, 23, 26 do 

Cuj,i] := +1; —
for j := 3, 6, 9, 12, 15, 18, 21, 24, 27 do 

C1[j,i] := -1; 
i : — 3;for j := 1 step 1 until 9 do Cl[j,i] := 0; 
for j := 10 step 1 until 1B~do Cl[j,i] := +1;
for j := 19 step 1 until 27 do C1[j,i] := -1;
for i := 1 step 1 until CKEY do 
begin

for j := 1 step 1 until 3 do F [j] := C1[l,j] 
orthogonalise (F,G,N,axes orthogonal); 
for j := 1 step 1 until 3 do C2[i,j] := G[j] 

end;
if KEY 1 <0.5 then goto out orthog;
FORM 1 := format (Lnd.dddd]);
FORM 2 format (Tndd.ddJJ; 
write text (DV 2,[~[~3c]a*=**J); 
write (DV 2,FORM 1 ,a) 
write text 
write (DV 2 
write text 
write (DV 2 
write text 
write (DV 2 
write text 
write (DV 2 
write text 
write (DV 2 
write text

DV 2 , [ [ 2s1ANGSTROMS[8s]alpha*="*]) 
FORM 2,alpha x angle);
DV 2, [ [2sjpEGREESr2cj_b*=**_]_) ;
FORM T7b) ;
DV 2,Xl2sUNGSTR0MS[8sJbeta**=**J_) 
FORM 2,beta x anglej;
DV 2,_[_[_2sjDEGREES_[2cJ_c*=**_]_) ;
FORM 1,c):
DV 2, _[_[_2sJ_ANGSTROMS_[_8 sJ_gamma*=* *J_) 
FORM 2,gamma X angle);
DV 2,X_[_2sJpEGREESr5cll); 

for i := 0 step 1 until LP do
for j := 1 step 1 until Z do

begin
for k := 1 step 1 until 9 do A[k] := R[j,k];
for k := 1 step 1 until 3 Ho

A[9 + k] := R[j,9 + k] + T[i,k]; 
out equivalent positions (DV 2,j + Z x i,A); 

end;
write text (DV 2. [ [5cJ_FRACTI0NAL*

COORDINATES[3cJTJ; 
gap (DV 2,100J; 
for i := 1 step 1 until M do 
begin
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out name (DV 2,DV 1,Ch[i,1],Ch[1,2],end); 
for j := 1 step 1 until 3 do

write (DV 2,format(Lsss/n7ddddd; 
sJ_),X[i,j]); 

out basic symbol (DV 2,16o ); 
end;
gap (DV 2,100);

out orthog:
if KEY 2 < 0.5 then goto begin; 
write text (DV 271T5cT0RTH0G0NAL*

COORDINATES[3c U J ; 
gap (DV 2,1007"; 
for i := 1 step 1 until M do 
begin

out name (DV 2,DV 1,Ch[i,1],Ch[1,2],end); 
for j := 1 step 1 until 3 do
write (DV 2,format(_L_sss^ndd.dddd;
SJ_) * Y [ i , 1 , j J) ; 

out basic symbol (DV 2,l6o); 
end;
gap (DV 2,100); 

begin: for i :* 1 step 1 until M do
begin

integer COUNT;
array RES[1:500,1:(7 + KEY 3)]5 COUNT := 0;
for j := 1 step 1 until CKEY do 

for k := Til KEY 3 > 0.5 and j = 1 
then 2 else 1) step 1 until SN do

for 1 := 1 step 1 until M do
begin
for m := 1 step 1 until 3 do
F[m] := YlTTk.m] + C2[,J,mT - Y[i,1,m]j 

S :■* F[1]T2 + F[2]T2 + F[3]T2;
D := d max;
if not restrictions then goto out; 
begin

boolean check 1,check 2; 
for m :» 1 step 1 until num do

for n := 1 step 1 until 2 do
begin

check 1 := abs(Ch[i,l] - 
TEST[m,n]) < 0.1; 

check 2 := abs(Ch[l,1] -TEST[m,(if n = 1 then 2 else
l)i) / 07T- ----- ----if check T’aAd check 2 then 
D := TESTlm73J;
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end;
end testing block; 

out: if S > D or S = 0 then goto not required;
(?OUNT := COUNT + 1; 
if COUNT = 500 then 
write text (DV 1,[[2c] 
TOO*MANY*BOND*LENGTHS*ASKED*FORj_) ;

RES[COUNT,1] :- 1; RES[C0UNT,2] :=* k;
RES [COUNT, 3] :=* j; for m := 4 step 1 until 6 do 

RES[COUNTTmj :* FLm - 3];
RES[COUNT,71 :=* sqrt(S);

not required:
end;
SORT(COUNT,(7 + KEY 3),7,RES); 
write text (DV 2, [ [2c_]_AT0M*A_[_7s_]_ 

ATOM*B[4siEP_[_6s7®ELL[_6s]_ 
A-B*ANGSTR0MS_[2cJ_]_) 

for j := 1 step 1 until COUNT do 
begin

out name (DV 2,DV 1,Ch[i,1],Ch[i,2],end); 
for k : = 1 step 1 until 3 do 

out basic symbol (DV 2,15^); 
out name (DV 2,DV 1,Ch[RES[j,1],1] 

,Ch[RESLJ,1],2],end)s 
out symmetry (DV 2,RESLj,2],C1,RES[j,3] ) } 
write (DV 2,format

(isssnd. ddddcj.),RES [ J, 7 ]) 5
end;
if a max f  0 and COUNT > 1.5 then 
begin

write text (DV 2,_[X2cjAT0M*A[4sJ[
EP_[6s ] CELLjJ 3 s J AT0M*B [ 8si ATOM*̂ i4siEPi6s3CELL_iTs_]ANGLE*ABCi2cJJ_) ; 

for j := 1 step 1 until COUNT do
for k :=* j + 1 step 1 until COUNT do 

begin
if RES[j,7] > a max or RES[k,7] > a max then goto one more; 
t := (RESTjT4JxRES[k,4] +
RES[j ,5 ]xRES[k,5] +
RES[j ,6]xRES[k ,6 ]) / (RES[j ,7 ]xRES[k ,7 ]) j  

if t * 0 then 
begin

t := 90.0; goto case; 
end

else if t > +1 then 
begin
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t := 0.0; goto case; 
end

else if t < -1 then 
begin

t := 180.0; goto case; 
end;
t := arctan(sqrt(1 - tT2)/t)xangle; 
if t < 0 then t := 180.0 + t; 

case: out name (DV 2.DV
1,Ch[RES[j,1],1],Ch[RES[J,1],2],end)2 

out symmetry (DV 2,RES[j.2J,C1,RES[j, 3 J); 
write text (DV 2,[[10s]J); 
out name (DV 2,DV 1 ,Ch"[i, 1 ] ,Ch[ 1,2] ,end) ; 
write text (DV 2,[[4s]]); 
out name (DV 2.DV

1,Ch[RES[k,1J,1],Ch[RES[k,1],2],end): 
out symmetry (DV 2,RES[k,2],C1,RES[k,3J) I 
write (DV 2,format(_[_ssssndd.ddcJ_) s t);

one more:
end angle calculation; 

ericT angle searching loop; 
encf loop through atom list; 

end cell coordinate block; 
end block lattice type; 

end atom list block; 
end block equivalent positions;

end:
close (D IN); close (DV 1); close(lOO); 

end->
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