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Summary

The thesis is divided into three jparts: the
first part is a brief review of the theory and methods
of x-ray crystallography, the second part describes
a number of computer programmes devised either wholly
or partly by the author, and in the third part accounts
of three structure analyses are presented. '

The computer programmes described in Part II are
written in ALGOL for the English Electric KDF9 Computer.
The molecular functions system is a group of six
programmes for interpreting the results of a structure
analysis: bond lengths and interbond angles with their
standard deviations, intermolecular contacts, and mean
plane equations may be calculated and rigid-body
vibrational analysis can be carried out. The automatic
structure solution (ASS) system allows semi-automatic
Fourier refinement to be performed. The minimum residual
programme permits crystal structures to be refined in
projection by direct calculation of the minimum R-factor.

The structure analyses presented in Part III are
applications of the x-ray method to organic and organo-
metallic structural problems,

It has been known for more than twenty years that
indene can form aul:2 adduct with dimethylacetylene-

dicarboxylate. Earlier chemical and spectroscopic studies
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on the adduct did not lead to a successful structure
determination. The molecular structure of the adduct
has now been definitely established bf X-ray analysis
of its dibromo-derivative.

The structure analyses of phenanthrenechromium
tricarbonyl, Cl4HlOCr(CO)3, and of 9,10-dihydro-
phenanthrenechromium tricarbonyl, 014H120r(00)3, were
undertaken to obtain accurate dimensions for aromatic
rings bonded to chromium. In both analyses the
standard deviations of the C-C bonds range from 0.006
to 0.010 X. The results suggest that the chromium
atom causes a slight increase in the mean bond length
of the bonded ring without alteration of the ring
symme try. Structural studies on related arenechromium

complexes are discussed.,
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PART T

SOME METHODS OF X-RAY ANALYSIS



1,1 INTRODUCTION

X-radiation is produced when high energy electrons
collide with matter. It was shown by von Laue in
1912 that x~-ray wavelengths are of the same order of
magnitude as the distances between adjacent atoms in
solids and that, consequently, diffraction patterns
are produced when an X-ray beam strikes a crystal.

The science of x-ray crystallography is mainly
concerned. with the interpretation of such diffraction
patterns. ‘The angles at which diffracted beams occur
are determined solely by the translations of the
crystal lattice., Because xX~rays are scattered by
electrons the intensities of the diffracted beams are
related to thé distribution of electrons in the crystal.
From a study of the x-ray diffraction pattern it is
therefore possible to determine not only the geometry
of the unit cell of the crystal and its space group,

" but also the electron density distribution and the
positions of the constituent atoms.

The last fifty years have seen the methods of
x-ray structure analysis being applied to more and more
complex structures. Initially, greatest progress was
made in the field of ionic crystals. Molecular

crystals constituted more of a problem, due both to the



greater difficulty of determining the electron density
distribution from the x-ray intensities and to the

scale of the calculations involved. The discovery that
the interpretation of a diffraction pattern is greatly
simplified when the structure contains a small number

of atoms of much greater scattering power than the

rest and, more recently, the advent of the electronic
computer have removed these problems to a large extent.
Today many complex organic molecules - steroids,
carbohydrates, terpenoids, alkaloids, and even proteins -

have yielded to the x-ray analyst.



1.2 THE GEOMETRY OF X-RAY DIFFRACTION

Consider monochromatic x-radiatian of wavelength A
to be incident upon a crystal in a difection defined
by the unit vector A s, (PFig. 1.1). The path difference,
dp, between a wave scattered at a point A in a direction

defined by the unit vector A s is, relative to a wave

scattered at the origin O in the same direction,

dp = 03-AC = AE-Q§ﬁ§0) = AL.S (1)
where OA = r and S = s~sg. The vector S defines the
spatial relationship of the incident and diffracted
beams. From Fig., 1,1 it is easily seen that if 28

is the angle between incident and diffracted beams, then

Is] = 2sina/A (2)

The path difference A r.S corresponds to a phase
difference 2 Mr.S. If the electron density at A in
~electrons per unit volume is p (r), then the wave
scattered by the electron density in the volume element
dV about A is defined ip amplitude and phase, relative
to the wave scattered by a single electron at the origin,

by the expression /

i

G,(8) = p(i)dVeXP2”i£-§ (3)
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The electron density p(xr) is a periodic function.
If a2, b, and ¢ are the translations of the crystal
lattice and u,v,w any three integers, then the points

which lie on the lattice defined by the vector equation

R=pr+ug + Vb + we (4)
have identical electron density. The wave scatvtered
from anyone of these points, B, in the direction A s
is therefore

p(xr)dVexp2miR.S

G, (8)

GA(§)exp2ﬂi(ug + vb + we).8 (5)

The wave scattered by the crystal will have
an appreciable amplitude only if all unit cells ‘scatter
-in phase, that is if the path difference between GAQg)
and GB(§) is always an integral number of waveleng%hs.
If n is an integer this condition may be written as
Alug + vb + we)S = nN&or all values of u,v, and w,

/

so that /

o
L4?]
|

=k where h, k, and % are integers,

e
| [9))
|

4

e}
o
It
i}

(8)

(7)




Equations (7) are called the ILaue equations,
2.5 = h defines, in the space of S, a Family of planes
normal to a. The spacing between any‘two adjacent
planes is 1/ a |. Since a, b, and c are never
parallel, the ILaue equations define turree sets of equally

spaced planes whose intersections form a lattice in the

space of S. The equation which defines such a lattice 1is

S = ha* + kb¥* +4 c¥ (8)
From (7) and (8) it immediately follows that a* is
normal to b and ¢ and that the projection of a* upon a
is /! al . Similar results follow for b* and c*.
The primitive translations of the lattice defined by (8),
which is termed the reciprocal lattice of the crystal,
are related ta the primitive translations of the real
space lattice of the crystal by

a* = bxg/V

b* = cx a/V (9)
ax b/v

where V is the volume of the unit cell in real space,

1]

c¥*

The physical significance of the Laue equations
may now be stated. They define the values of the vector
S, and hence the relationship between incident and
diffracted beams, which result in the beam diffracted by

a crystal having an appreciable amplitude. The values

-8
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of S which fulfill this condition are functions only
of the lattice translations of the crygtal. Each
such value of S is associated with a point on the
reciprocal lattice of the crystal and is uniquely
defined by the lattice coordinates h,k, and 4.

The Laue equations may be rewritten as

(a/h).8 = (b/k).8S = (¢/4).8 =1 (10)
By definition a/h, b/k, and ¢/ ftare the intercepts
which the plane with Miller indices hk £ makes on the
crystal axes. From (10) the projections of three
points on this plane on to S are equal. S is therefore
normal to the plane and | S | = 1/8 where & is the origin
to plane distance. Substituting for \§ lfrom equation
(2) gives

2dsing = A (11)

From Fig. 1.1 it can be seen that s and s, make equal
angles 6 with the plane which is normal to S. When the
diffraction conditions (7) hold, therefore, the incident
and diffracted beams stand in the same relationship to
the plane with Miller indices hk 4 as incident and
reflected beams do to a mirror. This treatment, which
is due to W.L. Bragg (1913), allows diffraction by a
crystal to be considered in terms of the simpler concept

of reflection by a crystal plane.



1.3 THE STRUCTURE FACTOR
The wave scattered by the entirejcontents of one

unit cell, G(S), is completely defined by

G(8) = Jp(rlexp(2mir.s)av . (12)
where the integration is over the volume of the unit
cell. G(S) is thus the Fourier transform of the
electron density distribution. The electron density
function, p(r), may be regarded as a sum of N independent
atomic electron densities and (12) may then be rewritten

as
+om

N f { L
G(§) =3 J pn(;)expu2ﬂi(g+£n).§JdV (13)
n=J1]-o

In (13) pn(_x;) is the electron density distribution of

th

the n atom referred to an origin in the atom, This

origin is connected to the origin of the unit cell by
the vector r .
The function

-+
S

£.(8) = J p (zlexp2mir.s av (14)

- (0

is the Fourier transform of the atomic electron densify
and is termed the atomic scattering factor. If the

atom is centrosymmetric aﬁd if the origin of r has been
taken at the centre of symmetry, fn(§) is a real function;

if pn(z) is spherically symmetric and hence a function

-10~



oflglonly, fn(g) is a function of i§l= 2sin 9/ only.
Since pn(g) is known exactly only for the isolated
hydrogen atom the atomic scattering factor can in
general only be calculated approximately. Tabulated
results of such calculations are given for spherically
symmetrical atoms in Internetional Tables Vol. III
(1962). The physical interpretation of the scattering
factor is that it describes the total wave scattered
by " an atom,. There are phase differences between the
waves scattered at different parts of the same atom and
such phase differences increase with scattering angle.
Accordingly the amplitude of the total wave scattered
by the atom, and hence fn(g), decreases as sin 6§ /A
increases,
Substitution of (14) into (13) yields

G(s) = {f L(8)exp2mir .8 (15)

The total wave scattered by the crystal has an appreciable.

- amplitude only if

S = ha* + kb¥* + Lc¥ (8)
If the fractional coordinates of the nﬁh atom are
X1 Vys and 2z then
- — -," ' 2N\
£n = xné + ynp. + an. (lO)

-11~



Making use of the relations g.a* = 1, a.b* = a.c¥ =0

and similar ones involving b and ¢, it is found that

r,.8 = hx + ky, +42 (17)

Substitution of (17) into (15) gives the structure

factor expression

G(S) = F(hkt) = fn(111{£~\3x1>2 i (hxn+l‘cyn+" I,zn) (18)

o

The structure factor, F(hk£), is defined only when the
vector S takes values which result in the total ‘wave
- scattered by the crystal heving a non-zero amplitude,
It then describes the amplitude and phase of the wave
scattered by one unit cell, and, since all unit cells
are scatteriné in phase, also describes the amplitude
and phase of the total wave scattered by the crystal.

F(hkt) is generally complex and may be written as

F(hki) = A + iB (19)
where
A - % fn(hkﬁl)cosizm’lxn+kyn+£zn) (20)
B = ;: fn(11k£)sin2ﬁ(hxn+kyn+}Zzn) ' (21}
TheThe_modulus | F(nk #),and_phase, o (hk 9, are_defined
by
(k)= (a2 & 3% (22)
« (hk4) = tan™t B/A _ (23)

-]12=



If the space group is centrosymmetric, provided
the origin of coordinates has been taken at a centre
of symmetry, then B=0 andx(hk4) is restricted to the
values of OO or 1800.

The atomic scattering factor is normally calculated
from the electron density of an atom at rest. Atoms
~in crystals have an appreciable motion at room temper-
ature due to thermal vibration. The effect of such
motion is to make the atomic electron density more
diffuse and so to increase the rate at which lie amplitude
of the wave scattered by the atom falls off with scatter-
ing angle. To allow for the effect it is necessary
to replace the atomic scattering factor in the structure
factor expression by the transform of the electron density
of the vibrating atom,. If the smearing function, H(x),
gives the probabilivy that the atomic centre is at X,
the origin of x being tseken at the maximum of the electron
“density of the vibrating atom, then the electron density

of the vibrating atom p_(z) is given by
oo

p,(z) = J p(u)t(r-u)du ' (24)
where p(u) is the electron density of the atom at rest.
p,(r) is thus the convolution of p(u) and %(x), and its

transform is the product of the transform of t(x) and the

13-



atomic scattering factor (which has aliready been shown
to be the transform of plu)). Blochi(1932) showed
that for an atom vibrating in an isotfopic harmonic
potential the smearing function, t(t), is a Gaussian
and that its transform is given by

a(8) = exp-27n2 Us? = exp-8 PUsin? 0/A% (25)
where U = u2 and u is the root mean square amplitude
of vibration.
If the atomic vibrations are anisotropic U must be
replaced by the symmetrical third order tensor U and the

mean square amplitude of vibration i:. the direction of

the unit vectori is then

(26)

where both £ and U are referred to the re01nrocal lattice
axes, In ‘the anisotropic case the transform of the

smearing function becomes

2,42 2 2

a(8) = q(nk4) = exp-2m  (Ujqh%a*“ + U,k p*e ,E

+2U,k fb¥c* + 2, tho¥a¥ + 2U12hka*b*) (47)

23

The structure factor expression may therefore be written as
N -
F(hkt) = % £ (hxz)qn\hkz)expz mi(hx +kJn+zn/ (28)
1

~14-



l.4 THE FOURIER SERIES REPRESENTATION OF EIBCTRON DINSITY
The electron density functiocu, p(;), is a finite
single~valued function which is periodﬁc in three
dimensions, It may therefore be represented by a
Fourier series. If u,v, and w.are integers and %,y,.

and z fractional coordinates then

-+
p(zr) = p(xyz) D) Aluvw)exp-2 T (ux+vy+wz) (29)

w

Rt - 1)

The structure factor is the Fourier transform of p(xyz),

so that 111
P(hke) = VJJJ p(xyz)exp2 i (hx+ky+ /z)dxdydz (30)
000

Replacing p(xyz) in the above expression by the Fourier

series (29) gives, with some rearrangement,
111

“+ o

r ., ~ )

Flhk?) =V D 5;[ J Froafuvw)exp2mi {h=u)x.exn2m (k-v )y
\ Y}

=@ 000

x exp2Ti(l-w)z.dxdydz _ (31)

The integral in (31) enclosed in square brackets is zero,

unless h = u, k = v, and 4= w, Therefore

F(hk 4 = VA(uvw) (32)
" which on substitution in (29) yields
1 4+ =
p(xyz) =y £ = 3 F(hk Hexp-2 1 (hx+ky+ ) , (33)
h K

The hké coefficient of the Fourier series which
represents the electron density function is thus the

structure factor F(hkt ), scaled by the reciprocal of the

cell volume,

~15=



1,5 THE MEASUREMENT OF STRUCTURE AMPLITUDES
The total energy, E(hk{), of thi x-ray beam
reflected from the set of planes with Miller indices

hk{ of a small rotating crystal may be shown to te

E(hk ) = K.I(hk4).p(hk). |P(nge)]? (54)
where K ia constant for the experiment and is given oy
B2 A 4
= 2
\ mn=e

The symbols in (35) have the following meanings:-—
Io is the intensity of the incident beam,

A 1is the wavelength of the x-radiation,

N is the number of unit cells per unit volume,

dV is the volume of crystal irradiated,

w 1is the angular velocity of the crystal,

e 1is the electronic charge,

m is the mass of an electron, and

¢ 1is the speed of light.

The polarisation factor, p(hki), takes into account the
unpolarised nature of the radiation used. For all
experimental conditions it is given by

p(hkt) =(1+cos?20)/2 (36)

The Lorentz factor, I(hk1), allows for the different
times during which the reflecting condition is obeyed

by different cryétal planes. It depends on the

16—



experimental method ﬁsed. For equi-irn-iination
Weissenberg photographs it tekes the fiorm (Tunell, 1939)

L(hkt) = sin 6(0082H - coszb)"% (sin2a)'1 (37)
wheret is the angle between the incident beam and the
plane normal to the rotation axis,

The energy of the diffracted beam is proportional
to its intensity, I(hk%¢), which may be measured by éither
the blackening produced by the beam on a photographic
film or by the number of quanta cetected by a radiation
counter held in the beam.

Therefore

I(hke) o L(hk i) .p(hks). !F(hk£)12 (38)

Using (38) the structure amplitude,!Fo[, of a
Bragg reflection may be determined from measurable
quantities, albeit on an arbitrary scale. The absolute
scale may be determined by experimental comparison with

a standard (Robertson, 19%34), Alternatively, it may

be deduced from the decrease in average structure amplitude

with scattering angle (Wilson, 1942) or at a somewhat

later stage in the analysis by comparison with structure

factors calculated from a reliable model of the structure.

Bquations (34) and (38) are strictly applicable

only to microscopic crystals but they are also found to

apply to the larger crystals used in diffraction experiments

-17~
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Such crystals have a mosaic structure, thatv is, their
lattice contains regions of disregistﬁy, and they behave
like an aggregation of approkimately alligﬂed microscopic
crystals rather than as a single block of ideal crystal.
However even with small mosailc crystals some effecis
which are negligible in the case of diffraction byAa
microscopic crystal become important, and, if neglected,
they may lead to systematic errors in the structure
amplitudes calculated by equation (38).

Chief amongst these is absorption, As an x-ray
beam passes through a crystal its intensity decreases
due to absorption and the beam incident on the lower
layers of the crystal is weaker than that incident on
the surface layers. The diffracted beam is also partly
absorbed., The resultant weakening of the intensity
of the diffracted beam is different for different
reflections and is greatest for the low order spectra,
Adequate correction for the effect is possible only for
crystals of spherical or cylindrical shape.

It is a consequence of the geometry of X-ray
diffraction that the beam reflected from a set of crystal
planes obeys the Bragg reflection condition for these
planes and may therefore be reflected again. ‘Such a

doubly reflected beam is parallel to the incident beam

-18-



and exactly out of phase with it. Primery extinction,
as the effect is called, thus results ?n the be.n
incident on the lower layers of the crystal being weaker
than the beam incident on the upper layers. Correction
for the effect is difficult.

When the Bragg reflection condition is satisfied
part of the incident beam is reflected by the upper
layers of the crystal and the beam incident on the lower
layers is consequently weakened, This effect is called

secondary extinction. Methods of correcting for the

effect are available,

1.6 THE PHASE PROBL=M

To calculate, using the Fourier series exp;ession,
the electron aensity distribution in a crystal it 1is
necessary to know the amplitude and phase of each
structure factor. The structure amplitude is an
experimentally accessible quantity but there is no
experimental method which allows phases to be determined;
this constitutes the phase problem of crystal structure
analysis.

Many ingenious methods of surmounting this problem
have been devised and somé of the more commonly used of
these are described below. It is, however, still true
that a rroportion of structures cannot be solved by

currently known methods.

~19~



1.6,1 THE PATTERSON FUNCTION
The function defined by Patterson,(1934) is the

self-convolution of the electron density. Itis defined

1

f

J p(xyz) .o(x+u,y+v,z2+w) .dxdydz (29)
0

where u,v, and w are fractional coordinates. If
Fourier series are substituted for the electron density
functions in equation (39), P(uvw) is found to be a
sum inéntegrals of the form

T = jfj F(hk HF(h'k? 2" )exp-2ni(h+h? )x.exp-2Ti(k+k!)y
GO0 xexp-2 (4 4")z.exp-27i(hutkv+iw) . dxdydz (40)

The integral T is zero unless h =-h', k = =-k', and {4 = =4'
when

T = F(hk £)F(hkL)exp-2mi (hu+kv+iw) | (41)
‘Since F(hk4) and F(hk%) are complex conjugates

C F(nke)P(RES) = | F(nx) |2 = |F(@RE) |2 (42)
and the Patterson function may be written as

P(uvw) =%. Em 2; 'll"(hk;@)lgex1>—2ﬂi(h.u+kv+2‘.-;') (43)

-0

To compute the Patterson function from equation (43)

only a knowledge of the structure amplitudes is reguired.
From equation (39) it can be seen v.oat the Patterson
function will attain 1arge values only if the vector
defined by (uvw) corresponds to a vector between two
peaks in the electron density distribution; the value

of P(uvw) will then be approximately the product of the

electron density values at the two peaks, Harker (1936)
-20-




pointed out thalt the presence of certain elements of
symmetry results in peaks being oonce?trated on special
lines and sections <through the three-dimensional Patterson
function,

In a unit cell containing N atoms the nuuber of
distinct interatomic vectors which can occur is N(N-1).

This also is the number of peaks which should appear

in the corresponding Patterson function. It is therefore

,

difficult to obtain the positions of all the atoms in
even a moderately complicated structure by inspection

of the Patterson synthesis,

1.6.2 THE HEAVY ATCM METHOD

If a structure contains a smell nwiber of heavy
atoms whose scattering power is approximately equal to
the combined scattering power of the other altoms then
the dominant peaks in the Patterson function will . 
correspond to vectors between the heavy atoms and it will
be possible to determine their positions, The phases of
structure factors in which only the heavy atom con-
tributions have been incliuded are, under such circumstances,
a good first approximation to the true phases and may be
used to calculate an electron density distribution.

The heavy atom method, as this technique 1s called,

-2l



is the most frequently used way of surmounting the

phase problem and is often the only way if the structure
is at all complicated, Its main disadvantage is that
the major part of each structure amplitude comes from
the scattering of the heavy atoms and the accuracy with
which the positions of the lighter atoms can be fixed
1s correspondingly lessened,

This difficulty is minimised in the method of
isomorphous substitution. A heavy atom derivative is
used to determine the phases but the final refinement
is carried out on an isomorphous derivative in which
the heavy atom has been replaced by a much lighter one,

The structural studies of +the phthalocyanines by
Robertson (19%5), (1936), and Robertson and Woodward
(1937), (1940) are classical examples of the successful
application of both heavy atom and isomorphous replacement

methods,

l.6,3 TRIAL AND ERROR METHODS

Models of a crystal structure which stand a
reasonable chance of being close to the true structure
can sometimes be developed from a consideration of such
factors as the limitations imposed by space group symmetry,
the chemical and physical properties of the crystal, the

!
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dominant features of the diffraction pattern, and from
possible similarities to known strﬁctgres; The
calculated diffraction patterns of the models may then
be compared with the observed diffraction pattern of
the crystal and those which show violent disagreement
discarded. The method is usually only applicable when
the molecular structure is known. The solutions of
the structures of pyrene (Robertson and White, 1947)

and of violanthrone (Stadler, 1953) are examples of

this approach,

1.6.,4 DIRECT METHODS

A number of authors, notably Harker and Kasper
(1948) and Sayre (1952), have derived relationships
between strudture factors which arise, for example,
if the electron density is constrained to be greater
than zero. Such relationships allow phases for the
larger structure factors to be calculated directly.
The method has been mainly applied to centrosymmetric
structures. A recent example of its use is the
determination of the structure of the alkalold jamine

by Karle and Karle (1964).

1,7 METHODS OF STRUCTURE REFINEMENT

From the approximate electron density synthesis
obtained by one of the methods outlined in the preceding

section the positions of most atoms in the structure
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can usually be determined. The process of structure
refinement may then be started. ]

The general aim is to minimise some function of
the difference between the observed structure amplitﬁdes
and those calculated for the model which is being
refined., In the early stages of refinement the
usual function minimised is the discrepancy index or

R~factor which is defined by

R=2z| [P | - P [ |/2]F | (44)
where \FO | is the observed structure amplitude,| FCI
that calculated for the model, and the summation is

over the structure amplitudes used in the refinement.

l,7.1 ZFOURIER REFINEMENT METHODS:

The atomic positions obtained from an approximate
electron density synthesis may be used to compute phases
which are closer to the true values than those on which
the original synthesis was based, It is therefore
possible, by preparing successive electron density
syntheses, to calculate continually better approximations
to the true phases. Such a process of refinement is'
complete when the phases derived from a synthesis are

the same as those used to calculate it.

The chief advantage of this method of refinement
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is that it can be started before all atoms in the
structure have been located. Under SPCh circumstances
Woolfson (1956) and Sim (1960) have suggested that
the Fourier coefficient should be multiplied by a
weight proportional to the probability that the phase
being applied to it is correct. The main disadvantage
of the Fourier method is that the atomic positions
derived from it are affected by termination of series
errors, Due to experimental limitations it is necessary
to truncate the Fourier series used to calculate the
electron density distribution after a finite number of
terms. In a typical organic structure this may lead
to errors in derived positions of the order of 0,02 .
‘Booth (1946) has suggested a method of allowing for this
effect by computing an electron density map with the
calculated structure factors as coefficients, The
corrections for termination of series errors to the
. coordinates derived from this map can be estimated.
These corrections may then be applied to the coordinates
derived from the electron density map calculated with the
observed structure amplitudes since series termineation
errors should be the same/in the two maps.

The properties of the difference synthesis, which

is derived from a-Fourier series whose coefficients are
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(FO-FC), have been described by Booth (1948a) and

Cochran (1951). The difference synthesis of a
completely refined structure has a flat topography in
which only random fluctueations in density are apparent.
A small error in an atomic position results in the atom
lying on a steep gradient of density in the difference
map. Temperature factor errors have also a characteristic
appearance, The main applications of the difference
synthesis in modern structure analysis have been in
checking the results of a least-squares refinement

(see below) and in determining the positions of hydrogen

atoms,

l.7.2 LEAST-SQUARES REFINEMENT

The application of the method of least~squares
to structure refinement was first suggested by Hughes
(1941). The object is to minimise somelfunction of
~the differences between the observed and calculated
intensities with respect to the structure parameters.

The function most commonly minimised is

M=% w(l|F | - chl)‘2 ' (45)

where the summation is ovér all m independent reflections

and w is a weight for each term, If the standard
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deviation of | F_(hk #)|is0 (hk%) it can be shown that
the choice of weights which gives thellowest standard

deviations in the derived parameters is
w(hkt) = 1 /0°(nk 4) (46)

If Pys Pps++.+,P, are the n parameters whose values
are to be determined the condition that M is a minimum
is that

aM/an =0 (j =1,2,¢0.,n) i | a (47)

i.e. zwaachl/apj =0

where & = lFol - IFC‘. The parameters have to be varied
until these n conditions are satisfied. For a trial
set of pj cloge to the correct values & may be expanded
as a function of the parameters by a Taylor series of

the first order

A(g+g) = A(g) - igaeiachl/api (48)

where e, is a small change in the parameter pj and
p end e stand for the parameters and changes as a whole.

Substitution of (48) into (47) yields the normal equations

n / )
15 (gw a!Fct aIFcl)ei = gwa a|Fc| (j = 1,2,000,n)

3pi  dpj 3p; (49)
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The normal equations may be written in matrix

notation as

n
i=% aijei = bj (j=1,2,......,n3, (50)
where
8y = I w3|F_[3]|F | | (51)
dP; 3Pj
and
b, =§1WAachl (52)
apj

The solution of (50) is

(a™); 5b; (53)

e. = i

b

h™Ms

1

where (g_l) is the matrix inverse to a

The number of independent elements of the matrix
a is proportional to the square of n, the number of
parameters being refined. Since the capacity of a
"computer for storing numbers is limited, it is often
necessary to make some approximation to a. The DEUCE
least-squares programme (Rollett, 1961) used in the work
described in Chapter I of Part III of this thesis
calculated a chain of 3 X/B and 6 x 6 matrices down the
diagonal of a for the refinement of the fractional
coordinates and‘aﬁisotropic temperature factors for each

atom plus a 2 x 2 matrix for scale and overall temperature
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factor refinement. The programme written by Cruickshank
and Smith which was used for the rest;of the work
described in Part III calculates a 9 x 9 matrix for

the parameters of each atom instead; if an isotropic
temperature factor is being refined a 4 x 4 matrix

is calculated.

Due to the omission of higher terms in the Taylor
series for 4 (48) it is usually necessary to calculate
several cycles of refinement before the minimum of M
is obtained. The criterion generally used to decide
when a refinement should be terminated is that the
ratio of the shift,ej, of each parameter to its standard
deviation should be less than unity and preferably less
than a half. - The course of the refinement may be

followed from the change in M or from the function

2

R' = EWA2/ZWF0 (54)

" The discrepancy index defined by equation (44) may also
be used and has the advantage that it is unaffected

by changes in the weighting scheme,

1.8 THE ANALYSIS OF RESULTS
At the conclusion of a structure analysis it is

often important to decide whether some function of the
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refined parameters, a bond length say, differs from
its theormtical or standard value. Sth a problem
can be solved by a statistical significance test, the
application of which requires a knowledge of the
standard deviation of the function in question.

The method of least-squares allows the standard
deviations of the refined parameters to be estimated
without much additional calculation. The variénce

of the parameter p; is given by

o(ny) = (a7h);; (W %/m-n) (55)
and the covariance of the parameters P; and pj is given
by
cov(p.p.) = (a_l) .(Zwﬂz/m—n)
i¥j = ij
= o(p;) O(pj)rij (56)
where is the correlation coefficient of the parameters.

T3
These equations are valid only if the weighting scheme
is appropriate to the data; +the usual test applied is
that the average WAZ should be approximately constant if
the data are examined in a systematic manner.

The standard deviations of functions of the refined

parameters may be calculated from the parameter variances

and covariances obtained from equations (55) and (56),
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by established statistical methods. A set of

programmes which allows such calculat%ons to be performed
is described in Part II Chapter I. Alternatively,

if the experiment has resulted in several independent
measurements of a quantity the root mean square deviation
of these measurements from their mean value gives an
estimate of the standard deviation of an individual
measurement,

If x is the value of an experimentally derived
quantity whose standard deviation iso (x), the probability,
P, that x differs from its theoretical or expected value,
m, due to random experimental errors may be determined
from the value of t, where t is a random variable

distributed in Student's distribution, and defined by

t = |x-m| /o (x) (57)
when t = 2,6, P = 1% and when t = 3,3, P = 0.1%.

If the goodness of fit of a set of experimental
results to their expected values is under consideration
the x? test may be used, If, for instance, di is the

th

deviation of the i of a set of n points from the least-

squares plane through the points, then
/

x2 = Ediz/c2 (58)
i=1
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where O is the average positional standard deviation
of a point. The probability that ‘che‘ deviations from
the plane are due to random experimental errors can
then be found by looking up ta‘blescf;;(2 for n-3 degrees
of freedom (Fisher and Yates, 1953).



PART II



CHAPTER T

THE MOLECULAR FUNCTIONS SYSTEM



1.1 TINTRODUCTION

The molecular functions system confists of a
group of six programmes for interpreting the résulté
of a crystal structure analysis. With these programmes
it is possible, in a single run on the computer, to
calculate all bond lengths and interbond angles in
the asymmetric unit, with our without their standard
deviations, to determine the best plane through a
specified group of atoms, and to find all intermolecular
contacts less than a given value, It is also possible
to perform an analysis of the molecular vibrations and
1o prepare tables of such quantities as fractional
atomic coordinates in a form suitable for presentation
in a thesis or paper. A1l the programmes are written
in ALGOL for the English Electric KDF9 computer, As
an illustration of the programming methods the ALGOL, texts
of two of the programmes are given in Appendix II,

The basic input data consists of the cell dimensions,
the fractional coordinates and temperature factors
punched in the same form as the output from the Glasgow
least-squares programme, and, optionally, the coordinate
standard deviations and correlation coefficients. This
information is written on magnetic tape at the start

of a run and is then available to any of the programmes
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described in sections 1.3 to 1.7. ' The rest of the
input data consists of instructions toithe computer as
to which of the programmes are required and the small
amounts of information needed to control the calculations.
Output formats have been designed to be intelligible
without any external key. Atoms are identified by .
a chemical type symbol and bracketed integer and care
has beenAtaken that all the programmes use the éame
system of atomic identifiers.

Most of the programmes have been in general use
in this laboratory for over a year and they have in
addition been used by crystallographers in the University
of Newcastle. Working copies of the programmes have
also been sent to five other crystallographic laboratories
which use KDF9 computers.

In the case of two of the programmes the role of
the present author has been to adapt existing programmes
80 that they could fit into the system; the bond length
and angle standard deviation programme was originally
written by Dr. W.S. Macdonald and the mean plane
programme by Dr. W. Oberhansli. Dr. W.S. Macdonald
is also a co-author of the/molecular vibrations analysis
programme, The donation of subroutines by Dr. J.G. Sime,

Mr. D. Macgregor and Mr. J.G.F. Smith is also”acknowledged.”
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1.2 ORTHOGONALISATION FORMULAE

In all of the programmes the firsF étep is to
transform the imput data so that it refers to equal
orthogonal axes. In this section the equations
required to orthogonalise fractional coordinates,
their standard deviations, and anisotropic vibration
tensors are stated.

We take as a standard set of orthogonal axes unit
Z parallel to ¢, unit X parallel to a¥*, and unit Y
normal to X and Z. Such a set of axes should always
be understood where orthogonal axes are referred to
in other parts of this thesis,

Let x be the vector defining the position of an
atom with fractional coordinates (xl,xz,x3) and let X
be the same vector referred to unit orthogonal axes,

If N is a square matrix of order three then

X = Nx (1)
N is a lower triangular matrix and is given by
asinB siny ¥ 0 0
N = - asinP cosy * bsin « 0 (2)
acosf bcos « c

The variance of the iR component of X is then

5 3 3
o (Xi) = ES. TN Nikrjkc(xj)c(xk) (3)

j=1k=1 ij
‘'where rjk is the“correlation coefficient between the

J and k% components of x.
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The anisotropic vibration tensor referred to

orthogonal axes, V, is given by the matrix equation

V= (8B U (xE?T ' (4)
Here U is the anisotropic vibration tensor referred
to reciprocal crystal axes, E is a square diagonal
matrix of order three such that Eii = ai*, and superscript
Q indicates the transposed matrix. If H is a unit
vector expressed in terms of the orthogonal axes then
u2, the mean square amplitude of vibration in the

direction of H, is given by
3 3 -

1.3 THE BOND ANGLE E.S.D. PROGRAMME
In an orthogonal coordinate system the distance,
M, between atoms 1 and 2 is given by
2 _ 2 2 2
M = (X2-X1) + (Y2—Yl) + (zz-zl) (6)
~The direction cosines of the vector between atoms 1

and 2 are

m = (X,-Xq)/M
my = (Y,-¥;)/M (7)
m3 = (ZZ—ZI)/M
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and the variance of M is

o? (M) = m12<a2 (X, J+02(X, )>+m22(o2 (v, Mol (y, )
+ m32<§2(z1)+02(22)> (8)

This formula neglects all covariances between the
orthogonal coordinates and is therefore inapplicable.
if these covariances are large, say because atoms 1
and 2 are r®lated by symmetry.

If N is the distance between atoms 2 and 3 and
Ny, Ny, Ny the direction cosines of the vector joining
2 and 3 then 8 , the angle 1-2-3, and its variance

(Darlow, 1960) can be obtained from

oS 8= myny + mon, + Myng (9)
o%(9) xz,(MNsinG)-z{A 202(X, )+(A,+A,)20% (X, )+A, 20%(X,)
3 1 173 2 1 3
+ similar terms in Y and Z} (10)
where
Ay = M(ml—cos in)
A3 = N(nl"'COS Bml) etc‘

For each atom in the asymmetric unit the
programme first finds those distances to other atoms
in the asymmetric unit which are less than a value
specified on the input taﬁe. The interatomic distances
are then taken in pairs and the angle they define at

the atom under consideration calculated. For each
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such angle lhe identifiers of the three atoms involved,
the two distances and their standard dgviations, and

the angle and its standard deviation are printed,

1.4 THE DISTANCE AND ANGLE PROGRAMME

The object of this programme is to find, for
each atom in the asymmetric unit, the distances of
its nearest neighbours and the angles between the points
of contact. The data consists of the symmetry
operations which define the space group, the maximum
interatomic distance required (DMAX), and the maximum
interatomic distance to be used in the angle calculation
(AMAX) . This information is read from paper tape; the
unit cell dimensions and fractional coordinates are
read from magﬂetic tape.

Each atom in the asymmetric unit is taken in turn
and the following calculations are performed.
(1) From the list of atoms in the asymmetric unit
(1ist A) a second list of atoms (list B) is compiled by
applying in turn each of the symmetry operations specified
on the input tape. List B thus normally covers all
the atoms in a single unit cell,
(2) A third atom list (list C) is prepared from list

B by applying each of the twenty seven possible combinations
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of unit or zero laltice translations, List C thus
covers all the atoms in a block of 3 x,%3 x 3 unit cells.
This step is optional .

(3) The distance of the atom in the asymmetric unit
from each of the atoms in 1lis% Cvis calculated and
stored if it is less than DMAX,

(4) When all the required nearest neighbour distances
have been found they are sorted in ascending order and
printed,

(5) A1l the angles defined by pairs of nearest
neighbours distances, both of which are less than AMAX,
are calculated and printed.

For a large structure list C may contain entries
for more than five thousand atoms, It is therefore
not usually possible to hold in the store of the
computer all the orthogonal coordinates required for
stage (3). The programme generates them in the following

way. The vector of orthogonal coordinates of the qth

atom in the asymmetric unit, transformed by the rth
symmetry operation of the space group, and translated
by the Sth of the twenty seven combinations of zero

or unit lattice translations is defined by

= N(R X +t,) + NC, (11)

Xqes q
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‘where R. and t . are the rotation matrix and translation

vector (Cruickshank, 1961) defining the r B
)

symme try
operation and C. is a vector of order three with
components +1 or O, The programme calculates and
stores the orthogonal coordinates required for list B
by evaluating the first term in (11) for all values of
r and q. NC, is also calculated for all values of S
and stored. The orthogonal coordinates required for -
list C may then be obtained without any further matrix
multiplications,

Redundancy in the output in stages (4) and (5)
is kept to a minimum by arranging that, if required,
atoms of different chemical types may have different
DMAXs and by excluding the atoms in 1list A from list C
if intermolecular contacts only are wanted.

For a struﬁture containing twenty atoms with four

equivalent positions a complete contacts search takes

about eight minutes,

1.5 THE MOLECULAR VIBRATIONS ANALYSIS PROGRAMME
This programme was written with the aims of
providing sufficient information to decide whether a
molecule behaves as a rigid body, of determinihg the

tensors of molecular translational and librational

motion, and of correcting atomic coordinates for the
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effects of libration,

The programme uses the treatment‘of Cruickshank
(1956) to determine the rigid body motions, In the
following discussion it is assumed that the atomic
coordinates, X, and vibration tensors, V, are referred
to orthogonal axes and that the mass centre of the
molecule has been taken as origin.

The molecular translational and librational
motions may be described by the symmetrical third order

tensors, T and W, which have respectively the dimensions

)
Azs and radiansz. The mean square amplitude of vibration,
uz,of the rth atom in the molecule in the direction

defined by the unit vector 1 may then be written as

2 : 2 3 : 2 v
= . 1. =X % T..1.1. + . .
" 121Jy1 VlJll J i=1j=1 13717 i=lj=l 1)

x (L x X ). (1 x J_tr)j (12)

W

By equating coefficients of lilj in (12) a set of linear
observational equations can be obtained from which it
is possible to derive the twelve independent elements
of T and W by a least-squares treatment,.

The effect of a librational motion of the molecule
‘is to make all atoms appear closer to the axis about
which the libration occurs. The corrections (E) which
should then be added to the coordinates to allow for the
effect of librations have been shown by Cruickshank (196la)
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By = %(X(B22—B33) - Y312-2313) '
By = #(Y(Bs3-Byp) - ZB23-XB12) : (13)
B, = $(2(By;-By,) - XBy5-YB,3)

-1

where B = A~ and A is a symmetric matrix of order

three whose typical elements are

Aqy = (Y2-29)/9% + Wl s A, = -XY/qPWTD.
(q2 is the Gaussian peak width parameter for the atom
involved).,

The programme is similar to the Pegasus programme
described by Cruickshank (1961), The calculation
proceeds in the following stages.

(1) The atomié coordinates and vibration tensors,

U obtained from a least-squares refinement are

obs’
referred to orthogonal axes,

(2) The latent roots and vectors of the vibration
tensors (see Appendix) are found w.r.t. orthogonal and
crystal axes.

(3) The mass centre and principal moments of inertia
of the molecule are found.

(4) The coordinates and v ibration tensors are referred

to inertial axes and the mass centre is taken as origin.
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(5) The normal equations for T and W are set up and
solved, The standard deviations of the elements of
I and W are also found,

(6) The latent roots and vectors of T and W are found
w.r.t, the inertial axes.

(7) Uoa1e is computed from T and W w.r.t. inertial,
orthogonal and crystal axes.,

-U

(8) aU =10 and the root mean squared U are

obs “calc

found.
(9) The amplitude of vibration of each atom along
the line Jjoining it to the centre of mass of the molecule
is calculated from U . - and Ysale.
(10) The librational corrections to coordinates are
found.
(11) The revised coordinates wer.t. inertial, orthogonal,
and crystal axes are calculated,

Apart from the normal equations all other results

are printed., A discussion of some of the mathematics

used is given in the Appendix to this chapter,
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1,6 THE MiAN PIAND PROGRAMME

Using the method of Schomaker et al. (1959) the
programme finds +the plane through a skt of atoms which
obeys the condition that the sum of weighted squared
deviations of the atoms from the plane is a minimum.
The atoms which define the plane are specified on the
input paper tape, Any number of plane calculations
can be performed during a single run, For each plane
the output includes the plane equation, the sum of
weighted squared deviations, the root mean square
deviation and the deviations of individual atoms from

the plane,

1.7 THE TABIES PROGRAMME

This programme prepares paginated tables of
fractional and orthogonal coordinates, anisotropic
temperature factors, and principal values and directions
of atomic thermal motion, in a form suitable for direct
inclusion in a thesis or paper, The tables of such
quantities presented in Part III of this thesis are
almost untouched examples of the output. The chief
advantages of preparing tables in this way are that
typing and transcribing errors are avoided and that the

same dats tape is used to prepare the tables and for
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AFPRNDIX

Let V be a square matrix and p a vector, both of
order n, There are n values of the ;oalarﬂ-which
yield o non-trivial (p # 0) solution of the system of

homogeneous equations

V.p =Ap. (14)
These values are termed the latent roots of V and the
covresponding vectors, p, are the latent vectors of V,

If I is a unit matrix the condition that (14) has a

solution may be written as

det(A_I_—_Y) = 0 (15)

If n = 3, expansion of (15) yields a cubic in Awhich
may be solved. by the methods of International Tables
Vol. IT (1959) p. 26.  Substitution of A into (14)
with the additional requirement that p be a unit vector
yields the latent vectors, It can be shown (e.g. Rollett,
1965) that the latent vectors are orthogonal, provided
two latent roots do not coincide, ‘
If the magnitude of a quantity U2 in the direction

defined by the unit vectort is given by the quadratic

form

2 .
= A 4. 16
U f?vlalJ (16)
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then transformation to the system of orthogonal axes

defined by the latent vectors of V gives U° as

(17)

where m is the unit vector 4referred to the new axes
and A; is the i"™® Jatent root of V. It can be shown that
the maximum and minimum values of UZ are the maximum
and minimum latent roots of V,

The mean square amplitude of atomic vibration in
a given direction is defined by an equation of the
form of (16). The latent roots and vectors of the
anisotropic vibration tensor thus define the amplitudes
and directions of greatest and least thermal motion,

If the vector between the centre of mass and

th

the r atom in the molecule is X, the moment of inertia,

I, of the molecuie about an axis passing through the mass

centre and defined by the unit vector p is

= X - L TA, .p,
I= DX X (55 MR (18)

where, for example, A12 = I 'errYr; the summations

are over the N atoms in the molecule and w_, is the

T
mass of the r* atom, The latent vectors of A thus

define the axes of greatest and least inertia and are
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termed the inertial axes of the molecule. For a
planar molecule the axis of greatest i?ertia is parallel

to the normal of the molecular plane.
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CHAPTHR I1

THE ASS SYSTEM



2.1 INTRODUCTION

The automatic structure solution (ASS) system is
a group of programmes which allow all the calculations
necessary for a cycle of Fourier refinement to be
performed during a single run on the computer, It
also contains programmes which attempt to interpret
the results of such a cycle of refinement,

Given a list of fractional coordinates derived
either from study of a Patterson function or from a
previous electron density synthesis the programmes will
produce the fractional coordinates of the peaks in the
electron density synthesis based on phases calculated
from the input coordinates., At the option of the user
the coordinates of certain atoms on the input lis%t
are used in the phacsing calculation only if they are
likely to improve structure factor agreement.

The system has proved reasonably efficient in
meeting the computational requirements of the early
stages of a structure analysis. It has been used in
nearly all current work in this laboratory and in the
last ten months at least fifteen structures have been
solved using its programmés. In most of these structures

the interpretative programmes have at learnt accelerated
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the process of finding a solution,

The overall planning of the systgm was the joint
work of Mr. D, MacGregor and the present author. Dr.
J«Go Sime kindly made available his Fourier programme,
The present writer devised the modified structure
factor programme used in the system, Mr., D. MacGregor
wrote the Fourier map scanning programme and the
programmes required for writing primary data on to
magne tic tape. Mr. R., Pollard contributed the Fourier
coefficient weighting programme which is based, in part,

on an earlier programme of the present writer,

2.2, GENBRAL DESCRIPTION OF THE SYSTEM

When work is started on a new structure, a magnetic
file tape is prepared which contains fof each Bragg
reflection the indices, the observed structure amplitude

IFO[ on an arbitrary scale, sin @ /\ , and interpolated

form factors for each chemical species present in the
structure. This information is then available to any
other programme in the system and is, for example,
invariably part of the input data for a structure factor
calculation,

The isotropic structﬁre factor programme reads
coordinates, temperature factors and equivalent positions

from paper tape and the rest of the information required
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from the magnetic file tape. The output consists of
structure factors with the structure gmplitudes scaled
so that > |F | =Y |P| either for the data as a whole
or for each reciprocal net separatély. The scaled
structure factors are stored on magnetic tape and may
optionally be printed. A summary of the scale and
R-factors for each reciprocal net is also printed, The
programme contains one novel feature, Atoms admitted
to the structure factor calculation may be classed
either as reliable or tentative, Structure factors
are first calculated over part of the data, usuélly
about four hundred reflections, with only the reliable
atoms included and a value of R is obtained, The
tentative atoms are then admitied to the structure factor
calculation one at a time, If they reduce R by more
than a specified amount they are accepted as genuine
atoms and included in all further calculations, Otherwisé
they are ignored. The structure factors finally output
are thus calculated over all the reliable atoms and
those tentative atoms which have reduced R over the
selected part of the data. |

A separate programme calculates the weight which

should be assigned to the Fourier coefficient to allow for
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the errors in phasing which result from omission of as

yet unlocated atoms from the structure'fép%or calculation,.
The formulae of Sim (1960) or Woolfson (1956) are used

to compute the weights. The weighted structure factors
are scaled so that Zw IFOI =X |Fo| and stored on

magnetic tape.

The Tourier programme reads structure factors or
weighted structure factors from magnetic tape and the
rest of the required information from paper tape. The
output consists of printed number fields., The sections
are also stored on magnetic tape as they are computed,

The map scanning programme requires as its main
input data the three-dimensional Fourier synthesis stored
on magnetic tape by the Fourier programme., The
interpolated grid and fractional coordinates of all
peaks greater than a specified threshold value are

computed by least-squares fitting of the function

P = a+bX2+cy2+dz2+ex+fy+gz+hxy+iyz+jzx (1)
to the electron density values at the twenty seven grid
points nesrest the peak and printed., The interpolated
peak height and integrated peak density are also printed.
The fractional coordinates}are finally output on paper
tape in order of decreasing integrated peak density.

This paper tape is'accepted as a list of atomic coordinatgs

by the structure factor programme.
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2¢5 MWAPERIANCE WITH THE PROGRAMMES

Many cycles of Fourier refinement Fave now been
completed using the system, It has generally been
found that most{ atoms which can be located from a
contoured Fourier map are included in the outpuf from
the map scanning programme., Diffraction ripples and
peaks due to incorrect phasing are also picked up by
the programme but quite often such peaks are few in
number and may be easily recognised from their low
integrated peak density or from their position., The
facility for including atoms in the structure factor
calculation only after they have lowered R over part
of the data has mainly been used to check atoms which
are being introduced into the refinement for the first
time, Under such circumstances an elecfron density
peak which does not correspond to an atomic position is
generallyrejected by the programme, Less frequently
all the peaks produced by the map scanning programme,
with the exceptions of obvious diffraction ripples and
heavy atom peaks, have been tested in this manner, If
the structure is centrosymmetric and if most penks in
the clectron density synthesis correspond to atoms, then
the results are reliable. The system may then be used

for semi-automatic Fourier refinement and the contouring
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of most of the electron density maps calculated in

successive cycles can be avoided, i
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CHAPTER III
THE MINIMUM RESTDUAL PROGRAMME




3.1 INTRODUCTION

Crystal structure refinement by direct calculation
of the minimum residual was first described by Bhuiya and
Stanley (1963), The method works as follows. Structure
factors are calculated from starting values of the atomic
coordinates and temperature factors and a value of R,
the usual discrepancy index is obtained. The x coordinate
of the first atom is then varied from -nDx to +nDx in
2n+l1 steps of Dx, and for each value of the coordinate
structure factors and the corresponding R-factor are calculated.
The refined value of the coordinate is that which yields
the lowest R-factor and it is used in all subsequent
calculations. In one cycle each atomic coordinate or

temperature factor is in turn varied in this manner.

3.2 DESCRIPTION OF THE PROGRAMME

The minimum residual programme uses the above
technique to refine crystal structures in projection,
Triclinic, monoclinic, and orthorhombic space groups can
be handled. For each atom two coordinate parameters
and one temperature parameter may be refined. An overall
temperature factor can also be refined and provision has
been made to keep the parameters of one or more atoms
fixed to allow for atoms in special positions. The R~

factor is always calculated from



R=zlkl|F, | - |F | | / m|F |; kZ|F |= 2|P | (1)

343 BEXPERIENCE WITH THE PROGRAMME

The programme has proved useful in a number of
analyses carried out in this laboratory. The maximum
drop in R achieved in one cycle is 0.1 and drops of
0.05 have not been uncommon, For projections in
which the atoms overlap the method has advantages
over full matrix least-squares or difference map
refinement. Its main disadvantage is that it requires
more extensive calculations than either of these
methods and, even with careful programming, uses more
machine time, For a problem involving thirty atoms
and two hundred reflections, with n=5 for both coordinate
and temperature parameters one cycle takes about twenty‘

minutes.
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PART 111



CHAPTER I

THE DIMETHYLACETYLENE DICARBOXYLATE
INDENE ADDUCT



1.1 INTRODUCTION

The preparation of the 1:2 adduct of indene and
dimethyl acetylenedicarboxylate was first described
by Alder, Pascher, and Vagt (1942). On the basis
of known Diels - Alder chemistry Pascher (1944) favoured
I as the most likely of a number of possible structures
for the adduct.

The reaction was reinvestigated by Strachan and
Huebner (Muir, Sim, Strachan, and Huebner, 1964) who
showed that the adduct is formed under mild conditions
even at room temperature., Their nuclear magnetic
resonance studies indicated that the adduct contains
four vinyl protons thus precluding I from further
consideration, They also prepared a trideutero adduct
by reacting dimethyl acetylenedicarboxylate with indene-
1,1,3—d3(II) and showed that its n.m.r. spectrum contains
peaks corresponding to four vinyl protons. These
results suggested that both acetylene moieties are
attached to the five membered ring of the indene system.

Further chemical and spectroscopic investigations
by Strachan and Huebner did not lead to a definitive
solution of the structurai problem,

The adduct forms a crystalline dibromo-derivative

(Alder, Pascher; and Vagt, 1942) from which it may be
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regenerated by treatment with zinc in ether/tetrahydro-
furan. The X-ray analysis of the cryﬁtal structure of
the dibromo-adduct is described in the other sections
of this chapter. The results establish the molecular
structure as III from which it may be inferred that

the adduct has structure IV, Structure IV has been
shown by Strachan and Huebner to be in conformity with

the n.m.r. spectrum of the adduct.
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1l.2 EXPERIMENTAL
Crystal Data )

Dibromo-adduct
Co1H20Pr20g
F.W. 560,2 M.P, 182-183°C
Monoclinic, a = 8,48+2, b = T7.48+2, ¢ = 34,63+l XA
B =98 ®21+20°,
U= 2175 A7
Dm = 1,67 gmcm—3 (by flotation in aqueous ZnBrZ)
2 =4
D, = l.711gmcm—3
X o)
Linear absorption coefficientup(Cu Koy A = 1,5418 A)
= 56.9cm-1

F(000) = 1120
Systematic absences

OkO when k 1is odd

hOf when £ is odd
Space group P2;/c (No. 14).

The crystals used in the analysis were supplied
by Dr. C.F, Huebner., They consisted of pale yellow
needles elongated about the b axis. The cell dimensions
were measured from rotation and equatorial layer
Weissenberg photographs taken about the b axis with
copper Ka radiation (wavelength 1.5418 A) and from

precession photographs of the hkO and Ok4 zones taken
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with molybdenum K o radiation (wavelength 0.7107 K).

The intensity data were measured from equatorial
and equi-inclination Weissenberg photographs of the
reciprocal nets hO4 +to h5 4, taken with copper K«
radiation, by visual comparison with a calibrated intensity
strip. The multiple film technique of Robertson (1943)
with four films per pack was used; the interfilm scale
factors were those of Rossman (1956). An empirical spot
shape correction was applied to the data but no absorption
corrections were made. The intensities were reduced
to structure amplitudes using a DEUCE computer programme
written by Dr. J.G. Sime (Sime, 1961); +the Lorentsz,
polarisation and rotation factors (Tunell, 1939)
appropriate to a small mosaic crystal being applied. In
all 1982 independent structure amplitudes (Table 1.4)
were obtained, being approximately 40% of the data
accessible with copper Ka radiation, No unobserved
reflections were used in the analysis.

The data were put on a rough absolute scale by
comparison with the first set of calculated structure
factors., The final scale factors were determined by

least-squares refinement,
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1.3 STRUCTURE SOLUTION AND REFINEMENT

The x and z coordinates of both brdmine atoms were
obtained from the Patterson projection on to (010) and
the y coordinates were thereafter derived from line
sections through the three-dimensional Patterson function.

The plane group of the (010) projection is p2, with
equivalent positions x,z; X,z. The c axis is halved and
accordingly therevare four bromine atoms in the projected
unit cell. Twelve non-zero vector peaks should therefore
appear in the corresponding Patterson function, six peaks
being related to other six by the inversion centre at the
origin, Using subscripts to denote bromines 1 and 2 the
analytical expressions for the six independent vectors
are:-

(x1 + x2), (z1 + 22); (twice)
(Xl - X2), (zl - zz); (twice)
2xl, 221;
2x2, 222;

The asymmetric unit of the projected Patterson
function should thus show two doubleweight and two
singleweight peaks. The projected Patterson is shown
in Fig. 1.1, The peaks marked A and B were taken as
doubleweight peaks and those marked C and D were taken

as singleweight peaks. The coordinates of these peaks
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were worked out using Booth's (1948) interpolation formula
and the fractional coordinates of the byomine atoms were
then derived from the analytical expressions given above.
Line sections parallel with the b axis were next
computed through the three-dimensional Patterson function
to obtéin the y coordinates of the bromine atoms. In
all seventeen such sections were calculated, one through
each heavy atom vector found within the area bounded by
the three-dimensional unit cell projected down b.

The coordinates of the bromine atoms so obtained

were :-

X/a Y/b z/c
Br(1) 0.8094 0.4166 0.4636
Br(2) ' 0.2494 00,3210 0.3393

A three—dimensional electron density distribution

based on phases calculated from these positions revealed

almost the entire structure. In addition to the two bromines

twenty carbon atoms and eight oxygen atoms could be located;

oxygens were distinguished from carbons partly by peak
height and partly by chemical considerations, There was
a peak in the position subsequently assigned to C(19);
there was, however, also a peak opposite 0(5) which
could have been a methyl carbon although its position

suggested that it was more probably a diffraction ripple
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from Br(2). Cc(19) was accordingly omitted from the
second structure factor calculation for which the R-
factor was 0,193, The R-factor with the heavy atoms
alone was 0,39, A second electron density distribution
allowed the position of C(19) to be determined un-
ambiguously. A third set of structure factors calculated
from positions derived from the second electron density
map, with all atoms included gave an R-factor of 0.,187.
Six cycles of minimisation of the function
EN(IFO\ - \Fc I)2 were now calculated using the least-
squares programme by Dr. J.S. Rollettfor the DEUCE
computer (Rollett, 1961). Three coordinates and six
anisotropic temperature parameters for each atom were
refined. A block diagonal approximation to the normal
matrix was generally employed. In cycles 1 and 2 a
diagonal approximation was used for the parameters of
both bromine atoms and in cycles 4,5, and 6 the bromine
parameters were left unchanged, while in cycle 3 only
bromine parameters were refined. This course was
rendered necessary by limitations on the size of elements
of the normal equations which the programme could handle.
During this stage of refinement a number of indexing
and card-punching errors were corrected. At the end of

the sixth cycle R stood at 0,118, Throughout this course .
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of refinement scale factors were chosen so as to equalise
zl 7 | ana Z| ¥ | for each layer of data.

A difference synthesis using all the data was now
computed to check the refinement and to find if it would
be worthwhile including hydrogen atoms in the calculations.
In this map peaks corresponding to all twenty hydrogen
atoms could be made out. Hydrogen peak heights ranged
from 0.32 to 0.64e/A% with a mean of 0.5¢/A%.  The
other most obvious feature of the map was that nearly all
the heavier atoms lay in negative troughs. This
suggested that either the scale factors or the overall
temperature factor had been underestimated and that
further refinement was desirable.

Inclusion of the hydrogen atoms into the structure
factor computations in positions calculated from the
coordinates of the heavier atoms and using an assumed
isotropic tempersture facture U of 0.075 32 led to a
drop in R of 0.004, most of the improvement being in
the lower order reflections. This drop was regarded as
satisfactory and hydrogen atoms were included in all
subsequent calculations.

The refinement was now completed using the least-
squares programme written for the KDF9 computer by
Cruickshank and Smith. In the first c¢ycle of refinement

with the new programme the only parameters refined
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were separate scale factors for each layer of photographic
data and an overall temperature factor. , R fell to 0.109.
Two further cycles of block diagonal refinement
produced convergence with a final value of R of 0,087
and of R' (Ewa’/L wF_°) of 0.016. In the final cycle
the ratios of average shift to average standard deviation
were 0.4, 0.4 and 0,3 for the coordinates of bromine,
carbon and oxygen respectively.
The weighting scheme used in the last three cycles
of refinement was one of the form recommended by
Cruickshank (1961) as éuitable for photographic data,

namely

Jw = (10 + F + 0.0098%)"%

The atomic form factors used were for carbon Hoerni
and Ibers (1954), for oxygen Berghuis et al. (1955),
for bromine Thomas and Umeda (1957), and for hydrogen
Stewart, Davidson, and Simpson (1965).

The last set of structure factors was used to
phase electron density and difference syntheses. A
composite view of the final electron density synthesis
is shown in Fig. 1.2. The mean peak heights were
40,9, 5.5, and 7.8e/15f)5 for bromine, carbon, and oxygen
respectively. The standard deviation of p(xyz),

estimated by the approximate formula of Crui ckshank (1949),
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was O.22e/23. In the final difference synthesis there
were regions of positive and negative,density greater
than three times this standard deviation; the highest
function value was 1.2 and the lowest —l.6e/§3. These
regions were associated with each heavy atom position
and are probably due to uncorrected absorption.

Tables 1.1 and 1.2 contain the final values of
the fractional coordinates and anisotropic temperature
factors of the heavier atoms, together with their standard
deviations derived from the inverse of the normal least-
squares matrix, In Table 1.3 the assumed fractional
coordinates and isotropic temperature factors of the
hydrogen atoms are presented. The final list of
calculated and observed structure factors is given in
Table 1.4. Tables 1.5 and 1.6 show the coordinates of
all the atoms referred to a set of orthogonal axes parallel
to a*¥,b and ¢, while Table 1.7 contains the principal |
values and directions of the anisotropic vibration tensors.
Tables 1.8 and 1.9 contain all the covalent bond lengths
and interbond angles in the structure together with their
estimated standard deviationms. Table 1.10 lists all
intermolecular contacts between the heavier atoms w@ich
are less than 4X and in Table 1.11 the equations of some
molecular planes are given, together with some.deviations

of atoms from these planes.  The results listed in Tables
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1.5 to 1.11 were all calculated with the programmes
described in Part II of this thesis aqd the equations
given there apply. Standard deviations, if quoted,
are in units of the last decimal place of the quantity
to which they refer,

.A molecular drawing illustrating the numbering
of the heavier atoms is shown in Fig. 1l.3. The
numbering of the hydrogen atoms is explained in.Fig.
1.4, A view of the molecular packing down b is shown

in Figo 1.5.
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Course of the Analysis

1. Fourier Refinement I

S.F. Cycle No, Atoms Included R
1 2 Br _ 0.39
2 2 Br + 20 C + 80 0.193
3 2 Br + 21 C + 80 0.187

2. Least-Squares Refinement

S.F.L.S. Comments R
Cycle No.
1 Block diagonal for C and O;
diagonal for Br 0.187
2 Block diagonal for C and O;
diagonal for Br 0.152
3 Block diagonal for Br; C
and O not refined 0.133
4 Block diagonal for C and O;
Br not refined 0.130
5 Block diagonal for C and O;
Br not refined 0.122
6 Structure factors only 0.118
7 Structure factors only:
hydrogens included 0.114
8 Layer scales and overall
temperature factor refined 0.114
9 Block diagonal on all atoms 0.109
10 Block diagonal on all atoms 0.091
11 Structure factors only 0.087
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Mitre 1.1

The Patterson projection o to (3l0). Contonrs

~re at arbitrary intervals.






FIG. 1.2

The composite final electron density synthesis
viewed down the b axis. Contours are at 1 e/x3 inter-
vals starting at 2 e/x3 except round the bromine atoms
which are contoured at 5 e/R3 intervals starting at

5 e/XB.The broken contours are those of 0(4).
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ATOM
Br(1)
Br(2)
c(1)
c(2)
c(3)
C(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
c(11)
c(12)
c(13)
c(14)
c(15)
C(16)
c(17)
c(18)

TABLE 1.1

FRACTIONAL COORDINATES AND E.S.D.S.

X/a
0.8146
0.2498
0.6431
0.48T71
0.3792
0.3976
0.5663
0.6556
0.6137
0.7528
0.8144
0.7923
0.8131
0.6813
0.6161
0.6518
0.7655
0.9659
1.1145
0.4804

I+ 1+ 1+ 0+ 1+ 0+ 1+ I+ I+ 4 0+ 1+ 1+ 0+ 0+ 1+ 1+ 1+ 1+

1+

18
18
16
15
17
19
17
18
15
15
18
17
16
17
22
17
21
18

Y/b
0.4205
0.3259
0.5047
0.4708
0.3546
0.2378
0.2349
0.4251
0.5606
0.5417
0.3947
0.2035
0.0849
0.1059
0.1837
0.0210

-0.1086
0.0004
-0.2658
0.6863

i+ 1+ 1+ 1+ 1+ 1+ 1+ I+ I+ 1+ 1+ I+ 1+ 1+ 1+ I+ 1+ I+ |+

I+

22
2k
23
23
21
23
22
22
20
23
21
22
23
20
27
2b
26
23

Z/c
0.46407
0.34035
0.4228
0.4359
0.4190
0.3856
0.3764
0.3834
0.3505
0.3369
0.3648
0.3484
0.3846
0.4020
0.3367
0.4390
0.4982
0.4002
0.4142
0.3403

I+
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c(19)
c(20)
c(21)
o(1)
0(2)
0(3)
o(4)
0(5)
o(6)
o(7)
0(8)

26
17
28
12
14
13
12
15
13
16
15

0.8195
0.6220
0.8799
0.0055
-0.0356
0.0855
-0.1755
0.7705
0.6974
0.5480
0.7864

1+ I+ 1+ 1+ 1+ 1+ 1+ 1+ I+ 0+

1+

30
22
31
18
18
17
15
17
16
20
17



ANISOTROPIC
ATOM U1
Br(1) 0.0637

11

Br(2) 0.0447
8

c(1) 0.0520
89

c(2) 0.0491
88

c(3) 0.0302
67

c(u) 0.0248
58

c(5) 0.0485
79

c(6) 0.0600
92

c(7) 0.0479
8h

c(8) 0.0544
920

c(9) 0.0297
63

c(10) 0.0320
67

c(11) 0.0547
86

TABLE 1.2

u22

0.0603
15

0.0657
15
0.0296
110

0.0554
128

0.0528
123

0.0505
120

0.0300
106

0.0530
128

0.0387
117

0.0344
117

0.0327
105

0.0612
128

0.0262
108

U33

0.0586
9

0.0674
9
0.059%
84
0.0595

85

0.0666
86

0.0674
84

0.0528
75

0.0431
69

0.0565
79

0.0558
80

0.0534
70

0.0503
73

0.0514
T2

2u23

-0.0077
18

0.0189
18
0.0110
141

0.0050
159

0.0128
159

0.0257
154

0.0041
135

-0.0002
143

0.0036
143

"O 000)45
141

0.0006
131

0.0076
147

-0.0041
134

TEMPERATURE FACTORS AND E.S.D.S.

2U31

-0 . 0048
15

0.0029
14

0.0010
130

0.0331
133

0.0278
116

0.0095
109

-0 . 0236
121

0.0216
125

0.0386
127

"0 .0005
130

0.0197
103

0.0226
106

0.0027
121

au12

0.0088
20

0.0022
18

-0.0013
153

-0.0116
174

0.0151
150

143

-0.0250
147

0.0197
170

0.0038
154

0.0075
157

-0 [ 0066
134

-0 00032
152

-0 003""6
152



c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
c(18)
c(19)
c(20)
c(21)
o(1)
0(2)
0(3)
o(4)
a(5)

0(6)

0.0478
81

0.0403
T4

0.0478
82
0.0760
116

0.0427
80

0.0541
102

0.0471
0.0739

134
0.0452

81

0.1228
183

0.0432
60

0.0715
75

0.0476
63

0.0406
55

0.0733
82

0.0633
71

0.0279
106

0.0499
123

0.0162
103

0.0776
149

0.0518
127

0.0336
127

0.0330
17

0.0614
167

113

0.0670
164

0.0886
101

0.0687
97

0.0456
89

0.0360
81

0.0535
90

0.0413
84

0.0597
79

0.0506
72

0.0607
82

0.0483
80

0.0543
79

0.1280
160

0.0760
98

0.1370
191

0.0582
0.0836
126

0.0712
69

0.0547
59

0.1115
95

0.0930
78

0.0940
85

0.0799
T4

0.0056
139

0.0088
144

0.0005
129

0.0058
174

0.0051
150

0.0033
215

0.0063
158

0.01T4
267

0.0071
143

0.0701
224

0.0503
134

0.0220
115

0.0297
137

"0.0])"’5
117

0.0048
137

0.0077
120

0.0237
124

0.0232
112

0.0285
123

0.0135
148

0.0173
120

0.0226
196

0.0338
140

-0 0038)"‘
246

0.0206
124

0.1010
245

0.0371
100

0.0255
105

—0 00055
120

-0.0061
101

0.0551
132

0.0048
113

-0 00098
146

-0.0025
152

0.0046
138

0.0305
219

-0.0206
160

-0 00029
185

0.0053
158

0.0125
235

-0000]3
151

0.0311
264

0.0093
128

0.0183
134

‘00009“’
120

0.0067
103

0.0410
138

0.0203
122



o(7) 0.0891 0.0890 0.0924 0.0412 0.0905 0.0180

97 114 90 162 153 169
0(8) 0.0818 0.0557 0.0690 0.0269 0.0506 0.0117
84 92 68 124 119 138



TABLE 1,

ASSUMED FRACTIONAL COORDINATES AND TEMPERATURE FACTORS
OF HYDROGEN ATOMS.

ATOM X/a Y/b Z/c U

H(1) 0,648 0,643 O.419 0,075
H(2) 00459 0e546 0,460 0,075
H(3) 0,269 Uo3U46 0430 0,075
H(4) 0,374 04103 04394 0,075
H(5) 06917 Ool2h 0,384 0,075
H(6) 0,864 0,164 0.328 0,075
H(7) 0e571 06265 00314 0,075
H(8) 0577 0,061 0,325 0,075
H(9) 0,871 -0, 144 0.514 0,075
H(10) 0,686 -0.219 Oolgl 0.075
H(11) 0,708 -0,010 06515 0,075
H(12) 1,104 -0, 40k 0,413 0,075
H(13) 1.152 =0e227 Oolll 0,075
H(14) 1.205 =0,224 0.398 0075
H(15) 0278 00821 0.258 0,075
H(16) 04336 0,953 0,298 0,075
H(17) 0,201 0,784 06300 0.075
H(18) 0783 1.008 0,263 0,075
H(19) 0,798 0809 0.239 0075

H(20) 00958 00891 04270 06075
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TABLE 1.5

ORTHOGONAL COORDINATES

ATOM X Y

Br(1) 6.840 + 2 3.145
Br(2) 2.097 + 2 2.438
c(1) 5.400 + 15 3.775
c(2) 4.090 + 15 3.522
c(3) 3.184 + 13 2.652
C(4) 3.339 + 13 1.778
c(5) L.755 + 14 1.757
c(6) 5.505 + 16 3.179
c(7) 5.153 + 14 4.193
C(8) 6.321 + 15 4.052
c(9) 6.838 + 12 2.952
c(10) 6.653 + 13 1.522
C(11) 6.827 + 15 0.635
c(12) 5.721 + 14 0.792
c(13) 5.173 + 14 1.374
c(14) 5.473 + 14 0.157
c(15) 6.428 + 19 -0.813
C(16) 8.110 + 14 0.003
c(17) 9.358 + 18 -1.988
c(18) 4.033 + 15 5.134

AND E.S.D.S.

4 0+ 14+ 04+ 1+ 14+ 0+ 1+ 1+ 0+ I+ 1+ 1+ 1+ 1+ I+ 1+ 1+ I+

1+

16
18
17
17
16
7
17
17
15
18
15
16
17
15
20
18
19
17

Z
15.105
11.490
13.879

14.519

14.060
12.883
12.362
12.499
11411
10.775
11.668
11.125
12.354
13.115
10.929
14.429
16.346
12.714
13.024
11.216

S I SO EOO O S A S L S S E S S T PO E EE o B

1+

15
15
15
15
14
13
13
15
13
13
14
14
13
14
15
14
22
16



c(19)
C(20)
c(21)
(1)
o(2)
0(3)
O(4)
0(5)
0(6)
a(7)
0(8)

2.555
6.986
7.042
4.381
6.579
9.081
8.100
3.569
3.662
7.799
6.553

4+ 1+ 1+ 1+ i+ 1+ i+ I+ )+

I+

22
14
24
10
12
11
10
13
11
14

13

6.130
h.652
6.581
0.042
~0.266
0.640
-1.313
5.764
5.216
4,099
5.882

I+ 1+ 1+ 1+ 1+ i+ 1+ 1+ T

I+

23
17
23
14
13
12
12
13
12
15
13

9.675
9.601
8.209
14,922
14.995
12.928
12.677
12.104
9.943
8.938
9.386

I+ I+ 1+ 1+ 1+ I+ 1+ 1+ I+ I+

i+

26
14
19
11

10
13
12
13
11

13
11



TABLE 1.6

ORTHOGONAL HYDROGEN COORDINATES.

ATOM X 4 Z

H(1) 5.44 L .81 13.75
H(2) 3.86 4,08 15.37
H(3) 2.26 2.59 14.58
H(4) 3.14 0.77 13.21
H(5) 7.70 3.17 12.19
H(6) 7.25 1.23 10.33
H(7) 4.79 1.98 10.18
H(8) 4,85 0.46 10.57
H(9) 7.32 -1.08 16.77
H(10) 5.76 -1.64 16.31
H(11) 5.94 -0.07 16.98
H(12) 9.27 , -3.02 12.99
H(13) 9.68 -1.70 14.00
H(14) 10.12 -1.68 12.34
H(15) 2.34 6.14 8.60
H(16) 2.82 7.13 9.91
H(17) 1.69 5.87 10.16
H(18) 6.57 7.54 8.17
H(19) 6.70 6.05 7.33

H(20) 8.04 6.66 8.21



ATOM
Br(1)

Br(2)

c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

c(7)

o2
UA

0.0766
00,0512
0.0579

00773
00434
040590

00286
0.,0658
0.0486

00397
00636
0.0582

00262
060702
00511

0,0749
060247
0.0U36

060753
00227
00387

00670
00407
00473

0.0637
060373
00387

TABLE 1,7

D1

-0,6841
0,6656
-0,2983

=0,0948
09616
062577

0,0235
-0 ] 4‘*38
-0.8958

=-0,7669

0.5789
=062770

-0.9508
0,2875
0e1154

00190

-069985
0,0512

-0.6285

065395
-0,5603

0.8194
~-0,2865
0.4965

0.6312
-0.7369
-0.,2419

D2

=043601
0,0475
09317

046208
-001453
0.TT704

-0,9845
0, 1457
-0,0981

-043906
=0,0785
09172

062275
0.3948
068902

Ol l4712
~0.8813

02361
0.8187
0.5234

045714
063390
-0.TUT3

0,0957
0.3835
-09186

PRINCIPAL VALUES OF VIBRATION TENSORS
AND THEIR DIRECTION COSINES REFERRED
TO ORTHOGONAL AXES,

D3

0.6343
OsTHU8
062072

0.7782
02330
-0.5831

06 1TLO
0.8842
=0,4334

045092
0.8116
0.2863

O.2104
0.8726
-0.4408

C.8818
0.0409
0. 4638

O TH11
0.1967
"006)419

Ve 0UST
08961
Oel415

0.7697
0e5567
03125



c(8)

c(9)

c(10)

c(11)

c(12)

c(13)

c(14)

c(15)

C(16)

c(17)

c(18)

c(19)

00,0651
0.,0336
00482

060536
0,0265
040345

060293
0,0624
00502

00179
00657
00505

06,0261
060607
004Th

0,0364
00550
0.0479

00,0160
00627
00440

0,0922
0,0479
0.,0624

Ue0349

0,0593
0.0541

041286
04,0334
00,0540

040775
0.0325
0.0437

01576
060536
00708

-0,6237
~01540
-0,7T664

0.2339
~0.8541
Ol.libl5

-0,9325
0.,0158
-0.3607

0.4339
-0,8256
03608

=0,250
04360
~-0,8985

-0.8380

02535
-004832

~0.0758
04579
0,8858

-0,6914
042066
~0,6922

-0.8046
-0.4437
-0.3947

060501
=0,07H1
049960

0e3291
0.1599
0,9307

-043313
06103
0.7196

~0s1465
0+9861
-0,0789

=0,0011
-0, 4780
-0,8784

~0,0912
0,9564
062776

0.8983
043659
-0021"32

=06,9572
00462
00,2856

042450
0.6165
0.,7483

00,9970
00,0213
0. 0TUL

=067207
-0.1315
0.6806

-0.5#65
0,8132
041999

0,0189
~069970
=0,0752

00789
-0,9868
01416

o.oagg
~0e7
00,6606

0,7678
00631
-0,6376

0.9723
00,2049
-0,1128

Oo349UL
002917
~0,8904

0.,0688
0.4296
069004

Oo1h44
0.9317
0+3334

00,4876

0. 7455
~0.4545

0.0152
0.8887
-0,4582

00,0496

069695
02398

0.2323
03766
~0,8968

09986
00,0226
=0,0486

09410
0,0268
-0,3374

0.9419
02590
02140



C(20)

c(21)

0(1)

a(2)

0(3)

0(4)

0(5)

0(6)

o(7)

0(8)

060590
060362
00443

061505
00350
0.0TT76

01071
060371
0.0558

0,0820
00486
00631

01203
00410
0047l

00990
00,0341
00401

0,0386
041033
0.0T4HY

0.,0368
0,0841
0,0657

01293
00507
0,0812

040933
0,0463
0,0627

0.2689
‘001593
0.9499

00,7966

-0 1577
0.5836

0.1710
-0,8692
04640

0.6693
0,0799
0.,7387

=00 1402
=0, 4420
0.8860

-061553
=063909
=0,9072

-0,5722
06064
00,5522

03786
=0,3067
-0e8733

066257

=0,5989
0,4998

067950
-0,1184

0.5949

Oe1514
06,9670
=002050

0.3456
-0,6733
=0,6537

08050
-0,1483
-0.5TU5

00,6798
-0.46T71
-0.5654

02117
-0,8875
=0,4093

=-0,1295
0.9185
-063736

O.T944
Oe.2U24
05570

-0091 97
-0,0181

-003923

0.4488
=0,2478
=0,8586

063023
-067730
~0.5578

069512
001990
=-062359

04,4960
0.T224
-0,4818

0,5681
0. 4717
0.6743

0,2998
048806
=03669

0,9672
00,1302
02180

09793
040595
-0,1933

0,2039

0.T5T4
=0,6204

01045
0.9516
-0,2889

0,6381
0.7615
0.1137

0.5259
0,6233
=0,5788



Q
un
~r

c(12)
c(13)
c(7)
c(9)
c(8)
C(9)
c(10)
c(11)
C(13)

BOND

TABLE 1.8

LENGTHS AND E.S.D.S.

R L e e R R L L e R L L L b

I+

15 A
15
21
21
23
22
19
23
21
20
22
20
21
21
23
21
19

Q

-—

—
~—

Q
~
—r

Q
00]

Q

S’

-—

(] Q
TN TN TN N N N S

-—

—

S

()
W

O
—
~J

(@]
no

(@] O

—

= (6}
N~ S~ N N N~ s~ ~

()

)]
N N SN S

(]
(0]
~—

n
~

o(

O
—

=
~

o(6)
0(8)

aQ Q
P T T S M e T
(o)
~— N

o
C
~~

=

c(18)
c(20)
c(14)
16)
18)
20)
15)
17)
19)
21)

C
C

Q Q
N TN AN AN N N S

1.352
1.475
1.477
1.475
1.480
1.203
1.181
1.183
1.186
1.313
1.316
1.328
1.321
1.465
1.469
1.460
1.454

I+ 1+ I+ 1+ 1+ 1+ I+ 1+ 1+ 1+ 1+ 1+ 1+ 01+ 1+ 0+

1+

21
22
21
21
21
18
19
20
20
19
21
19
21
19
21
25
2k



Br(1)-
Br(1)-
c(2) -
c(1) -
c(2) -
Br(2)~
Br(2)-
c(3) -
C(4)
C(4)
C(4)
c(6)
c(6)
c(12)-
c(1) -
c(1) -
c(1) -

c(1)
c(1)
c(1)
c(2)
c(3)
c(4)
C(4)
C(4)
c(5)
c(5)
c(5)
c(5)
c(5)
c(5)
c(6)
c(6)
c(6)

TABLE 1.9

INTERBOND ANGLES AND E.SeD.Se

c(2)
c(6)
c(6)
C(3)
C(4)
c(3)
c(5)
C(5)
C(6)
c(12)
Cc(13)
c(12)
c(13)
c(13)
c(5)
c(7)
c(9)

1084,6+10
12,9+ 11
112,9+13
124,314
126.,0+13
1074410
110,5+10
112,5+12
113.2+13
115.0+12
125.4+12
102,5+11
99.9+11
97 «3+11
113,2+12
112,0+14
126.,5+13

o

c(s) -
c(5) -
c(7) -
c(6)
c(6)
c(8)
c(7)
c(7)
c(9)
c(6)
c(6) -
c(8) -
c(9) -
c(9) -
c(11)-
c(10)-
c(10)=-

c(6)
c(6)
c(6)
c(7)
c(7)
c(7)
C(8)
Cc(8)
c(8)
c(9)
c(9)
c(9)

c(10)-
c(10)-
c(10)-
c(11)-
c(11)-

c(7)
c(9)
c(9)
c(8)
c(18)
c(18)
c(9)
c(20)
C(20)
c(8)
c(10)
c(10)
c(11)
c(13)
c(13)
c(12)
c(16)

14,7412
102,7+12
85¢2+10
93.9+13
133.8+13
131,9+14
95+5+12
136.8+15
127.8+13
854311
102,5+11
115,3+11
104 ,0+11
104,9+12
99.3%12
107.0+13
123,0+12



c(12)-
c(5) -
c(5) -
c(11)-
c(5) -
0(1)
0(3)
0(5)
0(7)
0(2)
o(4) -

c(11)-
c(12)-
c(12)-
c(12)-
c(13)-
C(14)-
c(16)-
Cc(18)-
c(20)=-
c(i4)-
C(16)-

c(16)
c(11)
c(14)
c(14)
c(10)
c(12)
c(11)
c(7)

c(8)

c(12)
c(11)

128.6+13
107.9+12
126.2+12
125.9+14

9740+11
123.9+14
121.9+16
122,5+15
124,3+16
112.3+12
114.5+13

o(6)
0(8)
6(1)
0(3)
0(5)
a(7)
C(14)-
Cc(16)-
c(18)-
c(20)-

c(18)-
c(20)-
c(14)-
c(16)-
c(18)-
c(20)-
o(2) -
o(4) -
o(6) -
o(8) -

c(7)
c(8)
0(2)
o(4)
0(6)
0(8)
c(15)
c(17)
c(19)
c(21)

112,3+13
11,1413
123.8+14
123.4+14
125.2+15
124,6+15
115.5+13
116.5+12
115.3+15
118,0+14



TABLE 1,10

(0]
INTERMOLECULAR CONTACTS BELOW 4 A,

C(l4)esees0(3) i1
C(21)000.0(7) viiil
C(3)e00000(3) 11
C(15)e0e40(3) xi
C(15)ee0s0(1) x
C(8) eeoseO(k) 1
C(17)e0ee0(5) v
0(1)ee00s0(5) iv
Br(2)eese0(7) 11
C(12)e0se0(5)  1v
Br(2)eee.0(3) 11
C(14)es040(5) iv
C(10)eees0(8)  1v
C(4)eeooa0(5) iv
C(19)0eeo0(7) vii
C(9)escos0() 1

C(20)000s0(4) 1
C(3)eeeesC(17) 111
0(1)009090(1) X

C(13)00000(8) iv

3.14 A
3.20
3.21
3425
3.34
3.36
3¢36
3el2
3.45
3.46
3.48
3.54
3.57
3.59
3.59
3.60
3.61
3.61
3.62
3.62

O(4) eeeee0(8)
Br(2)e.e.s+C(21)
C(13)00000(5)
C(5)e00es0(5)
C(2)eo00eC(17)
C(11)ee0s0(8)
C(3)esoeeC(15)
Br(1)eeseC(15)
C(T)eoeosO(lt)
C(19)e0ss0(7)
C(1)eeeesO(H)
C(1)eas0e0(2)
C(10)e000C(21)
C(9)oe0eeC(17)
0(1)eeese0(3)
C(21)ee0e0(6)
C(1)eoessC(14)
C(13)eessC(18)
Br(1)eeseBr(1)
C(19)s0eeC(21)

iv
vl
iv
iv
111
iv

vii

iv

vi

3.65 A
3.67
3.67
3.68
3.71
3.72
3675
3.76
377
3.78
3.80
3.80
3.81
3.83
3.83
3.88
3490
390
3.91
3.92



Br(2).e..C(9) 11 3.9“’ C(6)000000(4) i 3096
C({1)eeeseC(15) i 3.94 C(13)0eesC(19) 1v  3.98
C(19)e000C(21) i1 3.95 C(15)ee0sC(16) xi 4,00

Roman numerals refer to the following transformations

of the fractional coordinates given in TABLE 1,1,

1 x’ 1 + y, Z; Vi 1 - x’-l/a + y,1/2

!
N
ws

7/

ii -1 + x, Yy Z3 vii 1 -x, 1/2 + y,1/2

!
N
oo

]
N
we

111 -1 +x, 1 +y, z3 viii 2 = x, 1/2 + y,1/2
1V x,-1 + y, z; j.x 2 - x, 1 - y, 1 - Z;
v 1 + X,-1 + y, 2j x 1 - x, -y, 1 - 2§

Xi 2"x, -y’1-z;



TABLE 1,11

o
PART I - DEVIATIONS FROM MEAN PLANES (A),

Plane 1 defined by C(1),C(2),C(3) and C(4).

c(1) 00003 C(4) =-0,003
c(2) =0,007 C(5) =0.299
c(3)  0.007 C(6)  0.327

Plane 2 defined by C(6),C(7),C(8),C(9),C(18) and C(20).

C(6) =0,040 C(20) =0.020
c(7) 0,043 0(5) =0.756
c(8) 0,043 0(6) 0.833
Cc(9) 0,021 0(7) 0,394
C(18) =0,008 0(8)  =0.557

Plane 3 defined by C(5),C(6),C(9) and C(10).

C(5) =0.012 C(11) =1.374
C(6) 0,017 c(12) -1.414
C(9) =0,017 . C(13) 04819

c(10) 0,013

Plane 4 defined by C(5),C(10),C(11) and C(12).

c(5) 0.0.8 c(6) ~-1.469
c(10) =0,008 Cc(9) ~1.449
C(11) 0,013 c(13) 0.818

c(12) =0.013



Plane 5 defined by C(6),C(9),C(11) and C(12).

Plane

Plane

Plane

c(6)
c(9)
c(11)
c(12)

0,012
CeO14

=0,014

c(5)
Cc(10)
c(13)

0.885
0,872
1.886

6 defined by C(4),C(5),C(10) and C(13).

C(4)
c(5)
c(10)
c(13)

7 defined by C(5),C(10),C(11),C(12),C(14) and C(16).

c(5)

c(10)
c(11)
c(12)
c(14)
c(16)

8 defined by C(12),C(14),C(15),0(1) and 0(2).

c(12)
c(14)
c(15)

-0,010

0,014

0,003

=0,047
0,006
0,080
0,015
0,006

=0,060

=0,025

0,009

c(e)
c(9)
c(11)
c(12)

c(6)
c(9)
c(13)
o(1)
0(2)
0(3)
0(4)

0(1)
0(2)

1.293
1,207
=1,202
-1.181

-1.533
-1.463
C.TTO
0.278
=04332
-1,034
1.016

0,008

0,040



Plane 9 defined by C(11),C(16),C(17),0(3) and O(4).

Plane

Plane

c(11) 0,003
C(16) =0,023
C(17) =-04005

0(3) 0,011
o(k) 0,014

10 defined by C(7),C(18),c(19),0(5) and 0(6).

C(7) 0,0uU1
C(18) =0,012
c(19) =~0.004

11 defined by
c(8) 0.021
C(20) =0,008
c(21) 0,027

0(5) 0,006
0(6) 0,009

C(8),C(20),C(21),0(7) and 0Q(8).
0(7) ~04,005
0(8) =0.035



PART II -~ PLANE EQUATIONS,

In the following table P,Q and R are the direction

cosines of the plane normal, S is the plane to origin

distance and RMS D is the root mean square deviation

o
in A s. The plane equation 1is then

PX + QY + RZ = S

o

where X,Y and Z are in A 8 and are referred to standard

orthogonal axes.

PLANE

W 00 ~N O U & W N =

-t
C

b
-l

P
-0.,4088
-0,4333
=0, 4720
~0.4167
-045553
-0,06T9
~0.3743
-0,0970

0e2U99
0.6573
-0,7239

Q
0.,7108
-0,6905
03477
0.7715
-0.2U444
0,9607
-0,8022
-0,8989
-0,0029
0,7365
=0e37T4

R
-0.572h
-0.5792
-0e8101
-Col807
-0,7949
=0,2690
-0, 4652
-0e4273
-0,9683
=061597
-0.5776

S

=T U717
-11,7809
-11,6361
-9,2870
-13.7817
-1.9741
-8.8919
-6.8460
-10,2615

b,6517
-12,3496

RMS D
006
0,027
0,015
0,010
0,013
0,009
0.0U6
0,026
0,013
0,007

0,022

9(?
0e5
16.8
3.6
1.7
2.7
1.4
bg,1
15.7
4,2
1.2
11.8



l.4 DISCUSSION

Although the analysis was undertaken to determine
only the gross ﬁolecular structure the results allow
something to be said about the details of the structure
of the molecule.

The mean dimensions of the methyl ester groups
are given in Table A. The figures in parentheses
are the respective root mean square deviations from
these means and they are in every case less than the
estimated standard deviations of an individual measure-
ment calculated from the least-squares totals., The
latter may thus be taken as reliable estimates of the
random errors, Table A also contains values for
comparable bond lengths and interbond angles obtained
in some other recent analyses. They are in reasonable
agreement with the results of this analysis.

The ester groups are planar to within the accuracy
of the results, the deviations from the mean plane of
the five atoms forming the group being significant at
the 0.1% level in one instance only.

In table B the means of the other types of
covalent bond in the structure are given. With the
exception of the C-Br bond which is about three standard
deviations longer, they are in good agreement with

accepted values.

69—



TABLE A
)

o
BOND LENGTHS (A) AND INTERBOND ANGLES (o) IN SOME
ESTER GROUPS

O—g—C
a &
C—-C._Db
X0
a b c d Reference
1.477(2) 1.188(9) 1.320(6) 1.462(6) This analysis
- 1.223 1.351 1.459 1
1.188 1.343 1.463 3
10470 10189 - - 4
[ab [ac /bc /cd Reference

123,2(10) 112.6(13) 124.3(7) 116,3(11) This analysis

124.6 111.2 124.2 120,3 1
126.3 110,.6 123,1 120.7 2
126.0 108.,0 125.8 120.,2 3
References

1. d.l—A1§haprodine hydrochloride, Kartha, Ahmed & Barnes
(1960).

2. d.l-Betaprodine hydrochloride, Ahmed & Barnes (1963).

3 d.l-Be?aprodine hydrobromide, Ahmed, Barnes & Masironi
(1963).

4. Maleic anhydride, Marsh, Ubell, & Wilcox (1962).
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TABLE B
(0]
AVERAGED BOND LENGTHS (A)J

BOND TYPE MEAN NUMBER LITERATURE VALUE*
C-C spo-sp°  1.543 7 1.537

sp3-sp2 1.513 6 1.510

sp-sp°  1.342 3 1.335
C-Br 1.986 2 1.938

* Sutton (1965)

The unusual carbon skeleton of this molecule
results in a good deal of steric strain, This is
shown by considerable departures from normal valence
angles, by significant departures fromexpected planarity,
and in at leaét one instance by a departure from usual
cnvalent bond lengths.

The C€(5)-C(6) bond is 1.614 X which is more than
three standard deviations greater than the mean for
this type of bond. Both carbon atoms are fully
substituted and lengthening due to steric repulsion is
understandable. Such lengthening in bonds involving
highly substituted carbon atoms has been observed in
other analyses. The central bond in hexamethylethgne was
found by Bauer and Beach (1942) to be 1,58 K; 1.59 A

was found for a similar bond in longifolene hydrochloride
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0
by Cesur and Grant (1965) and values up to 1.66 A were

claimed in methyl melaleucate iodoacetate by Hall and

Maslen (1965). ‘

E and sp2 carbon atoms show highly

Angles at sp
significant differences from their usual values of 109°
and 120°, These differences are most ﬁarked at the
ring junctions and in the cyclobutene ring. Angles
at the sp3 carbons C(5) and C(6) range from 97° to 125°
and 85° to 1270 respectively. The average internal
angle at sp2 carbon 1is 940 in the cyclobutene ring and
107° in the bicycloheptene system. The angle at the
bridging C(13) is 970. These results are comparable
with those found in the eleétron diffractién studies
of methylcyclobutene (Shand, Schomaker, and Fischer,
1944), cyclobutene (Goldish, Hedberg, and Schomaker,
1956), and norbornadiene (Schomaker, 1960), and wifh the
x-ray studies of norbornadiene palladium dichloride
(Baenziger, Richards, and Doyle, 1965), and anti-8-
tricyclo -%,2,1,02’4 octyl-p-bromo~benzene suiphonate
(Macdonald-and Trot%ér, 1965).

The deviations from the planes defined by the
carbons in carbon-carbon double bonds and the atoms
adjacent to them (Table 1.11, planes 1,2 and 7) are
significant at the 0.1% level in the case of the C(7)-
C(R) and the €(11)-C(12) double bonds but not in that of-
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the C(2)-C(3) double bond, This may reasonably be
attributed to the greater steric straip in the cyclobutene
and bicycloheptene ring systems.,

Although their standard deviations are large
the anisotropic vibration tensors give a physically
reasonable description of the atomic vibrations. The
atoms in the methyl ester groups, and in particular
the methyl carbons, undergo vibrations which are both
larger and more anisotropic than the atoms in the main
part of the molecular skeleton, In each case the
direction of maximum vibration of a methyl carbon is
approximately normal to the direction of the Me-0
bond. The peak heights and shapes of the final three-
dimensional Fourier (Fig. 1.2.) also support this
picture,

There are three intermolecular contacts which
are smaller than the sum of the van der Waals radii
(Pauling, 1960) of the participating atoms, namely
two methylcarboﬁ - carbonyl oxygen contacts of 3,20
and 3.25 X and a contact between C(4) and 0(3) of 3.14 X.
All other contacts are normal, Since hydrogen atoms
were included in the calculations in assumed positions
it has not been considered worthwhile to list inter-

molecular contacts involving hydrogen.
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CHAPTLR II

PHENANTHRENECHROMIUM TRICARBONYL



2.1 INTRODUCTION

The structural study of phenanthrenechromium
tricarbonyl was prompted by a controvérsy over the
molecular symmetry of dibenzenechromium, In one
x-ray analysis of dibenzenechromium (Jellinek, 1963)
adjacent bond lengths in the benzene rings were found
to differ by 0.07 X, whereas in a second analysis
(Cotton, Dollase, and Wood, 1963) the bond lengths
in the aromatic rings were found to be equal. Structure
analyses of arenechromium tricarbonyls might be
expected +to yield information relevant to this problem.
When the present work was started x-ray analyses of
benzenechromium tricarbonyl and biphenyl bis(chromium
tricarbonyl) (Corradini and Allegra, 1959 & 1960),
and of a monoclinic modification of phenanthrene-
chromium tricarbonyl (Deuschl and Hoppe, 1964) had been
reported. However, each of these three analyses was
based only on projection data and no worthwhile
conclusions could be drawn about the effect of the
chromium tricarbonyl fragment on the bond lengths of
the aromatic ring.

From Deuschl and Hoppe's work on the monoclinic

polymorph it was known that the chromium tricarbonyl

moiety is bonded-to one of the side rings of phenanthrene.
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An accurate x-ray analysis of phenanthrenechromium
tricarbonyl thus allows direct comparisons to be made
between the two side rings, which are different only
in the respect that one is bonded to a chromium .

tricarbonyl fragment while the other is not.

2.2 EXPERIMENTAL
Crystal Data
Phenanthrenechromium Tricarbonyl

Cq4HyoCr(C0)4

F.W. 314.3
)
Orthorhombic, a = 12,14, b = 18,08, ¢ = 12.34 A,

U = 2709 X ? F(000) = 1280

D, = 1.52 gmcm-3 Z = B#X = 1,540 gmcm-3

Linear absorption coefficient (Mo K@ , wavelength

0 -1
0.7107 A) = 8.8 cm

Systematic Absences

Ok £ when k is odd hOO when h is odd
hO £ when £ is odd 0kO when k is odd
hkO when h is odd 00% when # is odd

Space Group Pbca (No. 61)
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The systematic absences and cell dimensions
were determined from equatorial layer'and equi-inclination
upper layer Weissenberg photographs taken normal to
the ¢ axis with copper Ko radiation (wavelength 1.5418 Z)
and from hO £ and Ok 4 precession photogréphs taken with
molybdenum K a radiation (wavelength 0.7107 K). The
determination of the space group and density was carried
out by Mr. D.R., Pollard who also supplied preliminary
values of the cell dimensions (Pollard, 1964).

The intensities of 714 independent reflections
were measured by visual comparison with a calibrated
intensity strip. Timed series of 30 © précession
photographs of the reciprocal lattice nets Ok £ to
4k 4 and hOy +to h2 ¢ were taken with molybdenum Ka
radiation, The charts of Grenville-Wells and Abréhams
(1952) were used to correct for Lorentz and polarisation
factors. The various reciprocal lattice nets were set
on an approximately equal scale by comparison of common
reflections. The final scale factors. were obtained by

making X% |FO| o= E\FJ for each reciprocal lattice

net,
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2.3 STRUCTURE SOLUTION AND REFINEMENT OF PHOTOGRAPHIC
DATA

[
The space group implies that the chromium atom

is in a general position in the unit cell, Its
fractional coordinates were determined from the Harker
sections at U= 4%, V=3%and W= 3.

The space group Pbca is centrosymmetric; there
are three sets of non-intersecting two-fold screw axes
parallel respectively to each of the crystal axes and
three sets of axial glide planes normal to each of the
crystal axes. If the origin is taken at a centre of
symmetry then the coordinates of the eight general
equivalent positions are: +(x,y,z), + (x,5-y,3+z),
+(3+x,y,5-2), and +(¥-x,3+y,z).

If the 21 axis parallel to the a axis is considered
it is apparent that four equivalent positions are connected
to other four by vectors having a component of % along
a. The analytical expressions for these four vectors
and their inverses are found to be:

+($,%+2y,22) ,+(%,3-2y,22) ,+(3,3+2y,-23) ,+(3,3-2y,-22).

Eight vectors between chromium atoms should
therefore give rise to four double-weight peaks on the
Harker section at U=%. These four peaks are related

to each other by the pmm plane group symmetry of the

section.



The a glide plane normal to the c¢ axis connects
four equivalent positions to the other four by vectors
having components 3 along a and O along b. The
expressions for these four vectors and their inverses
are found to be

+(%,0,%+22),+(%,0,%-22),
each position occuring twice. Another eight vectors
between chromium atoms should therefore give rise to
two peaks of quadruple weight at V=0 on the Harker
section at U=3. These two peaks are also related by
the plane group symmetry of the Harker section. The
Harker section at U=% therefore contains two independent
peaks corresponding to vectors between chromium atoms
from which two estimates of the z coordinate and one of
the y coordinate of the chromium atom may be derived.,

Analogous results may be obtained for the other

two Harker sections, and the positions of the independent

Harker peaks can then be summarised as:-

Section Two-fold Peak Four-fold Peak
U=% 3,34+2Y,22 %,0,%+22
V=% ‘ 2X,%,5+2z $+2%,3,0
W=% 3+2x,2y,% 0,5+2y,%

The asymmetric units of the three Harker sections

of the unsharpened three-dimensional Patterson function
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are shown in Fig. 2.1l the peaks which were taken as
vectors between chromium atoms are indjicated by crosses.
The coordinates of these peaks were determined using
Booth's interpolation formula (1948). The chromium
atom coordinates were then worked out from the analytical
expressions given above and averaged. |

The mean values obtained for the chromium coordinates

were. -

X/a Y/b z/c
cr(l) 0.4304 0.6771 0.1609

An electron density synthesis based on phases
calculated from the chromium positions revealed the
entire structure except for one carbonyl group. Due
to the small ﬁumber of terms used in the Fourier series
the peaks in this synthesis were rather poorly resolved,
and there was a good deal of spurious electron density
round the chromium. Inclusion of the atoms of the
phenanthrene nucleus and of the two located carbonyl
groups reduced R by 0.13 to 0.33. A second electron
density synthesis allowed the atoms of the missing
carbonyl group to be located, Structure factors
calculated from the positions derived from this synthesis

gave an R-factor of 0.28,
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At this stage of the analysis it was apparent that
further data collection was necessary  to achieve accurate
results. It was therefore decided to collect a more
complete set of data and in the meantime to refine
the available photographic data in order to start the
refinement of the second set with a reasonably good
model of the structure.,

With the photographic data the structure was
refined in eight cycles of least-squares minimisation
of the function M =23w(|FOl -lFCl)Z. The programme
devised by Dr., J.S. Rollett for the DEUCE computer was
used (Rollett, 1961). Since this programme did not
allow isotropic temperature factors to be refined the
temperature factors of the carbon and oxygen atoms were
held constant during the first four cycles. Thereafter
anisotropic temperature factors were refined for these
atoms. At the conclusion of this refinement R stood
at 0.106 and the average standard deviation of a C-C
bond was 0.03 K. The bond lengths at this stage of
the analysis are presented in Table 2,7. It can be

seen that none differ significantly from the final

values,
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2.4 COLLECTION OF DIFFRACTOMETER DATA

A second set of data was collected on a Hilger-
Watts linear diffractometer (see Appendix I) with a
crystal mounted about the ¢ axis. Molybdenum radiation
was used, with balanced SrO—ZrO2 Ross filters, A
half-minute oscillation cycle was employed and each
reflection was measured at least four times with each
filter. A 30 oscillation angle was used for all
reflections. About sixty reflections had to be set
by hand. The maximum recording angle wasf8 = 300.

The intensities of 4716 independent reflections
on the reciprocal lattice nets hkO to hkl7 were measuredj
of these 505 had intensities of zero and a further 42,
including the 004 reflections, were known to be subject
to serious systematic error. None of these reflections
were used in the analysis. Of the remaining 4169
reflections 1033 had intensities of less than 20 counts
per minute and these were introduced into the refinement
only in its later stages.

The intensities were reduced to structure amplitudes,
using the Lorentz and polarisation corrections appropriate
to equi-inclination Weissenberg geometry, by means
of DEUCE computer programmes devised by Dr. J.G. Sime.

No absorption corfections were applied since the crystal

was effectively transparent to molybdenum K& radiation.,
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The data were placed on approximately absolute scale
by comparison with the refined photographic data.
The final scale factor was determined by least-squares

refinement.
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2.5 REFINEMENT OF DIFFRACTOMETER DATA

The structure was now refined in fourteen cycles
of least-squares minimisation of the function
M=z w(lFo‘ - |Fcl)2, using the programme written
by Cruickshank and Smith for the KDF9 computer, A
block-diagonal approximation to the normal least-squares
matrix was employed. The 1033 weak reflections were
first introduced into the refinement in cycle 11 and
were then used in all subsequent cycles.

Isotropic temperature factors were refined for
carbon and oxygen atoms in the first nine cycles; in
the first two cycles an isotropic temperature factor
was also refined for the chromium atom but thereafter
an anisotropic temperature factor was used.

The first six cycles reduced R from 0.231 to 0.138,
After cycle 6 a difference synthesis was computed using
the 437 reflections for which sinf /A was less than
0.35 X‘l. The purpose of this synthesis was to decide
whether inclusion of the hydrogen atoms in the calculations
was worthwhile, Peaks corresponding to the expected
positions of all ten hydrogen atoms were found, The
peak heights ranged from 0.2 to O.4e/£3. The hydrogen
atoms were accordingly included in the structure factor

calculations in poSitions consistent with those of the
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carbon atoms adjacent to them, The isotropic
temperature parameter of each hydrogen’atom was assumed
to be 1.5 times that of the carbon atom to which it
was bonded. Inclusion of the hydrogenvatoms reduced
R from 0.138 in cycle 6 to 0.133 in cycle 7.

In cycle 9 least-squares totals were accumulated
to determine the anisotropic temperature factors of
the carbon and oxygen atoms. As a result of allowing
for the anisotropic vibrations of these atoms R fell
from 0.130 in cycle 9 to 0.105 in cycle 10, In cycle
11 all 4169 reflections were used for the first time.
R rose to 0.128 but the parameter standard deviations
fell by 10% on average.

Unit weights were used in cycles 1 to 8 and in
cycles 9 to 12 a weighting scheme of the form
w = 1-exp(—6sin29 /A 2) was applied. After cycle 12
the unweighted differences between the observed and
calculated structure factors were analysed as functions
of IFO |, sinf/A , and of the layer line index. From
this analysis it was apparent that equal weights were
appropriate to about three-quarters of the data but
that low order reflections and particularly strong
reflections required some down-weighting. Similar

conclusions have been reached about linear diffractometer .
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data in a number of analyses carried out in this
laboratory and elsewhere (e.g. Wheatl?y 1964). In
the present case it was also found that for weak
reflections in which | Folwas greater than chlthe
mean 62 was about three times the average for the data
as a whole. Only a quarter of the 2400 reflections
with |F_ |less than 10 showed this effect and the
average & 2 for the remaining three-quarters was about
the same as the average & 2 for the data as a whole.
The following weighting scheme was devised to allow for
these factors:-

w =20 ileJ <%(FO| otherwise w=w; X W, where

wy= 1 if |P <75 otherwise w; = 75/|F | and

wy= 1 if sinB/A > 0.4 otherwise w, = (sin 6/ A )2/0.16
This weighting scheme was used in the last two cycles.
In all, 671 reflections were given zero weight. The
change in weighting scheme had little effect on R or
on the atomic coordinates. R', however, fell from 00,0184
to 0.0080 and significant shifts in the scale factor
and temperature parameters occurred. The parameter
standard deviations fell on average by 15% after allowance

had been made for the smaller number of degrees of
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freedom on which they were based,

In the last cycle of refinement the average shift
in coordinates was less than 0.001 K and the maximum
shift was less than one third of the corresponding
standard deviation. The shifts in scale and temperature
factors were also insignificant.

The atomic form factors used throughout the
refinement were those of Freeman and Watson (1961)
for chromium, of Hoerni and Ibers (1954) for carbon,
of Berghuis et al. (1955) for oxygen, and of Stewart,
Davidson and Simpson (1965) for hydrogen.

The structure factors from the final cycle of

least-squares were used to calculate electron density
and difference syntheses. A composite Yiew of the
final electron density synthesis is shown in Fig., 2.2,
The standard deviation of the electron density,calculated
from the approximate formula of Cruickshank (1949),was
0.1e/33. A number of regions in the difference synthesis
showed function values greater or less than three times
this standard deviation. In particular there were
two regions of positive density with maximum function
values of 0.8 and l.le/KB'associated with the chromium
atom, These were tentatively ascribed to errors in the

low order data down-weighted in the least-squares refine-

ment,
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(1)

(2)

Course of the Analysis

Refinement of Photographic Data '

S.F, Cycle No.

1
2
3

S.F.L.S,
Cycle
No,

~ W o

Refinement of Partial Diffractometer Data

S.F.L.S,
Cycle
No.

O O 3 o0 U »» W NN M

[
(@

0.28
0.25
0.24
0.18

Atoms Included
Cr

Cr+16C+20
Cr+17C+30

S.FOLOSO
Cycle
No.

5

6
7
8

Remarks

All atoms isotropic

A1l atoms isotropic

Chromium set anisotropic

Structure factors only

Hydrogens included

All atomsset anisotropic
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0.46

0.33
0.28

0.155
0.129
0.118
0.106

0.231
0,174
0.155
0,141
0.139
0.138
0.133
0.131
0.130

0.105



(3) Refinement of Complete Diffractometer Data

S.F.T.S. R R', Twb?
Cycle
No.
11 0.128 0.0190 19976
12 0.123 0.0184 19087
1% 0.123  0.0084 10476
14 0.123 0.0080 9892
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The final values of the coordinates of the heavier
atoms are presented, with their standard deviations,
in Table 2.1, The assumed fractional coordinates of
the hydrogen atoms are given in Table 2.2. Table 2.3
contains the anisotropic vibration parameters of the
heavier atoms. The final values of the observed
and calculated structure factors are given in Table
2.4 and an analysis of the structure factor agreement
is presented in Table 2.5. Table 2.6 contains the
principal magnitudes and directions of atomic thermal
motion. The bond lengths, interbond angles, and
intermolecular contacts below 4R are presented in
Tables 2,7, 2.8, and 2.9 respectively. The deviations
from least-squares planes through various sets of atoms
are given in Table 2.10., Standard deviations,if quoted,
are in units of the last decimal place of the quantity
to which they refer, The quantities given in Tables
2.6 to 2,10 were calculated with the programmes described
in Part IT of this thesis and the equations given there
apply.

A view of the molecular packing down the c¢ axis

is given in Fig. 2.3.

2,6 ANALYSIS OF MOLECULAR VIBRATIONS

The molecular vibrations were analysed in the manner -

suggested by Cruickshank (1956, 196la), using the
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Pre. 2.1
The Larker sections at U = 5, v = &, and W = 1.

Peaks correspouding to vectors between chroiiiuw atons

are indicated by crosses.






FIG. 2.2

The composite final electron density synthesis
viewed down the ¢ axis. Contours are at 1 e/x3 inter-
vals starting at 2 e/x3 except round the chromium atom

where the contours are at 10 e/R3 intervals starting

at 5 e/RB.






FIG. 2.3

The molecular packing viewed down the c axis.
(Roman numerals have the same significance as in

Table 2.9).






FIG. 2.4

Molecular diagram showing the numbering of the
heavier atoms. (Hydrogen atoms have the same numbers

as the carbon atoms to which they are bonded). The
bond lengths after libration correction in the phen-

anthrene ligand are also shown.






TABLE 2,1
FRACTIONAL COORDINATES AND EeSoDeSe

ATOM X/a Y/b Z/c
Cr(1) 043186 + 4 0067807 + 3 016117 + 5

c(1) Oelt120 + 4 00,6803 + 3 =0,0170 + 4
c(2) 003166 + 4 006512 + 3 00282 + 4
c(3) 0,3228 + 4 045909 + 3 0,0971 + 4
C(4) Ol.4251 + 4 05587 + 2 0.1236 + U
c(5) 0,6468 + 5 0ol921 + 3 O.1646 + 5
c(6) 07519 + 7 Oel590 + 3 01769 + 6
c(7) 0.8404 + 5 0.4872 + 3 0.1169 + 6
c(8) 0.8281 + 4 065455 + 3 0,0515 + 6
c(9) 0.7125 + 4 0.6410 + 3 -0,0325 + 5
c(10) 066157 + 4 0.6737 + 3 -0,0499 + 4
c(11) 05172 + 3 0.6U62 + 2 0,0025 + 3
c(12) 0e5246 + 3 0.5854 + 2 0,0737 + 3
c(13) 0.6324 + U4 05520 + 2 0,0937 + 4
C(14)  0.7242 + 3 05797 + 3 0,0379 + 4
C(15) 03173 + &4 0,7139 + 2 0,217 + 4
C(16)  0,4882 + U 0.7728 + 3 0.1621 + 4
c(17) 0o5102 + 3 046566 + 2 0,2866 + 4



0(1)
0(2)
0(3)

ATOM

H(1)
H(2)
H(3)
H(L4)
H(5)
H(6)
H(T)
H(8)
H(9)

H(10)

0.2466 + 3

05189
065572

+

—

s

5
3

07382
0.8327
0.6422

TABLE 2.2

3

I+ 1+ ]+
N

2

00,2948 + 4
0.1634 + 5
0.3633 + 3

ASSUMED HYDROGEN ATOM COORDINATES
AND TEMPERATURE FACTORS.,

X/a

0,409
06235
0o2u7
Oe429
0575
0,767
06920
0,901
0,785
0,610

Y/b

00728
0677
04566
0.513
0470
0l.413
0.U59
0,568
06663
0.721

Z/c

=0,070
0,011
0,130
0182
0,210
0,232
0,122
0,008
=0,073
=0, 104

0,067
0,068
0,063
0,057
0.075
0,085
04087
0,080
0,071
0,066



TABLE 2,

ANISOTROPIC TEMPERATURE FACTORS AND

ATOM
cr(1)

c(1)
c(2)
C(3)
C(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
c(11)

c(12)

un
000286
2

00,0496
24
OeO434
22
00,0388
21
00,0510
23
0,0799
34
00,1120

48

00656
32

0,04T3
26
00464
24
0,0531

24

19

0.,04U2
19

U22
000333
2
00622
25

0,0681
28

0,0536
24
00377
18

22

00473
26
0,0701
32

0,0718
32

00,0605
27

0,0532
24

00447
19

0,0342
17

U33

OoOLlL
3

0,0481
22

00,0569
25

06,0683
28
00569
23

00655
30

0.0787
38

06,0917
L2
060935
42
0,0730

31

06,0570
25

00430
18

00470
19

2u23
"090\)85
4
0,0119
39

=0,0415
43

-0,0528
41
=0,0149
32

-0,0242
k2

-0,0257
ko

-0,0532
61

“000659
61
-0,0099
Le
060227

39

-0.0\)41
29

=0,0206
28

EoSeDeSe

2U31
-0 .0{;67
i}

-0,0214
35

-0,0202
37

00119
37

0,0099
38

-0,0284
53

=0,0778
72

-0,0552
61
-0,0232
52

00161
Ly

040274
39

=0,0048
30

-0,0C29
31

2u12
=0,0048
4

0,0158
41
060003

40

-0,0314
36

-0,0210
35

0.,0234
4y
0,0546
58

0.0559
55

00,0206
4g

-Q.0153
L2
0,0.56
L1

=0,0012
32

=0,0007
30



c(13)
C(1k)
c(15)
c(16)
c(17)
0(1)

0(2)

0(3)

060505
23

0,0383
21
0,0366
19
0,0515
24
0o 0UOU
19

0,0452
17

01062
35

0,0616

060370
18
00518
23
0,0533
22
0,0487
23

00450
21

0,0973
30
0,0429
19

0,0TT4
24

0.,0512

00647
27

00584
o4

0,0656
27

0,0510

00858
27

0.1381
4

000651
23

-0,0229
31

=-0,0398
39

-0,0137
39

0,0042
41

31

-0.0677
ko
00,0217
48

0,0154
36

-0,0158
35

-0,0102
36

=0,0267
35

-0,0232
b3

=0,00T6
32

0,0029
37

-0,0492
67

-0,0391
36

0.0105
32

0,0.96
36

=0,0050
37

=0,0114
38

-0,0033
32

0.0175
39

=0,0U462
43

-0,0011
38



TABLL 2.4

Ubserved and calculated structure factors.
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TABLE 2.5
STRUCTURE FACTOR AGREEMENT.,

(a)Analysis of observed and calculated structure factors as a
function of the layer line index. All figures are on

absolute scale,

1 Tirq| ;| Fel N R ST

0 5053 5040 133 060557 2,11
1 6366 6284 265 0,0814 1.96
2 6376 6236 275 Ce0699 1.62
3 5201 4965 263 0.0988 1.95
4 5623 5510 256 060709 156
5 5118 5018 253 040795 1.61
6 4739 4619 269 0.,0960 1.69
T 3726 3722 229 00,0846 1.38
8 3236 3014 271 041470 1.75
9 2682 2490 242 Ce1613 1.79
10 2797 2670 260 Oe 1443 1.55
1" 2248 2029 231 0,1818 177
12 1953 1758 243 02180 1.75
13 1457 1270 213 042563 1.75
14 1260 1013 223 043584 2,02
15 1029 800 198 043876 2401
16 984 735 196 04201 2411
17 684 412 149 0.5013 2,30

All 60531 57645 4169 041229 1,77



(b)Analysis of observed and calculated structure factors
as a function of the magnitude of the observed structure

factorse All figures are on absolute scale.

Range of Fo > lFol D3I Fel N R XIAI/N
0O=- 5 3661 3023 1032 C.l4953 1.76
5 = 10 10164 8130 1435  0,3113 2021
16 = 15 o6T44 6679 551  0,1053 1.29
15 - 20 5721 5759 331 0.0693 1.20
20 - 30 8726 8763 358  0,0482 1,17
30 = 40 6196 6242 179 0,0432 1.49
4¢ - 60 7089 T006 146 00,0373 1,81
60 = 80 4503 Lyhy 67 0.0304 2,04
80 = 100 3121 3064 35 040300 2,67
16C - 150 3030 2987 26 00,0435 5607

150 = 300 1579 1546 9 0,0378 6.62



ATCM
Cr(1)

c(1)

c(2)

c(3)

c(4)

c(5)

c(6)

c(7)

c(8)

o2
UA

00462
00,0263
00338

0,0347
00661
060592

00,0850
0.,0338
0,096

00922
060256
0.,0U429

040650
0o 0494

0,0939
0,0367

00575

Oo 1467
06,0372
00541

0e1321
000396
060556

01206
060U435
0,0U485

TABLE 2,6

D1

-0.1415
0.8523
-065036

046593
03957
-0,6393

=0,1540
0.,6681
=-0,7280

0.2634
06585
=0,7050

0.4265
0e5611
0eTO94

-047926
-0,1482
-0e5914

=0,8065

063695
0.4616

=0,5045
067705
03896

=0,2062
-009263
=063155

D2

=042862
04518
08450

-0¢3346

06,9159
0,2218

~047672
0,3834
Oe5142

=0,6148

046777
0.4033

0.8874
=06l113
-0,2082

=0¢3060

00,9357
061756

-0,2884
-049273
02385

=0e5221
=0.6317
0.5731

-0s5771
043755
-047252

PRINCIPAL VALUES OF VIBRATION TENSORS
AND THEIR DIRECTION COSINES REFERRED
TO CRYSTAL AXES,

D3

09477
042637
00,1801

046733
0,0677
07363

06226
0,6377
0.4535

0,3272
065834

061750
067183
-0,6734

Oeb2T4
0e3201
-0,T7870

065162
00,0593
048544

06877
00857
07210

07902
00,0326
=0,6120



c(9)

c(10)

c(11)

c(12)

C(13)

c(14)

c(15)

c(16)

c(17)

6(1)

o(2)

0(3)

0,0781
060420
00,0598

060743
00386
00504

0,0393
00463
00,0438

00284
00529
060441

0,0641
060306
00440

0,0803
0,0364
060381

0,0291
060668
00524

0,0730
0,0423
000505

0,0555
0,0368
0o0U437

001263
0,0418
060602

060353
0.1554
000966

040430
0,0870
0,071

003132
'099244
062179

0.5254
=045750
00,6272

067069
=0,2362
06667

0,0641
-0,1262

09899

=0,5702
-0,0449
=0,8203

=0,1632
-0,7328
~0,6606

0.8683
=0¢3495
03519

=05044
0,7580
-0014135

-0,1559
07611
-066297

=0,0713
-0,9138
=003999

-063006
=05081
=0,80T1

07158
=0e5153
=0.4712

-0,3814
-003325
-0,8625

0Oe4569
-0e4312
=0,7780

0.3176
-0,7362
=0.5976

08708

=0.4T75
-061172

08804
002372

-0.5829
0,6118
=0e5347

042162

-0,3719
-0,9027

01909
00,5649
00,8027

-0,4998
04891
0.,T148

=04T666
03067
~0,5642

=069533
0.1855
02383

=0, 1417

05536
=08207

0.8697
0.1871
=0, 4567

07178
006953
0,0361

0,6320
0.6342
=0 4454

04874
0,8695
0,0793

0,7115
0o U720
-005205

047960
0.2978

O lubh

08599
=0,24T4

0.8421
063260

08520
0. U262
Oe30U42

0.6382
062663
=067223

00,0287
0.8411
=0¢5402

06837
0,6543
0e3232



TABLE 2,

o
BOND LENGTHS (A) AFTER REFINEMENT OF PHOTOGRAPHIC DATA (I),
AFTER REFINEMENT OF COUNTER DATA (II), AND AFTER LIBRATION
CORRECTION (III).

I 11 III
c(1) - c(2) 1.46 1389 + 7 1.394
c(2) = c(3) 1,44 1,385 + 7 1.392
C(3) - C(4) 1.41 1.410 + 6 1.414
c(4) - c(12) 1,39 1.439+ 6 1,445
c(11) - c(12) 1.44 1,410+ 6 1.417
C(1) = C(11) .44 1,440+ 6 1,444
c(s) =~ c(6) 1,40 1,418 + 10 1.420
c(6) = c(7) 1.37 1,401 + 10 1.406
c(7) = c(8) 1,34 1.337 + 9 1.343
c(8) = c(14) 1,40 1415 + 7 1.7
C(13) - C(14) 1,44 1402 + 6 1,408
c(5) = c(13) 1oU41 1.402 + 7 1,408
c(9) =~ c(14) 1.36 1.416 + 8 1,422
c(9) =~ c(10) 1.3 1,333+ T 1.337
c(10) = c(11) 1,44 1.447 + 7 1,452
c(12) - c(13) 1.52 1,462 + 6 1,467



Cr(1) -
Cr(1) -
cr(1) -
Cr(1) =-
cr(1) -
Cr(1) -

Cr(1) -
Cr(1) -
cr(1) -

Cr(1) -
cr(1) -
Ccr(1) -

c(15)
c(16) -
c(17) -

c(1)
c(2)
c(3)
C(4)
c(11)
c(12)

c(15)
c(16)
c(17)

0(1)
0(2)
0(3)

o(1)
o(2)
0(3)

2425
2622
2621
2422
2.27
2,29

1.83
1,76
1.82

2,97
2.99
3002

1.15
1.24
1,20

2,221
2.217
2.214
2,217
2,298
20,296

1.833
1.853
1.865

20999
3,000
3,004

1.167
1,149
1,139



c(11)-
c(1) -
c(2) -
c(3) -
c(13)-
c(5) -
c(6) -
c(7) -
c(14)-
c(9) -
c(1) -
c(1) -
c(10)-
C(4) -
c(4) -
c(11)-

c(1)
c(2)
c(3)
C(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)=-
c(11)-
c(11)-
c(11)-
c(12)-
c(12)-

c(12)-

TABLE 2,8

INTERBOND ANGLES AND E.S.D.S.

c(2)
c(3)
C(4)
c(12)
c(6)
c(7)
c(8)
c(14)
c(10)
c(11)
c(10)
c(12)
c(12)
c(11)
c(13)
c(13)

120,745
120,0+4
121,0+4
1204144
120445
118,746
121,346
121,045
122,345
1204345
120, 7+4
119.7+4
119,644
118444
122,74
118.9+4

c(5) -
c(5) -
c(12)-
c(8) -
c(8) -
c(9) -
c(15)-
c(16)-
c(17)-
o(1) -
0(2) -
0(3) -
Ccr(1)-
Cr(1)=-
Cr(1)-

c(13)-
c(13)-
c(13)-
c(14)-
c(14)-
C(14)-
Cr(1)-
cr(1)-
Cr(1)-
Cr(1)-
Cr(1)-
Cr(1)-
c(15)-
Cc(16)-
c(17)-

c(12)
c(14)
c(14)
c(9)
c(13)
c(13)
C(16)
c(17)
c(15)
o(2)
0(3)
o(1)
o(1)
0(2)
0(3)

122.&1#0
118.8+5
118.8+4
120,245
119.7+5
120, 1+4
8Te1+2
89.9+2
90,642
85451
9049+2
90.1+1
177.8+4
177.145
178.T+4



TABLE 2.

(o]
INTERMOLECULAR CONTACTS BELOW 4 A.

i1
i1l

i1
iv
111
1i

ii
111

1i1
111

iv
iii
111

w w w W W w w W W w w w w w w w w w
e e e ] L] [ ) e & e

N
=
>0

L ] [ ) .
MU Ul W o EEEEE LWL WD
® ® 9 W m EFE EFE O WU F O = 0 o L o

C(3)eeess c(7)
C(8)auenn c(17)
C(U)eeens c(7)
C(2)eeess o(1)
C(3)easee C(6)
C(2)evene c(7)
C(4)esens c(12)
c(12) c(12)
c(15) 0(3)
C(1)esece c(5)
C(U)eenne c(14)
C(#)ecans c(6)
C(1)eeeee c(15)
c(10) .0(1)
c(10) 0(2)
c(12) c(13)
0(2) saees 0(3)
C(1)eceee c(6)

111

11
iv
111
113
iii
iii
i1
1ii
111
11
iv

iv
111
iv
111

Ww W w W w W W W W W W wWw w w w w w w

.59 A
.59
.60
.61
.61
.62
.62
.63
.65
.68
.68
.71
.72
12
.73
.75
.76
<77



C(3)eesseC(6)
C(10) eeee(1)
C(4)eassaC(5)
C(5)ecessC(11)
c(14)....Cc(15)
C(T)esees0(3)
C(5)eeeeeC(12)
C(7)eesesC(17)
C(15)es0.C(17)
C(9) eesssC(15)

Roman numerals

of the fractional

il
v
111
111
i

i
111

i1

1 1/2 + x,

11 -1/2 + x,
1i1 1 - X, -
iv x,3/2 -

v 1/2 + x,3/2 -
vi -1/2 + x,3/2 -

Y
Y
)
¥
N
Y

3.77
3.77
3.78
3.80
3.82
3.85
3.86
3.88
3.88
3.89

1/2
1/2

-1/2

+

C(10) «aseC(17)
C(13)....0(1)
C(9)eaeasl(1)
C(1)eee..0(3)
C(2) eeeasC(9)
C(8)eeessC(15)
C(10) ee..C(15)
C(1)eeassC(17)
C(10)....C(16)

iv

iv

vi

iv

iv

coordinates given in Table 2.1.

3.89
3.89
3.93
3.95
3.96
3.97
3.97
4.00
4,00

refer to the following transformations



TABLE 2,10

MEAN MOLECULAR PLANES,

PLANE NO. ATOMS DEFINING PLANE
1 C(15),C(16), and C(17)

2 0(1),0(2), and 0(3)

3 C(1),C(2),C(3),C(4),C(11), and C(12)

4 C(9),C(10),C(11),C(12),C(13), and C(14)

5 C(5)5C(6),C(7),C(8),C(13), and C(14)

6 The fourteen atoms of the phenanthrene ligand

PLANE EQUATIONS
PLANE NO, P Q R S RMS D i

1 =06,0739 =0,5949 =0,8004 =10,3504 -
2 =0,0904 =0,5878 =0,8039 =11,0402 -
3 =0,1206 =0,6206 =0,T748 =8.0484 0,018
4 =0,16U43 =0,6264 =0,T762C =843776 0,010
5 ~0o2043 =0,6264 =~0.T540 =8,6842 0,009
6 ~0e1553 =0,6218 =0,7676 =8,2393 0,043

»

P,Q, and R are the direction cosines on the crystal axes
of the plane normal, S is the plane to origin distance, and

o
RMS D is the root mean sQuare deviation from the plane ( in A )



of the atoms defining it. The plane equation 1is
PX + QY + RZ = S
o
where X,Y, and Z are coordinates in A 8 referred to crystal axes,

DIHEDRAL ANGLES

PLANE A PLANE B / AB PLANE A PLANE B / AB
o

1 2 1.05 2 6 4,69
1 3 339 3 y 2,63
1 4 5491 3 5 44,95
1 5 8412 3 6 2,03
1 6 526 4 5 2434
2 3 3405 b 6 0,66
2 b 535 5 6 2,92
2 5 Tol43



o
DEVIATIONS FROM PLANES ( A )

PLANE NO, 1 2 3 mn 5 6
ATOM |

cr(1) 1.078 1,761 =1,733 =1.679 =1,540 =1,725
c(1) 24832 3,526 =0,026 0,011 0,142 -0,025
c(2) 2.783 3,491 0,008 0,105 0,286 0,054
c(3) 2.TH4T  3.443 0,018 0,129 0,311 0,068
c(4) 24738 3.409 =0,025 0,039 0,173 =0,015
c(5) 26852 3468 0,006 =0,034 =0,006 =0,072
c(6) 20993 3,583 0,107 04017 =0,007 =0,013
c(7) 36202 3,781 0,234 0,085 0,013 0,071
c(8) 3232 3823 04223 U064 =0,006 0,058
C(9) 3.138 3,768 0,124 0,002 =0,016 =0.,003
c(10) 3,046 3,700 0,066 =0,010 0,018 =0,022
c(11) 20912 34581 0,017 0,006 0,085 =0,024
c(12) 24856  3.512 0,08 0,009 0,090 =0,029
C(13) 26920 3,549 0,032 =~0,017 0,013 =0,047
c(14) 3,092 3,709 0,122 0,012 =0,007 =0,002
c(15) - 04707 =2.737 =2.613 =2,409 =2,675
c(16) - 04683 =2.887 =2.872 =2.757 =2,904
c(17) - 0e659 =2,806 =2,TT1 =2.658 =2,819
0(1) ~0.722 - ~3.413 =3,246 =3,002 =3.317
0(2) -0,685 - =3.617 =3.624 =3.521 =3,648

0(3) -0.644 - =3.446 -3.422 -3.326 -3.472



TABLE 2,11

ANALYSIS OF RIGID BODY VIBRATIONS.
o
(a) Centre of mass, referred to crystal axes in A s,
X Y Z
6.3611 11,5090 1.6059

(v) Principal moments of inertia, I, and direction cosines

D1, D2, D3, of inertial axes referred to crystal axes.

I (gmcmzx 10-40) D1 D2 D3
1504 =0e7935 065717 042087
3728 065993 0.6744 0.4313
3517 061058 0 40TH =0.8777

(c) T and W and thelr e.s.d.s, referred to inertial axes.

(0,0344 00,0020 =0,0027 |
8 15 15
2
11
060377
i W)
2400 0.8 -203
2.2 1.8 1.2
o2
W = 14.4 -“17
( ) 1 .1 10)"’
6l
1.0




(d) U obs = U calc, with respect to inertial axes.

ATOM
Cr(1)
c(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
C(11)
c(12)
c(13)
c(14)
c(15)
C(16)
c(17)
0(1)
0(2)
0(3)

U
=0,0c13
0,0060
0,0103
0,0uU50
0,0073
00,0112
0,0258
0,0096
0o0u68
~0,0013
=0,0114
0,0018
0,0037
040062
-0,0013
0,0108
00,0156
0,0010
000063
0,0550
0,0216

u22
-0,0002
0,0055
=0,0004
-0,0018
0,0081
-0,0.21
-0,0141
-0,0089
=0,0051
=0,0046
00,0058
00,0012
0,0081
0,0053
=0,0012
-0,0085
000066
=0,0036
0,0u26
0,0089
=0,0031

U33
=-0,00C5
=0,0:33
-0,0025

0,0010
=0,0022
0,0049
=0,0120
=0,0173
00,0032
0.,0102
00,0026
00,0050
0.0UT3
000031
0,075
-0,0143
-0,00T4
00087
0,0u33
0,0081
060095

2u23
0,000
=0,0049
=0,0015
0,0.01
0,080
00242
0,0211
-0,0108
-0,0120
~0,00T5
=0,0 94
0,0u13
0.0uTT
00,0114
00,0032
=0,0063
0,0139
=0,0099
=0,0054
-0,0148
=0,0249

2U31
0,010
00,0018
0,01T74
0,0227
00,0096
0,0095
-0,0180
-0,0139
-0,0207
=0,0202
~0,0080
00,0032
0,0051
=0,0020
-0,0124
=0,0276
000Ul
=0,0037
=0,0030
=0,0404
-0,0287

2u12
00013
0,0119
~-0,0048
=0,0162
-0,0161
-0,0228
-0,0379
-0,0132
-0,0170
-0,0066
=0,0052
-0,0022
=0,0164
=0,0170
=-0,0123
00,0077
0,0226
=-0,0022
0,002
0,0159
0,0208



programme described in Part II. The main results of
this analysis are presented in Table 2,11. The

bond lengths after librational correction are given
in Table 2.7 and in Fig. 2.4 (which also explains

the atomic numbering).

The molecular motions suggested by this analysis
are qualitatively reasonable. The tensor of
translational motion is almost isotropic while the
librational tensor is markedly anisotropic, with the
axis of maximum libration coinciding closely with the
axis of minimum inertia. The agreement between the
atomic vibration tensors obtained from the least-squares
refinement, Uobs’ and those calculated from the

molecular vibration tensors, U is, however,

calc’

disappointingly poor. The root mean square difference
o 2

between UOb and U is 0.,0130 A and this must be

S calc
considered significant in terms of the estimated standard

deviations of the Uobs(Table 2.2). Schomaker and Trueblood
(1966) have shown that Cruickshank's (1956) treatment

should be extended to include "helical" motions in the

case of a non-centrosymmetric molecule. This may be

the reason for the poor agreement between UobS and Ucalc'
The agreement is also somewhat worse than average for

the atoms in the carbonyl groups and there may well be
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additional wagging ﬁotion in these groups.

In view of this it has seemed safer to take the
bond lengths before librational correction as the final
values, while bearing in mind that they are subject
to a systematic error of which the quoted standard

deviations take no account.

2.7 DISCUSSION OF THE RESULTS

The gross molecular structure of phenanthrene-
chromium tricarbonyl obtained from this analysis is
basically the same as that described by Deuschl and
Hoppe (1964). In the free hydrocarbon the side rings
have greater overall aromatic character than the
centre ring and it is to a side ring that the chromium
tricarbonyl méiety is bonded. The linear carbonyl
groups point roughly towards the midpoints of the ring
C-C bonds which have greater double bond character in
phenanthrene itself, The planes defined by the
phenanthrene system,by the three carbonyl carbonssand
by the three carbonyl oxygens are roughly parallel.
The carbonyl groups are approximately perpendicular
to each other (Table 2.8).

Three aspects of the molecular structure merit
detailed comment, namely, the effect of the chromium

atom on the hydrocarbon ligand, the relationship of
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the chromium atom to the ring to which it is bonded,
and the geometry of the carbonyl groups. |

A simple valence bond tfeatment (Trottér, 1963)
leads to the prediction of 1.399 X for the mean C-C
bond in a side ring of phenanthrene. The latest
x~-ray analysis of this hydrocarbon gave 1.405 K for
the corresponding mean (Trotter, 1963). The comparable
means obtained in this analysis are 1.412 X for the
ring bonded to chromium and 1.396 X for the non-bonded
side ring. For the means of the two sets of three
alternate bond lengths in a side ring of phenanthrene
the V.B, predictions are 1.388 and 1.409 X. The
comparable figures in this analysis are 1.386 and
1.406 X for the non-bonded ring and 1.403 and 1.421 X
for the bonded ring. This suggests that the main effect
of the chromium atom has been to increase the mean C-C
bond length in the ring to which it is bonded by
about 0.016 X without inducing any further bond length
alternation. The mean values for the non-bonded ring
agree within experimental error with the V.B., predictions
for phenanthrene, but the agreement with Tr otter's
x-ray study is not so good. The changes in individual

bond lengths in the bonded ring,compared-either with the
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V.B., predictions or with the bond lengths in the non-
bonded ring, show no obvious pattern and it is probable
that little weight should be attached to them.,

The bond lengths in the middle ring agree with the
V.B. predictions except for the C(9)-C(14) bond which
is more than three standard deviations shorter; it is,
however, still longer than Trotter's x-ray value.

As in Trotter's analysis, the phenanthrene nucleus
is significantly non-planar, the root mean square deviation
being 0.043 1. This is at least partly due to the
intramolecular overcrowding of H(4) and H(5), which is
also shovn by significant distortions of the interbond
angles at C(12) and C(13). When the three rings of
the phenanthrene ligand are considered separately,
however, (Table 2.10 planes, 3,4,&5) the deviations
of the atoms from the ring bonded to chromium are found
to be rather larger than the deviations of the atoms
from the other two rings. This seems to be due to a
slight folding of the bonded ring about a line through
C(1) and C(4).

A possible explanation for this distortion of the
bonded ring presents itself when the Cr-C(ring) distances
are considered. The Cr-c(1), Cr-c(2), Cr-C(3), and

Cr-C(4) distances are equal within experimental error,
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with a mean of 2.209 K. The Cr-C(1l) and Cr-C(12)
distances are equal at 2.289 X and the difference between
these two means cannot possibly be co%ered by the
standard deviations. Of the bonds opposite carbonyl
groups the C(11)-C(12) bond is the one with least double
bond character in the free hydrocarbon. The orbitals

of C(11) and C(12) might therefore be less capable of
forming a strong bond to the metal atom than those of the
other ring carbon atoms. Such an asymmetry in the
bonding could be responsible for small distortions in

fhe planarity of the bonded ring.

The Cr-0 distances are equal within experimental
error with a mean value of 2.992 K. The Cr-C(carbonyl)
and C(carbonyl) 0 dlstances are a llttle less regular;
the mean values are 1.843 A and 1.149 A and the root
mean square deviation from each of these means is 0,012 X,
which is about twice the standard deviation of an
individual measurement. The carbonyl groups all show
small but significant departures from linearity. The
mean /Cr-C-0 is 177.9°. Kettle (1965) has suggested
on theoretical grounds that such departures from linearity
might be expected. In this case crystal packing forces

provide an adequate explanation for the effect. Packing

forces are also the likely explanation of the low
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0(1)-Cr-0(2) angle of 85.5 °,
The molecular packing (Fig. 2.3) ifvolves pairs
of molecules arranged round centres of symmetry with
the phenanthrene units parallel to each other.,
The interplanar spacing between phenanthrene units so
related is 3.35 X. This is close to the interplanar
spacing found in graphite and in many analyses of aromatic
hydrocarbons. None of the intermolecular atomic
distances are significantly less than the sum of the
van der Waals radii (Pauling 1960) of the atoms involved.,
A rather similar packing arrangement was found in
Deuschl and Hoppe's analysis of the monoclinic polymorph.
A detailed comparison of the structural features
of the molecule with those of related compounds is

postponed until Chapter IV,
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CHAPTLR III

9,10 ~ DIHYDROPHLENANTHRENECHRROMIUM TRICARBONYL



3,1 INTRODUCTION

The structure analysis of dihydrophenanthene-
chromium tricarbonyl was undertaken for reasons
similar to those which motivated the analysis of
the phenanthrene compound.

In 9,10-dihydrophenanthrene (I) four of the
bonds in the centre ring are single and only the
c(11)-c(12) and C(13)-C(14) bonds have double bond

3 carbon

character. The requirement that the sp
atoms C(9) and C(10) should have normal valency
angles can only be met if the planes of the two
side rings are not parallel. It therefore seems
unlikely that'there is much interaction between

the aromatic systems in the two side rings., If.

6 1Y 4 3 the chromium tricarbonyl

o fragment bonds to one side
ring the bonding in the other
side ring should be relatively -

unaffected.,
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3.2 EXPERIMENTAL
Crystal Data /
9,10-Dihydrophenanthrenechromium Tricarbonyl

Cq 4Hy,0r(CO) 4

F.w, 316.3 o

Monoclinic a = 10.50, b = 12,73, ¢ = 11.98 A, B =118.9 °
U = 1404 A3 P(000) = 648

D, = 1.48 gmcm_3 Z =4 D = 1.502 gmcm"'3

Linear absorption coefficient (Mo Ka x-rays, wavelength

0.7107 &) = 8.6 cm~L.

Systematic Absences

hO4 when 4 is odd

OkO when k is odd

Space Group P21/c (No. 14)

When the present writer started work on this problem
the space group had already been determined as PQl or
P21/m. Moving film photographs of the three equatorial
reciprocal lattice nets and preliminary values of the
cell dimensions were available, A redetermination
of the cell dimensions from an hO £ Weissenberg photograph
(copper Ka radiation, A = 1.5418 X) and from hkO and Ok 4
precession photogfaphs (molybdenum K& radiation,

A = 0,7107 X) gave a = 5.99, b = 12.73, ¢ = 9.24 X;

[o] .
and B = 95.7,which were in good agreement with the previous
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values. These cell dimensions yield a calculated
density of 1.502 gmcm-3 (Dm = 1,48 gm?m-3) for two
molecules per unit cell, The space group P21/m was
thus incompatible with an ordered molecular packing’
and therefore the space group le‘was assumed,

Intensity data were measured from a crystal
mounted about the b axis, using a Hilger-Watts linear
diffractometer equipped with balanced SrO—ZrO2 Ross
filters (see Appendix I). Molybdenum K& radiation
was employed, Each reflection was measured at least
four times with each filter, using a one minute
oscillation cycle and a 3° oscillation angle. About
thirty reflections had to be set by hand. The maximum
recording angle was 8= 300. Lorentz and polarisation
factors appropriate to equi-inclination Weissenberg
geometry were applied to the data using programmes
devised by Dr. J.G., Sime for the KDF9 computer. In
this manner 2353 independent structure amplitudes on
the reciprocal lattice nets hO £ to hl6 £ were obtained.
Of these, 382 reflections on the nets hl44 to hl6s
were used only in the last stages of refinement.

As described in Section 3.3, work on the structure
led to the conclusion that the space group had been

wrongly determined and hO4 and hl{ Weissenberg photographs
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allowed the true space group to be determined as

P21/c. Using subscripts 1 and 2 to denote respectively
the P2l and P21/c unit cells, the relationship between
the two cells can be expressed in terms of the vectoi

equations:

a2, = a1 + ¢

_ | (1)
b, = by
Cp = —22;

The first set of data collected corresponds only
to the reflections with feven in the correct space
group. The missed reflections (with £odd) were
therefore collected, using the same crystal and
diffractometer settings as before, and were reduced to
structure amplitudes using the same programmes, In this
way a further 2037 reflections on the nets hlf{ +to
hl6 ¢ were obtained, giving a total of 4390 independent
reflections,

The data were initially set on an approximately
absolute scale by correlation with the calculated
structure amplitudes, In the final refinement a scale
factor was obtained by least-squares for each of the

two sets of data.
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3¢3 STRUCTURE SOLUTION AND REFINEMENT

A sharpened three-dimensional Patterson function
was calculated using the first set of data. The
sections 0t U = 0 and V = 4 through this function are
shown in Fig. 3.1. On the Harker section at V = %
there is a large peak which was attributed to a vector
between chromium atoms related by the two-fold screw
axis along Db, On the section at U = O there is a
peak of comparable height, on the line (0,V,0). This
peak was initially attributed to unresolved vectors
between a chromium atom and the carbon and oxygen atoms
of a carbonyl group pointing almost exactly along the
b axis. This interpretation did not lead to a success-
ful solution of the structure and it was necessary to
consider another interpretation, namely that the peak
at (O,V,O) was due to a vector between chromium atoms
related by a mirror plane normal to the b axis, Such
an interpretation could be accepted only if -the space group
were P2l/m, with a disordered molecular packing. It
fitted, however, with the presence in the Patterson
function of a peak which was half the height of the peak
on the Harker section at v = %, and which had the same
Uand Wcoordinates as the Harker peak. In the space

group P21/m such a peak is to be expected due to vectors
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between heavy atoms related by a centre of symmetry.

The coordinates of the chromium atom were therefore
worked out from the Patterson functioﬂ on the assumption
that the space group was P21/m.

An electron density synthesis based on the phases
of structure factors calculated from these coordinates
contained peaks corresponding to a dihydrophenanthrene-
chromium tricarbonyl molecule of acceptable stereo-
chemistry. Inclusion of the atoms of the aromatic
ring bonded to chromium and of the atoms of the carbonyl
groups in the structure factor calculations reduced R
from 0.45 to 0,38° A second electron density synthesis
allowed all the atoms to be reliably located and reduced
R to 0.27. A further cycle of Fourier refinement by
means of Fo and Fc maps reduced R to 0.24. The computer
programmes described in Part II Chapter II were used
throughout the Fourier refinement.

The model of the structure, as it stood at this
stage of the analysis, gave satisfactory structure
factor agreement, but it required a very unusual packing
disorder. For this reason the space group was checked
and was found to be in error, To complete the refinement
further data collection was therefore necessary, While
this was being done the structure was refined in the

space group P21/m.
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Two cycles of full matrix least-squares refinement
with isotropic temperature factors, ang five cycles of
block-diagonal least-squares with anisotropic temperature
factors, were calculated using the KDF9 computer
programme written by Cruickshank and Smith. As a result

R fell from 0.24 to 0.101.

When the complete set of data became available .the
indices of the reflections, the fractional atomic
coordinates, and the anisotropic temperature factors
were transformed to correspond with the true space group.
The transformed parameters of the seventh least-squares
cycle were used to calculate structure factors for all
4390 reflections; the resulting R-factor was 0.110,
indicating that the structure was essentially correct.

A difference synthesis was then calculaged using
only the 483 reflections with sin 6/A <0.35 A", Peaks
corresponding to the expected positions of eleven dof
the twelve hydrogen atoms could be located. The
hydrogen bonded to C(2) lay in a region of positive density
but not on a peak. The mean hydrogen peak height was
0°4e/§3. All the hydrogen atoms were then included in
the structure factor calculations, assuming positions
consistent with those of the carbon atoms adjacent to
them. An isotropic temperature parameter 1+5 times greater

than that of the carbon atom to which it was bonded was
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applied to each hydrogen. R dropped from 0.110 to
0.102,

At this stage seven reflections éor which
sing /A <0.10 X_l were excluded from the analysis.
Each had [Folmuch smaller than chl and this was
ascribed to extinction or to partial interposition of

the beamstop.

A weighting scheme of the form

w o= { l—exp(—lSSZ)} /(1+0.0015 |FO| 2); (s = sin® /A )
was applied and two further cycles of refinement were |
done, reducing R to 0.094.,

The weighting scheme was then changed to

W= Wy X W, where
wy= 1 if.sin.e/A:>0.4 otherwise wy = (sinb6 /A )2/0016
wy= 1 if|F | <40 otherwise w, = 40/ |F0|.
Three further cycles reduced R to 0,086, In the final
cycle coordinate shifts were all less than 0,001 K and
the scale and temperatu¥e factor shifts were also
insignificant, The change in the weighting scheme
again affected mainly the scale and temperature factors.
R' was reduced to 0.0081 and the standard deviations

were reduced by about 10%. It was not found necessary

in this case to assign zero weight to any of the weak
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reflections. This, and also the lower R-factor as
compared with the phenanthrene compound, is probably
due to the longer counting time used in collecting the
data. R,' however, is about the same for both analyses
and so are the parameter standard deviations,

The atomic scattering curves used in this analysis
were for chromium those of Freeman and Watison (1963),
for oxygen those of Berghuis et al. (1955), for carbon
those of Hoerni and Ibers (1954), and for hydrogen those
of Stewart, Davidson, and Simpson (1965).

The structure factors from the last least-squares
cycle were used to calculate electron density and
difference syntheses. A composite view of the‘final
electron density synthesis is shown in Fig. 3.2 which
also explains the atomic numbering. The maximum and
minimum function values in the final difference synthesis
were respectively +O,4e/§3 and —O.7e/§3.

In Tables 3.1 and 3.2 the final values of the
coordinates of the heavier atoms and the assumed
coordinates of the hydrogen atoms are respectively
presented. Hydrogen atoms have been assigned the numbers
of the carbon atoms to which they are bonded, except

that H(10) is bonded to C(9) and H(11l) and H(12) are

~104-



Course of the Analysis

(1) Refinement of Partial Data (1971 reflections)

S.F. Cycle No.

1
2
3
4

S.F.L.S. Cycle No. R

1

2
3
4

Cr

Atoms Included

Cr+30+49C

Cr+30+17C

Cr+30+17C

0,24

0.164
0.148
0.122

5
6

7

S.F.L.S. Cycle No.

0.45
0.38
0.27
0.24

0.113
0.105
0.101

(2) Refinement of Complete Data (4390 reflections)

S.F.L.S. Cycle
NO. ’

8

10

11
12

13
14

Comment
Same parameters
as cycle 7

Hydrogen atoms
included

Weighting scheme
changed

Weighting scheme
changed

-105-~

Rl

0.0110

0.0097
0.0096

0.0088
0.0082
0.0081

Twa

15820

12071

9930

9817 |

5324
4792
4762

2
R

0,110

0.102

0.096
0.095

0.092
0.087
0.086



bonded to C(10). Table 3.3 contains the anisotropic
temperature parameters of the heavier atoms. Table
3.4 contains the final observed and cdlculated structure
factors. Orthogonal coordinates of the heavier atoms
and of the hydrogen atoms are given respectively in
Tables 3.5 and 3,6. Table 3.7 contains some results
from a molecular vibrations analysis and Tables 3.8,
3,9, 3.10, and 3,11 present respectively bond lengths,
interbond angles, intermolecular contacts, and the
deviations from least-squares planes through various
sets of atoms. Standard deviations, where quoted, are
in units of the last place of the quantity to which
they refer., The quantities in Tables 3.5 to 3,11 were
calculated using the programmes described in Part II
and the equations given there apply. A view of the

molecular packing is given in Fig. 3.3.

3,4 ANALYSIS OF MOLECUIAR VIBRATIONS

An analysis of the molecular vibrations was
carried out in the manner suggested by Cruickshank
(1956, 1961la). The results (Table 3.7 and Fig. 3.4)
are very similar to those obtained for phenanthrene-
chromium tricarbonyl. The translational vibration
tensor is almost isotropic, The tensor of librational

motion is anisotropic and almost diagonal; the
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principal values correspond to root mean square
amplitudes of oscillation of 5%, 2 and 3° and the
principal directions make angles of 100, on average,
with the molecular axes.

Though these results seem quite acceptable,
the root mean square difference between the observed

atomic vibration tensors, U and those calculated

obs’?
from the molecular vibration tensors, U is

(o)

0.013%0 AZ. In terms of the standard deviations of

cal’

the U (Table 3.2) this difference is large, even

obs
allowing for the approximate nature of the rigid-
body hypothesis. There is not any obvious reason
for suspecting large systematic errors in the Uobs’
and the poor agreement may therefore be due to
deficiencies in the model used to describe the molecular
vibrations (Schomaker and Trueblood, 1966)., This view
is supported by the similarity of these results with
those for the corresponding phenanthrene compound.,
Because of these difficulties, the libration
corrections can only be accepted with reservations,
and therefore the detailed discussion of the molecular
structure has been conducted mainly in terms of the
uncorrected coordinates. Correction fog libration

results in an average increase of 0,005 A in the bond

lengths and does not alter any of the main conclusions

of the analysis.
~107-



FIG. 3.1

The sections at V = 3 and U = 0 of the sharpened

three-dimensional Patterson function corresponding

to the P21/m unit cell.
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FIG. 3.2

The composite final electron density synthesis
viewed down the b axis. Contours are at 1 e/ﬂ3 inter-
vals starting at 2 e/ﬁ3 except round the chromium
atom where the contours are at 5 e/ﬁ3 intervals

starting at 5 e/gB. Some symmetry elements have

been omitted for clarity.






FIG. 3.3

The molecular packing viewed down the b axis.
(Roman numerals have the same significance as in

Table 3.10). Some symmetry elements have been omitted

for the sake of clarity.
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FIG. 3.4

Molecular diagram showing the numbering of the

heavier atoms and the bond lengths after libration

correction in the dihydrophenanthrene ligand.






TABLE 3.1
FRACTIONAL COCRDINATES AND EoS.D.S,

ATOM X/a Y/b Z/c
Ccr(1) 0636213 + © 0.14786 + 4 0410478 + 5

c(1) 0e3306 + 5 -0,0211 + 3 0.0573 + &4
c(2) 0,2883 + 5 0.0348 + 4 -0,0542 + 4
c(3) 041837 + 5 0.1132 + 4 -0,0885 + 4
c(4) 001239 + &4 061371 + 3 -0,0094 + 4
c(5) -0.0296 + L4 0.1563 + 4 0.1442 + 5
c(6) -0s0927 + 5 0.1666 + 5 002235 + 6
c(7) -0,0308 + 6 061200 + 5 Oeo3406 + 6
c(8) 0,0961 + 6 0.0664 + 5 Ce3842 + 5
c(9) 063058 + 5 0,005 + 4 063589 + 4
C(10)  0.3130 & 5  =0.0636 + 4 0.2554 + 5
c(11) 02697 + 4 0.0008 + 3 0.1381 + 3
c(12) O.1641 + 4 0,0801 + 3 Oe.1042 + 3
c(13) 0.0982 + &4 0,1002 + 3 0.1870 + &4
c(14) 0.1637 + 5 0.0552 + 4 03094 + 3
c(15) Ool635 + 4 02177 + 3 0,0403 + 4
c(16) 0.5364 + 4 001262 + 4 0.2510 + 4
c(17) 0 3401 + 4 0.2711 + 3 0.1730 + &4



0(1)
0(2)
0(3)

0e5285 + 4
0.6454 + 3
063239 + 4

0.2617 + 3
0.,1138 + 4
O0e3483 + 3

TABLE

040006 +
0e3405 +
0s2131 +

ASSUMED HYDROGEN ATOM FRACTIONAL COORDINATES
AND TEMPERATURE FACTORS.

ATOM
H(1)
H(2)
H(3)
H(4)
H(5)
H(6)
H(7)
H(8)
H(9)
H(10)
H(11)
H(12)

X/a
O.411
0.338
00148
0,045

-0,080
~0.192
-0.083
0,146
0.393
00321
O.423
0.239

Y/
-0,084
0,021
0.155
04201
0,192
0.215
Ol.122
06031
0,058
=0,052
=0,093

-06130

Z/c
0,082
=0,115
-0.179
-0,035
0,048
0,192
Ol401
0.479
0.393
0,436
06291
0.233

0,070
0,076
0,067
0,064
04079
0.099
0.115
06102
0,078
0,078
0,078
0,078

3



TABLE 3,
ANISOTROPIC TEMPERATURE FACTORS AND E.S.D.S.

ATOM Ul u22 U33 2u23 2U31 2U12
cr(1) 06,0383 0,0434 00,0356 =0,0033 0,0384 -0,0086
2 3 2 4 4 4

c(1) 00620 00U6T 0,0T08 =0,0165 00,0794 =0,0497
22 19 24 33 Lo 31

c(2) Ce0T730 00661 00,0544 =0,0343 00,0807 -0,0435
25 24 21 35 4o 39

c(3) 060595 00,0763 0,0355 =0,0048 0,0264 -0,0392
22 27 17 32 32 39

c(4) 0,0402 0,0639 00,0482 00,0142 00,0191 =0,0088
17 22 19 32 29 29

C 0o0U408 04,0699 0,0914 =0,04T9 04,0577 =0,0133
(3) 18 27 32 b7 40 34
c(6 000465 00,0859 041260 =0,0947 00,0952 =0,0367
(6) 2? 34 4y 64 53 42
c(7) 060760 00,1016 0,1076 =0,0863 061320 =0,0576
31 4o 41 66 63 57

C(8) 060778 01067 0,0755 =040553 00,1097 =0,0653
30 41 29 56 53 57

C 0,0619 00,0856 040546 04,0361 0,0611 0,0050
(%) 23 31 22 42 39 23
c(10) 00,0639 00,0632 00,0708 0,0438 0,0799 00,0176
23 24 25 39 42 37

c(11 0.0U4Y 0,0U45T7 00,0490 00,0008 00466 =0,0_T0
(1) 16 17 17 26 29 25

c(12 0,037C 00,0489 0,0480 =0,0U56 00,0382 =0,0094
(12) 3?5 17 17 26 27 24



c(13)
c(14)
c(15)
c(16)
c(17)
0(1)

0(2)

0(3)

00351
14
060548
20

00,0572
20

0.0U467
18
0,0501
18

0.0895
23

0,0486
16

00963
24

C.0524
18

0.,0679
24
0.0566
20
06,0750

00,0616
21
00,0784
21
0.,1338
34

0.0613
19

00546
19

00649
23

0.0U457

18
0,0498
00464

18

0.0711
19

0,0556
17

040795
21

-040151
29

=0,0203
37

=0,0156
29

060067
34

=0,00T0
30

=0,0135
32

0,0259
38

~-0,0445
31

00424
28

0,0761
38

0.,0588
32

00561
32

000501
31

Oe1114
36

0,0384
27

0.1021
39

=-0,0144
25

-0,0352
35

-040165
31

-0,0017
33

=0,0153
31

-0,0507
35

0.0281
37

-0,0021
33



TABLE 304

Observed and calculated structure factors.
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ATOM
Ccr(1)
c(1)
c(2)
c(3)
C(4)
c(5)
C(6)
c(7)
c(8)
c(9)
c(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)

X
3.329
3.039
24650
1.689
1.139

=0,272

1+ I+

I+

I+ I+

I+

~0,852

I+

-0,283
0.884
2.81
2.878
2.480
1,508
0.903 +
1,505 +
4,261 +
4,931 +
3.127 +

I+ 1+

I+ I+ I+

1+

b

& F F FHF WO W LW UV UV VTNV R WUV

TABLE 3,

4
1,882
-0.269
Oll442
1.441
1.746
1.989
20120
1.528
0,845
0,006
-0,810
0,010
1,020
1,275
0,703
2,772
1.607
3.451

i+ 1+

I+ 1+

I+ I+ I+

I+

I+ 1+

1+

I+

I+ 1+

I+

I+

I+ I+

ORTHOGONAL COORDINATES AND E.SeD.Se

=06582
=0.991
-2.,112
-1.992
-0.7TH
1.877
3.148
4,237
4,115
2,748
1.472
0.286
Ol 415
1.742
24875
-1.870
0.286 +
0347 +

I+ 1+ I+ 1+ I+ 1+ 1+ 14

I+

I+ 1+ 1+ 1+

I+ 1+

I+

b
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0(1) 4o859 + 4 30331 + 4 -2.,675 + 3

0(2) 50933 + 3 1,448 + 5 0,805 + 3
0(3) 2,978 + 4 hou3h + 3 0.909 + 3
TABLE 3.6

ORTHOGONAL HYDROGEN ATOM COCRDINATES.

ATOM X Y yA
H(1) 3.78 -1,07 -1,1C
H(2) 3.11 0426 ~3.09
H(3) 1.36 1.97 -2.89
H(4) Oll41 2456 =065
H(5) =0.T4 2,44 0498
H(6) =1.77 2.73 3.27
H(7) =0.76 1.56 5.23
H(8) 1.34 0,40 5600
H(9)  3.61 0.73 2.71
H(10) 2.95 =067 3.59
H(11)  3.89 -1.18 1.34

H(12) 2019 "1065 1058



ATOM
cr(1)

c(1)

c(2)

c(3)

C(4)

c(5)

c(6)

c(7)

c(8)

MOLECULAR VIBRATIONS ANALYSIS,

o2
U A

0,0458

060335
00362

0,0751
00440
0,0508

0.0933
0.0401
00480

0,0953
0.0342
0,0542

0.07TT4
060356
0,0542

061116
00386
040557

0.1594
0,0362
0l 0554

041510
0,0U445
0,0624

001341
0,0418
0.0617

TABLE

D1

=0, 4947
-0.3217
0.8073

046797
00,0420

-007323

0.T428
00358
-0,6685

=0.5766
0.6454
045009

=0,2906

049257
0.2423

061720
-0,9849
0,0197

0.2888

~0.9554
=0,0620

0.5019
-0,6983
=0.5104

0.5518
=0,5460
=0,6304

D2

0.8691
"'O. 1863
0.4583

=02775
0.9389
-002037

-0,6447
03073
-0,6999

O.TU419
0e1569
0.6519

0.6U461
0,030
0.7632

=0,5068
=04 1056
=0,8556

=0,5436
-0.8321

~0,6659
00,0647
-0,T433

=0,7903
=0,1008
-0,6044

(a)Principal values of vibration tensors
and their direction cosines referred
to standard orthogonal axes.

D3

0,0029
049283
06,3717

046790
03416
0.6498

001804
0950
0251

0e3422
0.T4T5
-045693

0,7057
043783
=045990

0.8447
01372
-06,5173

07881
042740
=0.5512

045520
0.7129
-00""325

0.,2664
048317
=0,48T71



c(9)

c(10)

c(11)

c(12)

c(13)

c(14)

c(15)

c(16)

c(17)

o(1)

0(2)

0(3)

00,0945
00,0429
0,0617

00896
0,0420
0,0569

00,0402
00496
0,0484

0.0353
00,0513
0,0491

0.0321
0.0613
0,0493

00831
0,0363
0,0567

060659
0,0389
0,0489

060756
0,0384
040515

00,0654
0,0438
0. 0467

061108
040390
0.0679

041366
Ol.0U4Y
0,0646

0,0398
0.0988
0.,0877

0,0789
0,019k
009967

0. 4657
=0,0800
0.8813

-046993
-067143

-0,9435
063032
-001334

-0,9431
063046
-0.1329

066022
=0,7501
-042733

0.6972
00017
-0,7169

-0.00\)1
=0,6069
00,7948

O. 4472
=0,3308
-0,831C

07929
-0.4309
-0,4308

041526
049355
063187

=060U57
0.8843
O.46U6

009091
=0.4116
-0,0639

0.6295
=0,6700
”003935

=0,6098
Oe5433
065770

-0,3222
=0,T464
0.5823

-006239
067203

-0,73M41
'003857
-005588

-006962
042398
=0,6766

069910
=0,1066
=0,0813

-0,8944
=0,1543
-00u199

=0,5967
=0,4061
=0,6921

0,9847
=0,1714
00316

0,7538
=0 .27”’6

0.5969

0,4090
0e9111
-000501

0.6219
0.7381
=0,2617

063729
08391
-0.3960

00,0770
0.5924
08020

061365
0.7197
0,6808

0,3138
065371
-0.7830

0.1708
0,9708
0.1683

001341
0.,7876
0.,6015

0.0107
09310
=0,3648

08058
‘005791

0.,0842
043090
-0.9473

o7
-0:6511



(v) Centre of mass, referred to orthogonal axes.

X Y yA
2,5364 1.5566 00,5076

(c) Principal moments of inertia, I, and direction cosines

D1, D2, D3, of inertial axes referred to orthogonal axes.

I (gmcmex 10-40) D1 D2 D3
1516 ~0,6052 =0,1561 0,7727
3615 0e5252  0.6499  0.5494
3489 -05879  0.T439 =0.3179

(d) T and W and their e.s.d.s, referred to inertial axes.

~0.035h 040003 o.oooéﬂ
8 16 16
2
T(Z ) = 0.0348 00,0041
15 19
0.,0357
_ 1?1
[ 29,13 -2.34 0.0l ]
2.32 1.61 1.60
2
w(o ) = 15.57 1.46
1.12 1.21
4,52
1.20




(e) U obs - U cale,

ATOM
Cr(1)
c(1)
c(2)
C(3)
C(4)
c(5)
c(6)
c(7)
c(8)
c(9)
C(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
o(1)
0(2)
0(3)

U
=0,0013
0,0UT0
040053
0,0149
0,0138
00,0211
00,0232
0,0134
0,0033
=0,00l42
=0,0096
0.0.21
0,0058
OONICY.)
060C3
0,071
=0,0081
060017
040058

-0.0\)12

uae
~-0,00U6
0.00l6
040040
=0,0052
060039
=0,0117
-0,0205
=-0,0021
0.0016
0.0088
0077
0.0:21
0.0.7T2
0.,0016
0e0VU46
=060U75
0.0104
00,0020
0.0u12

0,0195

u33
=0,0002
=0,0072
-0,00T3
-0,0061
=0,00u7
0,0126
040099
0,00.8
0.0179
040097
0,0053
0,008
00,0052
060022
0,0143
=0,0154
00052
060.T1
-0,0138
040017

060261 =0,0046 0,0058

2u23
-0,0009
0,0032
=0,0076
=0,0089
~0,0096
~0,0185
-0,0169
-0,0055
00,0045
0,0098
0.0213
0.0119
-0,0062
=0,0030
-0,0088
0,0034
-0,0057
040320
060035
0.,0134
0,0239

2u31
040010
00059
0.,0162
0.0123
=0,000U6
=0,0256
=0.,0k424
-0.0298
-0,0286
-00167
=060.31
00014
-0,0071
-0,0117
-0,0203
=0,0111
0,0158
-0,0010
Oe00LY
060077
=0,0130

with respect to inertial axes.

2u12
=0,0007
0,0048
00,0012
0,0160
0.,0236
0,0175
0,0288
0,0072
0,0041
=0,0012
-0,0004
0.0U61
0,0102
0.,0139
0,0151
-0,0126
-0,0131
-0,0044
=0,00U54
-0,0336
=0,0424



TABLE 3.8
(o]
BOND LENGTHS ( A ) AT COMPLETION OF LEAST-SQUARES
REFINEMENT (1) AND AFTER LIBRATION CORRECTION (II).

I II
c(1) - c(2) 1.383 + 6 1,390
c(2) - c(3) 1.392 + 7 1,398
C(3) - cC(4) 1,400 + 6 1.404
c(4) - c(12) 1.415 + 6 1.421
c(11) - c¢(12) 1,407 + 5 1.415
c(1) - c(1) 1.422 + 6 1.426
c(5) - C(6) 1.404 + 8 1,406
c(6) - ¢(7) 1.364 + 9 1.369
c(7) - ¢(8) 1,358 + 8 1.363
Cc(8) = cC(14) 1.394 + 6 1.396
c(14) - c(13) 1,405 + 5 1.413
c(13) = ¢C(5) 1.381 + 5 1.387
c(14) - ¢(9) 1,485 + 6 1.492
c(9) = c(10) 1517 + 7 1.522
c(10) = c(11) 1.495 + 6 1.502
c(12) - c(13) 1.480 + 5 1.485



Cr(1)
Ccr(1)
Ccr(1)
Cr(1)
cr(1)
Cr(1)

cr(1)
Cr(1)
cr(1)

cr(1)
cr(1)
Cr(1)

c(15)
c(16)

c(17)

c(1)
c(2)
c(3)
C(4)
c(11)

c(12)

c(15)
c(16)

c(17)

0(1)
0(2)
0(3)

0(1)
0(2)
0(3)

I+ I+

I+

I+ I+

I+

I+ I+

I+

2.218
2.216
2,217
2,209
24211
24255

1,826
1.852
1,843

24975
24995
2.988

1,150
1,143
1,145



TABLE 3.10

0o
* INTERMOLECULAR CONTACTS BELOW 4 A.

iii

vii
111

3.16 X C(5)eenee c(11) 11
3.30 C(9)esees 0(2) vi
3.34 C(6)eeesn 0(2) 1iv
3.35 C(9) eenes o(1) 111
3.36 c(10) c(15) v
3.38 C(3)eecns c(5) 11
3.38 C(1)eeeas a(3) v
3.40 C(2)eene. c(7) 11
3.40 c(12) c(12) 11
3.4 C(3)eaean c(13) 11
3.46 C(6)ecece 0(1) iv
3.48 c(16) 0(3) v
3.50 C(#)eeses c(13) 11
3.55 C(8)eeses c(17) 111
3.56 C(10)+...0(3) v
3.59 C(4)eeuee c(6) 1
3.61 C(1)seees c(15) vii
3.65 C(3)eeess c(6) 11

w W W w w W w w wWw w w w w w w w w w

.68 A
.68
.70
.70
.70
.71
.72
(T
T4
.76
.76
77
.78
.78
.81
.82
.84
.8l



C(l)eesesC(12)
C(9) esss.C(9)
C(8) easaa0(2)
C(3)eeeasC(6)
C(10)ee..C(17)
C(3)eaessC(T)
C(15)eessC(17)

Roman numerals

of the fractional

i1
iii

vi
vii

i1 3.84
vi 3.84
vi  3.85
1 3.88
v  3.92
i 3.93
1 3.9

C(3)eeessC(14)
C(4)e....C(8)
C(2)sesssC(13)
C(12)eeesC(13)
C(3)eesasl(T)
C(5)eesssC(12)
C(4)eeeesC(5)

ii

ii
i1
il
i1

3.95
3.95
3.96
3.97
3.98
3.98
4.00

refer to the following transformations

coordinates given in Table 3.1.

x, 1/2
- x,

x, 1/2
+ x,
- x,-1/2
- x,

- X,

)
)
Y
Y
Y
Y
Ys

-1/2 + z3

1/2 + z3

1/2 - z3

1 -z



TABLE 3.11

MEAN MOLECULAR PLANES,

PLANE NC. ATOMS DEFINING PLANE

1 €(1),C(2),C(3),C(#),c(11), and C(12)
e C(5)5C(6),C(7),C(8),C(13), and C(14)
3 C(15),C(16), and C(17)

4 0(1),0(2), and 0(3)

PLANE EQUATIONS

PLANE NO. P Q . R S RMS D
1 =~0.T250 =Cob606TC =0,1715 =1.8523 LeCU6
2 ~0.5210 =0,.8382 -0.1613 =1.3291 UeC.9
3 ~CeTC92 =0.6885 =C.1518 =-4.6461 -
4 =CoTCUT =0.692C =C.1568 =5,3093 -

#*
These symbols are defined in Table 2.1C. The plane equation 1is

PX + QY + RZ = S

where X,Y, and Z refer to orthogonal axes.

DIHEDRAL ANGLES

PLANE A PLANE B / AB PLANE A PLANE B/ AB
. o o
1 2 15.3 2 3 13.8

1 3 1.9 2 4 13.5

1 L 2.0 3 4 Qo



PLANE NO.
ATOM

cr(1)
c(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(10)
c(11)
c(12)
c(13)
c(14)
c(15)
c(16)
c(17)
0(1)
0(2)
0(3)

0
DEVIATIONS FROM PLANES ( A )

1

-1.717
-0.002
-0.002
0.008
-0.011
0.401
0.516
0.312
-0.058
-0.661
0.054
-0.001
0.007
0.048
-0.201
-2.765
-2.843
-2.776
-3.433
-3.553
-3.420

-1.389
0.631
0.418
0.063

-0.108
0.001

-0.012
0.013

-0,003

-0.084
0.771
0.483
0.121
0.009

-0.008

-2.413

-2.133

-2.749

-3.063

-2.606

-3.586

1.078
2.826
2.783
2.759
2.749

2.940
2.838
2.811
2.864

‘0.687
-O . 681
‘0 0657

1.752
3.509
3.467
3.434
3.415

3.611
3.510
3.475
3.518

0.682
0.678
0.663



3.5 DISCUSSION

The molecular structure of 9,10-dihydrophenanthrene-
chromium tricarbonyl is extremely similar to that
of the corresponding phenanthrene compound. The
chromium atom,as would be expected, is bonded to a side
ring. Three linear carbonyl groups are disposed at
right angles to one another and point approximately
at the midpoints of the C(1)-C(2), C(3)-C(4),and C(11)-
C(12) bonds. The possible Kekule structures of 9,10-
dihydrophenanthrene indicate that the orders of the
side ring bonds are equal, so that this configuration
in 9,10-dihydrophenanthrenechromium tricarbonyl is
presumably adopted to minimise intramolecular repulsions
between the chromium tricarbonyl fragment and the
hydrocarbon ligand.

No structural studies on 9,10-dihydrophenanthrene
itself have been reported. However, an inspection of
a Dreiding molecular model of the hydrocarbon suggesfs
that there should be a two-fold symmetry axis passing
through the midpoints of the C(9)-C(10) and C(12)-C(13)
bonds, and also that the two side rings should be
rotated about an axis passing through the €(12)-C(13)
bond out of the plane defined by the symmetry axis,
Cc(12) and Cc(13). To a first approximation this is found
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to be the case in 9,10-dihydrophenanthrenechromium
tricarbonyl. The dihedral a?gle betyeen the planes
of the two side rings is 15.3%.C(8), C(14), and C(9)
are displaced from the plane of the bonded side ring
in the same direction as the chromium atom and C(5)
and C(6) are displaced in the opposite direction.

As in the case of phenanthrenechromium tricarbonyl,
three aspects of the molecular structure require
detailed comment, namely, the effect of the chromium
tricarbonyl moiety on the hydrocarbon ligand, the
relationship of the chromium atom to the aromatic ring,
and the stereochemistry of the chromium tricarbonyl
fragment.

In the side ring of the hydrocarbon ligand bonded
to chromium (ring A) the mean bond length is 1.403 X,
which is comparable with the 1.401 X found in benzene-
chromium tricarbonyl by Bailey and Dahl (1965). One
bond, C(1)-C(2), differs from this mean at the 0.1%
significance le&el. In the non-bonded side ring
(ring C) the mean bond length is 1,384 X which is slightly
shorter than the 1.3%94 z found in benzene (Sutton, 1965),
and again one bond, C(13)-C(14), differs from the mean

at the 0.1% significance level. These results suggest
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that in each side ring the bond lengths are almost
equal to each other and that the effegt of the chromium
atom has been to increase the mean bond length in ring
A by about 0,02 i. This conclusion is strengthened
by comparison of the individual bonds in ring A with
those in ring C which are related by the assumed two-
fold symmetry axis; four are longer by, on average,
0.028 X and two are equal within experimental error;
The bonds in the central ring (ring B) are in
fair agreement with the literature values. The
formal%y single C(12)-C(13) bond of 1.480 X is between
1.497 A found in biphenyl (Hargreaves and Rizvi, 1962)
and 1.471 X found in perylene (Camerman and Trotter,
1964) for similar bonds. The C(9)-C(14) and C(10)-
C(11) bonds are equal within experimental error, with
an average of 1,490 X, which is slightly shorter than
the expected value (Sutton, 1965) of 1.505 E; libration
correction increases this mean to 1.497 K. The C(9)-
C(10) bond is 1.517 X, whi%h is slightly less than the

literature value of 1.537 A (Sutton, 1965).

Ring A and ring C are planar, the respective
o)
root mean square deviations being 0.006 and 0.009 A.
In the dihydrophenanthrene ligand there is some distortion

of the assumed two-fold symmetry of the free hydrocaxrbon.
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This is shown by the displacements of the other atoms
in the ligand from the plane of ring %. Atoms C(10)
and C(13) have small but significant positive
displacements (i.e. in the direction opposite from the
chromium)., A similar displacement of the methyl
groups was found in hexamethylbenzenechromium tricarbonyl
(Bailey and Dahl, 1965). Atom C(7) has a positive
displacement of 0,312 X, and the positive displacements
of C(5) and C(6) are greater than the negative
displacements of C(8) and C(14). RingC is thus
placed below ring A in the direction opposite to that
of the chromium, as well as being rotated relative to
ring A about the C(12)-C(13) bond. Such a distortion
could be due to intramolecular repulsions or to packing
forces; the closest approaches to C(9), C(10), and
C(13) of the chromium atom and the atoms of the carbonyl
groups are all greater than 3.4 X.

The distances from the chromium atom to C(1),
C(2), C(3) and C(4) are equal within the accuracy of
the results, with a mean value of 2.206 Xo The
Cr-C(11) and Cr-C(12) distances are significantly longer,
with a mean of 2,240 X. A similar, though more marked,
effect was found in the phenanthrene compound, the long

0
Cr-C bonds averaging 2.289 A, and was ascribed to the
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low double bond order of the C(11)-C(12) bond. Such
an explanation is not valid in the case.of dihydro-
phenanthrenechromium tricarbonyl and'therefore intra-
molecular repulsions or crystal packing forces must
presumably play a part.

The means of the Cr-C, C-0, and Cr-O distances
in the tricarbonyl moiety are respectively 1.83%3,
1143, and 2.976 Z. These means are in good agreement
with comparable values for the phenanthrene compound.
The average Cr-C-0 angle of l7é.9oindicates smaller
departures from linearity than were found in the
phenanthrene compound, The 0(1)-Cr-0(2) angle is again
slightly less than 90, presumably due to crystal
packing forces,

The molecular packing (Fig. 3.3) is similar to
that of the phenanthrene compound (Fig. 2.3). There
are no intermolecular contacts significantly less than
the sum of the van der Waals radii (Pauling, 1960)
of the participating atoms,

A comparison of the molecular structure with

those of related compounds is postponed until Chapter IV.
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CHAPTHER IV

ARUNBECHROMIUM TRICARBONYLS: A ReVIkW



4,1 INTRODUCTION

This review covers structural stydies on compounds
with the general formula ArCrX, where Ar is a benzenoid
aromatic ring and CrX is a chromium tricarbonyl
fragment; in addition, a few compounds in which Ar is
not benzenoid have been included. Structural work on
dibenzenechromium and chromium hexacarbonyl is also’

discussed,.

4,2 DIBENZENECHROMIUM

The crystal structure of dibenzenechromium,
(C6H6)2Cr, was first described by Weiss and Fischer
(1956). In an apparently accurate analysis of the
structure, Jellinek (1960, 1963) found that the benzene
rings werg significantly distorted, with long bondsoof
1.436+12 A alternating with short ones of 1.366+12 A,
However, in an independent analysis by Cotton, Dollase,
and Wood (1963) the bond lengths in the benzene rings
were found to be equalowithin experimental error, with
a mean value of 1.387 A. Jellinek (1963) suggested
that disorder in the crystals used by Cotton would
explain the discrepancies between the results of the
two analyses., Ibers (1964) undertook a rigid-body
refinement of the structure, using Cotton's data, and

confirmed that they were not consistent with any
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distortion of the benzene rings from D6h symme try.
These analyses were complicated by the,high crystal-
lographic point group symmetry (C3i) required of the
molecule.
\ An electron diffraction study of the molecule by
Haaland (1965) provided no evidence for bond length
alternation., An x-ray investigation of the crystal
Structure at low temperature, by Keulen and Jellinek
(1966), gave results which, after libration correction,
were in very good agreement with the electron diffraction
study. The interatomic distances found by Keulen and
Jellinek were C-C 1.420+3 K and 1.419+3 X, Cr-C
2,14742 and 2,144+2 X. The Cr-ring distance was
1.609+1 Z.

From these results it appears that sandwich bonding
to chromium results in an increase of 0,02-0,03 X in
the mean benzene ring C-C bond length, without lowering
the symmetry of the ring. This is in agreement with
the most recent theoretical study of dibenzenechromium

(den Boer et al., 1962) which suggests that distortion

of the benzene ring symmetry is unlikely.

4,5 CHROMIUM HEXACARBONYL

This molecule has been the subject of x-ray and
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electron diffraction studies, both of rather limited
accuracy. Using x-ray methods, Rudorff and Hofmann

(1935) found the Cr-C distance to bel.80 Z; they
assumed the C-0 distance to be 1.15 X, which gave, by
addition, a Cr-0 distance of 2.95 1. Brockway et al,
(1938) did an electron diffraction study, which gave
1.9214«2 for the Cr-C distance, 1.,16+5 X for the C-0
bond, and 3.08+5 Z for the Cr-0 distance. Octahedral

coordination of the chromium was assumed.,

4,4 ARENECHROMIUM TRICARBONYLS

Prior to 1965 only the structures of benzene-
chromium tricarbonyl, C6H6Cr(00)3(Corradini and
Allegra, 1959), of biphenyl bis(chromium tricarbonyl),
ClelO(Cr(CO)é)2 (Corradini and Allegra, 1960), and
of a monoclinic modification of phenanthrenechromium
tricarbonyl, Cl4HloCr(CO)3 (Deuschl and Hoppe, 1964),
had been published, In each of these compounds linear
carbonyl groups, disposed at'right angles to one
another, were found to point approximately towards the
midpoints of ring C~C bonds; +to within the accuracy
of the results the arene rings were planar, and |
parallel to the planes defined by the carbon atoms and
by the oxygen atoms of the carbonq@roups. No reliable

conclusions could be drawn about the effect of the
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chromium atom on the arene ring, since projection
data only were used in these analyses,

More recently, Bailey and Dahl (1965a, 1965b)
have described analyses of hexamethylbenzenechromium
tricarbonyl, C6Me6Cr(CO)3, and of benzenechromium
tricarbonyl, both based on three-dimensional data.
The structures of an orthorhombic modification of
phenanthrenechromium tricarbonyl and of -9,10-dihydro-
phenanthrenechromium tricarbonyl, 014H120r(00)3, have
been described in the two previous chapters of this
thesis (a preliminary note on this work has been
published by Muir, Ferguson, and Sim, 1966). These
four analyses allow fairly firm conclusions to be
drawn about the effect of a bonded chromium atom on
an arene ring.,.

No evidence for an alternation of the arene
ring bond lengths due to the chromium atom has been
found in any of these compounds.

Some molecular dimensions of these compounds are
given in Table 4.1. The first column contains the
mean arene ring C-C bond length, together with the
standard deviation of an individual measurement,
estimated from the least-squares totals (in brackets).

The second column gives the root mean square difference
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TABLE 4.1

@)

Molecular Dimensions (A) in some ArCr(CO)3 Complexes

Ar
CeHg
C14H10
C14t10
C6Me6

C7H80

Compound

Cr(CO)6

C6H6Cr(CO)3

C14H30
C14t10

C6Me6CI‘(CO)3

Cq

CI‘(CO)3
Cr(CO)3

H8OCr(CO)3

Cr-Ring

1.724
1.717
1.733
1,726

Cr-C-0
180(ass.)*
179.2(6)
178.9(4)
177.9(5)
177.6(12)
176(2)

Mean C-C RMSD 'RMS

1.401(11) 0.018 0.007

1.403(7) 0.013 0.006

1.412(7) 0.022 0,018

1.417(14) 0,033 0,009

1.39 0.02 -
 TABIE 4.2

Mean Dimensions ogag%gg;ﬁgl(giogpznéqjsome Chromium
Cr-C Cc-0 Cr-0

1.92(4) 1.16(5) 3.08(5)
1.80 1.15(ass) 2.95

- 1.842(10)  1.142(8) 2.984(11)
1.833(4) 1.143(5) 2.976(4)
1.843(5) 1.149(6) 2.992(4)
1.814(13)  1.163(12) 2,977(9)
1.79 1.19(2) -
1.769(25)  1.210(25) 2.978(24)

C4Hly

H SCr(CO)3

* Blectron diffraction results

(Figures in brackets are e.s.d.s of individual

175,0(22)

measurements estimated from least-squares totals.)
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from these means. The results suggest, but do not
conclusively prove that the mean C-C bond length is

a little greater in the complex than in the free
hydrocarbon., In benzenechromium tricarbonyl the

mean C-C bond length of 1.401 K differs only by 0.007 A
from the accepted benzenoid C-C bond length of 1.394 2
(Sutton, 1965), but libration correction would probably
increase this difference. In the phenanthrene and
dihydrophenanthrene compounds the means of the C-C
bond lengths in the bonded side rings are respectively
0.016 and 0,019 X greater than the comparable means

for the non-bonded side rings. The mean value of
1,417 1 in hexamethylbenzenechromium tricarbonyl is
probably longer than the comparable mean in the free
hydrocarbon, for which a projection study gave 1.39 Z
(Robertson and Brockway, 1939).

The third column of Table 4.1 gives the root
mean square deviations from the planes of the bonded
rings. Only in the case of phenanthrenechromium
tricarbonyl, in which special circumstances seem to
exist, are the deviations significant,

The mean Cr-ring distances (Table 4.1, column

4) are all close to one another and rather greater than
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the corresponding values for dibenzenechromium, As
pointed out previously, however, the chromium is not
symmetrically placed with respect to {the ring carbon
atoms either in phenanthrenechromium tricarbonyl or

in the related dihydrophenanthrene compound.

The mean dimensions of the chromium tricarbonyl
fragments in each of these compounds are included in
Table 4.2. The results are in general agreement with
one another. The departures from linearity of the
carbonyl groups are uniformly small. The mean
interatomic distances are in fair agreement with the
x-ray study of chromium hexacarbonyl and in rather
worse agreement with the electron diffraction study
of the same compound. In view of the limited accuracy
with which thé bond lengths in chromium hexacarbonyl
have been determined, these disagreements have little
significance,

In the arenechromium tricarbonyl compounds so
far discussed, the carbonyl groups have invariably
pointed towards the midpoints of ring C-C bonds.
However, in anisolechromium tricarbonyl, C7H800r(CO)3
(Carter, McPhail, and Sim, 1966a, 1966b), the carbonyls
point towards ring carbon atoms. This is also the
case in p-toluidinechromium tricarbonyl, C7H9NCr(CO)3

(Carter, McPhail, and Sim, 1966¢). These authors

=120~



suggest that this configuration is due to the presence
of ortho-para directing substituents. ,

In anisolechromium tricarbonyl the Cr-C(carbonyl)
distances are shorter on average, and the C-0 distances
are ionger, than in other arenechromium tricarbonyls
(see Table 4.2).. The departures from linearity of the
carbonyl groups are also greater. No structural
details have yet been published for the toluidine

complex,

4.5 RELATED STRUCTURES

Brown, McPhail, and Sim (1966) have described
the structure of a substituted cycloheptatrienechromium
tricarbonyl, 018H16Cr(00)3; their results suggest that
alternation of‘double and single bonds is retained on
complexing to chromium, A preliminary report suggests
that this is also true of phenylcycloheptatrienechromium
tricarbonyl, Cl3H120r(CO)3 (Baikie et al., 1965).
Retention of single and double bond character was also
found in cycloheptatrienemolybdenum tricarbonyl,
C7H8MO(CO)3 (Dunitz and Pauling, 1960). In each of
these compounds the carbonyls are trans to the midpoints
of the double bonds of the ligand. However, the ring

bond lengths were found to be irregular and without

marked alternation in cyclooctatrienechromium tricafbonyl,'
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CsHlocr(CO)3 (Armstrong and Prout, 1962),

In 1,6—methanocyclodecapentaenecpromium tricarbonyl,
CllHIOCr(CO)3 (Baikie and Mills, 1966), four Cr-C(ring)
distances are equal to one another, with a mean of
2.20 z, and two are longer and also about equal to one
another (2.54 and 2.57 X). It is possible that the
chromium does not attain a formally inert gas electron
structure in this molecule.

In thiophenechromium tricarbonyl, C4H4SCr(CO)3
(Bailey and Dahl, 1966c¢), the thiophene ring proved
to be disordered. In the chromium tricarbonyl moiety
the mean Cr-C distance is shorter and the mean C-~O
distance is longer than in benzenechromium tricarbonyl

and similar compounds (Table 4.2). The differences

are significant, at least at the 1% probability level.
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APPENDIX I

THiS LINEAR DIDFFRACTOMITER



Appendix 1

The Linear Diffractometer !

The Hilger-Watts linear diffractometer (Arndt
and Phillips, 1961) is a device for automatic measure-
ment of the integrated intensities of diffracted x-ray
beams., Its main components are a stabilised x-ray
generator, counter equipment for measuring the
intensities of x-ray beams, an analogue computer which
positions the counter and crystal, and an output printer
and tape punch.

Molybdenum radiation is most often used, in
conjunction with balanced SrO-ZrO2 Ross filters.
With this radiation a scintillation counter is normally
employed and ﬁonochromatization is improved by arranging
the counting system so as to accept only pulses within
a given energy range.

The analogue computer consists of three slides
on which the counter is mounted. The counter is also
constrained to be at a constant distance from the
crystal. The crystal is set so that each of its
reciprocal axes is parallel to one of the slides and
its rotation is coupled to the movement of the counter,

By moving the slides the crystal can be rotated to bring
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a predetermined crystal plane into the Bragg reflection
condition, while simultaneously the cqunter is positioned
so as to measure the diffracted beam.

The integrated reflection is measured by first
rotating the crystal by a small angle/g%tthe reflection
condition and measuring the background for t seconds,
then by rotating the crystal at constant speed through
the reflection condition and counting for 2t seconds,
and finally by counting background again for t seconds.
For phenanthrenechromium tricarbonyl 2t was thus 15
seconds while for the dihydrophenanthrene compound it
was 30 seconds. The intensity is the difference between
the second count and the sum of the first and third.

This process is repeated at least once for each filter.

The diffractometer automatically measures each
reflection in a given reciprocal net. Upper layers

are bought into the reflecting condition in the

equi-inclination Weissenberg setting,
Reference

1. Arndt, U.W. and Phillips, D.C. (1961). Acta Cryst.

14, 807.
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ALGOL TEXT

The programmes presented in this Appendix are
written in the computer language KDF9 ALGOL. This

language is defined in a manual by Green (1964).

DBX0O16000KP4 is part of the molecular functions
system; it is used to write unit cell dimensions,
fractional coordinates etc. on to magnetic tape

at the start of a run.

DBX016100KP4 is the contacts-seeking distance

and angle programme described in Part II Section 1.4,

Reference

1. Green,J.S. (1964). "KDF9 ALGOL Programming",

English Electric-Leo Computers Limited,Kidsgrove,

England.
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DBX016000KP4~>
begin
1ibrary AO,A6,AT,A9,A13;
integer DV 1,D IN,MT 1,1i,Jj,nat;
real pi,an le,a
array cell{1:6],N,M[1:3,1:3],t1tle[1:200],1index[1:20];
boolean array key[] 2013
procedure pack four (d in,x); value d in;
integer d in; real Xx;
begin

integer 1,]J;

integer arrax SYM [-2:5];
SYM[-2] 1= SUM[-1] := SYM[0] := 158;
for 1 := 1 step 1 until 5 do

begin
in:” SYM[1i] := in basic symbol (d in);

i SyM[1] = 158 or SYM[1] = 160 or SYM[1] =
T174 or SYM[1] =209 or SYM[1] =152
then goto in;

1 SYM[1T 7 132 and SYM[1] # 158 and
sym[il# 160 and SYM{1] # 209 then goto next;

for j := 4 step -1 until 1 do
T SYM[J] :=SYM[1 ¥ J - 515

goto form x;

next:
end;
form Xx:
i:= 256x§256x(256x3YM[1] + SyM[2]) + syYM[3])
+ SYM[4];
X = 13
end procedure pack four;
procedure form integer(x fallure); real x;
label failure;
begin
integer y,1,symbol;
y = 03
for 1 :=1 step 1 until 3 do
begin
in:” symbol := in basic symbol (D IN);
if symbol = 158 then goto inj
If symbol = 148 Then goto out;
1f symbol > 9 then
begin
write text (DV 1,[[2c]PUNCHING*ERROR*IN*
BRACKETED*INTE ER );
goto failure;
end;
Yy := yx10 + symbol

-134 -~



end;
write text (DV 1,[[2c]BRACKETED*INTEGER*TOO*LARGE]);
goto faillure; -
out: x :=Yy;
end of form integerj;
procedure orthog(cell,matrix); value cell;
array cell,matrix;

begin

real one;

matrix[1,2] := matrix[1,3] := matrix[2,3] := 0.0;

matrix[3,3] := cell[3];

matrix[3,2] := cell[2] x cos(celll[l4]);

matrix[3,1] := cell[1] X cos(cell[5]);

matrix[2,2] := cell[2] X sin(cell[l4]);

one := (cos(cell[6]) - cosacell[5])
cos(cell[4]))/sin(cell[4])

matrix[2,1] := one X cell[1];

matrix[1,1] := cell[1] X sqrt(sin(cell[5])T2
- oneT2);

end procedure orthog;
procedure inverse(matrix,inv); value matrix;
array matrix,inv;
begin
1nte er 1i;
inv[1,2] := inv[1,3] := inv([2,3] := 0.0;
for 1 := 1 step 1 until 3 do
T inv[i,1] =1 O/matrix[i 513
inv[2,1] := -matrix[2, 1]/2matr1x[1 ,1] X matrix[2,2]);
inv[3,1] := -matrix[3,1]/(matrix[1,1] X
matrix[3 31) + matrix[E 1] x
matrix[3,2]/(matr1x[1 1] X matrix[2,2] x
matrix[3,3]);
inv([3,2] := -matrix[3,2]/(matrix(2,2] x matrix[3,3]);
end procedure Iinverse;
DIN :=20; DV 1:= 30- open(D IN); open(DV 1)

MT 1 := 1003 find(MT 1,[DGo3ooo3])
interchange(MT 1); := 3.141 592 6536
angle := pi1/180. o,
caption:
for 1 := 1 step 1 until 200 do
begin
j := in basic symbol(D IN);  titlel[1] := J;
;g J = 152 then goto unit cell;
if 1 = 200 Then goto faillure;
end;
unit cell
for i := 1 step 1 until 3 do cell[i] := read(D IN);
for 1 := 4 step 1 until 6 do
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cell[i] := read(D IN) X angle;
orthog(cell,N); inverse (N,M);

data:
for 1 := 1 step 1 until 4 do index[i] := read(D IN);
nat := 1index|[1];
for 1 := 2 gtep 1 until 4 do

" key[1 - 1T = index[1i] > 0.5;
begin
array chl[1:nat,1:2],at[1:nat,1:3]
,vib[1:nat,0:6],sigmal1:nat,1:3],corr[1:nat,1:3];

sf tape:
for 1 :=1, 2 do j := read(D IN);
for 1 := 1 step 1 untll jJ do a := read(D IN);
key[20] := read(D IN) > 0.5;
for 1 := 1 step 1 untll nat do
begin

pack four(D IN,ch[1,1]);
form integer(ch[i 2] failure),
for J := 1 step 1 until 3 do at[1,j] := read(D IN);
If not key[T] then goto exit;
a := read(D INJ;
if a > 0.5 and a < 1.5 then goto aniso,
for J := 1 step 1 until 6 do vib[i,J] := -999;
vib[1,0] :=read(D IN); goto exit;
aniso: for j := 1 step 1 until 6 do
T vibli,J] T=read(D IN); ~
vib(1i, 0] = -999;
if key[20] then a := read(D IN);

exit:

end ;

if read(D IN) < 998 then goto failure;
sdevs:

if not key[2] then goto load;

for 1:=1 step 1 until nat do

T for J := 1 step T until 3 do
" sigmal1,JT = read(D IN)3
if read(D IN) < 998 then goto failure;

correln:
if not kez (3] then goto loadj
if Index[4] > 3.5 then
begin
for 1 := 1 step 1 until nat do
Tor J := 3‘5% ep -1 until 1 do
corr[1,J] := read(D IN);
end
else
beglin
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lse

mr——

e
2 else row := 1;

if index[4] < 1.5 then row := 3
1f index[4] < 2.5 then row :=
for 1 := 1 step 1 until nat do
begin
for % := 1 step 1 until 3 do corr(1,j] := 0.0;

corr[i,row] := read(D IN);
end;
end;
if read(D IN) < 998 then goto failure;
load:
write binary(MT 1,title,[TITLE]);
write binary(MT 1,cell,[CELL])S
write binary(MT 1,N,[N]7; write binary(MT 1,M,[M]);
write binary(MT 1,1ndex,fINDEx]); -
write binary(MT 1,ch,[CH]);
write binary(MT 1,at,[X]);
Af key[1] then write binary(MT 1,vib,[U]);
if key[2] Then write binary(MT 1,sigma,[SIGMA]);
If key[3] Then write binary(MT 1,corr, CORRELATION]);
goto terminate; - -
end;
fallure:

write text(00,[[c]ERROR*IN*DATA*TERMINATE*RUN[c]]);
terminate: -
interchange(MT 1); close(D IN); close(DV 1)
close(MT 1);
end>

L3
3
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DBX016100KP4~>
begin
1ibrary AO,A6,A12,A7,A8,A13;
boolean lineprint,axes orthogonal,restrictions;
real d max,a max,a,b,c,alpha,beta,gamma,pil,
plibytwo,radian,angle,t,S,D;
inteéer i,J,k,1,m,n,CKEY,KEY 1,KEY 2,KEY 3,FORM
»¥ORM 2, LT,C,P,LP,SN,Z2,D IN,DV 1,DV 2, num,M;
integer arra le1:27,1:3];
array TE :30,1:3],N{1:3,1:3],F,G[1:3],C2[1:27,1:3];
procedure out equivalent positions ( d out,sym
no,vector); value d out, sym no;
integer d out, sym no; array vector;
begin
integer 1;
procedure out coordinate (d out,al,a2,a3,t);
value d out, al,a2,a3,t; integer d out;
real al,a2,a3,t;
begin
array OUT[1:3];
integer J,k,F;
F := format([d]); OUT[1] := al; 0QUT[2] := a2;
OUTL3] := a3;
if t # O then
begin
"f%?h entier(12xt + 0.5);
for § :=6, 4, 3, 2, 1 do
if abs(k/J - k+J) < 0,000 000 1
then goto number;
number: write (d out,format([s#nd)}),k/J);
out basic symbol (d out,151)
write (d out,F,12/3);
out basic symbol (d out,158);

.
J

end;
for J := 1 step 1 until 3 do
begin
if OUT[J] = O then goto exit;
out basic symbol (d out,158);
1f OUT[J] > O then
out basic symbol éd out,193§ else
out basic symbol (d out,209);
out basic symbol (d out,158);
Af abs(OUT[J]) # 1 then
write (d out,F,abs{0UT[J]))
out basic symbol (d out,60 +

3
3);
exit:
end;
end procedure out coordinate;
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write text Sd out, [ [ QC]EQUIVALENT*PDSITIDN*

NUMBER*** | ) 3
write (d out,format([nddsssss]),sym no);
for 1 := 1 step 1 until 3 do
begin
out coordinate(d out,vector[3xi -
2],vector[3xi - 1], vector[3xi],vector[9 + 1]);
out basic symbol (d out,(if 1 # 3 then 166
else 152));
end'

out basic symbol (d out,160);
end procedure out equivalent positions;
procedure skip char(d in,char);
value d in,char; 1nteger d in,char;
begin
integer symbol;
in: symbol := in basic symbol (d 1in);
if symbol # char then goto 1inj
end procedure skip char;
Eroced ure orthogonallse zin vector,out
vector,matrix,mode);
value in vector,matrix,mode; boolean mode;
array in vector,out vector,matrix;
begin
procedure axes only (in vector,out vector,matrix);
value in vector,matrix;
array in vector,out vector,matrix,
begin
integer numb;
for numb := 1 step 1 until 3 do
T out vector[numb] := in vector|[numb]
xmatrix[numb,numb];
end procedure axes only;
procedure full matrix (in vector,out vector,matrix);
value In vector, matrix;
arrax in vector,out vector,matrix;
begig -
integer numbj
for numb := 1 step 1 until 3 do
out vector[numb] := iIn vector
[1]xmatrix[numb,1] + in vector
[2]xmatrix[numb,2] + in vector
[3]xmatrix[numb,3];
end procedure full matrix;
1f mode then
T axes only (1n vector,out vector,matrix)
else full matrix (1n vector,out vector,matrix);
end procedure orthogonalise;
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procedure out name(d out,f dev,a,b,failure);

value a,b,d out,f dev; integer d out,f dev;
real a,b; label fallure;

beg

next:

integer y,1,f,spaces;
integer array SYMBOLtl:M];
Yy i= aj; spaces := 0O;

for 1 := 4 step - 1 until 1 do
begin

f = y+256; SYMBOL[1] := y - 256xf; y :

end;
for 1 := 1 step 1 until 4 do
if SYMBOL[1] = 158 then
spaces := spaces + 1 else
out basic symbol (d out,SYMBOL[1]);
y = Db;
for 1 := 3 step - 1 until 1 do

begin
f = y+10; SYMBOL[1] := y - 10xf; vy :
end;
if y #0 then
begin B
write text(f dev,[[2c]INTEGER*FOR*OUTPUT*
GREATER*THAN*9997) ;
goto failure;
end;

out basic symbol(d out,132); £ :
for 1 := 1 step 1 until 3 do

it
C
\»e

begin
if £ = 0 and SYMBOL[1i] =0 then
begin
spaces := spaces + 1; goto next;
end;
out basic symbol (d out,SYMBOL[1]); f :
end;

out basic symbol (d out,148);
for 1 := 0 step 1 until spaces do
out basic symbol (d out,158);

end procedure out name;
procedure out symmetry zd out,sym,cell,no);

value d out,sym,no; integer d out,sym,no;
integer array cell;

begin

integer 1;
write (d out,format(indsss]g,sym);
out basic symbol (d out,132);

for 1 := 1 step 1 until 3 do
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begin
write (d out,format([-d]),celllno,i]);
if 1 # 3 then out basic symbol (d out,166);
end;
out basic symbol (d out,148);
end procedure out symmetry;
procedure in equiv pos(d in, d out, vector, failure);
value d in, d out; integer 4 in, d out;
array vector; label fallure;
begin
integer 1i;
boolean semicolon;
procedure coordinate(al, a2, a3, t, termin);
real al, a2, a3, t; boolean termin;
begin
integer char a, char b, num, sig;
real number;
boolean first,
al := a2 := a3 := ¢ := 0.0; first := true;
set sig:
sig := 1; num := O;
clear b:

Pl

char b := O;
next: char a := in basic symbol(d in);

goto if char a = 158 or char a = 160 or
char a = 174 then next else
if char a = 193 or char a = 209 then
signs else ;g char a <9 then digilts
else
if char a = 61 or char a = 62 or char a = 63
then xyz else i char a = 161 then
slash else € terminator;

digits:
char b := char b X 10 + char aj; first := false;
goto next; T
slash: num := char Db; oto clear bj;
Xyz: number := if num then

sig X nuﬁ7bhar b else if char b # O
then sig X char b  else sig;
if char a = 61 then al := number else
T 1if char a = 62 then a2 := number else
a3 := number;
goto set sig;
signs: 1if first then

veEgin -
sig := 1f char a
first := false
end;

193 then +1 else -1;

-141-



if char b # O then
begin —
t := if num 7 O then
sig X num/char b else sig ¢ char b;
sig := 1f char a = 193 then +1 else -1

end;
num := O3 goto clear b;
terminator:

if char a # 166 and char a # 152 then
write text(d out, [[2c]Wrong*terminator.]);
termin := char a = 152;
if num # O or char b # 0 then
t := if num # O then
sig X num/char b else sig X char b
end procedure coordinate;
Tor 1 := 0, 1, 2 do
begin
coordinate(vector[3 X 1 + 1], vector[3 X 1
+ 2], vector[3 x 1 + 3], vector[10 + 1],
semicolon); ,
if semicolon and 1 # 2 or not semicolon and
i1 =2 then
begin
write text(d out, [[2c]Equivalent*
positions*are*out*of¥*phase]);
goto failure
end
end
end procedure in equiv pos;
procedure pack four (d 1n,x5; value d in;

integer d inj; real x;
begin

teger 1,]J;
integer array SYM [-2:5];
SYM[-2] := SYM[-1] := SYM[O] := 158;
for 1 := 1 gstep 1 until 5 do
begin

in:”~ SYM[i] := in basic symbol (d in)
if SsYM[1] = 158 or SYM[1] = 16<])
1

174 or SYM[1] =209 or SYM|

then goto inj
if SYM[LT # 132 and SYM[1] # 158 and
SYM[1]# 160 and SYM[1] # 209 then goto next;

for J := U4 step -1 until 1 do
—SyM[ J] :=—SY'§[1 +J - 51

goto form xj;

!

5
or syM[1]
= 152

next:
end;
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form x:
i:= 256x5256x(256xSYM[1] + SyM[2]) + SyM[3])
+ SYM[4

X := 13

end procedure pack four;

procedure SORT (n, t, p, in); value n, t, p;
integer n, t, p; real array in;j

begin

integer h, i, j, flag;
real H

Tfor J:= 1 step 1 until entier (n/2) do

.
3

a
r i:= j+1 step 1 until n-j+i do

if in [41,p]> in [1-1,p] then goto L1;
flag:= 1;
for h:= 1 gstep 1 until t do
begin
Ci=in [1i,h]l; in [4i,h]:= in [i-1,h];

end;

L1: If in [n-1i+1,pl< in [n-1i+2,p] then goto L2;
flag:=1;
for h:= 1 step 1 until t do
begin

C:=in[n-i+1,h]; in [n-i+1,h]:= in [n-1+2,h];

in [n-1+2,h]}:=C;

end;
L2:
end;
if flag=0 then goto finishj;
end;
finish:

end procedure SORT;

D IN := 20; DV 1 :=DV 2 := 30; lineprint := false;
open (D INj; open (DV 1); pi := 3.141 592 653 6;

pibytwo := pi/2; radian := pi/180;

angle := 1/radian; find(100,[DG030003]);

begin
array title[1:200],cell[1:6],index[1:20];
read binary (100,title,[TITLE]);
read binary (100,cell,[CELL])}
read binary (100,index,[INDEX]); M := index[1];
for 1 := 1 step 1 until 200 do

begin
"4?‘?= entier(title[i] + 0.5);
- if § = 152 then goto unit cell;
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out basic symbol(DV 2,J);
end;
unit cell:
a := cell[1]; b := cell[2]; c := celll[3];
alpha := celll[4 %; beta := celll[5];
3

gamma := celll[6

end;

d max := read (D IN; a max := read (D IN);

skip char (D IN,160

if a max > d max or a max > 10 then

begin
write text (DV 1,[[2c]D*MAX*OR*A*MAX*INAPPROPRIATE]);
goto end;

end;

d max := d maxT2; num := O restrictions := false;
enter:
i := in basic symbol (D IN);
if 1 = 158 or 1 = 160 or 1 = 174 then goto enter;
If 1 = 25 then goto next else if T = 29 then
begin -
num := read (D IN);
if num > 30 then
begln
write text (DV 1,[[2c]TOO*MANY*RESTRICTIONS]);
oto end;
end
restrictions := true;
for J :=1 step 1 til num do
begin
pack four éD IN,TEST[j,1]
pack four (D IN,TEST[Jj,2]
TEST[J,3] := read (D IN)T2
end;
goto enter;
end
else
begin
write text SDV 1,[ [2c ]NUMBER*QF*CELLS*NOT*
SPECIFIED ),
oto end;
nexte—=’

KEY := read D IN
if CKEY # O and ( K%? # 1 and CKEY # 27 then

Begin
write text (Dv 1, [ [2c ]WRONG*NUMBER*OF*CELLS]} ) ;

goto end;
end;

oo 0o 0o

skip char (D IN,160);

-144-



if CKEY > 0.5 then goto lattice;
IT := C :=P := 2 :=1; goto evaluate matrices;

lattice:
LT := read ED INg, C := read (D IN);
P :=read (D IN); Z := PxCj
evaluate matrices:
begin

array R[1:Z,1:12],A[1:12];
f C Y > 0.5 then

F

i := in basic symbol (D IN);
for 1 := 1 step 1 until P do
beglin
in equiv pos (D IN,DV 1,A,end); [ | iz AL3]
for J := 1 ep 1 until 12 do R i,J AlJls
end; ’
end
else
begin '
for 1 := 1 step 1 until 12 do R[1,1] := 0.0;
o= R[]:S] =l‘*_[1.09] "“H,

KEY 1 := KEY 2 := KEY 3 := O3

i

i := in basic symbol (D IN);

if 1 =152 or 1 = 158 or 1 = 160 or 1 = 174
" then goto print else if 1 = 16 then
goto cpr finished el else if 1 = 27 then

begin

KEY 1 := 1; skip char (D IN,160); goto print;
end
“Telse if 1 = 26 then
begin

%EY 2 := 13 skip char (D IN,160); goto print;
end

"~ else 1f 1 = 30 then
begin

KEY 3 := 13 skip char (D IN,160); goto print;
end

else
begin

write text (DV 1,[[2c]OPTIONAL*QUTPUT*
INSTRUCTIONS*NOT*UNDERSTOGD] ) 3
goto end;
end;
cpr finished.
begin
array X[1:M,1:3],Ch[1:M,1:2];
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read binary ﬁloo »Ch,[CH]);

read binary

100,X,1X}))5  rewind (10033
<

axes orthogonal := abs(plbytwo - alpha
0.000 000 1 and absgpibytwo - beta) <

0.000 000 1 dnd abs

pibytwo - gamma) <

0.000 000 13
if axes orthogonal then

i= a; N[2,2] := b3 N[3,3] := c;
N[1,2] := N[1,3] := N[2,1] := N[2,3] :=
N[3J]] - N[3)2] = 0005
end
else
begin )
N[1,2] := N[1,3] := N[2,3] := 0.0;
N[1,1] := a X sqrt((sin(beta))T2 -
}(cos(gamma - cos(alpha)xcos(beta))
sin(alpha) T2);
N[2,1] := a X (cos(gamma) -
COSS lpha)xeos(beta))/sin(alpha)
N[2,2] := b x sin(alpha);
N[3,1] := a X cos(beta);
N[3,2] := b x cos{alpha}; N[3,3] := c;
end;
ir C > 1.5 then
begin
for 1 t= 1 step 1 until P do
J step T until 12 do
R P+ 1 JT = - RI1,31;
end;
LP := (if LT < 4 then LT - 1 else 1);
SN := Z X (LP + 17;
begin
array T{O:LP,1:3];
TIO,1]) := T[O 2] := T[0,3] := 0.03

I lattice:

if LP = O then goto generate;

if LT = 2 then goto I lattice else
if LT = 3 then oto R lattice else
if LT = 4 then goto F lattice else
if LT = 5 then oto A lattice else
If LT = 6 Then goto B lattice else
iIf LT = 7 Then goto C lattice else

begin
write text (DV 1,[[2c]LATTICE*NUMBER*WRONG]) ;
oto end;

end;

T[1,1]

:=T[1,2] := T[1,3] := 0.5;
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R lattice:

F lattice:

A lattice:

B lattice:

C lattice:

generate:

goto generate;

T[1,1] := T[2,2] := T[2,3] := 1/3;
T{1,2] := T[1,3] := T{2,1] := 2/3}
goto generate,
[1,1] := T[2,2] := T[3,3] := 0.0;
T[],Q] °= [ :3] = T[2,1] = [2 3] o=
o(3,1] := T(3,2] := 0.53

goto generate,

T(1,1] := 0.0;3 T[1,2) := T[1,3]
goto generate;

T[1,2] := 0.03 T[1,1] := T[1,3] := 0.5;

goto generate;

T[1,3] := 0.05 T[1,1] := T[1,2] := 0.5;

begin
array Y[1:M,1:SN,1:3];
for 1 := 0 step 1 until LP do
~ for j : ste 1 until Z do
for k = step T Til M do
“for 1 := 1 step 1 until 3 do
T Ylk,] + ZX 1,1] := R[J,S‘xl -
2] x X[k,1] +R[Jj,3 x1 - 1] x
X2l + RL3,3 e, 31 +
R[J,9 + 1] + T[1,1];
for 1 := 1 step 1 until SN do
“for j :=T1 step T until ™ do
begin
for k :=1 step 1 until 3 do
Flk] := YT J,1,k];

orthogonalise (F G,N,axes orthogonal);

for k := 1 step 1 until 3 do
T Y¥[J4,1,k] T= Glk]3
end;
if CKEY < 1.5 then

begin
%1|],1] := C1[1,2] :=C1[1,3] := 0.03

CKEY := 13 goto Jump;
end;
1:=1;

—Ci1

for E 1= 1, 2 3, 10, 11, 12, 19, 20, 21

J,1]

for § := 4, 5, 6, 13, 14, 15, 22, 23, 24

T C1lj,1] = +13
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jump:

for j :=7, 8, 9, 16, 17, 18, 25, 26, 27 do
'ET[J 1] t= -1 Tdo
1 := 23
for =1, 4, 7, 10, 13, 16, 19, 22, 25 doc
el - 85 v Z——
for j :=2, 5, 3, 11, 1 17, 20, 23, 26 do
Tlfj,i] i= +1; -
for § := 3, 6, 9, 12, 15, 16, 21, 24, 27 do
CTTJ,l] -1;
i:= 33
for J := 1 step 1 until 9 do Ci1[j,1] := 03
Tor j := 10 step 1" until 18 do leJ,i] 1= 413
for j := 19 step 1 wntil 27 do C1[J,1] := -1
for 1 := 1 step 1 until CKEY do
begin
for j := 1 step 1 until 3 do F[j] := C1[1i,]];
orthogonalise (F,G,N,axes ortho onal),
for J := 1 step 1 until 3 do Cc2[1,j] := G[Jj];
end'
1f KEY 1 < O.5 then goto out orthog;
FORM 1 := format ([nd.dddd]);
FORM 2 := format ([ndd.dd]});
write text (DV 2, T3c]a*—**i);
write (DV 2,FORM 1,

write text (DV 2, [fQSjANGSTROMS[BS]dlpha*—**])
(DV 2,FORM 2,alpha X an ﬂ

write text (DV 2, [[23 DEGREES%EC b*=*+]);

(DV 2, FORM'T—

write text (DV 2, [[2sjANGSTROMS[83]beta**—**])
(DV 2,FORM 2,beta X angle)

write text (DV 2, [[2s]DEGREEs[2cic*—*~]

(DV 2,FORM T,c)3

write text (DV 2,[[2s]ANGSTROMS[8s]gamma~=+*]);
write (DV 2,FORM 2,gamma X an leﬁ'

write text (DV 2,[ [2s ]DEGREES[5¢ j

for 1 := 0 step ] “until LP do
for J := 1 step T until Z do
begin
for k := 1 step 1 until 9 do Alk] := R[J,k];
Tor k := 1 step 1 until 3 do
Al9 + k] == R[J,9 ¥ k] + T[1,k];

out equivalent positions (DV 2,J + 2 X 1,A);

end;

write text (DV 2 [[5C]FRACTIONAL*
COORDINATES[ 3¢ 1173

gap (DV 2,100);

for 1 := i step 1 until M do

begin
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out name (DV 2,DV 1,Ch[i,1],Ch[i,2],end);
for j :=1 step 1 until 3 do
~ write (DV _2,format{[sss#n.ddddd;
s]),x[1,31);
out basic symbol (DV 2,160)3;
endj
gap (DV 2,100);

out orthog:
if KEY 2 < 0.5 then goto begin;
write text (DV 2 ll5c|DRTHOGDNAL*
COORDINATES[3c )3
gap (DV 2,1007;
for 1 := 1 step 1 until M do
begin
out name (DV 2,DV 1,Ch[i,1],Ch[1,2],end);
for j :=1 step 1 until 3 do
—write (DV 2,format([sss#ndd.dddd;
s1),¥01,1,31);
out basic symbol (DV 2,160);
end;
gap (DV 2,100);
begin: for 1 := 1 step 1T until M do
begin
integer COUNT;
%E%%% RES[I 500,1 (7 + KEY 3)1;

for § := 1 st 1 until CKEY do
for k i= (1f KEY 3 > 0.5 and J=1
then 2 else 1) step 1 until SN do
for 1 :=1 st;p T until M do
begin
for m := 1 step 1 until 3 do
T Flm] := YT1,k,m] + C2[j,m] - Y[i,1,m];
S := F[1]12 + Fl2]12 + FE3]T2
D := d max;
if not restrictions then goto out;
begin
boolean check 1,check 23
for m := 1 step 1 until num do
Tor n := 1 step T until 2 do
begin
check 1 := abs(Ch{1,1] -
TEST[m,n]) < 0.13;
check 2 := abs(Ch[1,1] -
TEST[m,(if n =1 then 2 else
iflggeck ? add check 2 then
T D := TESTIm,3);
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out:

not required:

end;
end testing block;
if S > D or S = O then goto not required;
CCUNT := COUNT + 13
if COUNT = 500 then
~ write text (DV 1,[[2c]
TOO*MANY*BOND*LENGTHS*ASKED*FDR])
RES[COUNT,1] := 1, RES[COUNT,2] := k3
RES[COUNT, 3] : 3
for m := i step 1 ’until 6 do
RES[COUNT,m] := Flm - 3]3
RES[COUNT,7] := sqrt(S);

end;
SDRT(COUNT 7 + KEY 3% >Ts RES%;
write text (DV 2,[[2c ]ATOM*A[7s]
ATOM*B[4s EP[6sT'ELL[6s]
A-B*ANGSTROMS[2¢]]) ;
for J := 1 step | until COUNT do
begin
“out name (DV 2,DV 1,Ch[1,1],Ch[i,2],end);
for k := 1 step 1 until 3 do
T out basic symbol (DV 2,158);
out name EDV 2,DV l,Ch[RES[j 1] 1]
,Ch[RES[J,1], 2] end) ;
out symmetry (DV 2,RES!J,2],C1,RES[J,31);
write (DV 2,format
(Lsssnd. ddddc]) SJRES[J,71);
end;
if a max # 0 and COUNT > 1.5 then
begin
write text (DV 2,[[2c]ATOM*A[4s]
EP[6s]CELL[13s]ATDM*B[83]
ATOM*GIMSJEP[6'JCELL[ES]ANGLE*ABC[2cl_),
for j := 1 step 1 until COUNT do
~ for k := J + 1 step 1 until COUNT do
be
if RES[J,7] > a max or RES(k,7] >
a max then goto one more'
1= ERE‘T“h%?ﬁEs[k 4] +
RES Js5]XRES[k,5] +
RES|[ J,6 JXRES[k, 6])/(RES[J TIXRES[k,71);
if t = 0 then

% = 90.0; goto casej
end

else if ¢ > +1 then
begin

Ir;

F
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t := 0.0; goto case;
else if t < -1 then

:= 180.0; goto case;

T = arctan(sqrt(1 - t12)/t)xangle;
if t < 0 then t := 180.0 + t;
case: out name (DV 2,DV
1,Ch[RES[J,lj,l],Ch[RES[i,l],2],end)'
out symmetry (DV 2,REs[i 2,c1,RES[,31);
write text (DV 2,[[10s] 5;
out name (DV 2,DV 1,Ch[i,1],Ch[1,2],end);
write text (DV 2,[[4s]]);
out name (DV 2,DV
1,Ch[RES[k,1],11,CnlRES[k,1],2],end);
out’ symmetry (DV 2,RES(k,2],C1,RES[k,3]);
write (DV 2,format([ssssndd.ddec]),t);
one more: :
end angle calculation;
end angle searching loop;
end loop through atom list;
end cell coordinate block;
end block lattice type;
end atom 1list block;
end block equivalent positions;
end:
close (D IN); <close (DV 1); close(100);
end> ~
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